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“IT IS A SAD thing to be unrequitedly in love, I can tell you. The truth is that I love
mathematics and mathematics is completely indifferent to me.”

Isaac Asimov
“Damit das Mogliche entsteht, muss immer wieder das Unmogliche versucht werden.”
Hermann Hesse

“Ten confianza en ti mismo. En la inteligencia que te permitirdn ser mejor de lo que ya eres
y en el instinto de tu amor, que te abrird a merecer la buena compariia.”

Fernando Savater






Abstract

The parallel computing paradigm has made a significant impact on many scientific
areas whose algorithms have experienced a substantial improvement. In Computer
Vision, there has been an explosion of real-time applications ranging from medical
science to telecommunications, defense, aerospace, etc. However, designing and im-
plementing algorithms that make use of this paradigm introduce some challenges.

The main goal of this Thesis is to provide efficient algorithms for two relevant
computer vision problems capable of real-time resolution based on multicore on
CPU and manycore on GPU. The first problem is Saliency detection and the sec-
ond one is Computed Tomography synthesis.

Nowadays, there is a large amount of visual content (videos and images). As hu-
mans, our visual attention can discriminate the relevant information of each scene
in a fast way that allows our limited resources to interact with the environment nat-
urally. Computer Vision has recently started proposing algorithms to mimic the
human visual attention system. In particular, saliency detection belongs to a binary
segmentation problem. These algorithms extract the relevant part of the scene auto-
matically. Saliency detection models are of much interest to the research community.
These saliency models aim to understand how visual attention works in humans and
to be able to discriminate important information automatically and process it ade-
quately.

The first contribution of this Thesis is the development of a variational model
for the resolution of the saliency detection problem in natural images. Variational
methods have a long history in Mathematics and Engineering. Its application to
low-level image processing such as optical flow, denoising, inpainting, deblurring,
etc. has provided state-of-the-art results for unsupervised methods in the computer
vision community. One common drawback of these methods, based on local differ-
ential operators, is their inability to handle textures. Non-local variational methods,
based on non-local differential operators, have been introduced successfully in im-
age processing to overcome this problem. They model not only proximity but also
similarity features.

Few algorithms solve the saliency detection problem using the variational setting
in the literature. In a non-local framework, given by a 5-dimensional feature space,
we propose a new general model based on the non-local Total Variation (NLTV) op-
erator. Different scenarios are explored in the modelling exercise introducing a new
explicit term for saliency detection. The resulting models are validated and the re-
lated optimization problems are solved on CPU and GPU platforms for comparison.
A primal-dual algorithm dictated by the mathematical formulation of the problem
is implemented.

A comparison with previous variational approaches is presented. The Quan-
titative results, under typical metrics used in saliency in complex public datasets,
indicate that our method obtains almost the best score in all metrics. Furthermore,
the implementation of the algorithm either on CPU or GPU achieves up to 33 fps
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and 62 fps respectively for 300 x 400 image resolution, making the method eligi-
ble for real-time applications such as surveillance video, temporal video classifica-
tion, background subtraction, object detection, and general unmanned aerial vehicle
(UAV) scene image recognition.

On the other hand, computer vision and image processing techniques have had
a tremendous impact on Medical Imaging during the last few decades. For exam-
ple, these applications have made it possible to diagnose diseases at an early stage.
The research community has focused on multimodal imaging using two or more ac-
quisition techniques to facilitate the diagnostic. It has several advantages because
every modality aids the diagnosis process by providing specific information about
the anatomy of the body. The combination of data from different modalities can
be used for accurate construction of patient-specific tissue models for dosimetry ap-
plications in electromagnetics or the use of tissue information for attenuation correc-
tion in Positron Emission Tomography and Magnetic Resonance Imaging (PET/MR)
among other applications.

Methods that allow generating a new modality image from a given data set
through image processing are interesting because they reduce acquisition time and
sometimes some harmful modality.

The second contribution of this Thesis is a novel patch-based approach to gen-
erate Computed Tomography volumes (CT) from Magnetic Resonance (MR) data.
The proposed method can be useful for several applications such as electromagnetic
simulations, cranial morphometry, and attenuation correction in PET/MR.

The proposed algorithm implemented using GPU computing techniques im-
proves x15.9 against a multicore CPU solution and up to about x75 against a single
core CPU solution. The proposed solution produces high-quality pseudo-CT im-
ages when a neighbourhood of 9 x 9 x 9 and 10 atlases are used because the patient-
specific CT and pseudo-CT images are similar according to the metric normalized
cross-correlation (NCC = 0.93). Furthermore, the algorithm has been revisited with
new hardware (NVIDIA DGX Station with NVIDIA V100 GPUs) in the last part of
this Thesis. The new results have achieved almost x6 speedup in comparison with
the best previous configuration. These results have confirmed the scalability of the
method in new architectures.



Resumen

Antecedentes Debido a las dificultades para aumentar las frecuencias de reloj de
los procesadores, para acceder ala memoria principal disminuyendo la latencia y au-
mentando el ancho de banda, y para aumentar el paralelismo a nivel de instruccién
(ILP), todo ello conocido como la pared de ladrillo (Brick-Wall) de la computacion,
las arquitecturas de computo han necesitado una estrategia de procesamiento par-
alelo para evolucionar y poder proporcionar mejoras en el rendimiento. Dentro de
las arquitecturas de computo, se pueden distinguir dos importantes enfoques a nivel
de disefio, el enfoque multicore mds adecuado para las arquitecturas CPU, y las ar-
quitecturas masivamente paralelas (manycore) para co-procesadores o procesadores
especializados en computo paralelo a nivel de datos (data level parallelism, DLP).

A su vez estos caminos adoptados por la industria del hardware han influido
en la manera en que se deben disefiar e implementar algoritmos (computaciéon y
programacion paralela). La computacién en paralelo ha influenciado considerable-
mente muchas areas en la ciencia donde los algoritmos han experimentado un pro-
greso sustancial. En el campo de la visién artificial, en el que la estructura de datos
principal, la imagen, es una gran coleccién de multiples elementos constitutivos
(picture elements, pix-els), ha favorecido una explosiéon de aplicaciones en tiempo
real desde medicina hasta las telecomunicaciones, defensa, aerondutica, etc. Sin em-
bargo, el disefio e implementacion de algoritmos que usan este paradigma introduce
nuevos retos.

Los problemas de vision artificial pueden ser tratados mediante multitud de
técnicas: modelos estocésticos (stochastic modelling), ondiculas (wavelets) y proce-
samiento en el espacio de la frecuencia, métodos variacionales (variational methods),
ecuaciones diferenciales parciales (EDP) (partial differential equations), aprendizaje au-
tomatico (machine learning), y enfoques mas modernos dentro del aprendizaje au-
tomatico como aprendizaje profundo (deep learning). Esta tltima ha conseguido ocu-
par las primeras posiciones en competiciones en una gran variedad de problemas,
como por ejemplo ImageNet, eclipsando a otros métodos.

Sin embargo, las técnicas variacionales siguen siendo una referencia en muchos
campos de vision artificial. El uso de estas técnicas combinado con las redes convolu-
cionales neurales proporciona robustez y estabilidad. Los métodos variacionales
tienen una larga y consolidada historia en matemaéticas y en ingenieria. Su apli-
cacion al procesamiento de imagen como el flujo 6ptico (optical flow), eliminacién de
ruido (denosing), eliminaciéon de desenfocado (deblurring), restauraciéon de imagen
(inpainting), etc. ha obtenido resultados del estado del arte, entre los métodos no
supervisados. Ademads, el tiempo de computo de los algoritmos en algunas areas de
vision artificial para resolver problemas especificos es un factor critico, como pueda
ser la reconstruccién de imégenes en imagen médica.

Por eso existe una necesidad constante en encontrar nuevos métodos para mejo-
rar los algoritmos, pero esto presenta algunas dificultades. El disefio e implementa-
cién de los algoritmos usando técnicas paralelas para una tarea especifica no es facil
y requiere amplio conocimiento en areas como arquitectura de ordenadores, algo-
ritmos, software, etc. El paradigma de programacién en paralelo involucra desafios
porque el sistema operativo ejecuta las tareas de una manera asincrona pudiendo



pararlas o retrasarlas haciendo variar el resultado de los algoritmos. Ademés, la nat-
uraleza de los algoritmos introduce otros problemas cuando se optimizan. Algunos
consisten en operaciones independientes. Las arquitecturas modernas pueden eje-
cutar las operaciones en paralelo, mejorando el rendimiento de estos considerable-
mente. La mejora esperada es alta y se incrementa cuando se utiliza nuevo hardware
porque la naturaleza del método es escalable.

Por otro lado, hay otro tipo de algoritmos cuyas operaciones no son independi-
entes. Estos algoritmos no tienen una naturaleza paralela, pero la investigacién para
mejorarlos con arquitecturas paralelas es también importante. Histéricamente, el
disefio de los algoritmos era secuencial. Intentar optimizar estos algoritmos puede
producir limites tedricos en el rendimiento e incluso direcciones para reemplazarlos
con métodos paralelos.

Hipétesis y Objetivos La propuesta de algoritmos eficientes para su consumo en
tiempo real basado en soluciones multi-ntiicleo en CPU y en GPU que solucionen
problemas en visién artificial son esenciales.

Los métodos variacionales tienen unos fundamentos tedricos que los hacen atrac-
tivos para resolver una gran cantidad de problemas en visién artificial. Sin embargo,
la resolucién de estos métodos tiene una naturaleza iterativa que limita la eficiencia
de la computacién en paralelo por sus dependencias de los datos al aproximar sus
derivadas. Otra dificultad radica en la imposicién de un criterio de parada basada
en la propiedades de convergencia del algoritmo. En cambio, existen otros tipos de
técnicas que se adecuan perfectamente a las arquitecturas en paralelo. Dos prob-
lemas en visién artificial han sido seleccionados para ilustrar el uso de técnicas de
computacion paralela. El primer problema es la deteccién de Saliencia y el segundo
es la sintesis de imdgenes de tomografia axial computarizada (CT). Las hipotesis
principales de esta Tesis Doctoral se centran de la siguiente manera:

* Primera Hipétesis: Los métodos variacionales son formidables herramientas
de modelado en visién artificial que han sido aplicados con éxito en una gran
variedad de problemas de bajo nivel en visién artificial entendiendo por ello
el preprocesado de imagenes (filtrado, eliminacién de ruido, segmentacion,
recuperacion de informacién, registro, fusion y super-resolucién entre otros)
previo a la extraccién de estadisticas, clasificacion e interpretacion semantica
de las imdgenes. Convenientemente modificados estas formulaciones varia-
cionales clasicas pueden resolver el problema de la deteccién automatica de la
saliencia en imdgenes naturales y producir resultados del estado del arte para
métodos no supervisados.

* Segunda Hipétesis: Los métodos iterativos como los esquemas numéricos uti-
lizados para resolver modelos variacionales introducen desafios cuando se
trata de optimizarlos computacionalmente. La combinacién de técnicas de
computacion paralela en GPU o CPU y un esquema numérico que converge
rapidamente a la solucién pueden producir implementaciones en tiempo real.

¢ Tercera Hipétesis: Los métodos de parches en los enfoques que usan multi
atlas han sido utilizados con éxito para segmentaciéon de imdgenes médicas.
También pueden ser adaptados para realizar sintesis de otras modalidades
como por ejemplo CT. De esta manera, la imagen sintética se podria utilizar
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para corregir imagenes de tomografia por emision de positrones (PET) en los
escaneres PET/MR.

¢ Cuarta Hipétesis: Los métodos de parches en los enfoques de multi atlas con-
sisten en tareas independientes. Con la ayuda de las técnicas de computaciéon
paralela en CPU o GPU, el rendimiento computacional del algoritmo puede
mejorar sustancialmente. Ademads, algunos pardmetros se pueden relajar en
el algoritmo para reducir el tiempo de computo sin perder exactitud en los
resultados.

Podemos formular el objetivo de esta tesis de la siguiente manera "EI estudio de los
métodos cldsicos para el procesamiento de imagen aplicado a deteccion de saliencia y proble-
mas en imagen médica acelerados con plataformas multi-niicleo y arquitecturas masivamente
paralelas". Siendo los objetivos operativos:

1. Analizar el estado del arte de los métodos para resolver el problema de la de-
teccion de saliencia en imdgenes naturales y métodos para corregir imdgenes
de PET en la modalidad de PET/MR.

2. Estudio de las plataformas multi-nticleo y arquitecturas masivamente parale-
las para mejorar el tiempo de computo de los algoritmos.

3. Estudio de la formulacién variacional en el procesamiento de imagen: desde
un andlisis local a no local en grafos discretos.

4. Estudio de los métodos de parches usados en la segmentacion en imagen médica
y su adaptacion para sintesis.

Metodologia Para el problema de la deteccién de saliencia en imagenes naturales se
ha propuesto un nuevo modelo variacional de saliencia, de tipo no local, adecuado
a la estructura de los datos dada por un espacio de caracteristicas de dimensién 5
que se modela como un grafo. El calculo variacional no local, tan antiguo como
el local (Liouville, 1832), s6lo recientemente ha sido desarrollado e introducido en
vision artificial y procesamiento de imagen. Inicialmente motivado para solucionar
el problema de la deteccién y reconstruccion de texturas puede ser empleado para
detectar similitud y proximidad en espacios de caracteristicas.

En este marco se proponen dos nuevos modelos basados en el operador de variacién
total (NLTV) no local. Diferentes escenarios son investigados en el ejercicio de mod-
elado introduciendo un nuevo término explicito para la deteccién de saliencia. La
formulacion propuesta, en términos de la norma dual del operador NLTV, dicta la
implementacién de un algoritmo primal-dual que se adapta al marco no local.

Para el problema de la generacién de modalidad CT a partir de imagen MRI
(sintesis) se propone un algoritmo basado en los fundamentos del filtro de media no
local (non-local means) para reducir el ruido. Este filtro se puede adaptar para con-
seguir otras finalidades, por ejemplo, generar una imagen de otra modalidad desde
una modalidad diferente. La generacion del pseudo-CT se consigue mediante técni-
cas multi atlas. Para ello relacionamos la imagen de entrada (MRI) con las imégenes
de referencia en el atlas (pares MRI-CT) y propagamos la correspondencia en su par
CT dentro del atlas. La relacion entre las imdgenes se realiza a nivel de parche dentro
de un vecindario dando como resultado un peso que se combina con las etiquetas de
CT para obtener la imagen de la nueva modalidad. Las ventajas de este algoritmo
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son su independencia en las operaciones y no tener ningtin esquema iterativo que se
traducen en una utilizacién casi 6ptima de los recursos de una arquitectura paralela.

Ambos problemas han sido optimizados en CPU y GPU dando como resultado
soluciones para su consumo en tiempo real. El acceso eficientemente a la memoria
es una de las prioridades para reducir tiempo en los algoritmos. Para lograr este
objetivo hemos organizado mejor los datos (spatial locality) o su acceso local (tempo-
ral locality). Ademas, hemos aplicado patrones paralelos (reductions) para algunas
operaciones en nuestros algoritmos (minimos, maximos, sumas, etc.).

Resultados Las herramientas cldsicas como los métodos variacionales y EDP, y los
parches en multi atlas han resultado ser bastante poderosas para resolver los prob-
lemas propuestos.

En el problema de la deteccion de saliencia, los resultados cuantitativos, en base
a tipicas métricas usadas en saliencia en complejos conjuntos de datos, compara-
dos con otros modelos variacionales, muestran que nuestro método obtiene casi los
mejores resultados en todas las métricas. Ademds, nuestra implementacién tanto en
CPU como en GPU consigue hasta 33 fps y 62 fps respectivamente para una imagen
con dimensiones 300 x 400, haciendo posible que el método sea elegible para apli-
caciones en tiempo real como video vigilancia, substraccién de fondo, deteccién de
objetos y vehiculo aéreo no tripulado (VANT) para reconocimiento de escenas.

El algoritmo propuesto para la sintesis que ha sido implementado con técnicas de
computacion en GPU obtiene un rendimiento de 15.9 veces mejor que una solucién
multi-nticleo en CPU y hasta cerca de 75 veces en comparacion con una soluciéon de
un solo ntcleo en CPU. La solucién propuesta produce imédgenes de pseudo-CT de
alta calidad cuando se utiliza un vecindario de 9 x 9 x 9y 10 atlas porque la imagen
de CT de referencia y el pseudo-CT son similares mediante la métrica de correlacién
cruzada normalizada (NCC = 0.93). Ademads, en la dltima etapa del estudio de la pre-
sente Tesis Doctoral se ha revisado el algoritmo con un nuevo hardware (NVIDIA
DGX servidor con NVIDIA V100 GPUs). La mejora conseguida es de casi 6 veces re-
specto a la mejor configuracién anterior. Esto confirma la escalabilidad del método
cuando se utilizan nuevas arquitecturas.

Conclusiones El énfasis de esta Tesis Doctoral se ha centrado en la utilizacién de téc-
nicas de computacién paralela en arquitecturas modernas para resolver problemas
de relevancia en vision artificial. El uso de estas técnicas permite tener aplicaciones
en tiempo real las cuales son de mucho interés actualmente en la comunidad de
la vision artificial y el procesamiento de imagenes. Estas técnicas de computaciéon
paralela también se han convertido en una pieza fundamental para muchas édreas
fuera del ambito de vision artificial debido a que siempre existe un deseo de mejorar
el rendimiento de los algoritmos y el hecho de que los avances producidos por la
miniaturizacion se hayan ralentizado. Por lo tanto, las alternativas, para satisfacer
las demandas de muchas areas de la ciencia, deberian de provenir del disefio de ar-
quitecturas paralelas, software paralelo o algoritmos con naturaleza paralela.

En nuestro trabajo, hemos propuesto un nuevo algoritmo y un modelo para re-
solver dos problemas de relevante importancia y de naturaleza diferente en visién
artificial con el uso de técnicas de computacién en paralelo. La naturaleza diferente
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de las soluciones propuestas nos ha proporcionado otra perspectiva a la hora de dis-
efiar algoritmos o modelos cuando aparezcan nuevos retos: la escalabilidad.

El método para la sintesis de MRI-CT tiene una naturaleza paralela, en cambio, la
deteccién de saliencia es un método iterativo. Basado en los resultados de esta Tesis
Doctoral para ambos métodos, hemos observado que la escalabilidad en el problema
de sintesis MRI-CT ha producido un impacto considerable en el tiempo de computo
con nuevo hardware. La naturaleza paralela en los algoritmos tiene una importante
ventaja competitiva cuando el tiempo de cémputo es un requisito esencial, véase
por ejemplo aplicaciones de tiempo real. Esta ventaja refuerza la idea de pensar de
una manera diferente algunas herramientas de matematicas como los métodos it-
erativos para intentar adecuarlas lo méximo posible a arquitecturas paralelas. Sin
duda, modelar, computar o pensar en paralelo es el presente y el futuro.

La computacién también evoluciona para satisfacer las demandas que surgen en
los nuevos problemas. La computacién en GPU nacié como un modelo puramente
paralelo, pero ha ido integrando maneras de expresar muchos algoritmos que ini-
cialmente no eran posible.
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Chapter 1

Introduction

The technological progress in building computers and the innovations in computer
design such as processor optimization, memory, etc. have driven the rapid evolu-
tion of computer performance. Miniaturization in semiconductor devices led to an
outstanding improvement growth over the past 50 years.

Gordon Moore, Intel co-founder, observed a gradual miniaturization rate [184].
His prediction, known as Moore’s Law, was that the number of transistors that could
be integrated into each computer chip would double about every two years [185].
Robert Dennard, at IBM, also observed that in parallel with doubling transistors the
power consumption remained constant for a given area of silicon [76].

In the past few decades, the improvements in the computer industry have been
driven by Moore’s Law and Dennard scaling meaning that more transistors can be
packed in the same space and transistors could go faster with less power [115]. This
evolution has made algorithms run faster with new hardware for almost 50 years.

However, Moore’s law and Dennard scaling no longer hold because the phys-
ical limits (energy consumption and dissipation problems) have been reached and
therefore, the rate has been reduced [115]. In 2005, the growth in computation perfor-
mance was limited by the convergence of three factors [175]: power, Instruction-level
parallelism (ILP), and memory. Therefore, the performance obtained transparently
in each new computer generation has slowed down considerably [17].

These factors triggered a shift in the design of new hardware architectures. To
continue the evolution of the performance of computers as before, the semiconduc-
tor industry has adopted two paths [123]. On the one hand, there exists a multicore
strategy intending to improve serial programs when moving them into multicore
architectures [145]. Multicore processors provide access to more than one core for
computer computation to make it possible to execute many calculations in parallel.

On the other hand, the manycore strategy aims to keep a large population of
threads for calculation in data parallelism problems. GPU Computing is an impor-
tant representative of this strategy [145]. In each GPU generation, this population of
threads (more active cores at the same time) is increasingly giving more power for
computation.

The use of the accelerator-based architectures such as Graphics Processing Units
(GPUs), Field Programmable Gate Arrays (FPGAs), and Application-specific Inte-
grated Circuits (ASICs) in the high-performance computing (HPC) field and, espe-
cially, supercomputing area started in 2008. In June 2008, IBM Roadrunner was the
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first number one supercomputer of the Top500 ranking including Cell processors as
a form of accelerators [270]. After it, accelerators consistently formed part of the top
10 fastest computers in the world. For example, in 2011, the GPUs from the ven-
dor NVIDIA were included in the second supercomputer on the ranking list for the
Top500 of the world. The first supercomputer including GPUs as accelerators was
Titan in November 2012 equipped with NVIDIA K20x GPUs. More recently, in 2018-
19 Summit occupied the first position equipped with NVIDIA V100 GPUs demon-
strating that heterogeneous architectures with CPUs (Central Processing Units) and
GPUs still appear on the high-performance computing ranking [182].

Over the years, GPU technology has simplified the programming languages when
writing code for GPUs and improved the relationship between computation perfor-
mance and cost. These considerations make this technology very attractive for ev-
eryone who wants to develop efficient solutions at a reasonable price [44].

Multicore and manycore architectures have been used in many areas to improve
algorithms. Among them, Computer Vision has witnessed an explosion of real-time
applications through this performance increase. Computer Vision is a complex sci-
entific field in which many other areas are interconnected together (Mathematics,
Computation, Optics, Physics, Psychology, etc.). With this shared knowledge, the
aim is to try to emulate the behaviour of the human visual system. This emulation
is achieved by processing the data from images or videos through algorithms that
usually follow the principle of single instruction multiple data (SIMD) and these
are adequate for multicore and manycore architectures. Furthermore, the amount of
data to process in videos or images is large and continues increasing every year [61],
making it advantageous to use parallel programming paradigms.

Addressing computer vision problems can be done using many approaches. We
can trace the roots of image processing back with techniques of manipulating and
processing 1D signals. After this, more powerful and complicated tools have emerged,
such as stochastic modelling, wavelets, and Partial Differential Equation (PDE), to
name some relevant ones [19]. Machine learning techniques such as clustering, sup-
port vector machines, neural networks, etc., have also provided the necessary tools
to tackle many computer vision problems, for example, image recognition. Further-
more, deep learning approaches belong to this family and they have been breaking
accuracy records in ImageNet competition since 2012 with Alexnet [148].

Continuous approaches allow the use of continuous tools that are abundant in
Mathematics such as functional analysis [40, 51, 12], differential equations [19], opti-
mization theory [35, 233], etc. to tackle computer vision problems (Figure 1.1). Fur-
thermore, the continuous setting can easily model the rotational invariance property
and this a fundamental property for the low-level tasks in Image Processing [68].

Calculus of variations is a branch of functional analysis and provides a trans-
parent framework to solve low-level image processing problems as an alternative to
heuristic classical approaches. Variational methods are based on the calculus of vari-
ations. They define the properties that the solution should have in the functionals
and provide a result through optimization. Although some parameters are inherent
in this approach, their meaning is also well understood and their effects. An energy
functional is constructed and then minimized. Variational methods have achieved
great success when applied in many low-level image processing problems [260, 54,
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(@) (b)

Figure 1.1: (a) Continuous representation of the image (b) Discretization version of

(a).

87].

There are many real-world applications using computer vision or image pro-
cessing algorithms such as machine inspection to check possible failures in indus-
try parts [23], in the hardness testing industry to measure indents and determine
the hardness of the materials [94], image manipulation [20], video summarization
[164], image compression [108], enhance image quality in graphics [147, 161], MRI
reconstruction [250], interactive segmentation [192], denoising in microscopy [107]
or multi-atlas segmentation using label fusion for medical images [273, 45] to name
a few. The production of new algorithms to satisfy the demands of new applications
and new problems is an ongoing task, and new challenges appear every year. There
are some areas in Computer Vision where the computational time of the algorithm
is critical, for instance, Medical Imaging.

However, there are some difficulties when trying to improve algorithm com-
putations. The design and implementation of them using the parallel paradigm
for a specific task is not effortless and it requires expertise in different fields such
as software, computer architecture, algorithms, etc. Parallel programming brings
some challenges because the operating system executes tasks in the computer asyn-
chronous and can halt them or delayed varying the effect in the algorithms [116].
Furthermore, the nature of the algorithms implies some difficulties when optimiz-
ing them. Some algorithms consist of independent operations. Modern architectures
can execute them in parallel, improving the performance of the algorithms consider-
ably. The speedup expectation for them is high and it increases with new hardware
generation because the nature of the algorithm is scalable.

On the other hand, there are types of algorithms composed of operations that are
not independent. These algorithms are not parallel in nature, but the research for im-
proving them with parallel architectures is also important. Historically, the design
of algorithms was sequentially [6]. Trying to optimize them can produce theoretical
bound performance and even directions to replace them with parallel methods.

Thus, this Thesis is devoted to solving two relevant problems in Computer Vision
and providing an efficient implementation in parallel architectures. These problems
shall be briefly described in the next section.
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1.1 Motivation

The multicore and manycore architectures introduced by the semiconductor indus-
try have changed the way that we should design and implement algorithms. This
shift motivates our research to bring parallel computing for two appealing com-
puter vision problems in modern architectures. Our goals are twofold: proposing
new algorithms or models to solve them and make an efficient solution that may be
deployed in production. Linking both parts is a challenging task because it requires
broad expertise in areas that are disjoint most of the time. This research focuses on
two areas in Computer Vision: Saliency and Medical Imaging.

Saliency is a relatively new field in Computer Vision. Saliency detection algo-
rithms aim to segment automatically the objects which capture human attention.
Pre-processing steps in pipelines typically use saliency algorithms. Therefore, they
must be quick methods. That is the reason why this problem is an appealing can-
didate to propose an efficient algorithm. Many algorithms have been proposed in
literature since this new field was born.

However, there are a few using variational methods. Variational methods pro-
vide a way to model a problem in an optimization framework. They are still the
state-of-the-art results among classical and unsupervised methods in many disci-
plines (3D image reconstruction, medical image reconstruction, optical flow, etc.).
They can also accomplish more specific tasks, such as saliency detection, but the
variational approach must introduce new dynamics to facilitate the almost binary
separation of foreground and background. Nonetheless, variational algorithms have
an iterative nature (numeric scheme), making it difficult to parallelize. They have
data dependencies and depend on converge criterion to stop. To the best of our
knowledge, algorithms using the variational setting for saliency have not been im-
plemented yet by parallel computing paradigms. A new model using this frame-
work with an efficient computation would be of much interest.

On the other hand, the use of several modalities to analyze data in Medical Imag-
ing introduces new challenges. One of these challenges is to improve the quality
of Positron Emission Tomography (PET) images when using Positron Emission To-
mography and Magnetic Resonance Imaging (PET/MR) modality. The attenuation
correction maps used for PET images are not directly from MR images as it is from
CT images in Positron Emission Tomography and X-ray Computed Tomography
(PET/CT) modality.

In Medical Imaging, there is also a high demand for fast solutions for clinical
purposes (see for example medical image reconstruction algorithms for acquisition
scanners). The correction of PET images problem exhibits a large amount of data
(images are volumes). Since this correction is not the final step in the pipeline, PET
images must be analysed by experts, a good computation performance is also nec-
essary. These requirements (quality improvement and fast algorithm) motivate the
proposal of an algorithm that makes the most out of parallel architectures: atlas-
based methods, in particular, patch-based methods. These methods extrapolate
information from a dictionary of pairs (MRI, CT) constructed offline to generate a
pseudo-CT when an MRI input image is given. Then, the synthetic CT may be used
to correct the PET images. Furthermore, these algorithms do not include either any
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iterative scheme or stop criterion. Lastly, their operations are independent and there-
fore high acceleration of the method is expected.

Although these problems will be solved using classical approaches, we are aware
of the growth of new modern approaches like deep learning techniques to solve com-
puter vision problems. However, our motivation not to use it is twofold: firstly, we
have the intention to apply multicore and manycore architectures to speed up the
algorithms. Machine learning approaches make typically use of frameworks (Caffe
[137], PyTorch [216], TensorFlow [1], etc.) where the use of this multicore and many-
core architectures is transparent and limited optimization is possible.

Secondly, the increase of available data and computation power has made ma-
chine learning approaches like deep learning solve increasingly complicated prob-
lems with better accuracy [103]. Nowadays, deep learning techniques produce out-
standing performance in many areas in Computer Vision: localization, classification,
recognition, etc (see, for example, [148]). Nevertheless, this technology remains a
black box and some efforts are ongoing to make a stable and understood theory (for
further details see [102]). For example, it has been proven that the inference result
can be fooled by slightly altering the input data to produce high confidence results
in classification when the input image is not that real object (see for example [190]).
The lack of stability in the outputs makes for sceptical usage in critical applications
such as Medical Imaging.

1.2 Hypotheses

Once we have presented our motivations and the selected problems, we shall define
our goals and objectives based on the following considerations. We can formulate
the principal hypotheses for the saliency detection problem:

* Hypothesis One: Variational methods can be successfully applied to the auto-
matic saliency detection problem for natural images. This is based on the fact
that variational methods have shown to be powerful modelling tools for many
low-level image processing tasks providing, state-of-the-art results among clas-
sical, unsupervised methods. Based on the works of [179, 281] we then assume
that, if conveniently modified, classical variational models can also address
the saliency detection problem. Since the variational methods rely on unsu-
pervised clues (contrary to the recent deep learning approaches based on data
processing and training), in this work, we wish to explore the possibility to
provide unsupervised, automatic segmentation (classification) state-of-the-art
results.

* Hypothesis Two: Iterative methods such as the numerical schemes used to
solve the proposed variational models introduce some challenges when op-
timizing them computationally. The combination of parallel techniques either
on GPU or CPU and a numerical scheme that converges rapidly to the solution
can be capable of real-time processing video.

and the hypotheses for the MRI-CT synthesis problem as follows:

¢ Hypothesis Three: Patch-based methods in multi-atlas have been applied suc-
cessfully as a segmentation technique [236]. They can also be applied to gen-
erate other image modalities like CT. In this sense, PET/MR modality can use
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synthetic CT for the attenuation correction. This approach can reach accuracy
results in comparison to the patient-specific CT when using an atlas composed
of human head images. In this sense, clinical protocols could incorporate these
methods.

Hypothesis Four: Patch-based methods in multi-atlas consist of independent
tasks. Using computing parallel techniques either on CPU or GPU can improve
the performance substantially. Furthermore, some parameters in the patch-
based algorithm can be relaxed to reduce time without losing accuracy.

In the following chapters, we shall try to provide the answers for these hypotheses
and we will finalize with some conclusions at the end of this document.

1.3

Objectives

We tackle two computer vision problems from classical approaches. Therefore, we
can formulate the goal of this Thesis in the following way “The study of classical image
processing techniques applied to saliency detection and medical image problems accelerated
by multicore and manycore platforms”. We can decompose the main goal into several
operative objectives:

1.

1.4

To study the state-of-the-art methods for solving the saliency detection prob-
lem in natural images which are general everyday scenes of contemporary life,
animals, and landscapes.

. To study the state-of-the-art attenuation correction approaches in PET/MR

modality.

. To study the multicore and manycore platforms for improving both algorithms.

. To study the variational formulation in Image Processing: from local pixel-

wise analysis to non-local discrete graphs.

To study patch-based approaches as segmentation methods in Computer Vi-
sion.

Thesis Organization

This Thesis has six chapters:

¢ Introduction (Chapter 1): This chapter is about giving a brief presentation

about computation and its importance in Computer Vision. Furthermore, it
summarizes ways to treat images and process them. It also presents the dif-
ficulties of optimizing algorithms due to their nature. Finally, we expose the
motivation of this research and the choice of the problems, the hypotheses, and
the objectives.

State of The Art (Chapter 2): We illustrate the use of General Purpose Com-
putation for solving problems in the literature. We also present the problems
in our research and the proposals to solve them in the literature:

— General Purpose Computation Using Multicore and Manycore Architectures:
This section introduces the use of multicore and manycore architectures
to accelerate algorithms either in Computer Vision or in other fields.
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— Saliency Detection Problem: We highlight the interest of the saliency algo-
rithms in Computer Vision and present the different approaches to pro-
duce the saliency detection: unsupervised algorithms, supervised algo-
rithms, and combined. At the end of the section, we describe some appli-
cations using saliency.

— Attenuation Correction in PET/MR: MRI-CT Synthesis: We describe three
medical image acquisition modalities in this section to better understand
the difficulties and the challenges to correct PET images in PET/MR mul-
timodality. We also present methods to correct attenuation for PET im-

ages in PET/MR multimodality: emission data, segmentation, and atlas-
based.

¢ Methodology (Chapter 3): We present the techniques to build our proposals:

— Computation in Shared Memory: alternatives that exist today for high com-
putation in shared memory.

— Variational and PDE-based models in Computer Vision: We describe how to
formulate image problems in the variational setting. These problems are
discretized and feasible numerical schemes are presented. Furthermore,
we also present a non-local framework dictated by the graph structure of
the data.

— Saliency Variational Model on Graphs: We explain in detail our approach
to solve the saliency detection problem with novel methods in the varia-
tional setting.

— Patch-Based Methods for MRI-CT Synthesis: We explain in detail the method
proposed for MRI-CT synthesis based on the patch approach.

* Saliency Detection in Natural Images (Chapter 4). We describe the imple-
mentation and present the results:

— Implementation: We describe the implementations on CPU with vectoriza-
tion as well as three different optimizations in the CUDA environment.

— Results: We conduct an intensive evaluation of different benchmarks for
quantitative purposes and time performance.

¢ MRI-CT Synthesis (Chapter 5). We conduct an intensive evaluation of differ-
ent benchmarks for quantitative purposes and time performance.

— Implementation: We describe the implementations on CPU using a single
core and CPU multicore as well as three different optimizations in the
CUDA environment.

— Results: We conduct an intensive evaluation of 18 subjects with different
configurations showing the accuracy of our method as well as the short
time to produce an output.

¢ Conclusions and Future Work (Chapter 6): We highlight the main contribu-
tions of this Thesis, review the hypotheses, propose possible future work, and
a summary of the publications produced during the Thesis (presentation, arti-
cles, etc.).

In addition to that, there are two appendixes A.1 and A.2. The first one is de-
voted to illustrating an optimization process for a real problem on multicore CPU
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and the second one describes how to derive the Euler-Lagrange equations for image
processing problems modelled by differentiable energy functionals.



Chapter 2

State of The Art

In this manuscript, we provide a new model and an algorithm with an efficient im-
plementation for two computer vision problems: the saliency detection in natural
images and the synthesis of CT given an input MRI image using a dictionary of
pairs (MRI, CT). The aim of this chapter is threefold. First, we emphasize the use of
computation in many areas of science and industry, and how computation on multi-
core and manycore architectures is a natural way to improve algorithms and meth-
ods. Second, we present the saliency detection problem, highlight its importance in
Computer Vision and we review current unsupervised and supervised methods to
tackle the saliency detection problem. Finally, we describe briefly the image acqui-
sition modalities we will work with, as well as the importance of producing a new
image from another modality to correct the attenuation for PET images in PET/MR
modality and the methods in the literature.

2.1 General Purpose Computation Using Multicore and Many-
core Architectures

Multicore and manycore architectures are the main strategies that the semiconduc-
tor industry has adopted since the performance delivered by Dennard scaling and
Moore’s law has slowed down [123]. Multicore designs aim to maintain the pace for
sequential algorithms or programs and produce optimized code with out-of-order,
multi instructions, simultaneous multithreading, etc. in addition to the cores [145].
Manycores, on the other hand, have their focus on parallel algorithms because their
designs have eliminated complex control flows or large caches to exploit parallelism
with many core units for calculation. In this sense, they have a large number of core
units that perform slower in comparison with cores in multicore processors. Many-
core architectures are throughput oriented, for example, GPUs, while multicore ar-
chitectures are latency oriented, e.g., maximizing the total execution task instead of
reducing the time for a single task [145].

Algorithms use those architectures to improve performance. The nature of the
algorithm is an important aspect when migrating from sequential implementation
to a parallel one. We can roughly classify them into two types: algorithms in which
the operations are independent, and they might process a large amount of data, for
example, applying a global threshold to a large image. On the other hand, algo-
rithms which operations usually depend on other steps in the algorithm creating
data dependencies and might compute an insufficient amount of data, for example,
iterative methods in a small linear system of equations.
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Both types of algorithms are interesting from the point of view of how to accel-
erate them. They may be part of pipelines or pre-processing steps. However, the
first kind of algorithm is going to experience a better speedup gain, and because the
nature of the algorithm is parallel new hardware or software with better capabilities
will improve the outcome further. The second type of algorithm is more dependent
on the hardware characteristics and sometimes may have no significant acceleration
when using better hardware or software. The following subsections try to describe
research falling into these types of problems. Chapter 3 describes in detail the tech-
niques used for our proposal implementations.

2.1.1 Multicore Architectures

The introduction in the computer industry of architectures with more than one core
opened more opportunities to exploit parallelism for computation [124]. Before this
milestone, some works accelerated algorithms via multiprocessors. A parallel chess
program on a machine with a theoretical peak of 65.54 GFlopsl, which tied for third
in the 1994 ACM International Computer Chess Championship, is proposed in [139].
The chess algorithm was implemented by Cilk 1.0.

In the multicore architectures, the use of a multithreading programming interface
like OpenMP [72] allows rearranging the problems in a parallel way (problem de-
composition) and achieves much better performance. Early works tried to speed up
building blocks in scientific computation, such as Gaussian elimination [176]. The
authors proposed a method in shared memory using OpenMP and a distributed
memory architecture using MPI. Their conclusions highlighted the obstacle of trans-
ferring data with MPI and its better scalability for larger problems. In [188], a solver
for the parallel finite-element platform for solid earth simulation, GeoFEM, is imple-
mented with OpenMP, achieving a performance of 335.2 GFlops.

In Machine Learning, many algorithms need acceleration to apply them to, for
example, image processing and pattern recognition problems. The following paper
[136] proposed an architecture to combine GPU and multicore CPU to improve data
coordination. The results of the experiments highlighted that the combined solution
has ~ x15 speedup against an implementation on only CPU and only ~ x4 without
OpenMP.

The authors in [26] implemented the Lattice Boltzmann Method for solving fluid
dynamic problems with OpenMP. They achieved ~ X6 in the best configuration
against a serial solution. In the field of materials science, a parallelization code to
simulate molecular dynamics with OpenMP is proposed in [265]. On dual-processor
Xeon systems, they achieved a speedup ~ x1.7. Another interesting work is an algo-
rithm for DNA sequence alignment on multicore processor architectures [246]. The
authors used OpenMP with tiling techniques and the experiments demonstrated a
significant acceleration of the considered sequence alignment algorithms. In Ecol-
ogy, the use of parallel architectures has also brought good performance. An ap-
proach for how to parallelize spatially-explicit structured ecological model is pre-
sented in [280]. The authors achieved ~ x16 speedup against a single core im-
plementation, reducing the time from 11 hours for the single core execution to 39

INCSA’s 512 processor CM-5 https://www.top500.0rg/system/167057/
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minutes in the parallel version.

In Computer Vision, an algorithm for image dehaze removal is proposed in [282].
The implementation is a parallel OpenMP code using four threads executing 50
images with input size 600 x 525 per second achieved x1.6 speedup against the
sequential algorithm on Intel i7-4820K. The authors in [193] improved JPEG 2000
and MPEG-4 Visual Texture Coding (VTC) applying sequential as well as paral-
lel strategies with shared memory programming paradigm OpenMP. A study on
OpenMP and OpenCL platforms of the non-local means algorithm for denoising is
conducted in [291]. The authors designed a parallel non-local means with OpenCL
and OpenMP and reported results in different platforms for different image sizes.
For a 8192 x 8192 image, the OpenMP solution is almost x11 faster than a single
core solution and OpenCL has almost x9 speedup against the OpenMP solution.

A Canny Edge Detector is implemented using multicore processors in [183].
They proved the nature scalability of the algorithm for parallel architectures. Cilk is
used as a parallel programming model for the codification of the code, and platforms
with 4 and 8 CPUs are used. New frameworks have been published to make use of
this parallel paradigm and encapsulate them for Image Processing. For example,
Video++ is a novel framework targeting image and video applications running on
multicore processors [95]. They offer an abstraction on how to represent and resolve
problems in Computer Vision achieving up to x32 speedup using Cilk and OpenMP
against naive equivalent solutions.

In Medical Imaging, a performance study in 2D /3D registration is accomplished
in [178]. The authors used shared memory multicore architectures and several paral-
lel programming models such as OpenMP, Cilk++, Intel Threading Building Blocks
(TBB), OpenCL, and others. A sequential and parallel data decomposition for med-
ical image reconstruction is presented in [141]. The authors implemented the algo-
rithm Particle Swarm based on Artificial Neural Network.

2.1.2 Manycore Architectures

The exploration of graphic card architectures for computation has been of much in-
terest in the last two decades. Before a programming model for GPU was estab-
lished, some works tried to exploit its good performance using the graphics con-
texts like OpenGL [284] or Direct3D [181] and shading techniques [173, 174]. For ex-
ample, physically-based, visually-realistic cloud simulation, suitable for interactive
applications such as flight simulation, is enhanced with GPU techniques in [113].
Furthermore, the author derived general techniques using GPUs to simulate fluid
dynamics to chemical reaction-diffusion. Another early work using GPUs is the first
implementation of Partial Differential Equations (PDEs) for applying diffusion fil-
ters in Computer Vision [239]. The authors implemented a modified version of the
Perona-Malik model for filtering in Image Processing. They argued that GPUs are
very suitable for memory complex schemes like filtering, since bandwidth became
a major limiting factor in many scientific computations, and GPUs provide much
better bandwidth output. In that direction, the technique of deformable isosurfaces,
implemented with level-set methods used in segmentation, had an intensive com-
putation. However, implementations via GPU have demonstrated a substantial gain
in performance [151]. The authors implemented a GPU-based level-set solver with
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Figure 2.1: Performance comparison in Teraflops (TFlops) between the most relevant
GPU architectures in NVIDIA vendor and supercomputers between 2007-2020. Data
collected from NVIDIA and https://www.top500.0rg/

~ x15 against a highly optimized CPU configuration.

In Medical Imaging, reconstruction algorithms are very computationally inten-
sive tasks. For example, the use of accelerators like Application-specific Integrated
Circuits (ASICs) to improve the algorithm time in CT scanners were common for
manufactures because the CPU cannot compete with these configurations in three-
dimensional reconstruction [86]. The evolution of GPUs allows more flexibility and
good performance. The reconstruction of a CT image is based on backprojection
operations with a complexity of O(N?), N being the volume of the reconstruc-
tion. More backprojections imply more time for the algorithm. The authors in [86]
achieved a x12 speedup against CPU implementation for a volume 128 x 128 x 128
with similar accuracy. An efficient GPU implementation of the Fast Fourier Trans-
form (FFT) use in MRI reconstruction algorithms is presented in [250]. They eval-
uated this implementation on two algorithms: look-up table based gridding algo-
rithm and the filtered backprojection method. The results showed that the backpro-
jection x120 and gridding algorithms had x3.5 speedups against CPU implementa-
tions respectively. The accuracy is also comparable to CPU outputs.

The creation of patterns for common problems like reduce [44], scan [253], sort
[247], etc. was also of much interest. Furthermore, common programming lan-
guages as an abstraction to code algorithms with GPUs such as BrookGpu [44] made
the codification on GPUs simpler.

After the adoption of the accelerators like GPUs for supercomputing in 2008
[270], the explosion of applications with GPUs has increased every year. Figure 2.1
shows the performance during 2007-2020 between supercomputers and GPUs from
the NVIDIA vendor.

The effort continues in the theory direction to create efficient representations to
exploit spatial locality, for example, the multiplication of vector-matrix with new
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ways to store the spare matrix [24], highlighting the importance of the low occu-
pancy for specific problems using instruction-level parallelism (ILP) [278], creat-
ing more sophisticated libraries for parallel primitives such as reduction, sort, etc.,
which in the end facilitates the creation of new algorithms from a high level like
Thrust [25]. There was also an effort to design parallel low-level primitives to im-
prove the codification on the GPU side, being more efficient, more flexible, and more
performance-portable [180].

In Computer Vision, variational methods for segmentation have used GPUs. For
example, a Mumford-Shah variational formulation for computing piecewise smooth
and piecewise constant approximations, given an input image at VGA resolution
(640 x 480), is presented in [260]. The authors achieved ~ 20 frames per second and
real-time video cartooning. Another interesting application is that of the interac-
tive segmentation with scribbles and segmenting the image accordingly, the method
proposed in [192] is a variational method considering the spatial variation of colour
distributions in a local framework. A prima-dual scheme is solved on GPU at 0.43
seconds per image. In [220], a study of different variational formulations TV-L!,
TV-L?, and Mumford-Shah is conducted. The authors obtained speedups of x200
against Matlab implementations. In [251] an algorithm to accelerate dynamic MR
applications using infimal convolution of Total Generalized Variation functionals
(TGV) is presented. The reconstruction spends only a few minutes triggering the
applicability of the proposed method in clinical practice. A parallel implementation
to remove multiplicative noise that appears in microscopy, ultrasound, and infrared
imaging is proposed in [107]. The speedup achieved is x10.65 against a CPU-based
implementation.

In a non-local framework, the authors in [166] implemented the nonlocal means
denoising algorithm [43]. They used several graphics cards for reporting the results
and highlighted that since the algorithm is bandwidth-limited a graphic card with
better memory bandwidth will perform better. They achieved a x718 gain against a
naive implementation on CPU.

Nowadays, with the increase of machine learning approaches and the prolifer-
ation of frameworks, libraries, etc., it has become crucial to improve inferring and
training processes for these models by GPU computation. For example, the con-
volution neural network Alexnet for the classification problem was implemented
by GPUs [148]. There are several frameworks such as PyTorch [216], Caffe [137],
Tensorflow [1] to name a few which can map the operations on different hardware
transparently (for further details see [1]). It is out of the scope of this Thesis to cover
all the works in any area using GPUs. However, we would like to highlight some
important work in areas outside of Computer Vision, which looks very promising
using GPUs.

Data storage has increased exponentially this decade [258] and the way to pro-
cess data is changing as well. Databases were optimized for CPU [39], but the new
demands of industry driven by analysing more data quicker have forced the ex-
ploration of new ideas. Since GPU is a mature technology, the database research
community has started to accelerate databases via GPU [39].

Another relevant topic outside Computer Vision is to apply GPU to Finance.
The daily trading of matching orders (buy/sell) in financial stock markets is a very
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challenging task. In [240], the authors accelerated the Automatic Order Matching
method, achieving x160 — 240 speedup. Algorithms like STAC-A3 have also used
GPUs. As a result, they can simulate more workloads and trading strategies per
minute [205]. Using machine learning frameworks like Tensorflow, we can find a
work trying to predict stock prices via financial news [154].

Many fields in Science use mathematical models. For example, epidemiological
models have been accelerated in [89]. The authors achieved %20 speedup in the
best configuration against a CPU version. A molecular dynamics simulation and
molecular docking of the NS3 helicase of ZIKV is presented in [21] for the Zika out-
break. The simulations are accelerated by CUDA. Nowadays, we are immersed in
the SARS-CoV-2 outbreak and the research community has also been using GPUs in
HPC centres to accelerate the simulations®>. For example, a supercomputer-driven
pipeline for in-silico drug discovery using enhanced sampling molecular dynamics
and ensemble docking is proposed in [4]. Since the authors use Autodock-GPU [245]
on Summit, they can perform many simultaneous docking calculations that greatly
decrease the time-to-solution for screening a large dataset of ligands.

2.2 Saliency Detection Problem

2.2.1 Introduction

There has been a growing interest in visual attention models and their resolution by
computational methods in the last years. First, it is interesting to understand how the
brain can concentrate on a few important things when considering complex scenes.
Every second, around 10® — 10° bits ~ 125 MB of visual information reaches our
human vision system [32]. The brain does not have enough resources to process all
this information [153]. Instead, it applies some analysis optimization mechanisms
to tackle this massive income data. Secondly, statistical reports for the use of net-
work regarding visual information show an increase every year [61]. Processing this
data efficiently has become an important task and has produced many applications
equipped with visual attention models to tackle problems such as advertising, con-
tent aware, video summarization, compression, image matching to name a few.

Attention is a general term to group all possible factors which might influence
the decision in a selection mechanism [32]. However, we are interested in a specific
concept called saliency. Saliency can refer to different tasks: eye-fixation prediction
[140], objectness estimation, and image-based salient object detection [34]. We shall
concentrate on image-based salient object detection.

There is not an exact definition of what saliency is, but it could be formulated as
follows: it is the process to identify the parts in an image (regions or objects) that
stand out in comparison with their neighbours (Figure 2.2) [32]. Many visual atten-
tion models have their foundation in the Feature Integration Theory [275]. This theory
aims to select which features are important for constructing visual attention models
such as colour, orientation, location, etc. (Figure 2.3a). After this, Koch and Ull-
man [146] proposed a model to combine these features providing a final saliency map
where the salient elements in the images were highlighted. Based on this model, Itti

2The COVID-19 High Performance Computing Consortium https://covid19-hpc-consortium.
org/projects
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(b)

Figure 2.2: (a) Original image from HKU-IS dataset and (b) the saliency ground truth
associated to the original image.

(@)

Figure 2.3: (a) Discrimination problem in visual attention systems: it is easy to find
the unique item on the top image, but on the bottom image it is difficult because
it requires the features of orientation and colour. Image inspired by Attention-aware
rendering, mobile graphics, and games at SIGGRAPH 2014 (b) Taxonomy of the visual
attention models. Adapted from [32].
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et al. [133] implemented a system and validated it for digital images, giving birth to
a new research area in Computer Vision.

A taxonomy is shown in Figure 2.3b which describes possible models proposed
in the literature to model Human Visual Attention. Among them, there are two
main directions: bottom-up pure computationally (pre-attentive data-driven) mod-
els or top-down (task-dependent) approaches. In this manuscript, we shall focus on
bottom-up approaches, which are task-free and do not rely on learning, training, or
contextual information. They can also be considered as fundamental building blocks
for advanced, robust, hybrid bottom-up, and top-down models.
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2.2.2 Saliency Methods

A computer vision system for the saliency detection or saliency segmentation problem
aims to accomplish two stages [34]. First, to localize the salient regions or objects and
to label them as foreground and second to segment them from the unimportant part
called background. Saliency algorithms are typically involved in pipelines as pre-
processing steps. Then, algorithms for solving the saliency segmentation problem
should have some requirements [34]:

¢ Minimize regions marked as salient when they are not and vice versa.
¢ The computational time to produce saliency maps should be short.

¢ Saliency maps should be as accurate as possible. Therefore, objects marked as
salient should have a good delimitation.

There are several possible classifications for saliency models (see for further details
[34]), but, in this manuscript, we are going to classify them according to the nature of
the algorithm: classical ones (unsupervised) with or without optimization formula-
tion and machine learning approaches (supervised). Unsupervised and supervised
can also be combined [122, 159, 254, 96].

Some classical approaches build their models in heuristic assumptions hand-
crafted features to produce the saliency maps. These heuristics are colour, orienta-
tion, texture, etc., and they extract these features from blocks or regions in the images
[34]. Blocks are simple pixels or identical patches in size of an image, whereas re-
gions are a group of pixels that have some degree of similarity according to some
characteristics, for example, colour. Regions estimation in digital images can be
achieved by watershed [277], meanshift [63], graph-based algorithms [88], and su-
perpixels: Simple Linear Iterative Clustering (SLIC) [3], Superpixels with Contour
Adherence using Linear Path (SCALP) [99], Superpixel Sampling Networks (SSN)
[135] to name a few.

Superpixels represent the state-of-the-art decomposition of the image in the fea-
ture domain [3]. Superpixels have interesting properties for a partitioning algorithm:
1) Accuracy in the sense it adheres to the boundaries of the object, 2) Efficiency as
part of a pipeline, it must be a quick method, 3) Regularity producing high-quality
partitions of the image which are compact and uniform, so making the construction
of the graph more meaningful [3]. The saliency score s for each region r; of a partition
P = {r;}) | may be calculated

N
s(ri) =Y wi;Dy(ri, 1)
=1

where D;(r;,7j) is a measure of similarity between two regions in terms of some
features (salient prior) and w;; is a parameter between regions r; and r; weighting
spatial distance and region size [34].

Most of these classical approaches do not formulate the problem as an optimiza-
tion one. There exist more structured alternatives to model the saliency detection
problem as an optimization one. Bayesian and variational methods are examples of
well-established techniques in Computer Vision [19, 37].
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Figure 2.4: Saliency results by classical algorithms without optimization formula-
tion: (a) Original image from MSRA10K [58] (b) Saliency proposed by [133] (c)
Saliency proposed by [2] (d) Saliency proposed by [58].

As classical algorithms are based on handcrafted features, authors during the
years have proposed several priors to improve the models: centre-bias, optical-flow,
face localization to name a few (see for further details [32]).

Since Alexnet [148] occupied the first position with a large margin in ImageNet
Large Scale Visual Recognition Competition (ILSVRC [241]) in 2012, the proliferation
of computer vision algorithms in any area with machine learning has been enormous
[103]. Many deep learning models have achieved successful results in dealing with
the saliency detection problem [120, 290]. They typically use trained models for im-
age segmentation, which can extract representative features for saliency detection
via transfer learning. However, these approaches are computationally expensive
and require extensive labelled datasets. For further details about the challenges,
achievements, and future development in saliency with deep learning see [33].

Saliency algorithms typically produce a saliency map as output. However, these
outputs are images in gray-scale encoding the probability to be salient, white, other-
wise black. They must be binarized to obtain the final discrimination in the salient or
not salient region. The binarization is usually obtained with a hard fixed threshold
or with some adaptive algorithm for automatic discrimination [2, 58].

In the following sections, we shall briefly review the state-of-the-art saliency
methods for each class of algorithms.

Classical Algorithms

The first algorithms for saliency detection can be traced back to the seminal work of
Itti et al. [133]. A saliency map is determined by using centre-surround operations
on colour, intensity, and orientation features using a Difference of Gaussians (DoG)
in a multiscale framework (Figure 2.4b).

Later, Liu et al. formulated the saliency detection problem as a binary segmen-
tation problem [160]. They described the likelihood of the salient objects in terms
of multi-scale contrast, centre-surround histogram, and colour spatial distribution.
They combined these features using a Conditional Random Field (CRF) to produce
a bounding box where the salient object is located. A first database was also pub-
lished to evaluate the model. The database contains salient object annotations with
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Figure 2.5: Saliency results by optimization algorithms: (a) Original image from
MSRA10K [58] (b) Saliency proposed by [293] (c) Saliency proposed by [257] (d)
Saliency proposed by [122]

a bounding box.

In the work [2], the authors presented an automatic saliency detection algorithm
in the CIE Lxaxb colour space as an alternative to the classical RGB. Subtracting the
image mean colour to each of the components, a saliency map is produced through a
meanshift [63] segmentation and a dynamic threshold. They also provided the first
benchmark (1000 images) with pixel-wise annotations for evaluation (Figure 2.4c).

The methods presented above perform the extraction of the saliency maps in
the pixel domain. As a segmentation procedure, saliency detection methods can
make use of graph-based segmentation techniques [138, 47, 81]. The starting point
is an over-segmented image in which regions are progressively merged using dif-
ferent criteria or features, such as colour or contrast. The over-segmentation task
can rely on fine-grained morphological operators such as the watershed segmenta-
tion algorithm [138, 81] or superpixels approaches [155]. In [58], authors proposed
a histogram-based contrast (HC) procedure to measure the saliency of pixels as well
as a region-based contrast (RC) metric for regions obtained after a graph partitioning
algorithm [88]. Furthermore, the authors derived a way to produce a binary output
from the saliency map adapting the GrabCut algorithm [235]. They provided a new
benchmark pixel-wise with 10000 images (Figure 2.4d).

Classical Algorithms Using Optimization

Now, we shall focus our attention on those saliency models solved by optimization
methods. A formulation to mimic the process in the brain to separate salient and
not salient regions in an image was proposed in [286]. In this paper, the authors
formulated the problem of saliency as a matrix decomposition of an image I in form

I=L+S

where the redundant information should be approximately low-rank (L) and the
saliency information tends to be sparse (S). The authors transform images into
patches and form a low-rank matrix using a sparse over-complete bases dictionary.
The optimization problem is solved by a low-rank matrix recovery.
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Based on a general low-rank matrix recovery framework, a unified approach
to incorporate traditional low-level features (colour, texture, etc.) with higher-level
guidance (centre prior, colour prior, and face prior) is proposed in [254]. It solves the
optimization problem by low-rank matrix recovery.

In [293] is observed that spatial layout for background regions is different be-
cause “object regions are much less connected to image boundaries than background ones”.
Following this idea, they proposed a measurement to quantify the boundary connec-
tivity of a region (with area and length) (Figure 2.5b). First, the authors decompose
the image in the CIE Lxaxb colour space into a partition P = {p;}}¥, of N superpix-

els p; with SLIC [3] and calculate the probability of the background w?g accordingly

to this boundary measurement. The weights w{ § can be any meaningful saliency
measure. The following optimization problem is solved with s; being the saliency
value of region i and s = {s;}} :

mm Zw gsz +wag +Zw1] S —s] (2.1)
W */_/ _\,i
background foreground smoothness

where w;; are smoothness weights defined as

& (pi, pj)
Wwij = exp (— 202 +u

with d(p;, q;) being the Euclidean distance between the average colours in the CIE
Lxaxb colour space. The ¢ and y parameters are experimentally fixed.

In the same direction in [257], it is argued that the boundary prior may fail when
the objects are on the borders of the image. They proposed a new measurement
for the boundary as follows: first, a rough estimation for the background in the im-
age is computed by using objectness proposals (Figure 2.5¢). For this, the Binarized
Normed Gradients for Objectness Estimation (BING), which is a fast algorithm de-
livering many proposal objects (bounding box) at 300 fps [59], is adapted for this
problem. The image is then partitioned into superpixels (SLIC [3]) and the opti-
mization (2.1) is solved to determine foreground superpixels.

More recently object proposals have been combined with learning techniques. In
[122], it is observed that object proposals should be used according to some criteria
and the authors proposed a way to filter the objects generated by [295]. The crite-
ria are removing the oversized and undersized proposals and eliminating proposals
without enough salient seeds. They created bag instances for the multiple instance
learning process (MIL) with the proposals and introduced an iterative algorithm for
optimizing the model (Figure 2.5d).

In [159], an adaptive PDE LESD (Linear Elliptic System with Dirichlet boundary)
is proposed. A bottom-up and top-down information is incorporated into a saliency
diffusion model and the specific formulation, and boundary conditions of LESD are
learnt from the given image.

Optimization problems are faced when we model the problem in a Bayesian or
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Figure 2.6: Saliency results by variational methods: (a) Original image from
MSRA10K [58] (b) Saliency proposed by [281] (c) Saliency proposed by [10].
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Figure 2.7: (a) A convex surface in R3. Tt is the graphic of the quadratic function
f(x,y) = x* + y*> which has a Positive Definite hessian matrix and a unique global
minimum. (b) A convex-concave surface in R3. It is the graphic of the quadratic
function f(x,y) = x? — y? which has an Indefinite hessian matrix and a saddle-point
at the origin. (c) A concave surface in R. It is the graphic of the quadratic function
f(x,y) = —x% — y*> which has a Negative Definite hessian matrix and a unique global
maximum.

variational framework.

A general variational model for saliency segmentation can be formulated by the
following energy minimization problem: Given a function f (the data), compute a
solution u in the image domain such that it minimizes the energy

E(u) = J(u) + AF(u) (2.2)

where J(u) is the regularizer term (a-priori information), F(u) is the fidelity term. The
A parameter is a positive constant which allows balancing the relative importance of
the terms in the energy functional (2.2).

Typical energy functionals in image processing are convex, just like the function
f(x,y) = x* + y? in the two-dimensional case (Figure 2.7). The curvature of its sur-
face is positive and a (global) minimum exists.

The alternating-direction method of multipliers (ADMM) can be applied to solve
the general convex optimization problem. Variants of ADMM have been proposed
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Figure 2.8: Saliency results by deep learning approaches: (a) Original image from
MSRA10K [58] (b) Saliency proposed by [96] (c) Saliency proposed by [120] and (d)
Saliency proposed by [290].

to solve a (possibly non-convex) optimization problem defined over a graph [281].
Non-convex energy functionals have many attractive properties, see [225, 207], but
lack of a general optimization theory [233, 35].

Some works have been published making use of the variational setting for the
task of saliency segmentation. Wang et al. formulated a non-local non-convex model,
considering the minimization of the Ly semi-norm in a feature space [281]. The over-
segmentation is achieved by superpixels (SLIC [3]) and a graph in the feature space
(colour and distance) is constructed, providing a mechanism to link regions with the
same similarity using a k-NN methodology. To solve the minimization problem and
produce the saliency map (Figure 2.6b), the authors derived an Alternative Direction
Method of Multipliers (ADMM).

Based on the framework [281], Alcain et al. proposed a non-local convex model
in the feature space using the Total Variation operator (NLTV) as a regularizer [10].
Since the nature of the model is convex, the authors provided an efficient numeric
scheme through a primal-dual algorithm (Figure 2.6c).

There are other approaches for addressing saliency detection with variational
formulation, for example, a non-local, pixel-wise convex model is proposed in [179]
to segment natural images. In the same non-local setting, non-convexity is investi-
gated in [225] to detect and segment glioblastomas (tumours) in MRI images.

Deep Learning Approaches

The application of modern machine learning methods like deep learning has achieved
good results making full use of transfer learning techniques to derive saliency detec-
tion algorithms [33] (Figure 2.8b). However, being computationally intensive meth-
ods, they perform slowly (about 2 fps) even when using modern hardware to pro-
duce saliency maps [96]. They also suffer from images without clear objects, but the
latest works have improved these deficiencies. For example, the network models
in [120, 290] have achieved good results in different complex datasets (Figures 2.8c
and 2.8d). We shall not deepen anymore into this class of neural approaches in this
memory. We just observe that hybrid models will drive future, oncoming research.
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Figure 2.9: (a) Retargeting algorithm [101] original image (left), saliency map (mid-
dle), retargeting result using the saliency map (right). (b) Scenes represented by
image preview (left), saliency map (middle), and selective rendered image (right).
Image taken from [161].

2.2.3 Applications

In the introduction of this chapter has been mentioned that the saliency estimation
is a powerful tool that can be used in many applications mimicking human per-
ception. We list some compelling applications in different fields (Image Processing,
Computer Vision and Graphics, Advertising, etc.) to illustrate the importance of the
research.

In Computational Photography which is a branch of Image Processing, we can
find several applications making use of the saliency information: Content Aware
Image Resizing is also known as Retargeting (to resize the image keeping the aspect
according to the important information in the image). This application could use
the information coded in the saliency maps to guide the removal of unimportant
information and resize the images appropriately to be displayed in different devices
and resolutions. An improvement is proposed for retargeting in [101] with saliency
maps using Seam Carving as retargeting technique [20] (Figure 2.9a). Video summa-
rization uses the information of the saliency maps (where the relevant objects are)
as input for machine learning approaches to summarize videos [164]. Compression
techniques could take advantage of relevant and irrelevant information in the image
to compress, for example, in video compression [108].

In Computer Vision and Graphics, saliency maps can serve to deliver higher ac-
curacy resolution for salient areas than non-salient parts in the rendering process
[147, 161] (Figure 2.9b). The utilization of the Internet has increased exponentially.
Above all, the visualization of videos represents a large percentage of the share [61].
Some works have used the idea of saliency to insert ads in better positions to maxi-
mize the user experience [177, 109].
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2.3 Attenuation Correction in PET/MR: MRI-CT Synthesis

The use of image processing and computer vision techniques for medical purposes
has been one of the revolutions in the past century. Nowadays, the diagnosis of dis-
eases, the effectiveness of cancer treatment [75], detecting tumours [75], predicting
Alzheimer’s [162] or even strokes [252] by algorithms analysing images is common
practice.

Medical images are represented in 2D (slice), 3D (volumes), and even 4D (ac-
quiring multiple 3D images over time). The data to treat is usually large for the al-
gorithms and the use of the acceleration solutions by multicore and manycore is well
established (see for example [250]). There are also many medical imaging modalities
such as Radiography (X-rays), X-ray Computed Tomography (CT), Magnetic Res-
onance Imaging (MRI), functional Magnetic Resonance Imaging (fMRI), Magnetic
Resonance-Diffusion Tensor Imaging (MR-DTI), Magnetic Resonance Arterial Spin
Labeling (MR-ASL), Ultrasound Imaging (US), Nuclear Medicine such as Positron
Emission Tomography (PET) to name some of them [261].

Multimodality imaging, also known as hybrid imaging, combines two or more
complementary modalities. It brings together the advantages for diagnosis from
these techniques, for instance, morphological and functional information, and in
this way, it provides better analysis than from only one modality.

This approach can be achieved by software and hardware. Software method-
ology acquires images taken at different moments in time and fuses them through
image processing while hardware scanners take images simultaneously and create
the fusion automatically [168]. The hardware methodology works better because the
alignment between both modalities is more accurate [274], but it introduces some en-
gineering challenges for the construction of the scanners [218].

There is also an increasing interest to produce images for a modality from an-
other modality with software. The synthesis from one modality to another modality
has several advantages: firstly, the synthesis takes less time than with the normal ac-
quisition process. Secondly, some acquisition modalities use high-energy radiation,
which is harmful to the human body. Finally, the produced modality can help pro-
vide some relevant information to correct another modality like in Positron Emission
Tomography and Magnetic Resonance Imaging (PET/MR) with the attenuation cor-
rection (AC).

Now, we shall focus on three acquisition techniques: CT, MRI, and PET. They
are involved in the multimodality PET/CT and PET/MR. At the end of this section,
we present some methods proposed in the literature to address the AC in PET/MR
multimodality.

2.3.1 X-ray Computed Tomography

The effects of X-rays were discovered by the German physicist Wilhelm Conrad
Rontgen in 1895 after experimentation with cathode tubes. X-ray beams are formed
inside a vacuum tube that has a cathode and anode (Figure 2.10a). When an electrical
current circulates between a cathode and anode, the electrons hit the anode and re-
lease energy. Some part of this energy is in the form of short-wave electromagnetic
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Figure 2.10: (a) X-rays formation scheme. Image taken from [261] (b) Illustration
of a Computed Tomography (CT) scanner. PET and MRI scanners are similar, but
with different detectors. Image taken from http://publications.lib.chalmers.
se/records/fulltext/255299/255299.pdf

radiation called X-rays [261]. These waves have special properties when penetrating
the objects that there are in their path. Depending on what kind of tissue or ma-
terial the objects are made of, they will attenuate more or fewer electrons and this
effect will be reflected in the photographic film giving an image where bright parts
mean more electrons have been attenuated and black parts mean the electrons pass
through [261].

CT image is composed of a stack of cross-sectional X-ray images introduced by
Hounsfield in 1972 [121]. CT scanners accomplish two tasks: move the patient to
take X-ray images from different sections of the body (slices) and move around the
X-ray tube to cover 360° for image reconstruction (Figure 2.10b). The X-ray detectors
are distributed in a ring and the signal information is transmitted to the computers
where the reconstruction takes place. This reconstruction is calculated by complex
mathematical algorithms which are based on the Radon Transform. With more data
(more images), better accuracy in the images can be achieved. Since X-rays are a type
of electromagnetic wave with high energy (ionizing radiation), this technique even at
low doses can damage or destroy cells [38, 28]. The reconstruction algorithms try
to produce better results (higher contrast-to-noise ratio and improved spatial and
temporal resolution) with as few images as possible.

The use of CT technology has advantages over conventional X-rays. X-rays can
detect hard tissue, but CT includes both hard and soft tissue giving much richer in-
formation about the structure of the part scanned. Furthermore, 3D images achieved
by CT easily localize the cause of the problems, for example, fractures in the bones.

X-ray is a mature technology that many different fields use to solve problems.
For example, as the miniaturization is going further and further and classical ap-
proaches for inspection have reached their limits, CT is used today in automobile,
aerospace sectors, or electronics equipment (Industry 4.0) for inspection purposes
[23]. For clinical use and further information about X-rays and CT see [261].
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2.3.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is based on the physics principle of Nuclear
Magnetic Resonance (NMR) first described in the 1940s [223, 30]. There was a long
journey to produce the recent scanners and obtain the images with NMR technology.
In 1971, the pioneering work from the American physician Raymond V. Damadian
[73] suggested that the NMR signal could differentiate tumours in the body from
normal tissues. No producing an image but analysing the radio frequencies and con-
cluding that the tumour was somewhere in your body. After this, American chemist
Paul C. Lauterbur contributed to the basis of creating MRI images by demonstrating
that different tissues provide different MRI signals [150] and British physicist Peter
Mansfield formalized the reconstruction of the images [214, 163]. Both were laure-
ated by Nobel prizes in Physiology and Medicine in 2003.

The explanation presented here about the concepts in MRI follows the reference
book "MRI in Practice" [259]. MR image consists of a set of voxels or volume ele-
ments from our body tissue. The MR scanners measure the NMR signal from each
of the small volumes through coils or antennas, localize them in 3D space, and plot
them on a matrix, typically 256 x 256 or 512 x 512, to make a visible picture. The
NMR signals are produced by the combination of the spinning motion of the nu-
cleus in the atoms present in our tissues, magnetic field, and specific radio frequency.
Atoms have a different type of motions: electrons and nucleus spinning around its
own axis, and electrons orbiting the nucleus. A nucleus with a different number of
protons and neutrons has angular momentum (net charge). These kinds of atoms
are called MR active nuclei. For example, hydrogen belongs to this classification with
only one proton and the human body has many of them because our composition is
60% water (H>O) [263]. MR active nuclei, which are spinning and have a net charge,
automatically acquire a magnetic moment. The sum of these magnetic moments of
the patient in a determined volume is the net magnetization vector (NMV) in the
longitudinal direction.

When no magnetic field is applied, the magnetic moments from the nuclei do
not present any organisation in the orientations. However, if a magnetic field By is
applied, the magnetic moments of the hydrogen nuclei align with By. According to
the energy of the nuclei, they align in the same direction to By (less energy) or in the
opposite direction to By (high energy). The interaction of the NMV with By is the
basis for MRI. By also provokes a spin of the nuclei around By itself called precession.
Every MR active nucleus has different precession values.

Using a radio frequency (RF) in the transverse direction to the nucleus with the
same precession frequency initiates a resonance phenomenon. Firstly, there is an ab-
sorption of energy changing some energy states in the nuclei population from low
energy to high energy. Secondly, the resonance causes the NMYV to lie at an angle to
By but not being parallel. The angle to which the NMV moves away from Bj is the
flip angle and the flip angle magnitude depends on the magnitude and duration of
the RF pulse. A flip angle of 90° transfers the NMYV in the longitudinal direction to
the transverse. Thirdly, magnetic moments start spinning in-phase and a voltage is
induced in the antenna or coil when coherent magnetization crosses the section (MR
signal). This is the signal to form the images.
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Once the RF has finished, NMV goes to the initial position governed by By. Dur-
ing this process, the nuclei lose energy relaxation. Relaxation comprises:

* T1 Recovery: The nuclei release energy in the surrounding environment or
lattice until longitudinal magnetization reaches the initial position.

* T2 Decay: Loss of the phase of the magnetic moments and therefore loss of the
magnetization in the transverse plane.

T1 recovery and T2 decay are intrinsic contrast parameters in MRI. Furthermore,
some extrinsic parameters control the RF pulse and are fundamentals in the genera-
tion of contrast in MRI:

¢ Repetition Time (TR): TR is the time between an RF pulse emission and the
next in milliseconds. This parameter controls T1 Recovery.

¢ Echo Time (TE): TE is the time since emitting the RF pulse until the peak of
the signal. This parameter controls T2 Decay.

One of the main advantages of MRI compared with other imaging modalities is
the excellent soft tissue discrimination of the images. Unlike CT images, bone has
a weak signal in MRI and as a result, it appears dark in the images. In addition to
that, the electromagnetic waves used to generate the MRI images are not ionizing.
For further information about MRI see [259].

2.3.3 Positron Emission Tomography

Nuclear Medicine Imaging makes use of radioactive substances (radiotracers) to help
to produce functional images. In this classification, we can find Positron Emission
Tomography (PET). There is not only one contributor to this area of science but many
(physicists, chemists, biologists, physicians, etc.). PET dates to the 50’s when the first
image device prototype with two detectors was developed at Massachusetts General
Hospital (MGH) by Brownell, G.L., W.H. Sweet, and the results for brain tumour lo-
calization were presented in [264]. Several refinements to this prototype were added
producing a hybrid scanner in the mid 60’s. This scanner improved the sensitivity
and the possibility to obtain a three-dimensional image. PC-I with 2-dimensional
arrays was the first tomographic imaging device [42, 46]. Sensitivity was increased
with a circular or cylindrical array of detectors. This approach was proposed by
James Robertson et al. in 1973 [231] and Z.H. Cho et al. in 1975 [60]. The ring system
is implemented in the PET scanners.

The explanation presented here about the concepts in PET follows the refer-
ence book "Positron Emission Tomography" [104] and "Fundamentals of biomedical
imaging" lectures [106]. PET imaging is based on measuring the emission of radioac-
tivity caused by an unstable nucleus (number of protons more than neutrons) inside
a subject. First, the molecule to produce the emission is prepared in the cyclotron,
for example, in Oncology, the use of ¥ F-FDG is very common. Injection into the
bloodstream, inhalation, or swallow methods are typical used to introduce the ra-
dioactive substance to the subject (Figure 2.11).

The unstable nuclei emit positrons for a short period. Once a positron is out of
the orbit of the atom and has almost zero kinetic energy, it annihilates with the near-
est neighbour electron, releasing two y-photons. The annihilation provokes that the



2.3. Attenuation Correction in PET/MR: MRI-CT Synthesis 27

S

1) 2) 3) 4)
Br FDG - [ ) %
Vﬂ —

0
(]

Cyclotron
Sinogram
t ~

AC Correction Reconstruction

Figure 2.11: Steps in PET: 1) Produce the molecule, 2) Inject it into the subject 3)
Emission positron 4) Annihilation process 5) Reconstruction 6) AC correction.

two photons with the same amount of energy (511 keV) move in opposite directions
at almost 180° apart (close to collinearly). The distance from the nucleus to the an-
nihilation point determines sensitivity in PET scanners. The length achieved by the
positron until the annihilation point depends on its energy and density of the envi-
ronment.

The annihilation coincidence detection registers two events at the same time.
Two events are considered simultaneous if they occur inside a coincidence window,
typically from 4.2 to 12 ns, in the detector blocks from the ring of the scanner. This
is a true coincidence. Apart from the true coincidences (T,;), there exist other types:
scattered (S,p,) and random (R,;,) events. Scattered events mean that one of the photons
does not follow the line of response (LOR) and they are registered in a wrong detec-
tor block. This effect is reduced with the introduction of the energy window centre
in 511 keV and ignoring coincidence detection outside the area where the emission is
not possible. On the other hand, random events mean that two annihilations occur
at the same time (coincidence window), but a photon in each pair is lost, making it
possible to take it as a true coincidence. Reducing the coincidence window reduces
the random events. The energy measured between two detectors A and B can be
summarized by the equation:

Yub = Nab<ACabTub + Sab + Rab) (2-3)

where N, is a normalization to compensate imperfections in the equipment and
ACyp is the attenuation correction. Attenuation is the probability of detecting the
photon pair after annihilation. The detector blocks are responsible for the annihila-
tion registration. They consist of crystal and photomultiplier. Once the photon hits
the crystal, it produces a visible light scintillation light through the photomultiplier,
in the detector block. After that, an electronic signal is created. The electronic signal
is characterized by polar coordinates (6 and radius) creating a sinogram for every
line of response (Figure 2.11). Using the sinograms and reconstruction techniques
such as filtered-back projection or iterative method, we pass from raw data to an
image.

PET provides different information about the body in comparison with CT and
MRI. The principal difference is that PET foundation lies in biochemistry changes at
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Figure 2.12: Some approaches for AC in PET/MR (a) emission data method from
[244] (b) MRI segmentation method from [142] (c) atlas-based method from [45].

the molecular level giving quantitative information [75]. CT registers very well tis-
sue density and MRI proton density and relaxation dynamics. Once anatomic alter-
ations are present, then CT and MRI can diagnosis the diseases. However, chemical
changes (in most diseased conditions) precede any anatomic alterations making PET
imaging useful to notice them and providing unique information [75].

PET imaging is applied in Oncology: to detect tumours and the spread of cancer,
and evaluation of the effectiveness of cancer or in Neurology: Alzheimer’s disease
and Parkinson’s disease to name a few.

2.3.4 Multimodality PET/MR

PET has become a ubiquitous tool when a functional analysis is required, for exam-
ple, in Oncology [75]. However, to overcome some limitations using this modality
(not enough anatomical data and low spatial resolution), it has been combined with
anatomical information: CT and MRI.

The first PET/CT prototype was clinically evaluated with success in [29]. CT
provides the spatial resolution to identify more accurately the oncological diagnosis
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and a direct way to correct the attenuation in PET images.

The application success of PET/CT scanners opened the research to explore new
modality combinations, for example, MRI and PET. The idea to use together PET/MR
is an appealing choice since MRI is a richer modality than CT providing different
kinds of images and a high tissue contrast [186]. Furthermore, this modality intro-
duces a lower radiation dose than PET/CT being of importance for repeated studies
aimed to evaluate disease progression and therapy response.

However, PET/MR has some disadvantages: the magnetic fields used in MRI in-
terfere with scintillation detectors and multiplier tubes that amplify the PET signal
making it difficult to integrate them into one scanner [218]. Apart from that, the AC
(Eq. 2.3) for PET imaging is less direct with MRI than CT, as MR provides informa-
tion on proton density while the attenuation is proportional to electron density [279].

2.3.5 Methods for Attenuation Correction in PET/MR

There has been a great interest in developing AC maps for PET to overcome these
difficulties. Several authors classify the approaches to tackle this problem into three
categories [45, 56, 134]: emission data, segmentation, and atlas-based. Other authors
divide the approaches into two main classes [142]: template-based methods and
segmentation-based. We follow the first classification for our discussions.

Emission Data Methods

The core of these approaches to estimate the attenuation information is based mainly
on the PET emission data. Attenuation is the probability of detecting the photon pair
after annihilation (Section 2.3.3). This estimation of this probability is achieved by
using consistency conditions or simultaneous statistical reconstruction [244].

A proposal based on time-of-flight (TOF) PET data and a segmented MR image
as an anatomical reference is presented in [244]. TOF technology in the scanners al-
lows approximating where the annihilation occurred in the LOR. They proposed an
iterative reconstruction scheme to estimate the local tracer concentration (activity)
and the distribution of the attenuation at the same time (Figure 2.12a). Their ap-
proach uses a maximume-likelihood estimation for the activity and a gradient ascent
based algorithm for the attenuation distribution.

Some authors used non-TOF PET data to construct their proposals. For exam-
ple, a maximum likelihood reconstruction of attenuation and activity is presented
in [194]. Recently, in [256] a convolutional neural network is proposed to estimate
the direct attenuation correction of PET images from non-attenuated corrected PET
without anatomical information from MR.

Segmentation Methods

Segmentation methods classify tissues in MRI images. In this way, these approaches
can map tissue to attenuation values (). One of the challenges in this alternative
is how to segment bone areas in MRI images. Bone and air space in scans produce
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weak MRI signals. Nevertheless, their attenuation effects are very different [171].
This discrepancy affects the AC when applied to PET images from the brain and
pelvis. We can find segmentation-based methods which give for each tissue class a
uniform linear attenuation after the segmentation, for instance, the authors in [171]
proposed a correction for the whole body through segmenting (using MRI Dixon)
the MRI images into four classes: background, lungs, fat, and soft tissue and assign
the u to all the voxels which belong to this type.

There are some approaches to try to mitigate the difficulties for bone signals us-
ing some extrinsic properties in the MRI acquisition. Ultrashort-echo-time (UTE)
sequences were designed to visualize tissues with a short T2, such as tendons or
ligaments [232], but the cortical bone has even a shorter relaxation time [142]. The
authors in [142] solve this problematic realizing a study about the MRI properties of
cortical bone and classify the MRI images for the brain taken by UTE sequences into
bone, soft tissue, or air (Figure 2.12b). Each tissue class has an attenuation value,
which the correction procedure uses.

Atlas-based Methods

Atlas-based methods extrapolate information from a dictionary of pairs (MRI, CT)
to generate a pseudo-CT given an input MRI image. The synthesis CT is used to
derive the attenuation values in the PET correction.

Two steps are usually necessary: first, there is a stage to align the pairs within the
dictionary. The alignment is achieved by a matrix transformation image registration:
linear transformation (affine registration) or nonlinear registration (deformable reg-
istration). The second stage uses a method that relates the input MRI image to the
registered MRI/CT images in the dictionary to produce the pseudo-CT. Following
[56], we can classify these methods according to how the pseudo-CT is produced
into three subgroups: machine learning, voxel-based, and patch-based methods.

Machine learning approaches use the trained data to generate pseudo-CT. A con-
volutional neural network to map Dixon MRI images (water, fat, in-phase, and out
of phase) to their CT image values is presented in [272]. The synthesis is fast allow-
ing the use in the clinical procedures. The authors in [119] combined local pattern
recognition with image registration for pseudo-CT estimation. A support vector ma-
chine approach to synthesise CT images from Dixon-volume and UTE images was
proposed in [189]. The generation of p-map algorithm was implemented on an Intel
Xeon processor with 8 cores producing a result in approximately 3 minutes.

In voxel-based approaches, the work in [45] described a method that uses non-
rigid registration to an atlas, followed by label fusion based on patch-similarity mea-
surements using normalized correlation. The authors utilized a ranking scheme in
combination with the voxel similarity metric to promote the voxels which have a
better similarity. The pseudo-CT is generated based on the weighting among the CT
images (Figure 2.12c). An approach to synthesise a pseudo-CT based on nonrigid
registration to an atlas is proposed in [134]. They used the standard SPM8 software
with a CT template.
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In patch-based approaches, a work used T1 weighted MRI images dictionary
and a non-linear symmetric diffeomorphic registration to generate the pseudo-CT
output [57]. They made use of an air distribution probability calculated from CT
atlases images to better discriminate air space in input T1 weighted MRI images. A
sparse regression for selecting the most relevant weights for each patch 5 x 5 x 5
in a "search window" (7 x 7 x 7) is calculated. The registration accuracy is not that
important in this method because a neighbour is employed. Since a spare regression
is used, the computational is very intense ~ 10 hours.

The work in [15] also used T1 weighted MRI images for the pseudo-CT estima-
tion and affine registration. Weights derived from patch similarity were used to
produce the CT values. They applied the structural similarity measure (SSIM) for
each patch in a neighbour to discard highly dissimilar patches with a maximum of
8 elements in the search volume. If all patches in the neighbour are discarded, the
voxel in the pseudo-CT is marked as unknown. A post-processing procedure labels
these unknown voxels.

In [237], the authors presented another patch-based method to generate attenu-
ation values (i) for the whole head from target MRI images using UTE sequences.
They calculate the patch similarities between the reference and target images in the
atlas. Then, there is a combination process via Bayesian estimation for the corre-
sponding CT patches to produce the pseudo-CT without registration or segmenta-
tion.
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Chapter 3

Methodology

In this chapter, we present the techniques which we use in our proposals. Since we
intend to implement efficient solutions on multicore CPU and GPU, the first part of
this chapter is devoted to describing the computation using shared memory model.
We start by explaining parallel computing. After this, we dig into multicore CPU
and GPU architectures. Finally, we discuss the challenges when optimizing code.

In the second part of this chapter, we present the computer vision techniques
used in our proposals. To understand the techniques used for solving the saliency
problem (Section 3.3), we described briefly the variational methods in Computer Vi-
sion from local framework to non-local framework. We also present how to solve
the formulation with a rigorous derivation of the primal-dual algorithm. After this,
we present the patch-based methods used in MRI-CT synthesis (Section 3.4). At the
end of this chapter, we analyse the computational complexity of both proposals.

3.1 Computation in Shared Memory

This section aims to provide the foundation of the techniques used in the implemen-
tation of saliency and patch-based methods (Chapters 4 and 5).

3.1.1 Parallel Computing

The abstraction between software and hardware is the programming model [172].
Hardware architecture typically influences the design of parallel programming mod-
els to exploit the parallelism that they provide. Some authors classify the hardware
architecture through memory organization [172, 115]: own address and shared ad-
dress space. The first group relies on a network for communication among nodes
since they have different memory address spaces (Figure 3.1a). There are parallel
programming models to exploit this architecture for computation, for instance, Mes-
sage Passing Interface (MPI) [62]. MPI includes primitives to split the data among
nodes and collect the data so that the computation can be achieved in parallel. Clus-
ters and warehouse-scale computers are typical examples of this classification.

In shared memory architectures, we have symmetric (shared memory) multipro-
cessors (SMPs) (Figure 3.1b) and distributed shared memory (DSM) depending on
the number of processors because a large number of them must be organized in a
distributed way instead of centralized [115]. Some examples to represent this model
are consumer multicore processors, multiprocessors, and GPUs.
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Some authors also proposed a combination of distributed and shared memory in
hybrid architectures and exploit parallelism [11, 172] or combining accelerators and
CPUs in the same chip [143].

In computation, classical computing accomplishes the calculations one after an-
other whereas in parallel computing achieves many calculations simultaneously [156].
To exploit the capabilities of modern architectures (more than one processor) for
computing, we should map the processes or threads to these processors for exe-
cution. Parallel programming models are used to express tasks for parallelization.
Some authors classify the models according to the nature of the parallelism: implicit,
partly explicit, and completely explicit [18]. Other authors, [77], decompose them
into pure parallel models for shared and distributed memory architectures (OpenMP
[72], OpenMPI [62]), heterogeneous parallel programming models (CUDA [195],
OpenCL [187]), Partitioned Global Address Space (PGAS) model for DSM architec-
tures (Unified Parallel C), hybrid (pure parallel models for shared-distributed), lan-
guages with parallel support like C# [132], and the distributed programming model
(Simple Object Access Protocol (SOAP)). In this work, we shall focus on pure parallel
programming models for shared memory and heterogeneous parallel programming
models. Parallelism can be defined as

The use of concurrency to decompose an operation into finer grained constituent
parts so that independent parts can run on separate processors on the target
machine [82]

There are several levels of parallelism according to the amount of the data and num-
ber of instructions (Flynn’s Taxonomy [90]), (Figure 3.2). In the present report, our
attention will focus on Data Level Parallelism (DLP). This level of parallelism ap-
plies the same instruction to a set of data. Within this group, our interest lies in data
low-level parallelism. This level executes the same instruction for a small data set.
Processors must expose these kinds of instructions. They are called Single Instruc-
tion, Multiple Data (SIMD). Modern computers include these instructions [126] and
they are also the type of arithmetic instructions used by GPUs [157].



3.1. Computation in Shared Memory 35

Single Instruction Multiple Instruction
Stream Stream

| L

SISD MISD

Multiple Data Stream——|  5\V/[b) MIMD
R

Figure 3.2: Computer architecture classification according to the instruction and data
stream (Flynn’s Taxonomy). Single Instruction, Single Data stream (SISD), Single
Instruction, Multiple Data streams (SIMD), Multiple Instruction, Single Data stream
(MISD), and Multiple Instruction, Multiple Data streams (MIMD).

Single Data Stream —>

It is also fundamental to assess whether parallel computing techniques will im-
prove an algorithm. For this reason, the improvement when using these parallel
computing techniques could be measured, at least theoretically, by Amdahl’s law:

1
_s—l—%

(3.1)

where S is the speedup of a given task, p is the percentage of invested time in the
task that can be computed in parallel, » number of processors, and s is the percent-
age of invested time for the serial part and s + p = 1. Amdahl’s Law indicates that
the theoretical maximum speedup S when used n processors collaborating on a task,
cannot be more than 1/s (Eq. 3.1) and in this way, the speedup is bounded to how
fast the serial part is [13]. However, John L. Gustafson argued that there was a mis-
use of Amdahl’s formula in the assumption p is independent of the problem size. In
this sense, we should measure the speedup of a specific task by scaling the problem
size to the number of processors, not fixing the problem [110].

It is also crucial to consider the nature of the operations in the algorithm so that
deciding which approach to a specific problem is better. We can differentiate two
problems: compute-bound and memory-bound [145]. The first one means that the bot-
tleneck for a specific task lies in the calculations necessary for the algorithm. Ex-
pensive functions such as trigonometric, square root, Complex custom ones, etc.,
are typical examples of compute-bound. The second one means that the calcula-
tion occupies a small portion in comparison with the reads and the writes of data.
Furthermore, the pattern of memory access in the algorithm makes a substantial
difference in the performance. Memory usage has become an influential topic in
Computer Science since many applications do not improve performance when us-
ing faster processors [285].

All these considerations make parallel computing a challenging exercise. Now,
we shall describe the typical approaches when using shared memory model for par-
allel computing.

3.1.2 Parallel Computing on CPU

Parallel computing techniques usually achieve performance improvements on mul-
tiprocessors with multi-threading, vector instructions, or both. In the first case,
threads represent the way to carry the calculations in parallel computing in shared
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memory. As multicore architectures support shared memory [115], the idea is to
divide the computation into threads. In this way, these threads will be executed in
different processors cooperating among them via shared memory. The synchroniza-
tion of computing threads to avoid non-deterministic outputs of the program (race
conditions) is necessary [116]. Synchronization is a mechanism provided by the pro-
gramming model. It assures that processors execute the events or steps in the order
that they were designed for. There are many concurrent primitives such as mutex,
locks, monitors, etc., for synchronization in shared memory [116].

However, implementing solutions for parallel problems with these primitives
could lead most of the time to suboptimal results for real problems not fulfilling the
three desired properties (scalability, code simplicity, modularity) [152]. Standards
and libraries have emerged to help focus on improving algorithms giving building
blocks that encapsulate the parallel knowledge. This encapsulation aims to trans-
parently map the resources of the machine for a specific algorithm. In this way, the
code produced could be improved when better hardware is available.

There are several parallel-programming models for shared memory computation
[172, 77]. In this manuscript, we follow the classification in [7]: Threading mod-
els, tasking models, and directive-based models. Threading models use low-level
library routines for parallelizing. Tasking models have their foundation of the con-
cept of specifying tasks instead of threads like Thread Building Blocks (TBB) [267], or
Cilk [31]. Directive-based models use high level compiler directives to parallelize the
algorithms through compiler support like Open Multi Processing (OpenMP) [72].

TBB is a C++ library that works under ISO C++. The library provides a very
highly sophisticated set of parallel primitives to parallelize the code [229]. Apart
from the data parallelism applying the same transformation to all data, it offers task
parallelism applying different operations to all data.

Cilk was a research project of the Massachusetts Institute of Technology (MIT)
to provide a programming language (C alike) into the multicore landscape [31]. It
adds a few keywords to control parallelism and synchronization and provides a
compiler to create the executables. When used on only one core, the program in
Cilk behaves like a program written serially. The first release of Cilk, called Cilk-1,
was in 1994. Today, Cilk is deprecated in Intel compilers as well in other compilers!.
However, Cilk has been recast in an open source platform supported by an organiza-
tion Cilk Hub (http://cilkhub.org) to satisfy demands from software developers,
researchers in multicore, and parallel-computing field, and university courses [248].

On the other hand, OpenMP is an industry standard API for shared memory
programming, first published in 1997. It covers C, Fortran, and C++ languages, and
many compilers support the OpenMP extensions and generate parallel code [72].
The standard became popular for the simplicity of how to parallelize existing code.

The OpenMP API consists of compiler directives, library routines, and environ-
mental variables which are encapsulated in a specification [211] (the latest version
is OpenMP 5.0 [210]). OpenMP uses a fork-join thread model for the creation and

Inttps://gec.gnu.org/gcc-7/changes . html
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termination of threads. It also uses basic and very powerful programming direc-
tives for spawning them and creating work-sharing constructs [72]. It mainly tar-
gets intensive data-parallel problems where algorithms perform computation over
massive data. The launching of threads for computing a data-parallel problem in
a multicore CPU using OpenMP is effortless at the code level. We can make use of
OpenMP directives for parallelizing for-loops using a predefined number of threads.
Small coding changes are applied to the source code to parallelize it using OpenMP.
OpenMP allows configuring the number of threads statically or dynamically, and
the operating system would try to spread these threads to the available number of
computing cores.

Simultaneous multithreading (SMT) is a technology that allows theoretically to
have two computing threads per physical processor [276]. Intel was the first ven-
dor to launch this technology for the computer desktop market in 2002 [127] and
modern processors nowadays are equipped with it. On the software side, this tech-
nology means the possibility to schedule threads to these logical processors and
experiment performance gains up to 30% [167]. Using Intel processors with SMT
support (Hyper-Threading Technology in Intel terminology), it can be reasonable to
launch two computing threads per available core in the system. The impact of this
new technology in the applications was analysed in [243].

In the second case, using vector instructions provided by the CPU manufacturer
can be an alternative when the overhead for switching threads consumes more time
than the computation. Vectorization is the combination of unrolling techniques and
the use of SIMD instructions to speed up calculations [130]. The use of vectorization
techniques is a very low-level task and difficult, but some efforts can be made to ease
some transparent auto-vectorization. Compilers with optimization choice (-O2) or
higher activate the mode to seek possible vectorization opportunities in the code
and transform them into the final machine code. These transformations include un-
rolling loops, memory adjustments, and the use of SIMD instructions when no data
dependency is detected, for example, for multiplication operations in an array (Fig-
ure 3.3).

Although compilers identify and optimize part of the code automatically [130],
organizing the code by the programmer could produce important speedups as well
as using different compilers. There is active research to improve the automatic vec-
torization proposed by the compiler [221] or using machine learning techniques to
insert pragmas to speed up loops [112]. When using vectorization instructions either
manually or transparently through the compiler, the knowledge of assembly code is
fundamental to determine whether the result compilation is the expected one (see
https://godbolt.org/).

3.1.3 Parallel Computing on GPU

A graphics processing unit (GPU) is another hardware device that could be inte-
grated into the system via a bus. GPUs are specialised in computation (computer
graphics and video games). The fundamental differences between CPU architecture
and GPU architecture are that the design of the GPU has more Arithmetic Logic Unit
(ALU) and, in this way to be able to compute in parallel more operations in exchange
for losing flow control [145]. Furthermore, they possess small caches to improve the
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Figure 3.3: (a) No vectorizated operation for multiplication (b) Vectorizated opera-
tion for multiplication. Diagram inspired by [130].

bandwidth output instead of reducing latency [283].

GPU has passed through a continued evolution from its origin as a simple pe-
ripheral for displaying data on monitors (first generation). The second generation
included its memory and specialised processors which allowed rendering effects in
3D configurable but not programmable [213]. It is also the time for the communica-
tion standard between the graphic processor and CPU processor as well as the first
graphics libraries 3D OpenGL [284], C for graphics (Cg) [165], and DirectX [181].
The third generation had two specific graphic processors which allowed to program
two stages: vertex shaders and fragment shaders through a rendering pipeline [213].
In this way, the programmer could extend some effects in the 3D rendering from the
prior stage. The next generation moved on to unified device architecture, after merg-
ing these two processors into one [195]. Although graphic APIs had provided a wide
range of functions, the programming, known as General-Purpose Computation on
GPUs (GPGPU), was still difficult [113]. There was an effort in the software direc-
tion to create a model to make a better manipulation of the resources and let the
programmers map more general problems (GPU Computing) [117].

As has happened in many fields of Computer Science, there has been a great ef-
fort to standardise the GPU computing model. This effort is still a work in progress
many years after the initial release of OpenCL (Open Computing Language) (2008)
[187]. OpenCL is currently being developed by the Khronos Group (known for
OpenCL and other standards). OpenCL emerged from a collaboration among soft-
ware vendors, computer system designers (including designers of mobile platforms),
and microprocessors (embedded, accelerator, CPU, and GPU) manufacturers. The
idea behind this standard is to promote multi-platform adoption rather than being
bound to a single vendor. OpenACC (Open Accelerators) is a compiler specification
to target multicore CPUs and accelerators like GPUs for high productivity. Similar
to OpenMP, compiler directives are used to determine which part of the code should
be parallelized transparently [209].

There are several GPU manufacturers such as AMD/ATI, Intel, and NVIDIA to
name the most relevant ones. In this report, we shall discuss NVIDIA manufactured
GPUs.
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Figure 3.4: Tesla unified graphics and computing GPU architecture. TPC: tex-
ture/processor cluster; SM: streaming multiprocessor; SP: streaming processor; Tex:
texture, ROP: raster operation processor. We only show 8 SMs to keep the diagram
simple, but Tesla contains 16 SMs. Diagram inspired by [157].

3.14 NVIDIA CUDA

The lack of high precision operations and difficulties of mapping real problems using
graphics APIs led to the exploration of alternatives that would allow developers
to exploit the power of GPUs [113]. Several research projects looked at designing
programming languages that would help simplify this task like Sh (Shader Algebra)
[174, 173] and in 2007 NVIDIA introduced its CUDA architecture which provided
tools to make data parallel computing more direct. This work was the continuation
of the BrookGPU project at Stanford University [44]. Our attention will now focus
on the architecture and programming model for the NVIDIA vendor.

3.1.5 CUDA Hardware Architecture

NVIDIA’s GPU microarchitectures have evolved since CUDA was born in 2007 [195]
and several microarchitectures have been proposed to improve the performance (Ta-
ble 3.1). For simplicity, we take Tesla microarchitecture to illustrate the general ideas
of how the GPU computes and its organization. The GPU architecture is built around
a scalable processor array with Streaming Multiprocessors (SMs) and each SM has
several streaming-processor (SP) or CUDA cores (Figure 3.4) [157].

Stream multiprocessors are responsible for creating, managing, and executing
the threads. CUDA cores execute threads. The thread is the element unit for compu-
tation in CUDA [65].

The threads belong to a block and the block is scheduled by Compute Work Dis-
tribution (CWD) in any order [157]. CWD fills each SM with blocks up to the execu-
tion capacity (Figure 3.5). The threads of a thread block execute concurrently on one
SM. When the thread blocks finish the computation, the CWD unit launches new
blocks on the vacated multiprocessors [157]. This ability to handle the execution of
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Table 3.1: NVIDIA micro-architecture evolution during the years (2007-2020). Ar-
chitectures: Tesla [157], Fermi [200], Kepler [201], Maxwell [202], Pascal [203], Volta
[204], Ampere [197] and new features [242]. CUDA c.c. stands for CUDA Compute
Capability. * FP64 double precision available from this version onwards. Die in nm,
Bandwidth in GB/s and Peak FP32 in TFflops. Name refers to relevant graphic card
products in a specific architecture.

\ Info \ Features
Year | Arch CUDA c.c. Die | Cores Bandwidth Peak FP32 Name
2007 | Tesla 1-1.3 90 128 76.80 0.345 Tesla-C870
2010 | Fermi 21 40 448 150.36 1.028 Tesla-C2075*
2013 | Kepler 3-3-3.7 28 2880 288.46 5.046 Tesla-K40c
2013 | Maxwell 5-53 28 2560 332 6.688 Tesla-M10
2016 | Pascal 6-6.2 16 3584 732 9.526 Tesla-P100
2018 | Turing 7.0-72 12 2560 320 8.141 Tesla-T4
2018 | Volta 75 12 5120 897 14.3 Tesla-V100
2020 | Ampere 8 7 6912 1555.80 19.5 Tesla-A100

the thread transparently produces program scalability (Figure 3.5). It is up to the
scheduler to feed these multiprocessors with work. It also maximizes the maximum
number of multiprocessors in use at any given time which, will, in turn, increases
performance.

All threads cannot be executed at the same time. To balance this large population
of threads efficiently, the GPU employs a Single Instruction Multiple Data (SIMD) ar-
chitecture [191] in which the threads of a block are executed in groups of 32 (warps).
A warp executes a single instruction at a time across all its threads. The threads of a
warp are free to follow their own execution path and all such execution divergence
is handled automatically in hardware [24]. Therefore, if no diverge occurs all threads
follow the same execution path and the computation is efficient (see [74] for further
details).

CUDA threads may access data from multiple memory spaces during their exe-
cution (Figure 3.6) [70]. Each thread has private local memory and registers for fast
access. Each thread block also has shared memory (L1 with high bandwidth and
low latency access) visible to all threads of the block and with the same lifetime as
the block. There are also two additional read-only memory spaces accessible by all
threads: the constant and texture memory spaces.

All threads have access to the same global memory (DRAM). Global memory is
conceptually organised into a sequence of 32-, 64-, or 128-byte segments [71] and
connected to the host through a high-speed 10 bus slot, typically a PCI-Express and
in current high-performance systems NVLink [71]. The data which is manipulated
by the threads come from the host to the global memory through this bus. Read
and write operations are executed through transactions. The memory requests are
serviced as segments for a half-warp (16 threads) and operated by transactions [70].
Coalesced memory access refers to aggregate the memory accesses in a half-warp into
a single transaction, in this way, it reduces the transactions and improves the per-
formance [70]. The number of memory transactions performed for a half-warp will
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Figure 3.5: Tesla architecture execution. The program is split into several blocks of
threads and the scalability is achieved by the type of graphic processor. Note that
the execution of the blocks can be in any order. Diagram inspired by [71].

be the number of segments touched by the addresses used by that half-warp. Non-
contiguous access to memory in thread blocks is detrimental to memory bandwidth
efficiency and the overall time.

The features of the hardware, set of instructions supported by the graphic card
as well as other specifications, such as the maximum number of threads per block
and the number of registers per multiprocessor are specified in the compute capability
[71].

3.1.6 CUDA Programming Model

In the CUDA programming model, the program, typically in C++, is divided into
two parts: host code and device code kernels [71]. It is up to the host code to transfer
and retrieve the data from the graphic card memory. It is also a host task to allocate
and release memory from the graphic card memory, and, lastly, organizes the kernel
calls synchronously or asynchronously.

On the host side, programmers describe the problem as a composition of grid
and blocks, (Figure 3.7), to cover as much as possible the processors (SP)?. A thread
block is a set of concurrent threads that can cooperate among themselves through
barrier synchronization and shared access to a memory space private to the block
[283]. A grid is a set of thread blocks that may be executed independently, i.e., in
parallel. The data access inside the blocks is achieved by a unique identification
which determines the element by a tuple (Figure 3.7).

Kernels represent the single instruction in the SIMD architecture and are exe-
cuted on the graphic processor using the data transferred by the host code [157].
Kernels are typically written in C++, but the programmer has always the choice to
write the code in the Parallel Thread Execution language (PTX) [215]. In both cases,

2This is a good practice to hide latency doing operations while waiting, but sometimes it is more
beneficial to exploit Instruction-level parallelism (ILP) [278].
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Figure 3.7: Grid and block decomposition in CUDA. For simplicity, we use a 2D grid
and block.
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kernels must be compiled into binary code by nvce. Nvcc is a compiler driver that
simplifies the process of compiling C++ or PTX code providing a command line to
accomplish the different stages of compilation [71].

As it happens in other areas in Software, problems with the same pattern appear
frequently. In parallel computing, there has been a continuous effort to derive strate-
gies to face these problems efficiently [172]. We shall explain two of them that we
have used in our implementations: tiles and reductions.

3.1.7 Parallel Patterns: Memory

One of the most fundamental problems when optimizing code is the use of memory
in an optimal way [70]. There are two ways to improve this: spatial locality with
new data structures and temporal locality with ordering loop operations to achieve
coalesced memory access [70]. In GPU computing, this problem is more visible be-
cause there are many threads concurrently in an algorithm and bad patterns could
introduce penalties in the performance. There has been an effort to derive patterns
so that algorithm design can address the problems more efficiently.

Spatial Locality

The reorganization of the data to have a better allocation and in this way, better
access memory is a very important topic in the GPU computing paradigm. For ex-
ample, there are many representations to have the best access possible according to
different sparse matrices (see [24] for matrix-vector multiplication). These strategies
can be applied to other similar problems like our saliency detection algorithm (Sec-
tion 4.1).

Temporal Locality

On the other hand, temporal locality improves the memory access with the idea
to use in a better way the caches, e.g., reducing the stalls. For this goal, some strate-
gies divide the problem into small blocks that could fit in the cache. In this way,
improving the final performance when applied to complex calculations in batches
(Section 5.1).

3.1.8 Parallel Patterns: Reduction

There are types of algorithms that are not suitable for GPU computing at first glance.
This handicap lies in the operations within the algorithms and the difficulty to trans-
form them into an efficient parallel operation. A classic example of this type is the
summation of elements of an array. Since the summation is a mathematical opera-
tion with associative property?, then it can be easily decomposed into subtasks, and
therefore, it becomes very suitable for computation in parallel (Figure 3.8). However,
the coordination needed to accomplish the task makes it difficult for its implemen-
tation without any pattern. These kinds of obstacles are solved by parallel reduction.

The parallel reduction is a common and important data parallel primitive, but
it is difficult to get the most out of it [266]. The reason for that is these algorithms
where parallel reduction is needed, typically, suffer from memory-bound problems,

3Bear in mind that in Computer Science is ONLY strict for integers.
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Figure 3.8: Reduction using interleaved addressing. Note that the threads involved
in the calculation are halved in each step of the reduction process, in turn, losing
computation power. Diagram inspired by [266].

e.g., they lack computation, and the way to access the memory for the small calcu-
lations is crucial. Figure 3.8 shows that fewer threads are involved in each step of
the reduction, therefore, losing computation power. This is the reason why many
libraries on top of NVIDIA implement efficient reduction methods. These reduction
methods (scan, sort, reduce, etc.) were encapsulated at the beginning in [114]. After
that, some libraries such as Thrust [25], cuBLAS [69] appeared to tackle the prob-
lem from a high level perspective. However, sometimes these techniques must be
applied inside the kernels to improve algorithms in a more low-level fashion (see
CUDA Unbound (CUB) [196]) or implementing your custom solution.

3.1.9 Software Optimization

Software Optimization refers to the process that makes the software work as effi-
ciently as possible [78]. Efficiently has different meanings depending on what is
relevant for each application. In this Thesis, we are interested in those optimizations
which reduce the time of the overall algorithm (see Efficiency definition in [172]).
The optimization makes your code fast and usually unreadable as well. The chal-
lenge is to produce optimized code preserving some essential properties for soft-
ware: object-oriented programming, readability, modularity, and reusability [152].
It has been proved that these concepts can be encapsulated successfully in the same
library, for example, in Standard Template Library (STL) [229] or CUDA Unbound
(CUB) [196].

Before starting any optimization technique, the choice of a programming lan-
guage to code the problem is important. Not all programming languages offer the
same path for optimization: for example, interpreted languages like Pyhton [224]
performs slowly in comparison with other languages because the interpreter must
read code, perform the instructions, and update the machine state. On the other
hand, Just-in-time (JIT) compilers interpret and generate in run time native code
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and in this way alleviate these problems (C# [132]), programming language like
C++ which generates native code are more interesting from the optimization point
of view because they allow having more control of the optimization paths in com-
parison with Python where the performing model is difficult to figure out. Chapter
A1 illustrates an optimization case for the matrix multiplication problem.

The use of different compilers for C++ on the same operating system has achieved
substantial speedups. Therefore, its election is also an important task. Microsoft Vi-
sual Studio is a popular platform providing a user-friendly Integrated Development
Environment (IDE), but its compiler, cl, is not the best choice because of the lack
of the latest instruction set to exploit the hardware [91]. Intel compiler, icc, can be
integrated into Microsoft Visual Studio and it offers good performance in code opti-
mization. Any optimization process must have a reference to compare with and this
reference must also provide the expected result. The comparison with the optimiza-
tion versions is in speed and accuracy. The procedure of optimization makes use of
tools to spot the part of the code which occupies more time in the whole process.
These tools (profilers) retrieve useful information of the code and present them in a
form that it is easier to find the bottlenecks in the code. They are based on different
methodology: instrumentation, debugging, time-based, and event-based [91].

Based on these foundations to acquire data and since the program to analyse is
not executing alone on the operating system, profilers are sometimes not as accurate
as expected, some tools are: VTune for Intel Compilers [131] on CPU and NVIDIA
Visual Profiler [206] on GPU.

When optimizing algorithms, we can typically find two kinds of limitations:
compute-bound and memory-bound [145]. For algorithms that do complex calcu-
lations most of the time in the innermost loop, for example, converting from one
colour space into another in Image Processing, the algorithm execution improve-
ment is bounded by the computation (compute-bound). On the other hand, others
spend on reading and writing most of the time, but the number of calculations with
this data has a very low arithmetic intensity, for instance, summation procedure in
large arrays (memory-bound).

Understanding the problem and its bound limitations is an iterative process.
Most of the time, after working with the problem for a long time (testing, analysing,
and studying the bottlenecks), some good ideas can emerge, discovering new chances,
hidden previously with the lack of comprehension of the problem structure, to im-
prove the performance of the code [152]. For example, these new opportunities can
be materialized with smarter data organization of the problem.

Software optimization is a complicated task because it depends on many re-
sources that work in cooperation and usually do not have a deterministic output:
processor, memory, network, data structure, etc. Although some practical ideas can
be followed [27], the experience, the experimentation of different approaches, and
knowledge make finally the real work. It is also this experience and knowledge
which is applied to optimize the two novels algorithms in Computer Vision in this
Thesis.
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3.2 Variational and PDE-based Models in Computer Vision

In this manuscript, we propose two novel variational algorithms to solve the auto-
matic and unsupervised saliency detection problem. In the first one, a pure Bayesian
modelling approach is considered and an energy functional is constructed and min-
imized in a graph of characteristics features. While the results were encouraging
and comparable with the (variational) state-of-art results in [281], saliency was not
explicitly modelled. The successful application of the method strongly depended on
pre-calculated data information called control map. To overcome this issue, a gen-
eral non-local model is then proposed. It can be deduced following a PDE-based
approach where the dynamics of the governing (transient) PDE equation drives the
solution towards stabilization to a stationary state. Notice that in our numerical ex-
periments convexity is preserved and this allows considering a well-posed model in
a pure variational setting. The non-convex scenario is also covered by the proposed
model. We shall explore it in future work.

Independently from the modelling tool used to justify our formulation (PDE-
based or variational techniques), the main goal of our proposal is to promote a bi-
narization of the solution leading, in the graph of characteristics, to a clear, robust
solution which is our final saliency map.

This section aims to provide the rationale of the techniques that we shall use
to model and solve the automatic saliency detection problem in Computer Vision
(Section 3.3).

3.2.1 Bayesian Modelling in Computer Vision

Bayes Theory is a building block technique for modelling artificial vision problems
in Computer Vision [97] and a fundamental guide for the design of feasible energy
functionals which must be optimized, typically minimized. After a prior has been
selected, this provides us with a Maximum a Posteriori (MAP) estimation of the
solution. The underlying idea is to penalize images that do not meet our a-priori hy-
pothesis on the optimal image to be recovered. For example, we can assume a-priori
that natural images have finite jump discontinuities at the edges and are therefore
piece-wise continuous functions. We then have to choose a regularizer (the a-priori)
that promotes (do not penalize) discontinuous functions. This is introduced in the
next section where the Bayesian approach is presented and the associated inverse
problems are formalized. Optimization theory is then applied to deduce the govern-
ing Euler-Lagrange equations of the model. This motivates and introduces the use
of variational techniques in Image Processing as an established and principled way
to analyse and solve the proposed models. As a byproduct, we have a mathematical
framework in which the models are analysed, discretized, and numerically solved.
This is proposed in [10] where a variational model on a graph is considered for au-
tomatic saliency detection. Physical process can also be envisaged and exploited to
drive fast dynamics and related digital processing. Consequently, we develop fur-
ther the modelling exercise to include a reaction term in the energy functional and
associated Euler-Lagrange equation.

The mathematical approach to image processing based on variational calculus is
called continuous to differentiate it from discrete settings where the image is con-
sidered, since the beginning, as a matrix. Our solution (the recovered image) is the
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function that minimizes the energy functional and it is sought for in an infinite-
dimensional vector space. Banach spaces of the Lebesgue type must be considered
as the natural spaces in which the problem admits a solution. This has interesting
consequences when an image processing task is considered. In fact, the choice of
the proper regularizer (prior) is turned into a problem of regularity and qualitative
behaviour of solutions of quasilinear elliptic partial differential equations for which
vast literature is available [40, 51].

In the interface between Applied Mathematics and Computer Vision, a great ef-
fort arose in the last years for non-local variational calculus [98]. This is interesting in
applications because non-local interactions and patterns in the image domain, and
patterns and characteristic features in the data space can be conveniently modelled.
This introduces the need for differential calculus in continuous manifolds and dis-
crete graphs.

Non-local variational methods and graphs of characteristics are presented at the
end of the section to develop our proposed model for automatic saliency detection in
natural images. Section 3.2.6 describes fully the theory of discretized differential op-
erators in graphs introduced in [84] and explains how to apply it to our continuous
non-local model.

3.2.2 Inverse Problems and Bayesian Modelling

To illustrate the technique which allows the formulation, in a variational setting, of
many low-level problems of Computer Vision, we start with the description of one
of the most classical and studied general model problem: the image restoration (or
reconstruction) problem. We shall follow a local, point-wise framework. Section 3.3
presents the non-local setting based on the same conceptual steps here considered.

In Computer Vision, there are two ways to describe images and later to pro-
cess them accordingly [68]. Digital mages (natural or synthetic) are a set of discrete,
quantized values representing the gray-scale intensity at each pixel or voxel defining
the image domain (a discrete mesh) and its resolution (the number of pixels). These
values are stored and collected into a matrix (for gray-scale images) or a tensor (for
colour or pseudo-colour and in general multi-channel multi-modality images) and
represent our (perturbed) data. On the other hand, images can be described in a
continuous setting, [19, 53, 37]. Much like a fluid or an elastic body of deformable
material in continuous mechanics, images can be transformed by some physical pro-
cess, typically heat diffusion and non-linear variants. Viscous fluid models can be
found in [41]. Elastic image registration models are reviewed in [14].

These processes are governed by PDE which must be solved. This involves the
discretization of the derivatives and the numerical resolution of the PDE which mod-
els the physical process considered. The final solution is the reconstructed discrete
(digital) image. In such a continuous framework, previous to the discretization step,
images are functions defined in a subset (3 C R” (the continuous image domain)
taking values in RY in form f : Q C R" — R? where 1 represents the dimension of
the images and d the number of channels.

Several advantages of the continuous approach can be deduced. The images
that our brain processes are continuous. Resolution issues only arise when digital
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Figure 3.9: (a) Original Image from MSRA10K [58] (b) Noisy data image (input) for
the denoising problem (Eq. 3.3) (c) Noisy and blurred data image (input) for the
inverse reconstruction problem (Eq. 3.2).

images are mechanically acquired, but they do not when continuous models are con-
sidered. Furthermore, the tools in the continuous domain are more abundant and
established: functional analysis [40, 51, 12], differential geometry, differential equa-
tions [19], convex optimization [35, 233], duality theory [233, 83, 48, 52], etc. Some
properties, such as the rotational invariance of an image, mass conservation of the
initial noisy data, the maximum principle [233, 222] or the existence of edges pre-
serving regularizing flows are easier to model in the continuous setting because the
physics laws models the continuum. Finally, it is often possible to show that the dis-
crete model tends to the continuous one if the discretization parameter goes to zero
[68]. This confers extra control on the algorithms used to solve the problem because
the qualitative properties of the solution of the continuous model should be repro-
duced by the numerical solutions. With a view to model saliency in natural images,
we shall follow this more general approach.

The degradation of an image occurs basically from image acquisition, for exam-
ple, a blur caused by the motion of the camera (Figure 3.9c), and some random data
transmission errors (Figure 3.9b). This is modelled by the forward model for image
reconstruction which describes how the observed digital image f is obtained:

f=Au+ng (3.2)

where u represents the original data, A is usually a linear operator affecting the
signal u (modelling blur, downsampling, integral transforms, etc.), and # is the
noise distribution which is usually assumed to be an Additive White Gaussian Noise
(AWGN). This last term is dependent on the specific application and image modal-
ity. The image processing task is therefore to recover u given f leading to an inverse
problem.

When A is the identity operator, i.e, A = I, we have Au = u and Eq. 3.2 reads

f=u+y (3.3)

This is the forward model for image denoising. To recover the original, clean im-
age u from perturbed data in f is the associated inverse problem. Inverse prob-
lems are ubiquitous in Science and, in particular, in Image Processing. Most of the
inverse problems such as (3.2) and (3.3) are ill-posed. To understand the scope of
the statement, we notice that a mathematical problem is well-posed (in the sense of
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Hadamard [111]) if and only if the following three conditions are verified: 1) there
exists a solution for the problem (existence), 2) the solution is unique (uniqueness),
and 3) the solution changes accordingly to the input data (stability or continuous
dependency of the solution from the data). When whichever of these conditions is
not fulfilled the problem is termed ill-posed.

Conditions 1) and 2) about existence and uniqueness imply that there exists a
bijective map between the space of data and the space of the solutions. Notice that
they do not need to be in the same space because some kind of regularity is usu-
ally introduced to reduce the noise. In practice, these conditions are seldom met in
models (3.2) and (3.3). In fact, following [227], let us assume that f is modelled as
a random variable f ~ N (u,0,). Then, if we could have a different f from a fixed
u varying the oy, the recovery process would be a simple mean operation. Unfor-
tunately, the data given is only a single observed image f affected by an unknown
noise 77. Therefore, there are many possible combinations to produce f varying u
and # (not injectivity). The restoration problem is ill-posed because of the lack of in-
jectivity. Furthermore, the selection of the operator A could also lead to injectivity
problems in applications such as deblurring, compressed sensing, inpainting, etc.

Sometimes it may occur that the problem is not well conditioned, condition 3),
because there is no continuous dependency of the solution from the data and small
changes in the input produce a great change in the output (instability) [19].

The model in (3.2) can be written in form of an energy minimization problem.
This will allow highlighting the relationship with Bayesian modelling. Let Q C R?
be the domain of the image and let A be a linear operator. Since we have assumed an
AWGN as noise model, we can formulate the restoration problem (3.2) in the sense
of least-squares as follows:

. . . . 2
U’ = argmin E(u) = argglel}r(l/ﬂ(Au f)dx (3.4)

where E(u) denotes the energy that we wish to minimize and the arg min function
is defined as

argmi)rgE(u) ={ueX;E(u) <E(v), Vv e X}
ue

indicating that u* € X is the function where the minimum value of the quadratic
energy E(u) is attained:

min E(u) = E(u*) < E(v), Vo e X

ueX

Notice that the important property that we shall use in the Bayesian model deduc-
tion, relating the arg min and arg max operators:

arg min E(u) = arg Ibrllea)z((—E(u))

This allows converting a probability maximization problem (Bayesian framework)
into an energy minimization problem (variational framework).
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The operator A : X — X is a linear bounded operator modelling the image
degradation and X is the space of functions where the energy is well defined, i.e.,
bounded. Assuming f € L%(Q)), we see that the energy in (3.4) is well defined in
X = L2(Q) which is the space of square integrable functions in the Lebesgue sense.
More regularity is usually assumed in Image Processing and data (images) are con-
sidered (essentially) bounded functions, i.e., X = L®(Q}).

A classical approach to deal with ill-posed problems is to add a regularization
term in Eq. 3.4. This has the effect to shift the spectrum of the A operator. The
idea was introduced in a mathematical framework by Tikhonov and Arsenin in 1977
[268]. This technique transforms the ill-posed or ill-conditioned problems using
some constraints in the formulation into problems with a high grade of injectivity
and stability. In the case of a restoration problem, noise is usually related to high fre-
quencies so the regularizer should be a function that removes those high frequencies
and preserve the structures such as edges. In the image domain, we should constrain
the gradient of the solution as a faithful descriptor of the edges of the image.

These considerations can be also recovered using a Bayesian approach which we
review briefly following [68]. This statistical framework, in fact, allows deriving
proper cost functionals for a specific problem modelling the constraints of our prob-
lem as a prior in the functional (for further details see [97]). Bayes’ rule is a powerful
tool to model constrained inverse problems assuming prior knowledge on the na-
ture of the data.

Let u be the unknown true image and let f be the perturbed, observed one. No-
tice that u and f are functions in (), but to make the notation simple we use u = u(x)
and f = f(x) where x € (). Then we can write the joint probability for # and f as

P(u, f) =Pulf)P(f) = P(flu)P(u) (3.5)

where P (u|f) is the posterior probability density of u given the data f, P(f|u)
is the likelihood that represents what it is expected in the data f for a given u, P(u)
is the a-priori probability density (prior knowledge about the expected solution u)
which acts as a regularization or constraint, and P(f) is the probability density of
the data. Rewriting the expression (3.5), we obtain Bayes’ formula:

Pulf) = P 66)

The goal is then to find the image which maximizes this probability (3.6). This is
called a Maximum a Posteriori (MAP) estimator. It can be formulated as follows:

u* = argmax P(u|f) = argmax P (f|u)P(u) (3.7)
ueX ueX
we have eliminated P(f) from 3.7 because it is a constant w.r.t u and does not play

any role when the argmax is computed. Assuming a Gaussian distribution centred
at 0 and with variance oy for the likelihood (as dictated by 3.2), we have

1 1
P(flu) o Ulmexp (—%'12/|Au—f]2dx> (3.8)
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The crucial step is the election of the prior. A natural choice, typically used in signal
theory is

« 2 L (e
P(u) Uzmexp< 2022/\u| dx> (3.9)

where we denote, following [227], the standard deviations 03 = cy(x) and 0» =
02(x). As each sample u;; = u(x = (i, ])) is assumed to be Independent and Identi-
cally Distributed (i.i.d.), the standard deviations 4 (x) = 07 and 02(x) = 02 will be
therefore considered as constants. Replacing (3.8) and (3.9) in (3.7), we arrive at

. 1 1 » 1 1 ’

u’ = arg max { Ulmexp < 202 / |Au — f| dx) Uzmexp ( 202 / |u] dx) }
(3.10)

We can simplify the expression (3.10) by taking the log of the posteriori distribution

because the log function is monotonous increasing, and the maximization problems

are not the same, but equivalent because the MAP estimation is the same [68]. Fi-

nally, changing the sign to the energy functional we convert the maximization opti-

mization problem into the minimization one:

1 1 1 1
u* =argmin< In [ —— —I——/Au— 2dx+ln<>+/u2dx
B { (o)t [ 1u=r ovar) T2 I
(3.11)

Removing the constants in (3.11) that do not depend on the minimization variable u
and introducing A = 03 /0% we get

u* = argmin {A/ |Au —f|2dx+/ |u|2dx} (3.12)
ueX Q Q
—_—
Fidelity: F(u) Prior: P(u)

The first integral in (3.12) is usually known as the fidelity term

F(u) = [ |Au— fPdx = | Au—f]3 (3.13)

It gives us a measure of the distance between the degraded solution Au and the data
f. The second integral term is the prior P(u) = J»(u)

() = [ fuPdx = |lu]3

which is called the Tikhonov regularization term. The A parameter is a positive real
number that models the trade-off between regularization (when we do not believe
in data f) and fidelity (we believe in data f). We then have the energy functional

Ea(u) = J2(u) + AF(u) = |[ul3 + AllAu — f|3

where we penalize the energy of the solution ||u]|3.

This formulation works well when 1D temporal signals are processed but, as
observed in [227], the regularized cost functional obtained with the prior (3.9) is not
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(©

Figure 3.10: (a) Partial derivative du/dx detecting vertical edges (b) Partial deriva-
tive du/dy detecting horizontal edges (c) The scalar field of the module of the gra-
dient detecting all the fundamental edges (d) 3D representation of (c). The ridges
denote the jumps due to the edges.

appropriate for image processing problems. The problem is the assumption made
in (3.9) because a zero mean Gaussian distribution implies that the solution with
more probability density is u = 0. This premise is not the right one because natural
images present great variability and are certainly not constant, black images. It is
more appropriate to model the prior considering the magnitude of the gradient of
the image. In fact, penalization of the energy of the gradient of the image reduces
the oscillations in the solution. The formulation is as follows:

1 1 )
P(u) o Uzmexp (—E/|Vu| dx) (3.14)

ou ou
vie= (%@)

is the 2D gradient operator, a vector field indicating the direction of the maximal in-
crease of the function. Figure 3.10 shows the partial derivatives of an image. Vertical
edges are detected by du/dx (Figure 3.10a); correspondingly the horizontal edges
are detected by du/dy (Figure 3.10b). The full edges detection map is provided by
the gradient magnitude |Vu| (Figure 3.10c). Low magnitude values of the gradients
appear in flat, homogeneous regions of the image. Oscillations are reduced when the

where
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energy of the scalar field |Vu| is introduced into the energy functional for denois-
ing tasks (Figure 3.10d). The optimization problem with this new prior (regularizer)
(3.14) reads, in the image domain (), as:

u* = arg min {A/ |Au —f|2dx+/ |Vu|2dx} (3.15)
u ) (@)

We set K = V, the gradient operator. The introduction of a general K operator shall
be justified later on. This notation is convenient because it will allow writing a uni-
fied (local or non-local) formulation of our model problem.

The prior P(u) = J»(Ku) in (3.14) is called the Tikhonov regularizing term and it
is defined as

B(Ku) = [ |Vufdx = || Vul}

It acts as a regularizer because it penalizes quadratically the energy of |Vu|, ie,
abrupt, high oscillations of the solution 1. We then have the energy functional

Ey(u,Ku) = Jo(Ku) + AF(u)

Functional analysis and the elliptic regularity theory provide us with a princi-
pled framework in which we can understand the effect of each prior. In fact, as
in [249], we notice that although the energy functional (3.15) performs much better
than (3.12), the domain of this functional is the Sobolev Space [5].

W'2(Q) = {v € L*(Q)|Vv € [L2(Q)]"}, n=2,3

Using the Morrey embedding theorem [85], we have W'2(Q)) C C(Q) and this
means that the possible solutions of the minimization problem will be continuous
functions not allowing jump discontinuities at the edges of the images which are
blurred (over-smoothing).

3.2.3 Regularization in Image Processing

Section 3.2.2 has presented the regularization to make the inverse problem solvable
by adding some injectivity (Tikhonov), the same concept has been also derived from
the Bayesian inference framework. Now, it is time to explore which kind of regu-
larizers are beneficial for the variational formulation in Image Processing. Mathe-
matically, the hint to answer this question lies in the space of functions where the
functionals are defined, i.e., which kind of function spaces should be considered
for the solution of our problem. Remember that the prior or regularizer indicates
without no looking at the image how likely an interpretation is. Considering that a
natural image is a piece-wise constant function in a mesh we cannot accept spaces of
continuous functions. We need to look for a very non-linear operator to give mean-
ing to a solution in a very weak space.

Rudin, Osher, and Fatemi proposed the very famous ROF model with a new reg-
ularizer called the Total Variation (TV) operator in [238]. Since then, the ROF model
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(b)

Figure 3.11: (a) Gray-scale image of the public dataset MSRA10K [58] (b) 3D rep-
resentation of the pixel intensities of (a). The ridges and jumps, characterized by
high gradient magnitudes, make the surface clearly discontinuous (piece-wise con-
tinuous). The smoothness of the surface corresponds to low gradient magnitudes
regions.

has been extensively and successfully applied to many low-level image problems in
Computer Vision. In a formal expression, we have

* . _f12
u —argrurgg{)\/QMu fl dx+/Q|Vu|dx} (3.16)

where the abuse of notation in (3.15) lies in the L!-norm of the gradient. The prior
P(u) = J1(Ku) in (3.16) is

hKu) = [ |Vuldx = | Vul, (3.17)
with associated energy functional

E1(u,Ku) = J1(Ku) + AF(u)

This energy is bounded in W1!(Q)) which is the space of absolutely continuous func-
tions. We still have over-smoothing which is not admissible because the solution (a
natural image) is a clearly discontinuous surface (Figure 3.11). The correct formula-
tion in the case of p = 1 uses advanced concepts of measure theory [12] and duality
theory [83, 49], and reads (compared with (3.17))

* : _ f£2
u —argrunel}rg{/\/ﬂ\Au fl dx+/Q\Du]} (3.18)

where Du is the generalized gradient of u. It is also called the distributional or weak
derivative of u, defined by [49]

(D) o) piage) = — [ u(x)divg(x)dx

for any vector field ¢ € D(Q),R"), i.e., C* with compact support in Q.
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The distributional derivative Du is a vector-valued bounded Radon Measure ,i.e.,
a Schwartz distribution or generalized function. Distributions generalize the classi-
cal notion of functions in mathematical analysis and make it possible to differen-
tiate functions whose derivatives do not exist in the classical sense. The space of
bounded Radon measures on Q) is denoted by M(Q),R") and is identified to the
dual of Cy(Q2, R"), denoted by Co(Q2, R")".

The prior is P(u) = J(Ku), the celebrated Total Variation operator TV (1) which
is denoted in literature in many ways

J(Ku) = TV (u) :/O|Du| = |Du|(Q) (3.19)
and explicitly defined as
V(W)= sup {—/ w(x)divg(x)dx : ¢l < 1} (3.20)
PeCE(QR") =

The associated energy functional is

E(u,Ku) = J(Ku) + AF(u) (3.21)

The TV (u) operator is now bounded in a subset of the Lebesgue space L!(Q) called
the space of Bounded Radon Measures. This implies that the domain of the func-
tional (3.19) is now

X =BV(Q)NL2(Q) = {v e LY(Q)|Dv € M(Q,R")}NL* Q)

where BV (Q)) is the space of functions of Bounded Variation. Endowed with the norm
[lu||gv = ||u||1 + TV (u) it is a Banach space. When n = 2 we have, by the Sobolev
embedding [12] BV (Q) — L ("=1)(Q) = [*(Q) that

X =BV(Q) = {v € LY{(Q)|TV(v) < 4oo}.

This space contains piece-wise constant functions, so it allows functions (images)
with discontinuities. It preserves the structures of the image in form of edges while
removing the noise. It is also rotationally invariant. For further details on the prop-
erties of the TV, see [50]. Advanced mathematical results about the implementation
of the theory of Bounded Variation (BV) functions and related numerical schemes in
Image Processing can be found in [170] where the (local) Rician denoising model is
considered.

We have then found the correct space in which to work but the choice of the TV
operator as a regularizer introduces theoretical and practical difficulties because the
energy E(u, Ku) is not differentiable as we further discuss in the next section.

3.2.4 Variational and PDE-Based Models

Computing the maximum a posterior (MAP) estimator is a variational problem [68].
The resolution of the minimization problem (3.18) requires then to find the stationary
points of the energy functional which can be minimized using necessary first-order
optimality conditions. These conditions are also sufficient when convex functionals
are considered. Detailed assumptions and related functional analysis concepts can
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be found in [19].

By the triangle inequality is possible to show that the TV (u) operator defined
in (3.19) is convex, but not strictly. Nevertheless, the quadratic fidelity term F(u) is
strictly convex so its sum, which is energy E(u, Ku), is strictly convex.

The existence and uniqueness of the solution to the minimization problem (3.18)
can be found in [51]. Central to the variational method is the calculus of the Euler-
Lagrange equations of the energy functional through differentiation (see Appendix
A.2 for the derivation of the Euler-Lagrange equation of the linear case). When the
quadratic prior is considered and in general for all priors of the type:

]p(Ku):/ \VulPdx = |Vull, p> 1.
(@)

the energy functional is differentiable. These operators allow generating a scale-
space theory for image restoration in which the regularity of the solution is con-
trolled by the parameter p > 1. It determines the functional space the corresponding
energy is bounded, which is the Sobolev space Wl'p(Q). For any p > 1, the func-
tional J,(Ku) is strictly convex and differentiable, and the minimization problem is
well-posed. The associated first-order optimality conditions are the Euler-Lagrange
equations

—div(|Vu|P72Vu) + AA*(Au—f) =0, p>1 (3.22)

where A* is the adjoint operator defined by (Au,v) = (u, A*v), Yu,v € X. For
p > 2, we have a degenerate elliptic equation which models the asymptotic state
(large time behaviour) of a slow diffusion process. For 1 < p < 2 we have a singular
elliptic equation modelling the asymptotic state of a fast diffusion process. In any
case, we have an (elliptic) quasilinear PDE. For p = 2, we recover the linear equation

—Au+AA*(Au—f) =0 (3.23)

Equation (3.23) is still widely used in many low-level image and data processing
tasks because it is simple to solve. Nevertheless, when fine image details are of con-
cern the diffusion processes modelled by (3.23) (or (3.22) with 1 < p < 2) cannot
be used because they are aggressive and produce a blurring of the edges, i.e., over-
smoothing.

To complete the problem formulation let () be the image domain. To solve the
elliptic equation (3.22), it is necessary to prescribe feasible boundary conditions. It is
common in Image Processing to set the homogeneous Neumann boundary condition
(or no flux flow through conditions)

|IVulP2Vu-n=0 p>1 (3.24)

to preserve the mass of the given data f, when denoising is performed, ie.,, A =
I. Using Green’s formulas [105] (for further details see formula (A.3) in Appendix
(A.2)), these boundary conditions imply the mass conservation property

/Qudx:/ﬂfdx

In terms of PDE, the variational method leads to solving the quasilinear elliptic
problem
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) —div(|Vu|P7?Vu) + AMA*(Au—f) =0, p>1
P,(u) =
’ |Vulf=2Vu-n=0

When the TV operator (3.19) is used as a regularizer and the corresponding en-
ergy (3.21) is considered for minimization, the above problems can be avoided (if
the right formulation is considered) but a weaker concept of differentiability must
be introduced

Definition 3.2.1 (Subgradient) Let E : X — R be a convex proper functional. The
subgradient of E at u is defined as:

JE(u) := {u* € X*|E(v) > E(u)+ < u*,v—u >, Vv e X}

A functional E is said to be subdifferentiable at u if E(u) is finite and the set dE (u) is not
empty.

A simple example to illustrate the concept of subgradient is the absolute value func-
tion f(z) = |z|. We set v = z and u = x with u* = t in (3.2.1). For x < 0, we have
a unique subgradient of (x) = {—1}. Similarly of(x) = {1} for x > 0. Atx =0,
the subgradient is defined by the inequality |z| > tz, which is true if and only if

€ [—1,1]. We then have 9f(0) = [—1,1]: the subdifferential does exist and it is
multi-valued.

When p = 1, the TV energy functional is not differentiable, but it has a subgradi-
ent. Computing the Euler-Lagrange equations leads to the multi-valued problem

TV (u) + AA*(Au—f) >0,

P)=y Du (3.25)
[Du] "

where the point-wise characterization of the TV operator is [36]

. Du
To simplify, let A be the identity operator, A = I. The first-order optimality condi-

tions of the energy minimization problem for image denoising lead to solving the
problem

_div (‘g”’) A= f) =0,
Pu)=4 . N (3.26)
0

[Dul "
Notice that the gradient vector field Vu does not appear anymore in the problem

formulation being substituted by the distribution Du. It is interesting to have a look
at the qualitative properties of the solutions of problem (3.26). This is illustrated by
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the dynamics of the parabolic problem

ou Du

— =div|—=— | —A(u—F),

ar W <yDu|> (1)

Py(u(t))=q Du 4 (3.27)

|Du|

u(x,0) = f(x)
which is the gradient descent of the stationary model problem (3.26). The term —Au
in (3.27) acts as an absorption term causing a decrease in the solution. This suggests
that if we wish to binarize the solution into salient/non-salient regions, it is neces-
sary, or at least convenient, to introduce a reaction term in the equation. The idea is

to cause a reaction in the salient zones and absorption in the non-salient, making the
solution almost binary.

Problem (3.26) is the primal problem associated with the TV operator. It is a
formidable, non-linear multi-valued problem. Extending Stampacchia theory [144],
it can be shown to be equivalent to a set of variational inequalities that could be
solved by using finite elements discretizations.

Nevertheless, the problem (3.25) has, in practice, a serious drawback because
its formulation must be regularized. In fact, the term div(Du/|Du|) is numerically
highly unstable when |Du| is small or zero and this occurs in the homogeneous re-
gions of the image. To overcome this problem, a regularization is introduced in the
form |Vule = /|Vu|?> + €2. This produces, again, regularized solutions that do not
preserve the important features of the image.

An alternative consists of getting back to the energy minimization problem (3.18)
and to write it as saddle-point primal-dual problem. To properly understand the
primal-dual formulation and its advantages, it is convenient to have some basis of
duality theory, which can be found in the book by Rockafellar [233]. Basically, the
following considerations hold. Let u be the non-smooth solution of a non-smooth
primal minimization problem. Then there exists, under suitable hypothesis, a dual
maximization problem for a dual solution p. The maximization problem and the
dual solution are both smooth. Both solutions, u and p, satisfy a primal-dual formu-
lation that corresponds to a saddle-point problem with min-max structure.

The basic idea relies on considering the dual form of the non-smooth term (the
TV operator) which is written in terms of the dual variable p leaving the fidelity
written in terms of the primal variable u as in the primal problem. The solution u of
the original primal problem is then recovered from the solution p of the dual prob-
lem. This strategy is shown in the next section.

The primal-dual formulation and its local variants are now standard in Image
Processing and Computer Vision [64]. The non-local version is more recent in appli-
cations. A non-local approach to hyperspectral imagery is proposed in [294]. Varia-
tional non-local saliency models in the image domain are presented in [179, 225].

For its resolution, we will follow, as typical in Image Processing, the primal-dual
approach proposed by Chambolle and Pock [52] which we adapt to the non-local
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Figure 3.12: There are many algorithms to solve non-smooth convex problems with
TV. Some of them consider an exact formulation problem through duality arguments
whereas other ones consider approximated regularized formulations [219]. To solve
the not differentiability of TV in the primal formulation (3.29), some alternatives
have been proposed: primal-dual formulation (3.32) and dual formulation (3.37).
The idea is to introduce a new variable (dual y) and it is by construction differen-
tiable so that we can calculate the Euler-Lagrange equations even if x is not differen-
tiable with the new TV (3.20).

calculus framework for the saliency problem (Section 3.3).

3.2.5 Primal-Dual Algorithm

Primal-dual algorithms (PDA) have been introduced in image processing by Zhu
and Chan, [292] to overcome the computational challenges which arise when the
Primal and Dual ROF are considered. These are non-differentiability at |Vu| = 0,
highly non linearity and spatial stiffness for the primal problem and non-uniqueness
due to rank-deficient divergence operator div, extra constraints, and spatial stiff-
ness for the dual problem. Nevertheless, PDA have a long history in Mathemat-
ics and their roots can be traced back to the 1950s and development in the 1970s.
Often, depending on the problem, they are equivalent or closely related to many
other algorithms such operator splitting methods [79, 217, 158], Alternating Direc-
tion Method of Multipliers (ADMM) [93, 100], proximal methods [234], or Bregman
iterative methods [212, 289].

PDA are descent-type algorithms that alternate between the primal (3.29) and
dual (3.37) formulations.

First-order primal-dual algorithms for convex optimization problems with known
saddle-point structure are considered in [52] to solve non-smooth convex minimiza-
tion problems. They allow avoiding any relaxation or regularization of non-differen-
tiable operators such as the TV operator. The general problem presented is in the
form of a saddle-point problem for a primal variable u# and a dual variable p.

To leave the presentation as simple as possible and to focus directly on the de-
duction and rationale of the algorithm, we consider a general discretized, finite-
dimensional setting where the primal variable is x and the dual variable is y (Figure
3.12). The specific form of the discretized non-local operators is provided in the next
section.

Let X, Y be finite-dimensional real vector spaces, with X = R™*", the primal
space, and Y = R"*"*", the dual space. In a local approach » = 2 and in a non-local
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discrete graph 7 is fixed by the number of the directional derivatives between the
elements of the graph. Let K : X — Y be a continuous linear mapping operator with
the induced norm:

||K|| = max{||Kx|| : x € X, with||x|| <1}

Notice that the K operator can be the discretized form of either the local or the non-
local gradient operator. In this way, the algorithm can be written in a general setting.
For this, we also introduce the K* operator, which is the adjoint of K:

(Kx,y)xy = (x, K'y)x,y (3.28)

The concept of the adjoint operator is a generalization of the integration by parts for-
mula in multi-variable calculus and functional analysis. The adjoint of a differential
operator is another differential operator. When the K operator is the local gradient
operator (V), the K* adjoint operator is the local divergence operator —div. The
Neumann boundary conditions (3.24) ensure that the boundary terms arising in the
integration by parts vanish.

We highlight that the adjoint operator acts on the dual variable y through K*y
and the primal variable x is no longer differentiated. This allows considering a reg-
ular primal-dual formulation without extra regularization terms. For our analysis,
the K operator could be either the local gradient operator (V) or the non-local gradi-
ent operator (V). If K = V then K* = —div. If K = V, then K* = —divy.

Following [52], we then assume that we have a discretized form of the energy
functional to be minimized (compare with the continuous formulation in (3.18) us-
ing (3.13) for the fidelity term and (3.19) for the TV operator). We observe that the
specific form of the discretized operators K and K* it is not important because the
primal-dual setting encompasses both formulations, the local and the non-local one.
Section 3.3 introduces the discretized form of the non-local gradient and divergence
operators. We commence looking for the primal variable x € X which solves the
primal problem

rxréi)lg E(x,Kx) = rxréi}r(\](Kx) + F(x) (3.29)

where the discretized energy terms J(Kx) and F(x) are defined as

A A
J(Kx) = |Kx|1 = Y _|(Kx)ijl,  F(x) = E\x—ﬂ% = 52!%‘ — fiil?

i,j i,j

and f is the corrupted observed image. To apply duality theory, we introduce the
Legendre-Fenchel conjugate function:

f(y) = sup {y,x) = f(x) (3.30)
xXe
where x realizes the sup, i.e., the sup is a max if and only if y € df(x). We also have

f(x) =sup(x,y) — f*(v) (3.31)
yeYy
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where, as before, the sup is a max if and only if x € df*(y). The Legendre-Fenchel
identity is
yeof(x) = xcof'ly) < [f)+f )=y
Using (3.31) we have
J(Kx) = max(Kx,y) — J*(y)
yeY
and the primal-dual, min-max, saddle-point problem is then:
i K - J* F 32
min (max(Kn )~ 1'(5) ) + F(x) (332)

where J* is the dual functional of | (the TV operator) evaluated at the dual variable
yey:

J*(y) = max{y, Kx) — J(Kx)

xeX

To compute [*, we define the convex set

P={yeY/lyle <1}
where |y|o is the discrete maximum norm defined in terms of the euclidean norm
[Yleo = maxysjl, 1yijl = lyijl2 = (vi)2+ (v)? (3.33)

We now consider (3.20) which is the continuous (dual) definition of the TV operator

TV (u) = supw){—/gu(x)divcp(x)dx ]l < 1}

PpeCe(Q
which can be written in discrete form as
J(Kx) =TV(x) = mag(Kx,y) (3.34)
ye

because using the definition of adjoint and of the set P we have
TV(x) = max {(x,K*y) : |Y|e < 1} = max {(Kx,y) : Y] <1} = max(Kx,y)
yey yeYy yeP

Notice the constraint y € P in (3.34).

Using the Legendre-Fenchel conjugate function (3.30), we have that J*(y) = 0 when
y € Pand J*(y) = +oo otherwise. Then J* is the indicator function Ip of the convex
set P

wrn . J0 yeP
](y)—lp(y)—{ foo y P (3.35)
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Using the definition of the adjoint operator (3.28) and substituting into (3.32) the
primal-dual problem is

. ' A 2
min (ryea;dx,K y) - Ip(y)> +5lx—fh (3.36)
The dual variable y € Y is a solution of the dual problem
max E*(y, K*y) = max — (F* (—=K*y) +AJ* (y)) (3.37)
yeY yeY

where E*(y, K*y) is the dual functional of E(x, Kx) and F* is the dual functional of
F, the (discretized) fidelity term proposed in (3.13). It can be written in form

* koo _L*Z *
max E°(y,K'y) = max— 5 KB+ {F,K'9) + 1o(o))

We can obtain first-order necessary optimality conditions reasoning as follows:
notice that by using convexity (and concavity) properties of the energy functionals
introduced above these conditions are also sufficient for the existence of a unique
min-max (£,7) € X x Y solving the primal-dual problem (3.32). We start with the
(3.32) problem. Fixed x = £, dropping the constant term F(%) we have the maxi-
mization problem

r?eayxE(y) = r;r\éa;((Kx,y) -] (y)

Stationary points y € Y are then provided by the equation

dyE(y) = K& —9,]"(y) 20

where 9, ]* is the sub-gradient of the convex function [*. Getting back to the orig-
inal (3.32) problem, we fix y = § and drop the constant term [*(7) to obtain the
minimization problem

in E(x) = min(Kx, §) + F
min E(x) = min(Kx, ) + F(x)

Stationary points x € X are then provided by the equation

IE(x) = K*) 4+ 9,F(£) 3 0

where 0, F is the sub-gradient of the convex function F. The optimality conditions
for the pair (#,7) € X x Y are then

(8yE(y), 3:E(x)) > (0,0)

which are the (system) equations (see also the book of Rockafellar [233] for a more
rigorous deduction)

Kz €d]*(9),  —K'pe€dF(%) (3.38)

We now argue as follows. From the first equation in (3.38), we deduce by multiply-
ing by 7; and adding 7 at both terms

J+ K2 € §+10]"(7) = (I+79]") (9)
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and the solution 7 is formally given by the implicit equation

je (I+100%) " (9 + 14KR)

where the operator (I 4 ;0] *)71 is called the resolvent operator and is generally de-
fined for a convex function G as

x = (I+719G) (y) = argrrgcin <21T|x —y)5+ G(x)> (3.39)

Considering the second equation —K*§ € dF(%), we deduce by multiplying by 1,
and adding £ at both terms

% —1,K*) € £+ 1,0F(£) = (I + 1,0F) (%)
and the solution £ is formally given by the implicit equation
%€ (I+1,0F) " (£ — 1,K*))
As a result, we have to compute
g€ (I+100) " (9 + 14KR)
%€ (I+1,0F) " (2 — 5,K*)

System (3.40) is coupled but it can be iteratively decoupled through the alternate
numerical scheme

(3.40)

Y = (I +107") " (v + K"
(3.41)

xn+1 — (I—i—TpaF)il <xn o TPK*yn+1>

This scheme has been deduced in Chambolle and Pock and it can be traced back to
the Arrow-Hurwicz method [16]. The key point is the efficient computation of the
resolvent operators which define the iterations in (3.41):

(I+7@]) ", (I+70F) "

Since J* is the indicator function of a convex set, see (3.35), the resolvent operator

reduces to point-wise Euclidean projectors onto /2 balls:
p=(+wdl) () = =
7 max(1, [pijl2)

where |p; ;|2 is the Euclidean norm defined in (3.33). Setting p = y" + 7;Kx" € Y in
(3.41) we get the explicit iteration

Y — Y+ Ta(Kx")i
e max(L [y 4 Ta(Kx), jl2)

(3.42)

The resolvent operator w.r.t F poses simple pointwise quadratic problems. The
solution is

_ i+ A fi

e -1/ L. =
u= (I+10F) (i) <= u g (3.43)
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In fact, by using the definition of the resolvent operator (3.39) we must solve the
simple quadratic problem

u= (I+T,,8F)_l (1) = argmin <21_p\u — i3+ F(u)> =

. 1 N A
= argamin 5 fu— a3 + 5 lu— 1)

Setting
_ 1 o A 2
E(u) = EW iy + §|” fl2
we can calculate its differential
1 ~
OE(u) = —(u— ) + Alu — f)
p

and imposing JE(u) = 0 we get the result (3.43).
Setting i = x" — T,K*y" ™! € Y in (3.41), we get the explicit iteration

~ 1
T N B A B L
A T 1+ 1A

(3.44)

Considering (3.42) and (3.44) we set u;; = xz;rl and the explicit alternate iterative
algorithm to solve system (3.41) is

v+ Ta(Kx")ij

L max(1, |y§fj + Td(Kx")i,j|2)
) . (3.45)
YT DKyt A i
i 1+ TP)L

In the next section, we present the non-local operators K and K*, which we shall
use in the variational model for the automatic saliency detection problem. The gen-
eral pipeline is as follows.

Given a natural image f, we shall compute a partition of the image in clusters of
pixels called superpixels. These clusters are computed using a metric based on some
features such as colour and position. This generates a finite-dimensional manifold
of characteristics which can be modelled as a weighted graph defined by superpix-
els (vertexes) and weights for their connections (edges). The data takes (averaged)
values in these superpixels and are vector-valued functions causing a dimensional
reduction of the problem. Connections are further reduced using a k-nearest neigh-
bours strategy (k-NN) and the non-local operators can be calculated. Notice that the
superpixel value of an image refers to feature values not to, only, colour intensity.

This allows obtaining the saliency value of each superpixel at each step of the
iterative algorithm. To select the most salient superpixels of the initial partition that
define the final binary saliency map, an hard-thresholding step is performed. Notice
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that promoting a binarization of the optimal solution into salient/non-salient super-
pixels naturally facilitates the choice of the optimal threshold.

A new general variational model is then proposed in Section 3.3 along the lines
before presented. We explicitly model saliency detection with a concave quadratic
term that promotes binary classification (salient or no salient regions).

3.2.6 Non-local Variational Methods and Graphs

The models and methods described in the previous section can be formulated in a
local or non-local framework depending on the notion of derivative we consider.
Although the local models and methods perform very well in many low-level image
processing problems, especially when the TV operator is used as an edge preserving
regularizer, there are some deficiencies in local derivatives when the images possess
textures or repetitive structures.

To capture the properties of texture and repetitive structures, non-local methods
have appeared in the literature as Yaroslavsky filter [149] or Bilateral filters [269] for
denoising problems. In non-local methods, any pixel is related to any pixel in the
image. However, due to the computational complexity inherent in the evaluation of
all these relationships, a dimensional reduction is typically performed.

Since the success of the seminal paper in denoising with the non-local means in
2005 by Buades et al. [43], there has been an effort to formalize a framework from
the variational perspective using the calculus of variations in the non-local setting.
We follow the framework proposed in [98] to define the gradient and the divergence
operators in the continuous domain.

Let ) € R", x € O, u(x) a real function u : 3 — R. The non-local derivative for
the element x in the direction of y reads:

oyu(x) = (u(y) —u(x))\/w(xy), yxecO (3.46)

where w(x,y) is a positive and bounded measure of the similarity of two elements
in the domain ). The non-local gradient K = V, is a matrix composed of all the
partial derivatives (3.46) in the domain

Vit (x) = (dyu(x))yen (3.47)
Collecting all the contributions in (3.47), we have that

Vou = (Vyu(x))ren
is a matrix. The divergence operator

(divgpv) : QA x Q — O

of a vector field v = v(x,y) € Q x Q) is the continuous adjoint of the non-local
gradient operator. We set K* = —div, and in the continuous non-local framework
the divergence operator is defined as in [98]

(divyv) i/n(v(x,y)—v(y,x)) w(x,y)dy (3.48)
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(d) (e)

Figure 3.13: The workflow of our proposal consists of: (a) input image from iCoseg
dataset [22] (b) over-segmentation by superpixels (SLIC [3]) (c) weights to connect
each superpixel among them. A superpixel (yellow) is shown and its k-NN in cyan
(d) control map created from the superpixels through colour contrast and location
priors (e) variational method and saliency map.

A similar framework in the discrete setting for graphs was formalized in [84]. Given
an image and a region partition, an undirected symmetric and weighted graph G
can be considered in the space of the regions. The weighted graph G = (V,E, w)
consists of a finite set of regions V, the edges E linking regions, and their associated
weights w,,, pg € E. These are the foundations of our research which will be further
explained (Section 3.3).

3.3 Saliency Variational Model on Graphs

In this section, we describe the core of the algorithm for extracting the salient part
in natural images. Chapter 4 presents the implementation and results. Figure 3.13
summarizes the pipeline of our method and presents two conceptual stages: 1) ini-
tialization stage with the superpixels extraction (Figure 3.13b), calculation of the
weights (Figure 3.13c), and generation of the control map which models the like-
lihood of being salient (Figure 3.13d), and 2) iterative stage, with the variational
solver for the saliency segmentation (Figure 3.13e). First, we shall present the model
to better understand the preliminary calculations.

3.3.1 A General Variational Model for Saliency

A general variational model for saliency segmentation can be formulated as the fol-
lowing energy minimization problem: Given a function f (the data), compute a so-
lution u in the image domain such that it minimizes the energy

E(u) = J(u) + AF(u) — H(u) (3.49)

where J(u) is the regularizer term (a-priori information), F(u) is the fidelity term and
H(u) is a saliency term which promotes the binarization of the solution into salient
(foreground) and not salient (background) regions. The A parameter is a positive
constant which allows balancing the relative importance of the terms in the energy
functional (Section 3.3.4).

This model can be formulated pixel-wise, in the image domain, or in a graph
of featured superpixels, the region domain. We have chosen the last approach to
reduce the computational time of the whole process yet preserving the fundamental
information of the image, i.e., edges, through the superpixel partition.
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Figure 3.14: (a) and (e) original colour images from MSRA10K dataset [58] (b) red
channel from (a) (c) green channel from (a) (d) blue channel from (a) (b) bright chan-
nel in CIE Lxaxb from (e) (b) green-magenta channel in CIE Lxaxb from (e) and (b)
yellow-blue channel in CIE Lxaxb from (e).

3.3.2 Over-segmentation: Superpixels

The input colour image f is first transformed from RGB into the CIE L*ax*b colour
space, which is perceptually more interesting for the independence of colour and
intensity [58] (Figure 3.14). Then the image is partitioned into regions (superpixels).
A superpixel is a cluster of pixels connected by some metric. Each pixel is assigned
only to one superpixel so that they do not overlap each other. In our approach, the
initial partition is created by using the SLIC method (Simple Linear Iterative Cluster-
ing) [3] (Figure 3.13b) which has been proven to be accurate, computationally effi-
cient, and robust. Other algorithms could have been used, such as Superpixels with
Contour Adherence using Linear Path (SCALP) [99], Superpixel Sampling Networks
(SSN) [135], etc.

3.3.3 Weights: Adjacency Matrix W

Once the image has been partitioned, the spatial structure in the pixel domain is lost.
A finite-dimensional graph can be constructed using the initial data f in the image
domain. Let f, for p € V be the vector value in the feature space at a superpixel p
which we identify with a vertex of a graph (undirected, symmetric and weighted)
G = (V,E,w) where V is the set of vertexes, E is the set of edges, and w : E — [0, 1]
is a weight function. Let f = (f,),cv be the matrix-valued collection of the vector
values f,. Norms in the graph are defined as the L? analogous

1/2
£2 = (Z \fp!2>

peV

We briefly present the structure of the graph. Let # (V) be the Hilbert space of real-
valued functions on the vertices of the graph, f : V — R" and let #(E) be the Hilbert
space of real-valued functions on the edges of the graph, F : E — R". These spaces
are endowed with the scalar products

(£,8)uv) =Y fr-8p (F,G)e)= ). Y Fg-Gpy
pev peV geVv
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The connections pg € E between superpixels are defined in the feature space by the
weight function following [281]

Wy = €X =il VpgeE (3.50)
pqg = €Xp 202 , Pq .

where f, is a feature normalized vector at superpixel p defined by f, = (rcy,1,),
being ¢, € R® the mean of the superpixels for each component in the in CIE Lxaxb
colour space and 1, € R is the centroid position of the superpixel in the original
spatial space. The r is a positive parameter and controls the balance between the
two features while o> defines the extent of the non-locality. We experimentally fixed
r = 0.9 and 0? = 0.05. Superpixels p and q are connected, say p ~ ¢ if and only if
wpq > 0. All the superpixels are initially connected. The graph G is represented by
its adjacency matrix W = (wpq)pq € E, where sp is the number of superpixels.
To reduce computational cost and to exploit local relationships in the feature space,
the number of total connections (edges of the graph) of each superpixel is decreased
from sp to k-NN (Figure 3.13c). The rest of the weights for a superpixel are set to
zero. As a result of this process, we have a sparse weight matrix W*7**F which is no
longer symmetric.

3.3.4 Regularizer, Fidelity, and Saliency Terms

We fix the notation that is slightly adapted from [84]. Let u = (u,),cv be a function
on the set of vertices V in G representing the solution in the feature domain and let
dyu, be the weighted partial difference at a vertex p in the direction of vertex g:

gty = /Wpq(up — 11y) (3.51)

where u,, is the value at superpixel p and the weight w,, is calculated by (Eq. 3.50).
(3.51) is analogous to the non-local continuous partial derivatives defined in (3.46).
These partial differences define the difference operator G, : H(V) — H(E) for any
functionu € H(V), withu: V — R

(Gwu)(p,q) = /Wpq(up —uq) € H(E)
We set K = Gy, in the primal-dual algorithm (3.45) with Ku = G,uforany u € H(V).

The weighted gradient operator is then the vector of all partial differences at super-
pixel p:
Collecting all the contributions we have analogously to (3.47) that

Vou = (Vaip)pev = ((9gup)gev)pev € H(E)

is a matrix defined in the set of edges of the graph. In order to compute the Euler-
Lagrange equation of the energy functional in (3.49), we need to define the non-local
divergence of a matrix d = (dpy)p4ev. The continuous formula for a general vecto-
rial field is (3.48).
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(b)

Figure 3.15: (a) Contrast prior (v,") is calculated by the difference in colour between
superpixel p and g in f and weighted (@,;) by the distance of centroids between
superpixels p and g (b) control map without object prior projected on the image do-
main (c) control map with object prior v¢ = (¢},) yev projected on the image domain.

For any d € H(E) the adjoint operator G, : H(E) — H(V) of the difference
operator Gy, can be defined at superpixel p € V as (see [84])

~divady = (Go)(p) = T /pr(dgy — dpy) (353)

qeV,qpeE
where the (dual) functions d,, € H(E) are edges functions. We set K* = G, in the
primal-dual algorithm (3.45) with K*d = Gd = —div,d for any d € H(E). We can
now describe the energy functional in the graph (features domain).

Our regularizer J(u) on graphs is defined by the non-local TV operator, de-
noted [nrrv,»(u), which preserves edges and induces the sparsity of the gradients
of saliency maps. The continuous form of this operator for a function (image) u has
been introduced in [98] and reads

1/2
Incryv (1) = (/Q w(x,y)|u(y) — u(x)|2dy> dx (3.54)

The discrete version of (3.54) can be found in [84] and it is defined as the isotropic I!
norm of the weighted graph gradient

1/2
]NLTV,w(u) = Z ( Z wpq|uq — Mp|2> (355)

peV \geV,pqeE

The fidelity term is defined as in [281]. Using the data f in the image domain, we
compute the control map (v°) in the graph generated by the feature domain, where
v¢ = (vy)pev (Figure 3.13d). Each component is composed of a contrast prior (Fig-
ure 3.15a)

q#p

with weights
=Lk
and an object prior
M-I
vgb] =e 200 (3.57)
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Figure 3.16: We show the effect of the saliency term H(u) in the energy functional.
(a) Original images from MSRA10K dataset [58]. In (b) the initial, distributed his-
togram per channel of a given input image (a). (c) The histogram of the binary output
(saliency map) of the algorithm in the features domain. (d) The typical, convergent,
L-shaped curve of our iterative algorithm during iterations (sp = 300 and € = 107°).

where 1 are the coordinates of the centre of the image. We can encode these priors in
the saliency control map at superpixel p as v, = v;"”v‘;,b] with v = (v},) pev (Figures
3.15b and 3.15c). The fidelity term is

1

F(u) = o

1
2 _ 2
lu—v|3 = 7 Y lup =] (3.58)
pev
where the positive parameter « models the relative importance of the likelihood and
the saliency term.

The saliency term is defined by a concave quadratic energy function -H (u), with:

H(u) = ;7 Yo 11— bupl?, (3.59)

peV
and where § > 0 acts as a threshold in the region domain separating background
and saliency (Figures 3.16b and 3.16c). To keep the solution in the (saliency) range
[0,1], we perform a hard truncation at each iteration of the algorithm. It models
the probability of each superpixel to be salient. As a result, the value u, represents

a score function estimating the saliency of each superpixel of the graph associated
with data f.

3.3.5 Numerical Resolution: Primal-Dual Algorithm

The proposed saliency model generalizes previous attempts [281] where the varia-
tional saliency is formulated as a pure denoising problem in the features space. In
the asymptotic limit « — oo, we recover that scenario. In fact, the fidelity term can
be retained choosing A = aA, with A real and positive while the saliency term van-
ishes in the limit. Experimental results can be found in [10]. Replacing the terms
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in Eq. 3.49 by their analogous Equations 3.55, 3.58, and 3.59, our proposal is the
minimization of the following energy:

E(u) = ]NLTV,w(u) + )\F(u) — H(u) (360)

We normalize the range of the solution u in the superpixel domain and then, we
project back onto the image domain to obtain the final output u (Figure 3.13e).

We have chosen the primal-dual algorithm because, as we have discussed before,
it allows us to solve the primal-dual continuous formulation (3.36) without any kind
of regularization. The regularization is inevitably faced when the primal formula-
tion (3.29) is considered and over-smoothing is caused. The resulting minimization
problem (Eq. 3.60) is solved by a primal-dual algorithm.

This algorithm encompasses an alternate maximization (update dual variable d)
and minimization (update primal variable u) steps [52, 169]. Both steps are repeated
until the energy convergence is reached. As a stopping criterion, we compute the
difference between consecutive values of the energy functional (Eq. 3.60) during it-
erations until this is less than a fixed tolerance e (Figure 3.16d).

In summary, given the k-step solution in terms of the primal and dual variables
in the graph (u*, d¥) which correspond to the discrete variables x and y introduced
in (3.45), the update is:

— Maximization step: Fixed an ascent dual discretization time 7;, we compute
for every superpixel g

k k
dk+1 _ dq + Tdeuq

= 3.61
g max(1, |df + 7y Vub|2) (3.61)

and set d"*+1 = (d’;“)qev. The non-local gradient un’; is calculated in (3.52).

- Minimization step: Fixed a descent primal discretization time 7, and given

d*1, we compute for every superpixel g

W = (14 aty)uk + 7, (divw(dg“) - bq> (3.62)
and set u*+1 = (usﬂ) gev where the non-local divergence divw(d’,;“) is calcu-
lated in (3.53) and

2 5 A,

The parameter a and the vector b defined in (3.63) have been introduced to facilitate
the physical interpretation of the model. In fact, the term arpu’; in (3.62) acts as a
reaction term (source) when a2 > 0 and an absorption term (sink) when a2 < 0 (as in
the ROF model). The forcing term b = (b,),ev is a changing sign vector driven by
the control map v which favours saliency detection. The specific form of (3.63) has
been deduced as follows.
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The non-local discretized form of the energy functional in (3.60) is

1/2
A 1
2 2 2
Z < Z wpq\uq—up] ) +ﬂ Z ]up—v;] ~ 52 Z ]1—5up| (3.64)

peV \g€eV,pqgeE peVv pev

The difference of the quadratic functions in (3.64) suggests computing explicitly this
difference to obtain a unique quadratic form that encapsulates the physics we intro-
duced into the model. We have

A 1
=Y fup =P 5 Y 1= buplt =
2u v P 202 v

1 A 1
pe

1 A2\, 5 A A 1
BB en( o) (- 2)

1
= Z <—2uup2+bpup+c>

peV

The parametric values of A, &, and § modify the general behaviour of the model
and generate different scenarios to be explored. In this work, we focus on the case
a < 0 where the energy functional is strictly convex and the minimization problem
is well-posed.

The gradient descent computing in (3.27) can be justified as follows. We write
the Euler-Lagrange equation (3.26) in terms of the non-local dual variable d with
a=—A<0andb = —Af to obtain

K, (A1) = aul — b,

where K;j,(d’,;“) models the non-local interaction genarating by diffusion. Using
forward Euler discretization with step 7, the analogous gradient descent is

uk+1 _ uk
q q _ * ( gk+1 k
et = K (@) + auf — by
14

Multiplying by 7,, reordering terms, and setting K, = —div,, we get
uZH =1+ an)ug + 1 (divw(dg“) — bq>

which is the minimization step in (3.45). Notice that the iterative splitting between
the primal and dual variable generate a strong data dependency that penalizes the
full potential of parallel computation. Algorithm 1 shows the pseudocode of our
primal-dual algorithm. We have experimentally fixed 7, = 0.3 and 7; = 0.33 as in
[292].
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Algorithm 1 Saliency estimation on non-local TV with Saliency Term
1: procedure NLTVSALTERM(inputlmage,sp,k,A,J,4,€)
2: Calculate Superpixels over inputlmage

3: Extract superpixel features f, for p € V
4: W?P*SP <— Create adjacency matrix using (Eq. 3.50)
5: Connections in W*7**F to k-NN
6: v <= Calculate controlMap using (Equations 3.56 and 3.57)
7: Calculate a and b using (Eq. 3.63)
8: Initialization: u = v, d =0
9: repeat
10: Compute d**! using (Eq. 3.61)
11: Compute uf*! using (Eq. 3.62)
12: Compute E(u**1) using (Eq. 3.60)
13:  until [E(uf) — E(uf*)| <e
14: return u

15: end procedure

3.4 Patch-Based Methods for MRI-CT Synthesis

In this section, we describe the core of the algorithm for generating the pseudo-CT
image from MRI images. Chapter 5 presents the implementation and results. CT ac-
quisition modality provides the electron densities necessary to obtain an attenuation
map for PET images (see Section 2.3.4 and Eq. 2.3). The synthesis of a pseudo-CT
image from MRI images is a natural solution to correct PET when PET/MR multi-
modality is considered.

The basic idea is as follows: 1) generate a pseudo-CT given an input MRI im-
age, 2) calculate the attenuation maps from the pseudo-CT volume, and 3) apply the
attenuation map to correct the PET image. We are going to focus on the first step
producing the pseudo-CT image: synthesis. In this manuscript, synthesis refers to
the task of generating an image (target) from a set of images (source) given an input
image.

First, we briefly describe the multi-atlas segmentation in biomedical images as
a start point to develop our patch-based method to solve the synthesis problem.
Multi-atlas segmentation aims to assign segmentation labels to the pixels or voxels
of an unlabeled image by using the relationship between the segmentation labels
and image intensities observed in images of the atlases [125]. This approach treats
segmentation as an image registration problem in which there is a process to prop-
agate correspondences from the atlases to the input image. Since registration-based
methods are computationally intensive, some alternatives aim to relax this require-
ment, such as patch-based strategies. They follow the developments in non-local
image denoising [43] as we will see in the next section.

After this, there is a description of the overall workflow of our algorithm and
the notation used in the following sections. We explain the way how to evaluate
the patch similarity between the input image and the images in the anatomy atlas,
non-local self-similarity. We describe how to propagate the labels from the atlases to
the target image to produce the final output, group-wise label propagation. Finally,
a regularization step is needed to assign a meaningful label to unlabeled voxels.
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Contrary to registration-based approaches, patch-based ones might produce no cor-
respondence in certain voxels.

3.4.1 Foundations: Multi-atlas Segmentation

We follow the survey provided by Iglesias et al. [125] to describe the foundations
of multi-atlas segmentation. In biomedical image analysis, segmentation refers to
group pixels or voxels into biologically meaningful labels according to some crite-
ria, for example, using tissue types or anatomical structures. Medical Imaging enjoys
a multitude of general-purpose algorithms and techniques for automatic image seg-
mentation.

Many applications use clinical expert knowledge to label images. These meth-
ods are based on the use of a-priori acquired data (training images) from the target
modality and using the data as an atlas to generate the new data, typically known as
atlas-guided segmentation methods and treated as an image registration problem.
There are two classes depending on how to combine the training images. The first
one is the probabilistic atlas-based segmentation in which atlases are summarized in
a probabilistic model. The second one is multi-atlas segmentation (MAS) in which
each atlas can potentially contribute to segment the input image.

In this Thesis, we shall focus on MAS methods for our discussion. A MAS algo-
rithm consists of several different steps, steps in italic are optional, (Figure 3.17a):

1. Generation of atlases: Offline process to generate the labeled training images
(atlases) for the segmentation.

2. Offline learning: It aims to analyse the atlases to collect useful information be-
fore the segmentation.

3. Registration: Image registration aims to find a spatial transformation (map-
ping) that associates positions in one image to corresponding positions in one
or other images. Image registration consists of the deformation model (rigid or
non-rigid), the objective function, typically spatial distance, image intensities,
etc., the optimization method, for example, gradient descent. The spatial trans-
formation calculated can then be used to map from the frame of one image to
the coordinates of another. In MAS, registration is the step that determines
the spatial correspondence between each atlas and the input image. The accu-
racy of the segmentation depends on how accurate the registration is. More
accurate methods usually require more computation.

4. Atlas selection: Decreasing the number of atlases reduces computational time
and discarding irrelevant atlases may improve segmentation accuracy.

5. Label propagation: After registration and possible selection of some atlases,
MAS propagates the atlas labels to the input image coordinates space, apply-
ing the transformation matrices from registration.

6. Online learning: Label fusion algorithms can directly merge propagated labels
of the atlases to the input image coordinates. However, some MAS methods try
to improve the segmentation by exploiting the relationship between registered
atlases and the input image.
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Figure 3.17: (a) Building blocks of MAS. Dashed blocks may be optional in the
process. Inspired by [125]. (b) Workflow for skull estimation through MAS [273].
First, registering the volumes from a multi-atlas CT database to the input image.
Second, propagating the corresponding segmentation labels to the input MRI co-
ordinate space. Finally, the segmentation is calculated as a combination of all seg-
mentations in the anatomy atlas by applying a label fusion method, for example,
majority voting.

Label Propagation

7. Label fusion: It combines propagated atlas labels to infer the final segmenta-
tion by using techniques such as major voting (MV), simultaneous truth, and
performance level estimation (STAPLE), shape based averaging (SBA), etc. al-
gorithms.

8. Post-processing: The result provided by the label fusion step may be the input
for another algorithm, for example, using the output as a seed for active con-
tour segmentation.

MAS approach is highly versatile because the main prerequisite is an anatomy
atlas, which is a set of pairs including a measured image and the corresponding
label map [236]. The key points of this approach (registration-based label propaga-
tion) concern the accuracy of the non-rigid registration, the label fusion techniques,
the selection of the labeled images, and the labeling errors in primary manual seg-
mentation [236]. For example, a method for complete skull segmentation based only
on T1-weighted images of the human head is proposed in [273]. The method uses a
pre-alignment and non-rigid registration among volumes and input image (Figure
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Figure 3.18: Patch similarity description in non-local means (NLM) algorithm. Pix-
els q1 and q2 have a larger weight than q3 because they are similar based on the
intensity gray when comparing the patches. Inspired by [43].

3.17b).

Therefore, each atlas image should align with the input image for MAS algo-
rithm. Registration algorithms are computationally intensive and difficult to paral-
lelize which makes the registration step a bottleneck. Some works have introduced
the patch-based idea to MAS [236, 67] for label propagation to identify correspon-
dences among the atlases. These works are based on the denoising algorithm in a
non-local framework proposed by Buades et al. [43]. Patch-based methods have
shown to be useful to relax the one-to-one constraint existing in non-rigid registra-
tion [236, 125].

We briefly describe the classical non-local means (NL-means) to understand the
connection between this filter and our proposal. NL-means filter exploits the self-
similarity in natural images that every patch has many similar patches in the same
image (Figure 3.18). We use a notation slightly different from [43] to keep consistent
with the following sections.

Images are defined on the discrete grid I. A patch collection P is a family
P = {Px}xer of subsets of I with x = (x,y)T as pixel such that Vx € I: 1) x € Py and
2)y € Px = x € Py.

For simplicity, a patch (local neighbourhood) has a fixed square dimension. Let
v be the discrete noisy image

v={ov(x)|x € I}

The restriction of v to a patch Py is defined as

v(Px) = {o(y),y € Px} (3.65)
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Buades et al. describe that in principle every pixel x in the image I is explained
as a linear combination of all other pixels, but the algorithm typically reduces these
combinations for computation reasons with a search window [43]. Although the
method is computationally intensive there exist some optimized versions, for exam-
ple, on GPU [166]. The estimated denoised value for a pixel is calculated by

NL(v)(x) = )}, w(x,y)v(y) (3.66)
yel
In [43], the calculation of similarity of the gray level intensity between patches Py
and Py for pixels x and y uses a Gaussian weighted Euclidean distance, [v(Px) —
v(Py) ]%u This distance is a reliable measure for the comparison of texture patches.
Using (3.65), the weight w function reads

Px) —v(Py) |3
W(x,y):z(lx)exp(_ [0(Px) hf( y)‘z,a>’

(3.67)
where 4 is the standard deviation and / controls the decay of the weights as a func-
tion of the Euclidean distances. The weights also satisfy the conditions 0 < w(x,y) <
land }y w(x,y) = 1. Z(x) is a normalization factor

Z(x) =) exp

yel

(- P =Ry
h

Generally, patch-based methods have been used for medical image denoising
[66] and medical segmentation [236, 67]. Ye et al. has adapted this label propagation
framework for other tasks [288]. Their proposal is a modality propagation, which is the
generation of a different image modality by image processing of a different acquired
modality.

A fundamental consequence of using patch-based techniques for the synthesis
problem is that they are very prone to parallelization, and thus very scalable to a
new computing architecture [125]. We will show that the operations involved for
calculating a voxel in the synthesis output are independent in the next sections and
Chapter 5. Our proposal will be an implementation of modality synthesis on GPU,
obtaining synthesis times that are even faster than the acquisition of the real image
modality, thus opening the possibility of new clinical applications.

3.4.2 Patch-based Medical Image Modality Propagation

Ye et al. proposed an iterative method for generating T2 and DTI-FA images from
T1 MRI images [288]. Our approach is a bit different because we have adapted the
ideas in Rousseau et al. [236] for brain labeling and apply them to synthesise a new
modality without any iterative scheme.

Figure 3.19 illustrates schematically the workflow of our proposal. The input
parameters are an input image I representing the modality from we want to do the
synthesis from, an anatomy atlas .4 which contains a set of image pairs of two differ-
ent modalities: A = {(Z',L')}" ,. In our case, Z' are MRI images and L' CT images
labels and N is the specific neighbourhood. We assume that Z! and L' are spatially
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Input MRI Pseudo-CT

Figure 3.19: Patch-based synthesis workflow. Every voxel in the pseudo-CT is cal-
culated according to a weight combination of source labels in the atlas. Weights
measure the similarity between the patch from the image I(Px) and from the atlases
I'(Py) in a neighbourhood. For simplicity, only a slice of the volumes is shown.

aligned. We compare the similarity between the input image and the MRI images in
the atlas within neighbourhood and combine these similarities to produce the seg-
mentation output (L) through the labels in the anatomy atlas.

The input image I and the atlas images Z' and labels L' as well as the output L.
are volumes. They are defined as follows

M:Qh—>]R

where (), is the discrete image domainand O, = {1,... N1} x {1,... No} x {1,... N3}.
For simplification in the following formulas, we fix the notation: each voxel x € (),
is defined by x = (x, y,z)T and the whole volumes are a cubic for simplicity and
without loss of generality with dimension N°. Now, we shall describe the opera-
tions in our algorithm.

3.4.3 Non-local Self-Similarity

The weight w; is the measurement of non-local similarity at patch level between the
input image I and 7' image from a specific atlas i. Let x and y be a voxel in the input
image I and the image of the atlas 7' respectively. The weight calculation reads as
follows:

Y () -T(y)P -
XePLy Py I(Py) — Ti(P
(Ui(XIY) =v¢ Byen 25‘3@.2 =1 (l ( )25[3@'2( Y)|2> (3.68)
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Figure 3.20: The synthesis of a voxel consists of calculating the Euclidean distance
|I(Px) — I'(Py)|3 between the input image I patch and each patch in N from an at-
las image Z'. We iterate through all atlases collecting each wLT,; and wr,; to produce
the output I (rectangle in green) (Eq. 3.69). We set at the beginning for each voxel
calculation wlLty; = 0 and wr, = 0. For simplicity, only a slice of the image in the

atlas is shown.

where P! is a cubic patch of the input volume whose centre is at voxel x and 73)?
refers to cubic patch in the atlas volume centred at y (Figure 3.20). Following [66],
the Gaussian weighted Euclidean distance (Eq. 3.67) is replaced by the classical Eu-
clidean distance, decreasing the computational time. Besides, the h? parameter has
been substituted by 2580 (Eq. 3.68) so that it is independent of the neighbour size.
B is a positive real number that influences the difficulty to accept patches with less
or more similarity. ¢ is the standard deviation of the noise in the images given by
Signal Noise Ratio (SNR), but we can expect that images have a good SNR.

The patch size is defined with S(P x P x P) number of voxels. The dimension
of the patch confers robustness to the similarity measure to capture details and fine
structures. We use as transfer function (r) = e~ " to keep the values in the range
[0,1] being 1 a perfect similarity between patches. However, other sigmoid functions
are also possible. The parameters described before are relevant for the quality of the
synthesis and Chapter 5 discusses the effect in the result section.

According to the original denoising approach, similarities between patches can
be found over an experimental search window [43]. On the contrary, in the context
of modality propagation, this similarity search is bounded to the variations of the
anatomical structures in a population [236]. This allows us to find good matches in
a specific neighbourhood N of a specific voxel x.

3.4.4 Group-Wise Label Propagation

Once a similarity w;(x,y) is calculated, we need to combine these weights among
atlas and neighbourhood N to produce the final label for the synthesis output Iy.
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The NL-means denoising algorithm relies on the redundancy of any natural image.
This means that similar patches can be found in the same image and we can use this
fact to calculate a denoised pixel as a weighted average of the pixels in a specific
search window. Following this idea, if we assume that patches of the input image I
are similar to patches of the anatomy atlas I’ according to a measure distance, then
they should refer to similar labels too. Replacing v(y) (Eq. 3.66) by the voxel label
Li(y) in the specific atlas, we can calculate the weighted average of the labels in a
N for all atlases and produce the label output of a voxel as follows:

I = i=1yeN _ w Lot (3.69)
< WTot
Y, ) wilxy)
i=1yeN

where L is the CT image label in atlas i and finally, collecting all the contributions,
we have that the volume segmentation is

t = (lx)xeﬂh

Figure 3.20 depicts the calculation of a voxel x in the pseudo-CT output image.
This calculation is achieved with the group-wise label propagation (Eq. 3.69) and
collecting the sum of square differences among patches in N with the fixed patch Py
from the input image I (Eq. 3.68). We can observe that the algorithm could perform
each Iy in L in parallel reducing the overall time of our proposal. Chapter 5 describes
how to implement them efficiently and make the most out of these independent
operations on multicore and manycore platforms.

3.4.5 Regularization Procedure

Registration-based approaches assume that there is a one-to-one mapping between
the input image and the anatomical images in the atlas [236]. However, patch-based
methods could produce no correspondence between the patch of the input image
I and the patches of the images I’ in the anatomy atlas .A. No correspondence
means that the group-wise label propagation has not found good similarities and
the weights are less than € (WLt < € and wry < €). In those cases, the algorithm
associates no value (NaN) to the voxel x of L.

The existence of unlabeled voxels in the output image (L) requires a regulariza-
tion step to assign a meaningful value to them. These cases are rare in comparison
with the volume dimension (|[NaN| < N?). We have assigned to the unlabeled vox-
els the value of the median calculated from its neighbourhood, but, for example,
inpainting approaches could perform well too. The size of this neighbourhood is
N'x. The regularization operation reads as follows:

{ L(x), if L(x)# NaN
(3.70)

medianyy (L(x)), otherwise

This part of the algorithm will not be optimized because the median procedure
requires sorting the elements and the amount of data is not large enough to do in



3.4. Patch-Based Methods for MRI-CT Synthesis 81

parallel (]| < N). Algorithm 2 shows the operations involved to accomplish the
pseudo-CT image.

Algorithm 2 Pseudo-CT estimation patch-based
1: procedure SYTHESISCT(I, A, S,0,8,N)
2: forall x € I do
3 Ix using (Eq. 3.69)
4 end for
5: Apply regulariza:cion to L using (Eq. 3.70)
6
7:

return synthesis L
end procedure
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3.5 Algorithm Complexity Analysis

In this section, we are going to analyse the complexity of the algorithms. In this way,
we aim to estimate whether the method would experiment with a large improve-
ment or not when using parallel computing techniques.

3.5.1 Saliency Variational Method

Our algorithm consists of two conceptual stages: 1) initialization stage with super-
pixels extraction, generation of a control map and features matrix for each super-
pixel, calculation of the weights, and selection of the k-NN elements 2) iterative
stage, with the variational solver for the saliency segmentation. The solver in the
minimization step (Eq. 3.62) is slightly different for NLTV [10] in comparison with
our NLTV SalTerm, but equivalent in terms of complexity. If the input image has
N = w X h, the number of superpixels is sp and the number of k-NN is k, and the
number of features f (colour and location). We have the following decomposition:

e Features matrix O(N)
* Control map calculation O(sp?)
* Weights calculation O(sp?)

¢ Primal-Dual saliency. Since it is an iterative part, we present here the com-
plexity for an iteration: O(3 x sp X sp + sp) (non-local gradient + non-local
divergence + energy + update)

The number of operations the algorithm must perform can be approximated calcu-
lated from the equations 3.50, 3.56, 3.57, 3.61, 3.62, and 3.64

* Features matrix calculation: N x f summations and sp divisions.

* Weights calculation (Eq. 3.50): For each superpixel calculation, we have 2(f —
2) multiplications, f subtractions, f multiplications, f summations, 1 division
and one exponential operation.

¢ Control map calculation (Eq. 3.56), (Eq. 3.57): For each superpixel calcula-
tion, (f + 1) multiplications, f subtractions, f 4+ 1 summations, 2 division and
2 exponential operations.

¢ Primal-dual saliency:

— Maximization (Eq. 3.61): For each superpixel calculation, we have 2sp
summations, sp substractions, 2sp multiplications, sp squares, a division,
and sp maximum operations.

— Minimization (Eq. 3.62): For each superpixel calculation, we have 2 sum-
mations, 1 subtraction, 3 multiplications, and non-local divergence (sp
summations, sp subtraction, and sp square root).

— Energy (Eq. 3.64): For each superpixel calculation, we have 4 multipli-
cations, 2 subtractions, 1 square root, 2 summations, sp summations, sp
substractions, and 2sp multiplications.
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Let us assume for our analysis that subtraction, summation, and multiplication
consume one-unit time to compute and square root, division, and exponential three
units. Finally, the number of operations to be performed in this algorithm is

Operations = (N X f)+3xsp+ (5f+2) xspxsp+ (3f +14) x sp x sp+
Feature Matrix Weights Control map

= 9IXspxsp+3+6xsp+5xspxsp+(11+4xsp) xsp

maximization minimization energy

We also read and store information in memory, we assume single precision (4
bytes). The number of reads/writes:

e Writes= spXxf + sp +spxsp+ sp
S—— S~~~ S—— S~~~

Feature Matrix ~ Control map Weights primal-dual

* Reads= spxsp +2xXspxXsp+2xXspXsp+3XspXsp+2xsp
~——

Feature matrix Control map Weights primal-dual

Taking into consideration that sp < N and read /write operations are two orders
of magnitude larger than float point operations [285], we can draw from the above
calculations that our algorithm will be affected by memory bandwidth bound. The
access pattern is good, but there are many positions with zero values that can be not
computed. A better organization of the data will be needed to achieve an efficient
algorithm. Furthermore, the subtasks exhibit internal summation (see for example
the Eq. 3.56), maximum (see for example the Eq. 3.61) operations. These procedures
create some dependency between processes. This is the reason why reduction tech-
niques should be used to achieve good performance.

To finalize the iterative part of the algorithm, we need to check whether the crite-
rion is met or not. Typically, the iterative algorithms are not parallel friendly and on
GPU Computing the criterion must be evaluated on the host side implying a penal-
ization with the transfer. Finally, we calculate the saliency in the superpixel domain,
which means that we have reduced the data to compute. Therefore, GPU compu-
tation will be less productive than in the case of MRI-CT Synthesis (Chapter 5). We
would expect a gain factor of one order of magnitude.

3.5.2 MRI-CT Synthesis Patch-Based Method

If the problem volume is N X N x N, the neighbourhood size K x K x K and the
patch size P x P x P, and we have A for the number of atlases, the algorithmic com-
plexity would be O(A x P?® x K®> x N?). Assuming P < K < N, an upper bound
would result in O(A x N?). The number of operations the algorithm must perform
can be calculated from the equations 3.68 and 3.69. They are as follows:

¢ Patch similarity: 3 Operations (subtraction, summation, and multiplication)
N3 x A x K3 x P3 times (see Eq. 3.68) in the dividend part. 2502 does not
depend on the data and it calculates offline.
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¢ Propagation: 5 Operations (division, exponential, multiplication, and 2 sum-
mations) N° x A x K3 times (see Eq. 3.69).

¢ Segmentation: Final output a division operation N 3 times.

We can assume for our analysis that subtraction, summation, and multiplication
consume one-unit time to compute and division and exponential three units. Finally,
the number of operations to be performed in this algorithm is

Operations = 3 x (N®> x A x K> x P3) +9 x (N® x A x K®) + §_><N3

Weights Propagation Final output

We also read and store information in memory, we assume single precision (4
bytes). The number of reads/writes:

e Writes Wz = N3

* Reads Rj :AxN3{ K + (2xK3xP?)
S~~~ ~—_——
Labels  Aflas and Input Image
Taking into consideration that read/write operations are two orders of magni-
tude larger than float point operations [285], we can draw from the above calcula-
tions that our algorithm will be affected by memory bandwidth bound. The reason
for this lies in the access pattern in the non-local method which does not fit well
in cache policies. Some temporal locality techniques should be implemented for
improvement. Apart from that, we can conclude that the calculation of each voxel
output is independent of other voxels. This independence calculation for the output
voxels and the large data (remember we have volumes) make this algorithm very
suitable to accelerate with multicore or GPU computing. Furthermore, the whole al-
gorithm (except for the regularization) is highly parallelizable. Therefore, we would
expect a gain factor of two orders of magnitude.
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Chapter 4

Saliency Detection in Natural
Images

In this chapter, we present the implementation of our proposal to produce the saliency
detection in natural images (Section 3.3). This algorithm will be implemented using
different paradigms, but the algorithm remains the same. We have implemented a
single core solution and two solutions with GPU.

We also present the experiments performed to quantitatively measure the GPU
performance compared to a CPU single core solution. We show qualitative and
quantitative results that reinforce the idea of our proposal. To arrive at the con-
figurations that we describe here, there has been a lot of experimentation. It is out
of the scope of this document to describe all of them, but the rest of the experiments
can be found in Github!. This chapter is based on the following accepted papers [10,
8].

4.1 Implementation

We can divide our saliency method (Algorithm 1) into two conceptual stages: the
initialization stage (lines 2-8) and the iterative stage (lines 9-13). In the next subsec-
tions, we shall describe both stages.

4.1.1 Initialization Stage

The weight matrix is very sparse and guides the complete calculations in the itera-
tive stage of the algorithm: non-local gradient (Eq. 3.52) and non-local divergence
(Eq. 3.53). Usually, instead of performing the operations in the whole matrix W*P*°?,
the matrix is transformed into a more compact one, W*? <k following the CSR (Com-
pressed Sparse Row) representation.

5010 2
35001 Rows = [0,3,6,9,12,15]
0 2801 ]|= Cols = [0,2,4,0,1,4,1,2,4,0,3,4,0,2,4]
10013 Values = [5,1,2,3,5,1,2,8,1,1,1,3,4,9,2]
4 0 9 0 2

Weights

Ihttps://github.com/EduardoAlcainBallesteros/VariationalSaliencyDetection
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This CSR format can represent any arbitrary sparse pattern and, in particular,
our case which is induced by the k-NN dimensional reduction. Notice that the
number of non-zero entries (NNZ=sp X k) varies for each different input image.

CSR representation consists of three vectors: Rows € N,/ ! and Cols € N <k
to store the row/column indices of the non-zero entries in the original matrix and
Values € R°7* to store the values of the matrix.

This format is commonly used for sparse matrix-vector multiplication [24] (like
our non-local gradient operation) because row indices introduce fast memory access
to values in the matrix and easy calculation of the number of non-zeros in a specific
row. CSR representation reduces drastically the memory for the weight matrix and
the number of operations performed in the non-local gradient and non-local diver-
gence. Besides, the optimization in CPU makes use of the vectorization guidelines
for the Intel compiler [130] to improve the performance. The GPU implementation
starts by migrating this optimized CPU approach into CUDA.

After having partitioned the image domain using SLIC on GPU [230] (Figure
3.13b), we extract the features for each superpixel (colour and location) creating £,
for p € V (Section 3.3.3).

This procedure fits well for CPU but not for GPU because some coordination is
needed to collect the data and sum them up. Reduction techniques achieve the nec-
essary coordination. A reduction is a class of parallel algorithms that produces a
scalar result from a collection [283]. Using an NVIDIA Kepler GPU, we employ the
atomicAdd operation, as according to [198] it is an optimized implementation since
CUDA 7.5. In any case, there are several reduction implementations with different
performances depending on the GPU family.

As each feature vector f, is normalized, it requires the computation of min and
max of each feature and, again, we perform them at the same time with a reduction
kernel.

Algorithm 3 Weights and control map calculation
1: procedure CONTROLMAPANDWEIGHTS(L,a,b,x,y)
2: Calculate w,, using (Eq. 3.50)
shared memory < v‘;j%” using (Eq. 3.56)
sync
reduce v
sync .
Calculate v;b] using (Eq. 3.57)

con,,,0bj
Up

con

» " in shared memory

Calculate v}, = vy
9: return WSP*sP  y¢
10: end procedure

Before implementing the numerical solution of our model, we compute the weights
(Eq. 3.50) and the control map through (Equations 3.56 and 3.57), which are very
suitable and efficient for the CUDA environment (element-wise operations). For op-
timization purposes, both operations are unified into a single CUDA kernel with
grid configuration of sp x sp (Algorithm 3). L, a, b € R®? are the colour components
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in CIE L*axb colour space and x, y € R° are the location components.

Note that the sync instructions in lines 4 and 6 (Algorithm 3) are synchronization
barriers to ensure all threads reach these instructions in their independent evolution
through the kernel execution. The control map procedure requires a reduction oper-
ation inside the kernel (line 5) because the contrast prior (Eq. 3.56) must be repeated
from one superpixel to all superpixels. Again, the control map must also be normal-
ized in the range [0, 1] for the primal-dual algorithm.

The next operation in the initialization stage is the selection of the k-NN values
for each superpixel in the W***P matrix (Algorithm 4). As the matrix is not very
large, in CPU is more efficient to sort the values in rows (O(Nlog>N)) and extract
the k-largest values in each row than finding directly the k-largest values in each
unsorted row. However, due to insufficient data and few numbers of rows (number
of sorts), this approach is unfortunately not very efficient for the GPU. Our strategy
is based on a loop of reductions to find the k-largest values in each row until all the
rows are completed.

Algorithm 4 Select k-NN values in weights matrix (W®F**P)

1: procedure CALCULATEK-NNKERNEL(weights,sp,k)
2: h = 0, th = actual thread index

3 repeat

4 sdata = row-weights, maxs = row-indices

5: sync, j = 0

6: repeat

7 sdata[maxsFinal[j]] =0,j=j+1

8 until j < h

9: sync

10: Find max in sdata & store index in maxsFinal
11: sync

12: h=h+1

13:  untilh <k

14: if th # maxsFinal then

15: Write zero in actual position in weights
16: end if

17: end procedure

4.1.2 Iterative Part: First GPU Implementation

The iterative part lines 9-13 (Algorithm 1) has data dependencies among its opera-
tions and they must be computed one after another. We first split the maximization
step (Eq. 3.61) into three kernels (Figure 4.2a): 1) numerator calculation with the
non-local gradient of u® (nltvGradient) (Eq. 3.52). The non-local gradient can be
seen as sparse matrix-vector multiplication. The CSR representation makes this op-
eration achieve full coalesced memory access. 2) max-reduction calculation (Max).
3) Divide the numerator by the max (DivByMax).

We can again split the minimization step (Eq.3.62) into two kernels (Figure 4.2a):
1) the calculation of the non-local divergence (nltvDivergence). Although the CSR
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Figure 4.1: Given an initial position (2,4), the selection of its transpose element (4,2)
in the CSR format: (a) First GPU implementation. After selecting the row, we iterate
through the col vector to match the specific col. (b) Optimized GPU proposal. A
lookup table (Trans) is used to find directly whether an index in the compact matrix
WsP*K has a transposed element or not.

format also improves this procedure by reducing the number of operations, the ac-
cess to transposed elements (needed in Eq. 3.53) is not direct and requires an iter-
ative procedure inside the kernel to find the transposed element (Figure 4.1a). 2)
Update the solution, which is an element-wise GPU efficient operation (UpdateUk).
The energy calculation (Eq. 3.64) for the stop criterion exhibits similar GPU data
reduction inefficiencies as the extraction of superpixel features and we similarly im-
plement this operation.

4.1.3 Iterative Part: Optimized GPU Version

The first GPU approach solves the data dependencies with the introduction of dif-
ferent kernels. However, as our formulation in superpixels decreases the amount
of data to analyse, the time of launching kernels becomes crucial for performance
improvement. This data dependency can be solved by using thread synchronization
barriers inside kernels while merging them. Therefore, we have merged the maxi-
mization and minimization kernels shown in green and purple boxes, respectively
(Figure 4.2b).

Apart from the data dependency difficulties, the non-local divergence (Eq. 3.53)
implies finding transposed elements in its calculation used by the primal variable
update (Eq. 3.62). In the first GPU implementation, a procedure inside the kernel to
find the transposed value has been implemented. This procedure is inefficient be-
cause most of the values are zero and the loop for finding the match in the column
vector is inside the kernel (in the worst case it iterates k times). However, the dual
variable (d) has only values in the indices where the weights are not zero. Further-
more, the weights matrix is constant during the algorithm. Therefore, we can create
an offline lookup table (LUT) with the transposed information (Trans € Z*/*¥). This
LUT vector stores the transposed result for each index in the compact matrix Ws**
where "-" entry means the transposed value is zero and a value € [0, k) indicates the
index of the column where the value in the compact matrix is located (Figure 4.1Db).
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nltvGradient

DivByMax

nltvDiv

Maximization

UpdateUk

Energy Minimization

Figure 4.2: These diagrams show the kernels used to calculate the iterative part (Eq.
3.60). (a) First GPU implementation, where each operation in CPU has been im-
plemented as a CUDA kernel and (b) optimized proposal grouping GPU kernels.
Minimization also calculates the stop criterion (energy). FinalUk transfers the final

u*, normalizes data [0,1], and projects the result onto the pixel domain.

4.2 Results

This section provides visual and performance results comparing our non-local TV
including saliency term (NLTVSalTerm) against different variational approaches.

4.2.1 Platforms

First, we shall describe the platforms used and the way to refer to them along with
the discussion of this case. The naming conventions used in the experimental results
are as follows:

¢ The name convention consists of two names with a dash separator between
each name, for instance, GPU-Sal+.

* The first name refers to the type of platform: CPU stands for the implemen-
tation on CPU and GPU stands for the implementation of the algorithm with
CUDA. The devices used are:

— CPU: Intel Xeon E5-1650v3, 3.5 GHz hexa-core processor, from the 2014
Intel Haswell architecture (Haswell-EP), 1.5MB L2 cache, and 15MB L3
cache with 64GB DDR3 RAM [128]. The CPU uses a Microsoft Windows
Server 2012R2 as the operating system.

— GPU: The Tesla K40c professional platform (with the NVIDIA Kepler GK110
architecture supporting CUDA compute capability 3.5) with 12GB RAM
GDDRS5, with 15 streaming multiprocessors of 192 CUDA cores each giv-
ing a total of 2880 CUDA cores. 5.046 TFlops [201].
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* The second name refers to the compiler used in the case of CPU and for the
GPU case refers to the implementation choice:

- CPU: mvcc compiler from Microsoft and icc compiler from Intel.

- GPU: Sal (first implementation), Sal+ (optimized implementation), and
Sal* (without energy check).

We have implemented the code with Visual Studio 2015 Community using the
Intel Compiler C++ 19.0 and CUDA 9.0.

4.2.2 DataSets
We have tested our saliency detection algorithm on different public benchmarks:

¢ MSRA10K [58]: This dataset extends MSRA1K [155] and has 10000 pixel-wise
ground truth annotations images. It contains only one ambiguous salient ob-
ject in each image with a background clearly different in comparison with the
object.

¢ ECSSD [255]: This dataset contains 1000 images from the Internet and five per-
sons marked the ground truth in the images. The authors provide a clear anal-
ysis about the properties of their dataset and their importance: multiple salient
objects and the intensity difference between background, and foreground is
less than others dataset.

* iCoseg [22]: This dataset has 643 images from Flickr Website in different situ-
ations. Providing pixel-wise ground truth annotation images and images with
different degrees of complexity (one or two salient objects).

4.2.3 Evaluation metrics

The evaluation of the algorithms is according to the typical metrics used in Saliency
such as Precision (PR), Recall (RC), F-measure, and Mean Absolute Error (MAE)
[96]. Let u : QO C R? — R be the estimated saliency map and ¢ : QO C R? — R
be the ground truth. To evaluate the estimated saliency map (u) against the ground
truth (g) by the models: first, the saliency map must be binarized accordingly to a
threshold and secondly applied the evaluation metrics described as follows:

¢ Precision: Precision is also known as quality or exactness. It measures the
percentage of selected pixels that belong to the ground truth.

TP

Precision = T+ P

(4.1)
where TP represents the true-positive cases and FP the false positive (elements
marked as salient when they are not).

¢ Recall: Recall is also known as sensitivity. It measures the percentage of the
salient pixels detected in comparison with the total in the ground truth.

TP

Recall - m

(4.2)

where FN represents the false-negative cases (elements marked as background
when they are salient).
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Figure 4.3: Examples of saliency detection in datasets (a) original image, from top to
bottom iCoseg [22], ECSSD [287], and MSRA10K [58]. (b) ground truth and saliency
maps using: (c) NLLg [281], (d) NLTV [10], and (e) NLTV SalTerm [8].

¢ F-measure: Sometimes it is difficult to measure the quality of a model either
with precision or recall. A way to alleviate this is by using a harmonic mean
between precision and recall measurements. It is common to set § = 0.3 fol-
lowing [2]

(1+ B?) - Precision - Recall

pB? - Precision + Recall (4.3)

Fg =

* Mean Absolute Error (MAE): A complementary measure to assess the validity
of the method is MAE because it penalizes the true negative in the output of
the algorithm. The range of this measurement is [0,1] where low values of
MAE mean that the output has more similarity with the ground truth.

1

MAE =
N

Y fu(x) —g(x)] (44)

xeQ)

where x € Qand x = (x,y)T. N = w x h with w and h width and height of the
image respectively.

4.2.4 Qualitative Results

To make a fair comparison among methods non-local non-convex Lo (NLLy) [281],
non-local convex TV (NLTV) [10], and non-local convex TV with saliency term (NLTV-
SalTerm) [8] in the datasets, we binarize the saliency maps using a threshold starting
by 0 up to 255 [2]. In each threshold, we measure the four metrics, described in the
previous section, reporting the mean for the whole range [0, 255] for each metric. We
use for NLLj our own implementation and the parameters are set according to [281],
NLTYV has the same parameters as in [10] and for the model NLTV SalTerm, we set
A=1a=15,and J = 0.2 using (3.63) we get a = —0.64. For all methods, we use a
fixed number of iterations (50), number of superpixels sp € [300,650] and k = 5.
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Table 4.1: Quantitative results for the three datasets for the NLLy;, NLTV, and
NLTV SalTerm methods using Precison (Eq. 4.1), Recall (Eq. 4.2), F-Measure (Eq.
4.3), and MAE (Eq. 4.4). In bold the best performance for the specific metric.

iCoseg NLL, [281] NLTV [10] NLTV SalTerm [8]
300 450 600 300 450 600 300 450 600
Precision 0.678 0.713 0.722 0.653 0.662 0.683 0.805 0.820 0.820

Recall 0524 0526 0.529 0.518 0506 0.509 0.557 0.542 0.524
F-Measure 0.589 0.603 0.606 0.580 0.577 0.587 0.716 0.718 0.708
MAE 0220 0.214 0.207 0.236 0.240 0.225 0.147 0.150 0.151
ECSSD NLL, [281] NLTV [10] NLTVSalTerm [8]

300 450 600 300 450 600 300 450 600
Precision  0.644 0.683 0.700 0534 059 0.635 0.687 0.749 0.762
Recall 0517 0522 0521 0505 0510 0515 0469 0476 0.461
F-Measure 0.544 0561 0568 0479 0516 0.538 0.601 0.637 0.633
MAE 0265 0248 0238 0329 0294 0277 0.178 0170 0.172
MSRA10K NLL, [281] NLTV [10] NLTVSalTerm [8]

300 450 600 300 450 600 300 450 600
Precision 0748 0773 0787 0.664 0714 0742 0.835 0.862 0.874

Recall 0.544 0557 0559 0.523 0.538 0.542 0.594 0.577 0.556
F-Measure 0.630 0.643 0.646 0.582 0.615 0.630 0.748 0.756 0.750
MAE 0209 0.197 0.191 0.248 0.227 0.215 0.119 0.120 0.124

Figure 4.3 shows a visual comparison of the considered methods. We can observe
that saliency maps provided by NLTV SalTerm algorithm remove the background
from the input images much better than the rest of methods (Figure 4.3e).

4.2.5 Quantitative Results

The quantitative comparison shows that NLT'V SalTerm algorithm provides the best
results for almost all metrics (Table 4.1). Precision is always higher (Figure 4.4) be-
cause of the specific saliency term which, through the parameter (J), increases the
percentage of selected pixels that belong to the ground truth (true positive). This
mechanism, in turn, restricts the performance of the recall metric, which is very sim-
ilar in all methods. A complementary measure to assess the validity of the method
is MAE because it penalizes the true negatives in the output of the algorithm. In this
case, low values of MAE mean that the output has more similarity with the ground
truth. NLTV SalTerm has the lowest values for all configurations with a substantial
margin (Figure 4.4d) and this behaviour is again related to the effect of the saliency
term H(u).
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Figure 4.4: Precision vs Recall curves using 300 superpixels for NLLy [281],
NLTV[10], and NLTV SalTerm [8]: (a) iCoseg benchmark results (b) ECSSD bench-
mark results (c) MSRA10K benchmark results and (d) MAE Results for all bench-
marks using 300 superpixels as well.

Table 4.2: Timing results (in ms) of the saliency method NLTV SalTerm in CPU for an
image [400 x 334] from the MSRA10K dataset and 50 iterations. CPU-mvcc stands
for Microsoft Visual C++ compiler, CPU-icc for Intel C/C++ 19.0 compiler and Tesla
K40C for Kepler. SP is the number of superpixels used in the algorithm. Speedups
against CPU-mvcc version solution in parentheses.

CPU-mvcc CPU-icc

SP | SLIC Sal | Total SLIC Sal Total

300 | 49.33 6.50 | 55.83 | 21.33 (x2.31) 4.25(x1.53) | 25.58 (x2.18)
350 | 49.62 8.09 | 57.71 | 21.41 (x2.32) 5.36(x1.51) | 26.77 (x2.16)
400 | 49.87 11.56 | 61.43 | 21.69 (x2.30) 7.78 (x1.49) | 29.47 (x2.08)
450 | 49.83 14.07 | 63.90 | 22.41 (x2.22) 9.57 (x1.47) | 31.98 (x2.00)
500 | 50.18 17.42 | 67.60 | 22.30 (x2.35) 11.90 (x1.46) | 34.20 (x1.98)
550 | 50.00 18.09 | 68.09 | 21.87 (x2.39) 12.40(x1.46) | 34.27 (x1.99)
600 | 50.32 2290 | 73.22 | 22.50 (x2.24) 15.78 (x1.45) | 38.28 (x1.91)
650 | 50.16 28.55 | 78.71 | 22.35 (x2.24) 19.92 (x1.43) | 42.27 (x1.86)
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Table 4.3: Timing results (in ms) of the optimized saliency method NLTV SalTerm
for an image [400 x 334] and 50 iterations in GPU. SP is the number of superpixels.
GPU-Sal column represents the saliency of the first GPU implementation. GPU-
Sal+ the optimized GPU version. GPU-Sal* represents the saliency results without
calculating the energy of the functional. In parentheses total speedups against CPU-
icc version solution.

GPU Tesla K40C
SP SLIC Sal Sal+ Total Total+ Sal* Total*
300 8.95 | 22.44 (x0.19) 8.41(x0.51) 31.38 17.36 | 6.08(x0.70) 14.93
350 8.57 | 22.87(x0.23) 8.40(x0.64) 3149 1697 | 6.02(x0.89) 14.51
400 8.66 | 23.39 (x0.33) 9.02(x0.86) 31.99 17.68 | 6.17(x1.26) 14.72
450 8.52 | 23.63 (x0.40) 9.23(x1.04) 32.15 17.75 | 6.34(x1.51) 14.85
500 8.61 | 24.61(x0.48) 9.51(x1.25) 33.25 18.12 | 6.43(x1.85) 14.90
550 8.16 | 25.31(x0.49) 9.57(x1.30) 33.52 17.73 | 6.52(x1.90) 14.70
600 821 | 2543 (x0.62) 9.73(x1.62) 33.68 1794 | 6.66(x2.37) 14.84
650 8.23 | 25.18 (x0.79) 9.79(x2.03) 33.48 18.02 | 6.60(x3.02) 14.78
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Figure 4.5: CPU-mvcc configuration (red), CPU-icc (cyan), GPU-Sal (magenta),
GPU-Sal+ (blue) and, GPU-Sal* (green), varying the number of superpixels
[300,650]. Computation times: (a) (SLIC + Saliency Algorithm) (b) Saliency algo-
rithm.
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4.2.6 Computational Time

In the different platforms, timing results are the average of running the method
100 times and 50 iterations, and varying the number of superpixels in the range
[300, 650]. We have used a GPU version of SLIC from [230] to keep a complete GPU
solution, but we have only reported and discussed GPU speedups of our contribu-
tion (NLTV or NLTV SalTerm).

Figure 4.5a shows the total time in milliseconds of different configurations, on
CPU and GPU. The Intel C++ compiler (CPU-icc) is twice as fast as Visual C++ com-
piler (CPU-mvcc) creating more efficient auto-vectorized code using the same -O2
compiler directive and better loop organization improving memory accesses. On
the other hand, Table 4.3 shows the computational time for independent methods
on GPU: over-segmentation (SLIC) and the variational saliency algorithm.

We report timing comparing the best CPU solution (CPU-icc) (Table 4.2) against
three different GPU implementations. The first GPU implementation (Section 4.1.2)
performs worse than either CPU-mvcc or CPU-icc version (Figure 4.5b). The second
GPU implementation (Sal+) is the optimized version (Section 4.1.3) and is about
% 2.6 faster than the first GPU implementation. However, this implementation is
only faster than CPU-icc when using more than 450 superpixels because the result-
ing energy is transferred back to the main memory for evaluating the stopping cri-
terion in CPU, although the number of iterations is fixed to 50. Memory transfer in
each iteration is one of the historical bottlenecks of GPU implementations and many
strategies can be adopted to reduce this penalty.

As we keep a fixed number of iterations of the algorithm for comparison pur-
poses, we report a third GPU approach (Sal*) avoiding the energy calculation and
data transfer from GPU memory to host memory in each iteration. This strategy is
reasonable as the implementation is focused on the hardware limitations, reducing
the bottleneck, but ensures convergence when compared to an implementation that
uses the stopping criterion with fewer iterations. The algorithm reaches an accept-
able convergence after about 50-60 iterations (Figure 3.16d).

After removing the energy calculation (Salx), we achieve a benefit of up to x3.02
when compared to the CPU-icc results for configurations of 650 superpixels and
% 3.8 compared to the first GPU version. The results show that the method reaches
real-time frame rate capability either on CPU (~ 25 FPS for 650 superpixels) or on
GPU (~ 60 FPS for 650 superpixels).

The configurations grid for the GPU kernels in the optimized version are as fol-
lows:

* Calculation of the features for each superpixel. We use a grid of (sp,sp)

Calculation of the initial saliency map and weights. We use a grid of (sp,sp)

Select the k-NN elements in the weight matrix (sp,sp)
¢ Iterative part Maximization. We use a grid of (sp,k)

* Iterative part Minimization. We use a grid of (1,sp)
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4.3 Discussion

The method proposed is a novel non-smooth and non-local variational method on
graphs for saliency segmentation. Our solution solves the minimization problem
with a primal-dual algorithm which converges quickly to the solution in a few it-
erations. Furthermore, methods using the primal-dual algorithm (NLTV [10] and
NLTV SalTerm [8]) perform better than ADMM in NLL [281] according to time and
iterations in this problem.

On the other hand, we have compared quantitatively and qualitatively the meth-
ods in three well-known datasets, which have different levels of difficulty. As a re-
sult, we can conclude that NLTV SalTerm incorporates the missing piece in the for-
mulation to perform much better than NLLg and our previous method NLTV. Al-
though the method is based on simple priors, the experimental results show that the
method produces very high-quality results removing the background and highlight-
ing the salient part of the image. The quantitative metrics confirm NLT'V SalTerm
performs better in all of them except for recall that all are very similar.

The saliency term in the model controls the probability of when a superpixel is
salient and when it is not. We have demonstrated that the inclusion of this parame-
ter in the model eliminates the background and highlights the salient part. Besides,
we obtain an almost binary output in most of the cases. However, this mechanism,
in turn, restricts the performance of the recall metric, which is very similar in all
methods.

We have also presented an exhaustive performance comparison between CPU
and GPU using different configurations, programming tools, technologies, and plat-
forms demonstrating real-time performance either on CPU or GPU, even with com-
putationally intensive configurations. Since we reduce the complexity (we manip-
ulate the saliency in the superpixel domain), the amount of data is not enough to
appreciate a significant impact when using GPU computing in this scenario. There-
fore, we see better computational results when the number of superpixels is greater
than 450. However, we have derived strategies to make efficiently the algorithm
(data organization, grid configuration, and reductions) on GPU approaching the op-
timized CPU-icc computational time with few superpixels ~ 300.

We have achieved real-time capability either on CPU or GPU, even with the
handicap of transferring the energy each iteration. Real-time outputs allow us to use
this algorithm in video or multi-resolution schemes. Considering that the algorithm
converges in a few iterations, we have proposed eliminating the energy transfer and,
in this way, improving the performance without losing accuracy.
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Chapter 5

MRI-CT Synthesis

In this chapter, we present the implementation of our proposal to generate the pseudo-
CT (Section 3.4). This algorithm will be implemented using different paradigms but
the algorithm remains the same. The implementation is divided into three sections:
single core implementation, multicore implementation on CPU, and GPU imple-
mentation. In each implementation, an optimization is added reducing the time
substantially.

We also present the experiments performed to quantitatively measure the GPU
performance compared to a CPU single and multicore solution. We show qualitative
and quantitative results that reinforce the idea of our proposal. Finally, we have run
the same algorithm with new hardware and software to illustrate the natural scala-
bility of the method. The results have confirmed that new hardware and software
improve the results achieved in Alcain et al. [9]. To arrive at the configurations that
we describe here, there has been a lot of experimentation. It is out of the scope of
this document to describe all of them, but the rest of the experiments can be found in
Github! as well as the source code for each implementation. Since the regularization
step is not optimized, we do not describe its implementation (see the source code for
further details). This chapter is based on the following accepted papers [9, 271].

5.1 Implementation

5.1.1 Single Core Implementation

The first implementation of the patch-based algorithm is under C++ using only one
core. The procedure is divided into four logical blocks:

1. Responsible for iterating through the input image I (N x N x N) line 2 (Algo-
rithm 5).

2. Responsible for iterating through the atlas A line 5 (Algorithm 5).

3. Responsible for iterating through the neighbourhood N (K x K x K ) lines 6
and 12 (Algorithm 5) with the calculation (Eq. 3.69).

4. Responsible for iterating through the patch (P x P x P) line 7 and 8 (Algorithm
5) and calculating Euclidean distance |I(Px) — I'(Py)|3 where I' refers to the
MRI image in the atlas.

The calculation of the wr, and wLry is an accumulative process among the
atlas and neighbourhood line 11 and 12 (Algorithm 5). This summation suffers

"https://github.com/EduardoAlcainBallesteros/PseudoCTImaging
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Algorithm 5 Patch-based MRI-CT synthesis approach CPU/C++

1: procedure PATCHBASED(I,.A,S,0,8,N)
2: forall xinI do

3: wret = 0

4: aJLTot =0

5: foralliin A do

6: for all y in Nx do

7: for all x" in P{ and y' in P} do
8: wi(x,y) = wi(x,y) + (I(xX) = Z'(y"))?
9: end for
10: wi(x,y) = wi(x,y)/2SB6>
11: WTot = Wt + wi(x, y) ‘
12: wLtpt = WLyt + wi(x, y) - L (y)
13: end for
14: end for
15: if wLty < € and wry < € then

16: I, = NaN

17: else

18: I using (Eq. 3.69)

19: end if

20: end for
21: end procedure

from rounding problems. This behaviour can be avoided with Kahan summation
algorithm [118] or in a much simpler way using double for internal calculations.
Our algorithm uses the second alternative. For each implementation, we have set
€ = 2.2204460492503131 x 10~ ' for our algorithm.

Therefore, the routine is coded with ten loops (Algorithm 5). Figure 5.1a shows
the computation decomposition diagram.

5.1.2 Multicore Implementation on CPU

As the codification of our routine presents a structure of nested fors and the calcu-
lation in the innermost loop is independent, we can accelerate the algorithm using
threads on a multicore machine. To accomplish this, we have used the OpenMP tech-
nology [72]. OpenMP offers many compiler directives in the standard, but our algo-
rithm needs #pragma omp parallel for to launch the threads on different cores trans-
parently and keep the scalability when new hardware is available. Apart from this,
we need to declare some private variables to assure that the summation process is
thread-safe private(wryt,wLtot).

The parallel for compiler directive is coded at the outermost loop line 2 (Algo-
rithm 6) because thread context switches in CPU when no necessary reduces perfor-
mance. In this configuration, a thread computes several voxels generating the proper
MRI-CT synthesis output. Machines with simultaneous multithreading (Hyper-
Threading) capabilities can set the number of threads as twice much time as the
number of cores in the CPU and obtain in theory around 30% improvement [167].
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Algorithm 6 Patch-based MRI-CT synthesis approach CPU/C++ OpenMP
1: procedure PATCHBASED(I,A,S,0,8,N\)

2: #pragma omp parallel for private(wryt,wLyt)
3 forall xin I do
4 wrt =0
5: CULTot =0
6: foralliin A do
7 forall yin N do
8 for all x’ in Pl and v/ in 77%' do
5 wilxy) = wilxy) + (I(X) = Ti(y))?
10: end for
11: wi(x,y) = wi(x,y)/2SB5>
12: WTot = WTot + wi(x, y) .
13: WLyt = WLy + wi(x,y) -L! (y)
14: end for
15: end for
16: if wLt; < € and wyy; < € then
17: I, = NaN
18: else
19: I using (Eq. 3.69)
20: end if
21: end for

22: end procedure

(@) (b)

Figure 5.1: Computation decomposition: (a) On CPU the black cube represents the
entire input volume, the orange cube represents the neighbourhood N (KxKxK)
and the blue cube is the considered image patch I(Px) (PxPxP). (b) On GPU a new
element (block of threads in red) has been added to the decomposition.
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5.1.3 GPU Implementation

The first implementation in the GPU computing with NVIDIA CUDA model elim-
inates the first block of loops see line 2 (Algorithm 5). The kernel launches a 3D
grid, which will be executed as many threads in parallel as the hardware allows (ac-
cording to the resources each thread needs). Notice that voxels x are threads in the
CUDA grid. Our CUDA kernel contains the calculation needed for performing a
voxel from MRI-CT synthesis output. Therefore, threads calculate each voxel output
independently. Algorithm 7 shows the pseudocode of a preliminary implementation
only using device global memory (called CUDA-GPU-GM standing Global Memory).
Figure 5.1b shows the computation decomposition diagram.

Algorithm 7 Patch-based MRI-CT synthesis kernel (CUDA-GPU-GM)
1: procedure PATCHBASEDKERNEL(I,A,S,6,8,N)

2: wror =0
3 CULTot =0
4 foralliin A do
5 forall yin N (x) do
6: for all y in N do
7 for all x" in P} and y' in P} do
8 wi(x,y) = wi(x,y) + (I(x') = Z'(y"))?
9: end for
10: wi(x,y) = wi(x,y)/2SB6>
11: Wrot = Wt + wi(X,y) ‘
12: wLtpt = WLyt + wi(x, y) . Ll(y)
13: end for
14: end for
15: end for
16: if wLt, < € and wry; < € then
17 I, = NaN
18: else
19: I, using (Eq. 3.69)
20: end if

21: end procedure

This first implementation accesses global memory frequently to perform the cal-
culations. Furthermore, the cache system on the GPU does not deal well with this
memory access pattern in 3D (it is not coalesced in the CUDA terminology). We can
draw that there are two types of accesses in our algorithm for performing a voxel
calculation:

1. Input image patch: For a specific voxel during the synthesis process, we need
to load A x K3 x P? memory addresses from the input volume for the simi-
larity patch calculation. These values are used repeatedly in the same thread
to calculate each atlas-patch similarity. We can assume that inside the kernel
these accesses are fixed.

2. Atlas patches: we also need to load A x K3 x P3 memory addresses from the
atlas volume to calculate the similarity and weight for each voxel against each
atlas. However, other threads in the grid load similar memory addresses with
a slight offset.
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Algorithm 8 Patch-based MRI-CT synthesis kernel (CUDA-GPU-GM2)
1: procedure PATCHBASEDKERNEL(I,A,S,6,8,N)

2: wror =0

3: WLy =0

4: local Array <+ globalMemory(P})

5: foralliin A do

6: for all y in Ny do

7: for all x" in Py and y' in P} do
5 wilx,y) = wil(xy) + (localarray(x') — T'(y") ?
9: end for
10: wi(x,y) = wi(x,y)/25Bo>

11: Wrot = Wrot + wi(X,y) ,
12: wLpyt = wLtot + wi(x,y) - L'(y)
13: end for
14: end for

15: if wLty < € and wry < € then

16: I, = NaN

17: else

18: I using (Eq. 3.69)

19: end if

20: end procedure

According to these accesses, we can do two incremental optimizations to the first
implementation. To reduce the stalls producing by reading the patch input image
during the label calculation, we can load this patch in a local array of each thread at
the beginning because the patch is relatively small P = 3 (3x3x3) and its indexes
are fixed in a voxel output. NVIDIA CUDA compiler (nvcc) is responsible for load-
ing this data directly onto registers. Registers are the fastest memory accesses in the
graphics card because they are close to the processor. With this optimization, we let
the compiler treat the patch information like registers, which have the fastest access
(Algorithm 8).

It is also important to emphasize that there are some limitations in the use of
registers and they are governed by the number of threads per block. Therefore, the
more threads we configure in the block, the fewer registers we can use in the kernel.
This optimization version is called (CUDA-GPU-GM2).

The second optimization is based on shared memory (Figure 5.2a). We do not
have enough registers to load the whole Ny as we did previously for the patch. Fur-
thermore, the elements in Ny are used by other threads (Nx N ./\/y #Qif [x —y|2 <
Radiusr) and it could be beneficial to have fast access for both. Therefore, we should
store as many elements in the shared memory to calculate a synthesis output for each
thread block. It means that we must assure that each thread within a block can cal-
culate a new voxel Iy (Eq. 3.69) having fast access to needed elements.

It is impossible to load all the elements at once because the amount of memory
is considerably large and we must do this for each atlas in the dictionary lines 6-7
(Algorithm 9). Therefore, we need to partition the data into subsets (tiles) such that
each one fits into the shared memory to compute a single voxel in a number of steps
(Algorithm 9).
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Figure 5.2: (a) Computation decomposition for CUDA-GPU-SM: (a) the black cube
represents the entire input volume, the green cube represents the CUDA shared
memory which a thread block needs (in red). Finally, the orange cube represents the
neighbourhood N and the blue cube represents the considered image patch I(Px)
(PxPxP voxels) from input image I. (b) Projection of (a) onto the Y plane.

Each thread has the task to load a part of the needed memory collaboratively.
Therefore, the computation cannot start unless all the threads have loaded their part
line 6 what we accomplish with a synchronization barrier in line 7 (Algorithm 9). In
the same sense, the calculation for the next atlas cannot start if the previous one has
not finished yet (synchronization in line 16). Global memory accesses are replaced by
shared memory improving the overall performance of the algorithm substantially.
The size of shared memory depends on the block grid, radius of the neighbourhood,
and radius of the window patch.

SharedMemory = (Blockp;,, + 2 x Radiusy +2 x Radiuspg,)?

Figure 5.2b illustrates the elements involved in the last optimization. Each cell
represents a thread in the grid, the green part represents the whole shared memory,
the red cells are the block of threads, the orange part is the neighbourhood, and the
blue part is the patch.

5.2 Results

5.2.1 Platforms

First, we shall describe the platforms used as well as the way to refer to them along
this section. The naming conventions used in the experimental results are as follows:

¢ The name convention consists of three names with a dash separator between
each name, for instance, CUDA-K40C-SM.

¢ The first name refers to the type of platform: CPU stands for the implementa-
tion on CPU and CUDA stands for the implementation of the algorithm with
NVIDIA toolkit on GPU.

¢ The second name refers to the physical device where experiments are con-
ducted:
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Algorithm 9 Patch-based MRI-CT synthesis kernel (CUDA-GPU-SM)
1: procedure PATCHBASEDKERNEL(I,A,S,6,8,N)

2: wror =0
3: WLy =0
4: local Array < globalMemory(P(x))
5: foralliin A do
6: sh; + load data onto shared memory from I'(Ny)
7: sync
8: for all y in Ny do
9: for all x" in Py and y' in P} do
10: wi(x,y) = wi(x,y) + (local Array(x') — sh;(y’))?
11: end for
12: wi(x,y) = wi(x,y)/25B0o>
13: Wt = Wt + wi(X,y) using (Eq. 3.68)
14: wLtot = WLyt + wi(x, y) . Ll(y)
15: end for
16: sync
17: end for
18: if wLyy < € and wry: < € then
19: I, = NaN
20: else
21: I using (Eq. 3.69)
22: end if

23: end procedure

— Xeon v3: Intel Xeon E5-1650v3, 3.5 GHz hexa-core processor, from the
2014 Intel Haswell architecture (Haswell-EP), 1.5MB L2 cache, and 15MB
L3 cache with 64GB DDR3 RAM [128]. The CPU uses a Microsoft Win-
dows Server 2012R2 as the operating system.

— Xeon v4: Intel Xeon E5 2698v4 2.2 GHz 20 cores [129]. The CPU uses a
Ubuntu 18.04.4 LTS (Bionic Beaver) https://releases.ubuntu.com/18.
04/ Desktop Linux as operating system.

— K40C: The Tesla K40c professional platform (with the NVIDIA Kepler
GK110 architecture supporting CUDA compute capability 3.5) with 12GB
RAM GDDR5, with 15 streaming multiprocessors of 192 CUDA cores
each giving a total of 2880 CUDA cores. 5.046 TFlops [201].

- DGX: DGX station (with the NVIDIA Volta 4 Tesla V100 architecture sup-
porting CUDA compute capability 7.0) 480 TFlops (GPU FP16), GPU Mem-
ory 64 GB total NVIDIA Tensor Cores 2560 NVIDIA CUDA® Cores 20480
hosted on Xeon v4 [199].

¢ The final name is the software implementation choice: No threads (1C), with
threads using OpenMP (6C) and the number of threads is 12, global memory
in CUDA (GM), global memory local array in CUDA (GM2), and CUDA using
shared memory (SM).

We have implemented the code with Visual Studio 2015 Community using the Intel
Compiler C++ 16.0, OpenMP 2.0, and CUDA 6.5.


https://releases.ubuntu.com/18.04/
https://releases.ubuntu.com/18.04/

104 Chapter 5. MRI-CT Synthesis

(@) (b) (© (d) (e)

Figure 5.3: Ground truth CT and pseudo-CT volumes synthesized using atlas of
different sizes and a neighbourhood of size 11 x 11 x 11. (a) CT Ground Truth (b) 18
Atlas pseudo-CT (c) 13 Atlas pseudo-CT (d) 8 Atlas pseudo-CT (e) 3 Atlas pseudo-
CT.

5.2.2 Dataset
MRI-CT Dataset

The MRI-CT dataset contains 19 MRI-CT volume pairs from healthy volunteers.
A General Electric Signa HDxt 3.0T MR scanner using the body coil for excitation
and an 8-channel quadrature brain coil for reception was used to acquire the head
MRI volumes. Subjects were positioned supine. Imaging was performed using
an isotropic 3DT1w SPGR sequence with a TR=10.024ms, TE=4.56ms, TI=600m:s,
NEX=1, acquisition matrix=288 x 288, resolution=1 x 1 x 1 mm, flip angle=12°.

CT images were acquired on a Siemens Somatom Sensation 16 CT scanner (Siemens,
Erlangen) with matrix=512 x 512, resolution=0.48 x 0.48mm, slice thickness=0.75mm,
PITCH=0.7mm, acquisition angle=0°, voltage=120kV, radiation intensity=200mA.

MRI T2-T1 Dataset

The MRI T2-T1 dataset contains 8 MRI T2 and T1 volume pairs from healthy volun-
teers. MRI images of the head were acquired on a General Electric Signa HDxt 3.0T
MR scanner using the body coil for excitation and an 8-channel quadrature brain
coil for reception. Subjects were positioned supine. Imaging was performed using
an isotropic 3DT1w SPGR sequence with a TR = 10.944 ms, TE = 4.776 ms, TI = 600
ms, NEX = 1, acquisition matrix = 288 x 288, resolution= 1 x 1 x 1 mm, flip angle
=12°, and 3DT2w CUBE sequence with a TR =3000 ms, TE = 90.341 ms, TI = Om:s,
NEX =1, acquisition matrix = 256 x 256, resolution=1 x 1 x 1 mm, flip angle = 90°.

Image Pre-processing

After acquiring the images, there is a pre-processing step using 3D Slicer built-in
modules. This pre-processing is composed of MRI bias correction (N4 ITK MRI bias
correction), rigid registration (general registration BRAINS) to align all the images,
and normalization of the gray-scale values (ITK-based histogram matching).

5.2.3 Qualitative Results

Synthesis experiments were performed with the MRI-CT database, using different
neighbourhood sizes and a different number of volumes in the atlas, to evaluate the



5.2. Results 105

(@) (b) (© (d)

Figure 5.4: Ground truth CT and pseudo-CT volumes synthesized using different
neighbourhood sizes with an atlas of 10 volumes: (a) Ground truth CT (b) 11 x 11 x
11 pseudo-CT (c) (b) 9 x 9 x 9 pseudo-CT (c) 7 x 7 x 7 pseudo-CT.

(d

Figure 5.5: T1 MRI image generation (pseudo-T1) from T2 MRI images using dif-
ferent neighbourhood sizes. (a) Ground Truth T1 (b) 11 x 11 x 11 pseudo-T1 (c)
9 x 9 x 9 pseudo-T1 (d) 7 x 7 x 7 pseudo-T1.

visual quality of the results. First, we show the accuracy of the algorithm to gen-
erate the synthesis image. A second goal is to prove that the method can produce
good results with the reduced size of the atlas and neighbourhood. In this sense, we
have set three neighbourhoods where the likelihood of finding similarities decreases
(11 x 11 x11,9 x9 x 9,7 x7 x 7). Furthermore, we have prepared a wide range
of atlas sizes (1-18) to be able to determine when the improvement does not increase
any further. For all our experiments, we have fixed P = 3, = 1 and ¢ = 1. The
volumes presented in these experiments are always 222x222x 112 voxels.

Figure 5.3 shows the ground truth and the resulting estimations for several at-
las sizes, using a neighbourhood of size 11 x 11 x 11. Figure 5.4 shows the ground
truth and the resulting estimations with different sizes of the neighbourhood, using
an atlas of 10 volumes. The comparison between the patient-specific CT and the
pseudo-CT shows how our method can approximate the ground truth, delimiting
the skull contours and differentiating air from the bone.

Figure 5.5 shows the results of applying the pipeline to obtain T1 MRI images
from T2 acquisitions. In this case, the volumes are also very well defined. Enlarging
the neighborhood allows us to capture some more detail in the image, but for our
applications, all the reconstructions seem good enough.
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Table 5.1: NCC results for different neighbourhoods and atlases as a quantitative

measure of the registration.

Neighbourhood Size
# atlases 7X7x7 9%x9x9 11x11x11
1 0.8918 £ 0.0242 0.9020 £ 0.0209  0.9055 4 0.0194
2 0.9070 £ 0.0116  0.9144 + 0.0088 0.9174 4+ 0.0076
3 0.9169 £ 0.0087 0.9219 £ 0.0077 0.9236 + 0.0075
4 0.9196 £ 0.0087 0.9236 4+ 0.0078 0.9252 + 0.0077
5 0.9235 £ 0.0072  0.9269 + 0.0067 0.9281 + 0.0066
6 0.9254 £ 0.0060 0.9287 £ 0.0056 0.9302 4 0.0056
7 0.9257 £ 0.0052 0.9284 + 0.0050 0.9294 + 0.0051
8 0.9279 £ 0.0050 0.9304 + 0.0048 0.9313 + 0.0047
9 0.9281 £ 0.0053 0.9305 £+ 0.0053 0.9313 4 0.0052
10 0.9292 £ 0.0049 0.9314 £+ 0.0047 0.9324 4+ 0.0048
11 0.9301 £ 0.0048 0.9322 £+ 0.0046 0.9331 £ 0.0048
12 0.9302 £ 0.0049 0.9322 £+ 0.0050 0.9329 4 0.0052
13 0.9306 £ 0.0044 0.9326 £+ 0.0046 0.9332 £ 0.0048
14 0.9317 £0.0048 0.9334 £+ 0.0048 0.9340 £ 0.0048
15 0.9317 £ 0.0049 0.9334 + 0.0049 0.9341 + 0.0051
16 0.9321 £ 0.0052 0.9338 £ 0.0051 0.9343 + 0.0051
17 0.9325 £ 0.0046 0.9341 £ 0.0047 0.9346 + 0.0047
18 0.9327 £ 0.0047 0.9344 + 0.0048 0.9349 + 0.0049

5.2.4 Quantitative Results

To obtain a quantitative measure of the quality of the synthesized volumes, we use
the normalized cross-correlation (NCC) as a metric of similarity. The normalized
cross-correlation between image I; and I, reads:

NeL (1(x) = 1) (L2 (x) — p2)

5.1
N 0109 ®-1)

xe()

Using the MRI-CT database, we tested the effect of the size of the atlas on the
quality of the image reconstruction. Figure 5.6 illustrates the result of the mean cor-
relation of the reconstructed images of the complete database, for three sizes of the
neighbourhood. As can be seen, the mean NCC plateaus when more than 5 volumes
are present in the atlas. It is worth noting that correlation measures are very high,
even in the worst-case scenario (1 volume in the atlas, neighbourhood of 7 x 7 x 7).

Table 5.1 shows the detailed results of a leave-one-out experiment. Taking every
image pair in the atlas in turn, we synthesized the CT using an increasing number of
the remaining volumes as an atlas. The table shows the mean NCC and its standard
deviation of the resulting image for every neighbourhood size and some atlas size.
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Table 5.2: Computational time (in seconds) using different neighbourhood size
(N) and number of atlases (#) for the tested platforms: CPU-XeonV3-1C, CPU-
XeonV3-6C, CUDA-K40C-GM, CUDA-K40C-GM2, and CUDA-K40C-SM (Section
5.2.1). Speedups against the single core solution in parentheses. For CUDA-K40C-
SM times are the average of 100 executions. For an input image with 222x222x 112

voxels.

CPU CUDA

N # XeonV3-1C XeonV3-6C  K40C-GM K40C-GM2  K40C-SM
1 1 593.6  123.0 (x4.8) 184(x322) 11.1(x53.5) 7.8 (x76.5)
x 4 2385.1  494.1 (x4.8) 73.5(x325) 442 (x54.0) 309 (x77.2)
11 6 33341  660.3 (x5.0) 1103 (x302) 66.2(x50.4) 46.4 (x71.9)
x 10 5544.0 1080.9 (x5.1) 183.7(x30.2) 110.5(x50.2)  77.4 (x71.6)
11 14 7832.9 1538.1 (x5.1) 257.3(x30.4) 154.8 (x50.6) 108.5 (x72.2)

18 10406.1 2350.7 (x4.4) 330.8 (x31.5) 199.0 (x52.3) 139.6 (x74.6)
9 3236  60.5(x54) 107 (x30.1) 658 (x49.9) 3.28 (x98.6)
x 13055 2422 (x5.4) 42.7(x30.6) 25.7(x50.8) 17.3 (x75.5)
9 19718  363.0 (x5.4) 63.9(x30.9) 38.6(x51.1) 26.0(x76.0)
x 10 3299.1  610.7 (x5.4) 106.6(x30.9) 64.3(x51.3) 433 (x76.3)
9 14 4645.6  849.8 (x5.4) 149.3 (x31.1) 90.10 (x51.5)  60.5 (x76.6)

18 5974.3 1113.8 (x5.3) 191.8 (x31.1) 1159 (x51.5) 77.91 (x76.6)
7 158.1  29.6(x5.4) 520 (x304) 3.16 (x50.0) 2.12 (x74.5)
x 636.1 1172 (x54) 205(x31.0) 12.4(x51.3) 8.23(x77.3)
7 955.1 176.7 (x54) 30.8 (x31.0) 18.6(x514) 12.3(x77.6)
x 10 16124 3422 (x47) 513(x3L5) 309 (x52.1) 20.5(x78.7)
7 14 22787 4752 (x47) 71.7(x317) 432(x52.6) 28.6(x79.4)

18 29335 5329 (x55) 923 (x3l7) 55.6(x527) 368 (x79.5)

5.2.5 Computational Time

Figure 5.7a shows timing results (in seconds in log scale) for different number of at-
lases and problem configurations (neighbourhoods of 11 x 11 x 11,9 x 9 x 9,and 7 x
7 x 7 voxels) using different platforms. The XeonV3-1C shows the single-threaded
CPU version performance and the XeonV3-6C is a 12-threaded CPU version, the
K40C-GM is the basic GPU version using only CUDA global memory with a grid
configuration of 8 x 8 x 10, the K40C-GM2 is the global memory GPU version, but
using registers for accessing the image patch. This version keeps the same grid con-
figuration as before. Finally, K40C-SM is the shared memory GPU version with a
grid configuration of 10 x 10 x 10. Figure 5.7b shows the speedup among versions
against the base XeonV3-1C.

Table 5.2 displays the computational time in seconds for all configurations. We
can draw that the multithreaded solution XeonV3-6C achieves a speedup of x5 over
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Figure 5.6: Mean normalized cross-correlation measures of synthesized images com-

pared with the ground truth for the MRI-CT database, for a different number of
volumes in the anatomy atlas and different sizes of the neighbourhood.

the single core configuration. This improvement is more notable with the first im-
plementation on GPU K40C-GM reaching ~ x30 when compared with the imple-
mentation with a single core. The first optimization K40C-GM2 on GPU improves
x1.67 in comparison with the initial implementation on GPU and accumulated a
speedup of x50. The solution using shared memory K40C-SM has gained almost
another x1.42 relative to the previous version and with a x74.6 for the most inten-
sive computation 18 atlases and 11 x 11 x 11 neighbourhood.

A real-time solution for this synthesis problem can be achieved by relaxing the
problem configuration. In this sense, a neighbourhood size of 7x7x7 and 4 atlases,
we obtain 10.6 minutes using a single core solution (XeonV3-1C) and almost 2 min-
utes in the multi-threaded version (XeonV3-6C) to 8.23 seconds using the shared
memory version of the CUDA solution (K40C-SM). It is important to highlight that
in certain applications with this configuration, we generate images that meet the
quality expectations of practitioners.

5.2.6 Computational Time Update

The times presented in the section above are from the paper [9]. Furthermore, we
have compiled the code for Intel C++ 19.0 on the platform XeonV3 (previously In-
tel C++ 16.0) and with CUDA 9.0 for GPU. We have also included the results of the
GPU V100 (DGX with XeonV4) with CUDA 9.0 (previously CUDA 6.5) (Figure 5.7¢).
Table 5.3 compares the results from the new platform for GPU with the previous
platform updated with compiler and software.

The new platform, DGX, has a CPU (XeonV4) with a slower clock cycle (2.2 GHz)
than the previous platform XeonV3 (3.5 GHz), see Section 5.2.1. In this sense, a single
core solution (sequential) runs faster on XeonV3 than XeonV4 platform. Therefore,
we present the new results with the new compiler on XeonV3 as the best results for
the sequential configuration. When comparing both tables 5.2 and 5.3, we can ob-
serve that the single core solution (XeonV3-1C) has been improved by x1.60. Mul-
ticore solution on the platform XeonV3 performs better than on XeonV4 because
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Table 5.3: Computational time update (in seconds) using different neighbourhood
size (N) and number of atlases (#) for the tested platforms: CPU-XeonV3-1C, CPU-
XeonV3-6C, CUDA-K40C-SM, CUDA-DGX-SM (Section 5.2.1). Speedups against
the single core solution in parentheses. For CUDA-K40C-SM and CUDA-DGX-SM
times are the average of 100 executions. For an input image with 222x222x112
voxels.

CPU CUDA

N # XeonV3-1C XeonV3-6C K40C-SM DGX-SM
1 1 349.4 98.2 (x3.55) 6.38 (x54.8)  1.08 (x323.4)
X 4 1424.7  466.6 (x3.05) 25.29 (x56.3) 4.12 (x345.9)
11 6 21446 701.0 (x3.06) 37.96 (x56.5)  6.15(x348.6)
x 10 3570.5 973.6 (x3.67) 63.34 (x56.4) 10.30 (x346.6)
11 14 5021.8 1626.5(x3.09) 88.75(x56.6) 14.35 (x350.0)

18 6467.7 1762.0 (x3.67) 114.18 (x56.7) 18.43 (x351.0)
9 198.5 64.6 (x3.07) 3.59 (x55.3) 0.33(x197.3)
X 804.7 2179 (x3.69) 14.10(x57.1) 1.17(x186.8)
9 1223.3  398.1(x3.07) 21.13(x57.9) 1.72(x231.3)
x 10 20454  538.7 (x3.80) 35.27 (x58.0) 2.86(x188.6)
9 14 2868.4  764.2(x3.75) 49.39 (x58.1) 3.97 (x192.6)

18 3703.8 1214.3 (x3.05) 63.52(x58.3) 5.09 (x238.8)
7 97.8 27.5 (x3.55) 1.77 (x55.3)  0.19 (x143.7)
X 389.1 107.6 (x3.62) 6.78 (x57.4)  0.60 (x178.7)
7 589.6  161.8 (x3.64) 10.13(x58.2) 0.88 (x184.2)
x 10 1001.3  265.3 (x3.77) 16.83(x59.5) 1.43 (x185.6)
7 14 14164  367.8 (x3.85) 23.54(x60.2) 1.97 (x186.9)

18 1820.3  582.8 (x3.12)  30.25(x60.2) 2.52 (x231.3)

in addition to the clock cycle, the memory access in the method does not produce
faster code when using more cores with OpenMP. The scalability of the method is
confirmed because the DGX-SM solution performs the best among the solutions
(Figure 5.7d) and it has gained x6 against the best previous GPU solution (K40C-
SM) and with a peak of x351.0 when compared with the single core solution of the
previous platform with compiler and software update in the worst scenario, 18 at-
lases and a neighbourhood 11 x 11 x 11.

Indeed, if we review the hardware capability in CUDA for execution (Section
3.1.5), we can see that the CWD assigns blocks of threads on the vacated SM in
the graphic card (Figure 3.5). Volta architecture has more SMs available [199] than
Kepler [201], which, in turn, improves the performance substantially. In addition to
that, there are other features in this architecture that speed up the overall algorithm
(better cache system, divergence, thread warp execution model, etc.) (see for further
details [204]).
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Figure 5.7: (a) Results of all configurations from [9] (b) speedup of all configura-
tions from [9] (c) Update results with the new platform DGX and XeonV3 with new
compiler and software (d) speedup comparison of the best update results and DGX.
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5.3 Discussion

Firstly, the attenuation correction, what PET/MR multimodality needs, can be ob-
tained with accuracy from the synthetic CT (see [271] for a quantitative evaluation
of our method in the correction for PET images). Secondly, there is a minimization
of patient ionization because our proposal eliminates the patient-specific CT acqui-
sition while keeping a good CT estimation in comparison with the ground truth.
Thirdly, the factor of reducing acquisition time as well as cost in equipment when
using PET/MR is an important advantage because the synthesis images contain de-
tailed information of the soft tissues.

The synthesis problem treated here is computationally intensive with a lot of data
to process which suits perfectly for multicore and manycore programming paradigm
(SIMD). Our implementation has achieved a remarkable speedup in comparison
with a single core solution gaining x74.6 (K40C-SM) in the worst configuration
published in [9]. Furthermore, we have revisited the algorithm with new hardware,
updated software, and compiler, and another important speedup has been reached
(Table 5.3) confirming the scalability of the method in new architectures.

A study has been conducted to find a compromise between accuracy and "real-
time" in Medical Imaging. After our experiments, we can draw that a configuration
with a neighbourhood of 9 x 9 x 9 and 10 atlases is a good compromise to obtain
good quality in the image (NCC = 0.93) (Eq. 5.1) and a computational burden of
fewer than three seconds (DGX-SM), which is far lower than typical image recon-
struction times in clinical MRI scanners. The neighbourhood determines the likeli-
hood to find similarities at a specific voxel surrounding. In the anatomic variability
of the structures that we study, it does not matter how we enlarge the neighbour-
hood after a specific limit (11 x 11 x 11), the image no longer improves because the
matches are far away from where we search. The size of the atlas allows generalizing
the variability of our samples. However, the inclusion of new atlases does not pro-
duce improvements because this information is already contained. Therefore, the
generalization is completed at that point.

It is noteworthy that the results described here are for complete volumes. In
specified applications, it may be necessary to compute only several slices, allowing
to reduce even further the overall time.

Overall, the results are quite promising because the GPU implementation is ca-
pable of returning outputs in order of seconds with high image quality (NCC = 0.93).
The results presented in [271] demonstrated that attenuation correction in PET im-
ages using patient-specific CT volume or our pseudo-CT volume produces similar
quantitative results. In addition to this result, the short computational time via GPU
is desirable property when PET/MR systems as a potential protocol for attenuation
correction are considered. Finally, we have also demonstrated that the method can
synthesise other modalities like T1 MRI images from T2 acquisitions.
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Chapter 6

Conclusions and Future Work

In this chapter, we present the main contributions of this Thesis and provide the
answers to the initial hypotheses stated in (Section 1.2). Furthermore, we indicate
possible future work directions based on the research presented in this Thesis. Fi-
nally, we summarize the list of publications, in journals and conferences, as well as
talks produced from this research.

6.1 Principal Contributions and Conclusions

6.1.1 Principal Contributions

The contributions of this Thesis can be classified into 1) modelling and numerical
resolution, 2) computational optimization. We have used classical techniques that
have been proved to be powerful tools: variational and PDE methods, and patch-
based methods. Furthermore, our methods are based on a non-local framework.
Non-local approaches also typically introduce a highly intensive computation de-
mand. To tackle this, we have proposed efficient computation solutions on CPU or
GPU. Our source code is freely available on Github! so that the investigations pre-
sented in this Thesis can be used for further research.

Chapter 3 describes the methods proposed for both problems: saliency detection
and MRI-CT synthesis. For the saliency detection problem, we have derived two
novel formulations using Total Variation regularization in a non-local framework
on graphs. The first one follows a pure Bayesian approach and the second one is
based on modelling specific PDE dynamics. These dynamics are characterized by
absorption-reaction flows, which allow separating salient and no salient regions as
in a classification problem. An automatic binarization output is possible with this
new formulation. Both formulations are convex but non-smooth. This can be dealt
with a smooth primal-dual formulation which is efficiently solved with a primal-
dual algorithm converging to a min-max, saddle point solution.

On the other hand, the patch-method is also discussed to synthesise CT images
from MRI data as a natural way to correct PET images in PET/MR modality. We
also describe the scalability of this method when computing in parallel architectures
like GPUs. Therefore, we expect better improvements with better hardware or soft-
ware. Furthermore, our proposal achieves an accurate estimation of a pseudo-CT
with similar accuracy in comparison with the patient-specific CT and avoids the ne-
cessity of a registration step. Finally, the combination of short computation time and

IThe saliency detection code https://github.com/EduardoAlcainBallesteros/
VariationalSaliencyDetection and Code for the pseudo-CT problem https://github.com/
EduardoAlcainBallesteros/PseudoCTImaging


https://github.com/EduardoAlcainBallesteros/VariationalSaliencyDetection
https://github.com/EduardoAlcainBallesteros/VariationalSaliencyDetection
https://github.com/EduardoAlcainBallesteros/PseudoCTImaging
https://github.com/EduardoAlcainBallesteros/PseudoCTImaging
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Figure 6.1: The user-friendly interface in Matlab for testing several variational
saliency approaches. Some of the functionality provided is to load different datasets,
display metrics, results, ground truth, etc.

an accurate estimation of the new modality makes the approach of much interest to
clinical protocols.

Chapter 4 presents the implementation and results of the saliency problem. To
reduce computation complexity, we have decreased the size of the problem with su-
perpixels. Our solution is in the superpixel domain (graph). The resulting numerical
algorithms have been implemented on CPU and GPU platforms. The computation
of the non-local gradient performs efficiently after organising the data using CSR
format for a sparse matrix-vector. We have also extended this concept for the com-
putation of the non-local divergence to find the transposed elements in the compact
matrix W >k with a x2 speedup for this operation. The selection of the k-NN el-
ements in the W matrix is an operation that fits well on CPU implementation. On
the contrary, for the GPU platform, the same idea takes far more time than for the
CPU platform. We have formulated this operation so that it can fit better in the
GPU paradigm. The saliency term proposed has improved the results considerably
according to the metrics (Precision, Recall, F-Measure, and MAE). It forces almost bi-
nary solutions in the features space while maintaining an equivalent computational
complexity to our previous approach [10]. The algorithms are capable of real-time
performance for both platforms.

We have also designed a user-friendly interface in Matlab for prototyping pur-
poses (Figure 6.1). Images can be loaded from several datasets with ease. Differ-
ent algorithms are rapidly compared through the quick evaluation of their metrics
(MAE, Precision, Recall, F-Measure, and Dice coefficient). The parameters, which
control the algorithms, can be modified in the user interface and the intermediate
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steps from the algorithms are displayed (superpixels extraction, control map, con-
vergence, and the saliency map).

Chapter 5 presents the implementation and the results for the pseudo-CT from
MR T1-weighted images problem. Our proposal has achieved good accuracy us-
ing the metric normalized cross-correlation (NCC = 0.935) when compared with the
patient-specific CT. Computational intense and time consuming is one of the major
drawbacks in algorithms using patch-based methods [56]. We have implemented
the solution on CPU single core and multicore. Since each voxel computation is
independent and very intensive in our patch-based method, OpenMP as a parallel
programming language is a natural way to improve the algorithm on the CPU plat-
form. To the best of our knowledge, we have implemented the first pure GPU solu-
tion for pseudo-CT synthesis. We have developed three configurations on the GPU.
The shared memory configuration (CUDA-K40C-SM) has achieved ~ x74 speedup
against the single core configuration. In the last part of this Thesis, we have run
experiments on a much better platform (NVIDIA DGX Station with NVIDIA V100
GPUs). The speedup reached is ~ x6 against the best configuration confirming the
scalability of the method and the use of parallel architectures for it.

After the main contributions have been presented, we shall now address the hy-
potheses formulated in this manuscript (Section 1.2).

Hypothesis One: Variational methods can be successfully applied to the automatic
saliency detection problem for natural images. This is based on the fact that variational
methods have shown to be powerful modelling tools for many low-level image processing
tasks providing, state-of-the-art results among classical, unsupervised methods. Based on
the works of [179, 281] we then assume that, if conveniently modified, classical variational
models can also address the saliency detection problem. Since the variational methods rely on
unsupervised clues (contrary to the recent deep learning approaches based on data process-
ing and training), in this work, we wish to explore the possibility to provide unsupervised,
automatic segmentation (classification) state-of-the-art results.

Our proposed models have achieved good results (Section 4.2) in comparison
with other variational methods. The new saliency term introduced in our formula-
tion has brought either qualitative or quantitative improvements while keeping the
same computation complexity. The dynamics of the model promote binarization in
the saliency maps. This simplifies the recovering of the salient regions (Figure 3.16c¢).
In this sense, we can answer affirmatively to our hypothesis because we have intro-
duced a key term in the variational formulation so that the salient discrimination
has more control and removes the background.

However, deep learning approaches are the state-of-the-art methods for saliency
detection in the datasets we considered. Saliency is a difficult concept to describe
because it is highly dependent on the human interpretation of each scene. Deep
learning in saliency approaches usually uses pre-trained networks for object classi-
fications, localization, etc. via transfer learning. In this way, these approaches can
aggregate semantic information so that the algorithms can discriminate whole ob-
jects in the images and mark them as salient (Figure 6.2c). We have proposed a
model based on priors without a learning process (unsupervised) and this semantic
interaction is complicated to capture (Figure 6.2d). New variational formulations



116 Chapter 6. Conclusions and Future Work

(@) (b) (©) (d)

Figure 6.2: (a) Image from the public dataset MSRA10K [58] (b) Ground truth (c)
saliency map by a deep learning approach from [290] (d) our approach. Notice that
machine learning approach can take the hat in the saliency map output whereas our
output eliminates it.

should include this semantic information via machine learning approaches.

Hypothesis Two: Iterative methods such as the numerical schemes used to solve the
proposed variational models introduce some challenges when optimizing them computation-
ally. The combination of parallel techniques either on GPU or CPU and a numerical scheme
that converges rapidly to the solution can be capable of real-time processing video.

The iterative nature of the algorithm implies some difficulties in using parallel
architectures. Although the operations of the algorithm are independent, it exhibits
data dependencies among them in the primal-dual algorithm. Each operation in the
solver, e.g., non-local gradient, divergence, and update does not have much data to
compensate for the iterative nature. Apart from this, inside the method, many oper-
ations require reduction techniques (max, min, sum, etc.). Reduction operations do
not perform well when not much data is available and this is particularly critical for
GPU.

However, we have achieved a very optimized version (33 fps) on the CPU plat-
form. In our solution for GPU, we have merged steps of the algorithm in the same
kernels to reduce the time for kernel calls and implemented several reductions inside
kernels. Our best GPU configuration has reached 62 fps, but we expect much better
computational performance increasing the number of superpixels, which leads to
the use of multi-resolution. Table 4.1 suggests that precision increases but not the
recall. Combining different superpixel resolutions can be accomplished with GPU
according to the computational times (Table 4.3). Furthermore, the primal-dual al-
gorithm converges in a few iterations while keeping the accuracy (Figure 3.16d).

We can answer affirmatively nevertheless the results are not ideal for GPU where
the reduction of data has been a handicap.

Hypothesis Three: Patch-based methods in multi-atlas have been applied successfully as
a segmentation technique [236]. They can also be applied to generate other image modalities
like CT. In this sense, PET/MR modality can use synthetic CT for the attenuation correc-
tion. This approach can reach accuracy results in comparison to the patient-specific CT when
using an atlas composed of human head images. In this sense, clinical protocols could incor-
porate these methods.

We have proposed an algorithm based on multi-atlas using patches to synthe-
sise a CT image from a set of MRI images. The extraction of attenuation maps can
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be accomplished from this synthetic CT and can correct PET images in the end for
a PET/MR multimodality. Our solution has achieved good results in comparison
with the gold standard for the human brain images that we have.

We can positively answer the hypothesis. We think based on the results in Chap-
ter 5 that the proposal could be applied in clinical scenarios for PET/MR scanners
such as Neurology allowing co-localization of lesions in the head or and neck, Oncol-
ogy identifying tumours in the head, and Paediatrics to reduce radiation exposition
for children in cancer therapy responses to name a few. Nevertheless, more tests
must be conducted so that practitioners accept this solution.

Hypothesis Four: Patch-based methods in multi-atlas consist of independent tasks. Us-
ing computing parallel techniques either on CPU or GPU can improve the performance sub-
stantially. Furthermore, some parameters in the patch-based algorithm can be relaxed to
reduce time without losing accuracy.

To address this hypothesis, we compare the time needed to create an image by a
CT scanner and measure how far our pseudo-CT is either in time and accuracy.

However, it is not that simple because there are other fundamental aspects to
consider. CT uses ionizing radiation, which is harmful to the body. Creating pseudo-
CT eliminates this problem. Furthermore, the time for generating the real CT volume
must consider the preparation (patient from one bed to another) and study proce-
dure time. For these reasons, we think that our proposal would be of much interest
if we were sufficiently close in NCC measurement (accuracy) to the real CT and the
time were a bit faster than the whole process to acquire the CT volume.

One of the difficulties of using non-local approaches like ours is the high compu-
tational demand (remember the complexity of the algorithm O(A x N?)). Although
the method has a parallel nature, which has materialized in a speedup of two orders
of magnitude higher against a single core implementation, the reduction of the time
could be derived by two strategies: trying to improve the computation with new op-
timizations or reducing the number of the atlas (A) or neighbourhood (N) or both
for each execution. It could be possible to reduce the overall time. However, we
do not expect anymore a speedup gain like what we have achieved previously with
new optimizations in the algorithm.

On the other hand, in the anatomic variability of the structures that we study, it
does not matter how much we enlarge the neighbourhood () after a specific limit,
the image no longer improves because the matches are far away from where we
search. The size of the atlas (A) allows generalizing the variability of our samples.
However, when the generalization is reached, adding new atlases do not produce
improvements because this information is already contained.

We answer affirmatively to this question based on our experimental results (Chap-
ter 5). A configuration with a neighbourhood of N' = 9 x 9 x 9 and 10 atlases pro-
duces excellent accuracy (NCC = 0.93) in our pseudo-CT images with a time of 43
seconds. In the last part of this Thesis, the algorithm has been revisited with new
hardware (NVIDIA DGX Station with NVIDIA V100 GPUs) then the selected con-
figuration can be further improved using the best configuration in our experiments
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N =11 x 11 x 11 and 18 atlases (NCC = 0.935) spending half of the time (18 sec-
onds). The nature of the proposed method promotes data independence reinforcing
the idea to design algorithms in parallel to make the most out of these multicore and
manycore architectures.

Scanner CT | our pseudo-CT
Time ~ 2-4 min 18 seconds
Accuracy NCC (Eq. 5.1) 1 0.935

6.1.2 Tools for Research

The organization of the information is a fundamental task to access it quickly and
selectively. During the years of a PhD, reading papers, book chapters, technical re-
ports, and Theses is a daily task, as well as many experiments, are carried out for
several purposes. Promptly we realized that the available free tools (such as Zotero
and Mendeley) do not provide the characteristics we needed to organize the relevant
literature. People usually associate details in the document with the precise informa-
tion they read previously in it, but the title of the document is difficult to memorize.
To search for titles seems to be pointless in this case. However, if you could have
a way to visualize the documents while browsing through them, it would be very
helpful.

There may also be a need to run simulations on datasets and collect the results
for proving hypotheses, for generating statistics in articles, etc. Implementing func-
tionality inside the code and combining it in a series of scripts can typically address
the problem. Some of these requirements are: to have a list of programs to execute
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Figure 6.4: (a) Execution configurations for different programs (b) Playlist function-
ality: a batch of executions. In this case, test for patch-based algorithm on single core
and threads.

with different parameters, batch execution, e.g., create a custom list and run it, the
possibility to save this list for further executions, for example, for a congress or to
be able to record and display the parameters used in every experiment in a user-
friendly interface.

To cover the requirements and functionalities we have exposed above, we have
designed two applications for Windows. Figures 6.3 and 6.4 illustrate the layout of
the applications designed. The tools are constantly in development with new func-
tionalities. The DocumentManager (Figure 6.3) has helped us to index more than 800
documents. Its functionality is limited, but the PDF viewer is implemented and pro-
vides a very helpful mechanism to find the papers, books, etc. Furthermore, we can
list the documents included in the Thesis document and can annotate interesting
ideas for each document, code, etc. On the other hand, UniversalExecuter is the ap-
plication to run our implementations and from others for comparison. Figure 6.4b
shows some random executions in a batch. Figure 6.4a shows the layout where we
can see a previous configurable batch with the execution of our saliency algorithm
(playlist). The program, UniversalExecuter, has most of the functionality that we
have described before.

6.1.3 Conclusions

The emphasis of this Thesis has been to bring parallel programming techniques in
modern architectures to relevant problems in Computer Vision. The use of these
techniques allows having real-time applications which are of much interest in Com-
puter Vision nowadays. Parallel programming techniques have also become a fun-
damental building block for many areas outside Computer Vision since there is
always a desire for performance improvement in algorithms and the performance
growth driven by miniaturization has slowed down. Therefore, the alternatives, to
satisfy these demands of many scientific areas, should come from parallel architec-
ture design, parallel software, or parallel algorithms.

In our work, we have proposed a new algorithm and a model to solve relevant
and different problems in Computer Vision using parallel programming techniques.
The link was computation what has provided us with another perspective to design
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algorithms or models for future challenges: scalability.

The two methods produce good results in a short computational time and good
quantitative results. However, their algorithms have different nature. The MRI-CT
synthesis algorithm is naturally parallel, while the saliency detection is an iterative
method. Based on the results of both methods, we have observed in the MRI-CT
synthesis problem that scalability has produced a substantial impact on the perfor-
mance with new hardware. The parallel nature in the algorithms has an advantage
over not parallel ones when the computational time is an essential requirement. This
advantage reinforces the idea to rethink the tools in mathematics, above all, iterative
methods, to match in a better way parallel architectures. Therefore, we encourage
mathematicians to explore/research new methods to make the most out of the paral-
lel paradigm. Works like the presented here, where the collaboration was close, can
help in making visible the advantages when adapting models to parallel architec-
tures. Without a doubt, modeling, computing, or thinking in parallel is the present
and the future.

Computation also evolves to satisfy the demands which arise in the new prob-
lems. Remember that GPU computation was a pure parallel model at the beginning,
but it has integrated ways to express many algorithms that were not possible before.
Implementing or, at least, trying to code solutions for problems that are not that par-
allel at first glance has helped others in thinking differently. For example, it would
be of much interest a mechanism to check converge criteria without transferring
data on GPU for iterative methods like variational formulations. As we can see, it is
a duplex communication model-computation. Furthermore, user-friendly interface
tools, frameworks, etc., also contribute towards easy communication among parts.

Finally, we have developed some tools for research (with limited functionality)
that we think could help others. In this sense, we will publish the tools, Document-
Manager and Universal Executer, for research purposes soon.

6.2 Future work

This work has provided a new model and an algorithm to solve efficiently two com-
puter vision problems. In this sense, we shall propose future work in two directions:
tirstly, how to improve the model and the algorithm described in this Thesis, and
secondly, how to optimize our implementations further.

6.2.1 Saliency Detection in Natural Images

* Model: There are several directions to try to improve the model. First, the con-
trol map used for the variational method should be more sophisticated using
some object proposals or length penalty. With this idea, we aim to create a con-
trol map (fidelity term) more robust which can capture more complex scenes.

Secondly, Section 3.3.5 has presented a formulation that is strictly convex be-
cause we have chosen the parameters to be in that way (a < 0). Nevertheless,
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the modelization with non-convex energies usually produces much better re-
sults [55]. Our idea is to change the parameters to make the formulation non-
convex and use different numerical resolutions such as an inertial proximal al-
gorithm for non-convex optimization (iPiano) [208], proximal point algorithm
[262], or inexact primal-dual algorithm [228].

Thirdly, the energy profile has an L-shaped form (Figure 3.16d) which sug-
gests using multigrid methods to calculate the saliency in a fine to coarse to
fine multi-scale paradigm.

All our experiments have been carried out with a fixed J-parameter, which
was empirically set to 0.2. Figure 6.5 illustrates the effect of varying the ¢-
parameter. If a proper value is selected, then we have a clear binarization of
the image. Based on this observation, we should try to estimate the optimal
values of any image in the dataset. Nowadays, deep learning approaches can
automatically provide the best parameters (see, for example, [226]). In future
work, we propose designing a convolutional neural network (Figure 6.6) to
obtain optimal parameters («, J, and A) for a given input image.

Lastly, the real-time capability of the algorithm leads naturally to two strate-
gies. The first one is to apply a multiresolution scheme with the superpixels.
The second one is to adapt the algorithm to video sequences where the new
formulations should include new pieces like the correlation between frames.

e Optimization: Unlike the synthesis of the CT problem, the saliency exhibits
fewer data and the execution of kernels is fundamental for improving the algo-
rithm on GPU. The primal-dual method consists of two different parts: max-
imization (Eq. 3.61) and minimization (Eq. 3.62). We believe that these two
parts can be merged in only one kernel with synchronization directives and
achieving a substantial speedup.

Secondly, the transposed elements used for the divergence do not exhibit a
good access pattern. We have solved this problem partly, but some research
should conduct to find better data representation to improve performance.

Finally, the subtask to leave the k-NN elements for a superpixel in the weight
matrix W*P**P decreases in performance when k is large. We should derive a
more sophisticated algorithm to perform well even if the k is large.

6.2.2 MRI-CT Synthesis

¢ Algorithm: To measure the similarity among patches in our proposal, we use
an intensity metric following [66], which is computationally less intensive than
the original Gaussian weighted Euclidean distance in [43]. These metrics are
sensitive to the overall intensity. There are some alternatives to improve the
robustness of the patch similarity.

We could consider metrics that measure non-intensity differences, such as nor-
malized mutual information, correlation, or geodesic distance. These metrics
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may produce better matching among patches in exchange for computational
time.

On the other hand, since the method has demonstrated good scalability (Sec-
tion 5.2.6), it will allow us to consider alternative algorithms that can use the
output of a first iteration to feed the process several times and refine the result.
This idea is under investigation to publish a new paper.

The data considered in this Thesis are from the human head. Extending the
proposal to the whole body is desirable, but it is a difficult task. The method
relies on a-priori information coded in the atlas. In the case of the head, we have
demonstrated that a population dictionary with (MRI, CT) pairs can be con-
structed and used for synthesizing the unknown modality. However, anatomy
variability increases when we consider the whole body. There are some prob-
lems to address, such as the size of the subject, pathology, and body mass in-
dex. For these reasons, dictionaries that could encode this variability of the en-
tire population accurately are complicated to obtain. Furthermore, more com-
plex registration procedures are required in other regions of the body (rigid
and non-rigid registrations).

After the knowledge obtained in ill-posed problems from the saliency detec-
tion, it may be interesting to approach the correction problem from the emis-
sion data perspective so that the difficulties regarding the anatomical variabil-
ity may be solved in the whole body [244]. This methodology also exhibits a
large amount of data to be accelerated by multicore and manycore architec-
tures.

* Optimization: The implementation has achieved a remarkable result because
the method is highly parallelizable. However, there is still room for improve-
ments. Firstly, the algorithm performs the calculations in double precision.
When necessary and appropriate, we can execute the calculations in single
precision and achieve a speedup of (~ x2).

Secondly, the problem is bandwidth bound or memory bound, e.g., more mem-
ory accesses in comparison with computations. Now, the algorithm produces
very optimized results. It is time to investigate the way that the elements are
loaded from global memory to achieve the maximum of coalesced memory ac-
cess.

Lastly, when considering new large problems (better voxel resolution), the
multi-GPUs paradigm could allow us to achieve real-time capability. How-
ever, the synchronization among GPUs and how to calculate the load for each
one are tasks for further research.
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Table A.1: Different time results for the matrix multiplication algorithm in three lan-
guages: Python (3.5.2), C# (4.5.2 Framework), C++ (Microsoft Visual Studio), MKL
stands for Math Kernel Library from Intel. After C++ is selected as the language for
coding, we show the incremental optimizations. From implementation C++ Intel to
MKIL, the results displayed are the average of 10 executions. Matrix size 4096 x 4096.

Implementation Run Time (s) | Relative Speedup | Absolute Speedup
Python 17380.8 x1.0 x1.0
C# 645.9 x26.9 x26.9
C++ 230.0 x2.8 xX75.5
C++ Intel 210.2 x1.0 x82.6
C++ 02 45.7 x4.5 x379.5
C++ Threads 6.1 x7.5 % 2849.3
C++ Tiling 4.2 x1.4 x4138.3
C++ Oblivious AVX2 3.2 x1.3 x5431.5
MKL 0.63 x5.0 x27588.7

A.1 Software Optimization: Matrix Multiplication

Matrix multiplication represents a clear example of an optimization process: easy to
understand the operations involved (add and multiply) and the speedup achieved
at the end of the optimization process reinforces the idea of performance in Com-
puter Science. We implement the classical algorithm with O(n®) and use a square
matrix. For illustration purposes, the dimensions of the matrix are large enough to
see the difference among optimizations (4096 x 4096) and the elements in the matrix
are in double precision. We start by selecting one programming language and, after
this, we apply successive optimization techniques. We have used for our imple-
mentation: Python 3.5.2, Visual Studio 2015 (C# .NET 4.5.2) and Intel C++ Compiler
19.0, and the experiments have been carried out on Intel® Xeon® Processor E5-1650
v3 [128]. These optimizations are inspired by the lecture [152] and the following
manuscripts [80, 92].

A.1.1 Choice of the Programming Language

The selection of the programming language is an important step to prepare an op-
timization process. There are different criteria to select it depending on the require-
ments, for example, portability. Here, we focus on performance. We have imple-
mented the matrix multiplication algorithm in three languages: Python, C#, and
C++. The same algorithm is implemented in the three languages and no optimiza-
tion has been applied (Table A.1). The language C++ achieves the best time without
any optimization. So in the next sections, we shall use C++ language to apply the
optimizations to the matrix multiplication algorithm.

A.1.2 Choice of the Compiler

Once the language has been decided, we should choose one of the many compilers
for compiling C++ code. We have compared the compiler provided by Intel icc and
the one provided Microsoft cl. The Intel compiler icc outperforms cl (Table A.1).
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A.13 Compilation Improvement: Flags

Compilation flags apply some optimizations to the code by the compiler transpar-
ently. Until now, we have used the flag -O0 (no optimization). Using the optimiza-
tion flag -O2, we improve (x4.5) without no changing the code. This kind of opti-
mization allows the compiler to apply auto-vectorization transparently. This opti-
mization is C++ 02 (Table A.1).

A.14 Multicore Improvement: OpenMP

We have used only one core to compute the matrix multiplication so far, but the
machine has 6 cores and Hyper-Threading technology [128]. In theory, we could use
up to 12 threads to compute the matrix multiplication algorithm. We set 12 threads
for a multithreaded solution by OpenMP [72]. This optimization is C++ Threads
(Table A.1).

A.1.5 Memory Improvement: Tiling

Until now, we have implemented strategies without modifying the source code.
Then, it is time to reconsider why we are still far from the MKL library performance
(Table A.1). The memory access pattern in our implementation creates too many
cache misses.

for (int i = 0; i < n; i++){
for (int k = 0; k < n; k++){
for (dnt j = 0; j < mn; j++){
Cl(i*n)+ jl += A[(i*n) + k] * B[(k*n) + jl;
}
}
}

We have cache misses because, for each row calculation in C, we need to retrieve
from memory a whole row from A and the whole matrix for the column element
in matrix B. We can use a block cache technique (tiling) to improve the temporal
locality of the operations (Figure A.1a). The code implementing this technique is:

for (int i = 0; 1 < n; i += tile){
for (int j = 0; j < m; j += tile){
for (int k = 0; k < n; k += tile){
for (int ib = 0; ib < tile; ib++) {
for (int kb = 0; kb < tile; kb++) {
for (int jb = 0; jb < tile; jb++) {
C[(i*n + ib*n) + j + jb] += A[(i*n + ib*n) + k + kb] * B[(k + kb)*n + j + jbl;

The tile parameter should be the cache line size divided by sizeof(double) [80] and we
set tile=64 after some experimentation. This optimization is C++ Tiling (Table A.1).
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Tile

(@) (b)

Figure A.1: (a) Tiling technique workflow in matrix multiplication (b) Cache obliv-
ious dividing the matrix multiplication into 4 blocks and multiplying each block
recursively.

A.1.6 Memory Improvement: Oblivious + AVX2

To accelerate the matrix algorithm, we divide the problem into subproblems (cache-
oblivious) and use Cilk [31] (nested parallelism). In this sense, we can compute them
in parallel and achieve good performance for the cache, and use the cores in the
machine (Figure A.1b). Furthermore, we apply vectorization techniques for the base
case [130]. We have set THRESHOLD=64 after experimentation. This optimization
is C++ Oblivious AVX2 (Table A.1).

void rec_mult(const double *A, const double *B, double *C,
const int n, const int rowsize) {

if (n <= THRESHOLD) {
mm_baseAVX2(A, B, C, n, rowsize);

Yelseq
int d11 = 0;
int d12 = n / 2;
int d21 = (n / 2) * rowsize;
int d22 = (n / 2) * (rowsize + 1);
cilk_spawn rec_mult(A + d11, B + d11, C + d11, n / 2, rowsize);
cilk_spawn rec_mult(A + d12, B + d21, C + d11, n / 2, rowsize);
cilk_spawn rec_mult(A + d11, B + 412, C + d12, n / 2, rowsize);
rec_mult(A + d12, B + d22, C + d12, n / 2, rowsize);

cilk_sync;

cilk_spawn rec_mult(A + d21, B + di11, C + d21, n / 2, rowsize);
cilk_spawn rec_mult(A + d22, B + d21, C + d21, n / 2, rowsize);
cilk_spawn rec_mult(A + d21, B + d12, C + d22, n / 2, rowsize);
rec_mult(A + d22, B + d22, C + d22, n / 2, rowsize);

cilk_sync ;

}
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A.2 Calculus of Variations in Image Processing

This appendix is based on the lecture notes of Fundamentos Matemdticos at the Rey
Juan Carlos University for the master of Visidon artificial [249] and Variational Methods
for Computer Vision at TU Miinchen [68].

A.2.1 Euler-Lagrange Equations for the Denoising Problem

We describe a detailed derivation of the Euler-Lagrange equations in image process-
ing. To illustrate the derivation, we consider the denoising problem (3.3) which is
about recovering the original signal from an observed noisy sample and for simplic-
ity, the linear case is assumed (3.23).

Let ) C R" withn € N be an open bounded domain of boundary dQ). Let X be a
function space, say X = {u(x) / u : QO — R}, and let E be a functional defined on X,
i.e., a mapping of the function space X onto the set of real numbers, say E : X — R.
In short, a functional is a function that takes an element u(x) of the function space X
as an input and returns a scalar. When we say that E is well defined in X we mean
that E is bounded on X, i.e., E(u) < +oo for any u € X.

We consider the minimization problem

. . 2 B 2
min E(u) = min [|Vul[3 +Alju — flI2 (A1)
where X is the Sobolev space X = H!(Q)) because, by definition, if u € H'(Q)) then
[lu]|3 < +o0, ||Vul[3 < +o0 and the functional E(u) is bounded, i.e., well defined in
the space H'(Q).

This variational model is strictly convex because the fidelity term is strictly con-
vex and the regularizer is convex. Their sum is strictly convex and therefore, the
solution is unique. To find the minimum, we should solve the necessary first-order
conditions of the null gradient, which determines the stationary points of the func-
tional. Because of the strict convexity, these conditions are also sufficient to obtain a
(global) minimum. Nevertheless, it is not correct to say the gradient of the functional
because in an infinite-dimensional space there are infinite directions to consider. We
then introduce the concept of Gateaux differential of a functional, [19] as a gener-
alization of the concept of directional derivatives in multi-variable calculus. This
implies to perturb the energy of the functional in all directions defined by functions
v € X and, passing to the limit, to obtain the Gateaux differential of the functional

(0E(u),v), VoeX
We shall describe the whole procedure.

Let X an infinite-dimensional vector space and E : X — R a functional defined
in X. If the limit is finite:

(BE (), v) = lim £ 2%) ~E()

A2
a—0 (14 ( )

then we say that E is Gateaux differentiable and

d,E(u) = (dE(u),v)
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is the directional derivative of E in the point u in the direction v. We calculate the
limit for E(u) in (A.1) as follows:

E(u+av) —E(u) = [|[V(u+a0)|[3+A|(u+av) = fIf = |[|[Vul3 = Allu— f|3

E(u+av) E(u)

= /\V(u—i—zw)\zdx—/ |Vu|*dx
0 0

+A/ (u+av — f)%dx —/\/ (u — f)dx
Q Q
Now we can consider each term separately. First

/]V(u—kzxv)\zdx = /\Vu—l—och[zdx
0 0

= /\Vu]zdx—i—Zoc/ Vqudx—i—ocz/ |Vo|?dx
o) o) o)

and

A/Q(u—k(xv—f)zdx = /\/Q(u—f—l—ow)2dx

= /\/Q(u—f)zdx—i—Z)ux/Q(u—f)vdx—k)uxz/ v?dx

(9]

then using these partial results
/ |V(u—|—ow)|2dx—/ |Vul?dx = 21x/ Vqudx+zx2/ |Vol|?
0 0 0 0
A —Pax A [ (u—fPRdx = 20 [ (u— frde+ e [ o
Q(u—i—zxv f)dx Q(u f)dx « Q(u flodx + Aw vdx

Plugging these partial calculations into Eq. A.2 and dividing by «

E(u+av) — E(u)
«

= 2/ Vqudx+oc/ |Vo|?dx
o o

ZA/ — f)od /\/zd
+ Q(u f)vx+0chx

taking the limit « — 0, the energy terms of the test function v vanish

oc/ \Vv|2dx—|—}ux/ v?dx — 0,
0 0

because ||v||3 < +o0 and ||Vv||5 < +oc0. We then have

(OE(u),v) = Z/QVuVde—I—ZA/Q(u—f)vdx
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Using Green'’s formulas [105]

/ VuVudx = —/ Auvdx—i—/ Vu-novdx (A.3)
o) o) a0

and homogeneous Neumann boundary condition (also termed, in fluid mechanics,
the no flux (flow) across the boundary condition):

Vu(x) -n=0, x € 90}

we obtain

Vu-nvdx =0, VveX (A4)
Q)

hence

/ VuVoudx = —/ Auvdx (A.5)
0 0

Using formula (A.5), we have

(0E(u),v) = Z/QVqudx—i—Z/\/Q(u—f)vdx
= —Z/QAuvdx—l—ZA/Q(u—f)vdx

= 2/0(—Au+/\(u—f))vdx

where Au is the Laplacian operator defined as the divergence of the gradient opera-
tor

ox?’ " oxZ

for x = (x1...x,) € Q C R". The notation div(Vu) = V - Vu is also widely used.

Au = div(Vu) = (A.6)

Imposing the first-order necessary condition to cancel the gradient

(0E(u),v) =0, VoeX
we get
(OE(u),v) = Z/Q(—Au Y A(u— f))odx =0,Yv € X

and applying the Fundamental Lemma of Variational Calculus we deduce the Euler-
Lagrange equation of the functional to be minimized

—Au+Au—f) =0, on () (A7)

which is complemented with the homogeneous Neumann boundary conditions (A.4)
along the boundary 0Q).
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A.2.2 A General Formula

As a general case, we shall consider the following kind of integral functionals:

E(u) :/ L(x,u, Vu)dx, (A.8)
Q
where x € () € R" and £ is called the lagrangian.

The Euler-Lagrange equation for this kind of functional is as follows (see [68] for
details)

oL = 0 (0L

E(x, u, V) —]Z%%(am(x,u,VuD =0 (A.9)

Given an energy functional in (A.8), we can use the general formula (A.9) to
illustrate how to calculate the Euler-Lagrange equation of our denoising functional
(A.1). Set x = (x,y)T and let

1 A
L(x,u,Vu) = E\Vulz + E(u —f)?
We introduce a variable p to denote the gradient term

p=(pp2)" = (V)" = (ux,uy)

with magnitude

PP = [Vul = (& + ) = 412

We can rewrite the lagrangian £ in terms of p as:

1 A 1 A
L(x,u,Vu) = L(x,u,p) = §’P|2+ E(“ —f)?= E(P%"‘P%) + E(” —f)?

Applying formula (A.9) written in terms of p we have the Euler-Lagrange equation

oL d /0L d /0L
E(X,%P) - ax(am(X,M,P» - E)y(sz(x'u'p)) =0

We compute the partial derivatives as

9L oL oL
P = A= f),  SIxup)=p S(sup) = p

Substituting, the Euler-Lagrange equation is

0 0
-2

and getting back to the original variables we have

u  u

which is (A.7) by (A.6)



A.2. Calculus of Variations in Image Processing 133

—Au+Au—f)=0

The p—laplacian operator

In the general case, we set

Ly(x,u, Vu) :;|Vu|”+/2\(u—f)2, p>1.

Then

1 A A
ﬁp(x,u,w)=Ep(x,u,p)=glpl”+§(u—f)2 P(P1+P)”/2 o> (= f)?

The partial derivatives are

O (x,u,p) = M f),

and
oL oL
— p/2—1 _ p/2-1
ap; X P) = pi(pt+ )P ap, X1 P) = pa(pi+p3)
The Euler-Lagrange equation is
oL d /0L d (9L
E(x,u,p) - ax<apl(xlulp)) - ay(apz(x’”’p)) =0

Substituting

d _ d _
AMu—f) == (m(m +p3)t"? 1) “ay (pz(r)% + p3)P/? 1) =0
Using the divergence operator

A= f) = div (7 + P> (prp2)) =0

and observing that

(P + P3P > Up1,p2) = (P2 +p3) P2 2(p1, p2) = |p" P

we have

Mu— f) —div ([p|"?p) =0
Getting back to the original variable

Au — f) —div (|Vu|P=>Vu) =0

which is the p—laplacian equation

—Apu+A(u—f)=0, onQ, Vp>1

associated to the p—laplacian operator

Apu = div (|Vul|P~2Vu) .
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