
Máster Oficial
en Sistemas Telemáticos e Informáticos

Curso Académico 2011/2012

Trabajo de Fin de Máster

Intensive Metrics for the Study of
the Evolution of Open Source

Projects

Author:

Santiago Juan

Gala-Pérez

Supervisor:

Dr. Jesús

González-Barahona

September 14, 2012

“There are only two ways to live your life. One is as though nothing is a miracle.

The other is as though everything is a miracle.” (Albert Einstein)

Dedication

To Santiago Gala Velasco (1928-2011) In memoriam

To Elena Pérez Salamanca.

Acknowledgements

I’m grateful to my supervisor for being extra patient, to the personnel and parrochians of

El Rincón Guay that saw me work during hours and were always helpful and supportive

and to Ana, from Aguardiente for her gentle and discreet support.

Contents

1 Summary 1

2 Introduction 2

3 Objectives 4

3.1 Definitions . 4

3.2 Problem Description . 6

3.3 Assumptions . 7

3.4 Alternative Approaches . 7

3.4.1 Information Entropy . 8

3.4.2 Stigmergy . 8

3.5 Our approach: Information Exchanges 9

3.5.1 Measuring Information Exchange more precisely 10

3.6 Methodology . 11

4 Case Studies 13

4.1 Selection of ASF Projects . 13

4.2 Apache Web Server . 22

4.2.1 Apache Portable Runtime . 26

4.3 Tomcat . 28

4.4 The Hadoop ecosystem . 34

4.5 Lucene . 40

4.6 The Jackrabbit ecosystem . 43

4.7 Apache Geronimo . 47

4.8 Spamassassin . 49

4.9 Turbine: a mature project . 52

4.10 Portals . 55

4.11 Beehive, a project in the Attic . 57

5 Findings 61

6 Conclusions 64

ii

7 Bibliography 65

8 Appendices 67

8.1 Appendix A. Mbox emails processing . 67

8.2 Appendix B. Breaking result into per-project files 68

8.3 Appendix C. Statistic calculations . 68

8.4 Appendix D. Plotting . 70

8.5 Appendix E. License . 72

8.5.1 Documentation . 72

8.5.2 Software . 78

iii

1 Summary

Starting with the empirical evidence that the ratio of email messages received to commits

has remained relatively constant along the history of the Apache Software Foundation,

we look for the use of such a metric to compare projects irrespective of their size or

growth. The behaviour of this ratio, and also of similar metrics like the ratio of de-

veloper messages or issue tracker related messages to commits, is studied for several

projects. The ratios are independent of the size of the project, in terms of rate of

messages, commits, active developer number, etc. and remains relatively independent

of the technology or functional area of the project. It looks related to the technical

effervescence or popularity of the projects.

1

2 Introduction

On Nov 29, 2008, just a couple of months since the author started studying the Master

de Sistemas Informáticos y Telemáticos, Joe Schaeffer, ASF member and contractor for

infrastructure work sent an email to the private discussion list members@apache.org ,

which said, under the provocative Subject ”Community over Code debunked”: [1]

It’s a bit premature to start throwing this url around,

since Paul is still working out what it should actually

do, (and it looks like IE isn’t supported yet). But

it’s already revealed something IMO interesting about

the ASF: the fact that the number of commits and the number

of mailing list posts have grown in linear relationship

to one another over the years. [...]

Here’s the url for firefox fans: http://www.apache.org/dev/stats/

Note how well the charts for total commits and total emails align

even though they’re graphed against 2 different scales.

A recent snapshot of this dynamic page looks like this:

In the subsequent thread there was discussion on the importance and meaning of the

result. Quantifying the results, Joe said:

2

mailto:members@apache.org
http://www.apache.org/dev/stats/

you can get an idea of how significant those emails are to the

total by comparing the two scales. Looks like about 1 commit email

for every 7-8 non-commit emails.

The author sent an email, contributing to this thread, which essentially said:

I would only expect mail traffic growing faster than commits during

”crisis”, i.e. moments where the code base needs to fork after a tough

technical decisions, and those are the points where our mantra would

be most useful as a decision guide. In ”stationary” state, not much

list traffic is needed while bugs are fixed or featured finished.

Joe published a different graphic illustrating how scale invariant, was this metric globally:

http://people.apache.org/ joes/invariant.html . On it one can see that globally, as an

organization, the ASF produces a relatively constant ratio of emails versus code changes,

even while the number of commits has grown more than one order of magnitude from

2000 to 2008.

The ratio fluctuates somewhat between the beginning of the Apache project, back in

1996, and 2002. There is missing data, on one side: most of jakarta email traffic was

hosted outside of the ASF at the time, and a hard disk crash lost quite a few messages.

Also, the ASF was much smaller, thus more sensitive to noise.

The aim of this report is to explore this ratio at the project or related group of projects

level. As we split the flows into projects, we will found that the result is very noisy

below a size/activity threshold. It is also interesting to try to get an idea of how the

interplay of a growing mixture young, mature and stagnant projects happens to produce

such a remarkably constant ratio.

3

http://people.apache.org/~joes/invariant.html

3 Objectives

3.1 Definitions

Dissipative System:

”In summary, we have found that the distance from equilibrium and the nonlinearity

may both be sources of order capable of driving the system to an ordered configuration. A

highly nontrivial connection between order, stability and dissipation appears. To indicate

clearly this relation we call the ordered configurations that appear beyond instability of

the thermodynamic branch the dissipative structures.” [PRI2], p60

Prigogine calls dissipative structures to the open systems showing self-organization

thought this connection between order, stability and dissipation that happens far from

equilibrium and/or in the presence of highly non-linear coupling.

Ecosystem:

We talk about ecosystem to describe a closely coupled group of projects, that typically

consist in an original project that sprout children as it grew, or projects that depend on

a common platform. Examples:

• Sling, uses jackrabbit and felix. Even if jackrabbit is a reference implementation

of JSR170 and Felix is a OSGI Service Platform, all three were donated by Day

Software to the Apache Software Foundation and share committers.

• httpd created apr as its runtime, and they remain related.

Intensive Properties:

From wikipedia: ”In the physical sciences, an intensive property (also called a bulk

property, intensive quantity, or intensive variable), is a physical property of a system

that does not depend on the system size or the amount of material in the system: it is

scale invariant.” The scale invariance allow them to stay constant as a project grows, and

also make them useful to compare projects of different sizes. The article continues: ”By

contrast, an extensive property (also extensive quantity, extensive variable, or extensive

4

http://httpd.apache.org%20
http://apr.apache.org/%20
http://en.wikipedia.org/wiki/Intensive_and_extensive_properties

parameter) is one that is additive for independent, noninteracting subsystems. It is

directly proportional to the amount of material in the system.”

Information Exchange:

We use the term ”information exchange” for any socially atomic public interaction be-

tween one actor and an open source project. It can be something like a commit, an

email, an edition of a wiki page, etc. We don’t take into account the information value

(or entropy) of the exchange.

Open Source

One of the ways to call Free Software. See ”The Open Source Initiative (OSI, http://opensource.org/

)

Self-organization:

In the framework of the dissipative systems theory Prigogine shows how a system shows

organized behavior at the macroscopic level. In [PRI2], p4, one can read:

”The essential point is that beyond the instability of the thermodynamic branch we may

have a new type of organization relating the coherent space-time behavior to the dynam-

ical process (e.g. chemical kinetics and convection) inside the system. Only if appropri-

ate feedback conditions are satisfied can the thermodynamic branch become unstable at

a sufficient distance from equilibrium. The new structures that appear in this way are

radically different from the ’equilibrium structures’ studied in classical thermodynamics,

such as crystals or liquids. They can be maintained in far-from-equilibrium conditions

only through a sufficient flow of energy and matter. An appropriate illustration would

be a town that can only survive as long as it is a center of inflow of food, fuel, and other

commodities and sends out products and wastes.”

FLOSS

Free/Libre/Open Source Software. The wikipedia defines FLOSS as: ”Free and open-

source software (F/OSS, FOSS) or free/libre/open-source software (FLOSS) is software

that is both free software and open source.” In this work we will mostly use Open Source,

as it is the common idiom internally in the Apache Software Foundation.

Software Entropy:

From wikipedia :

5

http://opensource.org/
http://en.wikipedia.org/wiki/Free_and_open-source_software
http://en.wikipedia.org/wiki/Software_entropy

The second law of thermodynamics, in principle, states that a closed system’s disorder

cannot be reduced, it can only remain unchanged or increase. A measure of this disorder

is entropy. This law also seems plausible for software systems; as a system is modified,

its disorder, or entropy, always increases. This is known as software entropy

Within software development, there are similar theories; see Lehman (1985)[2], who

suggested a number of laws, of which two were, basically, as follows:

• A computer program that is used will be modified

• When a program is modified, its complexity will increase, provided that one does

not actively work against this.

From [HAR1]: [A]n entire alphabet of symbols: s1, ..., sq would on the average provide

H = −
∑q

i=1 py log2 pi
bits of information per symbol. This quantity is called the entropy of the information

source, or language entropy.

Stigmergy:

A collective process is stigmergic if the work (ergon) done by one agent provides a

stimulus (stigma) that entices other agents to continue the job. The concept appeared

originally in the context of social insect behavior. Note that, as Joichi Ito used to say

in his conferences around 2003: ”One of the things I’ve found is that people don’t like to

be compared to ants.” Still, a big number of the non linear characteristics of the Open

Source Projects come from stigmergic processes:

• The cost of distributing an email to thousands of developers is constant

• search engines bring people looking for solutions to problems to the archived dis-

cussions about those very problems

• asking a question the right way will entice readers to help solve it.

3.2 Problem Description

This work aims to study how to find potential metrics that describe the state and the

evolution of Software Development projects , having the property that the metrics should

not depend on the project size, i.e. be an intensive property. We aim specifically towards

projects that are developed with the Open Source typical approach, for which most if

not all of the information exchanges take place over channels that can be audited, logged

and indexed for search and reference, like email, bug trackers, code revision tools, etc.

6

In particular we will concentrate, for the purpose of the current work, in the study of

the ratio between total email traffic and number of source code commits for a selection

of projects in the Apache Software Foundation.

The projects range in size from the 11500 emails/month that Apache Hadoop generated

in Aug 2012, to a project like Turbine, which was relatively big back in 2000, but has

generated a maximum of 175 messages per month during the last 5 years. httpd, span-

ning 17 years (1995-2012) but still healthy and being actively developed, has generated

a maximum of 5200 messages in Apr 2002, but it is still around 1000 messages/month

currently. Beehive, the first project that got retired into the Attic, where Apache

projects get archived when stale, is a good example of what happens to a project that

gets abandoned by developers.

This metric allows us to compare easily the evolution of the named projects, spanning

two orders of magnitude sizes. It is also suitable to assess how exciting the project is

for the outside community of users or developers, and also to see how the community

matures into a stable development site.

3.3 Assumptions

There are a number of assumptions that guide the experimental approach we have taken

in this work.

• the information content of each information exchange (defined as a socially atomic

interaction between one actor and an open source project) is roughly comparable.

• the source code repository activity (number of commits) measures the self organi-

sation of the project,

• all information exchanges are reflected by an email sent to one of the project lists

We started working looking for the validity of this thesis: The ratio between information

exchanges and progress of an Open Source project, i.e. between total emails and number

of commits, is a relatively stable property, that remains constant for a stable ecosystem

and varies slowly with time for the components of the ecosystem.

3.4 Alternative Approaches

There are a number of alternate approaches to measuring progress of a project using

metrics that are intensive, i.e. independent of project size. We discuss briefly a number

of approaches that are similar to our concept in the following sections, to finish with our

approach, that we call Information Exchanges.

7

3.4.1 Information Entropy

[RON2] characterizes ”The web community” as a dissipative structure, and advocates

the use of information entropy for the study of fluctuations as some contributors have

a disproportionate contribution, thus using software entropy as a measurement of how

far from equilibrium is a community. Like [RON1], while the approach seems to be

oriented to the quantification and measure of the entropy of exchanges between parts

of a system, and between the system and the environment, no effort is done to give

quantitative data. The authors practical conclusions are limited to advocating the use

of the software entropy formula:

Hmax = H(1
n
, 1
n
, ..., 1

n
) = log2 n

which expresses the maximum information entropy in a situation where n participants

contribute each with a symmetrical 1/n fraction of the total contributions. or, in terms

of agent ”score” Mi (measuring the percentage of contribution in a given community),

they use a normalized entropy:

S =
−
∑n

i=1
Mi∑n

j=1
Mj

log2
Mi∑n

j=1
Mj

log2 n

The main conclusion in both papers is that in order to minimize risk or maximize

stability, it is important to maximize the entropy production, i.e., to balance the number

and relevance of core contributors, avoiding situations of excessive dependence in one

developer.

If we compare with the ratio information exchanges/commits, we find that, in the limit

situation where a isolated developer develops a project, this ratio would be one: a

commit per commit and no extra traffic. In a situation where two developers collaborate

to develop a project, a number of extra messages will be exchanged, making this ratio

greater than one... In the limit, a number of coordination messages will be exchanged per

commit. In situations where the number of coordinating parties is high (for instance new

users or developers approaching a project or one developer proposing a novel architecture

for the next release) the ratio will go up.

3.4.2 Stigmergy

From studies on social insects Grassé (1959) introduced the term stigmergy. Stigmergy

is derived from two Greek words: stigma (meaning sign) and ergon (meaning work). A

process is stigmergic if the work (ergon) done by one agent provides a stimulus (stigma)

that entices other agents to continue the job. Stigmergy has become popular for Artificial

Intelligence research (Theraulaz and Bonabeau 1999). Heylighen (2006b) studies the

stigmergic aspect of information system, like Wikipedia and FOSS development. [KIE1]

We acknowledge the importance of stigmergy for Open Source. At the end of the XXth

Century, say 1998, it was apparent that trying to get technical information about Mi-

8

crosoft tools and Operating System was difficult and clumsy, as The MS Knowledge Base

was expensive, a big set of CDs, and it required a license server. At the time, both the

Apache httpd and the Sun Java Web Server (that later became Apache Tomcat) were

serving the whole documentation with the default install. So, for every developer that

started looking into it and using Tomcat or Apache, it was easier to find information on

it.

There are also stigmergic aspects with the big public mail archives that get indexed and

appear frequently when users ask for common questions. So, the auditability of all the

design and engineering discussion is positive to encourage future collaboration, and this

collaboration makes the documentation of the project more visible, in a strong feedback

loop.

Stigmergy brings positive feedback, and thus non-linear behavior, something that Pri-

gogine quotes as something needed for out of equilibrium dissipative systems: ”More

precisely autocatalytic steps are necessary (but not sufficient) conditions for the break-

down of the stability of the thermodynamical branch”. [PRI1, page 271])

We are not studying stigmergic aspects in the scope of this work; we focus instead in

the raw information exchanges.

3.5 Our approach: Information Exchanges

We call our approach Information Exchanges. We are measuring ”communication acts”

between developers, users, maintainers, i.e. all roles in a project, and try to relate them

with the self organisation of a project via changes in its code base. When we speak

about code base we typically include documentation, as the documentation is usually

under the same source repository as the code.

One could think that, to measure communication acts, it has to be looked for at a lot

of separate places. But, in general, most places where information is exchanged send an

email to public lists for each such exchange.

First, one has to take into account the fact that all decision making in Apache should

happen through mail lists. This is a strong cultural trait of the ASF. See, for instance

how Justin Erenkrantz presentation in OSBC [ERE1]: ”All technical decisions about

a project are made in public (mailing lists)”. There is also a famous Roy Fielding’s

mantra, quoted later, in the same presentation, in the slide ”Where decisions happen”:

“If it didn’t happen on-list, it didn’t happen.”

The fact that mail lists are used as central coordination points of the projects has another

advantage for our purpose: enforce that all interactions with the system appear on list:

• Issue trackers will send an email to some configured lists for every issue opened,

commented, modified or closed

9

• Ditto for code review tools, automated builds, specially when the build gets broken,

or wiki page edition

• We are, in fact, studying commits via the email that all SCM systems send to

the project lists with the changes that got pushed. This works well, because the

typical way to discuss a commit or object to it is to reply to the email reflecting

the code change.

The study of emails sent to the project looks appropriate if one wants to check the

information flows in an open source project, at least for an Apache one.

Still, one might miss a number of different information flows in a number of cases:

• In projects dominated by a company with internal work-flows, which dumps code

periodically to an open source projects,lots of information gets missed; the android

open source (AOSP) comes to mind

• In projects dominated by a company, even when their committers interact through

open lists, they could be interacting a lot privately. Say, they can process bugs on

the proprietary derivative project, to end up committing a solution to the open

source project with most of the information remaining invisible to our analysis.

• In projects making extensive use of videoconferencing or IRC channels. A good

example of this behavior is Cyanogenmod. They mostly hang on IRC channels,

and tend to meet weekly by web video conference. They also use forums, which

don’t send email. In those projects information flows are either not archived or not

present in email. This is not the case for the ASF. In order to study such projects,

different analysis techniques will have to be developed, for instance parsing IRC

log activity or Forum contents.

• In the press, in documentation deployed in downloaded copies, in downstream

projects redistributing it, for instance linux distributions that package Apache

httpd server and have support forums, etc.

3.5.1 Measuring Information Exchange more precisely

Even if we agree that analysing the relation between email flows and code changes

during a project evolution is a good way to characterise the properties and evolution of

the project, there are a lot of ways to measure such information flows:

• One could try to find the information delivered by the message by, say, compressing

the message body to remove redundancy.

10

• The uncompressed size of the email could be used.

Those two approaches would try to differentiate from, say, one line changes that fix a

typo and long, meaningful features pushed into the code. The same for emails: it is

not the same to send an email saying ”+1”, and thus signifying support for a previous

position, that to elaborate a long response...

A third approach was suggested by Stefano Mazzocchi during the mail thread that was

described in the introduction of this report. He said that we should not compare the

productivity (in commits) with the number of emails processed, but rather with the

number of emails that had at least one reply. his thesis is that doing so will screen very

effectively those machine generated events from human ones. [MAZ2]

Also, Walter Harrison in [HAR1] proposes to measure the complexity or a program by

measure its distribution of operators, i.e. special symbois, reserved words or function

calls. His metrics, called Average Information Content Classification, shows the property

that it is independent of program size, and can be used to assess the complexity of

fragments of a program.

It would be tempting, for our study, to compute the complexity of each contribution to

a software project, and thus compute our ratios in terms of total bits contributed/bits

committed to the repository. This approach will be further investigated, but we felt

that the contributions will have a similar average information content, and thus it would

have complicated our computations without a big change in results.

3.6 Methodology

Studying the communication flows in a project is tricky. There is a big number of

different channels used to communicate both between the different people, with different

roles, that work in a project on any given moments. Some decision were taken, both

to simplify the analysis and because the looked natural in the context of open source

projects:

• Limit our study to projects in the Apache Software Foundation. The author has

intimate knowledge of the Foundation, having been a committer there since 2000,

a member since 2004 and VP Apache Portals from 2004-2006. Also, the ASF has

cultural traits that help in our purpose (next bullet).

• Use email as information source. While Open Source projects have lots of infor-

mation flows, and some are difficult to measure, the Apache Projects have some

strong rules [ASF1] that facilitate our work. Those rules refer to the email lists

as places where decisions happen. Typically all information flows to the project

11

are documented. Discussions are, obviously, but also wiki editions, commits, au-

tomated build failures or comments in bug trackers. Even IRC discussions have

logs typically pasted to the developer list

– As Justin Erenkrantz says in a Presentation about ”The Apache Way” at

OSCON [ERE1]:

∗ there are many forms of contributions

· evangelism, bug reports, testing, documentation, code, design feed-

back

– On the other side, he continues:

∗ ”First time meet face-to-face is at events

· Mailing lists are the pulse of the project

· IRC, AIM, Jabber, etc. not for decisions

· Roy’s mantra: “If it doesn’t happen on-list, it didn’t happen.”

• The unit we will consider initially as ”communication act” or ”information ex-

change” is the email. An email correspond to a decision to interact with the

project, be it by modifying a wiki page, by asking a question, reporting a bug,

making a single commit, voting, etc. While the weight of those acts in terms

of social impact or information entropy varies a lot, they still look as reasonable

starting points for our analysis.

• We look for intensive properties of the projects. Most metrics of projects are

difficult to compare since they are not adimensional and thus they depend on the

size of the project. This is additionally complicated by the fact that successful

projects commonly undergo transitions in size of two orders of magnitude during

their developmentt. We are looking for properties that vary with the maturity,

technology or community composition of the project, but not, or at least not

much, with its size.

A caveat about our chosen methodology is due: For projects implementing standards,

such as Jackrabbit, Felix, Tomcat, even httpd, it might happen that the relevant

standards lists has activity, such as proposals for the revision of the standard, feed-back,

errata, etc. that influence directly the development of the given project. We are, thus,

losing some of the information exchanges related with the project.

12

4 Case Studies

We will to a summary study of a number of projects in the Apache Software Foundation,

comparing how they stand in terms of their ratio of messages to commits.

4.1 Selection of ASF Projects

We take an exploratory look to a group of projects in the Apache that are relatively

different, in terms of technology, age, size, etc. In particular, we want to explore the

set of ASF projects without being forced to study all of them. In the following list, we

explain the reasons that lead to selection of each project. We select:

• Apache httpd server, the project that originated the ASF as such. External CVS

was used until 1996, so commits data starts then. It has a 15 years history, and

has passed through one major release 1.3 -> 2.0 and two minor ones: 2.0 -> 2.2

and 2.2 -> 2.4. Also, we plot one of its subprojects: the apr (Apache portable

runtime) library used to ease cross platform development

• Apache turbine, an early web framework in java, part of Apache Jakarta. it is a

project that was very active around 2000, but got stagnant due to endless refactor-

ing that broke compatibility and focus of the community in alternate approaches.

It is a good example of the scale invariance of our ratio

• Apache tomcat. Reference implementation of the it was donated by Sun Mi-

crosystems after some meetings in the Jakarta room, which started the Jakarta

project. Later it migrated to its own PMC.

• Apache lucene, the full text indexing and search solution. It is showing a lot of

activity in the last years, because of the trend to so called Big Data processing. A

number of the main

• Apache geronimo, a certified JavaEE Application Server, that integrates a num-

ber of external and internal projects

• Apache spamassassin. Written in perl, it is a preexisting community that joined

the ASF in 2004. While most java developers are involved in several projects, and

13

some of them even in the httpd, apr or other areas, spamassassin developers

were not so much involved with the rest of the ASF in the initial phases of the

project. Spamassassin is fairly mature and is fairly used in production.

• Apache hadoop ecosystem. Hadoop is a Big Data framework. Currently is by far

the most popular Apache project, with high levels of traffic in its ecosystem. There

are a lot of projects spawning off hadoop: HBase, Avro, Hive, Pig, Zookeeper,

Whirr,... Also, it is very active right now, correspondingly with the trend to apply

Big Data techniques everywhere.

• Apache jackrabbit/sling ecosystem. Jackrabbit is the reference implementation

of JSR-170, Java Content Repository, a standard for managing web content. This

JSR was pushed forward mostly by Day Software, a company that was bought

by Adobe Systems in 2011. Day Software donated also two other components to

Apache, that were used in their commercial product CQ. So, Day has opensourced

their OSGi service platform, felix, and a web framework, sling, that both use

jackrabbit. The three projects are closely related, and also related to a company

that started them.

14

The previous figure shows a line plot of the time series of a set of projects, each using a

different line type and color. Noise and data spikes makes it difficult to read.

The next one shows the same data after smoothing of the total and commits series. If one

examines the noisy projects, they belong to two different sets: turbine and beehive are

noisy because the number of commits get relatively small and reactive to bug reports or

dependency breakage as the projects are stagnating; on the other side, lucene is strong

and growing, but had a highly fluctuating devel list traffic pattern.

15

We can limit our comparison to the developer list. While the total message traffic

includes bug reports, user list question, and other sources of messages that are typically

not originated inside the development team, devel traffic is typically either by internal

developers or people trying to join or just modifying the code for their use. Also, while

total traffic typically goes up when a project is used or adopted a lot, developer traffic

goes typically up before major releases or refactoring, and when there is brainstorming

or discussions about design decisions.

16

When a project gets mature and development limits to bug fixing and straightforward

development, the need for coordination falls down, and one see a pattern where less

messages are sent to devel list than commits are checked in. This is a recent trend for

most of the projects we have been analyzing in this sample. Even when, like hadoop,

the total/commit ratio is very high, the devel/commit ratio is below one, meaning that

developers either don’t need to talk or the just ”talk with patches”, as it is often said.

This could be explained also by the introduction of distributed source code management

tools, such as git, that make easier to work with a smaller granularity of commits, which

means that the number of commits grows, but its information content per commit gets

17

smaller at the same time. This is a hypothesis that could be tested by computing the

size of commits versus time. An alternative hypothesis, that use of code review tools

again diminished the granularity of commits, is less likely. It could also be tested by

the same test, plus the analysis of commits coming from code reviews of patches versus

normal commits.

The issue related activity, in particular, does not show the same convergence with matu-

rity than the previous metrics when compared with number of commits. It gets higher

and higher as people is encouraged to report bugs and interact with the project via the

issues tracker, and also when a project development is user-drive rather than developer

18

driven.

If we see it smoothed, we find that hadoop has very big peaks of activity, and other

projects vary in their use of issue trackers.

19

What turns out to be interesting is that the issue-related activity correlates with the

total project activity in a similar way as with the commits. It looks like mature projects

have a similar trend to get issue-related activity 10-15% of total activity. The hadoop

ecosystem, though, shows a much lower total/issue ratio, thus showing that the amount

of issue activity for them is a much higher percentage of the total ratio

20

We plot in the next figure the total messages/ commit and total messages/issue for two

projects like httpd and hadoop. We see that hadoop uses extensively the issue tracker

(issue messages are more than half of their traffic), while httpd is more focused and

developer oriented, with more balanced traffic distribution.

21

4.2 Apache Web Server

The Apache Web Server, or Apache httpd, is the project that gave rise to the Apache

Group, first, and then to the Apache Software Foundation. It is the leading web server

in the world.

The first recorded source code change was made on February 22, 1996. The previous

version of Apache, 1.0, was released in January 1996 and had a separate CVS database.

[FIE2] There is an approximate list of the early releases, compiled in 1999 by Ken Coar

22

[COA1]. 2.0.35, the first release in the 2.0 series present in http://archive.apache.org/dist/httpd/

, was released in 2002-04-05.

The total traffic was relatively high, with spikes of 2000 messages/month, and went down

to around 1000 by 1999. Commits started growing, to around 100 at the beginning of

1997, and up to 300 around 1999-2000. This was reflecting the maduration of Apache

1.X. From then on there was a big growth in total traffic, followed with a certain delay

by commits, which made the ratio go up to 10 by 2004. This growth corresponds to

Apache 2.0 and then 2.2. After this the ratio of commits to total messages has been

going down steadily, and even the recent release of 2.4 didn’t make any change.

23

http://archive.apache.org/dist/httpd/

The increase in the ratio around 2001-2002 comes from a sharp increase in traffic, related

with the release of 2.0. Apache HTTPD 2.0 had a new API and features. The extra

traffic took some time to stabilise an then decrease. The commit flow kept reasonably

constant in time, going slightly down after the release and keeping flat, but only the

traffic decrease as the excitement faded and the knowledge about HTTP 2.0 spread

returned the ratio to stationary levels.

24

The increase in total traffic is not seen in the developer list: here the traffic grows fairly

symmetrically with the commits. Actually the commits outpace the traffic, as there is

a decreasing coordination cost as the project matures and the organisational roles and

design and implementation knowledge is spread and better documented.

25

Apache is the first project that shows us this effect, that is happening in more projects,

and we don’t understand completely: how the developer traffic is going down, or at least

grows less than the number of commits. We advance some hypothesis further on.

4.2.1 Apache Portable Runtime

The Apache Portable runtime (apr) is a library that eases porting of Apache to different

platforms. It is also used by Subversion and other projects. Its traffic patterns are very

different of the ones from httpd, with peaks of total traffic and commit traffic not much

26

related with the releases or activity of httpd, specially as it matured.

The pattern of total and devel traffic is very similar, as one can expect in a project

driven by developers. On the other hand, the pattern of traffic is dual: undergoing bug

fixing and maintenance, on one side, with strong spikes of traffic before releases.

Plotting the main releases, one can see that the runtime activity is polarized around their

releases, and fairly decoupled from the server, but significant spikes of traffic followed

major httpd server releases, especially 2.2, meaning probably that a number of bugs or

design problems were discovered after further exposure of the code.

27

The apr library is used by an increased number of projects, but the main ones are

Apache httpd and Apache subversion. Subversion started as a project in tigris.org,

but joined the ASF in 2011.

4.3 Tomcat

Tomcat was one of the first projects in Apache involving a code donation. In Jakarta

there was a project called JServ, which was developed to support the Servlet API 2.0.

Sun Microsystems, at the time, had a product called JWSDK, reference implementation

28

of the Servlet API. They negotiated with people in the ASF to have those two products

merged as an Open Source reference implementation.

Talks where held in a room called Jakarta, between the jakarta developers and Sun

officers. The project was hosted in a new ASF project called Jakarta after the room

name, that was charted to take all java projects inside the Apache Software Foundation.

The official announcement was done in June 1999 during the Sun Java One conference.

The project attracted a lot of attention since day one: JavaEE (the called J2EE) was

hot in enterprises: java was definitely the new corporate programming language. And

the web was exploding. So a HTTP server side programming API, part of J2EE and

in a language like java, was bound to be evaluated by most companies writing dynamic

web sites.

When Tomcat had released 3.2 there was a strong discussion about the future evolution.

A long group of threads, with Subject starting with [LONG TERM PLAN], was started

by Craig R. McClanahan. 36 such mails can be found in Dec, 1999, and 61 during

January 2000.

Craig recounts the history in a message :

I joined the Apache JServ project in January, 1999. The personal

itch I wanted to scratch (with apologies to ESR) was to bring Apache JServ up to

compliance with the 2.1 servlet API, which was still current at the time. As you

probably remember, Apache JServ is based on the 2.0 API, and there were some really

significant changes between 2.0 and 2.1.

After working with the existing code for a while, it became obvious that some

fundamental design decisions were going to need to change to support 2.1. In

addition, many of the then-current developers of Apache JServ started getting

interested in other things (Jon -> ECS, Village, Town, and Turbine; Pier -> XML;

Stefano -> Cocoon). I therefore took advantage of the opportunity to propose a

rearchitecting of Apache JServ to both bring it up to date, and provide a basis for

future flexibility. The idea was accepted, and work proceeded – not a lot different

than the Tomcat.Next proposal being discussed here.

The code that was created for this is actually funtional, although it has not been

stress tested or performance tuned. It is still in the Apache JServ CVS tree, under

branch ”JSERV1 1DEV” (originally it was going to be called 1.1).

Now, fast forward to June, 1999, and the announcement at JavaOne. Sun was doing

what

open source advocates had been suggesting for quite a while – they were contributing

the source code of the JSWDK to the Apache Software Foundation! And they would

continue to support the project, including some developers paid to contribute

enhancements. Further, Tomcat would remain the reference implementation for the

servlet and JSP APIs.

29

http://mail-archives.apache.org/mod_mbox/tomcat-dev/200001.mbox/raw/%3C387BF46C.F8302840%40mytownnet.com%3E

Costin Manolache, then a worker in Sun, expressed opposition to the refactoring . He

preferred to have incremental improvements instead of a big refactoring/merge leading to

a new major version in a branch. The discussion stalled, and on Jan 13th James Duncan

Davidson sent an email with Subject Rules for revolutionaries [DAV1] [MAZ1]. The

claimed that there’s no way that anybody can expect an open source organization to work

the same way that a team in a corporate setting can. Also, to allow revolutionaries to

co-exist with evolutionaries, he proposed that anybody got the right to start a revolution

in a separate branch, and propose a merge back when the branch was ready.

As a consequence, during a relatively long period, tomcat was releasing 3.2.X, 3.3.X

and 4.0.X versions. While this feature can be thought to cause the spike in devel traffic

during 2000, the user traffic was most probably not related: it was coming from the

increase in use that the frantic development of the web and the consolidation java as a

server side platform was bringing.

We can see in the next plot how 3.3 and 4.0.1, the first releases of the two competing

designs, were released very close in time. There was a big activity releasing fixes, op-

timizing performance, etc. during the next years. At the end of this fork, tomcat 5

was based on the tomcat 4 architecture (catalina) and not in the approach that 3.3 was

carrying on.

30

http://mail-archives.apache.org/mod_mbox/tomcat-dev/200001.mbox/raw/%3C3873A1A6.2685D1E2%40eng.sun.com%3E

Some releases are signaled in the plot, including the RFR marker, which outlines the

date of the Rules for Revolutionaries email message referenced previously. After this

messages and in the big discussion that ensued, the number of messages grew up to

values around 6100/month, and later 7200 around the release of 5.0.0

The total traffic numbers are very high, in spite of the fact that Tomcat always had

much less use than httpd. A big difference, that merits further study, is how httpd was

packaged and distributed with most linux releases since very early, and the list and issue

trackers of those distributions were used as a first tier technical support. Tomcat, due to

the non-free nature of java, took until about 2004-2005 to be packaged by distributions,

31

and even now there is a need to use non-free repositories for the Oracle JRE, and support

by linux distributions is limited.

Also, linux developers and users typically install packages using the distribution package

repository, and update as new versiones are released. They are also typically more

familiar with cultural issues: where to find documents, how to proceed when a bug is

found, etc. In contrast, typical windows developers discovering java in the early 00’s

would be forced to download, install and upgrade on their own, and less aware of cultural

conventions, and thus make more noise in lists and be in more need of support. The

arrival of windows developers, atracted to Open Source by the corporate commitment to

java and the nature of the typical servers being open source, explains this strong surge

in total traffic, not followed by traffic in the developer list.

32

The number of commits was relatively stable during this spike, which made the ratio

grow up to values around 20 messages/commit. As we see in the previous plot, the

developer messages didn’t grow so much as the rest of the traffic.

Tomcat devel traffic is getting progressively smaller as the Servlet API platform is mature

and well tested. As with other projects, one can see that the number of commits increase.

It remains to be seen if this increase is due to lowering the barrier for participation of

non-developer users via distributed SCM or code review tools, or if it comes because the

commits are more fine-grained and carry less changes per commit.

33

4.4 The Hadoop ecosystem

Hadoop is a framework for running applications on large cluster built of commodity

hardware. The Hadoop framework transparently provides applications both reliability

and data motion. Hadoop implements a computational paradigm named Map/Reduce,

where the application is divided into many small fragments of work, each of which

may be executed or re-executed on any node in the cluster. In addition, it provides

a distributed file system (HDFS) that stores data on the compute nodes, providing

very high aggregate bandwidth across the cluster. Both MapReduce and the Hadoop

Distributed File System are designed so that node failures are automatically handled by

the framework.

The Hadoop ecosystem contains, probably, the most popular ASF projects during the

last 5 years. It is seeing development at a frantic pace since 2008-2009

We take significant events from the hadoop web site. In July 2009 a set of new hadoop

subprojects were spawned. Hadoop Core was renamed Hadoop Common. MapRe-

duce and the Hadoop Distributed File System (HDFS) turned into separate subpro-

jects. Also Avro and Chukwa.

In May 2010, Avro and HBase graduated to become top-level Apache projects. Apache

Avro became http://avro.apache.org/ ; Apache HBase is at http://hbase.apache.org/

.

Apache Avro is a data serialization system, and HBase is the Hadoop database, a

distributed, scalable, big data store.

A few months later, in September 2010, Hive and Pig graduated to become top-level

Apache projects. Apache Hive can now be found at http://hive.apache.org/ Hive is

a data warehouse system for hadoop that facilitates easy data summarization, ad-hoc

queries, and the analysis of large datasets stored in hadoop compatible file systems.

Apache Pig can now be found at http://pig.apache.org/ . Pig is a platform for an-

alyzing large data sets that consists of a high-level language for expressing data anal-

ysis programs, coupled with infrastructure for evaluating these programs, provided by

MapReduce and the rest of hadoop.

In January 2011 a new project, ZooKeeper graduated to become a top-level Apache

project. ZooKeeper is a centralized service for maintaining configuration information,

naming, providing distributed synchronization, and providing group services.

We have plotted the first 5 such projects. One can see that the ratio of total messages

to commits is much higher than other Apache projects.

34

http://avro.apache.org/
http://hbase.apache.org/
http://hive.apache.org/
http://pig.apache.org/

The smoothed ratio shows a very high spike of hadoop in 2010, and an even higher spike

of hive right now. It is easy to understand if we know that all companies are gathering

tremendous amounts of data and analyzing them, and hadoop is a very popular tool for

this.

35

All the projects are seeing very high ratios of messages to commits. Since 2007 all the

projects are above 10 most of the time. This points to a lot of user activity as compared

to developer, or to a workflow that uses the issue tracker for most communications. We

are counting the issue tracker in total, but not in devel.

36

The ratio of developer messages to commits is, though, rather small, below one most of

the time. This indicates that the commits don’t need coordination in the developer list,

but are coordinated via, probably, the issue tracker, or perhaps code review or through

the use of github pull requests. The fact that a common vocabulary and culture develops

might also explain a decrease of the developer traffic, but of the hadoop ecosystem, only

pig shows this pattern.

A not so healthy interpretation would be that the groups of committer, which have been

typically hired by a small number of companies, are coordinating in closed lists or just

chatting during lunchtime. This hypothesis merits further study.

37

Effectively, if we graph total traffic/issues, we find that issues are close to half of the

traffic in hadoop. The next plot shows that a substantial part of the project traffic is

in the issue trackers, and this explains both the high total/commits ratio and the low

devel/commits ratio: developers coordinate with users and together through the issue

tracker rather than using the developer list.

38

Obviously, the activity in the hadoop ecosystem is issue tracker driven, with between

50% and 100% of the project exchanges taking place in the issue tracker.

In the next figure we plot the ratio of issues related messages to commits, compared

with the total/commits ratio that we are using. We can see that it is similar to the total

traffic plot, as hadoop development is highly tied to issue tracker activity.

39

4.5 Lucene

Lucene is a Java based indexing, search and also spell checking, hit highlighting and

tokenization

The ratio total messages/commits ranges from 30 - 51 during the first few months, to

diminish slowly and stabiliz between 4 and 6 during the next years. Currently it is

around 4. In spite of that, it saw a tremendous increase of traffic since 2009, but the

number of commit is growing at a faster pace and outgrows messages.

40

There is a significant decrease in activity in June and July 2004. It looks it is due to

testing of the different release candidates and the Lucene 1.4 release. The points from

2002 to 2006 show a lot of fluctuation, due to the fact that most of the commits were

done by a few committers, and were very sensitive to their availability.

The peak of the ratio in 2008 is not, like in Beehive, due to a decrease in the number of

commits, but rather to a sharp growth in the total number of messages. The increase of

commit activity was delayed, showing that at this stage of things Lucene was pulled by

users, rather than pushed by developers. Effectively Lucene is used in more and more

contexts as search engine.

41

A similar pattern is visible in the devel list: an sharp increase in developer traffic between

2004 and 2006, while the commit traffic only starts following the pattern around 2006,

when the ratio peaks. Since then the ratio has greatly diminished to typical values of a

mature project, getting smaller than one from 2011 onwards.

Lucene is not so much issue driven as the hadoop ecosystem, so its shape would merit

further study to find the reason why the shape changes in such a way, with such a big

lag between traffic and comits.

42

4.6 The Jackrabbit ecosystem

The JSR-170 (Content Repository for Java) specification was chaired by David Nuescheler

starting in February 2002, and got approved on June 2005. The idea of having Apache

Slide implement JSR-170 was around since early, and in February 2003 it was proposed

that Slide was a reference implementation of JSR-170. Prototype code produced by Day

Software was imported into the Slide code repository at the time, to be removed one

year later because it had no clear status and was being abused as being the reference

implementation. In August 2004 the early reference implementation code was re-sent,

this time as a separate project, to the incubator, and eventually graduated as jackrab-

bit. Apache jackrabbit is a hierarchical content store with support for structured and

unstructured content, full text search, versioning, transactions, observation, and more.

It has got a relatively successful product. Day Software based its CQ product on it, and

donated parts of it back to the ASF: Felix, a OSGi Service Platform and Sling, a web

application framework.

43

http://www.jcp.org/en/jsr/detail?id=170

Due to the use of OSGi bundles, Sling is very modular. Bundles have fine grain de-

pendencies, and the concept of a full release is only relevant for the standalone binary

download. A big number of component bundles can be tested and released separately.

In the next figure one can see how global activity increased a lot in 2009-2010 with

commits proportionate, so that the ratios have remained stable.

44

The ecosystem has attained success, with Jackrabbit having processed 1500 messages

in July 2009, Felix 2168 in September 2009, and Sling 1688 in July 2008, and 1616 in

August 2010. Felix continues to be relatively successful, being one of the two top OSGi

Service Platforms, and the one independent of Eclipse, but used by netbeans, and it is

seeing further adoption. Sling has slightly slower activity. Probably the reason is that

there is a big number of Content Management platforms in PHP, python, Ruby, etc.,

and the main inroads of java based CMS systems into enterprise use are in big, java-only

shops, which tend to trust commercial vendors and not feed public, community based

activity.

45

The ratio of devel messages to commits shows that all three projects are fairly mature,

with not very exciting evolution. Jackrabbit probably has most of its architecture/de-

sign decisions taken in the JSR-170 group, not visible here, and Sling was donated to

the ASF as a mostly functional product. Felix shows more initial activiy.

The three projects show ratios of devel/commit messages below 1, even with healthy

numbers of commits and messages. This is a sign of a well integrated team and a mature

and well structure work group, as the need of coordination between developers falls down

when the teams are well formed, though it could be also due to a growing number of

finer grain commits. It might also be due to communications off-list, as a substantial

46

number of committers are coming from Adobe/Day.

4.7 Apache Geronimo

Apache Geronimo is an open source server runtime that integrates the best open source

projects to create Java/OSGi server runtimes that meet the needs of enterprise develop-

ers and system administrators. Their most popular distribution is a fully certified Java

EE 6 application server runtime.

Geronimo was born when a group of developers involved in several JavaEE components

47

got in a conflict with JBoss and asked that Apache would release a certified JavaEE

Application Server passing the Test Suite. It was adopted by IBM as a community

edition of their WebSphere Application Server. It shows a uniform ratio of traffic to

commits.

As the project matures, it shows less developer activity, but the commit traffic stays

high: this makes the project show more commits than developer messages since 2012.

48

4.8 Spamassassin

SpamAssassin, according to wikipedia, was created by Justin Mason who had maintained

a number of patches against an earlier program named filter.plx by Mark Jeftovic, which

in turn was begun in August 1997. Mason rewrote all of Jeftovic’s code from scratch and

uploaded the resulting codebase to SourceForge.net on April 20, 2001. In summer 2004

the project became an Apache Software Foundation project and later officially renamed

to Apache SpamAssassin.

49

The plot of total activity against commits shows how the activity settles as the project

matures. In spamassassin the design was fairly mature already when the project joined

the Apache Software Foundation. So the total ratio has gone down to 5, and stayed

between 3 and 8 since 2007. Spikes of activity are related to new releases.

The developer message to commits ratio is below 1 since 2006, meaning that most

commits don’t need any discussion between developers, being done either by consensus

or as a result of issue related fixes.

50

One can see that issue-related activity pattern is similar to devel activity. But while devel

list activity goes down as the project matures, most of the commits now are mediated

by issues rather than by discussion in the devel list. Also, as spamassassin uses bayesian

rules to assess email signatures and classify email, a lot of activity goes into training

and testing rather than typical development.

51

Issue related activity behaves similar to development activity, with a certain delay and

more related to use of the project.

4.9 Turbine: a mature project

Turbine is a first generation Web framework, a very early one. It was popular in 2000,

and it was slowly phased out as next generation frameworks such as Java Server Faces

(JSF) or Struts took its place. We bring turbine as a good example of a project that

was very big and got stagnant.

52

The archives for turbine from 1998 to 2001 were not in Apache and got lost. One can

see that the total email traffic went down since 2001-02, where our data series begins.

In January 2006 the traffic was 26, down from 1865 in January 2002. Two orders of

magnitude of decrease. Now, the ratio messages/commits at those two periods were of

2.4 (Jan 2006) and 4.0 (Jan 2002), and the smoothed ratios where both around 4.5

Turbine 3 never was released. People were moving to different alternatives at the

time, and it went victim of a continuous series of refactorings where the component

functionality and APIs never went stable but keep changing and breaking dependent

projects such as Jetspeed. Even as the total traffic went down by a factor 100, a small

group of developers is still using it and working on it, and the ratio of messages to

commits shows a steady progress. Version 4-M1 is being currently tested.

53

One can see how the project was processing peaks of 2000 emails per month in 2002,

and it had fell down one order of magnitude by 2005. as users moved to different

web frameworks like Struts or JSF. As the project gets smaller the ratio of messages

to commits starts being much more noisy, because the number of commits is no longer

predictable, but the smoothed values remain in the same range. In fact, one can see that

the curve is relatively smooth, without big signs of attracting new users or developers.

The project is mostly stable, and still alive.

54

One can see in the devel/commits ratio that the development list traffic pattern is similar

to the total. This is typical in projects pushed by developers. Other projects are more

pulled by users, see Lucene and Hadoop as two good examples.

4.10 Portals

The main product of portals used to be jetspeed, initially based on turbine. The vi-

sion of jetspeed is to reproduce the concept of graphic window in the web. Initially this

was done with ad-hoc APIs, but JSR-168 was created to make a standard (PortletAPI).

55

The reference implementation of this API, pluto, falls also under this project.

The evolution of the project does not look good in 2012: the shape of the ratio since

2011 onwards is an artifact of the smoothing polynomial fitting used, and indicates that

the project is at zero or low number of commits in one or more months. This indicates

that the project has, at least temporarily, stopped being developed or even maintained.

For instance, while in Jun 2011 there was only one commit, there were 69 messages,

which leads to a very high ratio.

56

One can see that the devel traffic fell a lot, and has been in no need of coordination, i.e.

stagnant or in maintenance mode, since about 2009. Even while the number of commits

was still great, showing barely no traffic in the developer list and a very reduced number

of commits is a signal of a stagnating project.

4.11 Beehive, a project in the Attic

Beehive has a lifespan starting around September 2004, when it was donated by BEA

to Apache for incubation, to about September 2008. After is was relatively abandoned,

57

it was the first Apache project to be considered dead and moved to the Attic, in January

2010.

Beehive makes J2RR programming easier by building a simple object model on J2EE

and Struts. It used JDK1.5 annotations to express persistence on top of java objects.

We have data on the project since 200408 to 200810, which basically is the time passed

since it was donated. The ratio of total messages/commits ranges from very high values

(48 and 304) during the initial incubation discussions, to stabilize quickly between 3 and

6 during the next years, and decline later.

We can see a list of events of this project. There is nothing of significance since the

release of 1.0.2 and the decision to retire the project to the Attic. In fact the project

showed null activity after September 2008.

2005-07-12: Beehive graduates from incubator (data prior to this date is traffic from

incubator)

2005-07-28: Beehive becomes a top-level Apache project.

2005-09-30: Beehive releases 1.0

2006-02-13: Beehive releases 1.0.1 (includes 90 bug fixes!)

2006-12-04: Beehive releases 1.0.2

2008-09-01: No activity at all in the project

2010-01-11: Apache Beehive is retired to the Attic

The sharp peak in the ratio since June, 2007 to 2008 is not due to a sudden increase of

the number of exchanges, but rather to a sharp decrease in the number of commits. EJB

3 was being developed at the time, and it rendered mostly redundant Beehive. Quoting

from Wikipedia : ”When EJB 3 came around, such simplification was already provided

by the EJB specification itself, and Beehive controls were of little further use here.”

The Attic is a project which is in charge of archiving and managing dormant projects.

Once a project shows no activity, and a PMC (Project Management Commitee) is not

functional, the mail lists are closed to ease the moderation burden, and its web site is

marked so that people know that the project is no longer being actively developed. If

people wants to ask questions about the code base, or try to gather a new community

and revivify the project, Attic is the place to ask.

Beehive was the first project to get archived in the attic. A number of projects have

followed suite. The reason why we added beehive to the study is because it was coming

from a donation and it never attained the level of success that would have keeped it

under active development, or at least maintenance.

58

http://en.wikipedia.org/wiki/Apache_Beehive#Controls

So the project shows a moderate initial activity, with values of the messages/commits

ratio that are not so big, to quickly stagnate and die from 2006 onwards. The spikes of

activity after 2007 result from a very low commit count. They bring an issue with our

metric: its should not be computed for very small commit counts, say less than five per

month. In other words, it is only valid for active projects.

Commits from April 2007 onwards are always less than 10 a month, in 2008 less than 3

per month. In the devel list there is less than 10 messages/month since 2007 onwards,

except for December 2007, with 11.

59

A high message/commit ratio is typical of the brainstorming phase of nascent projects.

It happens also when the user base grows, with increasing bug reports or feature requests,

until new committers are appointed and the projects returns to a stationary state. It

happens also in a different scenario, when a user community, no matter how small,

keeps pushing information to the lists, but there is nobody to commit it. There is a

self-reinforcing tendency, as the fact that committers are abandoning the project will

prompt users activity to question what is going on. We can see this process going on in

Beehive: after release 1.0.2 there was not much development activity. The ratio went

up, with discussions, and then down, and the project went to the Attic.

60

5 Findings

The ratio of total human generated email traffic and the number of commits forms a time

series that behaves as a metric for the selected projects the Apache Software Foundation.

As the selected projects spawn the whole rank of sizes, technologies and ages, it looks

like this is a useful metric for assessing the health and maturity of an Open Source

project.

• One can characterise a healthy Apache community as one that has a smooth ratio

messages/commits.

• Projects showing little activity or those where a few developers are responsible of

most commits will show more noisy ratios than active projects with a balanced

groups of active developers.

• Typical historical shape of the ratio starts with high values, as brainstorming

sessions or discussion about design happen. For mature projects the ratio goes

down to values between 3 and 8.

• When the project matures and is in a maintenance mode the ratio goes steadily

down and stabilises around 3-4.

• Some projects show a ratio that has remained relatively low and smooth. For

instance, smoothed data from geronimo shows a maximum of 6.2 in July 2005 and

a minimum of 3.7 in February 2011, and varied slowly. With a similar behavior,

turbine has stayed between a minimum of 2.5 in March 2009 and 5.4 in May

2003. In both case we think the behavior is due to the fact that those projects

have been done by developers for themselves, without heavy spikes of user traffic.

Felix and sling show the same pattern, and we suspect it is for the same reasons.

Even portals, a similar project, had a strong spike of 13.8 in March 2001, in the

heat of the portletAPI discussions, when a big group of external people joined the

discussion.

• Other projects, like portals or the jackrabbit ecosystem, show slightly higher

rates during some phases of their development.

61

• Projects can be considered dormant when the number of commits stays below 10

per month over a sustained period. Beehive is a good example. After one such

period the activity ceased completely, and it was retired to the Attic two years

after the ceasing of activity.

• Apache Portals shows in 2012 a pattern similar to the final one of beehive, of

ceasing commit and total activity, which points to the fact that the portlet API

based portals are being abandoned. Seems like HTML 5, Ajax plus jquery, tools

like SWT or technologies such as widgets are slowly replacing portals.

• The most successful projects that we have studied are, in the years 1995-2004,

httpd and tomcat, and later lucene and the hadoop ecosystem.

A number of times that we found an isolated major peak in the ratio between information

exchanges and commits, that distorted the result, manual inspection of the messages led

to the discovery of automated emails saturating a list:

• automated build failures were not being removed from the count of messages

• There were a number of incidents where a developer used svn lock/unlock, and as

other committers tried to commit a big number of mails were generated. Filtering

out those emails got results closer to expected.

• Because of a data loss that happened in jakarta.apache.org in September 2003,

the email archives were reconstructed, leaving some files behind called 200308-

incomplete.gz or 200309-incomplete.gz. Those files were matched by our script,

causing duplicity of devel messages and commits with regards to other lists.

• Other peaks observed might have similar causes, as there was a limited time we

could dedicate to manually inspect and correct the data set

Noisy behaviour of the information exchange/commits ratio is typical of projects with

low activity.

We still have some projects with noisy behaviour and fair levels of activity, notably the

first years of lucene. In this case, the number of commits falls to very small numbers

during some months, causing erratic behavior of the ratio. We need to inspect the data

further to know the causes. Probably, as most of the commits during this period were

done by the same developer, his limited availability could cause those spikes.

Our ratio should not be computed when the number of commits per period is small, as

it has artifacts (see the Beehive section). It is not suitable for the analysis of projects

that are not reasonable active, with at least a steady flow of, say, 10 commits per month.

62

There is a further anomaly that merits comment: the number of commits seems to be

accelerating since 2008 onwards, specially in some projects, like the hadoop ecosystem,

lucene, httpd, . We can think about some causes that might explain it:

• the use of code review tools ease the ability to contribute patches to projects

• the use of distributed source code management, for the same reason

• an increase to literacy of users, more able to generate patches and send them for

evaluation

• smaller granularity of commits, i.e., less information per commit. This could be

mediated for the speed of offline commits and the ability to rewrite history coming

from tools like git.

One alternative way of thinking about this trend is to think that the developer (coordi-

nating) traffic needed per commit is getting smaller. Several alternative reasons can be

hypothesized:

• Cultural learning by committer teams makes them in less need of explicit coordi-

nation, so commits speak by themselves most of the time, and developer traffic is

lessened.

• Committers get progressively employed by related companies, and some or even

most of the coordination work takes place off the public development lists. This

hypothesis does not imply malevolence: a committer might find easy to use internal

channels, or even just talk over lunch about an issue, than to send a formal, explicit

message to the devel list.

63

6 Conclusions

The process of extracting the data from the mail archives required a number of iterations,

due to bugs discovered in our scripts. It was performed, also, in an exploratory way,

were the analysis of a project led to addition of other projects to the list to be analyzed,

for sake of comparison.

The ratio of total information exchanges to commits is an intensive property of projects,

in the sense that it is independent of project size and depends on other parameters such

as maturity, or ratio of committed users to developers. Other ratios, such as the ratio

between developer messages to commits or issues to commits, are also useful to assess

the health of the project. We essayed other ratios, but none was as promising as those.

There is a number of questions raised by this work. In particular the trend to have more

commits in the last couple of years in several projects. This growth happens in spite of

the fact that the developer, or even total, message number is diminishing. We think this

trend merits further work. We also would like to understand some other anomalies, like

the fact that the number of commits in projects like lucene fluctuated heavily during

their early years. This fluctuation was more than what one would expect from the

project size. Hadoop, also shows an anomaly: has a number of messages per commit

much higher than the rest of the projects, showing that it is still a young ecosystem and

has much way to go. Strangely, the number of developer messages per commit is rather

small. This suggest a development model based in code reviews and patches attached to

issues, where code comes from outside of the project via issues, rather than after public

discussion between a set of core developers on list.

64

7 Bibliography

[ASF1] The Apache Software Foundation: How it Works

http://www.apache.org/foundation/how-it-works.html Consulted on Jul 2012

[COA1] Ken Coar, Release dates (apache-announce messages), message sent to httpd-

dev

http://mail-archives.apache.org/mod mbox/httpd-dev/199905.mbox/%3C3741B9EA.DF4D133@Golux.Com%3E

[DAV1] James Duncan Davidson, Rules for Revolutionaries, sent to tomcat-dev@jakarta.apache.org

and jakarta@apache.org on 2000-01-13

http://incubator.apache.org/learn/rules-for-revolutionaries.html

[ERE] OSBC: No Jerks Allowed!

Justin Erenkranz (President, Apache Software Foundation) Session in Open Source Busi-

ness Conference, 2010

http://www.erenkrantz.com/apachecon/OSBC%20-%20No%20Jerks%20Allowed.pdf

[FIE1] A Case Study of Open Source Software Development: The Apache Server

Audris Mockus, Roy T. Fielding. James Herbsleb. ICSE 2000 Limerick Ireland

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=870417

[FIE2] Two Case Studies of Open Source Software Development: Apache and Mozilla

Audris Mockus, Roy T. Fielding. James Herbsleb. ACM Transactions on Software

Engineering and Methodology, Vol. 11, No. 3, July 2002, Pages 309–346.

http://dl.acm.org+citation.cfm?id=567793.567795$coll=DL$dl=ACM$CFID=111446298$CFTOKEN=22578490

[HAR1] An Entropy-Based Measure of Software Complexity

Warren Harrison - Software Engineering, IEEE Transactions on, 1992

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=177371

[KIE1] Self-organization in open source to support collaboration for innovation: the

Drupal case

Mixel Kiemen, VUB. ISPIM 2011

http://www.mixel.be/files/pdf/ISPIM2011.pdf

[MAZ1] Rules for Revolutionaries, sent to community@apache.org on 2002-11-07 13:33:28

http://marc.info/?l=apache-community$m=105712356508947$w=4

[MAZ2] Email in private list, quoted by permission via private email 2012/09/04

[PRI1] Time, Structure and Fluctuations. Nobel Lecture, 1977. Ilia Prigogine

http://www.nobelprize.org/nobel prizes/chemistry/laureates/1977/prigogine-lecture.pdf

[PRI2] Self-Organization in Nonequilibrium Systems

65

http://www.apache.org/foundation/how-it-works.html
http://mail-archives.apache.org/mod_mbox/httpd-dev/199905.mbox/%3C3741B9EA.DF4D133@Golux.Com%3E
mailto:tomcat-dev@jakarta.apache.org
mailto:jakarta@apache.org
http://incubator.apache.org/learn/rules-for-revolutionaries.html
http://www.erenkrantz.com/apachecon/OSBC%20-%20No%20Jerks%20Allowed.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=870417
http://dl.acm.org+citation.cfm?id=567793.567795&coll=DL&dl=ACM&CFID=111446298&CFTOKEN=22578490
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=177371
http://www.mixel.be/files/pdf/ISPIM2011.pdf
mailto:community@apache.org
http://marc.info/?l=apache-community&m=105712356508947&w=4
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1977/prigogine-lecture.pdf

[RON1] A model based on information entropy to measure developer turnover risk on

software project

J Rong, L Hongzhi, Y Jiankun, F Tao, Z Chenggui. . . - 2009 - IEEE Explore

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5234813

[RON2] An Approach to Analysis and Measurement of the Stability of Web Community

Based on

Dissipative Structure Theory and Information Entropy

Jiang Rong, Liao Hongzhi, Yu Jiankun, Zhang Dehai, Chen Lihua, Sun Yafei - 2009 -

IEEE Explore

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5365461

[SCH1] Private list email, quoted by permission given to the author by Joe Schaeffer

via private email, on 2008/12/19.

66

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5234813
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5365461

8 Appendices

The next appendices list the code that was used to obtain this results. The Apache

public mailing lists are archived in

http://mail-archives.apache.org/mod mbox/

The archives include the ability to download monthly mbox files per list, but we used

shell access to people.apache.org, available for ASF committers and members, to process

the files locally. The archives are gzipped mbox files, accessibles at /home/apmail/pub-

lic/archives/<project>.apache.org/<list>/<year><month>.gz

8.1 Appendix A. Mbox emails processing

A shell script, get\ data\ from\ apache.sh, used for the processing of mbox emails and writ-

ing a file containing lists of comma-separated values tables per project. A number of

regular expressions are used to select, or filter out, automatically generated messages or

messages belonging to a different kind of traffic.

#!/bin /bash

p r o j e c t s=”beehive hadoop avro hbase h ive pig httpd apr geronimo lucene

tomcat turb ine f e l i x j a ck r abb i t p o r t a l s s l i n g spamassass in ”

BASE=”/home/apmail / publ ic−arch ”
#BASE=”/home/apmail / publ ic−arch / incubator . apache . org ”
#incubp ro j e c t s=$ (l s −d $BASE/∗−∗ | sed −e ”s@ .∗/@@” −e ”s@−.∗@@” | s o r t −u

)

#f o r p r o j e c t in $ in cubpro j e c t s ;

f o r p r o j e c t in $p r o j e c t s ;

do

echo ”===$pro j e c t===”

echo ”year , month , bui ld , i s s u e s , commits , wiki , devel , user , t o t a l ” ;

years=$ (l s $BASE/ $p ro j e c t . apache . org /{announce , bugs ,∗ i s s u e s ,∗ commits ,

cvs , scm ,∗ dev ,∗ genera l ,∗ user ∗ , wiki−changes }/∗ . gz | sed −e ”s@ .∗/@@”
−e ”s@[0−9] [0−9] [ˆ0−9]∗\$@@” | s o r t −u)

f o r year in $years ;

do

f o r month in { 0 1 . . 1 2 } ;
do

i=$ (zgrep −E ”ˆ Subject : . ∗ (\ [Bug . ∗ \] | \ [j i r a \]) ” $BASE/ $p ro j e c t

. apache . org /{bugs ,∗ i s s u e s ,∗ dev}/$year$month . gz 2>/dev/ nu l l

67

http://mail-archives.apache.org/mod_mbox/

| wc − l) ;

c=$ (zgrep −E ”ˆ Subject : . . . commit” $BASE/ $p ro j e c t . apache . org

/{∗ commits , scm , cvs ,∗ dev}/$year$month . gz 2>/dev/ nu l l | wc − l

) ;

w=$ (zgrep −E ”ˆ Subject : . ∗ (| \ [. ∗) Wiki” $BASE/ $p ro j e c t . apache .

org /{∗ commits , scm , cvs ,∗ dev , wiki−changes }/$year$month . gz |
wc − l) ;

b=$ (zgrep −E ”ˆ Subject : . ∗ (\ [GUMP. ∗ \] | Jenkins | Build .∗Hudson) ”

$BASE/ $p ro j e c t . apache . org /∗dev/$year$month . gz 2>/dev/ nu l l |
wc − l) ;

d=$ (zgrep −h ”ˆ Subject : ” $BASE/ $p ro j e c t . apache . org /∗dev/
$year$month . gz 2>/dev/ nu l l | grep −Ev ”ˆ Subject : (. . .

commit |∗ l o ck | . ∗ (\ [Bug . ∗ \] | \ [j i r a \]) | \ [GUMP. ∗ \] | . ∗
Jenkins | Build .∗Hudson) ” | wc − l) ;

u=$ (zgrep ”ˆ Subject : ” $BASE/ $p ro j e c t . apache . org /{announce ,∗
genera l ,∗ user ∗}/$year$month . gz 2>/dev/ nu l l | wc − l) ;

t=$ (zgrep −h ”ˆ Subject : ” $BASE/ $p ro j e c t . apache . org /{announce ,
bugs ,∗ i s s u e s ,∗ commits , scm , cvs ,∗ dev ,∗ genera l ,∗ user ∗ , wiki−
changes }/$year$month . gz 2>/dev/ nu l l | grep −Ev ”ˆ Subject :

(. . . .∗ l o ck | \ [GUMP. ∗ \] | . ∗ Jenkins | Build .∗Hudson) ” | wc − l) ;

echo ”$year , $month , $b , $i , $c , $w , $d , $u , $t ” ;

done ;

done #>commits−mails−$p ro j e c t . txt
done

8.2 Appendix B. Breaking result into per-project files

Trivial python script for breaking the results per project. It is used to break the result

of the previous script into one CSV file per project, to import it into R with the next

script

import re

a l l=re . compi le(”===\n?” , re .M) . s p l i t (open (” mai l s . csv ”) . read ())

f o r i in range (1 , l en (a l l) , 2) :

open (” mails−”+a l l [i]+ ” . csv ” , ”w”) . wr i t e (a l l [i +1])

8.3 Appendix C. Statistic calculations

RScript to generate the intensive properties from the extensive ones and smoothing. It

reads the data, turning it into a data.frame. It is later processed so that it takes the form

of a ts (time series) with the leading and trailing zero months stripped out, and a series

of derived ratios and smoothed ratios are computed and added. For smoothing we used

loess, a polinomial estimate.

68

#!/usr /bin /Rscr ip t −−save
R proce s s f o r a p r o j e c t

p ro j e c t s<−c (” httpd ” , ”apr ” , ” spamassass in ” , ” turb ine ” , ” tomcat ” , ”geronimo

” , ”hadoop ” , ” avro ” , ”hbase ” , ” h ive ” , ” pig ” , ” lucene ” , ” beeh ive ” , ”

f e l i x ” , ” j a ck r abb i t ” , ” po r t a l s ” , ” s l i n g ”) # TODO more?

f<−f unc t i on (f i l ename) {
pr in t (f i l ename)

pro j=read . csv (f i l e=f i l ename) # created a data frame with i n f o

p ro j $ s t a r t<−I (c (pro j$year [proj$commits != 0] [1] , proj$month [proj$commits

!= 0] [1]))

proj$end <−I (c (max(pro j$year [proj$commits !=0]) ,

max(proj$month [proj$commits !=0 & pro j$year==max(

pro j$year [proj$commits !=0])])))

proj1<−data . frame (

t o t a l = window(x=t s (p r o j $ t o t a l , f r equency=12, s t a r t=c (

pro j$year [1] , 1)) , s t a r t=p r o j $ s t a r t [1 : 2] , end=proj$end

[1 : 2]) ,

commits = window(x=t s (proj$commits , f requency=12, s t a r t=c (

pro j$year [1] , 1)) , s t a r t=p r o j $ s t a r t [1 : 2] , end=proj$end

[1 : 2]) ,

deve l = window(x=t s (p ro j $deve l , f r equency=12, s t a r t=c (

pro j$year [1] , 1)) , s t a r t=p r o j $ s t a r t [1 : 2] , end=proj$end

[1 : 2]) ,

i s s u e s = window(x=t s (p r o j $ i s s u e s , f r equency=12, s t a r t=c (

pro j$year [1] , 1)) , s t a r t=p r o j $ s t a r t [1 : 2] , end=proj$end

[1 : 2]) ,

user = window(x=t s (p ro j $u s e r , f requency=12, s t a r t=c (

pro j$year [1] , 1)) , s t a r t=p r o j $ s t a r t [1 : 2] , end=proj$end

[1 : 2]) ,

year = window(x=t s (pro j$year , f requency=12, s t a r t=c (

pro j$year [1] , 1)) , s t a r t=p r o j $ s t a r t [1 : 2] , end=proj$end

[1 : 2]) ,

month = window(x=t s (proj$month , f requency=12, s t a r t=c (

pro j$year [1] , 1)) , s t a r t=p r o j $ s t a r t [1 : 2] , end=proj$end

[1 : 2])

)

#pr in t (pro j1)

p r o j 1 $ s t a r t = p r o j $ s t a r t [1 : nrow (pro j1)]

proj1$end = proj$end [1 : nrow (pro j1)]

pro j1$tc<−t s (p r o j 1 $ t o t a l /proj1$commits , f r equency=12, s t a r t=pro j 1$ s t a r t

, end=proj1$end)

proj1$dc<−t s (p ro j 1$deve l /proj1$commits , f requency=12, s t a r t=pro j 1$ s t a r t

, end=proj1$end)

proj1$tb<−t s (p r o j 1 $ t o t a l / p r o j 1 $ i s s u e s , f r equency=12, s t a r t=pro j 1$ s t a r t ,

end=proj1$end)

69

proj1$db<−t s (p ro j 1$deve l / p r o j 1 $ i s s u e s , f requency=12, s t a r t=pro j 1$ s t a r t ,

end=proj1$end)

proj1$bc<−t s (p r o j 1 $ i s s u e s /proj1$commits , f requency=12, s t a r t=

pro j 1$ s t a r t , end=proj1$end)

l c <− l o e s s (commits ˜ x , data . frame (commits=proj1$commits , x=1: l ength (

proj1$commits)) , span=0.50)

l t <− l o e s s (t o t a l ˜ x , data . frame (t o t a l=pro j 1$ to ta l , x=1: l ength (

p r o j 1 $ t o t a l)) , span=0.50)

ld <− l o e s s (deve l ˜ x , data . frame (deve l=pro j1$deve l , x=1: l ength (

pro j1$deve l)) , span=0.50)

l i <− l o e s s (i s s u e s ˜ x , data . frame (i s s u e s=pro j 1$ i s s u e s , x=1: l ength (

pro j1$deve l)) , span=0.50)

p ro j 1$ l t c<−t s (l t $ f i t t e d / l c $ f i t t e d , f requency=12, s t a r t=p r o j 1 $ s t a r t)

pro j1$ ldc<−t s (l d $ f i t t e d / l c $ f i t t e d , f requency=12, s t a r t=p r o j 1 $ s t a r t)

p r o j 1 $ l i c<−t s (l i $ f i t t e d / l c $ f i t t e d , f requency=12, s t a r t=p r o j 1 $ s t a r t)

pro j1

}

f o r (p in p r o j e c t s) {
a s s i gn (p , f (paste (’ mails − ’ ,p , ’ . csv ’ , sep = ’ ’)))

}

8.4 Appendix D. Plotting

A lot of small plotting scripts are used to generate the graphics. As an example we post

here a couple of those. Note that both start by loading the data set, stored in the given

path in the author computer .

• The total/commits one for the Sling ecosystem is one of the more complex, because

it computes the sum of all three projects traffic and commit number.

load (f i l e =”/home/ sga l a /Documentos/master /TFM/data / .RData”)

t s . p l o t (f e l i x $ l t c , j a c k r abb i t $ l t c , s l i n g $ l t c , c o l =1:10 , l t y =1:10 , lwd=2, ylim=

c (0 ,30) , main=”S l i ng ecosystem t o t a l messages /commits (smoothed) ”)

a=window(x=s l i n g $ t o t a l , extend=TRUE, s t a r t=j a c k r abb i t $ s t a r t [1 : 2] , end=

jackrabb i t$end [1 : 2])

a [i s . na (a)]<−0
b=window(x=f e l i x $ t o t a l , extend=TRUE, s t a r t=j a c k r abb i t $ s t a r t [1 : 2] , end=

jackrabb i t$end [1 : 2])

b [i s . na (b)]<−0
l i n e s ((j a c k r abb i t $ t o t a l+a+b) /100 , c o l =4, l t y =4, lwd=2)

a=window(x=sl ing$commits , extend=TRUE, s t a r t=j a c k r abb i t $ s t a r t [1 : 2] , end=

jackrabb i t$end [1 : 2])

a [i s . na (a)]<−0

70

b=window(x=fe l ix$commits , extend=TRUE, s t a r t=j a c k r abb i t $ s t a r t [1 : 2] , end=

jackrabb i t$end [1 : 2])

b [i s . na (b)]<−0
l i n e s ((jackrabbit$commits+a+b) /100 , c o l =5, l t y =5, lwd=2)

ab l i n e (v=2006+(4−1)/12+15/365)

t ext (2006+(4−1) /12+15/365 ,14 ,”JR1 . 0 ”)

ab l i n e (v=2007+(4−1)/12+15/365)

t ext (2007+(4−1) /12+15/365 ,14 ,”JR1 . 3 ”)

ab l i n e (v=2008+(1−1)/12+15/365)

t ext (2008+(1−1) /12+15/365 ,14 ,”JR1 . 4 ”)

ab l i n e (v=2009+(8−1)/12+15/365)

t ext (2009+(8−1) /12+15/365 ,14 ,”JR1 . 6 ”)

ab l i n e (v=2010+(1−1)/12+30/365)

t ext (2010+(1−1) /12+30/365 ,11 ,”JR2 . 0 ”)

ab l i n e (v=2010+(12−1)/12+15/365)

t ext (2010+(12−1) /12+15/365 ,10 ,”JR2 . 2 ”)

ab l i n e (v=2007+(09−1)/12+15/365)

t ext (2007+(09−1) /12+15/365 ,2 ,” donation S l i ng ”)

ab l i n e (v=2009+(05−1)/12+6/365)

t ext (2009+(05−1) /12+6/365 ,2 ,” S l ing −5”)
ab l i n e (v=2011+(03−1)/12+28/365)

t ext (2011+(03−1) /12+28/365 ,2 ,” S l ing −6”)
legend (x=”t o p l e f t ” , l egend=c (” f e l i x ” ,” j a ck r abb i t ” ,” s l i n g ” ,” ecosystem msg

/100” ,” ecosystem commits /100”) , l t y =1: l ength (p r o j e c t s) , c o l =1: l ength (

p r o j e c t s))

• The hadoop ecosystem project plot containing Hadoop total/commits (smoothed):

load (f i l e =”/home/ sga l a /Documentos/master /TFM/data / .RData”)

t s . p l o t (hadoop$ltc , avro$ l t c , hbase$ l tc , h i v e$ l t c , p i g $ l t c , c o l =1:10 , l t y =1:10 ,

lwd=2, ylim=c (1 ,30) ,main=”Hadoop t o t a l /commmits (smoothed) ”)

po in t s (hadoop$tc , c o l =1,pch=1)

po in t s (avro$tc , c o l =2,pch=2)

po in t s (hbase$tc , c o l =3,pch=3)

po in t s (h ive$tc , c o l =4,pch=4)

po in t s (p ig$tc , c o l =5,pch=5)

ab l i n e (v=t s (2008+9/12 , f requency=12, s t a r t=hadoop$start))

t ex t (2008+9/12 ,27 ,” HBase 0 . 1 8 . 0 ”)

ab l i n e (v=t s (2009+7/12 , f requency=12, s t a r t=hadoop$start))

t ex t (2009+7/12 ,30 ,” 1 s t r e s t r u c t ”)

ab l i n e (v=t s (2010+5/12 , f requency=12, s t a r t=hadoop$start))

t ex t (2010+5/12 ,25 ,” 2nd r e s t r u c t ”)

legend (x=”t o p l e f t ” , l egend=c (” hadoop ” ,” avro ” ,” hbase ” ,” h ive ” ,” p ig ”) , l t y =1:

l ength (p r o j e c t s) , c o l =1: l ength (p r o j e c t s))

71

8.5 Appendix E. License

8.5.1 Documentation

This Report can be distributed under the Creative Commons Attribution 3.0 Unported

(CC BY 3.0) License (http://creativecommons.org/licenses/by/3.0/), included below.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE

COMMONS PUBLIC LICENSE (”CCPL” OR ”LICENSE”) . THE WORK IS PROTECTED BY

COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN

AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE

TO BE BOUND BY THE TERMS OF THIS LICENSE . TO THE EXTENT THIS LICENSE

MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS

CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND

CONDITIONS.

1 . D e f i n i t i o n s

”Adaptation” means a work based upon the Work , or upon the Work and other

pre−e x i s t i n g works , such as a t r an s l a t i on , adaptation , d e r i v a t i v e work ,

arrangement o f music or other a l t e r a t i o n s o f a l i t e r a r y or a r t i s t i c

work , or phonogram or performance and in c l ude s c inematographic

adaptat ions or any other form in which the Work may be recas t ,

transformed , or adapted in c l ud ing in any form recogn i zab ly der ived from

the o r i g i n a l , except that a work that c o n s t i t u t e s a Co l l e c t i o n w i l l

not be cons ide r ed an Adaptation f o r the purpose o f t h i s L i cense . For

the avoidance o f doubt , where the Work i s a musica l work , performance

or phonogram , the synchron i za t i on o f the Work in timed−r e l a t i o n with a

moving image (” synching ”) w i l l be cons ide r ed an Adaptation f o r the

purpose o f t h i s L i cense .

” Co l l e c t i o n ” means a c o l l e c t i o n o f l i t e r a r y or a r t i s t i c works , such as

encyc l oped ia s and antho log i e s , or performances , phonograms or

broadcasts , or other works or sub j e c t matter other than works l i s t e d in

Sec t i on 1(f) below , which , by reason o f the s e l e c t i o n and arrangement

o f t h e i r contents , c o n s t i t u t e i n t e l l e c t u a l c r ea t i on s , in which the Work

i s inc luded in i t s e n t i r e t y in unmodif ied form along with one or more

other cont r ibu t i on s , each c on s t i t u t i n g separa te and independent works

in themselves , which toge the r are assembled in to a c o l l e c t i v e whole . A

work that c o n s t i t u t e s a Co l l e c t i o n w i l l not be cons ide r ed an Adaptation

(as de f ined above) f o r the purposes o f t h i s L i cense .

” D i s t r i bu t e ” means to make av a i l a b l e to the pub l i c the o r i g i n a l and cop i e s

o f the Work or Adaptation , as appropr iate , through s a l e or other

t r a n s f e r o f ownership .

72

http://creativecommons.org/licenses/by/3.0/

” L i censo r ” means the ind iv idua l , i nd i v i dua l s , e n t i t y or e n t i t i e s that

o f f e r (s) the Work under the terms o f t h i s L i cense .

” Or i g i na l Author” means , in the case o f a l i t e r a r y or a r t i s t i c work , the

ind iv idua l , i nd i v i dua l s , e n t i t y or e n t i t i e s who crea ted the Work or i f

no i nd i v i dua l or en t i t y can be i d e n t i f i e d , the pub l i s h e r ; and in

add i t i on (i) in the case o f a performance the actors , s i ng e r s ,

music ians , dancers , and other persons who act , s ing , d e l i v e r , declaim ,

play in , i n t e r p r e t or o the rwi se perform l i t e r a r y or a r t i s t i c works or

exp r e s s i on s o f f o l k l o r e ; (i i) in the case o f a phonogram the producer

being the person or l e g a l e n t i t y who f i r s t f i x e s the sounds o f a

performance or other sounds ; and , (i i i) in the case o f broadcasts , the

o rgan i z a t i on that t ransmi t s the broadcast .

”Work” means the l i t e r a r y and/ or a r t i s t i c work o f f e r e d under the terms o f

t h i s L i cense i n c l ud ing without l im i t a t i o n any product ion in the

l i t e r a r y , s c i e n t i f i c and a r t i s t i c domain , whatever may be the mode or

form o f i t s exp r e s s i on in c l ud ing d i g i t a l form , such as a book , pamphlet

and other wr i t i ng ; a l e c tu r e , address , sermon or other work o f the

same nature ; a dramatic or dramatico−musica l work ; a choreograph ic work

or enterta inment in dumb show ; a musica l compos i t ion with or without

words ; a c inematographic work to which are a s s im i l a t ed works expres sed

by a proce s s analogous to cinematography ; a work o f drawing , pa int ing ,

a r ch i t e c tu r e , s cu lpture , engraving or l i thography ; a photographic work

to which are a s s im i l a t ed works expres sed by a proce s s analogous to

photography ; a work o f app l i ed ar t ; an i l l u s t r a t i o n , map , plan , sketch

or three−dimens iona l work r e l a t i v e to geography , topography ,

a r c h i t e c t u r e or s c i e n c e ; a performance ; a broadcast ; a phonogram ; a

compi la t ion o f data to the extent i t i s p ro tec ted as a copyr i gh tab l e

work ; or a work performed by a va r i e t y or c i r c u s per former to the

extent i t i s not othe rwi se cons ide r ed a l i t e r a r y or a r t i s t i c work .

”You” means an i nd i v i dua l or en t i t y e x e r c i s i n g r i g h t s under t h i s L i cense

who has not p r ev i ou s l y v i o l a t e d the terms o f t h i s L i cense with r e sp e c t

to the Work , or who has r e c e i v ed expre s s permis s ion from the L i censo r

to e x e r c i s e r i g h t s under t h i s L i cense d e sp i t e a prev ious v i o l a t i o n .

” Pub l i c l y Perform” means to perform pub l i c r e c i t a t i o n s o f the Work and to

communicate to the pub l i c those pub l i c r e c i t a t i o n s , by any means or

process , i n c l ud ing by wire or w i r e l e s s means or pub l i c d i g i t a l

per formances ; to make a v a i l a b l e to the pub l i c Works in such a way that

members o f the pub l i c may ac c e s s the se Works from a p lace and at a

p lace i n d i v i d u a l l y chosen by them ; to perform the Work to the pub l i c by

any means or p roce s s and the communication to the pub l i c o f the

per formances o f the Work , i n c l ud ing by pub l i c d i g i t a l performance ; to

broadcast and rebroadcas t the Work by any means i n c l ud ing s igns , sounds

or images .

”Reproduce” means to make cop i e s o f the Work by any means i n c l ud ing

without l im i t a t i o n by sound or v i s u a l r e c o rd ing s and the r i gh t o f

f i x a t i o n and reproduc ing f i x a t i o n s o f the Work , i n c l ud ing s to rage o f a

protec ted performance or phonogram in d i g i t a l form or other e l e c t r o n i c

73

medium .

2 . Fair Deal ing Rights . Nothing in t h i s L i cense i s intended to reduce ,

l im i t , or r e s t r i c t any uses f r e e from copyr ight or r i g h t s a r i s i n g from

l im i t a t i o n s or except i ons that are provided f o r in connect ion with the

copyr ight p ro t e c t i on under copyr ight law or other app l i c ab l e laws .

3 . L i cense Grant . Subject to the terms and cond i t i on s o f t h i s License ,

L i c enso r hereby grants You a worldwide , roya l ty−f r e e , non−exc lu s i v e ,

pe rpe tua l (f o r the durat ion o f the app l i c ab l e copyr ight) l i c e n s e to

e x e r c i s e the r i g h t s in the Work as s ta t ed below :

to Reproduce the Work , to i n co rpo ra t e the Work in to one or more

Co l l e c t i on s , and to Reproduce the Work as inco rpora ted in the

Co l l e c t i o n s ;

to c r e a t e and Reproduce Adaptations provided that any such Adaptation ,

i n c l ud ing any t r a n s l a t i o n in any medium , takes r ea sonab l e s t ep s to

c l e a r l y l abe l , demarcate or otherwi se i d e n t i f y that changes were made

to the o r i g i n a l Work . For example , a t r a n s l a t i o n could be marked ”The

o r i g i n a l work was t r an s l a t ed from Engl i sh to Spanish , ” or a

mod i f i c a t i on could i nd i c a t e ”The o r i g i n a l work has been modi f i ed . ” ;

to D i s t r i bu t e and Pub l i c l y Perform the Work in c l ud ing as incorpora ted in

Co l l e c t i o n s ; and ,

to D i s t r i bu t e and Pub l i c l y Perform Adaptations .

For the avoidance o f doubt :

Non−waivable Compulsory L icense Schemes . In those j u r i s d i c t i o n s in which

the r i g h t to c o l l e c t r o y a l t i e s through any s ta tu to ry or compulsory

l i c e n s i n g scheme cannot be waived , the L i censo r r e s e r v e s the e x c l u s i v e

r i g h t to c o l l e c t such r o y a l t i e s f o r any e x e r c i s e by You o f the r i g h t s

granted under t h i s L i cense ;

Waivable Compulsory L icense Schemes . In those j u r i s d i c t i o n s in which the

r i g h t to c o l l e c t r o y a l t i e s through any s ta tu to ry or compulsory

l i c e n s i n g scheme can be waived , the L i censor waives the e x c l u s i v e r i g h t

to c o l l e c t such r o y a l t i e s f o r any e x e r c i s e by You o f the r i g h t s

granted under t h i s L i cense ; and ,

Voluntary L icense Schemes . The L icenso r waives the r i g h t to c o l l e c t

r o y a l t i e s , whether i n d i v i d u a l l y or , in the event that the L i censo r i s a

member o f a c o l l e c t i n g s o c i e t y that admin i s t e r s vo luntary l i c e n s i n g

schemes , v ia that soc i e ty , from any e x e r c i s e by You o f the r i g h t s

granted under t h i s L i cense .

The above r i g h t s may be ex e r c i s e d in a l l media and formats whether now

known or h e r e a f t e r dev i sed . The above r i g h t s i n c lude the r i g h t to make

such mod i f i c a t i on s as are t e c h n i c a l l y nece s sa ry to e x e r c i s e the r i g h t s

in other media and formats . Subject to Sec t i on 8(f) , a l l r i g h t s not

exp r e s s l y granted by L icensor are hereby re s e rved .

74

4 . R e s t r i c t i o n s . The l i c e n s e granted in Sec t i on 3 above i s e xp r e s s l y made

sub j e c t to and l im i t ed by the f o l l ow i ng r e s t r i c t i o n s :

You may D i s t r i bu t e or Pub l i c l y Perform the Work only under the terms o f

t h i s L i cense . You must in c lude a copy of , or the Uniform Resource

I d e n t i f i e r (URI) for , t h i s L i cense with every copy o f the Work You

D i s t r i bu t e or Pub l i c l y Perform . You may not o f f e r or impose any terms

on the Work that r e s t r i c t the terms o f t h i s L i cense or the a b i l i t y o f

the r e c i p i e n t o f the Work to e x e r c i s e the r i g h t s granted to that

r e c i p i e n t under the terms o f the L icense . You may not s ub l i c e n s e the

Work . You must keep i n t a c t a l l n o t i c e s that r e f e r to t h i s L i cense and

to the d i s c l a ime r o f war rant i e s with every copy o f the Work You

D i s t r i bu t e or Pub l i c l y Perform . When You D i s t r i bu t e or Pub l i c l y Perform

the Work , You may not impose any e f f e c t i v e t e c hno l o g i c a l measures on

the Work that r e s t r i c t the a b i l i t y o f a r e c i p i e n t o f the Work from You

to e x e r c i s e the r i g h t s granted to that r e c i p i e n t under the terms o f the

L icense . This Sec t i on 4(a) app l i e s to the Work as incorpora ted in a

Co l l e c t i on , but t h i s does not r e qu i r e the Co l l e c t i on apart from the

Work i t s e l f to be made sub j e c t to the terms o f t h i s L i cense . I f You

c r ea t e a Co l l e c t i on , upon no t i c e from any Licensor You must , to the

extent p ra c t i c ab l e , remove from the Co l l e c t i on any c r e d i t as r equ i r ed

by Sec t i on 4(b) , as reques ted . I f You c r ea t e an Adaptation , upon no t i c e

from any Licensor You must , to the extent p ra c t i c ab l e , remove from the

Adaptation any c r e d i t as r equ i r ed by Sec t i on 4(b) , as reques ted .

I f You Di s t r ibute , or Pub l i c l y Perform the Work or any Adaptations or

Co l l e c t i on s , You must , un l e s s a r eques t has been made pursuant to

Sec t i on 4(a) , keep i n t a c t a l l copyr ight no t i c e s f o r the Work and

provide , r ea sonab l e to the medium or means You are u t i l i z i n g : (i) the

name o f the Or i g i na l Author (or pseudonym , i f a pp l i c ab l e) i f suppl i ed ,

and/ or i f the Or i g i na l Author and/ or L i censo r de s i gna t e another party

or p a r t i e s (e . g . , a sponsor i n s t i t u t e , pub l i sh ing ent i ty , j ou rna l) f o r

a t t r i b u t i o n (” Att r ibut i on Par t i e s ”) in Licensor ’ s copyr ight not i ce ,

terms o f s e r v i c e or by other r ea sonab l e means , the name o f such party

or p a r t i e s ; (i i) the t i t l e o f the Work i f supp l i ed ; (i i i) to the extent

reasonab ly p ra c t i c ab l e , the URI , i f any , that L i censo r s p e c i f i e s to be

a s s o c i a t ed with the Work , un l e s s such URI does not r e f e r to the

copyr ight no t i c e or l i c e n s i n g in fo rmat ion f o r the Work ; and (iv) ,

c on s i s t e n t with Sec t i on 3(b) , in the case o f an Adaptation , a c r e d i t

i d e n t i f y i n g the use o f the Work in the Adaptation (e . g . , ”French

t r a n s l a t i o n o f the Work by Or i g i na l Author , ” or ” Screenplay based on

o r i g i n a l Work by Or i g i na l Author ”) . The c r e d i t r equ i r ed by t h i s Sec t i on

4 (b) may be implemented in any reasonab l e manner ; provided , however ,

that in the case o f a Adaptation or Co l l e c t i on , at a minimum such

c r e d i t w i l l appear , i f a c r e d i t f o r a l l c on t r i bu t i ng authors o f the

Adaptation or Co l l e c t i on appears , then as part o f the se c r e d i t s and in

a manner at l e a s t as prominent as the c r e d i t s f o r the other

con t r i bu t i ng authors . For the avoidance o f doubt , You may only use the

75

c r e d i t r equ i r ed by t h i s Sec t i on f o r the purpose o f a t t r i b u t i o n in the

manner s e t out above and , by e x e r c i s i n g Your r i g h t s under t h i s License ,

You may not imp l i c i t l y or e x p l i c i t l y a s s e r t or imply any connect ion

with , sponsor sh ip or endorsement by the Or i g i na l Author , L i c enso r and/

or Att r ibut i on Part i e s , as appropr iate , o f You or Your use o f the Work ,

without the separate , expre s s p r i o r wr i t t en permis s ion o f the Or i g i na l

Author , L i c ensor and/ or Att r ibut i on Par t i e s .

Except as othe rwi se agreed in wr i t i ng by the L i censor or as may be

otherwi se permitted by app l i c ab l e law , i f You Reproduce , D i s t r i bu t e or

Pub l i c l y Perform the Work e i t h e r by i t s e l f or as part o f any

Adaptations or Co l l e c t i on s , You must not d i s t o r t , muti late , modify or

take other derogatory ac t i on in r e l a t i o n to the Work which would be

p r e j u d i c i a l to the Or i g i na l Author ’ s honor or r eputa t i on . L i c ensor

ag re e s that in those j u r i s d i c t i o n s (e . g . Japan) , in which any e x e r c i s e

o f the r i g h t granted in Sec t i on 3(b) o f t h i s L i cense (the r i gh t to make

Adaptations) would be deemed to be a d i s t o r t i o n , mut i lat ion ,

mod i f i c a t i on or other derogatory ac t i on p r e j u d i c i a l to the Or i g i na l

Author ’ s honor and reputat ion , the L i censo r w i l l waive or not a s s e r t ,

as appropr iate , t h i s Sect ion , to the f u l l e s t extent permitted by the

app l i c ab l e na t i ona l law , to enable You to reasonab ly e x e r c i s e Your

r i g h t under Sec t i on 3(b) o f t h i s L i cense (r i g h t to make Adaptations)

but not otherwi se .

5 . Representat ions , Warranties and Disc la imer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR

OFFERS THE WORK AS−IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY

KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,

INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,

FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF

LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS

, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE

EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU

.

6 . L imitat ion on L i a b i l i t y . EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE

LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR

ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES

ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7 . Termination

This L icense and the r i g h t s granted hereunder w i l l terminate automat i ca l l y

upon any breach by You o f the terms o f t h i s L i cense . I nd i v i dua l s or

e n t i t i e s who have r e c e i v ed Adaptations or Co l l e c t i o n s from You under

t h i s License , however , w i l l not have t h e i r l i c e n s e s terminated provided

such i nd i v i d u a l s or e n t i t i e s remain in f u l l compliance with those

76

l i c e n s e s . S e c t i on s 1 , 2 , 5 , 6 , 7 , and 8 w i l l su rv iv e any terminat ion o f

t h i s L i cense .

Subject to the above terms and cond i t i ons , the l i c e n s e granted here i s

pe rpe tua l (f o r the durat ion o f the app l i c ab l e copyr ight in the Work) .

Notwithstanding the above , L i censo r r e s e r v e s the r i gh t to r e l e a s e the

Work under d i f f e r e n t l i c e n s e terms or to stop d i s t r i b u t i n g the Work at

any time ; provided , however that any such e l e c t i o n w i l l not s e rve to

withdraw th i s L i cense (or any other l i c e n s e that has been , or i s

r equ i r ed to be , granted under the terms o f t h i s L i cense) , and t h i s

L i cense w i l l cont inue in f u l l f o r c e and e f f e c t un l e s s terminated as

s ta t ed above .

8 . Mi sce l l aneous

Each time You Di s t r i bu t e or Pub l i c l y Perform the Work or a Co l l e c t i on , the

L i censo r o f f e r s to the r e c i p i e n t a l i c e n s e to the Work on the same

terms and cond i t i on s as the l i c e n s e granted to You under t h i s L i cense .

Each time You Di s t r i bu t e or Pub l i c l y Perform an Adaptation , L i censo r

o f f e r s to the r e c i p i e n t a l i c e n s e to the o r i g i n a l Work on the same

terms and cond i t i on s as the l i c e n s e granted to You under t h i s L i cense .

I f any p rov i s i on o f t h i s L i cense i s i n v a l i d or unen fo rceab l e under

app l i c ab l e law , i t s h a l l not a f f e c t the v a l i d i t y or e n f o r c e a b i l i t y o f

the remainder o f the terms o f t h i s License , and without f u r t h e r ac t i on

by the p a r t i e s to t h i s agreement , such p rov i s i on s h a l l be reformed to

the minimum extent nece s sa ry to make such p rov i s i on va l i d and

en f o r c e ab l e .

No term or p rov i s i on o f t h i s L i cense s h a l l be deemed waived and no breach

consented to un l e s s such waiver or consent s h a l l be in wr i t i ng and

s igned by the party to be charged with such waiver or consent .

This L icense c o n s t i t u t e s the e n t i r e agreement between the p a r t i e s with

r e sp e c t to the Work l i c e n s e d here . There are no understandings ,

agreements or r e p r e s en t a t i o n s with r e sp e c t to the Work not s p e c i f i e d

here . L i c enso r s h a l l not be bound by any add i t i o na l p r ov i s i o n s that may

appear in any communication from You . This L i cense may not be modi f i ed

without the mutual wr i t t en agreement o f the L i censor and You .

The r i g h t s granted under , and the sub j e c t matter r e f e r enced , in t h i s

L i cense were dra f t ed u t i l i z i n g the termino logy o f the Berne Convention

f o r the Protec t i on o f L i t e r a ry and A r t i s t i c Works (as amended on

September 28 , 1979) , the Rome Convention o f 1961 , the WIPO Copyright

Treaty o f 1996 , the WIPO Performances and Phonograms Treaty o f 1996 and

the Univer sa l Copyright Convention (as r e v i s e d on July 24 , 1971) .

These r i g h t s and sub j e c t matter take e f f e c t in the r e l e van t

j u r i s d i c t i o n in which the L icense terms are sought to be en fo rced

accord ing to the cor re spond ing p r ov i s i o n s o f the implementation o f

those t r ea ty p r ov i s i o n s in the app l i c ab l e na t i ona l law . I f the standard

s u i t e o f r i g h t s granted under app l i c ab l e copyr ight law in c l ud e s

add i t i ona l r i g h t s not granted under t h i s License , such add i t i ona l

r i g h t s are deemed to be inc luded in the L icense ; t h i s L i cense i s not

77

intended to r e s t r i c t the l i c e n s e o f any r i g h t s under app l i c ab l e law .

Creat ive Commons Not ice

Creat ive Commons i s not a party to t h i s License , and makes no warranty

whatsoever in connect ion with the Work . Creat ive Commons w i l l not be

l i a b l e to You or any party on any l e g a l theory f o r any damages

whatsoever , i n c l ud ing without l im i t a t i o n any genera l , s p e c i a l ,

i n c i d e n t a l or con s equen t i a l damages a r i s i n g in connect ion to t h i s

l i c e n s e . Notwithstanding the f o r e go i ng two (2) sentences , i f Creat ive

Commons has exp r e s s l y i d e n t i f i e d i t s e l f as the L i censo r hereunder , i t

s h a l l have a l l r i g h t s and ob l i g a t i o n s o f L i c enso r .

Except f o r the l im i t ed purpose o f i n d i c a t i n g to the pub l i c that the Work

i s l i c e n s e d under the CCPL, Creat ive Commons does not author i z e the use

by e i t h e r party o f the trademark ”Creat ive Commons” or any r e l a t e d

trademark or logo o f Creat ive Commons without the p r i o r wr i t t en consent

o f Creat ive Commons . Any permitted use w i l l be in compliance with

Creat ive Commons ’ then−cur rent trademark usage gu id e l i n e s , as may be

publ i shed on i t s webs i te or o therwi s e made av a i l a b l e upon reque s t from

time to time . For the avoidance o f doubt , t h i s trademark r e s t r i c t i o n

does not form part o f t h i s L i cense .

8.5.2 Software

The accompanying scripts can be distributed under the Apache License 2.0 , included

below

Copyright 2012 Sant iago Gala−Perez

Licensed under the Apache License , Vers ion 2 .0 (the ” L icense ”) ;

you may not use t h i s f i l e except in compliance with the L icense .

You may obta in a copy o f the L icense at

http ://www. apache . org / l i c e n s e s /LICENSE−2.0

Unless r equ i r ed by app l i c ab l e law or agreed to in wr i t ing , so f tware

d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an ”AS IS” BASIS ,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or impl i ed

.

See the L icense f o r the s p e c i f i c language governing permi s s i ons and

l im i t a t i o n s under the L icense .

78

http://www.apache.org/licenses/LICENSE-2.0.html

	Summary
	Introduction
	Objectives
	Definitions
	Problem Description
	Assumptions
	Alternative Approaches
	Information Entropy
	Stigmergy

	Our approach: Information Exchanges
	Measuring Information Exchange more precisely

	Methodology

	Case Studies
	Selection of ASF Projects
	Apache Web Server
	Apache Portable Runtime

	Tomcat
	The Hadoop ecosystem
	Lucene
	The Jackrabbit ecosystem
	Apache Geronimo
	Spamassassin
	Turbine: a mature project
	Portals
	Beehive, a project in the Attic

	Findings
	Conclusions
	Bibliography
	Appendices
	Appendix A. Mbox emails processing
	Appendix B. Breaking result into per-project files
	Appendix C. Statistic calculations
	Appendix D. Plotting
	Appendix E. License
	Documentation
	Software

