UNIVERSIDAD REY JUAN CARLOS

ESCUELA SUPERIOR DE CIENCIAS EXPERIMENTALES
Y TECNOLOGIA

EMPIRICAL SOFTWARE ENGINEERING RESEARCH ON
LIBRE SOFTWARE: DATA SOURCES, METHODOLOGIES AND

RESULTS

DOCTORAL THESIS

Gregorio Robles

Ingeniero de Telecomunicacion

Madrid, 2005

Thesis submitted to the Departamento de Informatica, Estadistica y Telematica
in partial fulfillment of the requirements for the degree of

Doctor europeus of Philosophy in Computer Science
Escuela Superior de Ciencias Experimentales y Tecnologia

Universidad Rey Juan Carlos
Mostoles, Madrid, Spain

DOCTORAL THESIS

EMPIRICAL SOFTWARE ENGINEERING RESEARCH ON LIBRE
SOFTWARE: DATA SOURCES, METHODOLOGIES AND RESULTS

Author:
Gregorio Robles-Martinez

Ingeniero de Telecomunicacién - Telecommunication Engineer

Director:
Jesus M. Gonzéalez-Barahona
Doctor Ingenierio de Telecomunicacién - Doctor Telecommunication Engineer

Méstoles (Madrid), Spain, 2005

DOCTORAL THESIS: Empirical Software Engineering Research on Libre Software:
Data Sources, Methodologies and Results
AUTHOR: Gregorio Robles-Martinez

DIRECTOR: Jestis M. Gonzalez-Barahona

The committee named to evaluate the Thesis above indicated, made up of the following doctors:

PRESIDENT: Prof. Dr. Manuel Hermenegildo
(Universidad Politécnica de Madrid, Madrid, Spain)

VOCALS: Prof. Dr. Brian Fitzgerald
(University of Limerick, Limerick, Ireland)

Dr. Stefan Koch
(Wirtschaftsuniversitat Wien, Vienna, Austria)

Dr. Daniel M. Germéan
(University of Victoria, Victoria, Canada)

SECRETARY: Dr. Antonio Ferndndez-Anta
(Universidad Rey Juan Carlos, Madrid, Spain)

has decided to grant the qualification of

Mbostoles (Madrid, Spain), February 9th 2006

The secretary of the committee.

(c) 2005 Gregorio Robles

This work is licensed under a Creative Commons
Attribution-ShareAlike License.
http://creativecommons.org/licenses/by-sa/2.0/
(see Appendix D for further details).

To my father, mother, sister and Nuria
for their infinite love, understanding and support.

Acknowledgments

It has been much work during these last four years. But at the same time, it has been a lot of fun. A
great part of this fun is due to the people I've been involved with, both in my research and teaching
duties and in my personal life (although sometimes I don’t know where the former ends and the latter
starts).

I have to start showing my gratitude to Jesis, who has officially been my advisor, but unofficially
much more. There has been a special connection between us from the first minute regarding what we
wanted to research and how we wanted to do it. With much effort and many nights without sleep
(which I myself can easily afford, but which I should regret and apologize in front of Jesis’ family)
we have started to build a new research line, many research projects and a new research group that
accounts now up to 8 persons. My name is the only one that appears on the front cover of this thesis,
but without any doubt it would be fair if the name of both of us would be there. I won’t have time
in this life to say enough times Muchas gracias, Jesus.

Of course, I have to mention all the guys from our research team (Juanjo, Israel, Teo, Alvaro N.,
Jorge, Diego and Carlos, as well as Luis L. and Alvaro del C.). They have brought new ideas and
lots of amusement into my research and I'm sure they all will agree when I say that we’ve built a
small family in our labs in Mdéstoles. I'm also very thankful to all those who compose the Grupo de
Comunicaciones y Sistemas (GSyC) and are not part of the CALIBRE team: José (with whom I share
the pride of being a Real Madrid supporter), José Marfa (when my friends tell me that I work too
much I always explain them that I've got a colleague named José Marfa...), Agustin, Pedro, Vicente,
Luis R., Miguel, Eva, Paco, Pablo, Rafaela, Sergio, Antonio, nemo, Gorka, Katia, Andrés, Juan and
Quique.

During these years of research, I've had also the possibility of visiting some research groups abroad;
in 2003 I visited Vienna for 8 weeks and in 2004 I was in Maastricht for four months. The time I
spent there has had a great impact on this work, but I also enjoyed much the people I found there.
So, many thanks go to Stefan (plus Lale and child), who acted as local host in Vienna, and to Rishab
in Maastricht, also to the many great people I had the possibility to know there: Riudiger, Bernhard,
Wilma, Ekin, Semih, Abraham, Paolo, Elad, among others. I cannot forget all those with whom I
have co-authored some of the works or actively exchange some research ideas in these last years. In
this sense, Martin Michlmayr (from the Univ. Cambridge), Andrea Capiluppi (Univ. Torino and
Open Univ.), Juan F. Ramil (Open Univ.), loannis Samoladas (Univ. Thessaloniki), Juan Julidn
Merelo (Univ. Granada), Paul A. David (Univ. Stanford & Univ. Oxford) and Jorge Ferrer (Univ.
Politécnica of Madrid) will be somewhat guilty of some of the ideas and concepts that are included
in this thesis. Rosario Plaza should have her place here as well, as she has been the one who has
reviewed my English with much patience and dedication.

I also have to mention all those who have been the wictims of this PhD thesis: my friends. They
have been the ones that have suffered the lack of time I had to devote them and that they, of course,
deserve. Many thanks go to Diego, Rodrigo & Cristina, Carlos Martin Ugalde, Enrique Zamora, José
Maria Nadal, my scouting group, the people of Scouts-es, some of my students, and many, many
others...

Finally, I will always be in debt with my family. My father, my mother and my sister Elisa have
always been a great support and have had the necessary understanding and patience that is required
when you are dealing with a PhD student at home. A special hug goes to my grand parents, Gregorio
and Celia, and Ramén and Maria del Carmen. And last but not least, I'm deeply grateful to Nuria,

who has been always there showing infinite love.

Gregorio
Madrid, October 2005

Abstract

With the appearance and implantation of Internet new ways of developing software have arisen that
make use of telematic tools, follow flexible methodologies and incorporate third-party contributions.
One of the paradigmatic examples of software development that counts on the aforementioned charac-
teristics can be found in the phenomenon of libre (free/open source) software, being of special special
interest those projects that are large in number of participants and in software size.

Although at first these new environments are less controllable than traditional ones (because
development is done generally in a geographically distributed way, there is no a company behind
the development that takes the lead, traditional hierarchic structures are not followed or external
contributions are hardly predictable), we have access to much information: the software product
itself and many of the by-products that are created during the development process (communication
archives, bug-tracking systems and versioning systems, among others). These data sources are usually
publicly available on the Internet, so we can make exhaustive analysis with a great amount of data
(much of which is hardly obtainable in traditional, industrial environments).

The goal of this thesis is to identify the data sources that libre software projects offer publicly, to
present and display some methodologies for the analysis of these sources and the data that we can
extract from them, and to show the results that have been obtained from applying these methodologies.
Our intention is, in particular, to know the libre software phenomenon better, but also in general
software creation processes since the acquired knowledge does not have to be specific to libre software,
but could be applied to many other development environments.

Thus, we will start in this thesis with the description of the publicly available data sources on the
Internet and the data that we can extract from them. Afterwards, several methods, that will depend
on the source, will be used to obtain information from the data and to filter out interferences. Finally,
several methodologies will be presented and applied on the data obtained from libre software projects
which have been selected as case studies. The methodologies will range from classical to novel ones.
Thus, among the classical we will perform an analysis of the growth of the software systems as it is
known from software evolution, or we will apply social network analysis, a technique from the field of
social sciences. In both cases, the contribution of this thesis has been to apply them to libre software
projects. Regarding novel methodologies, we propose the archaeological analysis of software systems
with the aim of stating what remains from previous versions, the generalization of software evolution
to file types different from source code (for instance, documentation, translation or user interface files,
among others) or the study of the evolution of volunteer participation and the regeneration of the
leading “core” group. Also, a series of tools have been created to automate, at least partially, the
whole process. These tools permits to reuse these methodologies on other projects.

Among the main contributions of this thesis we can state that this is the first exhaustive analysis
of a large number of software projects, although the proposed methodologies and the tools that have
been developed allow the study in the next future of more projects. On the other hand, we have shown
that the technical analysis should be complemented with socio-technical analysis to fully understand
the development process and many of the technical issues of (libre) software projects.

Resumen

Con la aparicién e implantacién de Internet han surgido nuevas maneras de desarrollar software que
hacen uso de herramientas telematicas, emplean metodologias flexibles e incorporan contribuciones por
parte de personas externas al equipo de desarrollo. Uno de los ejemplos paradigméticos de desarrollo
software que cuenta con las caracteristicas mencionadas se puede encontrar en el fenémeno del software
libre, siendo de especial especial interés en proyectos de gran tamano (en nimero de participantes y
en tamarno del software).

A pesar de que en un principio estos nuevos entornos son menos controlables que los tradicionales
(debido a que el desarrollo se realiza generalmente de manera distribuida geograficamente, a que
no hay detrds una empresa que lleve la mayor parte del desarrollo o, al menos, no se sigan las es-
tructuras jerarquicas tradicionales y a que las contribuciones externas son dificilmente predecibles),
gracias a que tanto el producto del desarrollo (el software en si) como muchos de los subproductos
que se producen durante el desarrollo (trazas de las comunicaciones utilizadas para la comunicacién
del equipo de desarrollo, sistemas para almacenar los errores del software o sistemas de control de
versiones) se encuentran normalmente disponibles de manera piblica en Internet, podemos realizar
andlisis exhaustivos con gran cantidad de datos, muchos de ellos dificilmente conseguibles en ambitos
tradicionales.

Esta tesis se tiene como objetivo identificar las fuentes de datos que ofrecen los proyectos de software
libre de manera publica, presentar algunas metodologias para el analisis de las fuentes y de los datos
que podemos extraer de las mismas, y mostrar algunos resultados de las metodologias empleadas para
proyectos de software libre. Se pretende con ello conocer mejor el fenémeno del software libre, en
particular, y los procesos de creacién de software, en general, ya que parte del conocimiento adquirido
no tiene por qué ser especifico del software libre, sino que puede aplicarse en cualquier otro entorno
de desarrollo.

El procedimiento que se seguird en esta tesis partird de la descripcion de las fuentes de datos,
asi como de los datos que podemos extraer de las mismas. Posteriormente, se presentaran varios
métodos, dependientes de las fuentes, para la obtencién de informacién a partir de los datos, asi
como el filtrado de interferencias. Finalmente, se presentan varias metodologias que se aplicaran
sobre los datos de proyectos de software libre que han sido elegidos como casos de estudio. Estas
metologias serdn tanto cldsicas como novedosas. Asi, entre las cldsicas podemos nombrar el anélisis
del crecimiento de software tal y como se conoce en evolucién de software o el andlisis de redes sociales,
del campo de las ciencias sociales. En ambos casos, la contribucién de esta tesis ha sido su aplicacién
a proyectos de software libre. En cuanto a metodologias novedosas, se propone el estudio arqueologico
del software con la finalidad de constatar qué es lo que preservan las versiones actuales del pasado, la
inclusién de artefactos fuente diferentes al codigo fuente escrito en un lenguaje de programacién, como
pudieran ser archivos de traduccion, documentacién o interfaz de usuario o el estudio de la evolucién
de la participacién y regeneracion del equipo de desarrollo. Asimismo, se han creado una serie de
herramientas que automatizan, al menos parcialmente, todo el proceso lo que permite la reutilizacién
en otros proyectos software.

Entre las principales contribuciones de esta tesis podemos constatar que se trata del primer anélisis
exhaustivo de un gran ndmero de proyectos software, aunque las metodologias propuestas y las her-
ramientas que se han desarrollado para tal efecto permitan en un futuro préximo el estudio de todavia

'En el apéndice C se puede encontrar un resumen suficiente en castellano que cumple con los requisitos del articulo
24 del capitulo V de la "Normativa para la Admisién del Proyecto de Tesis y Presentacién de la Tesis Doctoral” para las
tesis que sean presentadas en otros idiomas diferentes del espanol, como es el caso de ésta.

mas proyectos. Asimismo, se ha podido comprobar la importancia que tiene en la era de Internet com-
plementar los andlisis técnicos realizados sobre el producto con estudios socio-técnicos de las personas
que estan detras del desarrollo del software.

Contents

1 Motivation

1.1

1.2

1.3
1.4
1.5

Development of libre softwareo o
1.1.1 Definition of libre software
1.1.2 Libre software, the cathedral and the bazaar
Software Engineering regarding Libre Software
1.2.1 Empirical Software Engineering L.
1.2.2 Software Maintenance and Evolution
1.2.3 Social aspects of (libre) software development
Goals of the thesis e
Contributions of this thesis
Structure of the thesis

2 Related Research

2.1

2.2

2.3

24

2.5

The precursors: first papers about libre software development
2.1.1 The cathedral and the bazaar
2.1.2 Early follow-ups
2.1.3 Towards empirical-based studies
Mining data SOUrCes e e e e e e e
2.2.1 Methodology
2.2.2 Datasources e e
2.2.3 Tools
2.2.4 Exchange formats and repositories oo
2.2.5 Integration of data from different sources
Empirical software engineering studieso oL
2.3.1 Historical influences
2.3.2 Software maintenance and evolution 0oL
2.3.3 Software compilations
2.3.4 Holistic (ecology) studies
2.3.5 Characterization of libre software development
2.3.6 Fine-grained analyseso
Socio-cultural and organizational studies Lo oL
2.4.1 Organizational structure of libre software projects
2.4.2 Social Network Analysis
2.4.3 SUIVEYS e e e e
2.4.4 Joining processes and simulation modelso o000
Data sources used in researcho

3 Sources and data

3.1
3.2

Identification of data sources and retrieval
Source Code e
3.2.1 Hierarchical structure
3.2.2 File discrimination
3.2.3 Analysisof source code files

© © 00 ~J UL U =~ W

==
N = O

13
13
14
16
17
17
17
18
21
23
23
24
24
24
30
31
33
35
36
37
40
44
45
46

3.2.4 Analysis of other files 55

3.2.5 Authorship and dependency analysis 55
3.2.6 Dependency analysis Lo 58
3.3 Versioning system meta-data L oo 60
3.3.1 Preprocessing: retrieval and parsingo L. 61
3.3.2 Data treatment and storageo L oL 64
3.3.3 Software Archaeology 66
3.4 Mailing lists archives (and forums)o o L0 67
3.4.1 The RFC 822 standard format 67
3.5 Bug-Tracking systems L 69
3.5.1 Datadescription 69
3.5.2 Data acquisition and further processing 71
3.6 Other, project-related sources Lo o 72
3.6.1 Debian Sources File 72
3.6.2 Debian Popularity Contest oo 73
3.6.3 Debian developer database 73
3.7 Integration of different sourceso Lo 73
3.7.1 Considering developers for data integration 74
3.7.2 Matching identities more in detail oL 76
3.7.3 Privacyissues L 78
3.7.4 Automatic (post-identification) analysis 78
Methodologies and Analyses 81
4.1 Classification of the analyses 81
4.1.1 Data sourcesot e e e e 82
4.1.2 Characteristics of the analyses L . 83
4.1.3 Projects selected as case studies Lo oL L. 85
4.2 Software Evolution 86
421 Goals . . . e 86
4.2.2 Methodology 86
4.2.3 Observations on the Linux kernel 0 L. 87
4.2.4 Observations on the *BSD kernels 92
4.2.5 Observations on other libre software applications 94
4.3 Evolution of software compilations L oo 100
4.3.1 Goals e 100
4.3.2 Methodology e 101
4.3.3 Observations on the size of Debian 101
4.3.4 Observations on the size of packages 0. 102
4.3.5 Observations on the maintenance of packages 105
4.3.6 Observations on the programming languages 107
4.3.7 Observations on the size of files L. 109
4.3.8 Effort and time estimation.o oo 110
4.4 Software Archaeology L 112
4.4.1 Goals . . . oL e 113
4.4.2 Methodology and case studies 113
4.4.3 Observations on the remaining lines 117
4.4.4 Observations on the remaining contributions from authors 117
4.4.5 Observations on theindexes 119
4.5 File-type-based analysis 121
4.5.1 Goals . . . L e 121
4.5.2 Methodology 122
453 Casestudy: KDE. 122
4.6 Social network analysis 138
4.6.1 Goals L e 138

ii

4.6.2 Methodology e 138

4.6.3 Observations on the Linux 1.0 version 140
4.6.4 Observations on large libre software projects: Apache, KDE and GNOME . . . 141
4.6.5 Degree in the modules network oo 142
4.6.6 Clustering coefficient in the modules network 145
4.6.7 Distance centrality in the modules network 146
4.6.8 Betweenness centrality in the modules network 147
4.6.9 Commiters networks 148
4.6.10 Inferring the social structure of a project 150

4.7 Evolution of contributors 157
471 Goals . . . e 157
4.7.2 Methodology e 158
4.7.3 Evolution of the number of Debian maintainers 158
4.7.4 'Tracking remaining Debian Maintainers 160
4.7.5 Researching maintainer experience 161
4.7.6 Packages of maintainers who left the project 162
4.7.7 Experience and importance 163
4.7.8 Summing up for Debian oL Lo 163
4.7.9 Evolution of the core group L oo 164
4.7.10 Observations on The GIMP, 165
4.7.11 Observations on Mozilla 167
4.7.12 Observations on Novell Evolution 168
4.7.13 Observations on other libre software applications 169

4.8 Membership integration L L 174
4.8.1 Goals 174
4.8.2 Methodology e 175
4.8.3 Merging authors and screening the sample, 177
4.8.4 Identifying patterns and common characteristics 177
4.8.5 Group 1: progress according to onion modelo 179
4.8.6 Group 2: sudden joining 179

5 Lessons learned and Models 183
5.1 Lessons learned 183
5.1.1 Lessons learned from the software evolution analysis 183
5.1.2 Lessons learned from the evolution of software compilations 184
5.1.3 Lessons learned from the archaeological analysis 185
5.1.4 Lessons learned from the file-type based analysis 186
5.1.5 Lessons learned from the social network analysis 187
5.1.6 Lessons learned from the evolution of contributors 188
5.1.7 Lessons learned from the membership integration analysis 189

5.2 A model based on the stigmergy concept L oL 191
5.2.1 Self-organization through stigmergy 191
5.2.2 Modeling libre software development 193
5.2.3 High level abstractiono oo 195
5.2.4 Implementation details Lo oo 197
5.2.5 Validating and verifying the model 199
5.2.6 Discussion e 203
5.2.7 Summing upo 206

6 Conclusions 207
6.1 Main contributions Lo 207
6.1.1 Public data sources as software engineering knowledge generators 207
6.1.2 Exhaustive analysis of libre software projects 208

6.2 Other, specific contributions e 208

iii

6.2.1 Identification, detailed description and integration of data obtained from development-
supporting tools L 208
6.2.2 Reproduction and generalization of classical studies: Software Evolution 209

6.2.3 A new way of extracting data from software versioning repositories: Software
Archaeology L 209
6.2.4 Analysing technical artefacts from the social perspective 210
6.2.5 Modelling libre software development using an analogy from the biological world 211
6.3 Limitations e e 211
6.4 Further research 212
6.5 Final summary L e 213
A Applications under consideration 215
File extensions 219
C Resumen en espanol 225
C.1 Antecedentes 225
C.2 ODbjetivos o e 228
C.3 Metodologia 229
C.3.1 Fuentesdedatos e 229
C.3.2 Analisisdelosdatos 231
C.3.3 Resultados y modelos L 233
C.4 Conclusiones e 233
Bibliography 235
D Creative Commons Attribution-ShareAlike 2.0 247

iv

List of Figures

1.1

1.2

21

2.2

2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11

3.12

3.13

3.14
3.15
3.16
3.17

4.1
4.2

Key fields, concepts and techniques (and their relationships) dealt with in this disser-
tation. As a field of study, the libre software phenomenon and especially large libre
software projects (in software and community size) have been selected. 4
The goal in the long run is to have such an automatic report generator. This thesis is
heavily balanced towards the data analysis and all the tasks that it involves (description
of data sources, extraction, methodologies, etc.), while the experience acquired should
be increased in the future with the study of many more (libre) software projects. . . . 11

Authorship graph giving the relationship among files (represented as squares) and the
developers (given by ellipses) that work on them (developer territoriality). As it can be
observed the clusters correspond to software components (rectangles). Source: [Ger-

man, 2004a] 26
A synthesized libre software development team structure, also known as the onion
model. Source: [Crowston & Howison, 2005] 39

Distribution of the data sources used in software engineering and related literature that
has focused on libre software projects (Total: 67; works that include data from various

sources have been counted twice). 48
Whole process: from identification of the data sources to analysis of the data. 49
Process of source code analysis. 51
Tree-like hierarchical structure. 51
Architecture of the GlueTheos tool. 54
Process of the CODD tool. 56
Process of the pyTernity tool. 58
Code dependency. 59
Code dependency. e 59
Process of the CVSAnalY tool. 61
Fixed vs. sliding time window algorithm for the identification of atomic commits.

Source: [Zimmermann & Weissgerber, 2004].o Lo 65
Screenshot of the CVSAnalY web interface for the KDE project. Data is from April

2004. . .o e 65
Process of the DrJones, a tool conceived to analyze projects from a software archaeology

point of view. L 66
Screenshot of GNOME’s BugZilla web interface. The bug shown is bug #123456 (July

2005). . 70
Architecture of the BugZilla Analyzer. 71
Different systems with which an actor may interact. 74
Main tables involved in the matching process and identification of unique actors . . . 76
An actor with three different kinds of identities. 77
Different kinds of (technical and social) granularity. 84

Right: Language distribution for Linux 1.0. Left: Language distribution for Linux 2.6.10. 88

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27
4.28

Growth (lines of code) of Linux. The vertical axis is given in SLOC, while the horizontal
axis gives the time. The shape of the points in the curve depends on the Linux branch
(see legend). L
Right: Growth of the tar file for the full Linux kernel source release. Left: Growth in
the number of files in full Linux kernel source release.
Growth of the major subsystems in Linux (only development releases). The vertical
axis is given in SLOC. The horizontal axis gives time.
Growth of the smaller, core subsystems in Linux (development releases). Vertical axis
is in SLOC. The horizontal axis gives time.
Share of the subsystems of the Linux kernel over time - development releases only
(vertical axis is given in percentages). A vertical line around 1994 gives the date of
release for the version 1.0 of the Linux kernel.,
Growth of the major drivers subsystems (development releases only); smaller drivers
have been grouped together in drivers/other.
Right: Growth of the drivers/others subsystems (development releases only). Left:
Growth of the arch subsystem (development releases only). Vertical axis is given in

Growth of the four largest subsystems of FreeBSD
Right: Growth of four most sized subsystems OpenBSD in the number of lines of code.
Left: Growth of four most sized subsystems NetBSD in the number of lines of code.

Size, in MSLOC, and number of packages for the versions in study. Left: MSLOC for
each version. Right: Number of packages for each version. Synopsis: In both graphics
of this figure, the studied versions are spaced in time along the X axis according to their
release date. On the left we can see the number of MSLOC that includes each version,
while the right graph shows the evolution for the number of packages.
Package sizes for Debian distributions. Packages are ordered by their size along the X
axis, while the counts in SLOCs are represented along the Y axis (in logarithmic scale).
Left: Debian 2.0. Right: Debian 2.1
Package sizes for Debian distributions. Packages are ordered by their size along the X
axis, while the counts in SLOCs are represented along the Y axis (in logarithmic scale).
Left: Debian 2.2. Right: Debian 3.0,
Histogram with the SLOC distribution for Debian packages. Left: Debian 2.0. Right:
Debian 2.1 L
Histogram with the SLOC distribution for Debian packages. Left: Debian 2.2. Right:
Debian 3.0 L
Illustration of common packages between Debian 2.0 and Debian 3.1. Among these
packages, we may find a subset that has the same version number.
Pie with the distribution of source lines of code for the predominant languages in Debian.
Left: Debian 2.0. Right: Debian 2.1
Pie with the distribution of source lines of code for the predominant languages in Debian.
Left: Debian 2.2. Right: Debian 3.0o .
Pie with the distribution of source lines of code for the predominant languages in Debian
0
Evolution of the four most used languages in Debian
Relative growth of some programming languages in Debian
Software evolution point of view. The software engineer views how the software system
changes. L e
Software archaeology point of view. The software engineer views from the current state
of the software into the past.
Remaining lines (relative, aggregated values)
Remaining lines (relative, aggregated values)
Orphaned lines over time (relative, aggregated values)

vi

94

4.29

4.30
4.31
4.32

4.33

4.34

4.35

4.36

4.37
4.38

4.39
4.40

4.41
4.42
4.43
4.44
4.45
4.46

4.47
4.48

4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61

4.62
4.63
4.64

4.65

Log-log representation of file types among KDE CVS modules. The vertical axis gives
the number of commits, while the horizontal axis shows the number of modules. Mod-
ules have been sorted by number of commits, so those with higher number appear nearer

to the origin. 124
Number of files by file typein KDE. 0oL 125
Number of atomic commits by file typein KDE. 125
Growth of the number of code files. The vertical axis gives the number of files, while

the horizontal one gives the time.o oo 128

Growth plots (delivered, total and removed files) for the specified file types. In all of
them the vertical axis gives the number of files, while the horizontal one gives the time. 129
Growth of the number of multimedia files. The vertical axis gives the number of files,

while the horizontal one gives the time. 0oL 129
File archeology for all file types. Absolute values in the vertical axis measured in number
of files. The horizontal axis is given by time starting January 2001. 132

File archeology for all file types. Relative values in the vertical axis measured in per-
centage (100% gives the files delivered currently). The horizontal axis is given by time

starting January 1999. L 132
File type relationship heat maps for the first and tenth (last) time slots. 134
Community scatter plots. Number of commits of developers on the given file types. Axes

in both figures are in logarithmic scale. L. 135
UMatrix analysis on the trained self-organizing map. 136
Component analysis for all components. From left to right and from top to bottom:

documentation, images, i18n, ui, multimedia, code, build, devel-doc and unknown. . . 137
Social network analysis (developer network) on Linux (version 1.0). 140
Cumulative degree distribution for Apache (V), KDE (+) and GNOME (-). 143

Assortativity (degree - degree distribution) for Apache (V), KDE (+) and GNOME (-). 143
Cumulative weighted degree distribution for Apache (V), KDE (+) and GNOME (-). . 144

Clustering coefficient distribution for Apache (V), KDE (4) and GNOME (+). 145
Average weighted clustering coefficient as a function of the degree of vertices for Apache

(V), KDE (+) and GNOME (). 146
Distance centrality distribution for Apache (V), KDE (+) and GNOME (). 147
Average distance centrality as a function of the degree of vertices for Apache (V), KDE

(+) and GNOME (*). o 147
Betweenness centrality distribution for Apache (v), KDE (+) and GNOME (-). 148
Average betweenness centrality distribution for Apache (V), KDE (+) and GNOME (-). 148
Cumulative degree distribution for Apache (V) and KDE (+). 149
Cumulative weighted degree distribution for Apache (V) and KDE (+). 149
Degree - degree distribution for Apache (V) and KDE (+). 150
Average weighted degree as a function of the degree for Apache (V) and KDE (+). . . 150
Classical network analysis on the Apache modules for February 1st, 2004. 151
Community structure of the Apache modules on January 1st, 1999. 152
Community structure of the Apache modules on January 1st, 2000 153
Community structure of the Apache modules on September 1st, 2000 154
Community structure of the Apache modules on January 1st, 2002 155
Community structure of the Apache modules on February 1st, 2004 155

The first picture represents the community structure of the Apache commiters network
obtained by the application of the GN algorithm (February 2004). The picture at the

bottom depicts the community structure of the GNOME project (February 2004). . . 156
Number of maintainers over time L Lo o 159
First stable release Debian 3.1 maintainers have contributed to. 161
Right: Absolute graph for The GIMP project. Left: Aggregated graph for The GIMP

Project. L e e e e e e 166
Fractional graph for The GIMP project. 166

vii

4.66

4.67
4.68

4.69
4.70
4.71

4.72

5.1
5.2
5.3
5.4
2.5
5.6
2.7

Right: Absolute graph for the Mozilla project. Left: Aggregated graph for the Mozilla
project. . . .o e e e
Fractional graph for the Mozilla project.
Right: Absolute graph for the Evolution project. Left: Aggregated graph for the
Evolution project. oo
Fractional graph for the Evolution project
The Onion model e
Activity diagram for some developers in Group 1. The lower (red) line gives the time
span during which the developer sent messages to the mailing lists, the next (light blue)
line gives the time span for bug reports, a third (dark blue) line the span for bug fix
submissions and the last (green) line corresponds to activity in the CVS repository. . .
Activity diagram for some developers in Group 2. The lower (red) line gives the time
span during which the developer sent messages to the mailing lists, the next (light blue)
line gives the time span for bug reports, a third (dark blue) line the span for bug fix
submissions and the last (green) line corresponds to activity in the CVS repository. . .

Optimal path from the nest to food. Ants resolve this problem by means of stigmergy
Ant algorithm oL
Stigmergic algorithm used to model libre software developers in each turn.
Time distribution. L
Number of developers in log-log scale.
Size of projects in log-log scale. oo
Growth in number of SLOC for some large projects in our model.

viii

179

List of Tables

2.1
2.2

3.1

3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

4.21

4.22
4.23

4.24

Summary of the SNA parameters, their meaning and their interpretation. 44
Empirical research papers and studies classified by data source. 47

(Incomplete) set of matches performed to identify the different file types. For an ex-

tended list, look at the appendix B oo oL 52
Identities that can be found for each data source. 75
Data sources used in the analyses. oo 82
Characteristics of the analyses. 83
Projects used as case studies for the various analyses. 85
Comparison between Godfrey and Tu’s and our study. 87
Growth equation for all major Linux subsystems (based on statistical analysis). 90
Growth equation for the BSD kernels (based on statistical analysis) 93

Summary of the findings for a software evolution analysis applied to the projects listed
in the first column. Start is the starting date of the CVS, Ver 1.0 the date of version
1.0 if available, Rip the appearance or not of ripples, size gives the size of the software
in SLOC, the growth function is the linear fit and the correlation coefficient gives the
quality of the fit. 96
3x6 matrix with growth plots for 18 libre software systems. Projects with good linear
fits have been situated at the top. The vertical axis is measured in SLOC; the horizontal
axis in months since the project started to use a versioning system. More information

can be found in table 4.7. 97
Size of the Debian distributions under study. 102
Top 10 packages in size for Debian 2.0. o L. 104
Top 10 packages in size for Debian 2.1. 104
Top 10 packages in size for Debian 2.2. 104
Top 10 packages in size for Debian 3.0. 105
Top 10 packages in size for Debian 3.1. o oL 105
Packages and versions in common for Debian 2.0 107
Packages and versions in common for Debian 2.1 107
Packages and versions in common for Debian 2.2 107
Packages and versions in common for Debian 3.0 107
Packages and versions in common for Debian 3.1 107
Top programming languages in Debian. For Debian 2.0, 2.1 and 2.2 the sizes are given

in KSLOC, for versions 3.0 and 3.1 in MSLOC. 108
Mean file size for some programming languages. 110
Effort, time and development cost estimation for each Debian version. 111

Summary of the case studies. Columns contain the project name, the year the project
started its development, the date of releasing version 1.0, the number of SLOCs ac-
cording to our methodology, the number of SLOCs as given by another counting tool
(SLOCCount) and the coincidence for both results. Finally authors that could be iden-

tified for the current version. 114
Most significant points in Figure 2 (100% is March 2005). This table gives the month
for which a portion of code persists in the current version. 118

ix

4.25
4.26

4.27
4.28

4.29
4.30

4.31

4.32

4.33

4.34

4.35
4.36

4.37
4.38
4.39

4.40
4.41
4.42

Most significant points in Figure 3 (100% is March 2005). 119

Archaeology indexes for our case studies. Size is given in SLOC, Age in months, Aging
and Orphaning in SLOC-month, Relative Aging in months, Progeria, R5yA (the relative
5-year aging) and A5yA (the absolute 5-year aging) are indexes and the Orphaning
factor (OrFact) is given in percentage. oo 120

General statistics for the KDE project. oo 123

Basic statistics on the KDE repository by file type: number of files (and share), num-
ber of commits (and share), number of predominant atomic commits (and share) and
number of commiters (and share). L Lo Lo 124

Distribution of the number of files per atomic commit. 126

Predominance of a file type in atomic commits. For all atomic commits, for atomic
commits with more than 5 files and for atomic commits with more than 50 files. The
data should be read as following: the first row gives information about all atomic
commits, the second row provides the number of atomic commits where all of them
(100%) are of the same type, the third row the number of atomic commits having less
than 90% of the files of the same file type, and soon. 126

Number of atomic commits for each file type that affect >50, >100 and >1,000 files.
The share gives always the fraction of atomic commits that affect >50, >100 and >1,000
files related to the total number of atomic commits per file type. 127

Territoriality (in number of commiters) for files grouped by file type. The columns
labeled as D* correspond to the deciles (the median is the 5th decile), while the B80/T20
column gives the results of dividing the sum of the bottom 80% with the top 20%. . . 130

Shapes used in the scatter plots that allow to identify the file type for which commiters
have been more active (in number of atomic commits). Development groups code, build

and devel-doc. 135
Number of vertices and edges of the modules networks of the Apache, GNOME and
KDE projects. e e 141

Number of vertices and edges of the commiters networks of the Apache and KDE projects.141

Small world analysis for the modules networks. The second column contains the av-
erage distance and the average random distance. The third column gives the average

clustering coefficients and the random average clustering coefficients. 145
Small-world analysis for commiters networks. Lo 150
Colors used for the different module families of the Apache project. 152

Statistical analysis of the growth in number of Debian maintainers. First column gives
the date of the release specified in the second one. “Maint” is the number of main-
tainers that maintain at least a package, “Packages” the number of total packages for
that release, “Pkg/Maint” the mean number of packages per maintainer, “Median” the
median number of packages, “Mode” gives the most frequent contribution in number of
packages and in brackets the number of maintainers who contribute it, “Std. Dev” the
standard deviation of our sample”, “Gini” the Gini coefficient and “Max” the maximum

number of packages that a unique maintainer is responsible for. 159
Packages maintained by the Debian 2.0 maintainers. 160
First release as maintainer for maintainers in Debian 3.1. 162

Orphaning and adoption of packages. Each row shows packages present in the older re-
lease (first column) and not in the newer (‘Orphaned’ column), and which of those were
adopted. Last columns show the percentages of package ‘saved’ (adopted to orphaned,
Adopt/Orph), and orphaned in the newer release to total in the older (Orph/Totall)
and newer (Orph/Total2) releases. 162

4.43

4.44
4.45
4.46
4.47

4.48

4.49

4.50
4.51

4.52
4.53
4.54
4.55

0.1
5.2

Installations and regular use of packages. The CMaint column shows how many main-
tainers 3.1 had in common with the release in the first column, while the CPkg shows
the number of packages maintained by them. Columns Installations and Votes give the
sum of the packages installed and voted (used regularly) for those packages maintained
by common maintainers. The last two columns show the ratios of both to common
maintainers. L e
Summary of the most important facts for The GIMP project.
Summary of the interesting information on Mozilla.
Summary of the interesting information on Evolution.
Summary of the findings for a generations analysis applied to the projects listed in the
first column. Start is the starting date of the CVS, Ver 1.0 the date of version 1.0 if
available, size gives the size of the software in SLOC, interval gives a tenth of the life-
time (in months), commits the total number of commits, commiter the total number of
commiters and generations their type (MG = multiple, M = mixed behaviour, CG =
code gods). . ..
2x4 matrix with fractional generation plots for 8 libre software systems. Projects with
heavy generational turn-over have been situated at the top. More information can be
found in table 4.47. L
2x4 matrix with fractional generation plots for 8 libre software systems. Projects with
heavy generational turn-over have been situated at the top. More information can be
found in table 4.47. L e
Some statistics about the selected developers (rest)
Progress metrics for each group (TT, time-to 1st commit/bug report/bug fix, are given
inmonths).
Nature of the developers in the sample
Groups by nature of the developerso oo
Some statistics about the selected developers (Group 1)
Some statistics about the selected developers (Group 2)

Gini Coefficient for the projects
Looking for generations in the core group. Contribution of the founder and oldest third
of developers to the project.

Chapter 1

Motivation

Computers are useless. They can only give you answers.
Pablo Picasso

The topic of this thesis is the study, from a software engineering perspective, of the development
information that is publicly available. It specifically deals with information obtained from repositories
of libre software projects. This is interesting because of (at least) two reasons. On the one hand,
libre software projects provide -probably for the first time in the history of software engineering-
huge quantities of publicly available data. In this type of environments, source code and many other
byproducts of the development process are available. Consequently, we can extract information from
the source code and from traces in the main communication channels (mailing lists, forums, and
others) or from development-supporting tools (bug-tracking systems, versioning systems, etc.) among
others. On the other hand, the way libre software projects are developed has proven to be successful
for, at least, an ample number of them. Processes and practices are based on software engineering
principles which have been uncommon in the software industry during the last decades. Among these
practices we can mention those of global software development, peer reviewing, rapid prototyping,
self-organization or lowering the barrier for user contributions.

This thesis is therefore devoted to show the first analyses and results from the publicly available
information (presented as a first reason) in order to understand processes involved in the development
of libre software (which is the second reason). The goal in the long run is to have a means by which
we could analyze (libre) software projects quantitatively in a semi-automatic manner. Due to the
intrinsic complexity of the software processes associated to the development of libre software, we will
see that a multi-facet analysis, with methods and techniques from various fields, is required.

The remainder of this motivational chapter is devoted to a brief introduction of the disciplines and
fields where this work may be categorized. The key fields and concepts that this thesis touches are
shown in figure 1.1, noting that they have been applied to libre software projects.

At first, we will see what libre software is and will discuss some concepts that have recently arosen
in literature regarding its development model. We will present there why we specifically interested
in libre software and comment on the type of libre software projects we target at in our analyses. In
any case, and although the analyses and techniques presented in this dissertation have been designed
with the intention of analyzing libre software projects, many of them may be applicable to non-libre
software projects.

The main discipline where this work may be classified is into the software engineering field of
study. We will see why libre software provides software engineering with a new perspective given the
amount of publicly available data that researchers may obtain. The analyses will hence have a strong
empirical component, being metrics and other quantitative methods of great importance for the goals
of this work. Especially interesting are also all issues related to mining software repositories; although
the data is publicly available, we will have to face some problems to obtain it in a meaningful and
complete manner. Efforts and methods for doing this, in a general and almost automatic way, will be
shown.

The software repositories we are going to mine usually offer longitudinal data which provide
tremendous opportunities for studying of the evolution of projects. We will hence introduce “classical”

3

4 CHAPTER 1. MOTIVATION

Software
Engineering

Y
Empirical .| Maintenance| |Social/Human
Softw. Eng. & Evolution | Aspects

Social
Network
Analysis

Metrics &
Quantitative
Methods

Mining
Software
Repositories,

Figure 1.1: Key fields, concepts and techniques (and their relationships) dealt with in this dissertation. As
a field of study, the libre software phenomenon and especially large libre software projects (in software and
community size) have been selected.

software evolution studies, and analyze how we can use the data for other purposes, such as to specify
the maintainability of the software.

Beyond technical questions, in this dissertation we will study the human and social aspects related
to the development of software. These are especially important in libre software environments as
large projects are heavily based on the integration of new members into the development team and
on fostering external contributions made by volunteers. Our intention is to go beyond social network
analysis and to try to find out how communities around large libre software projects are, how they
are structured, and how they change over time, among other issues.

1.1 Development of libre software

Libre software has lately attracted, without any doubt, a lot of attention in academia, industry and
among end-users. Although its philosophical principles go back to the eighties!®, it has not been until
a few years ago when with the proliferation of Internet connections it has shown itself as a valid
development and distribution model. There is an ample debate about the implications and future
possibilities that libre software offers. In this regard, many argue that it is becoming a threat for the
traditional software model, where closed development environments and business practices oriented
towards selling software licenses are the rule.

The libre software phenomenon has supposed a major challenge in the way software is created. New
paradigms regarding legal, technical, knowledge dissemination and governance issues have converted
it into an interesting research topic. In the case of software engineering, the set of technical and
technological practices in some large libre software projects has awoken enormous interest. But, even
though the most prominent elements for software engineering researchers have been technical ones,
in the author’s opinion, other aspects related to libre software cannot be left aside: concepts like
community and social interaction are of great importance when interpreting and understanding many

In fact, before the eighties libre software already existed de facto, being even its history as old as that of the own
software [Salus, 2005; Williams, 2002].

1.1. DEVELOPMENT OF LIBRE SOFTWARE 5
questions.

1.1.1 Definition of libre software

Libre software is software that has been released under the terms of a license that complies with the
four freedoms [Stallman, 1999; Stallman et al., 2002]. These freedoms are:

e The freedom to run the program, for any purpose.

e The freedom to modify the program to suit your needs. (To make this freedom effective in
practice, you must have access to the source code, since making changes in a program without
having the source code is exceedingly difficult.)

e The freedom to redistribute copies, either gratis or for a fee.

e The freedom to distribute modified versions of the program, so that the community can benefit
from your improvements.

The definition of libre software does not explicitly mention the requirement of having the possibility
of accessing the source code, but the freedoms to modify, adapt and redistribute the software implicitly
point out that the source code can be obtained from the authors. Besides, there is no mention of the
development process in the definition. The freedoms that make a software libre are related to the way a
person can use, copy, modify and redistribute a software, not to the methods used for its development.

We will develop the dichotomy between the freedoms and the development methods below (in
subsection 1.1.2), but before we should explain the rationale for the use of the term “libre software”
in this dissertation. Because of the polysemic meaning of free in the English language, some notables
of the libre software phenomenon launched in 1998 the Open Source Initiative and created the Open
Source Definition [Perens, 1999]. Besides avoiding the confusion with the term free, they aimed to
promote the technical advantages of the availability of source code. Although the set of licenses that
conform with the Open Source Definition is with some minor exceptions the same as the one considered
free software by the Free Software Foundation (the main proponent of the term “free software”), this
initiative has been strongly criticized by the latter arguing that freedom is placed into a secondary
position with the term Open Source.

In this thesis we will use the term “libre software” to refer to code that is distributed under a license
that conforms to either the definition of “free software” (according to the Free Software Foundation)
or of ‘open source software” (according to the Open Source Initiative). Hence, licensing issues will not
be considered in this work.

The roots of the term libre software can be found in Europe (libre is used in Spanish and French
and is very similar to livre in Portuguese, to libero in Italian and to the word used in other Romance
languages) and this term a proposal to have a definite term which unambiguously denotes freedom
and at the same time can not be mistaken with a zero price. Although the use of the term “libre
software” is (still) unusual in English-speaking environments?, some important institutions (such as
the European Commission) and EU-funded projects (such as the FLOSS project® and its continuators
FLOSSPols* and FLOSSWorld® or the CALIBRE coordinated action®) use it.

1.1.2 Libre software, the cathedral and the bazaar

Libre software has mainly been a matter of software engineering research because of its development
methods and processes. To counter the existing general idea that there is a unique method to create
libre software, we must remark that this is not true: any project uses (or may use) its own model.

2For further historical information about the term libre software can be found in an article at the following URL:
http://sinetgy.org/jgb/articulos/libre-software-origin/.

3Free/Libre/Open Source Software: Survey and Study (acronym FLOSS): http://www.flossproject.org.

4Free/Libre/Open Source Software: Policy Support (acronym FLOSSPols): http://flosspols.org.

SFree/Libre/Open Source Software: Worldwide impact study (acronym FLOSSWorld): http://www.flossworld.org.

Co-ordinated Action on LIBRE software (acronym CALIBRE): http://www.calibre.ie.

6 CHAPTER 1. MOTIVATION

The main reason for this is, as we have already seen, that the definition of libre software does not
specify any technical indications on how software should be created. But, although any project could
develop the software on its own way, the experience of the last twenty years has shown us that projects
following certain practices have a higher tendency to be successful’. And the result is not a static
picture; new practices and methods are continuously tested and introduced in order to make the
development process more efficient. A paradigmatic example of a new practice can be found in the
recent use of bug-tracking systems, which were introduced in the late nineties and are now commonly
used in large libre software projects.

So even if any libre project could follow its own development methodologies and practices,
some common characteristics have been identified in those projects which have achieved a large
number of contributors. In a seminal work by Eric S. Raymond labeled “The Cathedral and the
Bazaar” [Raymond, 1998], the author established a parallelism on one hand between the way cathedrals
were built in the middle ages and how software has traditionally been build and on the other between
the functioning of an oriental bazaar and the way some libre software projects work.

For Raymond, building cathedrals required fixed roles (architects and workers), tight rules, no
interaction from the outside and a defined hierarchical decision structure. Software projects developed
using “traditional” methodologies coincide in defining roles (project managers and programmers),
in having central planning and in management and providing low interactivity with end-users. In
opposition to this, Raymond situated the bazaar. In a bazaar, exchanges occur spontaneously and
are not directed by anybody. In addition, there are no fixed roles and if there are, they change
frequently. Using the analogy in the software development field, the bazaar is a way of developing
software that aims to open the development process as much as possible, offering the possibility to
participate in development and distribution activities to anyone. As a case example for such type of
projects, Raymond presented some experiences from the Linux kernel and from fetchmail, a smaller
project led by himself.

There exists an widespread confusion that we should clarify as soon as possible: libre software and
the bazaar model are not synonymous. Freedom in software is a legal aspect that derives from the
Free Software Definition [Stallman, 1999] and is reflected in a software license. The bazaar is a concept
that belongs to the technical scope. To emphasize this point, we should mention that Raymond cited
well-known libre software projects such as GNU Emacs and the GNU Compiler Collection (GCC) as
projects that had a cathedral model although they were libre software. Actually, as Healy et al. have
demonstrated, a large amount of libre software projects are composed of a single developer or a small
development team where a bazaar development model is not possible [Healy & Schussman, 2003].

Still, a precise definition of the bazaar does not exist. There is no set of conditions that a project
has to obey or accomplish to be considered as developed following the bazaar model, so we cannot
know what projects belong to the bazaar and which do not. To add more controversy to this issue,
there are even some authors that argue that software development forms that are widely considered as
cathedral, for instance Microsoft programs, are really built by a bazaar [Bezroukov, 1997]. Although
an exact definition does not exist, we could say that there exists a consensus on the fact that all these
projects belong to such a development model.

For the purpose of this dissertation, we will focus on projects which are large in software size and in
user community. The rationale for this is that these types of projects have aroused most interest in the
software engineering community. Although large projects constitute a minority among the more than
100,000 calculated libre software projects that are available today, they have attracted the attention
mostly of the public, the industry and the academia. From the software engineering perspective,
they have a set of characteristics that makes them an interesting matter of study: they have an open
development model to occasional contributors; they offer external contributors the possibility to get
integrated into the development team; there are large amounts of contributions made by volunteers;
they are developed in a distributed (global) software development environment; they foster frequent
interactions with end-users; they make heavy use of telematic tools; and they offer flexible and dynamic

"It should be noted that there is no clear definition of what a successful libre software project is. In traditional,
industrial environments success is generally measured in economic terms; i.e. a software project that provides benefits.
For libre software, other reasons should obviously be considered. For a detailed discussion about defining success in the
libre software world see [Crowston et al., 2003b].

1.2. SOFTWARE ENGINEERING REGARDING LIBRE SOFTWARE 7

processes and management models. Some authors have argued that the libre software phenomenon
does not add any innovative ideas to the software engineering landscape [Fuggetta, 2003]. Even
if the elements cited above do certainly appear in other ways of software development, this set of
characteristics can only be found as a whole in libre software. So, if maybe not all elements are
exclusive to libre software, the sum of all of them is unique and worth to be considered as a matter of
study.

1.2 Software Engineering regarding Libre Software

In a famous essay written in the mid eighties entitled “No silver bullet”, Frederick P. Brooks stated
that there is no perspective in the near future that will make software engineering improve an order
of magnitude [Brooks, 1987]. Nonetheless, he proposed a set of aspects which he thought could push
the development if not an order of magnitude at least the most promising achievements:

e Buy versus build. It is better to obtain components from third parties than to create them
by ourselves. The explanation that usually is given for this recommendation is that project
managers and developers tend to minimize the amount of work that has to be devoted to build
a new software system from scratch and to maximize the effort required to (re)use an already
existing system.

e Requirements refinement and rapid prototyping. Allow to know with more detail what is wanted
as feedback is augmented.

e Great designers. Errors found in early stages of the development process are easier (and thus
cheaper) to resolve, especially attending to the architectural design of the software. Having good
designers with much experience in the team makes this more probable.

Some authors have argued that all these points are present in the development of libre
software [Daffara, 2002]. The first recommendation can be transformed into taking already existing
code or using libraries or components from other libre software projects. By doing this, we should
have code that has already been tested and debugged by a third party.

The second point is widely known as the “release early, release often” paradigm in the libre
software world (as it has been coined by Raymond [Raymond, 1998]). Following the way Linux and
other prominent projects have evolved, a small and promising prototype should be published at the
beginning of the project and subsequent releases should be made periodically. In projects with an
ample surrounding community, feedback (suggestions and error reports) from testers and end-users
is obtained and can be used both to enhance the quality of the software and to lead the future
development.

Finally, to have great designers is indirectly due to meritocracy. As we will see in the related
research (chapter 2), an extensive body of literature demonstrate that a small amount of very
active developers is responsible for a vast portion of the total code and activity that concerns
libre software projects [Ghosh & Prakash, 2000; Mockus et al., 2002; Koch & Schneider, 2002;
Dinh-Trong & Bieman, 2005]. These developers are known as the core group and serve generally
as leaders of the project. Becoming part of this group requires recognition by the peers and this
supposes an important contribution to the project. So, in general, the core group is composed of
members who are experts and skilled in the technologies and in the project domain.

But beyond Brooks’ (qualitative) recommendations and, independently of how well or badly libre
software may fit them, there is an additional (quantitative) characteristic that should be considered and
which is a central to this thesis: the measurement of the software development process. In this sense,
libre software constitutes a very good benchmark for comparing software practices and techniques, and
it is an excellent framework for studying software engineering. Measuring the development process
may allow managing the project, both from the technical point of view or from the social perspective.
This is especially significant in libre software environments where feedback has shown to be of great
importance and where the integration of external members constitutes one of the basic elements for a

8 CHAPTER 1. MOTIVATION

sustainable development. Thus to have up-to-date information over the project’s life-cycle will enable
developers and managers to be on top of it.

1.2.1 Empirical Software Engineering

Empirical software engineering is a field of software engineering aimed at applying empirical theories
and methods for understanding and improving the software development process and product. Many
studies in software engineering have historically suffered from a lack of data. Even if traditionally
software environments have produced this kind of data, they have not been accessible to researchers.
In the seldom cases where data was accessible, it could not be offered publicly to other researchers
that could verify and reproduce methodology and results.

Libre software provides software engineering researchers not only with the possibility of accessing
to a large amount of data that is publicly available on the Internet. Anyone can gather it in a
(almost) non-intrusive way, so reproducing studies and performing new analyses on the same data
set is possible. This situation has not been common in software engineering practice during the last
decades, although in recent times some efforts towards sharing datasets publicly have been started
(for example, the PROMISE Software Engineering Repository [Sayyad Shirabad & Menzies, 2005)).

Mining Software Repositories and quantitative methods

An important part of this work will be devoted to describe the data sources, in general software
repositories, that will make our analyses possible. Software repositories go beyond the product of the
development process (the software itself) and include source control systems, archived communications
between the developers, bug tracking systems, and the archives of other telematic tools that are used
during the development process. In the case of libre software, the availability of software repositories
is, in fact, a consequence of its distributed and open nature. All this information is made available so
that developers all around the globe can participate in the development process. It is also public in
order to increase the diffusion of information among project participants and others who may want to
collaborate in the future.

There is a voluminous literature devoted to mining software repositories in recent times, both in
the proprietary and in the libre software realms. Closely related to these issues are the works that have
focused on historic databases on software development, extracting information from them to better
understand and improve the underlying development process [Mockus & Votta, 2000; Gall et al., 1997;
Atkins et al., 1999; 2002; Graves & Mockus, 1998]. Some authors have looked at the versioning
system, reporting the impact of software tools on the development process [Atkins et al., 1999;
2002] or at the identification of the reasons for changing the software [Mockus & Votta, 2000;
Zimmermann et al., 2005].

From the research perspective, there are many potential benefits from mining software repositories
as mining allows to improve software design and reuse in order to gain information that supports
software maintenance and evolution and to track methods and practices in use. And all this
information can be obtained empirically and shared freely (considering at the same time privacy
issues for data related to developers, as we will see in section 3.7). Some efforts towards automatic
measurement of information surrounding these software projects have been proposed [Germin &
Mockus, 2003] and much of the effort of this thesis has precisely been concentrated on automating
data retrieval, extraction and analysis.

One of the goals of software engineering has been to measure software projects and to have a small
set of parameters that allow characterizing a software project. The amount of data that we handle
and the various perspectives that we take into account in the research of libre software projects makes
the use of metrics and indexes essential.

Metrics characterize a special attribute of an entity by assigning a number (in some cases, a symbol)
to this entity [Fenton, 1991]. Fenton differentiates between three types of entities (processes, products
and resources) and also differentiates for each entity between two attributes that can be measured:
internal and external. Internal attributes can be measured on the entity, while external attributes have
to be set in a context in order to be measured. Processes are activities that usually involve having

1.2. SOFTWARE ENGINEERING REGARDING LIBRE SOFTWARE 9

time as a factor. Internal attributes for processes are time, effort or the frequency of a factor arising.
Products are given by the source code or the documentation produced throughout the whole life-cycle.
Resources are the inputs used for the development and include, among others, human resources and
working conditions.

In this thesis we will focus generally on some internal attributes of these three entities. The
time axes will have special consideration regarding processes (with data extracted from source control
systems, communication archives and defect tracking systems). Product metrics will be considered
in the analysis of software size and software growth, while there will be many measures focused on
human resources, i.e. developers and other contributors working on libre software projects.

1.2.2 Software Maintenance and Evolution

Software maintenance is the last phase of the software life-cycle, which starts with its first release and
has to face the problems of correcting errors and enhancing the software to adapt it to new needs
arisen. The definition of software maintenance by the IEEE standards is “[tJhe modification of a
software product after delivery to correct faults, to improve performance or other attributes, or to
adapt the product to a modified environment”.

Although historically the software development process previous to the first release has been the one
that has received most of the attention and resources, software maintenance is the software engineering
activity that takes most of the life cycle of a software system. According to some studies, this is the
most costly phase, ranging from one to over one hundred times the development cost [Sayyad Shirabad,
2004; Boehm, 1975; Schach, 2002].

The fact that libre software is prototypic means that from a very early stage of its development
process software maintenance (and evolution, see below) takes place. There have been defined several
types of software maintenance: corrective, perfective and adaptative [Swanson, 1976]. Corrective
maintenance is the removal of errors, perfective maintenance is performed to enhance the software
system and adaptative maintenance is carried out when the software needs to be adjusted to a new
hardware environments.

Strongly tied to software maintenance is the concept of software evolution. The term software
evolution does not have a standard definition, although it has been commonly adopted by industry
and academia because of its growing importance in recent years. Arthur describes software evolution
as “[a] continuous change from a lesser, simpler, or worse state to a higher or better state [for a
software system]” [Arthur, 1988]. The most cited works in this field are those by Lehman et al.,
who have promulgated over the years a set of laws of software evolution empirically observed in
industrial software systems [Lehman & Belady, 1985; Lehman et al., 1997; Ramil & Lehman, 2000b;
Lehman & Ramil, 2001; Lehman et al., 2001]. In recent years, there have been some efforts (which
will be presented in chapter 2) have been devoted to investigate if these laws are applicable to the
development of libre software.

Both the facts that software evolution is by tradition empirically-oriented and that it looks at
how data changes over time make this body of research to be very close to what is the core of this
thesis. From the software maintenance point of view, we will present some techniques that will permit
learning if the software has been maintained or not. We will try to infer from this information how
maintainable the project is. Regarding software evolution, we have entered the debate about libre
software projects, fulfilling or not the laws of software evolution or not, by studying a set of libre
software applications. In addition, we have also studied the evolution of a software compilation (i.e.
the Debian GNU/Linux software distribution) over time.

1.2.3 Social aspects of (libre) software development

The final theme of this thesis is dedicated to those who are behind the development of libre software:
the developers. This study is made possible empirically, because we are able to track the individual
activity of participants in the software repositories. Beyond any doubt, the management of human
resources is an important part of all software developments. In the case of libre software, we are
frequently confronted with activities that are done by volunteers. This has to be seen not only at the

10 CHAPTER 1. MOTIVATION

individual (developer) level, but also in an aggregated manner. Concepts like community or feedback
have gained a lot of importance and discriminate those projects being successful from those projects
which will have no more than a dozen end-users.

Taking this into account, it sounds reasonable to study in depth how developers relate with among
themselves, how they are organized, how they take decisions, and how they distribute the work load,
among other questions. The application of techniques already used in other fields, such as social
network analyses, may help to identify those developers who have strategic positions in the community.
Considering the distribution of work, we will study if there exists specialization in the community, i.e.,
if some developers are keener to work on certain aspects of the project while others center themselves
on other aspects.

On the other hand, it is interesting to note the question of the evolution of the community along
a period of time. We have already shown that some works have found that a small set of persons is
responsible for a high amount of activity in libre software projects. We will try to find out how the
composition of this group evolves, and if it evolves at all, how the integration process of new members
takes place.

All these activities are a first step towards advancing in the research of the productivity of single
developers in libre software, as well as learning how productivity is affected by the environment in libre
software projects. These questions are especially complex in the libre software world in comparison
to traditional software developments as most developers are volunteers and here task-assignment does
not follow the same rules.

1.3 Goals of the thesis

The main goal of this thesis is to gain some understanding over the processes and factors that are
important in the development of libre software projects. We will therefore use a software engineering
point of view and benefit from the large amount of data that such type of projects provide publicly
over the Internet. In other words, this work will try to obtain a better understanding of the
libre software phenomenon analyzing methodically and empirically publicly available traces from the
software development process.

This thesis should be classified among the efforts carried out for a better understanding of the libre
software phenomenon. Because of its recent popularity and of some of its characteristics (distributed
development, involvement of volunteers, self-organization, among others), libre software has to deal
with more complexity than traditional software development environments. The fact that it has been
only partially understood has provoked that a certain mystification of this phenomenon exists. Many
personal opinions and perceptions in the first studies together with a lack of data helped to build up
this idea. Our approach in this dissertation is hence closer to data and facts.

To a certain point, we may find in medical exams a good analogy of the goals of this dissertation.
In the medical sciences, a doctor may read from the data of a blood analysis how healthy a patient
is and which values should be corrected. Our aim in the long run with this thesis is to have a similar
approach for software projects (as depicted in figure 1.2). It should be noted that to make this possible,
it is necessary that two conditions are met: first, that values related to the development of a software
project may be quantified and second, that we have the ability to interpret and classify the data. Once
this has been solved, we should be in a position where we could identify those parameters that show
unhealthy trends and that should be corrected. Of course, for the fulfillment of the second condition
we require a knowledge base which allows us to determine what values can be considered as healthy.
In addition, knowledge about how changing these values in the right direction is needed. All this
knowledge can only be obtained by the continuous experience acquired from the analysis of a large
quantity of (libre) software projects.

This thesis targets specifically the first of the two conditions, the one that is concerned with the
quantification of parameters with which we will be able to characterize a software project. Therefore,
we will make an exhaustive study of the data sources in order to know the kind of data we are able
to obtain and of the analyses that we can perform on them. Afterwards, data will be analyzed from
various perspectives, with special interest in those that will allow us to better know, on the one hand,

1.4. CONTRIBUTIONS OF THIS THESIS 11

Experience

Softwa&)_) Data Analysis v

Project

> » Report

Automatic
Report Generator

Software
Engineer

Figure 1.2: The goal in the long run is to have such an automatic report generator. This thesis is heavily
balanced towards the data analysis and all the tasks that it involves (description of data sources, extraction,
methodologies, etc.), while the experience acquired should be increased in the future with the study of many
more (libre) software projects.

the innovative ways of organizing human resources in libre software, paying special attention to self-
organization, distribution of tasks, creation of communities and social structure of a project. On the
other hand, we are interested in technical aspects that may clarify the development process. We will
therefore reproduce some of the classical software engineering studies. In addition, we will study some
libre software projects and software compilations and how they evolve.

If possible, we will try that all the knowledge gained from our work -including the methodological
one and the knowledge referred as lessons learned- could be shared by other members of the scientific
community, and used in the own libre software projects. We look forward to being able to offer the
data publicly (preserving the anonymity of the persons involved in the development) and to automatize
as much as possible the extraction and analysis processes.

Although the main topic of this work is libre software, many of the methods that have been applied
can be used in proprietary environments. This should be done in any case with care as some of the
intrinsic characteristics of the way libre software is developed are not given in other domains.

1.4 Contributions of this thesis

The main contributions of this thesis can be summarized as follows:

e This thesis describes the data sources, the retrieval and extraction methods and the data itself
that can be publicly found on the Internet about large libre software projects. The whole process
has been summarized in a methodology and a set of tools, so that studies can be reproduced
and enhanced by our and other research groups.

e This thesis is the first effort towards an exhaustive analysis of the libre software phenomenon.
For this, a high number of libre software projects have been studied. But, above all, the
methodologies and, especially, the tools used are the elements that make it possible to widen
the analysis of all libre software projects using development and intercommunicating tools.

Other, more specific, contributions of this thesis are:
e It gives a detailed summary of the research literature on software engineering research concerning

libre software and on the data sources that have been used so far (and how often they have been
used) in mining software repositories (chapter 2).

12 CHAPTER 1. MOTIVATION

e It verifies if large libre software applications follow the laws of software evolution (at least, one
of them). Therefore, the growth of some large libre software systems over time will be studied
and compared to classical assumptions (section 4.2).

e It studies the evolution of large libre software compilations taking into consideration the size of
all software included, the number of packages, the number and share of programming languages,
and other interesting parameters (section 4.3).

e It proposes a method to track and integrate information from developers from various sources
that preserves their privacy and at the same time allows other research groups to benefit from
the integration procedure and to publish the results in an anonymous way (section 3.7).

e [t provides a new method of measuring the maintenance performed on a software project and
discusses how we could use this information to infer the maintainability of that software in the
future (sections 3.3.3 and 4.4).

e [t studies the social structure of the communities of large libre software projects using techniques
from social network analysis (section 4.6).

e [t generalizes the concept of software evolution to other source artifacts that differ from source
code files written in a programming language (for instance documentation, translation and user
interface files) (sections 3.2.2 and 4.5).

e [t analyzes the composition of the leading core group over time and how developers that
belonging to it have been integrated into the project (section 4.7).

e [t provides some lessons learned about libre software development, with special attention to large
(in software size and number of contributors) libre software projects (sections 4.7 and 4.8).

e It presents a model that explains the libre software phenomenon from a macroscopic point of
view using an analogy from biology (section 5.2).

1.5 Structure of the thesis

The structure of this thesis is as follows: chapter 2 is devoted to related research and a review of
the papers that study the libre software phenomenon from a software engineering perspective. Other
studies that are related to mining software repositories and to quantitative methods will also be
introduced even if they do not target specifically libre software projects. Chapter 3 is a description of
the data sources and the data that we can obtain from libre software project repositories. Although
this part is already a main contribution of this thesis, it contains some ideas that have been already
proposed by other authors; we could have included them in the chapter devoted to the related research,
but have not done so for the sake of clarity and homogeneity.

Chapter 4 is the main body of this work. It contains a set of analyses and methodologies that can
be applied to the data obtained and described in the previous one. The analyses range from technical-
oriented ones to social aspects. Specifically, we perform a software evolution analysis on a large set
of libre software projects, a software evolution analysis on a software compilation (a GNU/Linux
distribution), a methodology that allows to see how much a software has been maintained and tries
to infer its future maintainability, a file-type based analysis that attempts to identify the organization
of tasks in the development of libre software, an analysis of the evolution of contributors (mainly
volunteers) of libre software projects; and finally, a study that researches how members that hold
currently a leading position are integrated into the project.

Chapter 5, includes the lessons learned from the study of the data sources and the set of analysis
performed in chapter 4 to some large libre software projects used as case studies. It also includes
a model that tries to explain on a macroscopic way the processes in libre software projects. This
model will be verified against quantitative data obtained from results presented in literature and in
this thesis. Finally, chapter 6 contains the conclusions of this work.

Chapter 2

Related Research

Research is to see what everybody else has seen, and to think what nobody else has
thought.
Albert Szent-Gyoergi

This chapter is devoted to give a historical perspective of software engineering research on the
libre software phenomenon. We will start presenting some first approaches to the development
processes from outside the software engineering academic scope in the late nineties, then show some
influences from traditional software engineering literature and finally give a detailed description of
related research.

The main objective of software engineers that have studied the libre software phenomenon has
been to get a global picture of the development and associated processes that take place. This picture
is not limited to technical aspects; social issues such as organization, governance, decision structure,
integration and task assignment are also of great interest. So, besides software engineers, researchers
from many other areas have been interested in the last years in the libre software phenomenon - mainly
sociologists, psychologists and economists.

There have been many efforts that study single projects and some research papers even have tried
to do analyses on a large set of projects. But cases of detailed studies of large collections of projects (in
the hundreds), crossing information from several different kinds of repositories, or analysis of historic
patterns in different projects over long periods of time, are still rare.

This chapter has been divided in five sections: the first section gives historical evidence of such
techniques even before using them on libre software; in other words, even though classical environments
did not provide with such a rich set of data, there were already some efforts in that direction. The
second one will be centered on technical details of the data retrieval process, presenting techniques
and tools that can be found in the literature. The third section will be devoted to empirical software
engineering studies. Some of the investigations that we will see there are classical studies that have
been reproduced for libre software environments such as software maintenance, software evolution,
software comprehension, the study of product families or field studies. Other investigations such as
the study of software compilations or holistic (ecology) studies are technical-related, but have not been
that frequent in classical literature. The fourth section is devoted to human-related and community
issues. In this sense, libre software projects have been specially innovative, as flexible procedures
and self-organization are the rule. In addition, most libre software developers are volunteers and do
self-selected tasks. This provides with a large set of questions around developers that some research
groups have tried to answer. Finally, the fifth section summarizes the data sources that have been
used in literature.

2.1 The precursors: first papers about libre software development

Although libre software can be traced to the 1980s and even earlier [Salus, 2005], it became a matter
of study only in the late 1990s. First voices were not from scholar researchers, but from participants
in the libre software community itself who started to publish research results about how libre software

13

14 CHAPTER 2. RELATED RESEARCH

was developed, or about its economic consequences. Only around the year 2000, academic papers
started to appear in workshops and congresses, and ended later in research journals and magazines.
In the following sections we will briefly review the pre-academic era of research on libre software,
which has had a high influence in later developments, when more sophisticated and methodologically
organized research began.

2.1.1 The cathedral and the bazaar

The most prominent and influential text of this time is for sure The Cathedral and the
Bazaar [Raymond, 1998], the well known essay by Eric S. Raymond. As one of the first attempts
to characterize the libre software development model, it is based on the experience of the author.
Although it is not supported by an empirical study of a meaningful quantity of projects, it reports
several peculiarities present in many libre software projects, and drew the attention from many people
who started to perceive something peculiar and worth studying in the libre software development.
This work is at the same time an essay and a detailed case study of two libre software projects: the
Linux kernel originally developed by Linus Torvalds and an own project named fetchmail, a small
email-retrieval utility.

Before that essay, most of the literature about libre software had been concerned with the ethical
and philosophical aspects ([Stallman, 1999], although published later, is a good example), or in the
use of applications, with little attention to the development process itself. After an extensive research
on the literature on libre software development, we have found almost no significant references before
1998.

The most important contribution of the Cathedral and the Bazaar is the creation of a metaphor.
In it, classical software development models are modeled as cathedrals, in Raymond’s own words
“carefully crafted by individual wizards or small bands of mages working in splendid isolation, with
no beat to be released before its time”. Raymond does not only include here heavy development
processes used in industry by software companies, but also some libre software projects from the GNU
project, such as the GNU Compiler Collection (GCC) or the GNU Emacs editor. The development
process is, in such cases, centralized and highly dependent on a few persons whose roles are tightly
defined. Release management follows a closed planning, user feedback is limited and contributions by
external developers are not fostered.

In opposition to the cathedral we find the bazaar, summarized as “Linus Torvald’s style of
development - release early and often, delegate everything you can, be open to the point of
promiscuity”. Raymond offers a list of best practices he has extracted from experience with the
development of the Linux kernel. The most important lessons have been summarized in following list:

e Successful libre software projects start by scratching a developer’s itch (lesson 1). This implicitly
states two ideas: the first one is that there exists a lack of planning in the first stages. A developer
has a need and enough knowledge to create a software to meet this need. No requirements have
to be taken from other users, no misunderstandings will arise as the end-user is the developer
himself. Second, it gives an idea of why the governance and the decisions in libre software are
oriented towards those who actually code!. We will see in later sections (see 2.3.5) that this has
changed since Raymond wrote his essay.

e “Plan to throw one away; you will anyhow.” (Fred Brooks, MMM, Chapter 11 [Frederick
P. Brooks, 1978]) (lesson 3). The prototypic way of developing in libre software is summarized
here.

e The software should be released early and often (lesson 7). The rational of the release early
practice obeys to the rule that a developer should publish a first, small but well-structured
version to attract other developers who might have the same need. The purpose of the release
often rule is to have a fast cyclical spiral development process. Mathematical models have shown
that frequent versions foster feedback and minor bug-fixing times (in the mean) [Challet & Du,
2003].

L“Show me the code” is one of Linus Torvald’s most known phrases when discussions appear in the mailing lists.

2.1. THE PRECURSORS: FIRST PAPERS ABOUT LIBRE SOFTWARE DEVELOPMENT 15

e Tightly tied to the previous point is that users should be treated as co-developers (lesson 6).
Such an attitude may encourage participation in the project and imply rapid code improvement
and effective debugging. This is summarized in Linus’ Law which says that “given a large enough
beta-tester and co-developer base, almost every problem will be characterized quickly and the
fix obvious to someone” (lesson 8). The community (and its size) matters. Linus’ Law could be
reworded as debugging being a task that can be made efficiently in parallel, so that limitations
given by Brooks’ Law [Frederick P. Brooks, 1978] do not attend. The rationale for this is that
less communication among developers while testing and debugging a software is needed.

e There should be a high emphasis in rewriting and reusing code (lesson 2). A good code base will
enhance the quality of the software and make a lower barrier of entry possible. Other developers
will be more inclined to join. The software license allows to reuse code from other projects,
that usually has already been debugged and enhanced, so this task has not to be done by the
development team.

e Finally, if the original author (and usually project leader) loses interest in the software, his last
duty is to find a successor for the project (lesson 5).

The other main idea of this work is the importance of having communities around software projects.
Raymond argues that while coding is an activity that remains essentially solitary, successful software
comes “from harnessing the attention and brainpower of entire communities”. Those who create
projects which are open and enable the possibility of submitting feedback, code contributions or
external debugging have a clear advantage over developers in closed source projects.

Besides its influence, the geographical dispersion and the intervention of many different actors
in the development of libre software has made it a phenomenon difficult to study. Some statements
have been taken for granted even if no data supports them. It seems from the reading of essays as
The Cathedral and The Bazaar that a kind of magic is involved in the process. This is, of course,
scientifically not acceptable. It is a duty of software engineering researchers to try to understand the
development processes in detail and to provide ways to adapt the lessons learned to other projects.

Subsequent research has worked on Raymond’s ideas and has tried to conceptualize in a more formal
way the lessons learned depicted in his seminal work. In this sense, Senyard and Michlmayr define the
set of activities for a libre software project to become a bazaar-driven project as the following [Senyard
& Michlmayr, 2004]:

—_

. A prototype with plausible promise. Attention from the libre software community should be
gained in the early stages of the project by a small but functional software.

2. Modular design. Such a characteristic will allow to lower the communication requirements among
the development team. Developers or developer teams may work independently on a part of the
project without having many interferences from the other groups.

3. Source code available, usable (compiles and executes) and workable. As a modular design is
pretended, the software will be composed of many parts. To avoid the problems that arise
when integrating all components at the end of the development phase, there should be always
a working version that is downloadable and usable without much effort. This lowers the barrier
of entry for new users and co-developers.

4. Community surrounding the project. Users and co-developers are the ones who will make the
project evolve. A small community will not be very attractive to new users and co-developers.
Building a community is based on a network effect: attracting users and co-developers will
attract more users and co-developers. Entering such a network effect is one of the most relevant
goals of companies involved in the development of libre software and thus raises many research
questions.

5. Communication and contribution mechanisms, both technical and human. Although
communication among the project members is tried to be minimized by modularization, it cannot

16 CHAPTER 2. RELATED RESEARCH

be avoided. In fact, the communication and contribution mechanisms are one of the main parts
of libre software development and have to be managed both technically (by tools that have
become standard in the development of libre software as mailing lists, bug-tracking system or
versioning systems) and from a social perspective (information managers, web administrator,
among others).

6. Well-defined scope of the project. The UNIX culture of having small and specific-purpose
programs which may be used together with other tools is still valid.

7. Defined coding standards or style. The objective is to help code reading to developers that form
the developer group and to ease the contributions of external developers.

8. Attractive license for external contributions. Some licenses do not allow to integrate code from
other libre software projects easily or may have tricky clauses.

9. Suitable management style. The license of the project allows to create a new, independent
project based on the project’s source code. This is, of course, an uninteresting situation as the
intention is to embrace as many external contributions as possible, and having several projects
with the same source code base may split the community. Hence, a balance should exist between
taking (too much) control over the project and providing enough freedom to contributors. A
wide range of scenarios can be observed in the libre software world, that range from the rigid
management style of the Linux kernel [Iannacci, 2003] to other more loose styles as those in use
at KDE or GNOME [German, 2004b].

10. Appropriate amount of project documentation. Software, code and processes should be properly
documented to facilitate the use of the software and collaboration of new developers.

This list has been given from the historical experience in many large libre software systems, but it
is by no way a recipe for achieving a successful libre software project. The authors note that the first
six are crucial, while the seventh to eleventh are important and the last one is desirable.

The interest that libre software has gained in recent times among industry has also had as an effect
that some already existing proprietary software (sometimes up to several million lines of code) has
been released under a libre software license, not fulfilling the first condition. This is the case of the
Morzilla Internet suite released by Netscape or the OpenOffice.org office suite by Sun Microsystems.

2.1.2 Early follow-ups

The influence of The Cathedral and the Bazaar has been large. Soon, other authors have built on
top of it, or have criticized its main results. Probably the first well known follow-up came from
Bezroukov [Bezroukov, 1997] whose main point was that the bazaar development model is not a
revolutionary phenomenon, but just another form of “scientific community”. Bezroukov considers
Linux (as a development model) to be just the natural evolution of the practices found in the GNU
project. All in all, Raymond’s ideas are deemed as too much simple to match reality, and the article
proposes some other models based on academic research that would explain the phenomenon better.

Another perspective is provided by Vixie, who compares the classical waterfall model with the
processes that are used in the production of libre software [Vixie, 1999]. While the first one is
composed of a set of complete and logical sequence of steps with the goal of obtaining a final product,
the second relies on a lack of formal methods, mainly avoided because they are not satisfactory
for programmers who voluntarily devote their time to programming. In the opinion of the author,
lack of formality is compensated by user feedback, and by the introduction of software engineering
methods when developers face some specific problems for which they are experienced enough to define
a methodology. Therefore, no ad-hoc development model for libre software projects exists; the methods
and practices evolve with the project and usually show a tendency to the formalization of tasks.

In addition to these studies, many others were published during the early 2000s. A good, in depth
description of the state of the art in research about libre software by that time is the book by Feller
and Fitzgerald [Feller & Fitzgerald, 2002], which provides a good view of the landscape of early models
and learnings after Raymond’s essay.

2.2. MINING DATA SOURCES 17

2.1.3 Towards empirical-based studies

All studies presented so far have tried to obtain qualitative conclusions from impressions gained from
a limited number of libre software projects. Soon, the limitations of these approaches were identified
and a more traditional, approach, based on quantitative data was adopted by many research groups.

Although we will see that before 2002 there were also some empirical studies of this kind, it is that
year that can be considered as the starting point of a common trend. It was at that point over time
when several research groups realized that the complexity of the libre software phenomenon cannot be
understood without previously acquiring factual data from projects. The main reasons for this trend
were the great diversity of the libre software development practices observed from project to project
(which made generalizations risky), and the promising research path of first empirical studies.

There were also influences from other communities that were not interested in libre software per
se, but saw in the availability of data an opportunity of obtaining evidence that could validate some
preexisting theories and models. In this area, it is worth mentioning the community interested
in mining software repositories?, with researchers coming from various software engineering fields:
machine learning, software evolution, software effort calculation, software maintenance, software
reengineering and other.

2.2 Mining data sources

An important part of this thesis is devoted to the identification and description of the data sources
that libre software projects offer publicly. Although being a relatively new field of research, much
related work exists. The mining software literature has converted itself in some cases in an end in
itself, and not the means to an end. Thus, some of the research activities have been more focused
on how to mine the available data sources with information about libre software projects than in
analyzing such data to get higher level information. In other cases, the lessons learned have been of
relative little importance compared with the understanding of the mining process.

The next subsection describes the main lines of the methodology usually applied, with different
degrees of fidelity. After it, we will present the most used data sources in literature, with special
attention to the methods that have been applied to extract, clean and normalize the data set. In
addition, methods of fact extraction and the most common used metrics will be presented.

2.2.1 Methodology

Gasser et al. postulate the set of characteristics that empirical approaches should consider when mining
software repositories [Gasser et al., 2004]: (1) direct reflection of reality, (2) adequate coverage, (3)
examination of representative levels of variance, (4) demonstration of adequate statistical significance,
(5) comparability across projects, (6) repeatability, and (7) testability and evaluability of the provided
results.

In addition, four not independent main elements can be identified for these studies: software
artifacts, software processes, development communities and knowledge of the participants.

Therefore, any infrastructure that allows for this kind of empirical research should include data
sets about libre software development elements that

e are of an empirical and natural origin (this assumption targets characteristics 1 and 2),
e are of a size large enough (characteristics 2, 3 and 4), and

e offer the possibility of sharing data in common frameworks and representation (characteristics
5 and 6).

The nature of the empirical data may vary substantially. It may be content (which includes
communications, documentation and development data), media sources (i.e. communications systems

2 A good sample of this community can be found in the Mining Software Repositories workshop, co-located with ICSE,
see http://msr.uwaterloo.ca/msr2004/ and http://msr.uwaterloo.ca/msr2005/.

18 CHAPTER 2. RELATED RESEARCH

or versioning systems, among others) or locations (as community websites, software repositories, and
other). Interestingly enough these data are the byproduct of the development, maintenance and other
project-related activities.

[Gasser et al., 2004]] also point out that data identification and preparation are key elements
of the research process, a process that has some associated difficulties. This process is in fact the
implementation of a methodology, which has following phases:

1. The discovery and proper selection of the data.
2. The access and gathering of the identified data.
3. The cleaning and normalization of the obtained data.

4. The enrichment of the data by aggregating links from another data sets, or by relating data sets
at different points over time.

In addition, standards for the representation of factual information should be adopted, to avoid
the dependency of the different services from which the data sets are obtained (for instance, the many
different versioning systems, or bug report systems, used in libre software projects).

2.2.2 Data sources

Any quantitative analysis has to start by identifying the data sources to be used. In the case of
libre software, fortunately many public repositories of information about the development process
exist. All these repositories are potential data sources. In a first approximation, the following rough
classification of those data sources can be considered:

e Data obtained from the products that are the result of the development process. Mainly this
affects source code, and sometimes the binary packages. Sometimes it includes documentation,
graphics and multimedia materials, GUI 3 design files, among others.

e Data obtained from tools used during the development process. Most projects use a versioning
system (usually a version control system, such as CVS or Subversion). This allows to retrieve the
current and past state of the source code and to obtain additional information on the changes
to the software: who has done them, when they have been done and other meta-data.

e Data obtained from the systems used to support communication among actors in the development
process. This includes mainly the information in mailing lists and forums used by developers to
communicate among themselves and with other parties interested in the project. But also some
other systems such as the usual bug control system, used to keep track of the communication of
bug reporters and developers, can be considered.

In most cases, all these data can be obtained from the same Internet site: the hosting site for the
project. Even hosting sites that provide facilities for thousands, or tens of thousands of projects exist.
This allows for the easy and automatized retrieval of data for huge quantities of projects. Some of
the most well known sites of this kind are SourceForge?, BerliOS®, Savannah® and Alioth?, although
many other have appeared in the last years. Some other projects, on the contrary, prefer to maintain
their own support site (especially when they are large enough in size, or when the project is driven by
a company). Nevertheless, they usually provide facilities of the same kind, and are also automatically
searchable and downloadable.

The research community has found in them a particularly rich source of data, as traces from using
the various tools can be linked together in many cases. But some intrinsic problems when mining
these repositories arise. Among others, the following can be highlighted [Howison & Crowston, 2004]:

3GUI is the acronym for graphical user interface.

4SourceForge is the largest and most popular development-supporting site: http://www.sourceforge.net

"BerliOS is a German-based site based on the SourceForge software: http://www.berlios.de

6Savannah is a project lead by the Free Software Foundation (also based on an enhanced version of the SourceForge
software): http://savannah.gnu.org

" Alioth is the development platform offered by the Debian project: http://alioth.debian.org

2.2. MINING DATA SOURCES 19

e The first set of problems is related to how to spider these sites. In most cases, access is not
granted to the database which stores the information, and all that can be done is to download
the HTML pages offered to the public. This means that tools that retrieve all the information
from the web have to take special care in not overloading the servers (for instance by waiting
after every single download). Even so, the risk of being banned exists.

e After spidering and storing the pages locally (which is highly recommended), parsing starts.
Here problems with unexpected characters, such as non-ASCII characters or HTML entities, are
specially perilous. On the other hand, trivial changes in the layout may make the parsing coded
not useful anymore.

e Incremental parsing is often not possible. This means that getting an update on the state of a
project, all the web pages with the data about that project have to be download again.

Sometimes XML or backend-type interfaces simplify this spidering activity. Using some of this
information and other techniques, the OSSMole® project has become a good example of what kind
of information can be obtained from a site like SourceForge (more about this will be introduced in
subsection 2.2.3).

The following subsections provide a summary about what information is being obtained from the
different data sources.

Source code

Source code is the main output of a software project, and has been a matter of study since the
beginnings of software development. Quantitative analyses of source code have for instance being of
paramount importance for effort estimation and complexity studies. Some of the data that can be
obtained from source code are:

e Lines of code, which come in different flavors. We can just count all the lines in files with source
code, or can use for more specialized concepts, such as physical or logical SLOC (source lines of
code?). SLOCs are more difficult to calculate since they are language-dependent, but they are
also more useful in many contexts.

e Complexity metrics, such as McCabe [McCabe, 1976], Halstead [Halstead, 1977] or more recent
object-oriented metrics [Zuse, 1991].

e Authorship information, which can usually be extracted from copyright notes in the source code.
In the case of libre software, those notes allow for the identification of individuals related to the
development of the code, and often to companies involved.

e Structural relationships. In most programming languages source code has indications that allow
to track dependencies and relationships among modules in a software package.

e Categories of source code. Sources of software systems do not contain only code written in a
programming language. Usually, some other artifacts, such as documentation files, translation
files or user interface definitions, can be identified and analyzed.

This kind of information can be obtained at different granularity levels, and be analyzed together
for a given software package or even a software distribution which integrates huge numbers of packages
(at a macroscopic level), or be scrutinized at the microscopic level. In addition, source code is usually
stored in a versioning system, which allows to retrieve snapshots of the software at any point in the
past. This is, of course, a good starting point for historical analysis on the evolution of any of the
former kind of information.

8http://ossmole.sourceforge.net
9SLOC is defined as “a line that finishes in a mark of new line or a mark of end of file, and that contains at least a
character that is not a blank space nor comment”.

20 CHAPTER 2. RELATED RESEARCH

Versioning systems

Versioning systems store records about any change performed, with detailed information of who
modified what parts of the code, and when. Fortunately, most libre software projects, and specially
the large ones, maintain public versioning system repositories, from which this information can be
easily extracted. This way the actions of developers can be tracked and related to the changes in the
code.

The most used versioning systems is CVS which can be seen as the de facto standard in the libre
software world (although some new generation tools, such as Subversion or Arch are substituting it
slowly). The usual methodology followed to get development information from CVS is described,
for instance, in [Zimmermann & Weissgerber, 2004] (for other tools the process can be somewhat
different):

e The first step deals with data extraction. Once we have obtained the raw information of the
module we are analyzing (usually by using the cvs log command), it is stored in a database. This
way information about all files and directories, revisions, tags'® and branches!! can be obtained.

e The second step is aimed at restoring transactions. CVS does not feature the concept of
atomic modification? (when changes on several files are done in the same transaction). Several
algorithms to identify those transactions exist, such as those based on fixed or sliding time
windows [Zimmermann & Weissgerber, 2004; German, 2004a; 2004b].

e The third step deals with further fine-detail analysis; the file-level granularity that CVS logs
provide is often not enough when the researcher is interested in changes at the module or
function level.

e A final step is devoted to data cleaning, including the identification of large transactions that
usually do not provide further insight to the object of study (for instance, changing the year in
the copyright statement in the top of files implies usually having a large transaction including
all files in the source code base).

Despite the high quantity of relevant data that can be obtained from CVS archives and similar
repositories, and the many studies published in this area, still some practical open challenges can be
pointed out. In [Germdan, 2004c] some of them are enounced: lack of common terminology in the
published studies, difficulty of using the CVS servers of some projects (for instance, because of the
stress put on them), and the need for test cases for tools being developed in this domain which would
help to homogenize and validate results.

Bug Tracking Systems

Bug tracking systems (BTS) are used to collect bug reports and feature enhancement petitions from
users and developers through a web interface. The most known BTS is the one developed by the
Mozilla project and called BugZilla!3. A bug-tracking system has several goals: first, it is an attempt
to ease the user feedback, so that it is complete and usable by the developer (it should be noted that
users do not have to know what type of information is important to solve their problem as they do
not know the internals of the software). Second, it allows to properly organize all requests by the
development team; if the project is too large, then this task may be taken over by a professional as it
is done for large projects as GNOME or Moxzilla'4. And last, it permits to track the number of errors
and their importance in the project and for any application or component that is part of it.

10A tag is a text label associated with a version of a file. It is generally used to specify all files that belong to a release.

"Branches are lines of development that diverge from the primary line of development. Branches allow for parallel
development; so a stable branch, where only errors are corrected, may coexist with a development one, where functionality
may be added.

12 Atomic modifications can also be considered to be as modification requests, a concept that is found in some papers
in research literature [Mockus & Votta, 2000; Eick et al., 2001; Mockus et al., 2002; Herbsleb et al., 2001].

Bhttp://www.bugzilla.org

14 A brief description of the tasks and lessons learned by the bugmaster of the GNOME project can be found in [Villa,
2003] and [Villa, 2005].

2.2. MINING DATA SOURCES 21

Each bug is given a unique number, so that it can be easily identified by developers. Some research
papers and tools use this unique number to link bugs in the bug-tracking system with the versioning
system [Mockus et al., 2002; German & Mockus, 2003, as we will see in section 3.3.1.

Usually the database behind any BTS is not available for public querying, which means that
without special arrangings with the projects, the researcher can only access to the web interface
(usually through HTML pages). Unfortunately this means a much higher stress on the BTS server,
and usually the impossibility of downloading information incrementally (that is, getting all the changes
to bug reports after a certain date).

Communication exchange

Although direct (face to face) communication among the members of a libre software can happen,
in most cases it is not usual. On the contrary, the preferred way of exchanging information are
multi-cast systems such as mailing lists or (web-based) forums in an asynchronous mode and Internet
Relay Chat (IRC) or Instant Messaging (IM) services for synchronous communications. Synchronous
communications could be stored and made publicly available, but this is not the usual situation. For
mailing lists and forums archival is done and, if available publicly, artifacts can be retrieved and
analyzed.

Mailing lists suppose the main decision and information exchange vehicle in libre software projects,
although if a project gets larger in size usually other complementary means are introduced [German,
2004b)].

Meta-data and other sources

Some other data sources have been mined. These are usually information sources that are not
traditional sources and that have been used in a minority of research studies. In any case, we include
them to give a broad perspective of the possibilities that exist beyond the ones presented above.

One of them are the changelogs that are used by developers for reporting in inverse chronological
order the changes that have been performed on the sources. Although changelogs do not have meta-
data and tag-syntax associated which would make them easy to parse, a GNU standard that is
more or less popular among libre software projects exists [Chen et al., 2004]. We can find different
approaches of data extracted from changelogs by Capiluppi [Capiluppi et al., 2003], Tuomi [Tuomi,
2004], German [Germéan & Mockus, 2003] and Chen et al. [Chen et al., 2004].

Another data source that has been used are the Linux Software Map entries. The Linux Software
Map is a database of software written or ported to Linux!'®. Applications and tools in that database
are described in a structured way, allowing to extract information easily about them as for instance the
maintainer name, the primary site of the software, its license, among others. Dempsey et al. [Dempsey
et al., 1999] used this information to analyze the geographical distribution of developers.

Finally, some authors opine that text should be treated as software and that the analysis software
repositories should be routinely augmented with the language text which is used to develop the software
systems [Dekhtyar et al., 2004].

2.2.3 Tools

Many tools can be used to retrieve information from the described data sources. Many of them are
themselves libre software, and therefore not only freely available to the research community, but can
also be enhanced or adapted to the specific needs of any research team. In this subsection, some of
them are described.

SLOCCount

SLOCCount'® is a tool authored by David Wheeler that gives the number of physical source lines
of code of a software program. SLOCCount takes as input a directory where the sources are stored,

5More information about the Linux Software Map can be found at http://lsm.execpc.com/lsm/.
http:/ /www.dwheeler.com/sloccount/

22 CHAPTER 2. RELATED RESEARCH

identifies (by a series of heuristics) the files that contain source code, recognizes for each of them (also
by means of heuristics) the programming language, and finally counts the number of source lines of
code they contain. SLOCS are parsed differently for different languages, which forces the identification
of programming languages.

SLOCCount also identifies identical files (by using MD5 hashes), and includes heuristics to detect
(and avoid counting) automatically generated code. These mechanisms are helpful when analyzing the
code, but have some deficiencies. Finding almost identical files using such hashes is not very effective.
In the second case, heuristics only take care of well-known and/or common cases, but do not detect
all of them, or others that may appear in future. Finally, SLOCCount uses its counting for calculating
the cost estimation that the Basic COCOMO model produces [Boehm, 1981].

SLOCCount has been used on studies on Red Hat [Wheeler, 2001] and on Debian [Gonzalez-
Barahona et al., 2001] as we will see in section 2.3.3.

SoftChange

SoftChange!” is a tool, developed using a clean room method by Daniel German and Audris Mockus,
that summarizes and analyzes software changes in versioning repositories (specifically CVS) and bug
tracking systems (specifically BugZilla and GNATS). The architecture of this tool can be split into
three components: the trails extractor which extracts software modification trails and inserts them
into a database, the fact enhancer that generates new facts from the data that had been stored in the
database and finally the visualizer which provides results through a web interface.

SoftChange uses a sliding window algorithm to rebuild atomic commits (the authors use originally
the term modification requests) and also performs an analysis of the changelogs, mailing lists and
the BugZilla bug tracking system. One of its features is the linkage of bugs from BugZilla and the
atomic commits in CVS by looking for bug ids in the CVS logs using regular expressions. This tool is
described in depth in [German, 2004c; Germéan & Hindle, 2005].

OSSMole

OSSMole!® is a project that pretends to provide raw data about libre software projects, mainly from
web-based development sites as SourceForge. The aim of the project goes farther beyond of being a
tool that extracts and analyzes a data set, as it provides the data it extracts and looks for donated
data sets from other research groups.

Basically, OSSMole retrieves the web pages with development information from the web-driven
development platform and and parses the web pages. The data obtained are stored into the database.
As the amount of projects that are hosted in SourceForge (the most popular development platform) is
in the order of the 100,000, and web page request flooding has to be avoided, the retrieval process may
take weeks [Conklin et al., 2005]. Using machines in parallel helps to lower this time span. OSSMole
is thus a tool that allows to analyze large amounts of libre software projects.

PieSpy

PieSpy!? is a tool that monitors IRC channels to find social relations among participants in those
channels. It is based on a set of heuristics that identify personal, but non-private conversations in
a channel. Once the links have been obtained, social network analysis can be done including the
graphical display of the relationships or animations with the evolving social network [Mutton, 2003].

Other tools

The following tools, although not specialized in milking project repositories, can also be used for some
kind of static analysis on the source code of any software project:

"http:/ /sourcechange.sourceforge.net/
Bhttp://osssmole.sourceforge.net
Yhttp://www.jibble.org/piespy/

2.2. MINING DATA SOURCES 23

e CCCC? stands from C and C++ Code Counter and is a tool that analyzes C++ and
Java files and generates a report on various metrics of the code. Metrics supported include
lines of code, McCabe’s complexity [McCabe, 1976] and metrics proposed by Chidamber &
Kemerer [Chidamber & Kemerer, 1994; Hitz & Montazeri, 1996] and Henry & Kafura [Henry et
al., 1981].

e LOCC?! supports hierarchical and incremental measurements that helps in estimation, planning
and other software engineering activities. The hierarchical size measurements refer to the number
of packages, classes, methods and lines of non-comment source code per method.

In addition, Chris Lott?? lists various static code analysis tools that compute metrics defined on C
and C++ source code. The metrics are primarily size and complexity of various types (lines of code,
Halstead [Halstead, 1977], McCabe [McCabe, 1976], among others).

2.2.4 Exchange formats and repositories

Tools are just a first step for making the research process as automatic as possible. As we have seen in
the previous subsection, we have in this regard already some solutions for many of the data sources.
But tools are only a means for acquiring the data that will be the basis of subsequent analysis and
research activities. So, having the possibility of accessing data once it has been retrieved, extracted,
cleaned, normalized and possibly enriched will provide researchers with further possibilities.

This is where exchange formats and repositories with raw or cooked data about libre software
development projects come in. Current state of the art in the field of libre software engineering and
even in the software engineering field is not very advanced to the knowledge of the author. So, first
attempts in this direction have used ideas from other areas.

In this line, probably the most used format today for the exchange of data (maybe after CSV
or SQL formats, which are not specifically oriented to this use) is ARFF2?3 (Attribute-Relation File
Format). ARFF files are ASCII text files that describe a list of instances sharing a set of attributes.
The format has been designed by the Machine Learning Project at the Department of Computer
Science of the University of Waikato for use with the Weka?* machine learning software. One of the
most well known archives of information about software development (in general, not specific to libre
software) using extensively this format is the PROMISE repository?® [Sayyad Shirabad & Menzies,
2005].

2.2.5 Integration of data from different sources

Libre software provides the possibility to study many traces left behind during the development
process. But unfortunately, the information is not structured in such a way that makes it easy to
interconnect traces related to the same artifact but coming from different sources. Therefore, methods
for the integration of the information gathered from several places have to be found. In this respect,
several possibilities have been explored, which could also be used in union:

e Integration through artifacts. We define a granularity level (project, directory, file, class, method
or even line) at which we identify all the actions related to every artifact.

e Integration by identification of traces from other sources. For instance we may find bug
report identifiers in version repository logs. Some other research groups already have started
to walk in this direction [Antoniol et al., 2005; Fischer et al., 2003; Mockus et al., 2002;
German & Mockus, 2003].

2Ohttp://ccce.sourceforge.net/

http://csdl.ics.hawaii.edu/Tools/LOCC/LOCC.html

http://www.chris-lott.org/resources/cmetrics/

ZFor a detailed description of the ARFF format, visit http://www.cs.waikato.ac.nz/ ml/weka/arff.html

24Weka is a libre software that allows to perform a collection of machine learning algorithms for data mining tasks.
More information can be found at: http://www.cs.waikato.ac.nz/ml/weka/.

Zhttp: //promise.site.uottawa.ca/SERepository/datasets-page.html

24 CHAPTER 2. RELATED RESEARCH

e Integration at the developer level. Actors that take part in the development process can be
identified, and their activity tracked in the various sources of information, even when different
identities are used (several e-mail address, logins, and even different spelling of real names).

In this thesis we will propose a methodology for integrating data at the developer level preserving
at the same time their privacy (see section 3.7).

2.3 Empirical software engineering studies

This section contains a summary of the technical analyses that have been done on libre software
projects. We will see that literature includes various angles of the libre software phenomenon. Studies
range from maintainability, evolution, product families and compilations, holistic and fine-grained
analyses to some field studies. Most of them have been performed and published in recent years and
many of them are simultaneous work to this thesis.

2.3.1 Historical influences

The use of historical data from software development is not a new practice in the software engineering
community. But most of the approaches that have used such data have focused on evolutionary
aspects [Lehman & Belady, 1985; Gall et al., 1997; Mockus & Votta, 2000] or on looking at the reasons
for the most common behaviors found in a software development project [Mockus & Votta, 2000;
Eick et al., 2001]. Of course, availability of the source code as well as the public access to software
tools used during the development process in libre software projects have made them gain attention
in recent time.

Already in the late 90s, some research groups had access to the versioning repositories of large
industrial systems. In this sense, Gall et al. demonstrated from their study of a multi-million
telecommunication software that the evolution of the system over time as a whole may mask the
evolution of its subsystems that may have completely different behaviors [Gall et al., 1997]. The
authors maintain that having a database with the product releases would be very valuable for
the management of software projects, specially regarding planning future schedules or estimating
maintenance costs.

Some others have looked at the versioning system, attending to aspects that are beyond the
source code, such as the influence of software tools on the development process [Atkins et al., 1999;
2002] or the identification of the reasons for changing the software [Mockus & Votta, 2000].

The human component may be used to infer the development and maintenance costs of the software
development life cycle. Some works have already studied this aspect, trying to figure out how much
effort is to be applied when performing changes to a software by studying software repositories [Graves
& Mockus, 1998]. In this regard, Herbsleb et al. have studied the implications of having distributed
teams working together in a software project [Herbsleb et al., 2001]. Although this study is based on a
survey responded by employees at a traditional software company located in several locations around
the globe, it also makes use of historic development data in form of modification request (a formalized
way that is used to requests the incorporation of specific functionality into the software).

The main limitation of the literature presented so far is that in general it has only studied a small
set of case studies, in most cases only one, even if some of them have been very large in size. This
raises the question of their significance and their applicability to other software projects (especially
to libre software projects, as their development style is in general completely different). In addition,
the methodologies that have been used in these studies were mainly ad-hoc and very specific as they
make use of project-related technical and management details that makes their reproduction in other
projects difficult.

2.3.2 Software maintenance and evolution

Software maintenance is the last phase of the software life-cycle. It is usually also the longest over
time and the one that is more costly; Conger suggests a 20-80 rule which supposes that 20% of the

2.3. EMPIRICAL SOFTWARE ENGINEERING STUDIES 25

effort is devoted to development and 80% to maintenance activities [Conger, 1994]. The availability
of source code in libre software projects has open the possibility of new studies with a large amount
of projects in many languages and for different environments and final uses. This is an advantage
not only from the quantitative and empirical point of view, but allows for new ways of learning from
already existing code through code reading [Spinellis, 2003).

One of the first studies of software maintenance of libre software projects examined the Linux
kernel for its maintainability [Schach et al., 2002]. The authors define maintainability as the inverse of
common (also known as global) coupling between the main kernel modules and all other modules. The
findings show that the number of couplings grows exponentially with version number, while growth in
lines of code for kernel modules is only linear. In the authors words a restructuring is needed as the
maintenance of Linux will suffer in the next future if such a trend is maintained.

Another study on code maintainability in libre software projects studies almost six million
lines of code [Samoladas et al., 2004]. The authors have chosen for this study to use the
Maintainability Index (MI), a composite metric proposed by Oman [Oman & Hagemeister, 1992;
1994]. They have found that generally libre software code has more quality than proprietary code.
They suppose developer motivation is the key for such a pattern. But, as in the proprietary case,
maintainability problems gain importance with age and preventive maintenance should be fostered.

Software maintenance from the study of software trails

Another approach to the reconstruction of the evolution of software is [Germén, 2004e], which uses
software trails for that matter. Therefore the de-facto standard tools used in libre software development
(CVS, mailing lists and changelogs) are analyzed and correlated. The author argues that although
software trails do not tell the whole story, they give important information about the evolution of the
software schema and of the informal structure of the project. The vast amount of information that
is available makes the use of proper visualization tools and metrics a necessity. The results of the
technique applied to the Evolution project?® show the evolution in number of contributors and the file
types that have supposed most work. Another outcome is that most files are rarely changed. Then
the analysis is done on the components of the software application, throwing out that developers have
a tendency to focus on specific parts of the software architecture (see figure 2.1 for the authorship
graph). The author labels this as “developer territoriality”.

The continuation of that study is a fine-grained analysis of the software trails in the CVS versioning
system of a libre software project [Germdn, 2004al. Instead of using commits as the measure of
activity, the author uses atomic commits. This allows him to categorize afterwards the atomic
commits, selecting the ones that mostly contain source code files for further analysis. Atomic commits
are classified according to their purpose: maintenance (defect fixing), improvement of functionality,
documentation, evolution of the architecture (major changes in the API, etc.), code relocation or
merging of branches. For the ones that mostly contain code, attention is put on those who correspond
to bugs reported in the bug-tracking system and those where only comments in the source code files
were touched.

The findings of this work are that most atomic commits contain very few files, being the existence
of the changelog files an important skewing factor. Separate development and maintenance periods
could be identified; maintenance periods have less atomic commits than those periods devoted to
adding functionality. The number of changes done per atomic commit is also less in the former.

Rysselberghe et al. have proposed a method that helps in the study of the changes done on a
software system hosted in a versioning system [Rysselberghe & Demeyer, 2004]. The authors display
a horizontal line for every file and commits are given by dots in that line (the size of the dot is
proportional to the number of lines in the commit). This allows to visually identify what parts of
the system are changed over time and also what files do change simultaneously. As a drawback, the
authors say that the way the lines are ordered should be enhanced; their proposal of doing it on a
module basis and then in alphabetical order is just a first approximation.

26 Appendix A contains a brief description of Evolution and of other libre software applications studied in this thesis
and in related literature.

26 CHAPTER 2. RELATED RESEARCH

Figure 2.1: Authorship graph giving the relationship among files (represented as squares) and the developers
(given by ellipses) that work on them (developer territoriality). As it can be observed the clusters correspond
to software components (rectangles). Source: [German, 2004a]

Girba et al. base their work on the just introduced methodology [Girba et al., 2005]. They
aggregate some information that allows to identify what developers have developed what part of the
system. They do this by introducing colors for authors and by assigning a color to horizontal lines
depending on the author who has contributed most to a file. Hence, if red is assigned as the color
of an author, all commits done by him will appear in that color. As well, all horizontal lines that
represent files the commiter has contributed most will have that color. The authors solve the problem
of displaying files properly by using the Hausdorff metric, so that the lines that correspond to files that
are changed near in time also appear next. The results provide some patterns that appear during the
development: monologue (a period where changes on a file are done by one author), dialog (changes are
introduced by multiple authors), teamwork (a special case of dialog with a fast succession of changes
by multiple authors), silence (a period with nearly no changes at all), takeover (a developer takes over
a large amount of files initially owned by somebody else in a short amount of time), familiarization
(accommodation over a long period of time - as opposed to the fast transition that takeover supposes),
expansion (new files are added), cleaning (removal of some files), bug-fix (small localized changes) and
edit (under which other non-functional changes fall, such as cleaning comments, changing the license,
among others).

Zimmermann et al. have developed a methodology that helps in the maintenance of software
systems by mining for previous software changes from the code base [Zimmermann et al., 2005]. This
approach is based on the idea that if we consider functions that have been changed at the same time,
future changes to any of these functions are likely to have an influence on the others. This can be used
hence to predict and suggest further changes, to show coupling and to prevent errors because changes
are incomplete. This methodology is available as a tool that can be embedded into the Eclipse Java
IDE.

Software archaeology and code decay

Parnas introduced the concept of software aging, creating an analogy between programs and persons;
both get old with time [Parnas, 1994]. This means that programs lose their appeal and that
maintenance becomes a burden, the same for good and bad programs. Although this process is
unavoidable, it can be fought. Parnas gives some hints: it should be designed for change, to document

2.3. EMPIRICAL SOFTWARE ENGINEERING STUDIES 27

the code, to introduce third-party reviews, among other activities. Libre software is, of course, not
different from traditional software in this regard and programs have to cope with the addition of new
features, while removing bugs and errors that exist in the code.

In this thesis we will see a similar concept to Parnas’ aging: software archaeology?’. Although the
concept of software archaeology is not new nor unknown to the software engineering community [Hunt
& Thomas, 2002], there have been few studies regarding this issue from an empirical point of view.

The idea of using the concept of archaeology to software maintenance can be tracked at least to
the OOPSLA 2001 Workshop on Software Archeology that was organized by Ward Cunningham et al.
The promoters of this workshop had a set of assumptions, being the first one the rationale for using
the archaeology concept:

“[Software] [a]rch[a]eology is a useful metaphor: programmers try to understand what was
in the minds of other developers using only the artifacts left behind. They are hampered
because the artifacts were not created to communicate to the future, because only part of
what was originally created has been preserved, and because relics from different eras are
intermingled.” 28

The concept of software archaeology has been generally used for large old (legacy) systems, but it
is valid for any type of software with independence of its age and size as we will see in section 4.4. The
main point is that while maintaining a software, developers view code that may have been developed
and changed in possibly many points over time and by many different developers.

A similar approach has been undertaken by Eick et al. in a paper studying code decay [Eick et
al., 2001]. The authors state that while software does not age or wear out in the conventional sense,
system become more unmaintainable over time because of changes on the software. So, the conceptual
model that is proposed is based on the assumption that “a unit of code is decayed if it is harder to
change than it should be measured in terms of effort, interval and quality”. The paper gives four main
results which show a tendency to code decay: the span of changes increases over time, the modularity
declines, introducing changes produces new faults which have to be corrected in subsequent changes
and that time span and size of changes are important predictors at the feature level. They demonstrate
that code decay is a generic phenomenon that affects all software systems which are complex, but that
decay is mostly due to changes to the software and not to software complexity.

Software evolution

Thirty years of research on software evolution have resulted in a set of laws, known as Lehman’s Laws
of Software Evolution [Lehman & Belady, 1985; Lehman & Ramil, 2001]. Although the number of
laws has grown from three in the seventies to eight in their latest version [Lehman et al., 1997], all of
them have been empirically proved by studying projects developed in traditional industrial software
development environments.

Data obtained by Lehman and other fellow researchers from the late sixties up to late nineties
from several large industrial systems, have been summarized in a set of laws of evolution, which in
their latest form have been announced as follows [Lehman & Belady, 1985; Lehman et al., 1997]:

1. Continuing Change - A system must be continually adapted else it becomes progressively less
satisfactory in use.

2. Increasing Complexity - As a system is evolved its complexity increases unless work is done to
maintain or reduce it.

3. Self Regulation - Global system evolution processes are self regulating.

4. Conservation of Organizational Stability - Unless feedback mechanisms are appropriately
adjusted, average effective global activity rate in an evolving system tends to remain constant
over product lifetime.

*"Tn American English archeology. Comes from the Greek meaning opyoioc (ancient) and Aéyoc (word/speech).
28This quote can be found at the OOPSLA 2001 Workshop of Software Archaeology web page:
http://www.visibleworkings.com/archeology/.

28 CHAPTER 2. RELATED RESEARCH

5. Conservation of Familiarity - In general, the incremental growth and long term growth of systems
tend to decline.

6. Continuing Growth - The functional capability of systems must be continually increased to
maintain user satisfaction over the system lifetime.

7. Declining Quality - Unless rigorously adapted to take into account for changes in the operational
environment, the quality of a system will appear to be declining.

8. Feedback System - Evolution processes are multi-level, multi-loop, multi-agent feedback systems.

These laws have been validated empirically with some large industrial software projects, but the
number of empirical studies on software evolution is relatively low, despite being a field of research
for more than 30 years. Recent research is exploring whether they are applicable to other domains,
such as systems developed using eXtreme Programming models, based on the COTS paradigm and
on libre software.

A first approach in this field that comprises libre software projects is an article by Burd
et al. [Burd & Munro, 1999]. They evaluate the evolution of the GCC, a compiler collection
written mainly in C. A different approach is suggested by Fischer et al. in [Fischer et al., 2003;
Fischer & Gall, 2004]. Data from the CVS versioning system and from the bug-tracking system is
populated in order to manage current and future software evolution. Their approach uncovers hidden
dependencies between features and presents them in an easy-to-access visual form. As case study, the
Mozilla project was selected.

Software growth

One of the laws that has been more frequently studied is the Fourth Law [Lehman & Belady, 1985;
Lehman et al., 1997]), which states that the rate of development over the life of a program is
approximately constant, and independent of the resources devoted to it. Both Lehman and a statistical
study performed by Turski [Turski, 1996] found that those software systems follow an inverse square
growth rate. The equation given by Turski is:

S; =81+ F/(Si_1)? (2.1)

where S; is the estimated size of the system at the i-th release (in number of source modules??)
and E is a parameter. An explanation that is given for this equation states that for a system of size
n (modules), the maximal number of possible interconnections is n - n — 1. As the system grows,
introducing new modules will impact a growing number of existing ones and more effort will be
required [Lehman et al., 2001].

When solved directly, the equation is approximately

S=3E -t)!/3 (2.2)

where S is the size of the system measured in modules, t is time and E a parameter.

The most relevant study on the evolution of libre software projects is probably the one by Godfrey
and Tu [Godfrey & Tu, 2000], who studied the Linux kernel in 2000. They found that Linux, then
about 2 million lines of code in size, had a super-linear growth rate, apparently in contradiction with
Lehman’s fourth law, and with the statistical evidence from Turski.

The main conclusions of this work can be summarized as follows:

e The Linux kernel exhibits a super-linear growth rate. Most of the growth is due to new
functionality and added hardware support, not to bug fixing.

e Much of the functionality (specially device drivers) is complex and extensive, but also relatively
independent from each other, and from the rest of the system.

29 Although there is no precise definition of what a module is as it varies from system to system, in general a module
refers to an individual source code file.

2.3. EMPIRICAL SOFTWARE ENGINEERING STUDIES 29

e External contributions (both for adding and maintaining code) were frequent in the devices and
architecture subsystems. Maintenance is often done by third parties.

e Large parts of the kernel (specially device drivers) do not require active maintenance, but are
still shipped with Linux just in case the user needs them.

e The fourth law of software evolution is presumably not fulfilled in the case of Linux.

In a later paper, the same authors give the following software growth equation, based on statistical
analysis [Godfrey & Tu, 2001]:

y=0.21 -t* +252 -t + 90,055 (2.3)

where y is the size in uncommented lines of code and t the days since version 1.0. The coefficient
of determination, calculated using least squares, has a value of 2 = .997.

There is also an study by Succi et al. [Succi et al., 2001] about growth in libre software systems,
which confirms this super-linearity for the Linux kernel, but finds linear growths for GCC and Apache.

Both studies have been considered by Lehman et al. [Lehman et al., 2001] as anomalies of the laws
of software evolution, encouraging at the same time for further research on this topic.

More recently, Koch has presented a large-scale software growth analysis of thousands of libre
software projects hosted in SourceForge [Koch, 2005]. The author uses a linear and a super-linear
quadratic function to fit the growth plots for the software projects under study. Koch states that for
his sample a quadratic model performs significantly better than the linear one. He also observes that
the growth rate decreases over time in accordance to Lehman’s forth law and Turski’s findings, but
that for large libre software projects super-linear growth rate seems to be maintainable. All in all, the
detailed methodology that has been used in this study is not clarified in the paper. We do not know
if the software growth figures have been taken considering modules (files) as the basic element, source
lines of code or just lines of code (LOC) as CVS versioning system provides them. If the last option
is the case, then it is not reported if only source code files have been taken into account or other file
types (documentation, translation and others) are also considered.

Structural evolution

The relationship between the growth of code components and the evolving code structure had not
been empirically studied in detail until Capiluppi et. al looked at one middle-sized libre software
application, ARLA3Y), and observed that the various size measures that they apply (LOCs, SLOCs,
KbS, files and folders) grow over releases, with close similarity patterns among all of them besides in
the case of folders that show different growth trends [Capiluppi et al., 2004b).

Capiluppi assumes the structure to be a proxy of how difficult it is to understand a software
architecture. In [Capiluppi et al., 2004a] therefore he studies how a software architecture evolves
over time by looking at the directory tree of libre software applications. This idea is worked on
with more detail in [Capiluppi, 2004] where source files, source folders and source levels (directories,
subdirectories, etc) are identified and tracked over time. The author shows a graphical view of the
architecture of the project and compares the different components with the staff that works on it.

The structural evolution of software can also be studied on product families, i.e. software products
that are based on the same architecture but that evolve differently because of being adapted to various
environments or because they differ in their goals. In this regard Fischer et al. [Fischer et al., 2005]
search in the comments that can be attached to the commits to a versioning system for keywords that
refer to other members of the family. The three flavors of BSD (FreeBSD, NetBSD and OpenBSD)
and Linux offer a good benchmark to find out how big the influence on the others is.

For the same purpose, but following a completely different methodology, Yamamoto et al. measure
the similarity of the three BSD operating systems [Yamamoto et al., 2005]. This analysis is done with
code clone detection techniques applied to the source code. The authors show that their results match
the historical trend of these three projects (OpenBSD being a derivation from NetBSD and NetBSD
being a former fork of FreeBSD).

30 ARLA is a libre software implementation of the AFS, see project website at http://www.stacken.kth.se/projekt/arla/.

30 CHAPTER 2. RELATED RESEARCH

Release Management

Release management is concerned with the problem of publishing a software version for the main
public. In general, the main goal of releases is to promote the software as much as possible. This is
done by providing the software in an easy-to-install manner and to encourage its distribution. The task
of delivering releases requires a certain amount of human and technical organization, and practices
adopted differ from project to project.

Erenkrantz has proposed a taxonomy for identifying common properties of release management
across libre software projects [Erenkrantz, 2003]. The author has studied in depth some large and
known projects such as the Linux kernel, the Subversion versioning repository and the Apache web
server. The characteristics that have been selected are: (1) the type of release authority (i.e. the
person or group who is in charge of the release process), (2) the versioning policy that specifies the
version number (version numbers may have special meanings for the development community, as
several branches may be developed in parallel), (3) the pre-release criteria that are used (for example,
if there are acceptance tests or if no critical bugs are known), (4) who approves that the release is
ready to be published, (5) the distribution mechanisms which include the visibility and accessibility
of the new versions and (6) the format of the releases (i.e. the type of packages).

2.3.3 Software compilations

Software compilations have been rarely studied in software engineering. This is probably due to
the intrinsic difficulties (mostly legal) that software companies have found when integrating large
amounts of software programs built by several vendors. The public availability of source code and
the possibility of freely redistributing the software avoids this burden in the libre software world.
In addition, grouping together software from several authors and making the system easy to install,
configure and maintain has provided with a new business opportunity, so that many efforts in this
sense have been done in the last years, yielding in the many distributions that we can find today in the
market. Distributions occupied, consequently, a space that in the world of proprietary software seldom
reaches important proportions: integrators. Their work consists on taking the sources -generally from
their original author(s)-, to group them with other tools and applications that could be interesting
and to pack everything together in such a way that the task of installing or of updating enormous
amounts of packages is easy enough for the common end user.

So, at the beginning of the nineties, the first distributions arose from the union of the GNU tools
with the Linux kernel. Its purpose was to facilitate the installation of libre tools as far as possible, an
arduous task that requires much patience and knowledge. The second big innovation of distributions
-already in the mid-nineties- is due to the package management systems that allowed not only to install
a distribution easily, but also offered the possibility to manage (remove, add or update) packages once
they had been installed.

A large number of distributions, each one with its own peculiarities, exist. Although the number
of distributions can be taken as some thousands, a small set has gained more popularity. Among
these, Red Hat and Debian are two of the most known ones. Even having the same purpose, there are
considerable differences between Red Hat and Debian; the main one is that Red Hat is a commercial
distribution built by the employees of an enterprise, while Debian is built entirely by volunteers. This
has several implications on the number of packages they redistribute, the release policy and schedule
they follow and on other organizational and management issues.

Red Hat

David A. Wheeler reports the size of the Red Hat 7.1 version in an article entitled More than a
Gigabuck: Estimating GNU/Linux’s size [Wheeler, 2001]. The analysis is based on counting physical
lines of source code by means of the SLOCCount tool (see 2.2.3), using the output in SLOCs to
feed a Basic COCOMO model [Boehm, 1981]. Wheeler concludes that building Red Hat from scratch
using a classical development methodology would suppose a cost of over $1,000 million. Therefore,
around 8,000 person-years would be required, although the estimated schedule (which considers all
applications developed in parallel and hence gives the amount of time required for building the largest

2.3. EMPIRICAL SOFTWARE ENGINEERING STUDIES 31

one) is of 6.53 years. A previous report on Red Hat’s 6.2 version threw 4,500 person-years, so a 60%
increase from one version to another could be observed [Wheeler, 2000].

Wheeler also gives a detailed analysis of the top-35 largest packages and focuses specially on
the largest one: the Linux kernel. The largest subsystem in it is the drivers subdirectory, so the
reason of the size of Linux is mainly because of the hardware that it supports. Another important
subsystem is the arch subsystem, again because of a wide range of architectures that are supported by
Linux. A later paper on the Linux kernel (version 2.6) uses the Intermediate COCOMO?! estimation
model [Wheeler, 2004]. Wheeler estimates all parameters specified in that model for the development
of Linux, considering also Linux as a semi-detached development type, and obtains that it gives a cost
increase of around 70% in comparison to the Basic COCOMO model. The figures in this case are
$612 millions and over 4500 man-years.

Debian

Debian is probably the largest software collection in history with over 220 million lines of code in
its almost 10,000 source packages in the latest release (July 2005), so many find that it can be
considered as a proxy for studying the whole libre software phenomenon, at least of the software that is
successful®?. Gonzalez-Barahona et al. have found evidence that the amount of available libre software
measured in source lines of code gets doubled around every two years [Gonzalez-Barahona et al., 2001;
2004]. This means that the code base to be maintained grows steadily over time and that bigger
efforts have to be taken into consideration. It can also be interpreted as the available libre software
code base doubling every two years.

The evolution of the top 10 largest applications shows how Debian -and the libre software world
in general- has shifted from mainly server and administrator tools like operating system kernels,
compilers and debuggers to graphical end-user applications in recent years with the inclusion of the
Mozilla Internet suite and the OpenOffice.org office suite.

Regarding the programming languages that are used, C is the predominant one with over half of
the share of the total pie. But, although increasing in global terms it is losing momentum in favor of
other languages like C++, Java and some scripting languages like Python and PHP.

2.3.4 Holistic (ecology) studies

Holistic studies have targeted the whole libre software phenomenon without differencing projects
regarding their size or other attributes. This type of studies, not only performed by software engineers
but also by social scientists, psychologists, among others, are not only interested in the libre software
development strategies, but also on socio-economic factors that drive developers to create and work
on projects, in most cases even without direct economic benefits.

SourceForge is one of the most studied software repositories, in part because it is the largest libre
software development site that offers free services to those wanting to host their project. Nonetheless, it
should be noted that most of the large and known projects have their own development infrastructure
and do not use SourceForge services at all. At the current time, it hosts over 100,000 projects.
Over 1,000,000 developers are registered in the SourceForge platform. SourceForge is probably a
good scenario for studying the libre software ecology, but not the best one for gaining knowledge on
successful libre software development. For studying successful practices, projects that are usually not
hosted at SourceForge should be researched. Among the projects which do not use SourceForge we
can find Apache, GNOME, KDE, Linux, Mozilla and many others.

Hahsler and Koch discuss a large-scale data collection methodology for libre software projects
based on the assumption that data can be obtained cost-effectively and that even longitudinal data
is available to consider the whole project history [Hahsler & Koch, 2005]. Although the methodology

31 ntermediate COCOMO is an extension to the Basic COCOMO model; it considers cost drivers attributes in addition
to the number of SLOC to obtain the final cost estimation.

32The interpretation of success here is to be included in the Debian distribution, i.e. that a volunteer finds the software
useful and has the time to build a software package from the source code.

32 CHAPTER 2. RELATED RESEARCH

focuses on the CVS versioning repository, it could be considered with more or less changes for any
other way of accessing the sources over time and of measuring the developer involvement in the project.

The methodology is divided into six steps (1) project retrieval and parsing, (2) module retrieval
and parsing, (3) status (if CVS available) and parsing, (4) CVS (checkout and log) string generation,
(5) CVS string execution and (6) CVS log parsing.

The metrics that the authors propose and discuss are lines of code (LOCs), commits as a proxy
of activity, the total time on the project for developers (which is given by the time from the first to
the last commit for any developer and could be seen as the upper bound of the time devoted to the
project) and a development indicator (as manually introduced by project owners at SourceForge).

The range of analyses is the most interesting contribution:

e Site level analysis: The analysis is done SourceForge-wide, so that developers contributing to
more than one project are considered and explored. In the study performed by the authors, they
found that almost 95% of the developers worked on three or less projects, which means that the
collocation of projects on the same site may not lead to increased participation in other projects.

e Project level: Focused on project-related results such as software growth patterns and correlation
of the project size with the number of contributors and the number of commits.

e Participant level: Displays the contribution and the distribution of contributions among
participants using Lorenz curves and Gini coefficients.

e Productivity: The number of programmers and the progress within each project over time
intervals should be analyzed. To uncover the effects of a higher number of developers working
on a project, mean number of commits and of LOCs added per programmer in a period of time
should be considered.

e Effort: Effort calculation can be achieved by means of applying the COCOMO I [Boehm, 1981],
COCOMO 1II [Boehm et al., 2000], or the Rayleigh curve [Norden, 1963] models.

But many other researchers have put their eyes on the SourceForge site. For instance,
Krishnamurthy analyzed the 100 most-active mature projects hosted there [Krishnamurthy, 2002].
He concluded that most of the studied projects are smaller than those that are widely known and
usually matter of study (i.e. Mozilla, Apache...). His findings can be summarized as follow: (1) the
vast majority of mature libre software programs are developed by a small number of individuals, (2)
very few libre software projects generate a lot of discussion and most projects do not generate too
much discussion, (3) projects with more developers tend to be viewed and downloaded more often, (4)
the number of developers working on a libre software projects was correlated to the age of the project
and (5) a smaller percent of participants were assigned as project administrators in larger groups.

Healy et al. go further beyond and look at all projects that can be found at SourceForge [Healy
& Schussman, 2003]. The authors find that there often exists an inequality that can be modeled
after a power-law and which is valid for the number of developers, the number of commits to the
CVS versioning repository and the number of messages to the forums. In this regard, Hunt et al.
have also discussed the common appearance of Pareto distributions in the activity in SourceForge
projects [Hunt & Johnson, 2002]. The median number of developers per project is one, while the 95th
percentile is 5 developers, which makes not surprising that only a tiny number of projects have more
than a dozen developers. Regarding development activity, the median number of CVS commits for
all projects at SourceForge is zero and we have to move up to the 75th percentile to find one commit,
while the number of commits for 90% of the projects is less than 100 commits. In other words, little
or no programming activity takes place in more than half of the projects, or projects are too small in
number of developers in order to hold a versioning repository for the project.

An examination of the number of messages and their authors across all forums gives that only
projects at the 90th percentile and above have more than two posters. In this sense, von Krogh et
al. have noticed that for the libre software project they studied (FreeNet) 1.1% of the population
accounts for 50% of the total e-mail list traffic, yielding a Gini coefficient for message authorship of
0.89 (reflecting a high concentration) [von Krogh et al., 2003].

2.3. EMPIRICAL SOFTWARE ENGINEERING STUDIES 33

On the other hand, the measures of user interest that Healy and co-authors define (basically
site views and software downloads) are closely related to the software activity measured for the
projects. Although the most downloaded projects correspond mainly to end-user applications, the most
heavily developed projects are mainly system applications that run in the background, programming
environments or basic utilities that provide functionality to an operating system [Healy & Schussman,
2003].

2.3.5 Characterization of libre software development

Mockus et al. presented a study comparing the development process of both libre software and non-
libre software [Mockus et al., 2002]. Furthermore they selected two different kinds of libre software
projects: Apache, which has been community-driven since its birth, and Mozilla, which had a non-free
past, but was at the time of the study a community-driven project (although in part still led by a
company).

First, the authors give evidence on some differences that exist between libre software and non-libre
software projects. The former ones are developed by a huge group of developers, while tasks are not
enforced so any developer can choose what to work on. There are no design patterns established and
formal planning or rigid scheduling is missing. Hence, the nature of libre software is dispersed both
in geographical and administrative terms, while the coordination mechanisms are not very formal.

The paper addresses several questions about libre software projects by studying empirically the
Apache project, drawing some initial hypothesis from it and then contrasting the hypothesis with the
Mozilla project. The data sources that have been used include the CVS versioning repository, the bug
reporting system and the developer mailing list, although mailing list is only considered for Apache.

The findings for Apache throw that there is a core group that is composed of volunteers who are
partial time developers. The work to be done is specified in the developer mailing list or the bug
reporting system. For the Apache project, 15 developers performed 80% of the atomic commits33,
while 15 developers are responsible for 60% of all bug fixes. In addition there are over 400 developers
that have non-punctually contributed to the project (182 fixed 695 bugs, and 249 contributed with
6,092 code submissions). Other 3,060 persons submitted 3,975 bug reports, which is a larger group
that contributes only punctually. von Krogh et. al. make the same observation for FreeNet project.
Although they observed many participants in the discussions in the mailing lists, writing code is a
task that is concentrated in a small set of individuals [von Krogh et al., 2003].

From the study of the developer mailing lists by Lanzara and co-authors of the Apache and Linux
projects for two weeks in 2002, some conclusions can be drawn [Lanzara & Morner, 2003]. Few threads
are being participated by more than a small number of posters (average number of participants per
thread is 2.2 for Linux and 3.1 for Apache). The mean number of messages per thread is also low (3.7
posts per thread for Linux and 5.2 for Apache).

The lifetime for a thread is generally very short: 2.9 days for Linux and 9.7 days for Apache,
while the minimum is one day and the maximum achieves almost 100 days, although the latter is an
exception as most conversations do not reach more than one day (30% for Linux and 55% for Apache).

Interestingly enough there is a high percentage of first mails that are left unanswered and hence
do not build up a thread; this grows as much as to 47% for Linux, while in Apache it is of 19%. A
nearer investigation of the posts that contain direct questions throws that 38.75% of them were left
unanswered in Linux while 17.1% were in Apache.

In comparison to the non-libre software systems that are considered, Mockus and colleagues find
that Apache shows a lower defect density and bugs and problems are fixed earlier. Priority (as
perceived by the core group) is respected, so that high priority reports are fixed earlier that less-
priority ones [Mockus et al., 2002].

From the study of the Apache web server the following hypothesis have been enunciated:

1. Libre software developments will have a core of developers who control the code base (less than
15 developers do 80% of the contributions).

33The authors originally use the term modification request.

34 CHAPTER 2. RELATED RESEARCH

2. If a project is larger, a strict code ownership policy should be adopted, creating several
subprojects.

3. Testers are a group larger by an order of magnitude than the core.

4. If a project has a few main developers, but lacks a large number of contributors, it will not
succeed because defects will not be able to be repaired.

5. Defect density is lower in libre software projects than in commercial ones.
6. Libre software developers are also libre software users.

7. Libre software projects can respond faster to customer requests than commercial projects.

In the case of Mozilla, the authors have found that at the beginning there was a lack of external
contributors. It was the Mozilla.org staff who controlled development and the work to be done, which
was specified in a roadmap. But after some time, external contributions have become more common,
although the organization of the project differs from the one found in Apache primarily because of its
size (in number of contributors and of the software).

Mozilla counts with 486 developers who have submitted 412 bug fixes, while 6,387 occasional
contributors reported 58,000 problems. All in all, only 20 developers perform 80% of the work.
Testers are not external and there exists rigid module ownership. The defect density is lower but
problems are solved later than in Apache. Priority is respected as well.

All these findings validate the hypotheses previously enunciated for Apache, although the second
one was slightly modified to the following wording:

e [f the core group has more than 15 developers, formal communication, planning and scheduling
protocols should be used.

The final conclusion of the paper is that projects that are not too large do not require over formal
communication mechanisms, neither referred to planning and scheduling issues. A corollary is that
large projects should be divided into subprojects, inducing to have some territoriality over a module
or subproject by a member of the core group. Modularity (i.e. module independence) is vital, and
libre software projects have been found to be more modular than the non-libre projects considered in
this study. Finally, the defect density reported is lower and the time that it takes to solve defects is
smaller in libre software projects. In the author’s opinion, modularity is a key issue for this behavior.

Dinh-trong et al. have replicated the study on the FreeBSD project and have obtained similar
results and conclusions [Dinh-Trong & Bieman, 2004; 2005]. The first and second hypothesis proposed
by Mockus et al. are also supported in the GNOME project [Germén, 2004b].

Slightly different results can by found in an article by Paulson et al. [Paulson et al., 2004]. They
perform an empirical study which compares libre and non-libre software projects using five software
metrics with the intention of investigating if some common assumptions in favor of libre software can
be empirically validated or not. The assumptions are that libre software development fosters faster
system growth, that it fosters more creativity, that projects succeed because of their simplicity, that
they have fewer defects and that they are more modular.

Therefore several well-known and large libre software projects (Apache, Linux and GCC) are
selected and compared to three non-libre projects from the embedded wireless world domain. The
results throw that project growth is linear (in number of functions and lines of code added) over time
for libre software projects, while the development periods are similar for both kinds of software types.
Regarding creativity, the authors observe a linear approximation of growth rate (which is cyclical),
so libre software projects seem to foster more. On the other hand, libre software projects are more
complex, but show fewer defects and if there are defects, they are found and fixed earlier. Finally,
modularity is found to be given more frequently in non-libre software projects. The biggest drawback
of this study is that it lacks critical mass to be statistically valid: comparing three randomly-taken
libre software projects with three projects from a specific domain and drawing conclusions is risky.

2.3. EMPIRICAL SOFTWARE ENGINEERING STUDIES 35

Another detailed field study of a large libre software project is the one by Koch & Schneider [Koch
& Schneider, 2002]. They present a methodology for software engineering research into libre software
projects using data retrieved from a publicly available CVS repository and mailing lists. This
methodology is then applied to the GNOME project and results concerning the programmers and
files constituting this development effort together with the progression of the project over time are
described. The authors use several metrics in order to study GNOME:

e LOC (Lines-of-Code) i.e. any type of line including comments and blank lines. Gives an idea
of the changes in size by subtracting LOCs deleted from LOCs added. Again, a majority of
programmers contribute with a small amount of LOCs.

e CVS commits, defined as a “submission of a single file by a single programmer”. A majority
of programmers also contribute with a small amount of commits, but here inequality among
developers is much smaller than in the case of contributing LOCs.

e Time spent by programmers in the project, which is given by the “difference between the first
and the last commit” for each developer. This is, of course, much more than the time that the
developer has really spent working on the project. The grant total measured can be normalized
with the amount of time developers devote to the development of libre software (this data can
be obtained from surveys).

e Time spent on each file, defined as the “time between first and last commit” for a given file. As
for the previous metric, this can be understood as an upper bound.

e Posts to mailing lists. The histogram of mail posts is similar to the one with commits, so there
exists also a high inequality. More productive programmers also are more active in mailing lists.

e Finally, a set of derived metrics is proposed: LOCs added per commit, LOCs added per hour,
among others.

Finally the authors use some classical effort estimation models that derive from Norden (modeled
as a Rayleigh curve) [Norden, 1963] and Putnam [Putnam, 1978] to see how much developing GNOME
may have cost: the results are 169.9 person-years. The model assumes that once given the peak point
of the effort, we may infer the total cost of the project.

2.3.6 Fine-grained analyses

German has authored several studies that try to gain knowledge on the libre software development
process by analyzing the publicly available data from CVS repositories at a fine-grained level, using
the groupware suite Evolution as a case study [Germdn, 2004a; 2004e].

First, the nature of atomic commits (AC)3* is considered, defining code atomic commits (codeACs)
as the ones that include source code files. These atomic commits are ordered in different types (the list
is incomplete and items have not to be mutually exclusive): maintenance (defect fixing), functionality
improvement, documentation, architectural evolution (major changes in API, etc.), relocating code
and branch-merging. Among code atomic commits, two different types are identified: bugACs,
corresponding to a bug reported in BugZilla, and commentACs, which are codeACs where only
comments have been touched.

German observes that most atomic commits contain very few files. The most frequent case is an
atomic commit containing two files. This is because GNOME uses changelog files that are committed
simultaneously with the files that are changed. Atomic commits fixing defects usually contain few files
while documentation atomic commits tend to contain more files than other type of atomic commits.

The author investigates if the hypothesis by Fischer and Gall [Gall et al., 1997; Fischer et al., 2003]
that says that historical modifications logs can be used to detect a coupling relationship between two
files. If two files are modified at the same time, then these two files are related. Three metrics
are therefore defined: (1) modification coupling is the likelihood that if file A is modified, B is also

34The author originally uses the term modification requests for atomic commits, the preferred one in this thesis

36 CHAPTER 2. RELATED RESEARCH

modified, (2) frequency of modification, Frequency(A,B), gives the number of atomic commits that
contain both A and B and (3) modification neighbors, neighbors(A), is the set of files that have been
modified in the same atomic commit as A. After some cleaning (codeACs that include first versions or
branches are removed, among others) files that are committed together arise. As expected, the author
finds also coupling between .c source code and .h header files.

Further, following hypotheses are verified: (1) a file tends to be modified with the same files
and (2) most atomic commits are composed of files that belong to the same module. To test these
hypothesis a coupling graph was created, depicting modification coupling in a given period, a sort of
(social) network analysis but with files as nodes and edges as couplings. The results yield that the
maintenance period had fewer atomic commits than the improvement period. In addition, graphs tend
to be composed of small disconnected subgraphs, or clusters of nodes, interconnected by few edges.
Another finding is that the modularization of the project has a profound impact in the disjointness of
the different subgraphs.

The author shows how programmers are related to modification coupling. The observations that he
makes are that most files are modified (owned) by one individual developer and that there exists a high
correlation between the perceived core maintainer of a module and the most connected programmer to
that module in the graph. Finally, the author is also interested in knowing the evolution of functions
or method changes in a file over time. The results show that bugACs tend to add and remove less
functions than atomic commits in general.

2.4 Socio-cultural and organizational studies

Software development is a human-intensive task. The way human resources are managed and how the
development teams are structured has been an ample field of research since the early days of software
engineering [Weinberg, 1998; Frederick P. Brooks, 1978] and is still a topic of many efforts in recent
years with the proliferation of agile methodologies [Beck, 1998] and the libre software phenomenon.
The main differences between the environment where libre software is developed and traditional
ones have been fostered by philosophical, by technological, by pragmatical and surely by sociological
reasons, too.

Sharing knowledge is the main philosophical reason that is behind the development of libre software
and that is argued mostly by those who claim that libre software is an ethical question, usually lead
ideologically by the Free Software Foundation and other organizations [Stallman, 1999]. The analogy
with the scientific world where data, results and knowledge are disseminated among research groups
for the benefit of all human beings are key points for this attitude [Bezroukov, 1997].

Technologically, the rise of the Internet in the last decade has made it possible to cooperate
with others in creating a software in an easy and an cost-effective manner. Interest groups around
any topic have been formed on the Internet and being computer scientists and software developers
specially familiar with the Internet environment, they have been precursors in this sense. Global
(or distributed) software development is a topic that has rosen much interest among the software
engineering community recently [Herbsleb et al., 2001]; many libre software projects, if not all the
ones that have an ample community, rely on this way of creating the software [German, 2004b).

As distributed development has shown to be efficient, pragmatic points of view have moved towards
the idea of introducing libre software practices. These reasons have been more recently enunciated
and are heavily based on the possibilities that the Internet offers. The idea behind this point is very
simple: if somebody is willing to contribute to a project, this should be allowed and boosted as this is
beneficial for the project itself. This point relies on the technological advances that have been pointed
out above, as well as on the benefits that sharing knowledge brings and is the standpoint of groups like
the Open Source Initiative. In any case, it should be noted that although tightly bound, pragmatists
(those who try to achieve the best result by sharing knowledge) and ideologists (those who see sharing
knowledge as the main cause in itself) position themselves in different groups, the former around the
Open Source Initiative while the latter’s main player is the Free Software Foundation.

Finally, there are sociological reasons that have been important for the development of libre
software. So, for instance, the spread of English in the last decades and its use as lingua franca in the

2.4. SOCIO-CULTURAL AND ORGANIZATIONAL STUDIES 37

technical world have made it possible that libre software development can take part in a distributed
way. Of course, many other reasons may fall in this field. There has not been much empirical work
in this area, so that many of these questions are yet unresolved, though some research projects have
started to concentrate on them (as for instance, the EU-funded FLOSSPols®> and FLOSSWorld3¢
projects).

In the remainder of this section we will present related research that has been performed on human
resources in libre software development. Beyond the reasons that have been presented so far, it will be
centered on management, organizational and procedural aspects. The point of view will be software
engineering related, which means that even if other interpretations are possible, and of course are
made by other research groups from other research fields, we will try to stick to aspects that influence
the software engineering process.

2.4.1 Organizational structure of libre software projects

The human factor becomes especially interesting for two reasons. First, attending to Conway’s
law, organizations that design systems are constrained to produce designs which are copies of their
communication structures [Conway, 1968]. And second, it may be used to infer the development and
maintenance costs of the software development life cycle. Some works have already studied the latter
aspect, trying to figure out, by means of studying software repositories, how much effort is to be
applied when changing a software system [Graves & Mockus, 1998].

Lanzara et al. characterize the process of knowledge generation in libre software projects as an
ecology of agents, rules, activities, practices and interactions [Lanzara & Morner, 2003). In the authors
words, “this field supposes a rich field to expose the creation, accumulation and dissemination of
knowledge in distributed teams in a fast and cost-effective manner even in situations where membership
is not tightening and participation is volatile”.

Although some of the self-organizing properties of interactive systems can be identified in libre
software projects, there are also some characteristics that are common of formal organizations. Thus,
in addition to fluid and informal participation, there exists also stable membership. On the other
hand, governance mechanisms co-exist with largely non-governed processes. Another interesting
characteristic is that libre software projects are able to build up memory differently from pure
interactive systems and have representation mechanisms which allow them to interact with their
environment. But the most interesting fact is that all the organizational gear is implemented through
technological means, so the technology has to be investigated in order to find the organizational
structure.

Management in large libre software projects

German gives a detailed description of the inner functioning of GNOME, a large libre software project
regarding its management, decision and governance structure with several companies involved in the
development and thousands of contributors worldwide [Germén, 2004b]. The purpose of the study is
to qualitatively analyze how the factors that compose Global Software Development (GSD) -mainly
distance, time differences and cultural differences- affect the development of libre software and how
GNOME faces these problems and has found solutions.

First, German describes how the GNOME source code base is organized. Given the magnitude of
the project, it is divided into modules of which he identifies four types: (a) required libraries, (b) core
applications, (c) applications and (d) other. Each module has its own maintainer, set of developers
and development time-line and goals. Although modules are interrelated, relationships are tried to
kept minimal, so they can evolve independently.

Then, management and direction is studied. It is pointed out that the mere presence of a widely-
known developer, Miguel de Icaza®’, among the libre software community in the beginnings of the
GNOME project has been a key factor for the early success of the project. But leadership has become

35Free/Libre/Open Source Software: Policy Support (acronym FLOSSPols): http://flosspols.org.
36Free/Libre/Open Source Software: Worldwide impact study (acronym FLOSSWorld): http://www.flossworld.org.
3"Miguel de Icaza is co-founder of the GNOME project and a recognized figure in the libre software wold in general.

38 CHAPTER 2. RELATED RESEARCH

more complex with the increasing number of modules and developers that have entered the project
since then. That is the reason why in the year 2000 the GNOME Foundation was founded. The
GNOME Foundation is composed of four entities: (a) members, which can be any contributor to a
project being contributions of any kind (from source code submission to documentation), (b) a board
of annually elected directors that is in care of administrative and other tasks, (¢) and advisory board
which is composed of corporate and non-profit organizations and finally (d) an executive director, a
paid employee of the foundation and who helps with administrative and other tasks.

The GNOME Foundation describes itself as a meritocratic democracy where contributors to the
project are the demos. Contributors are usually coders, but not only. German identifies several
types of them: (a) paid employees who usually fulfill tasks that are less attractive to volunteers, as for
instance building and maintaining the software infrastructure of the project (servers, mailing lists, bug
tracking system, CVS versioning system, among other), (b) volunteers who devote their spare time
in working on GNOME (interestingly enough many of the paid developers in GNOME were at some
point in the past volunteers, so their hobby has become their job) and (c¢) non-programmers, including
documenters, translators, designers and other project-related activities such as press contacts.

German adds a final group of newcomers and states that even if there is no detailed description
or data about this issue, the cost of entry has increased over time due to the rising organizational
and technological complexity of the project. The GNOME project seems to be aware of this problem
and has fostered some ways of attracting new collaborators. The initiatives include: (a) to facilitate
bug fixing by means of bug-squad days, (b) to have TODO lists with minor tasks and (c) to use the
GNOME-love mailing list where newcomers may be attended and advised.

For some specific tasks, committees are created. Such is the case for fund-raising, the organization
of an annual conference or the release team. The main communication mechanisms are the mailing
lists, but the use of Internet Relay Chat, web sites, the annual conference and weekly summaries are
also of great importance for the dissemination of information around the project.

In the authors words, the conclusions that can be learned from the GNOME experience for Global
Software Development projects are (a) to flatten the organization and allow more participation in
decision-making, (b) to use multiple types of communication, (c) to treat developers as partners in
the development process, (d) to have a regularly scheduled co-located meeting where the main decisions
can be made, (e) to create task forces that work aside the different teams, (f) to set clear procedures
and policies for conflict resolution, (g) to modularize the product in order to minimize communication
and (h) to ask developers to document their daily contributions.

Brand has made a similar study on the KDE project [Brand, 2004]. KDE shares with GNOME
the goal of building a universal desktop environment and has a community that is similar in size to
GNOME. Besides pointing out how the organization of the KDE project is, who is in charge of making
decisions and how conflicts are resolved, Brand as a sociologist shows also interest in the motivations
of developers and how all this is achieved by means of a virtual working environment.

The onion model

But, probably the most well known model about the organizational structure of libre software
projects is given by the onion model [Crowston et al., 2003a; Crowston & Howison, 2003;
2005]. The onion model is a visual analogy that tries to represent how developers and users are
positioned in communities. In this model, as shown in figure 2.2, the authors differentiate between
core developers (those who have a high involvement in the project), co-developers (with punctual,
but frequent contributions), active users (that occasionally contribute) and finally passive users. At
a finer level of detail, we could consider specific roles; so, for instance, we could have the project
founder (initiator) or a release coordinator in charge of the release management (see subsection 2.3.2
for further details on the release management procedures).

Some studies have already reported and quantified this structure for several libre software projects
([Mockus et al., 2002] for the Apache web server and the Mozilla web browser, [Dinh-Trong & Bieman,
2004; 2005] for the FreeBSD project). According to these studies the core is composed of a small group
of about a dozen developers. Surrounding the core group there is a group of contributors, about an
order of magnitude larger, who send bug fixes and eventually submit some code. Still an order of

2.4. SOCIO-CULTURAL AND ORGANIZATIONAL STUDIES 39

Passive users

. Active users
[nitiator

Co-developers

Release Core developers

coordinator

Figure 2.2: A synthesized libre software development team structure, also known as the onion model. Source:
[Crowston & Howison, 2005]

magnitude larger is the number of casual contributors who occasionally report bugs or perform other
small tasks. Finally, we find the surrounding user community which may serve as a pool for future
developers or casual contributors. The extension of the user community is difficult to account in
quantitative terms. The reason for this is that software can be redistributed by third parties (as for
instance, the many distributions, from other web sites, from friends, among others), so usually the
number of downloads of the official project site is not a good indicator of its use.

Monitoring volunteers

One of the most astonishing characteristics of libre software development is its heavy dependency on
contributions done by volunteers. Of course, coordination mechanisms in use in libre software projects
have to face both the high number of volunteers and the geographical distribution of participants.

Michlmayr has studied how to manage the volunteer activity in the Debian project [Michlmayr,
2004], a project composed of over 1,000 volunteers (called Debian Developers). The Debian Developers
are special compared to what commonly can be assumed to be a volunteer in other libre software
projects as an admission process has to be surpassed in order to become one. The starting point of
this research is that although many volunteers do not play a crucial role in the project, some of them
do. In that case, a cease in their involvement may cause the project severe problems, ranging from a
lose in the quality to other organizational issues. The author reports two approaches that exist in the
Debian project about responsibility: a first group that argues that volunteers are totally free to start
and stop collaborating on the project anytime, while a second argues that volunteers should fulfill the
requirements they have previously agreed on. In both cases monitoring volunteers is hardened by the
fact of having a distributed environment.

In the case of Debian, once a contributor has concluded with success the admission process and
becomes a Debian Developer, he usually maintains some software packages. If Debian Developers go
on holidays or retire from the project they should inform the project following the Debian Developer’s
Reference®. The Debian project has introduced some infrastructure if this is not the case. So, a tool
called Echelon monitors the Debian mailing lists for postings from Debian Developers and keeps track
their activity. Other information sources of lack of maintainer activity are unmaintained packages
(for instance, with unresolved critical bugs for a long time), old standard-versions or new upstream
versions®? pending for a long time.

Having an admission process is a characteristic that makes the Debian project special. In other
projects, usually contributors have to send their patches to the main contributors who review and

38http://www.debian.org/doc/developers-reference/
39upstream is how the original software is called in the Debian jargon. The upstream sources are modified by maintainers
in order to create a ready-to-install package that meets the Debian packaging guidelines.

40 CHAPTER 2. RELATED RESEARCH

introduce them into the current source code base, serving thus as gatekeepers [O’Mahoney & Ferraro,
2004].

2.4.2 Social Network Analysis

A systematic approach to the organizational structure of communities of any kind is given by
the techniques used for the study and characterization of complex systems. Special attention has
been paid recently to complex networks, where graph and network analysis play an important role
that is gaining popularity due to its intrinsic power to reduce a system to its single components
and relationships. Network characterization is widely used in many scientific and technological
disciplines, such as neurobiology [Watts & Strogatz, 1998], computer networks [Albert et al., 2000;
Cancho & Sole, 2001] and linguistics [Kumar et al., 2002]. The techniques can be applied to social
relationships among the members of a group and may help to identify the structure of an organization.

In this context, social networks analysis (SNA) is the result of the confluence of several disciplines,
including social networks theory, organizational behavior, interpersonal communications, chaos theory,
complex adaptive systems, artificial intelligence, operational research, and graph theory. In essence,
SNA provides an object-oriented model of a structure. Objects in the model are linked in a complex
pattern which shows their topology of interaction, relationship and information flow.

The first problem to solve when using SNA is getting information to construct the network to
analyze. One specially interesting kind of data sources are the records maintained by many computer-
based systems. As information flow in libre software projects happen through telematic means and, in
general, these exchanges are stored and publicly accessible, we can use these data sources to establish
the interconnections among members.

Thus, information taken from the data sources available for libre software projects offer information
about who, when and how collaboration takes place. These records can be seen as an accurate and
detailed picture of the organizational structure of the software and the developers working on it.
When two developers work on the same program, they have to exchange in a direct or indirect manner
information and knowledge to coordinate their actions, hence building a link or relationship among
them. It would be reasonable to think that a relationship is stronger as the number of contributions
to a common program is also higher, giving an idea of what could be considered as a weight.

A simple approach in this regard is the one offered by Mutton, which describes a simple
network analysis performed with the data obtained from the communication exchange between
developers [Mutton, 2003]. The data has been obtained from the conversations held in IRC channels
with the PieSpy tool (see 2.2.3). The most interesting part of this work is how social networks are
inferred, as it is done by a set of heuristics which are properly described. These heuristics include
direct addressing of users (for instance when in a conversation one part specifies the nickname of the
other part), temporal proximity so that after a long silence in a channel two users exchange messages
or temporal density by two users originating many messages in a short time interval. All this happens
in publicly available chat rooms, but IRC also offers the possibility of exchanging private messages
among users, which the author discusses. In his words although obtaining these data could be possible
if access to the IRC servers is granted, it raises ethical questions and has thus not been implemented.

Affiliation networks

A more sophisticated approach is the one that considers a specific kind of social network which is called
affiliation network. These networks are characterized by showing two types of vertices: actors and
groups. Representing the network with actors as vertices implies that a link between two actors is given
if they belong to the same group. If we take groups as vertices, then two groups are connected when
there is at least one actor that belongs at the same time to both groups. In the case of libre software
development, developers take the role of actors and software artifacts (in any fashion, ranging from
projects as defined in SourceForge or as modules, directories or even files) are considered as groups.
Hence, the belong to characteristic has to be reworded to has contributed to for our purposes.

This approach will result in a dual view of the same organization: as a network of modules
linked by common developers, and as a network of developers linked by common software artifacts

2.4. SOCIO-CULTURAL AND ORGANIZATIONAL STUDIES 41

that developers have worked on. Similar approaches have been used for analyzing other complex
organizations, like the known network of movie actors [Albert & Barabasi, 2002, where groups are built
based on movies where actors have performed together or the network of scientific authors [Newman,
2001a; 2001b] where authors play the role of actors and groups are given by the research papers they
have co-authored.

In the case of libre software, social network analysis can be applied in multiple ways. So,
for instance, Ohira et al. use social network theory with the aim of accelerating cross-project
collaboration [Ohira et al., 2005]. They assume that with the help of such techniques it could be
possible to answer questions such as “who do I have to ask?” or “what can I ask?”. This is specially
important in the case of very fragmented communities with many small projects where knowledge is
disseminated and the organizational structure is loose and changes frequently.

But the most known research works have been accomplished by Madey et al. [Madey et al., 2002;
2004]. It provides a basic social network analysis on developers and projects hosted at SourceForge.
One big drawback of this analysis is that relationships are considered equal, without considering links
stronger when joint work is more frequent. This makes the clustering that the authors perform very
poor; they identify the presence of a large cluster consisting of almost 7,000 developers, while the size
of the next cluster is 55. The use of weights for the links and the introduction of a threshold would
probably give a more realistic picture of the SourceForge community.

Compared to actor-movie networks, where over 90% of the actors belong to one larger
cluster [Watts, 1999], the largest developer cluster in SourceForge amounts only 25% of the total
developer population. One of the explanations that the authors give is that libre software development
is not that well well connected as other social or collaborative networks, although they hint that this
could also be due to the maturity of the movie industry in comparison to the libre software development
community. An alternative interpretation is that there exists a fragmentation in the technological
landscape, because of the effort required to acquire knowledge on a topic.

The most interesting analysis is the one that states that libre software development is not a random
graph which would mean that newcomers would attach to existing nodes in a random manner (i.e.
with uniform probabilities). What has been observed is a graph that displays preferential attachment
of the new nodes in the sense that some existing nodes are more attractive to them. The authors
state that this happens typically in situations where positive feedback exists, which in fact gives as
consequence the rich-get-richer phenomenon (or the band-wagon effect). In other words, success is
a starting point for more success as developers show to prefer to contribute to already successful
projects.

Another interesting observation is the importance of linchpin developers. Linchpin nodes are those
nodes that serve as contact point between clusters. They have a strategical position as all information
between these two clusters has to go through them. It is then not surprising that Madey et al. say that
these developers play a similar role as gatekeepers in organizational studies on technology diffusion.

The result that has been obtained shows that preferential attachment is more accurate than random
attachment, the latter not giving a power-law behavior. Preferential attachment can be implemented
both by taking into account the size of the project or the size of the development team, but it does
not model the situation where new projects or developers become quickly linked by many others (the
young start-up phenomenon), so the authors introduced a concept (“fitness factor”) to explain why
some web sites have more links despite their recent creation in the web. Adding the fitness factor
improves the fit of the model, but some discrepancies also arise. Changes in the fitness factor over time
gave better results, meaning that a project may start being very attractive, but this extra attraction
is lost over time against the characteristics considered first, such as project and development team
size.

Parameters

Once the networks are constructed based on the previous definitions, and the degrees and costs of
relationship have been calculated for linked nodes, we can apply standard SNA concepts to define the
following parameters of the network (the interpretation of the main implications of each parameter is
also offered):

42

CHAPTER 2. RELATED RESEARCH

e Degree. The degree, k, of a vertex is the number of edges connected to it. In SNA, this

parameter reflects the popularity of a vertex, in the sense that most popular vertices are those
maintaining the highest number of relationships. More revealing than the degree of single vertices
is the distribution degree of the network (the probability of a vertex having a given degree).
This is one of the most relevant characterizations because it provides essential information
to understand the topology of a network (and if longitudinal data is available, the evolution
of the topology). For example, it is well known that a random network follows a Poisson
distribution, while a network following a preferential attachment growth model presents a power
law distribution [Albert & Barabasi, 2002]. In our context, the degree of a commiter corresponds
to the number of other commiters sharing modules with her, while the the degree of a module
is the total number of modules with which it shares developers.

Weighted degree. When dealing with weighted networks, the degree of a vertex may be tricky.
A vertex with a high degree is not necessarily well connected to the network because all its edges
may be weak. On the other hand, a low degree vertex may be strongly attached to the network
if all its links are heavy. For this reason the weighted degree of a vertex, k,,, is defined as the
sum of the weights of all the edges connected to it. The weighted degree of a vertex can be
interpreted as the maximum capacity to receive information of that vertex. It is also related to
the effort spent by the vertex in maintaining its relationships.

Clustering coefficient [Watts & Strogatz, 1998]. The clustering coefficient, ¢, of a vertex

measures the transitivity of a network. Given a vertex v in a graph G, it can be defined as

the probability that any two neighbors of v are connected (the neighbors of v are those vertices
directly connected to v). Hence

o(v) = —2)

ky(ky — 1)

where k, is the number of neighbors of v and E(v) is the number of edges between them.
The intuitive interpretation of the clustering coefficient is somehow subtle. If the total
number of neighbors of v is k,, the maximum number of edges than can exist within that
neighborhood is w Hence, the clustering coefficient represents the fraction of the
number of edges that really are in a neighborhood. Therefore it can be considered as a
measurement of the tendency of a given vertex to promote relationships among its neighbors.
In a completely random graph, the clustering coefficient is low, because the probability of
any two vertices being connected is the same, independently on them sharing a common
neighbor. On the other hand, it has been shown that most social networks present significantly
high clustering coefficients (for instance, the probability of two persons being friends is not
independent from the fact that they share a common friend) [Albert & Barabasi, 2002;
Watts, 2003].

From an organizational point of view, the clustering coefficient helps to identify hot spots of
knowledge interchange on dynamic networks. When this parameter is high for a vertex, that
vertex is promoting its neighbors to interact with each other. Somehow it is fostering connections
among its neighborhood. High clustering coefficients in networks are indicative for cliques.
Besides, the clustering coefficient is also a measurement of the redundancy of the communication
links around a vertex.

(2.4)

Weighted clustering coefficient [Latora & Marchiori, 2003]. The clustering coefficient does
not consider the weight of edges. We may refine it by introducing the weighted clustering
coefficient, ¢, of a vertex, which is an attempt to generalize the concept of clustering coefficient
to weighted networks. Given a vertex v in a weighted graph G it can be defined as:

W= ¥ we— (2.5

i#jENG(v)

where N¢(v) is the neighborhood of v in G (the subgraph of all vertices connected to v), wj;
is the degree of relationship of the link between neighbor ¢ and neighbor j (w;; = 0 if there

2.4.

SOCIO-CULTURAL AND ORGANIZATIONAL STUDIES 43

are no links), and k, is the number of neighbors. The weighted clustering coefficient can be
interpreted as a measurement of the local efficiency of the network around a particular vertex,
because vertices promoting strong interactions among their neighbors will have high values for
this parameter. It can also be seen as a measurement of the redundancy of interactions around
a vertex.

e Distance centrality [Sabidussi, 1996]: The distance centrality of a vertex, D,, is a measurement
of its proximity to the rest. It is sometimes called closeness centrality as the higher its value
the closer that vertex is (on average) to the others. Given a vertex v and a graph G, it can be

defined as:)

2iecda(vt)’

where dg(v,t) is the minimum distance from vertex v to vertex ¢ (i.e. the sum of the costs
of relationship of all edges in the shortest path from v to t). The distance centrality can be
interpreted as a measurement of the influence of a vertex in a graph because the higher its
value, the easier for that vertex to spread information through that network. Observe that when
a given vertex is far from the others, it has a low degree of relationship (i.e. a high cost of
relationship) with the rest. So, the term), . dg(v,t) will increase, meaning that it does not
occupy a central position in the network. In that case, the distance centrality will be low.

Dc(v) = (2'6)

Research has shown that employees who are central in networks learn faster, perform better
and are more committed to the organization. These employees are also less likely to turn over.
Besides, from the point of view of information propagation, vertices with high centrality are like
hills on the plain, in the sense that any knowledge is put on them is rapidly seen by the rest
and spreads easily to the rest of the organization.

e Betweenness centrality [Freeman, 1977; Anthonisse, 1971]: The betweenness centrality of a
vertex, B, is a measurement of the number of shortest paths traversing that particular vertex.
Given a vertex v and a graph G, it can be defined as:

B.(v)= Y 7ilv) (2.7)

o
s#v#t[inG st

where o4 (v) is the number of shortest paths from s to ¢ going through v, and oy is the total
number of shortest paths between s and t. The betweenness centrality of a vertex can be
interpreted as a measurement of the information control that it can perform on a graph, in the
sense that vertices with a high value are intermediate nodes for the communication of the rest.
In our context, given that we have weighted networks, multiple shortest paths between any pair
of vertices are highly improbable. So, the term GL(U) takes usually only two values: 1, if the
shortest path between s and ¢ goes through v, or 0 othervvlse So, the betweenness centrahty is
just a measurement of the number of shortest paths traversing a given vertex.

In the SNA literature vertices with high betweenness centrality are known to cover structural
holes. That is, those vertices glue together parts of the organization that would be otherwise
far away from each other. They receive a diverse combination of information available to no one
else in the network and have therefore a higher probability of being involved in the knowledge
generation processes.

High values of the clustering coefficient are usually a symptom of small world behavior. The small

world behavior of a network can be analyzed by comparing it with an equivalent (in number of vertices
and edges) random network. When a network has a diameter (or average distance among vertices)
similar to its random counterpart but, at the same time, has a higher average clustering coefficient, we
say it is a small world. It is well known that small world networks are those optimizing the short and
long term information flow efficiency [Watts, 2003]. Those networks are also especially well adapted
to solve the problem of searching knowledge through their vertices.

Table 2.1 summarizes the various SNA parameters, their meanings and the information they

provide, that have been presented in this section. These parameters, and their distributions and
correlations may characterize the corresponding networks.

44 CHAPTER 2. RELATED RESEARCH
Parameter Meaning Interpretation
Degree of relationship Common activity | How strong the relationship is
among two entities

(measured in commits)

Cost of relationship

Inverse of the degree of
relationship

Cost of reaching one vertex from the other

Degree

Number of
vertices connected to a
node

Popularity of a vertex

Distribution degree

Probability of a vertex
having a given degree

Topology of the network (Poisson or power
law distributions)

Weighted degree

Degree
considering weights of
the links among vertices

Maximum capacity to receive information
for a vertex. Effort in maintaining the

relationships

Clustering coefficient

Fraction of the total
number of edges that
could exist for a given
vertex that really exist

Transitivity of a network: tendency of a
vertex to promote relationships among its
neighbors. Helps identifying hot spots of
knowledge interchange in dynamic networks

Weighted
coefficient

clustering

Generalization of the
clustering

coefficient concept to
weighted networks

Local efficiency of the network around a
vertex. Redundancy of interactions around
a vertex

Distance centrality

Measurement of the
proximity of a vertex to
the rest

Influence of a vertex in a graph. The higher
the value the easier it is for the vertex to
spread information through the network

Betweenness centrality

Number of shortest

Measurement of the information control.

paths traversing a | Higher values give that the vertex is an
vertex intermediate node for the communication of
the rest. Vertices with high values are known
to cover structural holes
Small world Diameter Optimizes short and long term information
(or avg distance among | flow efficiency. Especially well adapted to
vertices) similar but | solve the problem of searching knowledge
higher avg clustering | through their vertices

coefficient than random
network

Table 2.1: Summary of the SNA parameters, their meaning and their interpretation.

2.4.3 Surveys

The information that can be obtained by mining software repositories is by far not complete, even if we
track data from various sources. For instance, activity patterns from versioning repositories or mailing
lists suppose just punctual interactions without giving detail of how much time they have supposed
to the developer who did that task. It does also not give information about how these actions affect
the rest of the community, i.e. how much time they devote to read a mail or to check the code that
has been just committed. Other interesting (and mainly social) characteristics regarding developers
as their age, their civil status or if they benefit economically from their commitment to a project are
difficult if not impossible to gather from the data sources that have been presented so far in this thesis.
Surveys that target developers fill this gap providing with additional information.

One of the first surveys on developers, if not the first one, has been the WIDI*? survey in 2001

4OWIDI is the acronym for Who Is Doing It? which explicitly shows the intention of the survey. The on-line results
of the survey may be visited at the following location: http://widi.berlios.de.

2.4. SOCIO-CULTURAL AND ORGANIZATIONAL STUDIES 45

and which counted with the participation of the author of this thesis [Robles et al., 2001]. Despite
the fact that the WIDI survey was performed by computer science students without the valuable help
of sociologists and psychologists, its methodology has been followed by many other surveys on libre
software developers that have been done to the moment. Basically, it consisted on a web-form with
a set of questions. Every question usually had a limited number of choices that could be selected as
answers. This was done in order to lower the need of computation and provide immediate feedback
to the one who has filled it out. Respondents were attracted by means of posts in libre software
news sites and development mailing lists, so their nature can be assumed to be self-selected. This
raises some questions about the significance of the sample and how representative it is. Later surveys
as FLOSS [Ghosh et al., 2002a] or FLOSS-US [David et al., 2003] therefore asked for additional
information that helped verifying that the ones who had filled out the survey were actually libre
software developers [Ghosh et al., 2002c]. This was done in the FLOSS survey by asking the (whole or
partial) e-mail address and by checking the e-mail addresses against the data obtained from scanning
the source code for authorship information with CODD (see section 3.2.5) for an ample range of libre
software projects.

In any case, data that is usually acquired through surveys can be divided into several sets. Personal
data includes nationality, mother tongue and other spoken languages, gender and age. Questions
regarding nationality were used in WIDI to infer the amount of libre software developers for any given
country and region (both in absolute terms as well as per-capita numbers), although the self-selection
of the sample and the diffusion of the announcement skewed results that much that it is difficult to
state if they are significant or not. This is the reason why later surveys do not target to answer
that question. Other issues that can be handled in surveys are professional-related facts, age, gender,
economic status, education and developer motivation.

A similar kind of survey, but with a slightly different methodology has been used by the Boston
Consulting Group - Open Source Technology Group?!. The authors selected a sample of developers
in SourceForge that met certain criteria and sent them an inquiry via e-mail*?. Their results reveal
that the libre software community is composed of participants from many countries (they have found
respondents from 35 countries). Respondents are highly skilled IT professionals with more than 10
years of experience on average in the field that observe an extremely high level of creativity in the
projects they are involved in. For them having fun, acquiring new skills, the possibility of accessing to
the source code and personal needs in the software drive them to contribute in such projects. Contrary
to common assumption, developers do not rate defeating proprietary software companies as a major
motivator. The amount of time they devote to the development of libre software is in mean 10 hours
per week.

Other significant surveys that can be found in the libre software literature are the ones performed
on specific projects. These surveys may include interviews and more specific questions and are usually
focused on very specific questions. Hertel et al. performed a survey on the motivations of Linux kernel
developers [Hertel et al., 2003], while Brand has taken the KDE project to research the recruitment
and organization of teams of volunteers on the Internet [Brand, 2004]. Finally, von Krogh et al.
have performed telephonic interviews while studying the joining process of members into the FreeNet
community [von Krogh et al., 2003].

2.4.4 Joining processes and simulation models

In the following section, we will introduce some related research on organizational processes that
occur in libre software environments. It should be noted that in spite of technical development
processes [Vixie, 1999], we will focus on social processes, such as knowledge creation or developer
integration.

The onion model presented in subsection 2.4.1 gives a static picture of a project, so it lacks of
the time axis that is required for studying the joining processes. In this regard, the model has been
complemented by Ye et al. with a more theoretical identification and description of the roles in the

“http://www.ostg.com/bcg/
42In reality, they had two different samples as they specified criteria for two different groups.

46 CHAPTER 2. RELATED RESEARCH

model which has added dynamism [Ye et al., 2004]. According to this idea, a core developer is supposed
to go through all those roles, starting as a user, until she eventually reaches the core.

Jensen and Scacchi [Jensen & Scacchi, 2005] have also studied and modeled the processes of role
migration for some libre software communities, focusing in the case of end-users who become developers
for some projects selected as case studies. They have found different paths for the same process, and
concluded that the organizational structure of the studied libre software projects are very dynamic in
comparison to traditional software development organizations. In comparison to the traditional onion
model described in subsection 2.4.1, they have identified a richer set of roles (for instance, code sheriff
in the Mozilla community) that even include marketing and governance issues.

Fichman and Kemerer found that in traditional proprietary software development environments,
the barrier of entry for new contributions by users and developers grows with the complexity of the
system [Fichman & Kemerer, 1997]. Joining a project may be too costly for newcomers if the system
is too complex and only actively involved participants for a certain period of time may understand
the underlying software and be able to contribute. von Krogh et al. have studied in a case study how
the joining process is for a libre software project [von Krogh et al., 2003] . They chose the FreeNet
project because of its innovative characteristics?3. The study was done in depth and included several
data sources, among others telephone interviews with eight developers, the mailing list archives, the
logs of the versioning system as well as documents that were publicly available on the Internet site.

Von Krogh et al. have observed the integration process and described a joining script for a libre
software project as they have found that although such a process is not previously determined, some
common rules apply [von Krogh et al., 2003]. The authors define a joining script which has to be
followed by a new member entering the community. For that reason, they classify the members of the
project mailing list into four groups: (1) list participants, i.e. those who are only active in the mailing
list (296 out of the 326 participants), (2) joiners, who are those who have submitted some code but do
not have write access granted to the CVS versioning repository, (3) newcomers, who just have begun
to make changes to the CVS and finally (4) developers, who have had CVS access for a longer period
of time.

The joining script specifies the level and type of activities that joiners have to go through to
become developers. Messages to the mailing list are taken as a proxy for activity on the project. The
authors find that following the joining script raises the probability of a joiner being granted access
to the community. The limitation of this research is that it may not be valid for other libre software
projects as it is based on a single case study; i.e. the joining script should be validated with other
projects.

The integration of new developers in software projects has been matter of several simulation models
by several research groups. For instance, based on data obtained from social network analysis (see
subsection 2.4.2), Madey and co-authors developed a model [Madey et al., 2004] to better understand
the social process. It is an iterative model, where authors are conceptualized as agents. The time
period for every iteration is one day. In every period a developer may (1) start a new project, (2) join
an existing project or (3) quit a project. Every turn also new developers may join the community.
The data collected from SourceForge is used to refine the simulation process.

A similar, and possibly more complete approach, is given by Dalle and David [Dalle & David,
2003]. By means of a stochastic simulation the dynamic and decentralized low-level decisions present
in libre software projects are modelled. This model is based upon the idea that reward is the key
factor that governs the distribution of developers among the projects. Another simulation model
by Antionades et al has, in addition to the elements considered by Dalle and David, attempted to
reproduce some quantitative outputs for the libre software projects under simulation (such as lines of
code, defect density, and number of participants) [Antoniades et al., 2004].

2.5 Data sources used in research

In this chapter we have seen the various data sources that are generally publicly available from libre
software projects and that have been used in literature. To sum up what we have seen, we have made

43The FreeNet project is the result of a PhD thesis.

2.5. DATA SOURCES USED IN RESEARCH 47

a classification of the papers presented in this chapter. The classification can be observed in table 2.2.
We have classified under other all those data sources and meta-data which are usually project-specific.
In this, sense we have two papers based on the analysis of the changelogs (files that serve as a diary of
the changes that have been performed on the software in inverse chronological order), text, entries in
the Linux Software Map (meta-data that gives a brief description and some other information about
a software package as author, license, version, etc.) and Internet Relay Chat communications.

Data source Research papers and studies

Source Code [Antoniol et al., 2005; Burd & Munro, 1999; Ghosh et al., 2002b;
Ghosh & Prakash, 2000; Godfrey & Tu, 2000; Koch, 2005;
Mockus et al., 2002; Dinh-Trong & Bieman, 2004; 2005; Samoladas
et al., 2004; Schach et al., 2002; Succi et al., 2001; Paulson et
al., 2004; Wheeler, 2001; Gonzalez-Barahona et al., 2001; 2004;
Ferenc et al., 2004; Capiluppi, 2004; Capiluppi et al., 2004b; 2004a;
Godfrey & Tu, 2001; Yamamoto et al., 2005; Hahsler, 2004]
Bug-tracking systems | [Antoniol et al., 2005; Crowston & Howison, 2003; Fischer et al.,
2003; Fischer & Gall, 2004; Germén, 2004c; German & Hindle,
2005; Mockus et al., 2002; Dinh-Trong & Bieman, 2004; 2005;
Paulson et al., 2004]

Versioning systems [Antoniol et al., 2005; Fischer et al., 2003; Fischer & Gall, 2004;
Germéan, 2004b; 2004a; 2004c; 2004e; Koch & Schneider, 2002;
Hahsler & Koch, 2005; Massey, 2005; Fischer et al., 2005]
Mailing lists [Koch & Schneider, 2002; von Krogh et al., 2003; German, 2004e]
SourceForge [Healy & Schussman, 2003; Madey et al., 2002; Conklin et al.,
2005; Krishnamurthy, 2002; Howison & Crowston, 2004; Hunt &
Johnson, 2002]

Developer surveys [Brand, 2004; David et al., 2003; Ghosh et al., 2002a; Robles et
al., 2001; Hertel et al., 2003]
Other [Chen et al, 2004; Capiluppi et al, 2003; Tuomi, 2004]

(changelogs), [Dekhtyar et al., 2004] (text), [Dempsey et al., 1999]
(LSM), [Mutton, 2003] (IRC)

Table 2.2: Empirical research papers and studies classified by data source.

Based on this classification, we have built a pie that shows the distribution of the data sources
in literature (see figure 2.3). The availability of the source code in libre software projects has been
widely used, being the most frequent data source found in empirical research literature. The second
position in number of research papers is occupied by the data offered by versioning systems, which
has been mined primarily to obtain information about the maintenance and evolution of the software
system. Next, we find bug-tracking systems as data source. In this regard, it should be noted that
many works try to link data from this source and from CVS.

Mailing lists are under-represented if we consider their strategical importance in libre software
projects. The reason for this is that besides the information that can be found in the headers of
the e-mail messages, the content itself is difficult to analyze and to link with other artifacts. Future
research should focus on solving these problems.

Software development web platforms such as SourceForge have been also widely used, specially for
holistic studies that try to look at hundreds if not thousands of libre software projects. Information
from all the other sources is completed by survey. Surveys give complementary information that
cannot be obtained from the other data sources.

48

CHAPTER 2. RELATED RESEARCH

Surveys

Other

Source Code

SourceForge

Mailing lists

Bug-tracking systems

Versioning systems

Figure 2.3: Distribution of the data sources used in software engineering and related literature that has
focused on libre software projects (Total: 67; works that include data from various sources have been counted
twice).

Chapter 3

Sources and data

If you torture the data enough, it will confess.
Ronald Coase

This chapter will describe in detail the data sources and the data obtained from them. As already
noted in previous chapters, the fact that communication and organization is heavily tight to the use
of telematic means makes the number of possible data sources grow beyond source code. Besides, the
ability of having memory provides with the possibility of obtaining data from points in the past and
to perform longitudinal analyses.

The concepts and findings that will be presented in the following sections are partly contributions
of this thesis, although many of them relay heavily on the current state of the art. This is especially
the case for the analysis of source code and versioning repositories as both have an ample literature.
This chapter goes beyond that and is probably the first attempt to have a detailed description of the
data sources that can generally be found for libre software projects on the Internet and the data that
can be found in them.

3.1 Identification of data sources and retrieval

Before entering into detail into the description of the data sources, there are some previous steps that
should be considered: identification and retrieval. It should be noted that there may be several ways
of accessing the data, depending on the projects. This is because of the use of different tools and of
having different usage conventions (for instance, different use of tags, comments, among others). The
complexity and feasibility of both activities depends on the data source and on the project. Figure 3.1
gives a diagram that shows the steps that have to be accomplished for any source considered in our
study.

Data Data
Extraction | Storage

A4

Retrieval Analysis

\4

Identification

Figure 3.1: Whole process: from identification of the data sources to analysis of the data.

In general terms, the identification of the data source depends mostly on its significance for the
software development of a project. Hence, identifying the source code, the control versioning system,
the mailing lists or the bug-tracking system is by no way problematic as it lies in the interest of
the projects that feedback is provided by users in an easy and fast way. In these cases, the biggest
drawback is the lack of historical data. Sometimes we only have a partial set of the data, and in the
worst cases nothing at all. This situation is common for software releases, where finding historical
versions of the software is sometimes not possible. Other situations where this might happen is when
a development tool has not been used in the early stages of development. This is the case of many
projects that start using a versioning system once the project has gained certain momentum. Having

49

50 CHAPTER 3. SOURCES AND DATA

only partial data can also be the result of a migration from one tool to another, losing in the way
some information if not all. When researching libre software projects, these considerations have to be
taken into account.

But there exist other data sources for libre software projects that are not so obvious and hence their
identification is not that straightforward. For instance, organizational information that is embedded
into some format and that is beyond the use of standard tools as versioning systems, mailing lists
and bug tracking systems. In general, such type of information is project-dependent and can be only
obtained for one project or a small number of them. This is the case for packaging systems such as the
.deb format used in Debian and Debian-based distributions or the .rpm Red Hat package system in use
in Red Hat and other distributions. But beyond this, we can find project-related information in other
means such as the Debian Popularity Contest as we will see in section 3.6.2 or the Debian Developer
database presented in section 3.6.3. Other data sources may also be considered; for instance, in KDE
there is a file that is used to list all the ones who have write access to their versioning repository.
Another example is given in literature by a study by Tuomi [Tuomi, 2004] in which the credits file of
the Linux kernel are studied in detail. Identification of the data source requires in such cases specific
knowledge on the project and is difficult if not impossible to be generalized.

In this work, we will mainly focus on data sources that can be obtained from the Debian project
as it is a project sufficiently known to the author. Beyond Debian many projects offer other type of
information that could be identified and would enrich the analysis.

Once the data source has been identified, it has to be retrieved to a local machine in order
to be analyzed (see figure 3.1). Although this process may not seem to be very difficult at first,
previous experiences have shown that some considerations and good practices should be followed in
this step as reported by Howison et al. in the retrieval of information from the web pages hosted at
SourceForge [Howison & Crowston, 2004).

In the next sections we will enter into detail in the process of data extraction and data storage
once the data has been properly retrieved from the information source to a local machine.

3.2 Source Code

As software development projects, source code is the central point of all interactions, being a primary
way of communication and playing a major signaling and coordination point. According to [Lanzara
& Morner, 2003], source code “is transient knowledge: it reflects what has been programmed and
developed up to that point, resuming past development and knowledge and pointing to future
experiments and future knowledge.”.

The study of the source code, as the main product of the software development process is a matter
that has been done for over thirty years now. In the approach that has been followed in this work
not only traditional source code (i.e. programmed in a programming language) has been taken into
account, but also all the other elements that make the software, such as documentation, translation,
user interface and other files.

Our analysis starts with a source code base that is stored in a directory (or alternatively in a
compressed directory, usually in tar.gz or tar.bz2 format as it is common in the libre software world).
After uncompressing the tarball, if needed, the hierarchical structure of the source code tree is identified
and stored.

Then, files are grouped into several categories depending on its type (as will be described below)
which allows for a more specific analysis depending on their type. This means, for instance that
source code files in a programming language can be analyzed differently than images or documentation
files. On the other hand, the discrimination for files with source code can be finer, identifying the
programming language and offering the possibility of using alternative metrics depending on it. As a
consequence, object oriented metrics could be applied to files containing Java code, but would not be
required for files that are written in assembler language.

The whole process can be observed in figure 3.2: after (possibly) uncompressing, the directory and
file hierarchy is obtained, then files are discriminated by their type and finally are analyzed, if possible
taking into consideration the file type that has been identified in the previous step. In the following

3.2. SOURCE CODE 51

- File Dis- i
Uncom Hierarchy R Ti€ > R (customlfed)
pression crimination Analysis

v

Figure 3.2: Process of source code analysis.

subsections the different steps are described more in detail.

3.2.1 Hierarchical structure

The structure of directories and files of a software program (and how it changes over time) has already
been the focus of some research studies [Capiluppi, 2004; Capiluppi et al., 2004b]. The idea is that the
technical architecture and probably therefore the organization of the development team is mapped by
the tree hierarchy of directories. So, from a directory hierarchy as shown in figure 3.3, we could infer
the organizational structure of a libre software development project.

dh

bugzilla
Desktop
dol

e-hooks

ptes
,—""'df;’

ERYE

H

zope

bulunga

/"

/ — |ibresoft ——® cyclo

e e

musicn papers
privado melrics
tmp GlueTheos
pyStigmergy

Figure 3.3: Tree-like hierarchical structure.

But beyond the structure of a directory tree, we are interested in aggregating data from a given
point downwards all the paths that depend on it. This will allow having information on the different
branches, identify if different teams work (as expected) on different parts of the tree, and finally
perform other types of analyses.

Although this idea seems very promising, it raises the problem that relational databases do not
naturally implement tree-like structures and queries may become too expensive and complex. A first
attempt to implement a tree-like hierarchy in a database is to have a database table which contains
all directories. For every entry, we will have the directory name, its unique id as primary key and the
id of the parent directory as a foreign key.

If we require a query to obtain information on a branch, we will have to obtain first the id of the
directory from where we are looking downwards. Then we will have to find all the directories that
hang up from it by searching for those directories whose parent id is the one of the first directory.

52 CHAPTER 3. SOURCES AND DATA

This process should be performed recursively for all the directories that pend from the directories at
this level until none of the directory ids can be found as parent ids (which means that there are no
more pending directories). For a sufficiently large software project with a complex tree hierarchy this
algorithm supposes a large amount of queries (one per directory in the branch). After studying this
problem, we have found an efficient solution in the use of ad-hoc algorithms for trees and hierarchies
as proposed by Celko [Celko, 2004].

3.2.2 File discrimination

File discrimination is a technique that is used to specifically analyze files on behalf of their content.
The most common way of discriminating files is by using heuristics, which may vary in their accuracy
as well as in the granularity of their results.

A first set of heuristics may determine the type of a file by considering its extension. File extensions
are non-mandatory, but usually conventions exist so that the identification of the content of a file can
be made easier and to enable the automatization of administrative tasks.

Hence, a first step for file discrimination consists of having a list of extensions that links to the
content of the file. In this context, the .pl extension is indicative for a file that contains programming
instructions while a .png can be considered as an image file. Of course, this can be done at several
granularity levels, meaning that a .c file is a file that with high probability contains programming
language, being that the programming language C code. Table 3.1 shows an excerpt of the list of
file extensions that has been used for this thesis, while the complete reference can be consulted in
appendix B.

We have selected a list of extensions and common file names (for which the column Extension/file
name matching in table 3.1 is only an excerpt) which is matched against every file name. The file
types we consider are documentation, images, translation (i18n), user interface (ui), multimedia and
code files. For the latter type, we have considered a more detailed analysis and discriminate between
source code that is part of the software application (code) from the one that helps in the building
process (generally Makefiles, configure.in, among others) and from documentation files that are tightly
bound to the development and building process (such as README, TODO or HACKING).

File type Extension/file name matching
documentation * html *.txt *.ps *.tex *.sgml
images * png *.jpg *.jpeg *.bmp *.gif
i18n * po *.pot *.mo *.charset

ui * .desktop *.ui *.xpm *.theme
multimedia *mp3 *.ogg *.wav. *.au *.mid
code *.¢c *.h *.cc *.pl *.java *.s *.ada
build configure.* makefile.* *.make
devel-doc readme* changelog® todo™ hacking*

Table 3.1: (Incomplete) set of matches performed to identify the different file types. For an extended list,
look at the appendix B

A second step in the process of file discrimination includes inspection of the content of the files
both to check if the identification made by means of matching file extensions is correct and to identify
files that have no extension or whose extension is not included in the previous list.

In this case, heuristics are generally content-specific and may go more in depth depending on the
detail of discrimination we are looking for. One of the most common ways to improve file discrimination
by looking at the file content is to analyze the first line. There exist some convention in source code
files that implicitly denote the programming language that they contain. For instance, in the case of
a file written in the Python, Bourne again shell or Perl programming language, the first line could
contain respectively the following information':

!The location of the binaries may depend from system to system, although the standard location for them is the
/usr/bin directory.

3.2. SOURCE CODE 53

#!/usr/bin/python
#!/usr/bin/sh
#!/usr/bin/perl

In the case of programming languages, further information can be gained from the structure of
the code, by the identification of specific keywords or other elements such as specific comments. For
text files (especially the ones that are based on mark-up languages), tags and other specific elements
may help in the identification process. Finally, other algorithms can be taken into account, as the
information that returns the UNIX file command on the file type (which also identifies some of the
binary formats, especially useful in the case of images).

Some of the previous discrimination techniques are already in use in some of the tools that have
been presented in the chapter devoted to the state of the art, most notably in the SLOCCount tool
(see section 2.2.3). As SLOCCount counts the number of lines of code it is only concerned with
identifying source code files and identifying the programming language in which they are written in,
not considering all other file types that we have taken into consideration in this work (documentation,
translations, and other).

3.2.3 Analysis of source code files

The analysis of source code files is one of the most known in software engineering literature as we
have already seen in the chapter 2. There exist an ample number of measures that can be and
have been extracted directly from the source code, among other its length (in lines of code or source
lines of code), complexity measures (as the popular ones proposed by Halstead [Halstead, 1977] and
McCabe [McCabe, 1976]) or even composite metrics such as the Maintainability Index [Oman &
Hagemeister, 1992].

In section 2.2.3 we have also seen that there exist some specific tools for the analysis of source
code from the various points of view presented above. The availability of a certain range of tools for
this purpose makes the conception of a tool that integrates all of them a primary task. The goals of
the integration is to make it possible to extract all the metrics and facts from source code files by
using several tools in a simple and most uniform way. The tools used to measure the code should
be, if possible, used as black boxes, so that the integration tool does not need to know or adapt its
inner functioning. In addition, the integration tool should handle the input to and the output from
the measurement tools to ease its use.

That is precisely what we have addressed with GlueTheos?, a tool designed and implemented for
this thesis: to design a system with an architecture that allows the data retrieval and analysis of
public software development data repositories. The structure of the GlueTheos tool is presented in
figure 3.4, and consists of a module for downloading (if possible, with a periodical pattern) the sources
to be analyzed, to examine the content of the sources on a file basis, to run the tools depending on the
file type, to identify the results and store them properly in a relational database system and finally to
provide results.

The current version can access CVS versioning repositories and archives of source packages (both
in deb and rpm formats). It has been designed in a highly modularized way, so that adding new
retrieval methods (from CVS or other data repositories) and analysis procedures is simple.

The file discrimination procedures that have been implemented are the ones that have already
been presented in subsection 3.2.2. File discrimination allows to run the tools specifically on the files
where this makes sense. Hence, if we had a tool that returns object oriented measures from Java
files it would make no sense to run it on a shell script. This step optimizes then the analysis to be
performed.

The next step is the heart of GlueTheos and consists of running the different tools on the source
code and retrieving the data that these tools return. GlueTheos has been designed in a way in which

2GlueTheos is named after its purpose to glue different tools together in an easy way. Hence, this program is the god,
theos in Greek, of gluing some already existing tools together.

54 CHAPTER 3. SOURCES AND DATA

Source Code Retrieval

v

File Discrimination

- ~N—

Tool 1 Tool 2 Tool N

— = LR

Storage in a RDBMS

v

(Statistical & other) Analysis of the Data

v

Figure 3.4: Architecture of the GlueTheos tool.

it does not require to adapt the tools it integrates, hence facing the complexity of the various ways
of calling them and the various ways of obtaining their results. Both calling and returning has been
solved following an object-oriented approach, so that for any tool only the differences have to be
implemented.

The calling procedure requires information such as the way a tool has to be called (mainly the path
to the executable), the input that the tool requires (usually a file or a directory) and the type of output
that the tool returns (again, usually a file or a directory). Following excerpt of the configuration file
shows an example of how the calling is configured for a tool that returns Halstead measures:

self.tool = ’halstead’ # toolname

self.inputType = ’file’ # ’file’ or ’directory’
self.execution = ’/usr/bin/halstead’ # path for the tool
self.outputType = ’file’ # ’file’, ’directory’ or ’both’

The returning methods depend on the outputType variable set above. If it is a file, the number of
returning elements has to be given and the special character that is used to separate them (usually a
tabulator, a white space or a comma). In general, the path that gives the filename of the file that has
been analyzed is also returned, so its position (starting to count with 0) has to be specified. Finally,
a list contains the field names that are used in the database, followed by another list that gives their
type. This allows for easy conversion from the tool’s output format to an SQL format suitable for the
database. As an example, the configuration parameters for the Halstead measurement tool are given:

self.result_elements =5 # Number of results (including path)
self.path_order =0 # Position where the full path is (starting with 0)
self.elements_separator = ’\t’ # Results are separated by

(possibly: tabs, white spaces, commas, etc.)

[’file’,
’program_length’,
’program_volume’,
’program_level’,
'mental_discriminations’]

self.elementlList

3.2. SOURCE CODE 55

self.elementListType = [’varchar(255)’, # file
’int(8)°, # program_length
’int(8) 7, # program_volume
’int(8) 7, # program_level
’int (8)] # mental_discriminations

After retrieving and storing the data from external tools, GlueTheos has to consider only the data
in the database to obtain statistical and other results from the data set. This includes some procedures
to enhance the database structure in order to normalize the fields or to obtain intermediate tables
with statistical information that is of common use.

3.2.4 Analysis of other files

Besides source code written in a programming language, we identify other artifacts that compose the
sources of libre software projects. In section 4.5 we will see the many possibilities that arise from the
study of those files, but other references to this issue may be found in related literature. Some authors
have focused on the analysis of the change log files [Capiluppi et al., 2003] as they usually follow a
common pattern in libre software projects, although sometimes this pattern is slightly different from
the standardized way used in GNU projects.

Translation files may be used to keep track of the amount of translation work that has been
accomplished to the moment and hence have a quantitative manner of knowing the support of that
software in a given language.

Regarding licenses, in addition of a reference to the licensing terms that can be found at the top
of the code files, usually projects have a text file which includes the full text of the license. The
filename may give enough evidence for the type of license that a project uses, but other ways can also
be considered. One that we have been trying with is the use of a locality-sensitive hash like nilsimsa?.
This type of hashes return codes with small changes for inputs that differ only slightly.

Finally, the amount of documentation for a software system could be a good topic for empirical
research.

3.2.5 Authorship and dependency analysis

Usually, source code files contain copyright and license information in their first lines [Spinellis, 2003].
So, for instance, the notice in the apps/units.c file of the GIMP project shown below clearly states
that the copyright holders are Spencer Kimball and Peter Mattis and that the license in use is the
GNU General Public License:

/

*

The GIMP -- an image manipulation program
Copyright (C) 1995 Spencer Kimball and Peter Mattis

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software

¥ O X K X X X X ¥ X ¥ X * *

3The nilsimsa code can be retrieved from following URL: http://ixazon.dynip.com/%7ecmeclax /nilsimsa.html.

56 CHAPTER 3. SOURCES AND DATA

* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/

During the work on this thesis, we have been working with two software programs that extract
authorship information from source code files. The first one is CODD, designed by Rishab A. Ghosh
and implemented originally by Vipul Prakash (see section 3.2.5) and which we have been maintaining
since the year 2001. CODD raises some limitations regarding authorship identification so we decided
to create a new tool from scratch based on the heuristics given by CODD. This tools has been called
pyTernity. In the following paragraphs we will describe both tools in detail.

CODD* is a tool that searches for authorship information in source code by tracking copyright
notices and other information in the headings of files. It assigns the length (in bytes) of each file to the
corresponding authors. CODD has been used in several studies since its first release in 1999 (Orbiten
Survey [Ghosh & Prakash, 2000], source code survey done for the FLOSS study [Ghosh et al., 2002b],
among others). The process that CODD follows to obtain these results are shown in figure 3.5.

File File Dependency Shared
»| extraction [”] selection | database [source
Dependency
resolution
codd
Ownergre
*“— cluster [xmi2x grep
Shared
codd2xml |4~ |agolution
PrR— weky xml2sql
interface [q

Figure 3.5: Process of the CODD tool.

File extraction is composed of the init subroutine which takes the source code package (or packages)
that are given through the command line by the user, uncompresses them if necessary, and tries to
identify recursively the files that the package contains.

During the file selection all source code files, documentation, interfaces and not-resolved
implementations are taken together with their size in bytes, their MD5 sum and their relative route
in the package and stored in the codd®. Files are selected by means of their extension, so for instance
the .c file extension is categorized into source code files (usually they correspond to C files, while other
extensions belong to documentation). CODD stores the .h files that have a .c in the same package
as interfaces (the algorithm that is used here depends partially on the programming language that is
being analyzed). Calls to an interface in source code files (for instance .c files for C) that do not have

4The most current version of CODD may be found at http://libresoft.urjc.es/index.php?menu=Tools&Tools=CODD.
SCODD uses as intermediate storage a file for each source package which are generally called the codd files.

3.2. SOURCE CODE 57

their corresponding interface in the same package (a .h for C) will be classified in the non-resolved
implementations category, that in a future step will be handled for dependency resolution.

In a third step two databases are created in order to find shared source code and dependencies.
In the first one, named codefile_signatures, all the MD5 sums of the files are stored. The second one
contains all the interfaces that were found in the previous step. MD5 is a type of hash that allows
to know if two files are equal; if they are they will have the same MD5 hash value. MD5 hashes are
very interesting when the source code file is exactly the same, but a single modification (i.e. when
it is committed into the CVS of the new project the RCT-type id changes) makes it impossible to
recognize it as a shared file. New hashes, as for instance the nilsimsa hash, are built in a way that
they are linear with the changes so that a small change in a file results in a small change in its nilsimsa
code.

In order to find shared source code, CODD runs another time through all codds and looks if the
source code files appear more than once in the database (really it looks if their name and MD5 sum
appears more than once). If this occurs, the file is located in at least two different packages. Following
information will be added to the shared source code section in the codd (shared): (source code file,
path, MD5, size) => package name.

CODD does a similar process as in the previous step to resolve dependencies. It will search for
not-resolved implementations in the codds and compare their MD5 sums with the ones that are stored
in the interfaces database. If there is a coincidence, the interface will be deleted from the non-resolved
interfaces section in the codd and added to the resolved ones. Also, a list with all the packages where
this interface is implemented will be inserted.

The owner grep block is the one that is responsible for looking for authorship contributions. It
runs again through all source code and documentation files and scans authorship attribution by means
of certain heuristics. Mainly the heuristics look for several patterns: email addresses [1], copyright
notices [2] and software control versioning ids [3]. Information about the authors is stored in the
credits section of the codds. The regular expressions that have been used are following:

[1] Email grep: [\d\w_\=\.\ZI+?\@[\d\w\._\-1+?\\w+?) (?=[\s:>\n\r\)][$
[2] Copyright grep: .*copyright (7:\(c\))7[\d\,\-\s\:]J+(7:by\s+)?7(["\d]*)
[3] Id grep: (7:Id|Header).*7\d\d\:\d\d\:\d\d (\S+7) \S+7?

Next, the resolution of shared source code is done. In the shared source code section of the codds
we still have files and a list of packages that contain these files. As these files can only be assigned to
a single package (in order to avoid double counting the contribution of an author), CODD looks for
its author (running again the ownergrep algorithm) in the file and assigns it to the package in which
the author is the main contributor.

The last blocks of figure 3.5 shows that the codds can be then transformed to an intermediate
and independent format (as for instance XML) from which other analysis, correlation and clustering
techniques may be done. There also exists a tool that does the transformation of the data from the
codd format to SQL (including several normalization tasks for the resulting tables).

CODD is a very powerful tool, but it has some weaknesses. The most important one is that it lacks
a way of merging the various ways in which an author may appear. So, authors may appear several
times with different names or e-mail addresses. For instance, we have found that some developers
have up to 15 e-mail addresses. In the case of companies, the same may happen; so, IBM or the MIT
appear in several ways (up to ten times!) with slightly different wordings.

Cleaning of the data should also be enhanced. The heuristics that are used in CODD have proven
to be very powerful, but cannot avoid that developers use different conventions to assign copyright.
Most of these problems could be solved by a set of more powerful heuristics.

Both limitations were so important, that we decided to create a new tool from scratch that focused
on these issues and which has been named pyTernity. The architecture of pyTernity is identical to

5The most current version of py Ternity may be found at
http://libresoft.urjc.es/index.php?menu=Tools& Tools=pyTernity.

58 CHAPTER 3. SOURCES AND DATA

the one described for CODD as it can be seen from figure 3.6, although it lacks of all the procedures
for identifying dependencies among files.

File File

Insertion
extraction [”| selection [» Ownergrep —p

Database

v

Cleaning

v

Multiple
Entries

v

Merging

v

Figure 3.6: Process of the pyTernity tool.

The most innovative elements are the ones that consider data cleaning and the identification of
multiple entries. For the former, entries in database are removed from elements that make them be
different; this goes from additional white-spaces to the avoidance of dots. Some heuristics have been
set up for this, although they have been complemented with a database of frequent changes. Cleaning
includes splitting up an entry when it is due to two or more authors. So, the entry “Spencer Kimball
and Peter Mattis” will result in two, one for Spencer Kimball and another one for Peter Mattis. If
this is the case, both names appear as authors of the file and get attributed half of its length (in bytes
or lines of code).

The latter part comprises the identification of multiple entries. Developers may appear in several
ways, making results very unsatisfactory. The first efforts in this sense went into the construction of
a large database where the various entries identified for a given developer were merged into a unique
one. This has proven to enhance results in a prominent way, but the inclusion of new methods and
the rising complexity has finally made us decide to have an external tool, which will be described in
section 3.7.2, and that returns a unique identifier for any given identity. It is responsibility of this
external tool to track all developers and to manage them properly.

Once cleaning has been performed and multiple entries have been identified, pyTernity merges the
entries in the database so that authors appear only once in a file. This procedure implies to add all
the contributions by an author, so it adds the lengths of each entry (in bytes or lines of code).

3.2.6 Dependency analysis

There are source code files that include header files in order to make use of the functions they
provide. Header files declare functions that can be used by other files, but they may not contain
their implementation/definition, which can be located in another source code file. Summarizing, we
can see that we can have up to three different agents that have different relations to the functions:
uses (final source code file), declares (header file) and defines (another source code file).
Codd-dependency is a tool, designed by Rishab A. Ghosh and by the author of this thesis, that
has been implemented in order to make the analysis of this kind of software dependencies possible. It

3.2. SOURCE CODE

/* Header *
/* .h file *J
/* Declares functions */

*

int square (int x); —

function.h ,*f

/* Source code *f
* .c or .5 file *f
* Defines functions */

r int square(int x) {

return x * x;

¥

* define.c *7

* .c ors5 file

¥ = square(x)

™" uses.c

/* Solurce code

/* Uses ction

#include "funtion.h"

*f
*f
*!

*f

Figure 3.7: Code dependency.

59

consists of several modules, being codd-dependency the one with which the user interacts with. The
main structure of codd-dependency is as shown in figure 3.8.

Hence, codd-dependency.py is a global process script which just calls all other submodules and
stores their results into a database. The user can interact with it using command-line arguments or
by setting several configuration parameters directly in the code.

User

codd-dep

packages

A 4

includes

A

correlate

Figure 3.8: Code dependency.

packages.py prints information of the files in SQL format for all tarballs stored in a directory given
by the command line input. Basically it untars the tarballs that exist in a given directory, and looks
for C-code files by looking at the file extensions (which usually are .c, .h and .S). These files are given
an unique id and stored into a database together with their filename (which includes the whole inner
path in the package) and the name of the package they belong to.

includes.py extracts includes, function definitions and function declarations out of C-coded files
and C headers. The algorithm is very simple: there are some predefined patterns that will be looked
for in the files. Files that include headers are targeted by [1], while function definitions are done by
[2] and [3]. Notice that [3] is the same as [2], but without an ending '{’ as depending on the project

60 CHAPTER 3. SOURCES AND DATA

coding standards, the brackets can be on the same line as the function definition or in the next one.
If the file is a header file (.h), it also looks for function declarations [4]. The regular expressions
that have been used are given below:

[1] Include pattern: ’“#[\t I*include[\t]+[<"]([a-zA-Z0-9_/\.]1+)’
[2] Function definition pattern 1: ’[A-Za-z_* 1+ [*]17([A-Za-z0-9\-_1+)\(.*x\) {’
[3] Function definition pattern 2: °’[A-Za-z_*x]+ [*]7([A-Za-z0-9\-_1+)\(.*\)’

[4] Function declaration pattern: ’~[A-Za-z_* 1+ [*x]7([A-Za-z0-9\-_1+)\(.*\);”’

There is some logic in order to avoid to identify structs, unions, registers and other elements as
definitions or declarations. Finally it gets the file id from the files table (created before with the
packages.py script) and inserts file-include, file-definition and file-declaration pairs into the database
for future matching. At the end of this step we should have in the database a list of files and the
headers they include, a list of files and the functions they define and a list of (header) files and the
functions they declare.

correlate.py does the final step of matching headers and (source code) files where the functions
used in other (source code) files have been defined. Basically the algorithm is as follows:

The program gets from the database all headers included in (source code) files [1]. For each
obtained header it looks in the database for the filename and defined function(s) of all functions
declared in the header and defined in other (source code) files [2]. Finally, for every match it prints
out the filename of the header (declaration) and the filename of the defining file (definition) as well as
the number of times that these two files have matched.

3.3 Versioning system meta-data

Versioning systems are used to manage file versions in a software development project. Thus they
allow to track changes and past states of a software project. So, obtaining the current and any past
state of the code is made possible by the use of a versioning system. This allows to make source code
analyses as we have presented them in the previous section in a longitudinal manner and to extract
facts on the evolution of a software project.

But beyond this, versioning systems store a set of meta-data of the changes. These meta-data
can be tracked and analyzed. This information is usually related to the interactions that occur
among developers and the versioning systems. In general the information is only related to actions
that comprehend write access while reading (downloading the sources) or obtaining other information
(diffs, among others) cannot be tracked in that way.

Together with this thesis, a software tool has been built that analyzes the interactions that occur
between developers and the most used versioning system used in libre software projects at the current
time, the Concurrent Versioning System CVS7. Fortunately, there are a lot of libre and non-libre
software projects in this situation: for instance, more than 10,000 projects hosted at SourceForge used
it [Healy & Schussman, 2003], and the 11 largest projects in Debian 2.2 [Gonzélez-Barahona et al.,
2001] use versioning systems (all of them CVS except for Linux that uses Bitkeeper, a proprietary
versioning solution®). This tool, which has been labeled CVSAnalY, is based on the analysis of the
CVS log entries and implements all the theoretical details that will be presented in this section.

In CVSAnalY any interaction -also called commit- a commiter? does with the central versioning
system repository is logged with following data associated: commiter name, date, file, revision number,

"The next-generation versioning system that is becoming widely used in the libre software world is Subversion
(http://subversion.tigris.org). At the time of writing these lines, our tool offers only partial support for Subversion
repositories.

8 As of June 2005, the Linux project moved to another versioning tool developed by the Linux developers.

9A commiter is a person who has write access to the repository and does a commit -an interaction- with it at a given
time.

3.3. VERSIONING SYSTEM META-DATA 61

lines added, lines removed and an explanatory comment introduced by the commiter. There is some
file-specific information that can also be extracted, as for instance if the file has been removed!?.
On the other hand, the human-inserted comment can also be parsed in order to see if the commit
corresponds to an external contribution or even to an automated script.

Basically CVSAnalY consists of three main steps, preprocessing, insertion into database and post-
processing, but they can be subdivided into several more as it has been done in figure 3.9.

Rsync —| Checkout |— Log —»| Parsing —» Storage —Enhancement—| Analyses

Figure 3.9: Process of the CVSAnalY tool.

3.3.1 Preprocessing: retrieval and parsing

Preprocessing includes downloading the sources from the CVS repository of the project in study.
Afterwards, aggregated modules'! have to be removed to avoid counting commits several times. Once
this is done, the logs are retrieved and parsed to transform the information contained in log format
into a more structured format (SQL for databases or XML for data exchange).

Besides the information for every commit, other data obtained from the parsing requires some
attention. Although commiters seldom change their username, sometimes this happens, so the various
usernames have to be merged into a unique one. For instance, in the KDE project commiters usually
get a CVS account prior to a kde.org e-mail address. If a developer is afterwards assigned an e-mail
address the username of e-mail and CVS have to be identical for organizational and practical reasons.
If the username in the e-mail address is different from the CVS username, CVSAnalY syncs with the
former one and the actions done with both usernames are considered as done by a unique developer.

The following is a CVS log excerpt for the AUTHORS file of the KDevelop project!'?. It gives
the last 6 revisions (from revision 1.45 to 1.49) done during the last months of the year 2003 until
mid-2004.

RCS file: /mirrors/kde//kdevelop/AUTHORS,v

Working file: /mirrors/kde//kdevelop/AUTHORS

head: 1.49

branch:

locks: strict

access list:

keyword substitution: kv

total revisions: 103; selected revisions: 103

description:

revision 1.49

date: 2004/06/21 18:57:13; author: rgruber; state: Exp; lines: +4 -0
Added self

revision 1.48

date: 2004/02/24 14:42:59; author: dagerbo; state: Exp; lines: +5 -1

1071 a versioning system there is actually no file deletion. In the case of CVS, files that are not required anymore are
stored in the Attic and may be called back anytime in future.

1 Aggregated modules are modules that are shared between other modules. Such modules generally include system-
wide administration and scripts. This information is kept in the CVSROOT /modules file.

2KDevelop is an IDE (Integrated Development Environment) for KDE. More information can be obtained from
http://kdevelop.org/.

62 CHAPTER 3. SOURCES AND DATA

Added self :)

revision 1.47

date: 2004/02/15 22:40:33; author: aclu; state: Exp; lines: +3 -3
Some more credits update.

revision 1.46

date: 2004/02/15 22:02:33; author: geiseri; state: Exp; lines: +6 -0
I guess I need to accept the blame for these things...

revision 1.45

date: 2003/11/01 11:47:30; author: dhaumann; state: Exp; lines: +4 -1
branches: 1.45.2;

KTabWidget -> KDevTabWidget,

added author.

While being parsed each file is also matched for its type. Usually this is done by looking at its
extension, although other common filenames (for instance README or TODO) are also looked for.
The goal of this separation is to identify different contributor groups that work on the software, so
besides source code files the following file types are also considered: documentation (including web
pages), images, translation (generally internationalization and localization), user interface and sound
files. Files that don’t match any extension or particular filename are accounted as unknown. This
discrimination follows the criteria that have been presented in section 3.2.2, although it lacks the
possibility of looking at the content of the files as we only consider filenames (because this is the only
information that appears in the CVS logs).

CVS also has some peculiarities when introducing contents for the first time (this action is called
initial check-in). The initial version (with version number 1.1.1.1) is not considered in our computation
as it is the same as the second one (which has version number 1.1). The number of aggregated and
removed lines in CVS are computed from this initial version. This means that the first commit (the
initial check-in) logs as if 0 lines were added. This does not correspond to reality. In order to obtain
the actual number of LOCs in the first version we count the LOCs by means of the UNIX wc tool of
the latest version, subtracting the added lines and adding the removed lines of all the other commits.

Comments attached to commits are usually forwarded to a mailing list so that developers keep
track of the latest changes in CVS. Some projects have established some conventions so that certain
commits do not produce a message to the mailing list. This happens when those commits are supposed
to not require any notification to the rest of the development team. A good example of the pertinent
use of silent commits comes from the existence of bots that do several tasks automatically.

In any case, such conventions are not limited to non-human bots, as human commiters usually
may also use them. In a large community -as it is the case for the ones we are researching- we can
argue that silent commits can be considered as not contributory (i.e. changes to the head of the files,
for instance a change in the license or the year in the copyright notice, or moving many files from
one location to another). Therefore, we have set a flag for such commits in order to compute them
separately or leave them out completely in our analysis.

For instance, the developers of the KDE project mark such commits with the
comment CVS_SILENT as it can be seen from following log excerpt extracted from the
kdevelop_scripting.desktop file of the KDevelop CVS module. In this case it is due to a change
to a desktop file, a file type that is related to the user interface. Being this change not considered
interesting for other developers to know about, the author of this commit decided to make this commit
silently.

3.3. VERSIONING SYSTEM META-DATA 63

RCS file: /mirrors/kde//kdevelop/kdevelop_scripting.desktop,v

Working file: /mirrors/kde//kdevelop/kdevelop_scripting.desktop

head: 1.24

branch:

locks: strict

access list:

keyword substitution: kv

total revisions: 30; selected revisions: 30

description:

revision 1.24

date: 2005/03/28 03:29:25; author: scripty; state: Exp; lines: +2 -2
CVS_SILENT made messages (.desktop file)

revision 1.23

date: 2005/03/27 04:05:51; author: scripty; state: Exp; 1lines: +4 -0
CVS_SILENT made messages (.desktop file)

Write access to the versioning system is not given to anyone. Usually this privilege is granted only
to those contributors who have reached a compromise with the project and the project’s goals. But
external contributions -commonly called patches, that may contain bug fixes as well as implementation
of new functionality- from people outside the ones who have write access (commiters) are always
welcome.

It is a widely accepted practice to mark an external contribution with an authorship attribution
when committing it. Thus, we have constructed certain heuristics to find and mark commits due to
such contributions. The heuristics we have set up are based on the appearance of two circumstances:
patch (or patches in its plural form) together with a preposition (from, by, of, and other) or an e-mail
address or an indication that the code had been attached to a bug fix in the bug-tracking system. The
regular expressions that have been used are following:

[1] patch(es)?\s?7.* from
[2] patch(es)?\s?7.* by
[3] patch(es)?\s.*@

[4] @.*% patch(es)?

[5] ’s.* patch(es)?

[6] s’ .* patch(es)?

[7] patch(es)? of

[8] <.* [Aal[Tt] .*>

[9] attached to #

As an example, the following slightly modified excerpt taken from the kdevelop.m4.in file from the
KDevelop module in the KDE CVS repository shows a patch applied by a commiter with username
dymo that was submitted originally by Willem Boschman:

revision 1.39

date: 2004/06/11 17:07:57; author: dymo; state: Exp; lines: +3 -3
Applied patch from Willem Boschman -

fix builddir !'= srcdir configuration problem.

64 CHAPTER 3. SOURCES AND DATA

All these efforts have in common that they perform text-based analysis of the comments attached
by commiters to the changes they perform. The range of possibilities in this sense is very ample. For
instance, Mockus et al. tried to identify the reasons for changes (classifying changes as adaptative,
perfective or corrective) in the software using text-analysis techniques [Mockus & Votta, 2000].

3.3.2 Data treatment and storage

Once the logs have been parsed and transformed into a more structured format, some summarizing
and database optimization information is computed and data is stored into a database.

Usually the output of the previous parsing consists of a single database table with an entry per
commit. This means that information is stored in a raw form, containing the table possibly millions
of entries depending on the size and age of a project!®. Information is hence in a raw format and in
an inconvenient way if we consider getting statistical information for developers and projects from it.

A first step in this direction is to make use of normalization techniques for the data. In this
sense, commiters are assigned a unique numerical identification and if further granularity is needed,
procedures have been implemented to do the same at the directory and file level. For the sake of
optimization this has been introduced during the parsing phase so additional queries have not to be
performed. The next step is to gather statistical information on both commiters and modules. These
additional tables will give detail on the interactions by contributors or to modules, which is one of the
most frequent information that is asked.

Additional information that makes longitudinal analyses possible is the evolution of contributions
by developers and to modules. Hence, the same statistical queries that have been obtained for
commiters and modules for the summarizing tables can be obtained in a monthly or weekly basis
since the date the repository was set up.

On the other hand, unfortunately CVS does not keep track of which files have been committed at
the same time. The absence of this concept in CVS may bring some distortion into our analysis. We
have therefore implemented the sliding window algorithm proposed by German [Germén, 2004d] and
Zimmermann et al. [Zimmermann & Weissgerber, 2004] that identifies atomic commits (also known
as modification requests or transactions) by grouping commits from the CVS logs that have been done
(almost) simultaneously. This algorithm considers that commits performed by the same commiter
in a given time interval (usually in the range of seconds to minutes) can be considered as an atomic
commit (see figure 3.10 for more details). If the time window is fixed, the amount of time that is
considered from the first commit to the last one is a constant value. For a sliding time window, the
time interval is not constant; the time window is restarted for every new commit that belongs to the
same transaction until no new commit occurs in the (new) time slot [Zimmermann & Weissgerber,
2004].

The post-process is composed of several scripts that interact with the database, analyze statistically
its information, compute several inequality and concentration indexes and generate graphs for the
evolution over time for a couple of interesting parameters (commits, commiters, LOCs...). Results are
shown through a publicly accessible web interface that allows easy inspection of the whole repository
(general results), a single module or by commiters. Therefore results are available for remote analysis
and interpretation by project participants and other stakeholders.

The output of this stage will be present in several places in the next chapter devoted to the analysis

of libre software projects. Figure 3.11 gives a view of the general statistics as they can be accessed
through the web interface of CVSAnalY for the KDE project!4.

13For instance, as of April 2005, we have computed over 7 million commits to the CVS of the KDE project. The number
of commits for other projects such as GNOME or Apache is also in the order of magnitude of millions of commits.
Y“http:/ /libresoft.urjc.es/cvsanal /kde3-cvs.

3.3. VERSIONING SYSTEM META-DATA

(a) Fixed Time Window

same author +

same message

" Memorized by Grouping Algorim [siding Time window

(b) Sliding Time Window

same author +
same message

Figure 3.10: Fixed vs. sliding time window algorithm for the identification of atomic commits.
[Zimmermann & Weissgerber, 2004].

Module Search

Commiter Search

Language
[Frain | o |

Done

Historical data

First commit
Last commit considered (¥)

(BETA3) CVS Analysis for the KDE project - General Statistics

Number of days

2539.9

1997-04-09 00:25:19
2004-03-22 20:59:43

(*) CWSAnalY analysis date, This date is considered as the reference point for further analysis.

Number Mean per
module
Modules 79 i
Commiters 915 11.58
Commits 2935436 37157.42
Files 175657 2223,51
Aggregated Lines 106048029 1342380.11
Removed Lines 73534466 930816.03
Changed lines 179582495
Final Lines 32513563 411564.09

File-type statistics for all modules

Mean per Mean per

commiter

0.08
i
3208.13
191,97
115899.49
B0365.54

2273186.14 1862565.02

35533,95

‘commit

3E-05
0.0003
1
0,06
3613
25,05
61.18
11.08

File type Modules Commits Files Lines Lines Lines Removed External CVS flag First

development
il8n

74
26
64

Changed Added Removed files

commit

Mean per
day

0.0311
0.36
1155.73
69,16
41752.84
28951.72
70704,55
1280112

Last
commit

1061173 76505 36989453 25107823 11881630 87738 9428 101860 1997-04-10 2004-03-22
96 724323 1997-08-15 2004-03-22

815279 2305 114107944 61994713 52113231 64926

(*] (BETA3) CVS Analysis for the KDE project - Statistics - - Mozilla Firefox Ol

File Edit WView Go Bookmarks Tools Help o
‘ @I v B | [httpyflibresoft.urjc.esjcvsanalfkde3-cvsfindex.php?menu=Statistics B |@, ‘
|- Doprnonaealle-nlss

I+l

Source:

Figure 3.11: Screenshot of the CVSAnalY web interface for the KDE project. Data is from April 2004.

65

66 CHAPTER 3. SOURCES AND DATA

3.3.3 Software Archaeology

Based on the meta-data that versioning systems offer, we are able to follow on a per-line basis who
and when a line was modified last. So, for instance, CVS has a command line option which shows the
revision where each line was modified last, giving the date and commiters responsible of that change.
This option is labeled annotate and is available for other versioning systems as the next-generation
Subversion (where it is called blame'®). Next, a (slightly modified) excerpt of the annotated output
for the src/keymap.c file from the GNU Emacs project can be found:

[...]

1.246 (pj 13-Nov-01): Optional arg STRING supplies menu name for the keymap
1.246 (pj 13-Nov-01): in case you use it as a menu with ‘x-popup-menu’. */)
1.246 (pj 13-Nov-01) : (string)

1.8 (rms 11-Sep-92): Lisp_Object string;

1.8 (rms 11-Sep-92): {

1.8 (rms 11-Sep-92): Lisp_0Object tail;

1.8 (rms 11-Sep-92): if (!NILP (string))

1.8 (rms 11-Sep-92): tail = Fcons (string, Qnil);

1.8 (rms 11-Sep-92): else

1.8 (rms 11-Sep-92): tail = Qnil;

1.1 (jimb 06-May-91): return Fcons (Qkeymap,

1.137 (rms 13-May-97) : Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
1.1 (jimb 06-May-91): }

[...]

The structure of the CVS annotate output is as follows: the first column contains the file revision
corresponding to the line, then in brackets first we have the username and afterwards the date of the
commit and finally the content of the line.

We have introduced some error-correction routines that check for common errors found when
mining data from CVS. So for instance some lines have a date that does not correspond to reality,
probably due to a temporary misconfiguration of the server clock.

Once the data has been parsed and cleaned of comments, blank lines and errors, we normalize the
data and insert it into a database server which we query for statistical information on the data set.
This is performed by a set of scripts that are responsible for the generation of the graphs that will be
shown in section 4.4 with some selected case studies.

—>{ check-out |>{ annotate | parse analyze —

Figure 3.12: Process of the DrJones, a tool conceived to analyze projects from a software archaeology point
of view.

As the whole process, from source retrieval to graph and index generation, can be made
automatically and in a non-intrusive way we have put all the scripts together and have released a
software named DrJones'®. Figure 3.12 gives a schematic representation of the steps that DrJones
goes through. DrJones is released under a libre software license, so that independent research groups
have the possibility to use, and enhance it, comparing the results.

The approach we have presented has the limitation of being only applicable to software projects
that provide over a versioning system. If the project to analyze does not make use of one, but we

15 annotate, ann and praise are alternative names for the blame Subversion command.
More information about the DrJones tool as well as the software can be found at:
http://libresoft.urjc.es/index.php?menu=Tools& Tools=DrJones.

3.4. MAILING LISTS ARCHIVES (AND FORUMS) 67

have the historic versions of it (and the dates of their release), there exists the possibility of building
a versioning system from them. This process can be automatized, although some information from
the original analysis will be missing as for instance the real date of the modification for lines (which
will be set to the one where the release took place) and information regarding authorship.

Other problems arise because of certain characteristics (or lack of them) in the versioning system.
For instance, in CVS there exists no way for the CVS client to move files from one directory to another,
so users have to delete and create a file again in the new location which actually makes our software
archaeology approach error-prone. Newer versioning systems, such as Subversion, do not have this
limitation.

Finally, a third limitation is the insertion of external code. Vertical lines will appear when a large
amount of lines of code will be added at one time (as we will see for some of the case studies in
section 4.4). This inserts errors in the analysis regarding the date and authorship. On the other hand,
although the starting date of this code is not accurate it is code that has to be maintained, so this
limitation should not be that problematic for our purposes.

3.4 Mailing lists archives (and forums)

Mailing lists and forums are the main key elements for information dissemination and project
organization in libre software projects. Without almost any exception, libre software projects provide
over one or more mailing lists. Depending on the project, many mailing lists may exist for several
target audiences. So, for instance, SourceForge recommends to open three mailing lists: a technical
one for developers, another one to give support to users and and a third one that is used for announcing
new releases.

Mailing lists are programs that forward e-mail messages they receive to a list of subscribed e-mail
addresses. More sophisticated mailing list managers have plenty of functionality which allows for easy
subscription, desubscription, storage of the messages that have been sent (known as the archives), and
avoidance of spam, among others.

Forums are web-based programs that allow visitors to interact in a similar manner as in an e-mail
thread with the difference that in this case all the process goes through HTML forms and that results
are visible on the web.

Both, mailing lists and forums are based on similar concepts and their differences lie in their
implementation and the need of different clients for participating in them. Mailing lists require the
use of an e-mail client, while forums can be accessed through web navigators. As their concept is
the same, there exist some software programs that transform mailing lists messages to a forum-like
interface and vice-versa. Because of that, in this work we will only focus on mailing lists, specifically
on one of the most used mailing lists managers called GNU Mailman'” and the RFC 822 (also known
as MBOX) format in which it generally stores and publishes the archives.

3.4.1 The RFC 822 standard format

As mentioned above, generally all mailing list managers offer the possibility of storing all posts (the
archives) and making them publicly available through a web interfaces. This offers the possibility for
newcomers to go through the history and to gain knowledge on technical as well as organizational
details of a project.

The archives are also offered in text files following the MBOX format. MBOX is a format used
traditionally in UNIX environments for the local storage of e-mail messages. It is a plain text file that
contains an arbitrary number of messages. Each message is composed of a special line followed by an
e-mail message in the RFC-822 standard format. The special line that allows to differentiate messages
consists of the keyword “From” followed by a blank space, the poster’s e-mail address, another blank
space and finally the date the message was sent. The RFC-822 format can be divided into two parts:
(a) headers, that contain information for the delivery of the message and (b) the content, which is the

"The MailMan’s project web site can be found at following URL: http://www.gnu.org/software/mailman,.

68

CHAPTER 3. SOURCES AND DATA

information to be delivered to the receiver; the standard only allows lines of text, so filtering has to
be implemented if an image or other information is attached.

Below is an excerpt of a post sent to a mailing list that has been stored following the RFC-822
standard. Is is an automatic message sent April 30 2005 to the GNOME CVS mailing list. This list
keeps track of all the commits that are done to the CVS versioning system of the GNOME project.
This assures that subscribers are aware of the latest changes in the CVS. The content of the message,
the description of the modification that had been performed, has been omitted in the excerpt.

From gnomecvs@Qcontainer.gnome.org Sat Apr 30 20:16:38 2005
Return-Path: <gnomecvs@container.gnome.org>

X-Original-To: cvs-commits-list@mail.gnome.org
Delivered-To: cvs—-commits-list@mail.gnome.org

To:

cvs—commits-list@mail.gnome.org

X-CVS-Module: marlin

Message-Id: <20050501001636.0C5EA165E4AQcontainer.gnome.org>
Date: Sat, 30 Apr 2005 20:16:36 -0400 (EDT)

From: gnomecvs@container.gnome.org (Gnome CVS User)
X-Virus-Scanned: by amavisd-new at gnome.org

Cc:

Subject: GNOME CVS: marlin iain
X-BeenThere: cvs-commits-list@gnome.org
X-Mailman-Version: 2.1.5

Precedence: list

Reply-To: gnome-hackers@gnome.org

List-Id: CVS Logs <cvs-commits-list.gnome.org>

List-Unsubscribe: <http://mail.gnome.org/mailman/listinfo/cvs-commits-1list>,
<mailto:cvs-commits-list-request@gnome.org?subject=unsubscribe>

List-Archive: </archives>

List-Post: <mailto:cvs-commits-list@gnome.org>

List-Help: <mailto:cvs-commits-list-request@gnome.org?subject=help>

List-Subscribe: <http://mail.gnome.org/mailman/listinfo/cvs-commits-list>,
<mailto:cvs-commits-list-request@gnome.org?subject=subscribe>

X-List-Received-Date: Sun, 01 May 2005 00:16:38 -0000

[Here comes the body of the post which has been omitted in this excerpt]

From the message excerpt above, we can see some of the headers that are described in the standard.
The most important ones are following:

From: gives the e-mail address of the sender. Sometimes it also provides the real name of
the person that submitted the message. Depending on the configuration of the e-mail client,
the real name may appear in brackets just after the e-mail address. But the most common
configuration is given by the real name followed by the e-mail address as described next:
real name < usernameQexample.com >.

Sender: Specifies the address of the responsible entity for the last transmission. If it is the same
as the one in the “From:” header, it should be omitted.

Reply-To: Address to which the author of the message wants to be replied.

To: E-mail address(es) of the receiver(s) of this message. If more than one receiver appear, they
have to be separated by commas.

Cc: E-mail address(es) of the receiver(s) that should receive a copy of the message. Again, if
more than one receiver is supposed to get a copy, a comma-separated list is given.

3.5. BUG-TRACKING SYSTEMS 69

e Bcee: Addressee(s) with carbon copy. Other receivers of the message won’t know that the e-mail
address(es) listed here will receive a copy of this message. Of course, this field will not appear
in the MBOX of the receiver, so we will not have this is information in our analysis.

e Subject: Subject of the message. Usually contains a brief description of the topic.

e Received: Contains the address of the intermediate machine that has transfered the message.
The date of the action is also given. This field can give valuable information about the server
clock.

e Date: Gives when the message was sent. The clock that is used is the sender machine, so if it
misconfigured it may be wrong. Attached to the date, sometimes the timezone is given. This
gives information about the local clock.

e Message-ID: Unique identifier of this message. The uniqueness is guaranteed by the emitting
host.

e In-reply-to: Identifier of the parent message to which the current one is a response. This field
allows to identify conversation threads.

e References: Stores identifications (message-1Ds) of all the other messages that are part of the
conversation thread.

In addition to the data that can be found in the headers, some other information could be obtained
from analyzing the content of the messages. This idea is similar to the one presented in subsection 3.3.1
for the comments attached to CVS commits.

3.5 Bug-Tracking systems

Bug-tracking systems are used in libre software projects to manage the incoming error and feature
enhancement reports from users and co-developers. In opposition to versioning systems and mailing
lists, the use of bug-tracking systems is relatively new and the most known tool in this area is BugZilla,
a bug-tracking system developed by the Mozilla project and that has been adopted by other large
projects as well. Hence BugZilla is the system we study in this work, although conceptually all other
systems should work similarly.

BugZilla allows to manage all bug reports and feature requests by means of a publicly available
web interface. Besides the reports, it also offers the possibility of adding comments so that developers
may ask for further information about the error or other end-users may comment it. Beyond BugZilla,
other tools exist with similar features, as for instance GNATS (the one used in the FreeBSD project).
SourceForge and other web platforms that support software development have implemented their own
bug-tracking systems for the projects they host.

3.5.1 Data description

BugZilla stores in its database specific information for each bug report. The fields that can be usually
found are following'®:

e Bugid: Unique identifier for any bug report.
e Description: Textual description of the error report.
e Opened: Date the report was sent.

e Status: Status of the report. It can take one of the following status: new, assigned (to a developer
to fix it), reopened (when it has been wrongly labeled as resolved), needinfo (developers require
more information), verified, closed, resolved and unconfirmed.

8The ones shown next are the ones that can be found for the GNOME BugZilla system. BugZilla can be adapted
and modified, so the fields may (and will) change from project to project.

70 CHAPTER 3. SOURCES AND DATA

(] Bug 123456 - ltemFactory.create_items and <Imageltem> bug - Mozilla Firefox

File Edit View Go Bookmarks Tools Help

<:EI B - @ ‘r:’h L1 httpi/bugs.gnome.orgishow_bug.cgi?id=123456 ' [«

&l - N = !

| ‘gpAOwHedlle Rl
|L & Libre Software Engineering - - & Bug 123456 - ltemFactory.c... | (%]

e

GNOMEW Users + Developers - Bonsai + ViewCWS « FTP - Bugzilla - Software Map + Contact

Bug 123456: ItemFactory.create_items and <Imageltem> bug Resolved: FIXED
Reporter: rm.bgo@arcsin.org (Rob Melby) Opened: 2003.09-29 11:22
according to the pygtk function for create_items, if the item Product: pyatk

is an <Imageltem=, the extra data should be either a string "

ara pigbar, Component: general

;. ; oo R Version; 2.0.x

the C create_items function actually only appears to take inline data .

(it internally creates a pixbuf from it). Status: RESOLVED

. . . Resolution: FIXED
attached is a patch against 2.0.0 to make it function correctly

if passed a pixbuf. the pixbuf is first serialized and then passed
to the C function. the memory created is then owned by the itemfactory's
internal pixbuf.

Created an attachment (id=20349)
aforementioned patch

Fixed in cvs head and pygtk-2-0 branch, thanks for the patch

Done Adblock

Figure 3.13: Screenshot of GNOME’s BugZilla web interface. The bug shown is bug #123456 (July 2005).

e Resolution: Action to be performed on the bug. It can take following status: obsolete (will not be
fixed as it is a bug to a previous, already solved issue), invalid (not a valid bug), incomplete (the
bug has not been completely fixed), notgnome (the bug is not of GNOME, but of a component
of another project, as for instance X window system or the Linux kernel), notabug (the issue is
not really a bug), wontfix (the developers consider not to correct this error for any reason) and
fixed (the error has been corrected).

e Assigned: Name and/or e-mail address of the developer in charge of fixing this bug.

e Priority: Urgency of the error. It can take following values: immediate, urgent, high, normal and
low. Usually this field is modified by the bugmaster as users do not have sufficient knowledge
on the software to know the correct value.

e Severity: How this error affects the use and development of the software. Possible values
are (from high severity to lower one): blocker, critical, major, normal, minor, trivial and
enhancement.

e Reporter: Name and e-mail address of the bug reporter.
e Product: Software that contains the bug. Usually this is given at the tarball level.

e Version: Version number of the product. If no version was introduced, unspecified is given. Also,
for enhancements the option unversioned enhancement may be chosen.

e Component: Minor component of the product.

e Platform: Operating system or architecture where the error appeared.

Usually all fields (besides the automatic ones like bugid, the opening date or its status) are filled out
the first time by the reporter. Larger projects usually have some professional or volunteer staff that

3.5. BUG-TRACKING SYSTEMS 71

\

Retrieval

y
Specific
Parser

Y

Indep.
Format

Generic
Parser

< =

Database

Analysis

'

Figure 3.14: Architecture of the BugZilla Analyzer.

review the entries in order to adjust the information [Villa, 2003; 2005]. This is especially important
for fields like priority or severity as end-users hardly have no knowledge or experience on how to
evaluate these fields.

3.5.2 Data acquisition and further processing

For the analysis of the data stored in a bug-tracking system, we have created a tool that is specifically
devoted to extract data from BugZilla. The architecture of the BugZilla Analyzing Tool is described
in figure 3.14. Although the retrieval of the data could theoretically be simplified by obtaining the
database of the BugZilla system from the project administrators, we thought that retrieving the data
directly from the web interface would be more in accordance with the non-intrusive policy that all
other tools described in this thesis follow.

We had to deal with several problems while retrieving the BugZilla data. After crawling for all
web pages (one per bug) and storing them locally, we had to transform the HTML data into an
intermediate log-type format, as not all fields were given for all bugs due probably to a transition from
a previous system. Probably also because of this, there may have been some information loss and
some ids could not be tracked. Other problems that we found, were the existence of wrong date entries
for some bugs and comments. As the bug report ids are sequential, we could fix these entries when
we found out that the date was wrong. We applied the same solution to comments with erroneous
dates, as comments are also posted sequentially and cannot be introduced before the bug report has
been submitted.

In recent versions of BugZilla, it is possible to obtain the data in XML format which simplifies in

72 CHAPTER 3. SOURCES AND DATA

a great manner the data extraction'®. When writing this thesis, the use of the XML interface was not
as common as the author would wish, so retrieving the data from parsing web pages was the unique
non-intrusive manner at that time. In any case, the BugZilla analyzing tool has been designed in
such a way that only by removing some parts (specifically the specific HTML-parser which parses into
the independent format) and by modifying the generic parser we could reuse the rest of the modules
without major changes using the XML query format. This is also valid for other bug-tracking systems,
as GNATS.

3.6 Other, project-related sources

Besides the information that can be gathered from widely-used development-supporting and
communication tools, other project-specific data sources can be considered. This information includes
meta-data or organizational data that the project stores in a possibly structured format. The main
problem of these data sources lies in the fact that they are only valid for a project (or sometimes for
a small set of projects), so after inspecting the data that a project may provide this analysis has to
be customized.

For this work, we have studied in detail information that is provided by the Debian project, that
includes information of the packages that are supported by this distribution, data about the popularity
of the various packages and the database of maintainers. As noted above, this information is very
specific and may not be found for other projects.

3.6.1 Debian Sources File

Since 2.0, the Debian repository contains a Sources.gz file for each release, listing information about
every source package in it. For each package, it contains: name and version, list of binary packages
built from it, name and e-mail address of the maintainer, and some other information that is not
relevant for this study. In some cases, packages are not maintained by individual volunteers, but by
teams.

As an example, an excerpt of the entry for the Mozilla source package in Debian 2.2 has been
introduced below?". It can be seen how it corresponds to version M18-3, provides four binary packages,
and is maintained by Frank Belew.

[...]

Package: mozilla

Binary: mozilla, mozilla-dev, libnspr4, libnspré4-dev

Version: M18-3

Priority: optional

Section: web

Maintainer: Frank Belew (Myth) <frb@debian.org>

Architecture: any

Standards-Version: 3.2.0

Format: 1.0

Directory: dists/potato/main/source/web

Files:
57ee230b97ccc69444ccccd0bc66908a 719 mozilla_M18-3.dsc
532934635ad426255036ee070bad03c8 28642415 mozilla_M18.orig.tar.gz
3adf83de7e74bf940ee02c0deca20372 18277 mozilla_M18-3.diff.gz

[...]

9For instance, bug #B55,000 from the KDE bug-tracking system, which can be accessed through the web
interface at hittp : //bugs.kde.org/showsug.cgi?id = 55000 may also be obtained in XML at following URL:
http://bugs.kde.org/xml.cgi?id=55000.

20The original Sources.gz file where this entry comes from can be found at http://www.debian.org/mirror /list.

3.7. INTEGRATION OF DIFFERENT SOURCES 73

3.6.2 Debian Popularity Contest

The Debian Popularity Contest?!, popularly known as the PopCon, is an attempt to map the usage
of Debian packages. Its main goal is to know what software packages are actually installed and used.
This information may be used, for instance, to decide what packages should compose the first (and
most downloaded) Debian CD.

The PopCon system functions as follows: Debian users may install the popcon package which
sends a message every week with the list of packages installed on the machine and the access time
of some files that may give a hint of the last usage of these packages. Of course, privacy issues are
considered in a number of ways: upon installation, the user is explicitly asked if he wants to send this
information to Debian, and the server that collects the data anonymizes it as much as possible.

The resulting statistical information of all users participating in this scheme is publicly available
on the web site of the project. For every package it includes the number of machines on which it is
installed (inst), the number of machines which make regular use of that package (vote), the number of
recent updates (recent), the number of machines where not enough information is available (no-file)
and the maintainer of the package. Below is an excerpt of the available data, in this case the top ten
packages ordered by installations as of December 4th, 2004.

rank name inst vote old recent no-files maintainer

1 adduser 6881 6471 94 316 0 Adduser Developers
2 debianutils 6881 6517 50 314 0 Clint Adams

3 diff 6881 6425 261 195 0 Santiago Vila

4 e2fsprogs 6881 5448 825 608 0 Theodore Y. Ts’o
5 findutils 6881 6449 233 199 0 Andreas Metzler

6 grep 6881 6436 126 319 0 Ryan M. Golbeck

7 gzip 6881 6558 245 78 0 Bdale Garbee

8 hostname 6881 6112 715 54 0 Graham Wilson

9 login 6881 6407 56 418 0 Karl Ramm

10 ncurses-base 6881 56 143 6 6676 Daniel Jacobowitz

3.6.3 Debian developer database

From June 1999 onwards, Debian holds a database?? with data related to members of the project.
Since the year 2000, Debian developers should have passed an admission process that assures they
know the Debian goals and the guidelines of the project. Some information from the Debian Developer
database can be retrieved publicly through the Internet: name, nick or username, e-mail address and
PGP/GPG key. In addition, it includes information about the country of residence and the date of
entrance to the project (if later than the database creation, else June 20th 1999). We will use in
this thesis the data from the Debian Database to study the evolution of the number of developers.
In [Robles et al., 2001] a similar study has already been made, including a detailed analysis of the
country of residence.

3.7 Integration of different sources

As by now, we have treated all data sources independently. We have seen how to identify a data
source, how to retrieve the information it contains, how to extract it and finally how to store it into
a database to further analyze it in subsequent steps.

In this section we will see how there are elements that appear in several data sources and how by
linking those elements we can have additional (and more complete) information about the development
process, the development community and its organization. This type of data integration can be done
in three different ways:

2'The main web page of the Debian Popularity Contest is: http://popcon.debian.org.
22The front page of the Debian developer database is: http://db.debian.org.

74 CHAPTER 3. SOURCES AND DATA

e Integration through artifacts. We define a granularity level (project, directory, file, class, method
or even line) at which we identify all the actions related to every artifact [Antoniol et al., 2005].
For instance, we could link the information from the activity on a file in the versioning repository
to the information of its complexity obtained by scanning the source code and calculating any
complexity measure.

e Integration by identification of traces from other sources. For instance we find bug report
identifiers in version repository logs. Some research groups already have already worked in this
direction [Antoniol et al., 2005; Fischer et al., 2003; Mockus et al., 2002; German & Mockus,
2003].

e Integration at the developer level. Actors that take part in the development process can be
identified, and their activity tracked in the various sources of information, even when different
identities are used (several e-mail address, logins, and even different spelling of real names).

In this work, we will focus on the third point, the integration at the developer level. This is
an innovative contribution of this thesis, at least to the authors’ knowledge. We will analyze how
developers appear in several ways through the various data sources and how we can create a structure
that links information from all these data sources. In addition, we will discuss how we can obtain
extra data once we have aggregated information for developers from several data sources. Finally, we
will introduce some ideas of how we want to achieve all this and at the same time preserve the privacy
of the affected persons.

3.7.1 Considering developers for data integration

Libre software developers, or more broadly, participants in the creation of libre software (from now on
actors) usually interact with one or more Internet-based systems related to the software production
and maintenance, some of which have been presented in this chapter and are depicted in Figure 3.15.
These systems usually require every actor to adopt an identity to interact with them. The identities
actors use are usually different from system to system, and in some cases a given author can have more
than one identity for the same system, sometimes successive over time, sometimes even contemporary.

LE

Mailing Lists

Source Code

Versioning Repository

@ Bug Tracking

Other

Figure 3.15: Different systems with which an actor may interact.

Some kinds of identities are the following (summarized in Table 3.2):

3.7. INTEGRATION OF DIFFERENT SOURCES 75
e An actor may post on mailing lists with one or more e-mail addresses (some times linked to a
real life name).

e In a source file, an actor can appear with many identities: real life names (such as in copyright
notices), e-mail addresses, RCS-type identifiers (such as those automatically maintained by
CVS), among others.

e The interaction with the versioning repository occurs through an account in the server machine,
which appears in the logs of the system.

e Bug tracking systems require usually to have an account with an associated e-mail address.

Other sources may include entries in weblogs, forums, blogs, and other. Although they are not
considered here, the approach proposed could easily include them.

Type Data Source Primary Identities
(1) Mailing lists username@example.com
(1) Mailing lists Name Surname
(2) Source Code (c) Name Surname
(2) Source Code (c) username@example.com
(2) Source Code $id: username$
(3) Versioning System username
(4) Bug Tracking username@example.com

Table 3.2: Identities that can be found for each data source.

Given the various identities linking an actor to his actions on a repository, our goal is to determine
all of them that correspond to the same real person. Basically we can classify these identities in two
types: primary identities and secondary identities.

e Primary identities are mandatory. For instance, actors need an e-mail address to post a message
to a mailing list. Mailing lists, versioning system and bug tracking system require to have at
least a mandatory identity in order to participate (although in some exceptional cases this can
be done anonymously). Source code does not have primary identities, except in some special
projects where the copyright notice or some other authorship information is mandatory.

e Secondary identities are redundant. For instance, actors may provide their real-life name in the
e-mails they send, but this is not required. Secondary identities usually appear together with
primary identities, and may help in the identification process of actors.

Note that the relationships between actors and repositories have not to be unique: an actor could
have one or more different identities in any repository. This is common in mailing lists, where actors
may submit from different e-mail addresses, even in the same period of time. But even in cases such
as CVS repositories, where such changes seldom happen, an actor may change the username of his
account, and of course the same actor could have different usernames in different CVS repositories.

Data fetching, structure and verification

Figure 3.16 shows a glimpse of the data structures that we have designed. The goal with such data
structures is to learn the identities from several data sources that correspond to the same person while
at the same time preserving his privacy.

The process works as follows: all the identities are introduced into the database in the Identities
table. This table is filled by directly extracting identities (using heuristics as shown in this chapter to
locate them) from software-related repositories. Besides the identity itself, this table stores identifiers
for the repository (data source) where it was found, which could be of value not only in the latter
matching process, but also for validation and track-back purposes. The kind of identity (login, e-mail

76 CHAPTER 3. SOURCES AND DATA

address, real name) is also stored to ease the automatic processing. Hashes of identities are added to
provide a mechanism which can be used to deal with privacy issues, as will be described later.

When extracting identities, sometimes relationships among them can be inferred. For instance,
a real name can be next to an e-mail address in a From field in a message. Those relationships are
captured as entries in the Matches table, which will be the center of the matching (identification of
identities of the same person) process. The evidence field in this table provides insight about every
identified match. As the process we are performing is mostly automatic, the value of evidence will
contain the name of the heuristic that has been used. This will include automatic heuristics, but also
human inspection and verification. Sometimes, the information is not enough to ensure that the match
is true for sure, and that is the reason why a field showing the estimated probability has been added.
Fields that have been verified by humans with absolute certainty will be assigned a probability of 1.

With the information stored in Identities and Matches, the identification process may begin.
Unique actors are identified with information in Matches, filling the Identifications table, and choosing
unique person identifiers. Other information in the Persons table can be filled directly with data from
the repositories or from other sources.

Persons
Sources Identities +person_id
+source_1id +identity_id (hash) identification Identifications | [+(hash)
.

+source_type | |+identity rmatch_id +nationality

i . .
LA +person_id +nationality_w

+source_URL +source_1d
+project +identity_type +genjer
+gender_w
Matches
+match_1d
+identity 1dl
+1dentity 1d2
+evidence
+probability
data T
sources history

Figure 3.16: Main tables involved in the matching process and identification of unique actors

3.7.2 Matching identities more in detail

We will usually have many identities for every actor. For instance, we can have name(s), username(s)
and e-mail address(es). Every actor considered will have at least one of them, although possibly he
may be identified with several, as is shown in Figure 3.17.

Our problem is how to match all the identities that correspond to the same actor. In other words,
we want to fill the Matches table with as much information as possible (and as accurate as possible).
As already mentioned this is done using heuristics. Let’s discuss some of them with some detail:

e In many cases it is common to find a secondary identity associated to a primary one. This
happens often in mailing lists, source code authorship assignments and bug tracking system.
In all these cases, the primary identity (usually an e-mail address) may have a real life name
associated to it. Consider, for instance, Example User <username@ezxample.com>, which implies
that Fxample User and <username@example.com> correspond to the same actor. GPG key
rings can also be a useful source of matches. A GPG key contain a list of e-mail addresses that
a given person may use for encryption and authentication purposes. GPG is very popular in
the libre software community and there exist GPG servers that store GPG keys with all these
information.

e Sometimes an identity can be constructed from another one. For instance, the real life name
can be extracted in some cases from the e-mail username. Many e-mail addresses follow a given

3.7. INTEGRATION OF DIFFERENT SOURCES 77

Real-life Name

+Mame Surname

+Mame M. Surname

+Name Middlename Surname
+MNickname Surname

T
Username
+user
————+username
+nickname
iy
Actor

Email Address

+user@example.cor
+user@example.org
+hame.surname@example.cor
+nickname@example.cor
+...

Figure 3.17: An actor with three different kinds of identities.

structure, such as name.surname@ezxample.com or name_surname@ezxample.com. We can easily
infer in those cases the real life name of the actor. Other, more complex, routines may be
used for extracting names from e-mails, with procedures from the machine learning world as for
instance applying named entity recognition [Minkov et al., 2005].

e In many cases one identity is a part of some other. For instance, it is common that the username
obtained from CVS is the same as the username part of the e-mail address. This can be matched
automatically, and lated verified by other means. This is one of the more error-prone heuristics,
and is of course not useful for very popular usernames like joe. But despite these facts, it has
proven to be very useful.

e Some projects or repositories maintain specific information that can be used for matching, for
instance, because a list of contributors is maintained. As an example, the KDE project has a
file in the CVS repository which lists, for every person with write access to the CVS, his real
life name, his username for CVS and an e-mail address®>. Other similar case are developers
registered in the SourceForge platform, who have a personal page where they may include their
real life name.

Of course this is not an exhaustive list, and combinations of the described heuristics can be used.
For instance, a mixed approach could benefit from the data in changelog files [Capiluppi et al., 2003]
for finding identity matches.

Usually, the fraction of false positives for matches can be minimized by taking into account
the project from which the data was obtained. If we have a joe entry as username for the CVS
repository in an specific project, and in that same project we find somebody whose e-mail address
is joe@example.com (and no other e-mail address that could be suspicious of being from a joe) then
there is a high probability that both are identities of the same actor.

In any case, the fraction of false positives will never be zero for large quantities of identities.
Therefore, some heuristics are specifically designed for cleaning the Matches table (eliminating those

#3The list that the KDE project offers can be obtained from: http://websvn.kde.org/trunk/KDE/kde-
common/accounts?rev=480789

78 CHAPTER 3. SOURCES AND DATA

entries which are not correct, despite being found by an heuristic) and verification, including human
verification. In some cases, the help from an expert that knows about the membership of a project,
for instance, could be of great help.

But even after cleaning and verification, some matches will be false, and some will be missing,
which can cause problems. However, since we are interested in using the collected data for statistical
purposes, this should not be a big issue provided the error rate is small enough.

3.7.3 Privacy issues

Privacy is of course an important concern when dealing with sensible data like this. Although all the
information used is public, and contains almost no private data (phone, physical address, age, wage...),
the quantity and detail of the information that is available for any single developer can cause privacy
problems. Therefore, we have devised a data schema which allows both for the careful control of who
has access to linking data to identified real persons, and for the distribution of information preserving
anonymity. In the latter case, the information can be distributed in such a way that real persons are
not directly identifiable, but new data sets can be, however, combined with the distributed one. This
will for sure allow for a safe exchange of information between research groups.

For this purpose, the hashes of identities serve as a firewall. They are easy to compute from
real identities, but are not useful for recovering them when only the hashes are available. Therefore,
the Matches, Identifications and Persons tables can be distributed without compromising the real
identities of developers as a whole. However, new data sets can be combined. Assuming a research
group has a similar schema (or uses the same one), with some identities found, the corresponding hash
can be calculated for any of them and it may be looked up in the Matches table. Of course this will
not be useful in many cases for finding new matches, but it would always allow to link an identity
(and the data associated with it) to an actor in the Persons table. Therefore, any development data
distributed using hash identities instead of developer names can be safely shared (but see below).

Although hashes will make it impossible to track real persons from the distributed data, it is still
possible to look for certain persons in the data set. By hashing the usual identifiers of those persons,
they can be found in the Matches table, and their identity is thus discovered. That is the reason
why although distributing hashes to other research groups under reasonable ethical agreements is
acceptable, probably it is not to do the same for anyone.

To avoid this problem, our schema has still a second level of privacy firewall: the person identifier
in the Persons table. This identifier is given in such a way that it cannot be used in any way to infer
the identities of an actor without having access to the Identifications table. Therefore it is enough
to key all development data with this person identifiers, and distributing only the Persons table in
addition to that data to ensure the full privacy of the involved developers.

Of course, even in this latter case somebody could go to the software repositories used to obtain
the data, and try to match the results with the distributed information. But this is an unavoidable
problem: a third party can always milk the same repositories, and obtain exactly the same data,
including real identities. In fact, this is the basis of the reproducibility of the studies.

3.7.4 Automatic (post-identification) analysis

The reader has probably noted that the Persons table in Figure 3.16 includes some fields with personal
information. We have devised some heuristics to infer some of them from data in the repositories,
usually from the structure of identities. For instance, nationality can be guessed by several means:

e Analyzing the top level domain (TLD) of the various e-mail addresses found in the identities
could be a first possibility. The algorithm in this case consists of listing all e-mail addresses,
extracting the TLD from them, rejecting those TLD that cannot be directly assigned to a country
(.com, .net, .org, and other) or those who are from fake countries (.nu, and other), and finally
looking at the remaining TLDs and count how often they occur. The TLD that is more frequent
gives a hint about the nationality of the person. Of course this heuristic is especially bad for
US-based actors (since they are not likely to use the US TLD), and for those using .org or .com
addresses, quite common in libre software projects.

3.7. INTEGRATION OF DIFFERENT SOURCES 79

e From the analysis of the mailing lists we could extract the time zone from the Date header. This
information is very inaccurate on its own, but combined with the previous point it has shown
to be very powerful. In this sense, it will allow us to filter those TLDs not assigned to countries
and support other assignations.

e Another approach is to use whois data for the second level domain in e-mail address, considering
that the whois contact information (which includes a physical mail address) is valid as an
estimator of the country of the actor. Of course, this is not always the case.

Other case example of information which can be obtained from identities is the gender. Usually
we can infer the gender from the name of the person. However, in some cases it depends on the
nationality, since some names may be assigned to males in one country and to females in another.
This is for instance the case for Andrea, which in Italy is a male name while in Germany, Spain and
other countries is given usually to females.

80

CHAPTER 3. SOURCES AND DATA

Chapter 4

Methodologies and Analyses

There is in the universe something for the description and analysis of which the natural
sciences cannot contribute anything. There are events beyond the range of those events
that the procedures of the natural sciences are fit to observe and describe. There is human
action.

Ludwig von Mises

This chapter presents some methodological and analytical procedures that can be applied on
publicly obtained data sources from libre software projects. It builds on top of the data that has been
extracted from data sources described in detail in chapter 3. The analyses and methodologies that
will be presented give an ample perspective of the libre software phenomenon, especially of large and
well-known libre software projects.

The chapter starts with a reproduction of a classical analysis, the study of the evolution for large
libre software applications. The aim of this study is to find out if the laws of software evolution are
valid for these type of projects. The second analysis is related to the evolution of software compilations,
which group thousands of libre software applications. We have selected the Debian project and have
observed how it has evolved for the last seven years. In addition, we study the amount of code that
remains from past states of the software for a large set of libre software projects. This procedure has
been labeled as software archaeology.

All analyses up to this point, including software archaeology, are centered on classical source code
(those files written in a programming language). But along with classical source code, in software
projects other type of sources are contained. We propose a file-type based analysis to gain more
knowledge on them. This introduces some social issues, which we will comment in depth by means of
a software network analysis. This methodology shows that the idea that software is done by isolated
hackers without interactions with others is one of the biggest fallacies of the libre software phenomenon,
at least in regard to large projects. Libre software is developed in a community, a social body that
has a structure that flexible and self-organized. By means of a social network analysis we want to
infer the relationships and dependencies that exist among the entities (entities can be developers or
software applications) and deduce interesting information from the position that entities have in the
resulting network.

Once we have studied the social structure of some projects, we will try to detect if this structure
is static or if it evolves. In detail, the most important fact to be researched is if the leading developer
group changes its composition over the years. A possibility is that libre software projects are led by
several generations; another one, that the core remains stable. Our analysis yields that we can find
generations of developers entering and leaving the core. The next question is then to see how the
integration process of new developers is (see section 4.8).

4.1 Classification of the analyses

In this section we present a classification of the analyses proposed in this chapter. The goal of the
classification is to to provide further insight about the nature of the various analyses. The classification

81

82 CHAPTER 4. METHODOLOGIES AND ANALYSES

is based on the data sources that are being used, the properties of the analyses and the projects that
have been used as case study.

4.1.1 Data sources

Chapter 3 contained a detailed description of the data sources found for libre software projects. The
ones that have been used for the methodologies and analyses performed in this chapter are shown in
table 4.1. All data sources have been used at least once, and some of them, especially source code and
meta-data from the versioning system, appear more frequently.

Methodology / Analysis
Source Versioning M&'uhng Bug— Other, Integration
Code lists tracking | project-
System
system related
Software Evolution
X
Evolution of Compilations
X X
Software Archaeology
X
File-type based Analysis
X
Social Network Analysis
X X
Developer Generations
X X
Developer Integration
X X X X

Table 4.1: Data sources used in the analyses.

The software evolution analysis only requires having source code, although it is necessary to have
it for several points in time. For the evolution of software compilations we have used source code
and needed other information sources to know the software packages that have to be retrieved. For
Debian, our case study, this means making use of the Sources.gz files (see subsection 3.6.1).

Software archaeology only requires meta-data from versioning systems, to be obtained using the
DrJones tool (presented in subsection 3.3.3). The file-type based analysis is in the same situation: we
only require the logs of the versioning system which contain enough information about the files and
commiters involved.

The social network analysis uses data extracted from source code files and from the interactions
recorded in the versioning system. The study of generations makes use of data from the versioning
system and project-related data from the Debian project (Sources.gz described in subsection 3.6.1,
the Popularity Contest presented in subsection 3.6.2 and the Debian Developer database depicted in
subsection 3.6.3).

Finally, the part devoted to the integration of new developers to the core group of a project
is based on developer traces found in the versioning system, the mailing lists and the bug-tracking
system. Integration of data obtained from different sources as described in section 3.7 is of great
importance for this methodology.

4.1. CLASSIFICATION OF THE ANALYSES 83

4.1.2 Characteristics of the analyses

Regarding the nature of the analyses, we have defined a set of characteristics that will help situating
the analysis presented in this thesis. So, we look if analysis are technically oriented (their scope is
targeted towards technical artifacts), have a social background (devoted more specifically to developers
and relationships), if they are longitudinal (time is considered as a factor), if they are based on public
available data and finally its granularity (i.e. if the scope of the study is a project by itself or the
aggregation of multiple projects). Table 4.2 gives the result of classifying our analyses according to
these criteria.

Methodology / Analysis
Technologica Social Longitudinal Public Granularity
. Data set
analysis
Software Evolution
X X X M
Evolution of Compilations
X X X D
Software Archaeology
X (x) (X) X M
File-type based Analysis
X X X X R
Social Network Analysis
X X X R
Developer Generations
X X X M
Developer Integration
X X X R

Table 4.2: Characteristics of the analyses.

We start with the purely technological analyses (software evolution and evolution of software
compilations) and turn afterwards to social analyses. Software archaeology and the file-type based
analysis have characteristics of both, although the former has a more technical scope. The latter gives
an idea of the social groups that form the project and how they are related to technical issues. Finally,
the social network analysis, the core group generation and the integration of new developers are mainly
concerned with the human resources of projects. In any case, technical and social structure have many
links in common and one cannot be understood without the other. In our case studies, taken from
the libre software world, both views are of great important as there no pre-defined organizational
structure exists. Technical and social hierarchies are created dynamically and evolve constantly.

A characteristic that is given in all the analyses is the fact that they all take time into account.
This links with the previous idea of a flexible environment where evolution is the key. Maybe the case
of software archaeology is the one where the longitudinal analysis is not that clear; strictly, performing
a longitudinal analysis of software archaeology would imply to repeat the analysis for several points
in time. This is not done in this thesis, although it could be seen as a good idea for future research.
But as archaeology is an analysis where time is embedded, even if not purely longitudinal it can be
seen as a type of longitudinal analysis (thus, we have marked it that way in table 4.2).

The other characteristic that is shared among all the analyses is that data sources are publicly
available. In subsection 4.1.3 we introduce several projects chosen as case studies; all of them (and
information associated to them) can be accessed freely through the Internet. If our methodologies
have the property of being repeatable, the availability of the data assures that our studies can be
reproduced with the same data sets used in this thesis.

84 CHAPTER 4. METHODOLOGIES AND ANALYSES

Finally, not all analyses have been performed on the same projects for a set of reasons. The type
of analysis depends on the granularity of the project, meaning by granularity the size of a project as
well as its interrelation with other projects. In this sense, we have to face some concepts which are
loosely defined in the libre software world such as project or community. There exists no convention
or definition that refers to GNOME as a project, and to Evolution (a groupware application part of
GNOME) as one of its subprojects or if, on the other hand, Evolution is a project per se and GNOME
its super-project. This point has special importance for our analyses as some of them are especially
suited for certain project sizes. Hence, we have defined here some levels of granularity and will from
now on keep on with this nomenclature although noticing in advance that it is not standard.

Figure 4.1 depicts how we have defined the various terms. We use the way CVS versioning system
are organized, modules and repositories, and aggregate distributions to that least. The reason is
twofold: first, many of our analyses are based on CVS data as shown in table 4.1, so this will allow to
just take the concepts from there and use them ad-hoc. Second, it is clear enough and easy to define
for our purposes, so no further depth in our classification is needed.

Repository

Distribution

Figure 4.1: Different kinds of (technical and social) granularity.

The lowest level of granularity for our analysis is at the module level. It should be noted that in
this case we are at the level of CVS modules, which should be considered as a high-level container
(a directory) of a software and not as a source file as for instance Lehman et al. [Lehman & Belady,
1985] understand it in their classical software evolution analyses. A module in our case should be seen
as a complete application or library. This means that we are referring to modules with Evolution,
GNOME’s personal information management tool, kdelibs, a library for KDE, or the Apache web
server, part of the Apache project.

The next level, which comprises a set of modules that have technical or organizational dependencies
among them, is the repository. Some example of repositories could be the GNOME project (which in
addition to Evolution, contains the Nautilus file manager, the Galeon web browser and some hundreds
of modules more), the KDE project or the Apache project (notice that here we include in addition to
the web server all other modules in its CVS repository as for instance those that belong to Jakarta).

Finally, the largest granularity level considered in this thesis are distributions which are composed
of many repositories. Usually, distributions work on a different scale than repositories and modules,
as their primary task is to create an integrated body of software which is easy to install and manage.
Theirs is not purely development work and, with some exceptions, they do not provide over a
versioning system where we could track all the changes that they apply. On the contrary, usually
distributions tightly work with the original authors at the repository or more generally at the module
level. Examples of distributions are Debian (the one considered in this thesis), Red Hat, SuSE, or
Ubuntu.

4.1. CLASSIFICATION OF THE ANALYSES 85

Methodology / Analysis | Libre software projects used as case studies
Software Evolution Linux, FreeBSD kernel, OpenBSD kernel, NetBSD kernel,

kdelibs, jakarta-commons, mcs, mono, KOffice, kdepim,

Gnumeric, GTK+4, xml-xerces, Galeon, httpd-2.0, xml-

xalan, kdebase, kdenetwork, KDevelop, ant, Evolution and

The GIMP

Evolution of Compilations | Debian GNU/Linux (from version 2.0 to 3.1 “Sarge”)
Software Archaeology GNU Emacs, GCC, Wine, GTK+, The GIMP, Apache-1.3,

kdelibs, Evolution, Mozilla

File-type based Analysis KDE

Social Network Analysis Linux, Apache, GNOME, KDE

Developer Generations The GIMP, Mozilla, Evolution, FreeBSD, kdelibs, jakarta-

commons, mcs, mono, KOffice, kdepim, Gnumeric, GTK+,

Galeon, xml-xalan, kdebase, kdenetwork, KDevelop, ant and

Nautilus

Developer Integration GNOME

Table 4.3: Projects used as case studies for the various analyses.

The last column in table 4.2 gives the granularity level for each analysis. M is assigned to those
that have been performed at the module level, R to those at the repository level and D to he ones at
the distribution level.

4.1.3 Projects selected as case studies

The project that is studied at the distribution level is the Debian Linux-based distribution.

At the repository level, the projects that have been selected as case studies in this thesis are
following: GNOME, KDE, Apache, Linux, *BSD (FreeBSD, OpenBSD, NetBSD), Mono and Mozilla.
All of them have a libre software license and an ample community surrounding them (ie. contributors
can be counted in the thousands for any of them). This kind of libre software projects are also large
in size (at least in the order of 100K lines of code). This means that the technical complexity they
have to cope is not insignificant. Table 4.3 contains the details of the projects used for the various
analyses. It should be noted, that depending on the granularity of the analysis, as shown in the last
subsection, modules, repositories or even distributions may appear.

Finally, a large number of applications (the module level) have been selected as case studies. Most
of them are part of larger projects (belong to any of the repositories cited before).

For a specific introduction to any of these projects, see appendix A.

86 CHAPTER 4. METHODOLOGIES AND ANALYSES

4.2 Software Evolution

As already broadly introduced in subsection 2.3.2, thirty years of research on software evolution have
resulted in a set of laws, known as Lehman’s Laws of Software Evolution [Lehman & Belady, 1985;
Lehman & Ramil, 2001]. The number of laws has grown from three in the seventies to eight in
their latest version [Lehman et al., 1997] and all of them have been empirically validated by studying
projects developed in traditional industrial software development environments.

4.2.1 Goals

Our intention is to explore how some large libre projects behave in the context of the laws of software
evolution, especially regarding to software growth. For this matter, we start by reproducing (with
current data) the study performed five years ago on the Linux kernel [Godfrey & Tu, 2000] (see
subsection 2.3.2), which questions the conformance of libre software projects to some of those laws.

In addition, we have extended the study to other libre software systems in the same domain
(operating system kernels): the *BSD family. Finally, we have performed it on 18 other large libre
software applications with the intention of finding if we can identify give general patterns in the results.

In all these cases, we also have another goal in mind: to find differences in the evolution of the
software before and after version 1.0 is released. Traditional software evolution studies consider only
releases after the first one delivered to customers (usually this software gets the version number 1.0
and is considered to be stable). However, it is a common behavior in many libre software project to
follow the “release early, release often” rule, which means that programs are available to the public
well before they are considered stable. In other words, we consider the first release named stable is
not that special. Therefore, it is difficult to find a point where development finishes and evolution
starts. We have studied the applications from their first releases (if available) onwards (even if these
first releases were before the 1.0 release) with the hope of finding the significance of the 1.0 release
from our results.

4.2.2 Methodology

The methodology used in this thesis is based on analyzing publicly available source code on the
Internet. The code corresponding to every snapshot considered is downloaded to a local directory,
where its size is computed. The results are stored in a database, which is later used for performing
a detailed analysis and for plotting the graphs. The size of each snapshot is obtained by using the
SLOCCount tool presented in section 2.2.3, so we count only source lines of code (SLOC) written in
identified source code files.

Depending on the project, we have retrieved the sources in a different way. In the case of the Linux
kernel, there is no public CVS versioning repository. Therefore we have decided to download release
packages, which are available in Linux mirrors'. We have retrieved the official and experimental kernel
releases, from 1.0 to the last one published in December 2004 (2.6.10). We have also measured those
known as historic releases, that is, those released prior to version 1.0 (which dates from March 1994).
In order to recreate Godfrey’s study on the Linux subsystems, we have gathered data from all main
subdirectories (which we call subsystems from now on) in addition to compute the number of source
lines of code for the whole system.

For all other systems considered in this study, public CVS repositories are available. In libre
software projects, it is common practice that even if unstable, the software in the repository can be
compiled and is usable, up to the point that automatically generated nightly-builds are offered in many
cases, i.e. it is software that is not in a state of flux. Releasing a new version of the software consists
usually of taking one of this snapshots and assigning it a specific release name /number, although some
projects have more sophisticated procedures as described by Ehrenkrantz et al. (see section 2.3.2 in
related research) [Ehrenkranzt, 2003].

Taking these facts into account, we have retrieved monthly snapshots from the CVS repositories,
starting by the time the repository was established, until April 2005. The whole process has been

A list of the Linux kernel mirrors can be found at http://www.kernel.org.

4.2. SOFTWARE EVOLUTION 87

automated with the GlueTheos tool (described in subsection 3.2.3). For the *BSD projects, only the
operating system kernels (directory src/sys) are considered, while for the rest the whole CVS module
is studied.

Although Lehman suggests plotting software size against release numbers, we have done it against
time because of two reasons. First, we feel this way matches better the semi-continuous release process
found in many libre software projects. And second, this way of depicting evolution is also the one that
has been used by Godfrey & Tu for Linux. This implies that using periodic CVS snapshots is enough
for our purposes, and we do not need the source packages for specific releases.

Another sensible difference with Lehman’s studies lies in the metric used for software size. Lehman
uses source code files (which he called “modules” not to be confound with the definition of module
used in this thesis), because he argues this metric is more consistent (it has a “higher degree of
semantic integrity”) than considering source lines of code [Lehman et al., 2001]. Godfrey and Tu
counted uncommented lines of code, and we do the same. However, preliminary studies on the Linux
kernel yield that the mean size of modules (counted in lines of code) remains almost constant over the
years; we have observed the same behavior in a fast inspection for some projects. This would imply
that counting number of lines or number of source code files would give the same evolution patterns.
Further research is needed, however, to verify if this is valid in general.

As a final note, it is worth mentioning that in some cases the projects under study started outside
a CVS versioning system, but were later uploaded to one. In those cases, an initial gap will appear in
the plots.

4.2.3 Observations on the Linux kernel

Table 4.4 exhibits the main differences between the analysis on Linux by Godfrey and Tu, and the
one that is presented in this thesis. When the first study was performed (in the year 2000), two
concurrent Linux versions existed: the stable version 2.2.14 and the development version 2.3.39. 34 of
the 67 stable releases, and 62 of the 369 development releases were analyzed in it, totaling 96 releases.
In our study, we have considered all the releases published, both stable and development, including
those prior to the considered first stable release (1.0), and up to 2.6.10 (released December 24th 2004).
All in all, we have studied 123 stable and 457 development releases. It should be noted that even
if the 2.6 branch is the bleeding-edge stable branch, previous stable branches (2.0, 2.2 and 2.4) are
still actively maintained (although usually without the addition of new functionality, as only bugs are
removed) and new releases appear from time to time. The number of lines of code in 2.6.10 surpasses
the 4 millions, with a tarball size of about 45.5 MB. These figures can be compared to those of 2.3.39:
about 1.5 million lines of code, and a tarball size of about 17 MB.

Godfrey & Tu Our study

Date January 2000 December 2004

of releases 369D 4+ 67S 457D 4 123 S
Studied releases 62D +34S 457D + 123 S
Most recent ver. 2.2.14 (2.3.39) 2.6.10
Size most recent 1,425K (1,607K) 4,147K
Tarball size (MB) 15.9 (17.7) 45.5
Counting wc + awk SLOCCount

Table 4.4: Comparison between Godfrey and Tu’s and our study.

SLOCCount identifies the programming languages in which the analyzed software is written in.
We have found that the topmost used language in the Linux kernel is, as expected, C. Figure 4.2 shows
two pies with the proportion of C versus other languages for versions 1.0 and 2.6.10 respectively. In
both releases, C accounts for more than 90% of the files counted, and for more than 95% of the total
SLOCs. The next languages in importance are assembler and shell scripts.

88 CHAPTER 4. METHODOLOGIES AND ANALYSES

other other

ansic ansic

Figure 4.2: Right: Language distribution for Linux 1.0. Left: Language distribution for Linux 2.6.10.

System level growth for Linux

Figure 4.3 displays the growth of Linux in terms of sources lines of code from the first versions in
1991 to the most recent one in 2005. We have depicted two vertical lines in all figures for Linux that
identify the release date of the 1.0 version (in the year 1994) and the time of the study by Godfrey
and Tu (in the year 2000). It can be noted that the super-linearity that was found by Godfrey and
Tu seems at first glance to have become more remarkable with time. Based on statistical analysis we
have obtained the following software growth equation:

y =026 -t —322 -t+ 195,183 (4.1)

where y is the size in source lines of code and t the number of days since version 1.0. The coefficient
of determination computed using least squares is 72 = .990. Similarities arise when compared to
Godfrey and Tu’s equation from 2000 [Godfrey & Tu, 2001]:

y =021 -t* 4252 -t 490,055 (4.2)

This supports our initial perception in which we assumed that the super-linear growth has become
more remarkably over time. This is demonstrated by the fact that the factor that multiplies the
quadratical growth is now 0.26 instead of 0.21, meaning that the growth of Linux has accelerated
during the last five years.

Another fact that can be observed from this figure is that the growth pattern followed by the Linux
developers has changed over time. Until the year 2000 we find a strong growth in the development
branches, with stable branches emerging from it with almost horizontal shapes (stagnation), while the
newer stable branches 2.4 and 2.6 show steep growths. That way, the current stable branch (2.6) is
growing steadily, with a profile similar to a development branch. However, the latest releases seem to
slow down, maybe foreseeing the stabilization that occurs just before the start of a new development
branch (which would be 2.7)2.

Figure 4.4 is composed of two plots: one on the left which describes the growth (in bytes) of the
tarball sizes in bytes for all considered Linux releases and another one on the right which plots the
number of files over time for Linux. With slight differences, we can see that their shape is similar to
the one that we have observed for the growth in terms of SLOC in figure 4.3.

Growth of major subsystems

Godfrey and Tu included in their study the analysis of the major Linux subsystems, following an idea
by Gall et al. who stated that looking at the evolution of subsystems would bring more insight about

2In fact, Linus Torvalds treats the 2.6 branch as the only branch, avoiding thus the traditional stable-development
branches that are developed or maintained in parallel.

4.2. SOFTWARE EVOLUTION 89

4500000 rrrrrrr MM e M A S S

4000000 +

3500000 +

4«4 r>eOmROXX+

PPN ===
YO EN AT VN TAY VY

3000000 |-
DBO0Q0Q [ttt |
2000000 |ttt B
1500000 [y
1000000 | L

500000 | g

HREH
...... PR P S TH: |

0 ;
1990 1992 1994 1996 1998 2000 2002 2004 2006

Figure 4.3: Growth (lines of code) of Linux. The vertical axis is given in SLOC, while the horizontal axis
gives the time. The shape of the points in the curve depends on the Linux branch (see legend).

the software under consideration [Gall et al., 1997].

The growth of major subsystems can be seen in figure 4.5. As in the original work, the most
growing subsystem is the one comprising drivers, which grows steadily even though in version 2.5.x
the sound subsystem has been taken apart (which justifies the ripple around 2002). The drivers
subsystem is followed in the distance by arch, include, fs, recently sound and net.

If we filter out the drivers subsystem from figure 4.5, we can identify the arch, fs, include and
net subsystems and observe that their growth show super-linear patterns. This occurs even in the
case of net, which has a growth that is not that steep. Hence, we can conclude that super-linear
growth patterns in Linux can also be found at the subsystem level.

The rest of subsystems is hardly visible on figure 4.5 because of their small size. Therefore we
have considered them in an extra figure (see figure 4.6) with an y-axis that goes up to 20,000 lines of
source code. Even if the size of these subsystems is relatively small, some of them may be considered
the core of the Linux project (for instance, the kernel subsystem) or comprise functionality that
performs crucial tasks (for instance init or the mm memory management subsystems). The behaviour
before 1994 (the release date for version 1.0) for the kernel subsystem is chaotic and much of its code
has been later moved to other subsystems. Since 1995 it shows a super-linear growth almost equal
to the one exhibited by the mm subsystem. The rest of the subsystems do not have clear growth
patterns: besides lib, which has recently started to grow, the rest remain almost constant for a long
time, although from time to time they are affected by small gaps because of addition of external code
or removal of some code fragments.

Performing a statistical fit on the data at the subsystem level, we obtain the growth equations
listed in table 4.5. Subsystems are ordered by their values of r?, being those with an equation that
fits the curve better at the top. We can see that up to the 6th position (which is occupied by the fs
subsystem) the quadratic fit has acceptable values of 72, while the last four do not fall in that category.
Interestingly enough, these last four correspond all of them to subsystems which are small in size (they
all belong to figure 4.6). We assume that this is because of following reason: these modules contain

90 CHAPTER 4. METHODOLOGIES AND ANALYSES

250000000 18000

16000 | 1

200000000 - 5'p .o - 14000 | 52 °

¥
}i
-
o

o)
= 12000 | 2.

150000000 o7 A
j 10000 &

8000

100000000
R i 6000
[
‘/ i .
50000000 4000

/
o " 2000 R
’H—-

0 0
Sep-1991 Oct-1995 Sep-1996 Jan-1998 Oct-1999 Jun-2002 Oct-2004 Sep-1991 Oct-1995 Sep-1996 Feb-1998 Nov-1999 Aug-2002 Dec-2004

Size in bytes
Total Files

»
\""».,,

ey

W

Figure 4.4: Right: Growth of the tar file for the full Linux kernel source release. Left: Growth in the number
of files in full Linux kernel source release.

crucial functionality for the proper functioning of the kernel and the reliance of the whole depends
more heavily on these modules than on the others. So, a driver may have errors, but even if this may
be unpleasant it would not affect the rest of the system. This is not the case for an error in the kernel
subsystem.

Subsystem Growth equation (statistical fit) r?
drivers y=0.06 -t>+336.1 —70916.4 .989
net y=0.008 -t24+23.8 -t—9963.8 .988
include y =002 -t>2—-73 -t—2528.1 .983
arch y =004 -t24+77.74+4432.3 980
mm y=0.0005 -t> +0.7 -t +1649.6 .977
fs y=0.03 -t> —54.7 -t +51331.7 .958
lib y = 0.0006 -t —1.6 -t+1522.0 .893
kernel y =0.002 -t? — 6.2+ 10471.7399 .759
ipc y=0.0001 -t +02 -t+1573.8 .675
init y = 0.0001 -2 —0.01 -t+4450.8 .668

Table 4.5: Growth equation for all major Linux subsystems (based on statistical analysis).

Relative size at the subsystem level

Figure 4.7 displays the evolution of the relative size of the major subsystems. Godfrey and Tu plotted
this graph from version 1.0 (in 1994) onwards, while we depict also the previous versions. Those early
releases show an erratic behavior, because the architecture for Linux was at that time not specified
and changed drastically several times. This can be especially observed for the kernel subsystem. But
from version 1.0 onwards, all major subsystems have an almost parallel growth pattern, meaning that
their relative growth is similar. Again, the gap that can be found in early 2002 for drivers is due to
the removal of sound, while the one in early 2001 is due to some code being allocated to the arch
subsystem, as it can be clearly observed in the figure.

Besides these inconsistencies, we can observe how the share of code corresponding to the drivers
subsystem has remained almost constant since 2000, while in the period from 1998 to 2000 its share
grew from around 50% to 60% of the total kernel size, even when Linux itself doubled its size during
that period. On the other hand, the share of net and fs decreases, although it seems that in the
latter case its presence has remained around 10% during the last seven years, while include and sound
remain almost constant through the whole system life, since version 1.0.

4.2. SOFTWARE EVOLUTION 91

2000000 I I T ———— e T
arch +
drivers X
fs *
include m]
init n
o

]

A

v

v

ipc
kernel
1500000 | lib
mm
net
sound

1000000

2 -
500000
N

1990 1992 1994 1996 1998 2000 2002 2004 2006

Figure 4.5: Growth of the major subsystems in Linux (only development releases). The vertical axis is given
in SLOC. The horizontal axis gives time.

Growth of the drivers subsystem

Performing our study with on a smaller granularity level, we can study the subsystems that compose
the driver subsystem, which is by far the most important in terms of lines of code. For almost all those
subsystems we can see no super-linear growth (details can be found in figure 4.8). The only curve
that has such a behaviour is the one that groups the rest of the drivers (those that are not one of the
major ones). The rest of the drivers show linear trends with periods of high activity, when a lot of
code is included at once (as for instance in early 2004 for scsi), or regularly (the net subsystem grows
in a pronounced way from mid 1999 to early 2000, clearly different from the linear trend before and
after that period). It can be observed that the sum of other surpasses it. But none of the subsystems
in other is larger than net; the reason for its growth is that the number of drivers included as other
has raised to 37.

In general, and in all subsystems, when we perform a study on a smaller granularity level, super-
linearity gets less and less frequent while linearity arises. Godfrey and Tu pointed out the existence of
independent development groups that worked in parallel due to the high modularization of the Linux
kernel. Answering the question if the linear growth patterns that arise at a detailed level of analysis
correspond to these development groups could be a promising line for future research. This could
mean that each subsystem would behave as a whole, independent system, with its own (linear) growth
pattern, being the one for the whole kernel just the addition of those independent behaviors and hence
yielding even a super-linear pattern as a trend towards the raise in the number of subsystems can be
observed.

Figure 4.9 displays on the left the growth for all the other drivers subsystems that had been grouped
in a previous figure as drivers/other. The large number of them makes the plot a little bit chaotic,
but sufficiently clear to explain that in general these drivers contain few code (under 20,000 SLOC)
and that the ones who are larger have erratic behaviors. Probably this is due to the nature of the
drivers, which can be built independently from each other and have been most probably developed by
different developer groups. Drivers have large times of validity, because they are usually not removed
with newer versions of Linux even if the hardware they support is old.

92 CHAPTER 4. METHODOLOGIES AND ANALYSES

20000

15000

10000

5000

0 L1
1990 1992 1994 1996 1998 2000 2002 2004 2006

Figure 4.6: Growth of the smaller, core subsystems in Linux (development releases). Vertical axis is in SLOC.
The horizontal axis gives time.

On the right of figure 4.9 we have depicted the subsystems of the arch subsystem. We may observe
here a similar behaviour as the one found for the drivers subsystems at a smaller level (in this case
the top subsystems have no more than 75,000 lines of code) and with the emergence of many gaps
which are probably due to the inclusion of large amounts of code authored by third parties. In this
sense, it is more difficult to argue for work done in parallel by several groups as we did for the drivers
subsystems.

4.2.4 Observations on the *BSD kernels

The operating systems based on the BSD kernel constitute the most similar alternative to Linux-
based operating systems in the libre software world. All BSDs derive from the UNIX version made at
Berkeley since the 1970s. In particular, both FreeBSD and NetBSD are derivatives of the 4.4 BSDLite
version released 1994, while OpenBSD is a branch (first released 1996) from NetBSD. These three
BSD derivatives share architecture and a lot of code [Yamamoto et al., 2005], as copying source code,
or even entire files from other kernels is common practice [Fischer et al., 2005].

As in the case of the Linux kernel, we have researched the growth of each of the BSD kernels
as a whole and at the subsystem level. These kernels possess a set of characteristics that make the
comparison with Linux worthy: they are from the same application domain (operating system kernels),
are contemporary, are libre software and their source code base is similar in size (at least in order of
magnitude).

System level growth for the *BSD kernels

Figure 4.10 displays the system growth for the BSD kernels starting in late 1995, when OpenBSD had
its first commits. Even if all three kernels have achieved a significant size (2.5 MSLOC for NetBSD and
over 1.5 MSLOC for OpenBSD and FreeBSD), we can see that their growth has not been super-linear.

NetBSD and FreeBSD show an almost linear growth pattern (see the values of the determination
coefficient 72 in table 4.6), which OpenBSD follows too, but only until 2001 (afterwards it loses large
quantities of code in two occasions). We can identify a super-linear growth rate for FreeBSD until the

4.2. SOFTWARE EVOLUTION 93

70 T L R T L LR LA T T
arch +
drivers X
fs x
include ©
60 |- init = i 2 7
ipc © X o X
kernel . XX< X, XK XK e
lib 2 % 5?15%
50 mm 4 X %;X A [i
net & XX 98¢ s
sound ®ev HEo5008K
[]
40 : s s
[]
30 —
Xy *
XX
e I S T
o v % F e # " +#+HM%++++H%+
al . * s T
. ,
10 gy - ot oy I
P o 7 8 Kk o TR Yy VYV Y
A [X PO
0 N CLELTAT PR
1990 1992 1994 1996 1998 2000 2002 2004 2006

Figure 4.7: Share of the subsystems of the Linux kernel over time - development releases only (vertical axis
is given in percentages). A vertical line around 1994 gives the date of release for the version 1.0 of the Linux
kernel.

BSD kernel Growth equation (linear fit) r?

NetBSD y=610.2 -+ 585731 .993
FreeBSD y =479.1 -t + 200607 .972
OpenBSD y=240.2 -t + 779607 .891

Table 4.6: Growth equation for the BSD kernels (based on statistical analysis)

year 2000, which means that if Godfrey and Tu would have performed their study on FreeBSD, they
would have found at the time of writing their paper similar patterns for Linux and FreeBSD. From
2000 onwards only Linux keeps on with such a super-linear growth, while FreeBSD seems to follow a
more linear shape.

Growth at the subsystem level

As we have done for Linux, we study the subsystems of the three BSD kernels. Figure 4.11 shows the
growth of the subsystems for FreeBSD kernel. The equivalent figures for the OpenBSD and NetBSD
kernels can be found in figure 4.12. Subsystems do not grow super-linearly in any of the three cases,
except for dev (devices), and only in its early stages. It is noteworthy that the shape of the dev
subsystem is similar in all cases, possibly due to a common code base.

The arch subsystem is the largest one both in NetBSD and OpenBSD, although in the latter case
it stops growing early in 2001 contributing a great deal to the shape of the total OpenBSD system.

Since one of the main goals of NetBSD is to work on as many platforms as possible, the larger size
of arch is not a surprise, neither its continuous growth. OpenBSD supports many architectures, but
with less drivers, and is the less growing system of the three, probably because of its strict security and
auditing policies (the OpenBSD kernel is the base of an operating system targeted to environments
with strict security constraints).

Summarizing our findings for the *BSD kernels: with the exception of FreeBSD and for some time
before the year 2000, the most frequent growth pattern is linearity although there are some gaps at
given moments that make the curves have erratic behaviours (and hence a low correlation coefficient).

94 CHAPTER 4. METHODOLOGIES AND ANALYSES

600000 LA L L T T T T T T
drivers/net +
drivers/scsi X v
drivers/char
drivers/video O
drivers/isdn n
500000 |- grivers/sound o N
drivers/acorn ° v
drivers/block 2 oY
drivers/cdrom & M
driversiusb v .
400000 drivers/other v e e
w
¥
+j§+ x
Tt
+ . K X
i3 M WXW
v X X
200000 [; %LXX .
+ |
*
3o o 2 K B YO -
* ;t S x T - -
A m] []
100000 |- @M)@@?g&y Fig@@@iﬂwv B
o y w
R M N v
s ¥ ZZ A DA A0 ADL A
DAL AMA AMA AL ar il AL AA A A A A AA AAMAMAMAAL AAA A
, | SM0Eme, o9 0 e R . | . 0.

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Figure 4.8: Growth of the major drivers subsystems (development releases only); smaller drivers have been
grouped together in drivers/other.

The same is true at the subsystems level, where super-linearity is seldom achieved, and if at all not
in a sustainable way as in Linux.

4.2.5 Observations on other libre software applications

We have studied 18 more large libre software systems to widen the sample, with the aim of applying
the methodology to more cases, and to find out if results can be generalized. We have focused on
projects which can be considered mature and with an active community of users and developers. In
particular, we have selected projects with a large number of contributors (in the range of the hundreds
or above), since a critical mass of developers has to be achieved to ensure the sustainability of the
project.

Selected projects are usually considered typical libre software projects, although several different
development models are found among them. However, all of them include voluntary and paid
developers, external contributions, and interest in satisfying the needs of a sizable user community.
The data for these systems has been obtained in April 2005, and at least four years of development
are considered for all of them (details can be found in table 4.7).

In table 4.7 we include a summary of the evolution of the 18 libre software systems under study.
For each row, the data about a system (its name can be found in the first column) is offered: the
date when the system started to use a versioning system (notice this is different from the starting
date of the project); the date for the 1.0 version (Ver 1.0), if available (in some cases that data is not
available, such as for jakarta-commons, because it groups a set of subcomponents that are released
independently, or in the case of Ant for which we have not found a 1.0 release, so we have inserted the
date for the 1.1 release); in the Prev column whether a code base existed before starting the system’s
CVS (such as for GTK+ or The GIMP); whether strong ripples can be observed in the growth of
the system (column Rip); the current size of the system (in lines of code); the linear growth function
that fits the data for the system where t is given in months and y in lines of code; and finally the
last column contains the correlation coefficient of the fit. The projects in the table have been ordered
by their correlation coefficient, so that better linear fits have been put on top of the list while those
projects with bad values appear at the bottom.

4.2. SOFTWARE EVOLUTION 95

120000 — . . . 80000 — .
drivers/acpi —+— drivers/misc —e— ° arch/alpha —+—
drivers/atm ---x--- drivers/mmc ---@--- v arch/arm ---x--- 3
drivers/base ------ drivers/mtd ---@--- i arch/arm26 ---%--- -
drivers/bluetooth & drivers/nubus @ e 70000 arch/cris &
100000 | drivers/cpufreq - -&-- dri p e ‘e arch/h8300 --m-- g 4
drivers/dio ---e--- drivers/parisc ---&-- arch/i386 ---o-- ‘
drivers/eisa ----e-- drivers/parport ---@ - # archf/ia64 ----e - b
drivers/fca - drivers/pci - IS 60000 - arch/m32r - - ..
drivers/firmware s drivers/pcmcia --@-- i arch/m@gk ----+-- o al
driversfi2c —— drivers/pnp —e— i arch/mégknommu —v— b
80000 - drivers/ieee1394 ---v--- drivers/s390 ---a--- ; arch/mips ---v---
drivers/ide ---¢--- drivers/sbus ---€--- H 50000 arch/parisc ---¢--- e
drivers/input -+ drivers/serial e | arch/ppc - g
. drivers/macintosh --&-- drivers/tc --m@- 9 o arch/ppcé4 --&-- feo
8 driversimca &~ drivers/telephony ---&-- i ? 8 arch/s390 - e L
9 60000 [~ drivers/md ---o- - riversiwl -~ - + 9 S 40000 - arch/sh --o - i
7] drivers/media - - drivers/zorro -~ - @ » arch/sh64 - -- N
drivers/message o~ 14 arch/sparc --o- e
| arch/sparced —O— e
i ® 30000 arch/um ---@--- s -
40000 S0+ arch/v850 --- @ - ek
n f arch/x86_64 —-©
° b4
: 20000 -
) |
20000 e — & el s
; ! ? ' 10000 —
" A— :
o 04
Sep-1991 Dec-1995 May-1997 Jun-1999 May-2002 Dec-2004 Sep-1991 Dec-1995 May-1997 Jun-1999 May-2002 Dec-2004
Dates Dates

Figure 4.9: Right: Growth of the drivers/others subsystems (development releases only). Left: Growth of
the arch subsystem (development releases only). Vertical axis is given in SLOC.

The reader can find a 3x6 matrix with growth plots for the 18 systems grouped in table 4.8. They
are represented left to right and from top to bottom in the same order as they appear in table 4.7, so
again projects that appear to have good linear fits appear at the top. The horizontal axis gives the
time (in number of months since its inclusion in a CVS repository), while the vertical axis gives the
software size in source lines of code. The straight line in the plots gives the function that has been
obtained by fitting the data linearly.

Results for the other libre software applications

From the 18 projects that have been considered, at least 9 of them show a clear linear behavior
throughout all the system life. We have fitted them to a linear function with r (correlation coefficient)
values of about .99 and .98. However, all these systems have quite different sizes and start dates,
which get reflected in different slopes of their growth lines.

It is also interesting to notice that for these projects it is not possible to infer from its growth plot
when the version 1.0 was released as the pattern is the same before and after that release. In other
words, from their growth plot it is impossible to determine the development (before version 1.0) and
maintenance (after version 1.0) phases.

From the remaining 9 projects, 6 of them display also linear trends, although (strong or frequent)
ripples in their growth curve cause them to be fitted to linear functions with coefficient values below
.97 (but in all cases above .91). If those ripples are filtered out, many of them show behaviors which
are similar to the ones observed in the first group.

Ripples are usually due to the inclusion of external code, the restructuring of the code base or the
removal of code. All these actions have to be understood in a different manner in the libre software
world than in classical software development environments. The reader should remember that the
systems we are considering are part of larger projects, which means that code restructuring may
happen not only intra-project (in the module itself), but also inter-project (to another module in
the same repository). A large inclusion of external code is often possible legally because of a libre
software license, and technically due to a modular structure of the code base. Removal of code may be
a consequence of splitting the project in two. For instance, a sudden gap downwards may mean that
some large part of the source code has been pulled out from a project to start a more specific one. This
behaviour has been previously reported in the research literature on libre software: so, for instance,
for the sake of modularity if the core group of developers grows larger than 15 to 20 developers, the
project is split into smaller projects with the intention of improving manageability [Mockus et al.,
2002].

The remaining three projects, Ant, The GIMP and Evolution, have growth patterns that cannot
be fitted to linearity (in fact, they show bad r values of .88, .87 and .80). While Ant yields a classical
smooth growth (with some ripples early in the year 2002) as found in traditional software evolution

96 CHAPTER 4. METHODOLOGIES AND ANALYSES
3000000 L DL | T T T T T T T T T T
freebsd +
openbsd X
netbsd *
2B00000 e **x*x* .
Xx**
KX
kK
K
DOO0000 | S s
*
*X
HRRX e AN
1500000 - L T
* X xX X
xx**¥¥><><><><><><><>< iiiiii&r oo
XX +7F
*K x ot
1000000 [S .
$XX
%*x%*
o+
o +*
BOO00OQ [reeeeeeesseeessseeesssssmssa s .
o, tr +++++++++
0...I...I...I...I...I...I...I...I...I...I...
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
Figure 4.10: Growth of the BSD derivatives
Project Start Ver 1.0 Prev Rip Size Growth Function Correl. coef.
kdelibs May 97 Jul 98 N Y 615K y=06421.1 -t —16474.8 r = 0.995
jakarta-commons Mar 01 - N N 429K y =9394.7 -t — 33888.0 r =0.994
mcs Jun 01 Jun 04 N N 1081K gy =26002.3 -t— 105089.3 r = 0.993
mono Jun 01 Jun 04 N N 222K y=49129 -t — 3436.6 r = 0.992
koffice Apr 98 Jan 01 N N 780K y =7965.3 -t+ 20724.8 r = 0.992
kdepim Jun 97 Jul 98 N N 512K y =49204 -t — 32103.6 r = 0.990
gnumeric Jul 98 Jun 02 N N 229K y =3019.9 -t +17322.8 r = 0.988
gtk+ Dec 97 Apr 98 Y Y 388K y =3371.7 -t 4 89968.9 r = 0.985
xml-xerces Nov 99 Oct 03 Y Y 37K y=4345.2 -t +104761.5 r = 0.977
galeon Jun 00 Dec 01 N Y 90K y = 1460.0 -t 4 9095.4 r = 0.967
httpd-2.0 Sep 99 Sep 02 Y Y 127K y = 1000.5 -t + 65668.8 r=0.947
xml-xalan Nov 99 Oct 00 N Y 337K y=3896.0 -t+ 101817.1 r = 0.943
kdebase Apr 97 Feb 99 N Y 362K y =3097.1 -t+4 72062.8 r = 0.935
kdenetwork Jun 97 Jul 98 N Y 293K y = 21429 -t 4 48781.0 r = 0.933
kdevelop Dec 98 Dec 99 N Y 386K y =4146.8 -t —22622.4 r = 0.916
ant Feb 00 (Aug 03) N Y 120K y=1774.4 -t + 15212.3 r = 0.882
evolution May 98 Dec 01 N Y 208K y =3801.2 -t 4 35801.7 r = 0.842
gimp Dec 97 Jun 98 Y Y 557Ky =2696.7 -t+ 317718.9 r = 0.815

Table 4.7: Summary of the findings for a software evolution analysis applied to the projects listed in the first
column. Start is the starting date of the C'VS, Ver 1.0 the date of version 1.0 if available, Rip the appearance
or not of ripples, size gives the size of the software in SLOC, the growth function is the linear fit and the
correlation coefficient gives the quality of the fit.

4.2. SOFTWARE EVOLUTION

700000
600000
500000
400000
300000
200000
100000
0
-100000

800000
700000
600000
500000
400000
300000
200000
100000

0

300000

250000

200000

150000

100000

50000

0

110000
100000
90000
80000
70000
60000
50000
40000
30000
20000
10000
0

300000

250000

200000

150000

100000

50000

0

140000
120000
100000
80000
60000
40000
20000

#

0
0

kdelibs +

20 40 60 80

100

120

e
[
4

5

Ve

T
koffice +

0 10 20 30 40 50 60 70 80 90 100

—T T
gnumeric 4+

e

0 10 20 30 40 50 60 70 80 90

T T T
| galeon +

"

s
ﬁ;

'igﬁ#

0O 10 20 30 40 50 60 70

500000

450000 jal:arta—cc;mmon's +

400000

350000
300000

250000
200000

150000

100000

A
N —

0
-50000

1.2e+06
1e+06
800000
600000
400000
200000
0
-200000

10 20 30 40 50 60

T
mes +

il
ey

i3
B

0 5 10 15 20 25 30 35 40 45 50

450000
400000

T
otk+ + R

350000

300000

250000

200000

Fa

150000

100000
50000

0

400000

10 20 30 40 50 60 70 80 90 100

350000

T T T T
xml-xalan ~ + -

AT

300000

250000

200000

%ﬁf‘,—

150000

i
il

100000
i

50000

0

400000

350000

300000

250000

200000

150000

b

100000 [

50000
o

o

400000

20 40 60 80 100

350000

T LIV
evolution

300000

250000

200000

150000
100000

50000
T

0

10 20 30 40 50 60 70 80 90

250000

200000

150000

100000

50000

0

600000
500000
400000
300000
200000
100000
0
-100000

450000
400000
350000
300000
250000
200000
150000
100000

50000
0

140000
130000
120000
110000
100000
90000
80000
70000
60000
50000

400000
350000
300000
250000
200000
150000
100000
50000
0
-50000

600000
550000
500000
450000
400000
350000
300000
250000
200000

T
mono

+
i
o

#ﬁ#ﬂ

0

5 10 15 20 25 30 35 40 45 50

kdeﬁhn L%

20 40 60 80 100 120

T T T
xml-xerces ~ +

T
ki

4
d

10 20 30 40 50 60 70

T T T T
httpd-2.0

(LTS

L

L

0

10 20 30 40 50 60 70 80

T T T T
kdevelop 4

0

A

Rad %ﬁ‘#
i

[
0

10 20 30 40 50 60 70 80 90 100

Table 4.8: 3x6 matrix with growth plots for 18 libre software systems. Projects with good linear fits have been
situated at the top. The vertical axis is measured in SLOC; the horizontal axis in months since the project
started to use a versioning system. More information can be found in table 4.7.

97

98 CHAPTER 4. METHODOLOGIES AND ANALYSES

700000 L DL | T T T T T T T T
dev +
contrib % g
kern S
i386 O +
00000 .
o
N
500000 - e s
"
Lt
i
BOO0QQ) [+ A -
“
-+
300000 |- T s
;
n
o+
n
200000 [t b s
+
0 ++++ o XK
D]E+ Biliali; g %XXX
R i Bl
100000 1 g PR o0 W %W rrrrrrrrrrr S
O SRR R SRRK
%%#Jr#*#j %%%W%%%W%W%%%W% Rialeiinlana|
%%#& SRRK SRR RRK RRK .
0 ;ibémg;wé;égémmmw.ww%«.&»%. .>®.< 1 1 1 1 1

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Figure 4.11: Growth of the four largest subsystems of FreeBSD

studies [Turski, 1996], the other two projects may be seen as exceptions or anomalies and hence require
further explanation.

Evolution started as a small community-driven project, but about two years after its beginnings it
was considered by a software company as a key software for its business model. The company hence
hired some developers to work on it. This may explain the super-linear growth trend in its first stages,
until version 1.0 was released. After that point, the growth follows the usual pattern identified by
Turski, except for the heavy refactoring that has made the code base get smaller at least two times in
the latest stages of development. Evolution is an exceptional case in the libre software world where
large parts of the source code base are rewritten from scratch. Many developers see this not without
polemic as it dismisses much debugging work on the old sources.

On the other hand, The GIMP was uploaded to the CVS only after three years of development,
already with about 300,000 lines of code, which may cause some distortion. Then, until about 2000,
we can observe an almost linear pattern. But since 2000 its growth has stagnated, in part because it
has a mature architecture and most of the development around The GIMP is happening in modules
outside what is considered The GIMP itself. A fast look at the GNOME CVS where The GIMP is
stored results in 14 related modules with extra features and functionality.

Summarizing our analysis devoted to other applications which are not from the operating system
kernels domain, we can state that 15 out of 18 systems follow a linear or close to linear growth pattern.
Those that do not can be considered special in some sense.

4.2. SOFTWARE EVOLUTION 99

700000 ‘ g 1200000 :
dev v ok X arch +
arch X XX dov x L
net x xxx X compat % e
600000 |2 o 4 kem @ s+t
xX +* 1000000 e
><>< XXX XXX e ey ><><>< .
XX X Lt x L
+ ot
500000 . o . . i
+F x 800000 + «
+ o T X
400000 £ L
XXX ++ X x>
* X
T 600000 I
300000 + +* X%
+1 "
+ xX
* 400000 5
200000 s . .
X
+* S
+ 200000
100000 e ot o
xx
o ooo Doo 000 09G 9P QOR e mss mes 650 B3 oxx XXX e kK KKK XXX XEK Kn
L.k =2 Ern wnn ses mEs KES msH KNS KKK OO0 doo ooo OO
A X . . . :) |)) L . .

o goo
200 QR% FRR XRX XEK K
9

0 1 I 0 L
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Figure 4.12: Right: Growth of four most sized subsystems OpenBSD in the number of lines of code. Left:
Growth of four most sized subsystems NetBSD in the number of lines of code.

100 CHAPTER 4. METHODOLOGIES AND ANALYSES

4.3 Evolution of software compilations

Software compilations, known generally as distributions, offer the possibility of installing, managing
and updating software easily. Soon in the 1990s distributions started to gain momentum and today’s
popularity of the libre software movement is partly because of the fulfillment of those tasks.

There have been already some radiographies of some distributions, mainly of the well-known Red
Hat and Debian distributions, in recent years pointing out what packages they contain, the size of the
packages and the total distribution, some statistics on the number of files and on the programming
languages, among other issues [Wheeler, 2001; Gonzélez-Barahona et al., 2001; Amor et al., 2005b;
2005a].

The aim of our analysis in this thesis is to go a step beyond such type of static analyses and
introduce the time axis in them. This can be considered as a clear influence from the software evolution
practices. The evolution of software applications has been a matter of study for more than thirty
years now [Lehman & Belady, 1985; Lehman & Ramil, 2001], but this type of studies have not been
performed on software compilations. There are two main reasons for this: first, integrating independent
software in a non-libre environment is both difficult technically (the availability of the source code is
of great help) and legally (the license terms may avoid such an integration or at least require difficult
agreements with the authors) and second, the possibility of studying those software compilation that
have succeeded to surpass the aforementioned problems was limited (probably because of the same
reasons).

4.3.1 Goals

The goals of this study differ slightly from the ones that could be considered as common for software
evolution, in part because for the production of software compilations a different type of work has
to be accomplished. Software compilations are based mainly on integration work rather than on
development, although the latter, even if minoritary, is work that also has to be done (for instance,
for the development of an installer or other software management tasks).

In any case, there are some aspects that are common to traditional software evolution analyses as
how the size evolves. We will do this at the distribution level as well as for the components (packages)
that compose the distribution - a sort of subsystem analysis as we have seen in the previous section.
For packages, information about their size will also offer the possibility to see what type of packages
are included and if larger ones or smaller ones are the predominant packages. A look at the largest
packages in size will give us some further insight about the distribution. So, if the largest packages
correspond to technical applications, the target users will most probably be IT-related users, while if
many end-user solutions appear a wider audience may be under consideration.

But putting a software distribution together is not only integration work; maintenance has also
to be performed. This has not to be understood in the classical way with corrective, adaptative
or perfective maintenance activities as defined by Swanson [Swanson, 1976]. It may just be seen
as integrating new versions of the software that have been released. In other words, a package
maintainer may not submit any patches that correct errors; but he will have to update the package
if new versions are published, integrating the new version. This raises interesting questions in our
longitudinal analysis. For instance, we will analyze those packages that are kept and those that get
lost over time, as the composition of the software compilation may vary. In addition, we will look at
those packages whose version has not change (being probably a proxy for unmaintained packages).

As software compilations are composed of a large variety of software applications for different
purposes and from different backgrounds, we may find a larger heterogeneity than when looking at a
specific software applications. This is the case for instance in the use of programming languages; while
a software application, as we have seen before in the case of Linux, is usually implemented primarily
in a programming language being the rest of languages usually testimonial, this has not to be the case
for software compilations.

On the other hand, studying compilations as large as the ones we have selected as case studies
makes it possible to see them as a proxy of the whole libre software phenomenon. We are performing
in this sense a holistic study of libre software and research how it is in the large, making it possible

4.3. EVOLUTION OF SOFTWARE COMPILATIONS 101

to draw some conclusions about the phenomenon itself. In this sense, one of the analysis is an effort
estimation analysis.

4.3.2 Methodology

The methodology that we have used for the analysis of the stable versions of Debian is as follows:
first, we have retrieved the Sources.gz files which contain information about the packages that are
distributed with every Debian distribution (for a detailed description of the Sources.gz, see 3.6.1).
Then, each package is retrieved to a local machine, the number of source lines of code is counted and
the programming language(s) in which the code is written is (are) recognized.

The counting is made by means of a tool called SLOCCount (presented in subsection 2.2.3).
The results of the SLOCCount analysis are transformed afterward into an XML format that allows
easy manipulation, visualization and transformations into other formats. Among the most interesting
transformations we encounter the possibility of having the data in SQL format to store it in a database.
With a simple web interface anyone can have access to raw data and more elaborated visualization
forms that facilitate a first analysis (graphs, maps, among others). Many of the results carried out for
this study are offered in a web site3.

Distributions are organized internally in packages. Packages used to correspond to applications or
libraries, although commonly Debian developers try to modularize packages to the maximum. So, for
example, sources are frequently separated from documentation and data. This does not affect much
our results, since the calculations that we have made consider the source lines of code solely, and those
packages with documentation contain in general little or no code.

4.3.3 Observations on the size of Debian

We have selected the Debian GNU /Linux as the case study for this type of analysis. More information
about Debian can be found in appendix A. At the moment of this thesis, the stable version of Debian
has been just released some months ago and its version number is 3.1 (also known as sarge). The
testing version has been codenamed etch and will become the next stable Debian version some time in
the future. Finally, the one that is in development is sid. But in the past, sarge also passed through
a testing phase and, before that, it was unstable/development. What we are going to consider in this
thesis are the stable versions of Debian since version 2.0, published in 1998. Thus, we will see Debian
2.0 (alias Hamm), Debian 2.1 (Slink), Debian 2.2 (Potato), Debian 3.0 (Woody) and, finally, Debian
3.1 (Sarge).

200 10000 —

8000 —
150

6000 —
100
4000 —
50

an | “an |

TTTTTTTTTTTTTTT TTTTTTTTTTTTTIT I TITTT T
JAVAVUJASONDUAVAVUJASCNDU AVAVUJASCNDU RVAVUJASCNDU RVIAVUJASCNDU VAV JASCNDURVAVU JASONDY 0 T T T T T
1998 1999 2000 2001 2002 2003 2004 2005 JAN-98 JAN-99 JAN-00 JAN-01 JAN-02 JAN-03 JAN-04 JAN-05

Figure 4.13: Size, in MSLOC, and number of packages for the versions in study. Left: MSLOC for each
version. Right: Number of packages for each version. Synopsis: In both graphics of this figure, the studied
versions are spaced in time along the X axis according to their release date. On the left we can see the number
of MSLOC that includes each version, while the right graph shows the evolution for the number of packages.

In figure 4.13 the number of MSLOC and source packages for the considered stable versions of
Debian can be found. Debian 2.0, released July 1998, included 1,096 source packages that had more
than 25 MSLOC. The following stable version of Debian, the 2.1 (published around nine months
later) contained more than 37 MSLOC in 1,551 source packages. Debian 2.2 (released 15 months after

3The web-site can be visited at following URL: http://libresoft.urjc.es/debian-counting.

102 CHAPTER 4. METHODOLOGIES AND ANALYSES

Debian 2.1) summed up around 59 MSLOC in 2,611 packages, whereas the next stable version, Debian
3.0 (published two years after Debian 2.2), grouped 4,579 packages of source code with almost 105
MSLOC. Finally, almost three years later, Debian 3.1 has been released, with 8,141 source packages
and more than 196 MSLOC.

Version Release date Source packages Size (MSLOC) Mean package size (SLOC)

Debian 2.0 July 1998 1,096 25 23,050
Debian 2.1 March 1999 1,551 37 23,910
Debian 2.2 August 2000 2,611 59 22,650
Debian 3.0 July 2002 4,579 105 22,860
Debian 3.1 June 2005 8,141 196 24,137

Table 4.9: Size of the Debian distributions under study.

Although the number of points is not sufficient to make an accurate model, we can infer from
the current data that the Debian distribution doubles its size (in terms of source lines of code and of
number of packages) around every two years, although this growth has been much more significant
at the beginnings (from July 1998 to August 200 we had an increase of 135%) than in later releases
(between July 2002 and June 2005 the source code base has not achieved a 100% increase even if 3
years have passed). Hence, using time in the horizontal axis, we would have a smooth growth of the
software compilation as found by Turski [Turski, 1996]. On the other hand, if we considered only
releases (which is the methodology preferred by Lehman), the growth would be super-linear basically
because the time interval between subsequent releases has been growing for most recent releases.

4.3.4 Observations on the size of packages

In figures 4.14 and 4.15 we can see the graphs for the distribution of package sizes included in the
versions of Debian. A small number of large packages in size (over 100 KSLOC) exist and the size of
these packages tends to increase over time, as the sixth law of software evolution states [Lehman et
al., 1997]. Nevertheless, it seems surprising that in spite of the growth that Debian has undergone,
the graph does not show big variations. Still more interesting is the fact that the mean size for the
packages included in Debian is slightly regular (around 23,000 SLOC for Debian 2.0, 2.1, 2.2, 3.0
and 3.1, see table 4.9). With the data available at the present time it is difficult to give a forceful
explanation of this fact, but we can suggest some thoughts. As packages tend to grow in size, if no
new packages had been added to new versions of Debian, a growth in the mean package size would
be expected. So it is the inclusion of new, small packages is what makes the mean size stay almost
constant for around seven years. Perhaps the ecosystem in Debian is so rich that while many packages
grow in size, smaller ones are included causing that the average to stay approximately constant.

1.144e+06 1.144e+06
560000 560000 —

o

@

[s1=iste

[S1s1st=
I I v |

T T T T T 1 T T T T T T T 1
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 1400 1600

Figure 4.14: Package sizes for Debian distributions. Packages are ordered by their size along the X axis, while
the counts in SLOCs are represented along the Y axis (in logarithmic scale). Left: Debian 2.0. Right: Debian
2.1

The histograms in figure 4.16 and figure 4.16 with package sizes displays the same data, but from
another perspective. It can be clearly observed how large packages grow in size with time, while at the

4.3. EVOLUTION OF SOFTWARE COMPILATIONS 103

4 3.15056+06

14256406 1 1.4830+06

638000 |

320500 698000

152000 1 154500 |
2000

o . B
16000

8900 7 16000

3500 1800 1
1500

1500

500 500 4

T T T T T 1 T T T T 1
0 500 1000 1500 2000 2500 3000 o 1000 2000 3000 4000 5000

Figure 4.15: Package sizes for Debian distributions. Packages are ordered by their size along the X axis, while

the counts in SLOCs are represented along the Y axis (in logarithmic scale). Left: Debian 2.2. Right: Debian
3.0

same time more packages near the origin appear, pointing out our previous findings. It is astonishing
how many packages are very small packages (less than thousand lines of code), small (less than ten
thousand lines) and medium-sized (between ten thousand and fifty thousand lines of code).

675 - 1160 1
Erim 565
240 | 395
170 578 1
120 — 190 —
8 7 130
60 3 4
40 60
40 —

25
5]]
10 15 -
10
5 5

T T T T T IR 1 E2 LA L e T 1 ‘ 1 ‘
0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 0 200000 400000 600000 800000 16406 106406 1.46+06

Figure 4.16: Histogram with the SLOC distribution for Debian packages. Left: Debian 2.0. Right: Debian
2.1

2090 3735
1410 — 2465
950 — 1625
540 — 1070
430 — 705
290 — 465
L E % 1
130 —]
85 — 130 -
55 — 85
3% — 55
20 - F
20
10 — 10 4
5 — 5

| [T | 1 T T T T T 1

0 500000 1e+06 1.5e+06 2e+06 2.56+06 0 500000

1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Figure 4.17: Histogram with the SLOC distribution for Debian packages. Left: Debian 2.2. Right: Debian
3.0

Largest packages

We have investigated the largest packages of each distribution. Many of these packages correspond to
significant, well-known applications. From the study of these packages we can infer some information
about the nature of the Debian distributions. Tables 4.10, 4.11, 4.12, 4.13 and 4.14 give the top ten
list for the Debian versions that are considered.

There is much movement among the selected group. The fact that only the package which contains
the Linux kernel prevails from the first considered version in this study, Debian 2.0, to the last
one, Debian 3.1, after almost seven years is indicative in this sense. Regarding the domain of the

104 CHAPTER 4. METHODOLOGIES AND ANALYSES

packages, we can see that while in earlier versions of Debian systems, software (xfree86, kernel-source)
and developer (xemacs20, egcs, gnat, gdb, emacs20, lapack and gcc) tools were the most frequent
applications in the list, in more recent versions there has been a shift towards end-user applications
with the inclusion of the OpenOffice.org office suite and the Mozilla Firefox Internet browser. In some
sense, this can be considered as an evidence that Debian has moved in these years from a mainly
technical user audience to a wider audience, probably in accordance with the whole libre software
movement.

Package Version SLOC files SLOC/file

1. xfree86 3.3.2.3 1,189,621 4,100 290.15
2. xemacs20 20.4 777,350 1,794 433.31
3. eges 1.0.3a 705,802 4,437 159.07
4. gnat 3.10p 599,311 1,939 309.08
5. kernel-source 2.0.34 572,855 1,827 313.55
6. gdb 4.17 569,865 1,845 308.87
7. emacs20 20.2 557,285 1,061 525.25
8. lapack 2.0.1 395,011 2,387 165.48
9. binutils 2.9.1 392,538 1,105 355.24
10. gce 2.7.2.3 351,580 753 466.91
Table 4.10: Top 10 packages in size for Debian 2.0.
Package Version SLOC files SLOC/file
1. mozilla M18 1,269,186 4,981 254.81
2. xfree86 3.3.2.3a 1,196,989 4,153 288.22
3. kernel-source 2.2.1 1,137,796 3,927 289.74
4. pre-tools 0.5.0r 103,5230 3,025 342.22
5. eges 1.1.2 846,610 6,106 138.65
6. xemacs20 20.4 777,976 1,796 433.17
7. emacs20 20.5a 630,052 1,116 564.56
8. gnat 3.10p 599,311 1,939 309.08
9. gdb 4.17 582,834 1,862 313.02
10. ncbi-tools6 6.0 554,949 951 583.54
Table 4.11: Top 10 packages in size for Debian 2.1.
Package Version SLOC files SLOC/file
1. mozilla M18 1,940,167 9,315 208.28
2. kernel-source 2.2.19.1 1,731,335 5,082 340.68
3. pm3 1.1.13 1,649,480 10,260 160.77
4. xfree86 3.3.6 1,256,423 4,351 288.77
5. prc-tools 0.5.0r 1,035,125 3,023 342.42
6. oskit 0.97.20000202 851,659 5,043 168.88
7. gdb 4.18.19990928 797,735 2,428 328.56
8. gnat 3.12p 678,700 2,036 333.35
9. emacs20 20.7 63,0424 1,115 565.4
10. ncbi-tools6 6.0.2 591,987 988 599.18

Table 4.12: Top 10 packages in size for Debian 2.2.

On the other hand, we can observe a clear tendency to an increase of the inferior limit of the top
ten package list: whereas in Debian 2.0 GCC achieved the tenth position with 460 KSLOC, the last

4.3. EVOLUTION OF SOFTWARE COMPILATIONS 105

Package Version SLOC files SLOC/file
1. kernel-source 2.4.18 2,574,266 8,527 301.9
2. mozilla 1.0.0 2,362,285 11,095 21291
3. xfree86 4.1.0 1,927,810 6,493 296.91
4. pm3 1.1.15 1,501,446 7,382 203.39
5. mingwa32 2.95.3.7 1,291,194 6,840 188.77
6. bigloo 2.4b 1,064,509 1,320 806.45
7. gdb 5.2.cvs20020401 986,101 2,767 356.38
8. crash 3.3 969,036 2,740 353.66
9. oskit 0.97.20020317 921,194 5,584 164.97

10. ncbi-tools6 6.1.20011220a 830,659 1,178 705.14

Table 4.13: Top 10 packages in size for Debian 3.0.

Rank Package Version SLOC files SLOC/file
1. openoffice.org 1.1.2dfsgl 4,980,138 79,560 62.60
2. kernel-source-2.6.8 2.6.8 4,023,484 16,075 250.29
3. mozilla-firefox 0.9.3 2,476,383 24,932 99.33
4. mozilla 2:1.7.3 2,411,922 33,556 71.88
5. gcc-3.4 3.4.2 2,241,133 27,010 82,97
6. insight 6.14+cvs.2004.08.11 1,690,058 9,658 174.99
7. ace 5.4.2.1 1,391,794 27,952 49.79
8. bigloo 2.6d+2.6e-alpha040622 1,325,772 2,084 636.17
9. gdb-m68hclx 1:6.24-2.92 1,274,279 5,360 237.74
10. cernlib 2004.01.20 1,274,083 18,032 70.66

Table 4.14: Top 10 packages in size for Debian 3.1.

package in the top 10 for Debian 3.1, cernlib (a suite of data analysis tools and libraries created for
experimentation in physics), consists of more than 1,274,000 lines of code. Hence, the amount of code
required to be part of the selected group of largest packages in Debian has grown by almost 200% in
the last seven years.

But top packages in size do not only tend to have more source code, they also show a tendency
to have larger source code files. While the average in SLOC per file is in a rank between 352 and 359
for packages in the top ten, the average for all the packages in the same versions lies between 228 and
243 of source code lines per file. It exists, nevertheless, a big variance among the top packages. We
have a range going from the 138 SLOC per file in version 1.1.2 of egcs (a derivative of the GNU GCC
compiler) to the 806 SLOC per file in bigloo (a system for Scheme compilation) in its version 2.4b.

4.3.5 Observations on the maintenance of packages

Up to the moment, we have seen how Debian has been growing in the last 7 years as far as the number
of packages and the number of SLOC is concerned. In the following paragraphs, we will attend
the opposite dimension: packages that have not changed. This has to be understood in the sense
that taking care of a software distribution requires maintaining packages, i.e. among other activities
including new versions of the packages in the distribution. Packages that maintain from one release to
the other the same version number may have been maintained actively, but usually even performing
corrective maintenance implies releasing new versions of the software. So, we can assume that if the
version number has not been changed then changes have been minor and do not need to be considered.

Figure 4.3.5 will help explaining how we are going to measure maintenance activity supposing that
we have two distributions (given each one by a set of packages, in the figure these are Debian 2.0
and Debian 3.1). The circle that gives the set of packages for the Debian 3.1 version has a larger
radius as it contains many more packages than Debian 2.0 (the area of the circles could be considered

106 CHAPTER 4. METHODOLOGIES AND ANALYSES

as proportional to their size in number of packages). Both sets may have packages in common (the
intersection between the two sets, as it is the case for the kernel-source package). Other packages will
only be included in one of them. If packages appear only in the older Debian version, we say that it
has been lost, while packages that appear only in the newer one are new (or added) packages. We can
also identify a subset of those packages that have remained with the same version number (a subset
of the intersection between the two sets); those are the packages that we will consider unmaintained.

Mozilla

Common Packages

Common
Versions

Debian 3.1

Figure 4.18: Illustration of common packages between Debian 2.0 and Debian 3.1. Among these packages,
we may find a subset that has the same version number.

Tables 4.15, 4.16, 4.17, 4.18 and 4.19 contain some statistics about common packages in different
stable versions. As explained before, we assume that two versions have a package in common, if that
package is included in both, independently of the version number of the package. Each table displays
in its second column the number of packages in common that a version of Debian has with the other
versions. To facilitate the comparison in relative and absolute terms, the same version of Debian that
is compared is included. Needless to say, Debian 2.0 will have in common with itself 1,096 (all) source
packages.

Out of the 1096 packages included in Debian 2.0 only about 800 appear in the last version of
Debian considered in this thesis. This means that around 25% of the packages have disappeared from
Debian in seven years. The number of packages of the 3.0 version that are still included in 3.1 is 3,848
out of 4,578 which gives us a similar percentage of lost packages.

On the other hand, we have to consider that distributions contain applications and libraries that
evolve. This can be observed from the fact that the own version number of packages evolve. For
example, the Linux sources are included generally in a package called kernel-source. In each version
of Debian, the version number of kernel-source changes, so we can state that Linux has evolved and
that these changes and improvements have been introduced in Debian. But this does not have to be
the case for all packages. In the same way that we were previously interested in packages in common
without mattering if the version numbers had changed, now we are going to consider those packages
with version numbers that have not varied. Hence, we will identify packages included in two different
Debian versions that have the same package version. Again, we add the own Debian version being
compared. Because of that Debian 2.0 will have all of its packages (1,096) in common with itself.

The fact that Debian 3.1 includes 158 packages that have not evolved since Debian 2.0 is very
surprising, as 15% of the source packages included in Debian 2.0 have stayed almost with no alterations
since they were introduced seven years ago (or earlier). As expected, the number of packages with
versions in common increases for neighbouring distributions.

4.3. EVOLUTION OF SOFTWARE COMPILATIONS

Version Com pkgs Com vers. SLOC com vers. Files com vers. SLOC com pkgs
Debian 2.0 1,096 1,096 25,267,766 110,587 25,267,766
Debian 2.1 1,066 666 11,518,285 11,5126 26,515,690
Debian 2.2 973 367 3,538,329 86,810 19,388,048
Debian 3.0 754 221 1,863,799 70,326 15,888,347
Debian 3.1 813 158 1,271,377 15,296 15,594,976

Table 4.15: Packages and versions in common for Debian 2.0

Version Com pkgs Com vers. SLOC com vers. Files com vers. SLOC com pkgs
Debian 2.0 1,066 666 11,518,285 115,126 26,515,690
Debian 2.1 1,551 1,551 37,086,828 161,303 37,086,828
Debian 2.2 1,384 602 8,460,239 133,140 30,052,890
Debian 3.0 1,076 322 3,152,790 108,071 24,743,063
Debian 3.1 1,124 231 2,306,969 27,543 23,630,211

Table 4.16: Packages and versions in common for Debian 2.1

Version Com pkgs Com vers. SLOC com vers. Files com vers. SLOC com pkgs
Debian 2.0 973 367 3,538,329 86,810 19,388,048
Debian 2.1 1,384 602 8,460,239 133,140 30,052,890
Debian 2.2 2,610 2,610 59,138,348 257,724 59,138,348
Debian 3.0 1,921 771 8,356,302 186,508 42,938,562
Debian 3.1 1,946 508 4,992,308 60,525 36,584,110

Table 4.17: Packages and versions in common for Debian 2.2

Version Com pkgs Com vers. SLOC com vers. Files com vers. SLOC com pkgs
Debian 2.0 754 221 1,863,799 70,326 15,888,347
Debian 2.1 1,076 322 3,152,790 108,071 24,743,063
Debian 2.2 1,921 771 8,356,302 186,508 42,938,562
Debian 3.0 4,578 4,578 104,305,557 403,285 104,702,397
Debian 3.1 3,848 1,567 16,042,810 211,299 78,451,818

Table 4.18: Packages and versions in common for Debian 3.0

Version Com pkgs Com vers. SLOC com vers. Files com vers. SLOC com pkgs
Debian 2.0 813 158 1,271,377 15,296 15,594,976
Debian 2.1 1,124 231 2,306,969 27,543 23,630,211
Debian 2.2 1,946 508 4,992,308 60,525 36,584,110
Debian 3.0 3,848 1,567 16,042,810 211,299 78,451,818
Debian 3.1 8,134 8,134 196,499,111 2,355,220 196,499,111

Table 4.19: Packages and versions in common for Debian 3.1

4.3.6 Observations on the programming languages

107

Our methodology implies to identify the programming language of source code files before counting the
number of SLOCs. Thanks to this, we are able to compute the significance of the different programming
languages in Debian. The most used language in all Debian versions is C with percentages that vary
between 55% and 85% and with a big advantage on his immediate pursuer, C++. It can be observed,
nevertheless, that the importance of C is diminishing gradually, whereas other programming languages

108 CHAPTER 4. METHODOLOGIES AND ANALYSES

are growing at a good rate.
For example, in table 4.20 the evolution of the most significant languages - those that surpass 1%
of code in Debian 3.1 - is shown. Below the 1% mark we can find, in this order, tcl, Ada, PHP, Pascal,

ML, ObjC, YACC, Csharp, Lex, Awk, Sed and Modula3.

20 %20 21 %21 22 %22 30 %30 31 %31

C 19,371 76.7% 27,773 74.9% 40,878 69.1% 66.6 63.1% 1064 54.1%
CH++ 1,557 6.2% 2809 7.6% 5978 10.1% 13.1 124% 358 18.2%
Shell 645 2.6% 1,051 3.1% 2,712 4.6% 86 82% 184 9.4%
Perl 425 1.7% 774 21% 1,395 24% 32 3.0% 6.8 3.4%
Lisp 1425 5.6% 1,892 51% 3,197 54% 41 39% 6.8 3.4%
Python 122 05% 211 0.6% 349 06% 15 14% 36 1.8%
Java 22 01% 58 02% 183 03% 05 05% 28 14%
Fortran 494 2.0% 735 2.0% 1,182 2.0% 1,939 1.8% 2.7 1.4%

Table 4.20: Top programming languages in Debian. For Debian 2.0, 2.1 and 2.2 the sizes are given in KSLOC,
for versions 3.0 and 3.1 in MSLOC.

There exist some programming languages that we could consider as minor languages and that
reach a quite high position in the classification. This is because although being present in a reduced
number of packages, these are quite large in size. That is the case of Ada, that sums up 430 KSLOC
in three packages (gnat, an Ada compiler, libgtkada, a binding to the GTK library, and Asis, a system
to manage sources in Ada) of a total of 576 KSLOC that have been identified as code written in Ada
in Debian 3.0. A similar case is the one for Lisp, that counts with more than 1.2 MSLOC only for
GNU Emacs and XEmacs of around 4 MSLOC in the whole distribution.

The programming language distribution pie-charts display a clear tendency in the decline of C.
Something similar seems to happen to Lisp, that was the third most used language in Debian 2.0 and
has become the fifth in Debian 3.1 (in fact, in 3.1, the forth language is Perl), and that foreseeably
will continue backing down in the future. In contrast, the part of the pie corresponding to C+-, shell
and other programming languages grows.

other other
sh sh
lisp lisp
cpp cpp

ansic ansic

Figure 4.19: Pie with the distribution of source lines of code for the predominant languages in Debian. Left:
Debian 2.0. Right: Debian 2.1

Figure 4.23 provides the relative evolution of programming languages which gives a new perspective
of the growth for the last five stable Debian versions. We take therefore the Debian 2.0 version as
reference and suppose that the presence of each language in it is 100% (normalized to 1) so that
growth for a programming language is shown relative to itself. The graph should be read as follows:
for each line in Debian 2.0 for a given language, the figure gives the number of lines in subsequent
Debian releases for that language.

Previous pies evidenced that C is backing down as far as its relative importance is concerned. In
this one we can observe that C has grown more than 300% throughout the four versions. But we can

4.3. EVOLUTION OF SOFTWARE COMPILATIONS 109

other other

sh lisp

lisp
sh

cpp

cpp ansic

ansic

Figure 4.20: Pie with the distribution of source lines of code for the predominant languages in Debian. Left:
Debian 2.2. Right: Debian 3.0

other
perl

sh

ansic

cpp

Figure 4.21: Pie with the distribution of source lines of code for the predominant languages in Debian 3.1

see that scripting languages (shell, Python and Perl) have undergone an extraordinary growth, all of
them multiplying their presence by factors superior to seven, accompanied by C++. Languages that
grow a smaller quantity are the traditional, compiled ones (Fortran and Ada) and others (such as Lisp,
a traditional language that does not require compilation). This can give an idea of the importance
that interpreted languages have begun to have in the libre software world.

Figure 4.23 includes the most representative languages in Debian, but excludes Java and PHP,
since the growth of these two has been enormous, in part because their presence in Debian 2.0 was
testimonial, in part because their popularity in the latest time is beyond doubt.

4.3.7 Observations on the size of files

It should be remarked that some of the most important programming languages have spectacular
increases in their use, but that their mean file sizes remain generally constant (see table 4.21). Thus,
for C the average length lies around 260 to 280 SLOC per file, whereas in C++ this value is located
in an interval going from 140 to 185. We can find the exception to this rule in the shell language, that
triples its mean size. This may be because the shell language is very singular: almost all the packages
include something in shell for their installation, configuration or as glue. It is probable that this type
of scripts get more complex and thus grow over the years.

It is very peculiar to see how structured languages usually have larger average file lengths than
object-oriented languages. Thus the files in C (or Yacc) usually have higher sizes, in average, than
those in C++. This makes us think that modularity of programming languages is reflected in the
mean file size.

110 CHAPTER 4. METHODOLOGIES AND ANALYSES

C
C++
MW Lisp
2e+08
Ml Shell
1e+08 —
[
5e+07 — —
0 T T T T T
Debian2.0 Debian2.1 Debian2.2 Debian3.0 Debian3.1

Figure 4.22: Evolution of the four most used languages in Debian

Language Debian 2.0 Debian 2.1 Debian 2.2 Debian 3.0

C 262,88 263,42 268,64 283,33
C++ 142.5 158,62 169,22 184,22
Lisp 394,82 393,99 394,19 383,60
shell 98,65 116,06 163,66 288,75
Yacc 789,43 743,79 762,24 619,30
Mean 228,49 229,92 229,46 243,35

Table 4.21: Mean file size for some programming languages.

4.3.8 Effort and time estimation

The COCOMO model [Boehm, 1981], introduced with some detail in subsection 2.2.2, gives an
estimation of the human and monetary effort that is necessary to generate software for a given size.
Although this model is not appropriately suited for libre software development, the results may give
us an idea of the order of magnitude of the costs that creating Debian would represent, giving us the
necessary optimal efforts, if a proprietary, waterfall development model had been used.

In general, the most astonishing result that COCOMO offers is its cost estimation (see table 4.22).
Some words should be said in order to clarify the concept. In this estimation two factors are considered:
the average developer salary and the factor of overhead. In the calculation of cost estimation, the
average wage for a full-time system programmer has been taken from the year 2000 salary survey?.
QOverhead is the cost that any company has to assume independently from the programmers’ salaries.
The cost of having secretaries, a marketing team and other non-technical staff has to be added to the
costs of photocopies, electricity, equipment or hardware, among others. For our calculations, we have
supposed an overhead factor of 2.4. In summary, the final cost calculated by COCOMO is the total
cost that a company would have to confront to create a software of the specified size and not simply
the money that programmers would perceive to create the software. Once this is understood, cost
calculations seem less bulky.

In table 4.22 we can observe the results of applying the basic COCOMO model to the various
Debian stable versions. The results have been obtained by means of the separate calculation of the
cost that each package would suppose. The amounts for each package have been summed up to give
the total cost. It should be noted that as COCOMO is a non-linear model, the sum of the separate
costs of packages is not equal to the cost of considering everything as one single project. The first

4This data is originally from the Computer World 2000 Salary Survey. The original report can be found at
http://www.computerworld.com/cwi/careers/surveysandreports

4.3. EVOLUTION OF SOFTWARE COMPILATIONS 111

30 ! ! !

e
T

Relative SLOC (SLOC in Debian 2.0 = 1)

Debian 2.0 Debian 2.1 Debian 2.2 Debian 3.0 Debian 3.1

Figure 4.23: Relative growth of some programming languages in Debian

result yields the inferior effort limit, since integration tasks are not considered, whereas in the second
case we would obtain the superior limit, since savings from having independent projects would have
not been taken into account. As stated before, for our current goals it is enough with an estimation
of the order of magnitude and therefore results for only one cost model have been calculated.

Version ~ MSLOC Effort (man-years) Time (years) Cost (USD)

Debian 2.0 25 6,360 4.93 860,000,000
Debian 2.1 37 9,425 4.99 1,275,000,000
Debian 2.2 59 14,950 6.04 2,020,000,000
Debian 3.0 105 26,835 6.81 3,625,000,000
Debian 3.1 196 50,482 8,68 6,819,000,000

Table 4.22: Effort, time and development cost estimation for each Debian version.

112 CHAPTER 4. METHODOLOGIES AND ANALYSES

4.4 Software Archaeology

Software evolution is based on considering the study of a software system by obtaining some snapshots
over time (being the snapshots releases in the classical methodology, although they just could be
periodically-spaced as we have used them in our analysis in section 4.2). As depicted in figure 4.24,
for the software evolution metaphor the software engineer is aware of how the software has changed.
Based upon this observations, he may derive some findings.

Time

a2

A

Software
Engineer

Figure 4.24: Software evolution point of view. The software engineer views how the software system changes.

In general, the view that is provided by software evolution implies a situation that is not that
important when the maintenance of a software system is intended. In these cases, it is the current
state of the sources which becomes the most important issue, being all previous states less important.
Figure 4.25 shows the idea behind the approximation of software archaeology; the software engineer
looks backwards through the current state of the software which is the one he will have to lead with.
The current state of the software will be heavily influenced by previous states of the software system,
but only the ones that have persisted are of interest, i.e. code and other artifacts that cannot be found
in the latest version are uninteresting.

Time

S =

Engineer

Figure 4.25: Software archaeology point of view. The software engineer views from the current state of the
software into the past.

Hence, in this section we present a new approach for software maintenance based on this new view.
A central concept of this idea is the age of the software components that are going to be maintained,
being the software components at the line-of-code level. So, extracting information of when a line was
last modified and by whom is the basis of this approach. Doing this for all lines in the software system
will provide us with a rich data set that will help managing the software maintenance process. On top
of this, we will define a set of indexes that will help in the application of software archaeology analyses
both for knowing the situation of a project and for comparing it with others. Following the empirical

4.4. SOFTWARE ARCHAEOLOGY 113

nature of this thesis we will apply our idea on some libre software projects and discuss limitations and
future lines of research.

4.4.1 Goals

The primary goal of this section is to find out if a methodology based on software archaeology may be
seen as a proxy to measure the software maintenance effort in (libre) software projects. In addition,
we are interested in finding if our approach may help in determining the maintainability of projects
in the near future. The key ideas behind such analysis are:

e A piece of software is easier to maintain if it has been recently been worked on.

This principle is based on the experience that every developer has that maintaining a piece
of code written by himself recently is, in general, easier than maintaining some code that was
written some months ago. There are some factors that contribute to soften this situation, as
in-line documentation and a good code structure, but in general and for the same code this can
be considered as a valid assumption.

e Maintaining software created by a third person is more difficult than an own piece of software.

Although again this can be mitigated by writing better code (structure, documentation, among
others), a code written by a developer will be more easy to understand and maintain that code
written by someone else. The corollary for this is that maintaining the same code requires less
effort to the author of that code than to any other person.

e Having the possibility of asking the original author of the software improves maintenance.

This is a consequence from the two previous points. If a developer has to maintain a piece of
software written by somebody else, if the original author is still part of the development team,
we can count on his knowledge. If the original author has abandoned the project, he has taken
his knowledge with him.

Regarding the first idea, we will have to research how many lines remain from the past remain and
when these lines were added. This will give us an idea of how much the system has been maintained
so far, but also of how difficult it will be to maintain the software in the future; code that is older
will be less maintainable. The second idea will introduce those developers who have authored the
lines and provide information about how many of those developers are still part of the team. As we
have enunciated in the third idea, having those developers still in our development team will raise
maintainability, even if they are not directly in care of the maintenance.

As case studies, we have selected nine libre (free, open source) software projects that are, with
some exception, among the hundred largest libre software applications included in the latest stable
Debian GNU /Linux release’.

4.4.2 Methodology and case studies

The methodology for the software archaeological analysis has been presented in subsection 3.3.3. We
have selected a set of case studies from the libre software world in order to apply our methodology to
real-life software systems.

We have introduced a procedure that does not consider blank lines and comments. In order
to verify that our filtering procedure is accurate enough, we compute the source lines of code with
SLOCCount® (see subsection 2.2.3). The counts given by SLOCCount have been compared with the
number of lines obtained with our procedure. Table 4.23 shows that the error rate is low enough to
consider our approach sufficient. The reason why SLOCCount always detects more lines of code is

SFacts and figures about the largest libre software applications included in the latest stable Debian release can be
found at: http://libresoft.urjc.es/debian-counting/sarge.

SWe use the ‘~duplicates’ option which counts duplicated files twice as our tools in opposition to SLOCCount does
not filter them out. In any case, this supposes less than 0.5% for the projects under consideration

114 CHAPTER 4. METHODOLOGIES AND ANALYSES

because its heuristics look at the content of the files in addition of the extension (so more files are
identified).

Regarding branches, we have merged them with the next major version number. This has been
the case for a very small amount of lines of the Mozilla source code base: we found revision numbers
1.1.2 and 1.1.3 that were merged to 1.2. This supposed changing 37 lines affecting 9 files of the almost
10 million lines of code.

The projects under study have been chosen so that they differ in significant elements (age, size
in SLOC, complexity, number of developers, among others), being the only common characteristic
their libre nature and the fact that they are currently distributed with all major Linux distributions
(which is an evidence of their popularity). A short description of the applications can be found in
appendix A.

In total, our nine case studies sum up 9.5 millions lines of code mainly written in C and C++. The
number of analyzed source code files is 52,975. Table 4.23 presents the most important facts about
our case studies, while the next lines are devoted to the reasons why we have chosen them.

The start column gives the birth date of the software project. In brackets we have set two projects
where we could not clearly state its starting date. In the case of GNU Emacs, we can track the project
until 1976, although it seems that Richard M. Stallman rewrote it from scratch in the mid 1980s.
Mozilla, on the other hand, is the evolution of the Netscape Internet suite (which at the same time
has a strong influence from Mosaic, one of the first web browsers). It is difficult then to know when
the project really started, so the date in brackets gives the year of its first release under the terms of
a libre software license.

The next column gives the date of version 1.0 for all those projects who have achieved that version
number (which is valid for all of them but not for WINE). The third column gives the oldest line that
we have found by means of our analysis. Dates in brackets can be found for those projects where the
date of the oldest line is due to the initial check-in of the source code base into the versioning system.
As the methodology is strongly tied to the versioning system we are not able to know what occurred
before.

Project Start Vers. 1.0 Oldest line SLOCs SLOCCount Percent. Files Authors

Emacs (1976) 1985 May 85 974,407 991,552 98.3% 1,522 136
GCC 1985 1987 Sep 97 2,191,764 2,262,632 96.9% 22,349 218
Wine 1993 - Oct 98 1,033,318 984,710 104.9% 2,201 2
GTK+ 1994 Apr98 (Dec97) 387,413 389,723 99.4% 839 114
The GIMP 1994 Jun 98 (Dec 97) 548,410 552,473 99.3% = 2,244 71
Apache 1.3 1995 Jun 98 Feb 96 82,909 85,758 96.7% 269 51
kdelibs 1997 Jul 98 May 97 605,528 613,742 98.6% 3,131 363
Evolution 1998 Dec 01 May 98 205,278 207,069 99.1% 816 79
Mozilla (1998) Jun 02 (Apr 98) 3,414,387 3,510,691 97.3% 19,604 567

Table 4.23: Summary of the case studies. Columns contain the project name, the year the project started
its development, the date of releasing version 1.0, the number of SLOCs according to our methodology, the
number of SLOCs as given by another counting tool (SLOCCount) and the coincidence for both results. Finally
authors that could be identified for the current version.

The next three columns (SLOCs, SLOCCount and Percent.) give the number of lines of code
that we have measured with our methodology (we filter the source code retrieved from the versioning
system in order to obtain only source lines of code as described in our methodology), the number of
source lines of code that SLOCCount gives for comparison and the percentage that this supposes. As
we can see from the last of these three columns, the percentages are usually near but below 100%
as our filter is not as powerful as the one used by SLOCCount and hence misses some lines. Only
in the case of Wine we see a deviation which is meaningless. Finally, it should be noted that we
have identified 374,523 lines that we have found in 2,667 files in Mozilla in Javascript that have been
omitted from the table as SLOCCount does not count this language.

The last two columns in table 4.23 give the number of source code files and the number of authors
(i.e. commiters) for these projects.

4.4. SOFTWARE ARCHAEOLOGY 115

Definition of indexes

We will discuss in detail the software archaeology measures by means of graphical representations
next, but first the definition of some indexes will provide numerical values that we can evaluate and
compare. The indexes we propose are following:

e Aging (measured in SLOC-month). It is a direct measure of how much the software is aging
and is given by the area under the curve of remaining lines which we will present next.

N-1
Aging = Z linesy, (4.3)

n=1

where n is the month number, being n=1 the first month of the project and N the current one.
Notice that the last month is not taken into account.

This measure is given in the sense of Parnas’ well-known software aging concept [Parnas, 1994],
although we only have in mind one of the factors stated by Parnas. If we would stick to Parnas’
original definition of aging, then we should take into account changes performed on the system and
not only that the software gets old as humans do. We lack of this information from the software
archaeological point of view, but other methods could be implemented that extract the data required
from a versioning system and set up a metric that fits the original definition more accurately.

In any case, our aging index may give an idea of how old a software system has become, but it
does not provide much information about how much it has been maintained nor how easy it will be to
maintain it in the future. On the other hand, the SLOC-month measures are difficult to be compared
among projects as they depend on the size and the starting date of the software project. The latter
problem can be easily solved by having a measure of relative aging.

¢ Relative aging. This measure makes it possible to compare the aging for several projects with
independence of their size. It is measured in months and can be obtained mathematically from

following equation:
Aging

RelativeAging = (4.4)

linesy
where N is again the last month considered.

The relative aging gives the amount of time necessary to have the same aging if the project had
started with the current number of lines. It can be also seen as the amount of months needed to
double the current age of the project if the system is not touched anymore.

e Relative 5-year Aging: relative size to itself as if the project had 5 years.

Aging

RelbyA = (4.5)

60 - linesy

where N is the last considered month.

Relative 5-year aging allows for easier comparison purposes, but also because it is a previous step
for the absolute 5-year aging index which will be presented next. It should be noted that taking 5
or any other number of years is insignificant for the purposes of a relative index. In other words,
this index is only meaningful when comparing two projects and for that situation the consideration of
taking 5 years or any other number of years is thus not determinant.

e Progeria’. As relative aging gives the amount of time needed to double the aging value, we
can compare it to the amount of time that it has taken to double the code base.

Relative Aging
50%o0f CurrentCode

(4.6)

Progeria =

"Progeria is a genetic condition which causes physical changes that resemble greatly accelerated aging in sufferers.
Source: WikiPedia

116 CHAPTER 4. METHODOLOGIES AND ANALYSES

Values of progeria lower than 1 are indicative for software systems that are actively maintained
and have not to fear the consequences of high values of aging, while values above 1 refer to projects
where aging is growing more than software maintenance activity and therefore show a tendency to
dementia.

Until now, we have only considered aging in order to find out how old the system is or how old it
will get, but we have not found a value that tells us how maintainable the system is. The fact that
for previous indexes we have taken relative size to the software size itself is confusing as systems that
are by far larger in size may have values which make them appear younger than smaller systems. Of
course, this cannot be taken as a proxy of the effort that a development team has to put when taking
over the software maintenance process.

That is why we propose a new index that gives a value relative to a fixed-sized and fixed-time
software system. This will enable comparison among projects.

e Absolute 5-year aging: gives the relative size as if the project had 100 KSLOC and had been
started 5 years ago. Serves for comparison purposes among projects. The idea behind it is that
the former relative maintainability does not take the total size of the project into account, and
thus may be misleading.

Aging

AbsbyAd = ———
YT 60 100K

where N is the last considered Month

(4.7)

So far, we have considered only indexes related to source code, but software archaeology provides us
as well with information related to the authors of the software. Indexes up to the moment considered
that our team has not changed. This does not stick to reality, so we have to look at the evolution of
the developers. In this sense, we will see in a later section a first approach towards the quantification
of the half-life of the core team for some libre software projects (defined as the time required for a
certain group of contributors to fall to half of its initial population).

One of the limitations of the following indexes is that the curves are not continuous which may
suppose some undesired behaviors.

In the sense of the aging index we can infer from figure 4.28 a similar index for those lines for
which their author has left the project.

e Orphaning (in lines-month): gives the amount of lines that prevail from developers that are not
active anymore in the project multiplied by the number of months of inactivity by the developer.
N-1
Orphaning = Z linesy, (4.8)
n=1

where n is the month number, being n=1 the first month of the project and N the current one.

As for the aging values, the orphaning values are difficult to compare among projects. We could
calculate relative indexes as we have done for source code lines above, but as they depend on the same
values, it is sufficient to have a factor that allows to do transformations.

e Orphaning factor: the number of lines-month given by the orphaning index is by definition
equal or smaller than the aging of the system. It has to be seen as the fraction of old lines that
belong to developers not participating anymore in the project.

Orphaning

OrphaningFactor = 100 (4.9)

Aging
We multiply it by 100 in order to have it in percentages.

The orphaning factor may be seen as an index that gives how much of the existing code is supported
by their original authors. Low values of the factor mean that the development/maintenance team has
kept in time and is currently available in the project. This ensures continuity and is indicative for
lower maintenance costs as if the software would be maintained by newcomers.

The first impulse would be to multiply this factor with the AbsbyA index, but this would give us
a non-realistic vision, as this is as considering that the developers that compose our team do not have
loss of memory.

4.4. SOFTWARE ARCHAEOLOGY 117

de+06 T T
apache ——
emacs ———
evolution —#—
gcc —&—

gimp
3.5e+06 - gtkplus —+—

kdelibs
mozilla —&—

wine

3e+08 -

2,5e+06 -

2e+06 -

1.5e+06 -

1e+06 -

500000 ~

12/1996 12/1997 12/1998 12/1999 12,2000 12,2001 1272002 12/2003 12/2004

Figure 4.26: Remaining lines (relative, aggregated values)

4.4.3 Observations on the remaining lines

Figure 4.26 depicts the number of lines that remain from points in the past for all projects that have
been considered in this thesis. In the horizontal axis we have time and in the vertical axis the amount
of remaining lines for a given date is displayed. This is an aggregated figure in the sense that the
figure gives the number of lines that are older than a given date. Unmaintained projects (i.e. projects
with no changes) are characterized by a horizontal line. This is almost the case for Apache 1.3 (at the
bottom of the figure), but not for the rest of the projects which show linear (as for instance Mozilla)
or super-linear (for instance, Emacs) trends.

It should be noted that super-linearity in this figure does not mean that the project grows at that
rate as it is usual in software evolution. The number of remaining lines is the sum of changed and
added lines (archaeology), not only aggregated lines (evolution).

Figure 4.27 shows the same information as the one presented in the previous figure, but now the
curves are relative to the size of the project. The horizontal axis is again time while the vertical axis
is now measured in percentages. The current state of the project is given by 100% of the lines. We
can read from this figure the amount of code that remains from the past relative to the current total
size of the project. It may be seen as a proxy of the maintenance effort performed in recent times.
Interestingly enough, projects lines are younger than we had expected. Besides Apache 1.3, all of
them contain at least half of the code younger than 5 years, as it can be seen from Table 4.24. In
that table, the points in time where projects achieve 30%, 50% and 80% of the current lines of code
are given. Even the code base for Emacs, which we had selected as a presumably legacy system, has
a major part (up to 70%) that is not older than 7 years.

The case of Apache is to some extent understandable as developers have focused on the new version
of Apache (Apache 2.0). We expected that at least some corrective maintenance effort should take
place, even if adaptative or perfective maintenance [Swanson, 1976] is not performed. But given these
results, this seems to happen seldom.

4.4.4 Observations on the remaining contributions from authors

Figure 4.28 depicts the percentage of lines from remaining authors. Projects that do not lose their
developers have more horizontal shapes. On the other hand, projects which have suffered high

118 CHAPTER 4. METHODOLOGIES AND ANALYSES

100

T T
apache —+—
emacs ——
evolution —#—
gcec —8—

gimp
gtkplus —=—

kdel ibs
mozilla —&—
wine

80

60

40

20

s | 1 1 | 1

12/1996 12/1997 12/1998 12/1999 12/2000 12/2001 12/2002 12,2003 12/2004

Figure 4.27: Remaining lines (relative, aggregated values)

Evolution Apr 02 (35
Mozilla Apr 00 (59

Project 30% 50% 80%
Emacs Jun 99 (69) Apr 00 (59) Jan 03 (26)
GCC Nov 01 (40) Jul 03 (19) Jul 04 (8)
Wine Jul 02 (32) May 03 (21) Jul 04 (8)
GTK+ Jul 00 (56) Jun 01 (45) Aug 03 (19)
The GIMP Nov 01 (40) Sep 03 (17) Sep 04 (6)
Apache 1.3 Nov 97 (88) Jun 98 (81) Jun 00 (57)
kdelibs May 01 (46) May 02 (34) Dec 03 (14)
(35) (15) (8)

(59) (42) 17)

Table 4.24: Most significant points in Figure 2 (100% is March 2005). This table gives the month for which
a portion of code persists in the current version.

abandonment have to fear a loss of system knowledge and this could have an effect in the maintenance
effort (and cost) of the software in the future. The idea behind this is following: it is not the same to
maintain and enhance a system having the original authors in the team than with newcomers which
have to embrace a software comprehension process in order to become productive.

The curves in this figure are not continuous as the ones shown in previous figures (see figure 4.27)
as they are related to developers and the whole amount of lines contributed by them. Hence, if a
developer with a big share of the total contributions leaves the project we observe a vertical line. This
is, for instance, the case for Emacs in November 2003 when Richard Stallman (the original author)
appears to have contributed for the last time. This also means that values have to be below the ones
in figure 4.27 as remaining lines for a developer have the date of the last contribution of the developer
and not their own date (which has to be in any case before the last contribution).

Table 4.25 shows that the authorship indexes should have into account the amount of work
performed. It is not the same to have committed 10 KSLOC years ago and a couple of lines last
month than the other way round.

4.4. SOFTWARE ARCHAEOLOGY 119

100 T T
apache —+—
emacs ——
evolution —*—
gcec —8—

gimp
gtkplus —+—

kdelibs
mozilla —&—

80 L wine

60 -

40 ~

20

12/2001 12/2002 12/2003 12,2004

1271996 12/1997 12/1998 12/1999 12/

Figure 4.28: Orphaned lines over time (relative, aggregated values)

Project 30% 50%
Emacs Nov 03 (16 Jul 04 (8
GCC Feb 05 (1) Mar 05 (0
Wine Mar 05 (0) Mar 05 (0

)
)
)

GTK+ Jan 04 (13)
The GIMP Mar 05 (0) Mar 05
Apache 1.3 Nov 97 (88)

kdelibs Jul 04 (8)
Evolution Jul 04 (8)

Mozilla Oct 02 (29)

Table 4.25: Most significant points in Figure 3 (100% is March 2005).

4.4.5 Observations on the indexes

Once the indexes have been defined, we will apply them to our case examples (see table 4.26), and
comment some particular cases.

From this table it can be seen how the aging index is not very useful for comparison purposes
(although it gives a good idea of the absolute aging). However, relative aging allows for those
comparisons. We can find a summary of the information in figure 4.27 in the corresponding column
of table 4.26. Apache and Emacs are the systems with the highest relative aging. Evolution, Wine
and The GIMP have values in the 20s, which mean that they are still actively maintained.

With respect to progeria, it can be said that it shows how Mozilla balances aging and evolution
(this is the reason why it appears in Figure 4.26 as a linear function), while there are four projects
which are becoming old systems: Apache and Emacs, but also GTK+ and kdelibs.

The absolute 5-year aging depends on the size, and has been presented as a proxy of maintainability.
It yields that Apache, even having high progeria and aging is still more friendly to be maintained than
the rest of systems (except for Evolution) because of its small size. Emacs and GCC, even having the
latter two times the size of the former, have similar values, while GTK+ and GIMP also evidence this
behavior.

While the orphaning index helps little in comparing projects, the orphaning factor provides very

120 CHAPTER 4. METHODOLOGIES AND ANALYSES

Project Size Age Aging RelA RbHyA Prog. AS5yA Orph OrFact
Emacs 974,043 239 62,419,261 64.1 1.07 093 10.40 18,585,711 29.78
GCC 2,188,033 91 65,558,122 30.0 0.50 0.65 10.93 3,427.811 5.23
Wine 1,028,820 78 26,926,319 26.2 044 0.80 4.49 1,521,212 5.65
GTK+ 387,333 88 16,938,898 43.7 0.73 1.04 282 5,218,899 30.81
The GIMP 540,540 98 16,002,332 29.6 049 0.59 2.67 3,595,296 2247
Apache 1.3 82,909 110 6,161,847 74.3 1.24 1.10 1.03 3,290,623 53.40
kdelibs 604,888 95 20,089,807 33.2 0.55 1.04 3.35 5,023,152 25.00
Evolution 204,951 99 4,796,800 234 0.39 0.66 0.79 1,665,455 34.72
Mozilla 3,786,735 84 161,394,929 42,6 0.71 1.00 26.90 90,902,668 56.32

Table 4.26: Archaeology indexes for our case studies. Size is given in SLOC, Age in months, Aging and
Orphaning in SLOC-month, Relative Aging in months, Progeria, R5yA (the relative 5-year aging) and A5yA
(the absolute 5-year aging) are indexes and the Orphaning factor (OrFact) is given in percentage.

useful information. It gives small values for GCC and Wine, very high values for Apache and Mozilla,
and medium values (around 25% to 35%) for the rest of systems. This may give an idea of how much
experience the current team has with the system.

4.5. FILE-TYPE-BASED ANALYSIS 121

4.5 File-type-based analysis

Software systems have evolved during the last decades from command-line programs to huge end-user
applications full of graphics and multimedia elements. Besides, a piece of software has nowadays
to be adapted to different cultural environments (language and notational conventions) if it aims
to become mainstream. All this has caused that software development is an endeavor that is no
longer carried out only by software engineers. In many cases it has become an activity that requires
the coordinated work of several groups, with different backgrounds and that perform different tasks
such as internationalization and localization (from now on i18n, short for internationalization and
110n, short for localization®), graphic design, user interface design, writing of technical and end-user
documentation and creation of multimedia elements.

During the software construction process these diverse elements are handled together, conforming
an integral body that has to be developed, managed and maintained. Despite this new environment,
classical source code analysis is still focused on the output of the work performed by software
developers: source code written in a programming language. The rest of the elements mentioned
above are usually not considered, even though they are in many cases a fundamental and non-trivial
part of the application.

In this section, our intention is to provide some insight into all those elements that conform a
modern end-user software system. We propose a methodology for such a study, based on a software
tool that implements it in an almost-automatic way. Our assumption is that many traditional concepts
from software engineering may be generalized for other artifacts. For instance, in the same sense in
which source code suffers from software aging [Parnas, 1994], all these artifacts have to be updated
and handled conveniently to avoid similar effects. To accomplish this goal, we identify the several
kinds of files found in a versioning system, mining in its historical information database for different
patterns and behaviours. From the analysis of the files and their evolution we may not only infer the
importance that a given software project allocates to the various activities, but also many other facts
that may provide comprehension of the project and the whole development process. We will do this
from several perspectives, focusing both on technical and human-related aspects.

4.5.1 Goals

The main goal of this section is to see how we can generalize classical concepts, like software evolution,
to other elements in the sources different from source code. Therefore, we will first have a look at the
relative importance (in number of files and measuring the activity) of the various file types that we
have used in our classification. Then, we will see if the growth pattern (measured this time in number
of files) is similar to the one found for source code files.

We will also be interested in finding if different behaviours arise for different file types. In this
sense, we will look at the number of developers that touch a file for any given file type (we have called
this analysis territoriality analysis) or have a look at the number of remaining lines for each file type
(an archaeology analysis as we have already presented in section 4.4, but this time generalized to all
file types and not only source code).

Besides technical issues, we will research social links. In detail, we are interested in knowing if
commiters are specialized (i.e. devote their activity to a single file type) or not. As we have access to
longitudinal data with our methodology, we will research the specialization of commiters in the first
phases of the project and in the last ones and interpret what has changed if something has changed.
We expect commiters to become more specialized while the project grows in software size and in
number of contributors.

Finally, we will try to identify several communities, one for each file type. The members of the
communities are the developers that have been more active in the given file type. Then, we will see
how the members of different communities relate one to each other, finding developers that work on
several activities. Especially interesting in this case is to see if developers and documenters work

8Internationalization is the process of designing applications so that they can be adapted to various languages and
regions without engineering changes. Localization is the process of adapting software for a specific region or language
by adding locale-specific components and translating text.

122 CHAPTER 4. METHODOLOGIES AND ANALYSES

tightly together. On the other hand, we are also interested in the relationship between translators
and documenters.

4.5.2 Methodology

The methodology described in this section is based on the analysis of the log entries from versioning
repositories. We have automated the analysis with the CVSAnalY (see section 3.3 for further details).

For our purposes, we have classified, with the help of some heuristics, files into a set of file types,
a method presented in subsection 3.2.2. Files that do not fall into any of the previous categories
(generally those without extension or with an infrequent extension) have been labeled as unknown. Our
experience with several large libre software projects with hundreds of thousands of files is that usually
through manual inspection the amount of commits performed to unknown files can be minimized to
values under 6% so that their effect is relatively small.

In addition, there is some file-specific information in the CVS logs that can be skimmed, such as
whether a given file has been removed®.

Once the CVS logs have been parsed and the file names are identified and sorted into the
corresponding file type, the resulting data is fed into a database. Later this database is queried
for patterns and behaviors for the selected file types, and for the commiters that have worked on
them.

Since we are interested in the behavior of distinct file types in the repository, we intended to
classify one to one atomic commits (ACs) with file types. This is, of course, possible if ACs contained
only a single file type which has not to be the general case. This is the reason why we figured out
the concept of predominant file type for a given AC. The idea is very simple: we attribute the AC to
the file type that appears most frequently in it; in the case of having two or more file types that are
equally represented, the assigned file type is selected randomly among them.

4.5.3 Case study: KDE

The K Desktop Environment (KDE) is a multi-million source lines of code (SLOC) libre software
project, aimed to build a software graphical desktop environment for UNIX-like operating systems.
Besides the window manager and desktop facilities, it offers as the KDE distribution an application
development framework and a great number of applications that range from the KOffice office suite
to the KDE-games game package. It is mainly written in C++, although some other programming
languages are also used. The desktop and its applications are built by making use of their application
development framework, the Qt toolkit. A large community has flourished around KDE and the
number of commiters is over one thousand. The inner functioning, decision structure and organization
of KDE is similar to the one described in [Germdn, 2004b] (although that study was performed
on GNOME, another libre software desktop environment similar in goals, size and technological
complexity).

Table 4.27 gives a brief summary of KDE, its size in source lines of code, number of modules, files,
commiters, commits, atomic commits, lines added and removed!'®?. We have added the time of the first
commit (when the repository was set up) and the one for the last commit considered in this study
to show that our study considers eight years of development from the beginnings of KDE to its most
current state.

We have applied our analysis to the whole KDE CVS repository, although we could have limited
our research to a smaller granularity level such as CVS modules or others (such as applications or
directories). In the KDE case, a CVS module may contain an application or a set of applications. For
instance, there is a 750 KSLOC KOffice module that groups some office applications (word processor,
spreadsheet and presentation program, among others).

°In CVS there is actually no file removal: files that are not required anymore are stored in the Attic and could be
called back anytime in the future. But it can be tracked when one file is only in the Attic.

0Note that through this thesis we have considered SLOC as “a line that finishes in a mark of new line or a mark of
end of file, and that contains at least a character that is not a blank space nor comment”, in opposition to lines that
consider not only comments and blank lines in source code, but also, for instance, text lines in documentation files

4.5. FILE-TYPE-BASED ANALYSIS 123

Software size | 8,134 KSLOC

Number modules 90
Number files 442 445

Number commiters 1,163
Number commits 6,790,240
Number atomic commits 480,897
Lines added 324,925 K

Lines removed 297,294 K

First commit 1997-04-09
Last commit 2005-04-21
Number of days 2,934

Table 4.27: General statistics for the KDE project.

The reason for this can be inferred from figure 4.29 which presents the distribution of commits
per module for the selected file types (both axes are in logarithmic scale), being development the
sum of code, build and devel-doc file types. We can see from this figure that not all modules contain
files from all the file types considered in this study (the point where the curves cross the horizontal
axis is indicative —in logarithmic scale— for the number of modules that contain that specific file
type). On the other hand, some modules contain a high amount of translation files, documentation
files or images, a fact that can be read from the place where the curves cross the vertical axis. Further
inspection of these modules has led to the conclusion that they do not contain a big share of other
elements and that their purpose is project-wide. We have found that some modules serve for the
project’s own administrative tasks, and that there also exists a module that stores all translation
(118n) files. Hence, for a complete analysis of the file types of KDE the whole repository had to be
considered.

Regarding the shape of the curves in figure 4.29, we had selected a log-log axis in order to identify
the type of distribution. We expected to find power law distributions, common in other dynamic and
social systems such as computer networks [Albert et al., 2000], as they are among the scaling laws
that describe a fractal growth behavior. However, the curves point out to follow Poisson distributions,
which differ qualitatively from power laws. At the time of this thesis, we cannot indicate if such a shape
is the consequence of coordinated management in the KDE project, and it would be interesting to
investigate if software projects with no coordination at all result in power law distributions as we had
assumed. Probably the study of other repositories, like the one of the GNOME project (which should
yield KDE-like results, i.e. Poisson distributions) and of all the projects hosted at SourceForge.net
(where there is no joint management effort, i.e. presumably resulting in power laws) would provide
some insight into this issue.

Basic statistics

Entering into detail, table 4.28 sums up the main statistics for the KDE CVS repository: number of
files, commits and predominant atomic commits for the distinct file types. These figures may provide
an idea of the activity around any given file type that we are investigating.

A first impression offers some interesting information. KDE is clearly a software development
project (code is the largest portion in the pies in figures 4.30 and 4.31). But the effort invested into
development only reaches around 50% if we consider atomic commits as a measure of activity and
around 25% if we take the number of files into account. The amount of translations is also a good
indicator of the widespread adoption of the KDE project around the globe. Documentation and images
are also heavily represented. The results also show how the number of multimedia files is minimal (in
some sense denoting that KDE is not content-driven), while the user interface fraction (around 15%)
is large enough to properly argument that it is actually a desktop-targeted environment. Finally, the
share of atomic commits corresponding to the unknown file type lies under 3%, although they suppose
around 6% of the total number of files.

124 CHAPTER 4. METHODOLOGIES AND ANALYSES

II'lndules ﬁg nunherluf deueldpnent cnﬁnits (lué)

Hodules by number of documentation comnmits (log)
Hodules by number of i18n comnits {log)
Hodules by nunber of sound connits {log}

] ! !
{\\ Hodules by number of images commits {(log)
g
RN Hodules by nunber of ui connits {log}

bt

Figure 4.29: Log-log representation of file types among KDE CVS modules. The vertical axis gives the
number of commits, while the horizontal axis shows the number of modules. Modules have been sorted by
number of commits, so those with higher number appear nearer to the origin.

Another characteristic that we can infer from table 4.28 is that there exists some specialization
among the commiters that devote their time to KDE (see column ’Commiters’ and its share). This
can be seen from the fact that none of the file types has been touched by all commiters. The most
‘popular’ file type is code with over 80% of the commiters ever having commited at least one code file,
while multimedia files have been handled by just a few. The rest of the values, besides 118n, lie from
more than 50% to some less than 80%. Commits to translation files can be observed only in one of
every three commiters.

We have to point out that there exist severe differences if we consider the data from the point of
view of single commits or do it by means of grouping them into atomic commits. This is especially the
case for the i18n file type that drops down from an almost 60% share in number of commits to around
25% in the number of atomic commits. We will devote the next paragraphs to a detailed analysis of
atomic commits where we will gain some insight into this circumstance.

File Type Files % Commits % Pred.At.Com. % Commiters %
All file types 442,445 100% 6,790,240 100% 480,897 100% 1,163 100%
Documentation 67,395 15.2% 546,487 8.0% 41,266 8.6% 692 59.5%
Images 88,901 20.1% 174,881 2.6% 8,807 1.8% 606 52.1%
i18n 83,415 18.9% 4,045,496 59.6% 123,566 25.7% 399 34.3%

ui 19,144 4.3% 546,443 8.0% 19,903 4.1% 754 64.8%
Multimedia 2,354 0.5% 4,703 0.1% 200 0.1% 88 7.6%
Code 107,855 24.4% 1,074,018 15.8% 231,785 48.2% 974 83.7%
Build 39,337 8.9% 203,298 3.0% 31,217 6.5% 898 T77.2%
Devel-doc 8,443 1.9% 65,451 1.0% 12,242 2.5% 741 63.7%
Unknown 25,602 5.8% 129,463 1.9% 11,911 2.5% 744 64.0%

Table 4.28: Basic statistics on the KDE repository by file type: number of files (and share), number of
commits (and share), number of predominant atomic commits (and share) and number of commiters (and
share).

4.5. FILE-TYPE-BASED ANALYSIS 125

build _
documentation

ui
devel-doc

unknown

code

images

multimedia

i18n

Figure 4.30: Number of files by file type in KDE.

build documentation

ui unknown
devel-doc images

i18n

code multimedia

Figure 4.31: Number of atomic commits by file type in KDE.

Atomic commits

Atomic commits may provide an interesting point of view of the change patterns that occur in a
repository. In this sense, we could look for coupling among source code files by identifying those files
that are always committed together as done by Gall et al. [Gall et al., 1997], denoting an inefficient
system architecture if this behavior arises frequently. Similar concepts could be found for other file
types or even among file types (for instance, if changes in the code are introduced simultaneously
into the documentation). In the following paragraphs we want to further understand atomic commits
looking for evidences that we may infer from them.

Table 4.29 gives the distribution of number of files that belong to atomic commits. In the case of
KDE, most of the atomic commits contain a unique file. From previous research works, we know that
this means that the use of a changelog file that is updated at the same time as changes are introduced
is not common practice in KDE [German, 2004a).

Although being the most frequent, atomic commits with one unique file only group around 3% of
all the commits done to the repository. We can see that there exist many atomic commits with many
files, which seems surprising at first. For instance, atomic commits that affect more than 1,000 files
correspond to only 0.2% of the total number of atomic commits, but almost to one out of every five
commits. A more detailed analysis of the logs shows that this type of atomic commits belongs mainly
to administrative and related tasks, such as checking in an initial version of the software, changing
the year in the copyright notice, releasing software versions and moving, copying or removing a large
number of files. We can conclude that the inclusion of atomic commits has as its first side effect that
it filters out noise in our analysis, making the importance of the changes that have been introduced
more conform with the actual change patterns of the project.

As pointed out in the subsection devoted to the description of the methodology (see 4.5.2), we
have sorted atomic commits by means of identifying the most predominant file type found in them.

126 CHAPTER 4. METHODOLOGIES AND ANALYSES

files Atomic commits % Commits %
1 207,533 43.2% 207,533 3.1%

2 90,506 18.8% 181,012 2.7%

3 34,524 7.2% 103,572 1.5%

4 98,444 59% 113,776 1.7%

5 15,357 3.2% 76,785 1.0%

> 10 60,805 12.6% 5,777,911 85.1%

> 25 26,782 5.6% 5,224,383 76.9%

> 50 15,745 3.3% 4,839,605 T71.3%

> 100 10,030 2.1% 4,432,171 65.3%
> 500 3,153 0.7% 2,937,576 43.3%
> 1,000 878 0.2% 1,294,392 19.0%

Table 4.29: Distribution of the number of files per atomic commit.

Predominance Atomic commits % >5 (>5) % >50 (>50) %
All 442445 100.0 104,533 100.0 15,745 100.0

= 100% 405,096 84.2 64,493 61.7 9,911 62.9

< 90% 66,085 13.7 30,324 29.0 2,351 14.9

< 80% 51,627 10.7 19,030 182 1,611 10.2

< 60% 26,774 5.6 7,811 7.5 780 5.0

< 50% 5,305 1.1 2,877 2.8 340 2.2

Table 4.30: Predominance of a file type in atomic commits. For all atomic commits, for atomic commits with
more than 5 files and for atomic commits with more than 50 files. The data should be read as following: the
first row gives information about all atomic commits, the second row provides the number of atomic commits
where all of them (100%) are of the same type, the third row the number of atomic commits having less than
90% of the files of the same file type, and so on.

Table 4.30 tries to give further insight into this process for our case study; especially for auditing if
this classification can be treated as accurate enough. In this sense, we can see that almost 85% of the
atomic commits are composed of file types of the same sort (see row =100%). Of course, this number
comprises all the atomic commits with one file (which sum up to 43% of all the atomic commits).

In order to avoid the effect of having high percentages because of a reduced number of files in an
atomic commit, we have considered in separate columns those atomic commits that group more than
5 files (which sum up to 104,533 atomic commits) and more than 50 files (of which we have 15,745
atomic commits). For these medium-sized and large atomic commits having all files of the same file
type is uncommon, but the figures from table 4.30 give evidence that the attribution to a single file
type has a high validity. So, only 10.7% of all atomic commits do not have a predominant file type
that supposes at least 80% of its files (for atomic commits with more than 5 files the percentage is
18.5% while for atomic commits with more than 50 files it sinks to 10.2%).

In subsection 4.5.3, we have seen that some file types have a high number of commits, but a relative
small number of atomic commits. Our first impression is hence that atomic commits for some file types
are more prone to include a large number of files. Therefore we have computed the figures shown in
table 4.31. We have considered only atomic commits with many files, discriminating them by their
predominant file type. All those atomic commits that contain more than 50, 100 and 1,000 files have
been selected. 118n is the most represented file type in all categories, a result that is consistent with
previous findings. The results in the table show that atomic commits that group many files are very
common for ui, multimedia and images, while the software development file types (code, build and
devel-doc) have very low shares. Documentation lies in between of these two groups, being close to
software development file types if we consider atomic commits with more than 50 files, but having the
highest frequency of all file types for atomic commits that affect more than 1,000 files.

Code files grouped together in an atomic commit could be a good indication of (too much) common
coupling, although in order to assure it we should look if changes to files coincide frequently [Gall et
al., 1997]. The numbers for documentation are not surprising as many documents are dispersed in

4.5. FILE-TYPE-BASED ANALYSIS 127

File type >50 files % >100 files % >1,000 files %
All 15,745 3.3% 10,030 2.0% 878 0.18%
Documentation 967 2.3% 578 1.4% 207 0.50%
Images 518 5.9% 235 2.7% 15 0.17%
i18n 9,476 7.7% 6,559 5.3% 593 0.48%

ui 2,152 10.8% 1,626 8.2% 22 0.11%
Multimedia 24 12.0% 12 6.0% 0 0.00%
Code 2,009 0.9% 739 0.3% 21 0.01%
Build 368 1.2% 166 0.5% 6 0.02%
Devel-doc 17 0.1% 7 01% 0 0.00%
Unknown 214 1.8% 108 0.9% 14 0.12%

Table 4.31: Number of atomic commits for each file type that affect >50, >100 and >1,000 files. The share
gives always the fraction of atomic commits that affect >50, >100 and >1,000 files related to the total number
of atomic commits per file type.

several XML files and are worked on by a single commiter at a time. So, a frequent situation is to
commit all these documentation files once at a time together resulting in atomic commits with many
files. In the case of 118n we have noticed that there exists a gate-keeper effect, as only a few translators
have write access to the repository. Gate-keepers thus may wait until they have a considerable amount
of (personal and third-party) contributions before introducing the changes into the repository. And
finally for the case of user interface files, we have observed that ui has the highest frequency with
12% of all its atomic commits having more than 50 files. We think that this is because there is no
central place where desktop-wide changes may introduced. So, changing some visual configurations
affects many files, yielding a behavior similar to the one observed when source code has (too much)
common coupling.

Interesting is also the high amount of large atomic commits in which build files are predominant
as we would assume that these files are modified in conjunction with code. Having that many atomic
commits that mainly involve build files is indicative for frequent changes in the build procedures. On
the other hand, this means that there may be also a high common coupling among these files in the
sense that if a makefile has to be modified due to the introduction of a new flag, many files have to be
touched and committed. A higher level of abstraction for this task should be desirable, although this
probably means migrating to a new build system or surpassing the limitations of current tools with a
better design.

Evolution

Next, we will apply Lehman’s software evolution methodology to the file types that we are
investigating, especially in regard to the growth of the software systems [Lehman et al., 1997]. As
Lehman used source code files'! as the basic unit to measure software evolution this is an easy task
with our methodology. There have been some previous studies on libre software from the software
evolution perspective, being especially important a work by Godfrey et al. that showed a super-linear
growth for the Linux kernel [Godfrey & Tu, 2000]. Such a growth does not comply with the laws of
software evolution and has been labeled by Lehman as an anomaly, inviting for further research on this
topic [Lehman et al., 2001]. Results obtained for this thesis from the study of 22 large libre software
projects demonstrate that the most frequent growth trend is linearity, being Linux an exceptional case
(see section 4.2). All in all, even with a linear behavior, the performance of such systems seem to be
superior than the one inferred from (or predicted by) the laws of software evolution [Turski, 1996].
Our goal is to find how file types perform over time and if there are substantial differences in their
behavior. Therefore, for every file type we plot the evolution of the number of files in the repository
(total), the number of files in the attic (i.e. that have been removed) and the actual number of files
that somebody obtains when retrieving the current version of the project (delivered). Of course, the

"T.ehman uses the concept of “module” in his writings to refer to a source code file. We will stick in this section to
source code file in order to avoid the confusion with CVS module.

128 CHAPTER 4. METHODOLOGIES AND ANALYSES

delivered number of files, the only of the three that Lehman took into account, is the result of the
total files minus the remowved files.

120000 T
delivered —+—
total ---x---
inAttic ---x---

100000

80000

60000

/ e g fwﬁ WM
20000 Mﬁ%ﬁi -~
' -

40000

0
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Figure 4.32: Growth of the number of code files. The vertical axis gives the number of files, while the
horizontal one gives the time.

For the sake of brevity, we have included only two of the plots, one for the evolution of the number
of code files (see figure 4.32) and another one for the evolution of i18n files (see figure 4.34) in a
significant size and have summed up the rest in a smaller size in figure 4.5.3. Figure 4.32 shows a
super-linear growth trend for code files in the early stages of the project for the three ways of counting
modules that we have considered. From 2002 onwards, the number of total files shows a clear linear
trend, but the number of files that have been removed clearly slows down yielding an accelerated
growth pattern for the number of delivered files.

It should be noted that we are considering the whole project repository and that this means that
we are really looking at an aggregate measure of many CVS modules (which may be at the same time
the aggregation of several applications). In other words, the current behavior may be the effect of
multiple independent development groups whose interactions are rare or at least limited. This was one
of the arguments that Godfrey used to explain the super-linear growth of the Linux kernel: many parts
could be developed and maintained independently [Godfrey & Tu, 2000]. This may be also the case
for KDE, as the six KDE applications studied in section 4.2 had linear or near-to-linear behaviors!?.

Figure 4.5.3 depicts that all other file types follow similar patterns for delivered, total and removed
files than the ones shown for code files. The results for multimedia files are the only ones that differ
significantly from the rest as it can be seen from figure 4.34. For this file type, files are introduced
and removed from the repository in a non-continuous way from time to time (with a rhythm that
is similar to the main releases of KDE) and in large amounts, producing discontinuous curves. This
may be explained in several ways. First, multimedia files (at least the