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Abstract

Normative multiagent systems are a vibrant field of research that has received much

attention in recent years. In particular, a broad variety of norm-aware agent models

and architectures have been developed, aimed at implementing the normative reason-

ing of agents with different levels of autonomy and in different types of environments.

However, approaches that allow autonomous agents to generate complex plans in dy-

namic and non-deterministic normative environments are rare, as they are notoriously

difficult to set-up and hard to evaluate in a quantitative manner.

This thesis introduces the Normative Markov Decision Processes (NMDPs), an ex-

tension of the Markov Decision Processes (MDPs) for modelling norm-aware rational

agents acting in normative stochastic environments, as well as two utilitarian mod-

els of normative reasoning, pertaining to self-interested and norm-compliant agents.

While the self-interested agents prioritize the maximization of utilities over the com-

pliance with norms, the norm-compliant agents prioritize the norm-abiding behaviour

over the utility maximization.

Combining MDPs with normative agent models revealed a significant synergistic

potential. On the one hand, norms help shaping the behaviour of rational normative

agents with an MDP-based world model, fostering coordination in a multiagent set-

ting, and achieving computational leverage by pruning the search space for the agents’

policy construction. On the other hand, MDPs are a principled way for norm-aware

agents to model the uncertainty in their environment, and to provide effective general

algorithms to determine rational action plans in such a setting. This, in turn, makes

it possible to perform quantitative analyses both at agent and at system level.

To validate the approach, several experiments were performed in a simulated mo-

tion environment, measuring the performance of different populations of agents in

relation to specific controlled settings. Furthermore, by means of a case study in the

domain of aerospace aftermarkets, the capability of the NMDP approach to model

relevant properties of a real-world scenario and to reason about contracts within such

a setting has been demonstrated.
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Resumen

Los sistemas multiagentes normativos son un vibrante campo de investigación que ha

recibido bastante atención en los recientes años. En particular, una amplia variedad

de modelos normativos de agente fueron desarrollados con la intención de implementar

razonamientos normativos en agentes con diferentes niveles de autonomía en diferentes

tipos de entorno. Todavía, propuestas que permitan que agentes autónomos generen

planos complejos en entornos dinámicos y no deterministas son raras, una vez que

ellos son notablemente difíciles de estructurar y evaluar en términos cuantitativos.

La presente tesis introduce los Normative Markov Decision Processes (NMDPs),

una extensión de losMarkov Decision Processes (MDPs) para modelar agentes raciona-

les normativos operando en entornos estocásticos regulados por normas, bien como

dos modelos de raciocinio normativo utilitario, perteneciendo a agentes egoístas (self-

interested) y agentes que siempre cumplen las normas (norm-compliant). Mientras

los agentes self-interested priorizan el incremento de la utilidad, los agentes norm-

compliant priorizan el comportamiento normativo.

La combinación de MDPs con modelos normativos de agente ha revelado un sig-

nificante potencial sinérgico entre esas dos áreas de investigación. Por un lado, las

normas nos permiten moldear el comportamiento de los agentes racionales basados

en MDPs, impulsar la cooperación en un ámbito multiagente, y acotar el espacio

de búsqueda en la construcción de los planes con la intención de reducir el tiempo

necesario para computar un plan óptimo. Por otro lado, los MDPs facilitan la rep-

resentación de conocimiento incierto y el desarrollo de algoritmos generales efectivos

para determinar planos de acción en entornos no deterministas. Eso, en contrapartida,

hace posible las evaluaciones cuantitativas, tanto de los agentes como del sistema.

Para validar nuestra abordaje, hemos realizado varios experimentos en un entorno

de movilidad simulado, en el cual hemos medido el desempeño de diferentes pobla-

ciones de agentes en relación a determinados parámetros controlados. Además, por

medio de un estudio de caso en un dominio de mercados secundarios aeroespaciales,

hemos demostrado la aptitud de los NMDPs para modelar propiedades relevantes de

un escenario del mundo real y razonar sobre contratos.
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Chapter 1

Introduction

Por mais longa que seja a caminhada, o mais

importante é dar o primeiro passo.

Vinícius de Moraes

1.1 Overview

Everyday, we continuously face sequential decision making problems. For example,

when we drive from one place to another, we have to decide which route to take; when

a corporation intends to launch a new product in the market, it decides from which

suppliers to purchase the components needed to manufacture that new product; when

a student engages in a doctorate program, he has to decide his research line.

The essence of sequential decisions is that our choices now depend on the decisions

we made in the past, and the outcome of decisions made now can affect our decisions

to be made in the future. That is, our best decision now depends on future situations

and how we face them. In computer science, the problem of developing mechanisms by

which agents can make sequential decisions has been extensively investigated by means

of Markov Decision Processes (MDPs) [6, 61, 95, 10, 93], which have demonstrated to

be well-suited for quantitative analysis of agent performances, and powerful enough

to express uncertainty. In principle, MDPs can be utilized to generate and evaluate

sequential decisions for agents, however, the problem of computing optimal sequential

decisions is computationally expensive [90, 75].
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In some situations, norms play a decisive role in sequential decision making. They

influence our choices by providing rules that restrain our options to achieve some kind

of coordination with others. For example, when we drive from one place to another,

there are norms regulating the traffic in the streets; when corporations purchase prod-

ucts from each other, the interactions between them are most likely to be regulated by

contracts; when students engage in doctorate programs, they are expected to comply

with the university norms.

In the above examples, the participants are assumed to be autonomous to decide

whether or not to comply with the norms. To make such decisions in simple environ-

ments may not be a problem. However, the situation changes drastically in complex

environments where uncertainty is present. In this case, they will not always be sure

about the outcomes, rewards and costs of their actions, and they will not always be

sure when norm violations will be detected and punished.

In the past decades, the artificial intelligence community proposed several models

for enabling normative reasoning in intelligent agents [28, 42, 24, 68, 2, 123]. Arguably,

the main advantage of these normative agent models come from the fact that we can

employ them to design multiagent systems where the interactions between the agents

can be coordinated by means of norms that restrict their activities [107, 3].

Studying the state of the art in MDPs and normative agent models we have noticed

a lack of work on the topic of combining both approaches to decision making. In order

to bridge this gap, this thesis focuses on a class of problems in which utilitarian agents,

modeled with Markov Decision Processes, make sequential decisions in environments

regulated by norms.

We believe that by bridging this gap between MDPs and normative agent models,

each research field could benefit from the native strengths of the other. Norms could

help with coming up with a way to shape the agents’ behavior, enabling coordination

and improving the tractability of MDPs by restricting the state space to be explored.

On the other side, MDPs can help with their ability to perform quantitative evalua-

tions, which in this case, could be used to evaluate the impact of norms on the agents’

utilities.

4



Chapter 1. Introduction

1.2 Research objectives

The main research objective of this thesis is to develop and evaluate computational

models of norm-aware rational agents capable of generating complex plan of action

in dynamic and non-deterministic normative environments

This main objective can be divided into the following specific objectives:

(i) To formalize a framework that allows for modeling norm-aware utilitarian agents

in stochastic environments where norms regulate the agents’ activities.

(ii) To develop models of normative reasoning under uncertainty that enable norm-

aware utilitarian agents to incorporate norms into their knowledge and decide

whether or not to comply with the norms regulating the stochastic environment

they are in.

(iii) To investigate the impact of the proposed models of normative reasoning on the

sequential decisions and utilities of norm-aware utilitarian agents.

(iv) From a global perspective, to study how norms can be employed to coordinate

norm-aware utilitarian agents.

1.3 Methodological remarks

To achieve objective (i), we generalize an existing framework, namely Markov Deci-

sion Processes, by including normative structures and detection probabilities of norm

violations. The formalization of this new framework has been made by means of set

theoretical notions, and the notion of norms has been borrowed from previous work

on normative systems.

To develop the models of normative reasoning proposed in objective (ii), we have

relied on the framework mentioned in objective (i). The structure of the framework

allowed us to develop general algorithms implementing different notions of rationality.

Once the normative reasoning has been encoded in the form of algorithms, we built

them into particular agent models, namely self-interested and norm-compliant.

The objectives (iii) and (iv) have been achieved through experiments performed

in simulated normative multiagent systems with controlled experimental settings and

well-defined performance criteria.

5
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1.4 Roadmap

This section provides an overview of the structure of this thesis, which is divided in

four parts detailed as follows:

• Part I – Concepts and theories.

The first part contains this introductory chapter and Chapter 2, which describes

the background that underlies this thesis with an emphasis on Markov Decision

Processes, Bayesian networks, normative multiagent systems and norm-aware

agent models, ending with an analysis of the current approaches for normative

reasoning in autonomous agents.

• Part II – NMDP framework and agent models.

The second part introduces our proposal for modeling normative rational agents.

Chapter 3 addresses objective (i) by formalizing the Normative Markov Decision

Processes (NMDPs), a framework for modeling norm-aware utilitarian agents.

In Chapter 4, we address objective (ii) by developing two models of normative

reasoning that use the NMDP framework for sequential decision making.

• Part III – Experimentation.

Together with the second part, the third part constitutes the core parts of this

thesis. In this part we address objectives (iii) and (iv). Chapter 5 presents and

discusses a series of experiments performed in a simulated motion environment.

Chapter 6 demonstrates, by way of a case study in a simulated aerospace after-

market, the applicability of the NMDP framework to model and reason about

contracts in stochastic environments.

• Part IV – Conclusion.

In the last part, Chapter 7 draws the main conclusions of this thesis, as well as

some limitations of our approach and future research directions that we intend

to look at.

6



Chapter 2

Background

There are no shortcuts in evolution.

Louis Dembitz Brandeis

This chapter presents a short description of the background that underlies this

thesis. The research areas composing this background and their relationship are

shown in Figure 2.1. Section 2.1 concerns with sequential decision problems modelled

as Markov Decision Processes, which in the context of this thesis, are seen as a

formalism to create autonomous agents. Section 2.2 presents the Bayesian networks,

utilized in compact representations of Markov Decision Processes. Section 2.3 briefly

presents the usage of norms inmultiagent systems, while Section 2.4 makes a survey on

norm-aware agent models. Section 2.5 analyzes and compares these norm-aware agent

models. Finally, Section 2.6 promotes a discussion, highlighting the gap between the

norm-aware agent models developed so far and the generalizations and computational

methods for Markov Decision Processes.

7
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Markov Decision 
Processes Bayesian networks

Agent models

 (Section 2.2) (Section 2.1)

Norm-aware agent models (Section 2.4)

Normative multiagent systems (Section 2.3)
Multiagent

systems

Norms

Figure 2.1: Research areas composing the background that underlies this thesis.

2.1 Markov Decision Processes

Markov Decision Processes (MDPs for short), named after Andrey Markov1, provide a

formal mathematical framework for modeling sequential decision making in stochastic

environments. The framework itself is fairly simple and it is only when we attempt

to use these processes to determine optimal behavior that any complications appear.

The formal model of MDP used in this thesis, given in Definition 1, has a finite

number of states and actions. The MDP framework includes a capability function that

indicates which actions are admissible in every state. TheMarkov property holds, that

is, the state-transition probabilities from any given state depend only upon the state

and not upon the previous history. In this case, there is no need for retaining any

information about the history of its past actions in order to make optimal decisions.

Finally, the reward function indicates the immediate reward of executing an action

in a given state and then making a state-transition. Some definitions of reward allow

the reward to depend only on the current state and/or action, which does not change

the problem in any fundamental way.

1Andrey Andreyevich Markov (14 June 1856 – 20 July 1922) was a Russian mathematician,
particularly remembered for his study of Markov chains, sequences of random variables in which the
future variable is determined by the present variable but is independent of the way in which the
present state arose from its predecessors. This work founded a completely new branch of probability
theory and launched the theory of stochastic processes.
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Definition 1 (Markov Decision Process). A Markov Decision Process (MDP) is

defined as a tuple 〈S,A,C,T,R〉 where: S denotes a finite set of states of the world; A

denotes a finite set of actions; C : S→ A is a capability function that denotes the set

of admissible actions in a given state (C(s) corresponds to the set of admissible actions

in the state s); T : S× A× S → R is a state-transition function (T(s, a, s′) indicates

the probability of executing a at s and ending at s′); and R : S×A×S→ R is a reward

function that determines the expected immediate reward (R(s, a, s′) corresponds to the

one gained by the agent for executing a at s and ending at the state s′).

MDPs have been extensively studied and used in several fields, such as automated

control [10, 93], economics [4] and artificial intelligence [102]. Here, the MDPs are

built in autonomous agents, which use this formalism to represent their knowledge

about the environment they are living in.

2.1.1 Optimality in sequential decision making

Before we define optimality in sequential decision making with the MDP framework,

consider the following assumptions about the process:

• The agent always knows exactly what state of the environment it is in. Thus,

each decision is taken with exact knowledge of the current system state.

• The process is discrete-time and stochastic. At each time step, the process is in

some state, and the decision maker may choose any action that is available in

this state. The result of the chosen action in the given state is determined by

the state-transition function.

• The total reward maximization is a discounted problem, where γ, refereed to as

discount factor, is a positive scalar between 0 and 1.

• There is an infinite-horizon for decision making. Note that it does not necessar-

ily mean that all state sequences are infinite, it just means that there is no fixed

deadline. In particular, there can be finite state sequences in an infinite-horizon

MDP containing an absorbing state.

In finite state, completely observable, discrete-time, discounted and infinite-horizon

MDPs, the solution has the form of a stationary policy as formalized in Definition 2.

Definition 2 (Stationary policy). A stationary policy for an MDP is defined as a

function π : S→ A, and π(s) corresponds to the action to be executed in the state s.

9
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If we were simply interested in the immediate rewards, the problem would have a

trivial solution of always selecting the action with the highest immediate reward:

π(s) = argmax
a∈C(s)

IR(s, a),

where IR(s, a) is the immediate reward of the action a in the state s:

IR(s, a) =
∑
s′∈S

T(s, a, s′)R(s, a, s′)

The problem of maximizing the total rewards in an infinite-horizon and discounted

setting is, however, more complex due to the trade-off between the immediate rewards

and the rewards that are received in the future. Among the many ways for making the

trade-off between immediate and future rewards2, the work developed in this thesis

employs the expected future discounted reward with respect to the indefinite sum

E

[ ∞∑
t=0

γt IR(st, at)

]
,

where t denotes the time step, γ is the discount factor, st and at are the current

state and the action to be executed in the time step t, respectively, and teh function

IR(at, st) gives the immediate reward of at in st. Note that we impose the constraint

0 ≤ γ < 1 to guarantee that the expectation is bounded. On this basis we can define

an optimal policy as

π∗ = argmax
π

E

[ ∞∑
t=0

γt IR(st,π(st))

]
The next section describe algorithms for computing optimal policies.

2.1.2 Computational methods to compute optimal policies

The work carried out by Bellman [6] is of great significance for the research on sequen-

tial decision-making problems, as he proposed the dynamic programming approach

in general and the Value Iteration algorithm in particular. The fundamental idea of

the Value Iteration consists of computing the utility of each state, and then, utilizing

these utilities to create an optimal policy. The utility of a state is calculated in terms

of the utility of the state sequences that might follow it, which depends on the policy

that is executed. So the utility of a state with respect to a policy π is:
2Other optimality criteria not explored in this thesis, such as average reward obtained per time

step and the expected future discounted reward with respect to the finite horizons, are detailed in
[10, 93].

10



Chapter 2. Background

Uπ(s) = E

[ ∞∑
t=0

γt IR(st,π(st)) | s0 = s

]
,

If the agent executes an optimal policy π∗, the utility of a state is Uπ
∗
(s), hereafter

written simply as U(s). The action to be executed in each state is selected by means

of the maximum expected utility principle, that is:

π∗(s) = argmax
a∈C(s)

∑
s′∈S

T(s, a, s′)U(s′)

Given that the utility of a state is the expected sum of discounted rewards from

that state onwards, then we can say that there is a relationship between the utility of

a state and the utility of its neighbors. This relationship is formalized in the Bellman

equation, named after its discoverer:

U(s) = max
a∈C(s)

IR(s, a) + γ
∑
s′∈S

T(s, a, s′)U(s′)

The Bellman equation provides the basis for the Value Iteration, specified in Algo-

rithm 1, an iterative algorithm that computes the expected utility of each state using

the expected utilities of the neighboring states. Initially, the utility functions U and

U′ return zero for all states. For every state, the algorithm updates the utility of the

states (L5), and then, it computes the maximum change υ in the utility of any state

in the current iteration (L6–L7). The algorithm iterates until the utilities calculated

in two successive iterations are close enough (υ < ε, where ε is the maximum error).

Algorithm 1 – Value Iteration
Input: 〈S,A,C,T,R〉 (MDP) and ε (Maximum error).
Local variables:

U (Utility function, initially zero for all states),
U′ (Temporary utility function, initially zero for all states),
γ (Discount factor) and
υ (Maximum change in the utility of any state in an interation).

1. repeat
2. U← U′

3. υ← 0.0
4. for all s ∈ S do
5. U′(s)← max

a∈C(s)
IR(s, a) + γ

∑
s′∈S

T(s, a, s′)U(s′)

6. if |U′(s)− U(s)| > υ then
7. υ← |U′(s)− U(s)|
8. until υ < ε
9. return U

11
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In infinite horizon discounted problems, this algorithm is guaranteed to converge

to an optimal utility function and to an optimal stationary policy in a finite number of

value iterations. The rates of convergence, stopping criteria, and many other results

relating to the convergence behaviour of this algorithm can be found in [94].

While the Value Iteration algorithm explores the utility space, the Policy iteration

[61] does it in the policy space. The fundamental idea of the Policy Iteration, shown

in Algorithm 2, consists of generating a sequence of stationary policies, each with

improved expected utility over the preceding one. The algorithm starts by evaluating

the current policy π by means of the policy-evaluation routine (L3). There are several

approaches to implement this routine, such as solving the linear system of simplified

Bellman equations and interactively calculating the utilities by means of value iter-

ations. Then, in the policy improvement stage (L5–L8), the algorithm computes an

improved policy using one-step look ahead based on the utility function U resulting

from the policy evaluation. The algorithm ends when the policy stabilizes.

Algorithm 2 – Policy Iteration
Input: 〈S,A,C,T,R〉 (MDP) and π′ (Initial policy).
Local variables:

U (Utility function, initially zero for all states),
U′ (Temporary utility function, initially zero for all states) and
π (Policy).

1. π← π′

2. repeat
3. U← policy-evaluation(π,U,MDP)
4. unchanged← true
5. for all s ∈ S do
6. if max

a∈C(s)

∑
s′∈S

T(s, a, s′)U(s′) >
∑
s′∈S

T(s,π(s), s′)U(s′) then

7. π(s)← argmax
a∈C(s)

∑
s′∈S

T(s, a, s′)U(s′)

8. unchanged← false
9. until unchanged

10. return π

Puterman and Shin [95] studied a class of Policy Iteration algorithm, referred to as

Modified Policy Iteration, where the policy evaluation is performed by some number

of value iterations using the simplified Bellman update3:

3This update is called simplified because the utilities are calculated for a fixed policy instead of
computing the maximum of the utilities for admissible actions in each state.
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U(s)← IR(s,π(s)) + γ
∑
s′∈S

T(s,π(s), s′)U(s′)

The number of value iterations performed per policy evaluation determines the

order of the Modified Policy Iteration algorithm.

2.1.3 Computation leverage techniques

The main problem with MDPs is that, in many real-life domains, the state space is

quite large. In these cases, computing an optimal policy can be prohibitively time-

consuming. Papadimitriou and Tsilikis [90] analyzed the computational complexity of

MDPs, and proved that any MDP can be represented as a linear program and solved

in polynomial time for both finite and infinite horizons. However, the order of the

polynomials is large enough that theoretically efficient algorithms, such as the ones

shown in 2.1.2, are not efficient in practice with large state spaces. For details on the

complexity of solving MDPs, see [90, 75].

Out of many approaches for achieving computational leverage with Markov De-

cision Processes, here we are particularly interested on specialized compact repre-

sentations, and algorithms employing these representations, that exploit structural

properties of the state space. In practice, these compact representations are very con-

venient as they allow the description of sets of states on the basis of certain properties

or features, avoiding this way an exhaustive enumeration. These compact representa-

tions, widely known in the AI literature as Factored Markov Decision Processes [20],

employ factored state spaces and Dynamic Bayesian networks [37, 35] to compactly

represent state-transition models:

(i) A factored state space is described by way of a set of features F, where each

feature fi ∈ F takes on a finite number of values in Vfi
(the domain of the

feature fi). A state is any possible assignment of values to these features, and

the state space S is the cross product of the value spaces for the features:

S = ×F
i=1Vfi

.

(ii) The Dynamic Bayesian networks [37, 35] are a particular type of Bayesian net-

work (Section 2.2 introduces this knowledge representation) used to represent

dependence between features of the state space before and after the occurrence

of actions.
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In AI efforts for achieving computational leverage in the policy construction with

factored state spaces, the emphasis has generally been placed on a particular form of

aggregation named abstraction. This technique exploits factored representations and

allows the grouping of states that are indistinguishable according to certain charac-

teristics, abstracting away some features of the problem deemed irrelevant. A set of

states grouped in this manner constitutes a partition of the state space and is refereed

to as abstract state. The underlying idea is that by clustering states, each abstract

state can be treated as a single state, alleviating this way the need for computing

the value or action of each state individually. Examples of this technique include the

structured dynamic programming [21] and the model minimization [36].

Another approach consists of decomposing the factored MDPs in various pieces

for solving them individually [38]. Here, the underlying idea is to combine the local

solutions of each piece in order to generate a global policy. The decompositions are

performed on the basis of reachability analyses [18] which determine the decomposi-

tion types that can be used (i.e. serial or parallel).

Research on abstraction and decomposition approaches is vast. Further details and

references about these and other computational methods for achieving computational

leverage in factored MDPs can be found in the survey by Boutilier et al. [19].

2.1.4 Generalizations of the MDP framework

The MDP framework has been extended in the past decades to serve several purposes.

One of the most investigated generalizations of the MDP framework is the Partially

Observable Markov Decision Process (POMDP) [65], which encodes a decision process

in which the agent cannot directly observe the underlying state of the world. Instead,

it maintains a probability distribution over the set of possible states using observations

and observation probabilities.

Following the progress with applications of MDPs to overwhelm problems involving

single agents, many efforts have been made in order to control collaborative multiagent

systems. Bernstein et al. [9] put forward the Decentralized Markov Decision Processes

(DEC–MDP) and the Decentralized Partially Observable Markov Decision Processes

(DEC–POMDP), which generalize MDPs and POMDPs to allow for coordination of

distributed collaborative agents. In this research line, several papers propose some

improvement of these decentralized models, such as the DEC–MDP with centralized

coordination mechanisms [59], the transition independent DEC–MDP [5], the DEC–
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POMDP with communication [54] and the Communicative Multiagent Team Decision

Problem (COM–MTDP) [83].

Still in a collaborative setting, theMultiagent Markov Decision Processes (MMDP)

[17] model fully cooperative multiagent systems by replacing single actions by joint

actions distributed among multiple agents. For computing optimal policies with the

MMDP framework, the authors develop a type of value iteration in which the state

space of the MMDP is augment with the state of the coordination mechanism adopted.

Guestrin et al. [57] develop a principled planning algorithm for cooperative multiagent

systems viewed as a single large factored MDP with joint actions. In this approach,

the agents select their actions in a cooperative way, using a message passing schema,

and complying with some coordination requirements. The key idea of this work is to

constrain the set of eligible joint actions in order to avoid the exponential blowup in

the action space. In a rather different approach, Bererton et al. [7] utilize an auction

mechanism to coordinate multiple MDP agents.

As we can see, there is a significant volume of research on controlling cooperative

agents. On the other side, the problem of controlling non-collaborative self-interested

agents modeled as MDPs has received less attention. Approaching the problem from

the system’s perspective, Cavallo et al. [31, 30] develop a centralized incentive mech-

anism for implementing optimal policies in environments populated by self-interested

agents modeled as MDPs. This mechanism has knowledge of each agent’s state space

and has autonomy to enforce global decision policies, that is, to take decisions on the

agents’ behalf. However, the mechanism has no access to the agents’ current state,

which is crucial for identifying imminent undesired states and determining which ac-

tion should be performed by each agent. To approach this problem, the mechanism

requests claims from the agents about their current state, proposes and enforces op-

timal joint actions based on the agents’ claims, and transfer rewards to the agents

as an incentive to provide trustful information. Thus the problem of coordinating a

group of self-interested agents consists of providing the appropriate incentives so that

agents will choose to make truthful reports of local private information.

As a matter of fact, Cavallo et al. [31, 30] do not generalize the MDP framework.

Instead, they create an independent agent component for reasoning about the strategy

to be used by the agent when informing its current state. This component selects the

strategy on the basis of agent’s history – past actions, state trajectory and incentives

received along this trajectory.
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2.2 Bayesian networks

A Bayesian network [92, 63] is a knowledge representation based on probability theory

[51] and graph theory [8]. A Bayesian network is a graphical model represented as a

direct acyclic graph, where each node in the graph represent a variable or feature. Each

variable has a set of mutually exclusive values, referred to as domain of the variable,

and a probability distribution denoting the probabilities that the variable takes on

each of its different values. The causal relations between variables are represented as

directed arcs, leading from the cause variable to the effect variable.

There are two types of variables in a Bayesian network:

• Unconditioned variables are represented as prior nodes, which have no parent.

Each unconditioned variable has a unconditional probability distribution deter-

mining the probability of each value of the variable.

• Conditioned variables are represented as non-prior nodes, which have at least

one parent node. A conditioned variable has a conditional probability distribu-

tion that determines the probability of each value of the variable on the basis

of the parents’ value.

Formally, a Bayesian network (W,P) consists of a directed acyclic graph W=(F,L)

and a set of conditional probability distributions P. In the graph W, the set F contains

the variables (nodes) of the network. The set L contains the directed arcs in the form

(fi, fj) denoting the causal relation between fi ∈ F and fj ∈ F. Each variable fi ∈ F

has a finite set of mutually exclusive values Vfi and a probability distribution pi ∈ P

expressed as a table.

Figure 2.2 illustrates an abstract example of Bayesian network with boolean vari-

ables. Looking at the graph, we can see that the variable f3 is conditioned by f1, the

variable f4 is conditioned by f3, and f5 is conditioned by f1 and f2. The variables

f1 and f2 are unconditional as their value does not depend on the other variables. In

a conditioned variable fi ∈ F, its table pi lists the probability that fi takes on each

of its values for each combination of values of its parents. In Figure 2.2, each row of

the table of f3, f4 and f5 contains the conditional probability of each variable value

for each conditioning case. For instance, given f1=T, the probability of f3=T is 0.90;

formally, Pro(f3=T | f1=T) = 0.90.
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Figure 2.2: Abstract example of Bayesian network with boolean variables.

The fundamental rule for probability calculus is the following:

Pro(A | B)Pro(B) = Pro(A,B),

where Pro(A,B) is the probability of the joint event A∧B. From this rule follows

Pro(A | B)Pro(B) = Pro(B | A)Pro(A) and this yields the Bayes rule:

Pro(B | A) =
Pro(A | B)Pro(B)

Pro(A)

If A is a variable with values {v1, . . . vn} then Pro(A) is a probability distribution

over these values:

Pro(A) = (x1, . . . xn) xi ≥ 0
n∑

i=1

xi = 1

where xi is the probability of A assuming the value vi. Notice that if A and B are

variables, Pro(A,B) is the table of probabilities for the possible pairs of values of A

and B. Finally, by marginalizing B out of Pro(A,B), we get Pro(A):

Pro(A) =
∑
B

Pro(A,B)

Figure 2.3 provides an example of how the rules above are applied to calculate the

probability distribution of a variable, namely f3. In (a) we introduce the unconditional

probability distribution of f1 (the parent of f3). In (b) we specify the Pro(f3 | f1),
the conditional probability distribution of f3. By applying the fundamental rule, we

get (c) Pro(f3, f1), the joint probability for f1 and f3. Finally, (d) shows Pro(f3)

resulting from the marginalization of f1 out of Pro(f3, f1).
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Figure 2.3: (a) Probability distribution for f1, (b) conditional probabilities for f3, (c)
joint distribution for f1 and f3 and (d) probability distribution for f3.

Inference with Bayesian networks is the task of calculating the posterior proba-

bility distribution for a set of variables, given some evidences indicating the value of

other variables. Figure 2.4 provides an example, where hard evidences4 on f1 and f2
are propagated throughout the network. The probability distributions of f3, f4 and

f5 have been computed by means of the rules previously introduced in this section.
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Figure 2.4: Bayesian network with two hard evidences.

The ways in which evidences may be propagated through a variable depend on its

connections. Three connection types can be found in a Bayesian network:

(i) Serial connections: An evidence may be propagated through a serial connection

unless the value of the variable in the middle is known. Thus, a hard evidence

on the middle variable blocks the flow of information. For example, in Figure

2.2, consider the serially connected variables f1, f3 and f4. If the value of f3 is

known, an evidence on f1 does not affect the probabilities of f4. Otherwise, if

there is no evidence on f3, the flow of information is free.

4An evidence that assigns zero probability to all except one value of a variable is called a hard
evidence and it indicates that a particular value has been observed with certainty.
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(ii) Diverging connections: An evidence may be propagated between all the children,

unless the value of the parent node is known. In this case, a hard evidence on the

parent node blocks the flow of information. For example, consider the diverging

connection composed of f1, f3 and f5 in Figure 2.2. If there is no evidence on

f1, then an evidence on f5 may affect the probabilities of f3.

(iii) Converging connections: An evidence may be propagated through a converging

connection only if either the child node or one if its descendants has received

evidence. This is the principle of explaining away which confirms and dismisses

causes of events. For example, consider f1, f2 and f5 in Figure 2.2. If there

is an evidence on f5, then an evidence on f1 may affect the probabilities of f2.

Here, the variables f1 and f2 represent causes for f5 and the knowledge of one

cause may dismiss or confirm the other.

These three cases cover all the ways in which evidences may be propagated through

a variable, and following these rules it is possible to determine for any pair of variables

whether they are dependent given the observed evidences. Based on these rules, the

d-separation of two variables is defined as follows.

Definition 3 (d-separation). Two variables A and B are d-separated if for all

paths between A and B there is an intermediate variable C, distinct from A and B,

such that either the connection is serial or diverging and C has received evidence, or

the connection is converging, and neither C nor any of its descendants have received

evidence.

If two variables A and B are d-separated with evidence e entered, then

Pro(A | B, e) = Pro(A | e),

This means that d-separation can be employed to determine conditional indepen-

dencies, which allow us to compute prior and posterior probabilities more effectively.

There are several algorithms that automate the inference in Bayesian networks,

such as the efficient message propagation inference algorithm for polytrees [91], the

clique-tree propagation algorithm, also known as the clustering algorithm [72] and the

variable elimination [124]. For a discussion about exact and approximate inference

algorithms for Bayesian networks, see the survey by Guo and Hsu [58].
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2.3 Normative multiagent systems

Amultiagent system, as the name suggests, consists of multiple interacting autonomous

agents within an environment [119]. This distributed paradigm has several advantages

over centralized solutions. Multiagent systems can be utilized to distribute computa-

tional resources among interconnected agents, minimizing the problems with resource

limitation and bottlenecks [96, 113], and to model problems in terms of autonomous

interacting agents, which has demonstrated to be a more natural way of representing

task allocation [106], team planning [77], simulations [118] and so on.

Nevertheless, these advantages do not come easily as autonomous agents might

interfere with each other intentionally or due to a mere side-effect of their activities.

Sometimes, these interferences have undesirable or disastrous consequences. In such

situations, an agent might need to coordinate with their acquaintances [89, 43]. A

basic approach to coordinating autonomous agents is to restrict their activities in a

way which enables them to achieve their goals while not interfering with other agents

[107]. In this sense, normative systems impose norms upon multiagent systems as an

attempt to coordinate the agents’ activities.

Boella et al. [14] define a normative multiagent system as follows:

A normative multiagent system is a multiagent system together with nor-

mative systems in which on the one hand agents can decide whether to

comply with explicitly represented norms, and on the other the normative

systems specify how and in which extent the agents can modify the norms.

Agents are assumed to be norm-autonomous, that is, they can decide whether to

comply with the norms. The way they take this decision is of crucial importance to

this thesis, and Section 2.4 is dedicated to this subject. The study of agents that are

capable of creating, changing and cancelling norms lie outside the scope of this thesis.

Explicit representations of the norms allow the agents to be informed about how

they should behave (regulations) and commonly describe the sanctions against norm

violations (enforcement) [13]. In order to provide explicit representations and compu-

tational interpretations to norms for use in the control of multiagent systems, several

proposals of normative languages have been developed.
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Vazquez-Salceda et al. [117] formalize a generic language for expressing conditions

by means of a deontic logic with deadline operators. This logic includes obligations,

permissions and prohibitions, possibly conditional, over actions or predicates (states).

López [120] observes that the term norm has been used as a synonym for obligations

[42], prohibitions [41], social laws [107], and other types of rules imposed by regulative

mechanisms. Minding that these different definitions have common properties (social

pressure, prescriptiveness and sociality), she represents them by using the same model

encoded in Z language [110]. Kollingbaum and Norman [71] propose a language for the

specification of normative concepts in norm-governed agents (this language is one of

the components of the NoA agent architecture described in Section 2.4.5). Oren et al.

[88] formalize an electronic contracting language, in which clauses within contracts are

specified as permissions, obligations and prohibitions on contract parties. The norms

in this language are associated with a status, which allows for the determination of

whether contract violations takes place and who is the responsible for causing the

violations. García-Camino et al. [53] propose a rule-based language to specify and

manage permissions, prohibitions and obligations in electronic institutions [84, 44].

More concretely, this rule-based language is an extension of the general normative

language proposed by Vazquez-Salceda et al. [117].

For a broader review of relevant research and open issues on normative multiagent

systems, see the survey paper by Criado et al. [34].

2.4 Norm-aware agent models

This section makes a survey on normative agent models, where the autonomous agent

research meets the ideas from deontic logic and traditional normative systems studied

in philosophy and laws. Any normative reasoning approach outside of any particular

agent model lies outside of the scope of this section.

Up to this moment, most research on normative reasoning by autonomous agents

has been done from a practical reasoning perspective, through goal-oriented agent

models. Such work proposes cognitive models for weighting competing alternatives

(some of them non-compliant with the norms) on the basis of preference orders. Some

approaches that apply normative reasoning with utility-based models have focused on

the maximization of rewards, which is used as a quantitative measure of the profits

and losses brought about by the adoption of a given set of norms.
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2.4.1 Castelfranchi et al. (1999)

Deliberative normative agents are agents that have explicit knowledge about the en-

acted norms in a multiagent environment and can make a choice whether to obey the

norms or not in specific cases. Castelfranchi et al. [28] propose a generic architec-

ture for deliberative normative agents, which is able to know that a norm exists in a

society, able to adopt that norm, able to deliberatively follow that norm, and able to

deliberatively violate that norm in a intelligent way.

This architecture, designed as a refinement of the generic agent model proposed

by Brazier et al. [22], includes components for reasoning in environments governed by

norms. The main control has been refined into the following components: the Norm

Management determines which norms the agent is adopting and in what ways the

agent wants its behaviour to be influenced by norms; the component Strategy Man-

agement, therefore, uses norms to determine the strategies with which goals and plans

are formed; on the basis of these strategies the component Goal Management deter-

mines which goals the agent wants to pursue, and the component Plan Management

determines plans for the current goals of the agent.

To reflect semantic distinctions between different types of information within the

agent, an object level and two meta-levels have been introduced. The information is

processed according to its type through conditional statements (if –then) implemented

in the components.

2.4.2 Boman (1999)

Boman [16] describes a method for enforcing norms onto supersoft agents programmed

to represent and evaluate vague and imprecise information. These agents are assumed

to behave in accordance with advices obtained from their individual decision module,

with which they can communicate. Such a decision module contains algorithms for

evaluating supersoft decision data concerning probability and utility.

Three ways of enforcing norm-compliant behaviour on the agents are proposed.

The first one consists of manipulating the utilities in the lowest level to skew assess-

ments of the decision data to have an overly positive or negative attitude towards

some consequences. The second way consists of eliminating actions with disastrous

consequences. The last way consists of disqualifying certain actions by referring to

their negative impact on the global utility. This last option is a form of social norm

adoption and it requires the knowledge regarding how to find the global utility values.
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In fact, this work does not propose an agent model, but a method for enforcing

norm-compliance onto a particular type of utility-driven agent. It assumes the exis-

tence of a decision module, whose advices are always followed by the agent. In other

words, the agents are told what they must and must not do.

2.4.3 Dignum et al. (2000)

Dignum et al. [42] present an approach to social reasoning that integrates prior

work in norms and obligations [114] with the BDI agent model developed by Rao

and Georgeff [98]. Such an integration aims at introducing norms and obligations

to support the socially motivated deliberation process of the agent. This type of

agent has knowledge about the enacted norms and makes choices whether or not to

obey norms, and how to weight up the impact of punishments for obligation violation

in particular cases. The norms are not hard-wired into the agents: circumstances

might change, making norms obsolete; and agents might interact with other agents

that follow different norms, so explicit representation of norms and obligations can

support a more flexible and appropriate reasoning.

Regarding the semantics of norms and obligations, it makes the following distinc-

tion between these concepts. Obligations are related to specific enforcement strategies

which involve punishment of violators. They are explicit tools to influence the be-

haviour of the agent society. On the other hand, norms assist in standardizing the

behaviour of the agents, making it easier to interact within that society. Norms have

not explicit punishments and the consequences of failing to adhere to a norm can only

be determined by considering a broader impact of indirect consequences.

The main control algorithm of the architecture is the same defined in [98], except

that the selected events used in the option-generator are augmented with potential

deontic events related to the applicability of norms and obligations. Constraints

between the obligations are handled in the option-generator, which outputs a set of

plans that can be executed simultaneously. In other words, each option contains a

set of plans that are compatible among them. The deliberation process focuses on

the selection of plans on the basis of preferences. The preference ordering of norms is

based on a preference of social benefit of a situation, while the preference ordering of

obligations are based on the punishments for violating them.
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2.4.4 Broersen et al. (2002)

The BOID architecture [24] was proposed as a solution for BDI agents that act in

a noisy environment, where the agent is overloaded with inputs. Its main problem

is how an agent selects which obligation to comply with from a set of conflicting

obligations, in addition to satisfying its own goals. BOID extends the BDI model by

introducing obligations as a new component in addition to the main components of

beliefs, desires and intentions, where goals are generated from the interaction between

beliefs, obligations, intentions and desires, and biased by the type of agent: realistic,

stable, selfish and social.

The agent’s candidate goals are selected based on a static priority function on

the rules that govern the agent’s behaviour, which also determine which inference

steps must be made. As a consequence, some rules may be overridden by others,

enabling the resolution of conflict between mental attitudes by different agent types.

If the agent’s beliefs override its obligations, intentions or desires, then we say that

this agent is realistic. If intentions override desires and obligations, then the agent

is stable. If desires override obligations, then the agent is called selfish. Finally, if

obligations override desires, then the agent is classified as social. Thus, BOID agents

always consider norms in the same manner; that is, they cannot decide to follow or

violate a given norm according to their circumstances.

The conflicts between mental attitudes can be classified into internal and external

conflicts [23]. Internal conflicts are caused by information within the same compo-

nent, such as the conflict between two beliefs or two obligations. External conflicts

occur between information from two or more different components, such as a conflict

between an intention and an obligation or between a desire and an obligation.

2.4.5 Kollingbaum and Norman (2003)

The Normative Agent Architecture [68], refereed to as NoA, aims to support the

development of norm-motivated practical reasoning agents. NoA is based on classic

BDI concepts with extensions that allow an agent to reason about norms. It is

implemented as a reactive planning architecture composed of two main elements: the

NoA language for the specification of plans and norms and the NoA interpreter, which

is capable of interpreting and executing plan and norm specifications formulated in

the NoA language.
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The NoA language contains constructs for the specification of beliefs, goals, plans

and norms. Norm specifications may regulate either the achievement of a particular

state of affairs or the performance of explicit actions without consideration of the

state that would produce. This particular feature is reflected in the plan specifica-

tions, which are characterised by explicit declarations of effects, where an effect may

become the reason for a plan to be selected as an action. The interpreter, through the

informed deliberation [71], allows the agent to remain norm-autonomous in that op-

tions for forbidden actions (or plans) which are not excluded, but are instead labelled

as forbidden and remain options if an agent chooses to act in violation to resolve

conflicts between norms. The consistency problem of norms in NoA architecture is

detailed in [70, 69].

According to the authors, the NoA is influenced by the AgentSpeak(L) [97], but

with three main distinctions. First, the NoA language allows all the effects of the

plans to be declared. This provides greater flexibility in the specification of agent

capabilities, and enables a NoA agent to reason about the side-effects of executing

a plan. Second, the NoA agents are motivated by norms rather than desires and

intentions. Third, it is based on the logic of responsibility for states and actions,

and therefore captures the distinction between an agent taking responsibility for the

achievement of a state of affairs and taking responsibility for the performance of an

action.

2.4.6 Ågotnes et al. (2007)

Ågotnes et al. [1] develop a model of normative multiagent system in which the agents

are assumed to have multiple goals of increasing priority. In this model, transitions

are represented through Kripke structures and norms are implemented as constraints

over these structures. A normative system is then simply a subset of the Kripke

structure, which contains the arcs that are forbidden by the normative system.

The goals of the agents are specified as a hierarchy of formulae of Computational

Tree Logic, which defines a model of ordinal utility, making possible the interpretation

of the Kripke-based normative systems as games. Thus, the agents decide whether to

defect or not from the normative system based on prioritized lists of goals and game

theoretic solution concepts.
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2.4.7 Andrighetto et al. (2007)

Andrighetto et al. [2] analyse inter agents and intra agent processes needed to deal

with the emergence of norms. To do so, they put forward the EMIL-A, an agent

architecture for recognising new norms and generating normative beliefs, deciding

whether to adopt the norms, generating normative goals, determining whether to

comply with them generating normative intentions, and finally, generating plans to

achieve the normative intentions. In order to support the normative reasoning, there is

also a normative long term memory containing a set of existing norms and normative

information, and a repertoire of action plans consisting of norm-compliant actions.

EMIL-A agents are norm-autonomous: they can either comply with norms or

violate them. Violations may, however, trigger defence mechanisms that are used to

spread the norms to other agents. Apart from the architecture design, this work also

focuses on the norm innovation process, showing how EMIL-A allows a new norm to

be perceived and established as an instance of an existing norm, as part of the norm

recognition component. Moreover, EMIL-A agents are also capable of determining

the pertinence of norms and their degree of activation, that is, the norm salience. This

norm salience is used as a criterion for accepting or rejecting norms, with the decision

about norm compliance being determined by comparing the effects of violations with

the costs of compliance.

2.4.8 López et al. (2007)

López et al. [123] present a formal normative framework for agent-based systems that

includes a canonical model of norms, a model of normative multi-agent systems and

a model of normative autonomous agents. In this paper, the authors put together the

framework components, whose publication has been done in different forums.

According to the authors, norms are characterised by their prescriptiveness (it

tells an agent how she should behave), sociality (situations where more than one agent

is involved), and social pressure (socially acceptable mechanisms to force agents to

comply with norms). Based on these properties, they define the components of a norm:

normative goals, addressee agents, beneficiaries, context (circumstances in which the

norm applies), exceptions (particular situations in which the addressees do not need

to follow the norm), rewards and punishments (goals to be achieved by the agents

entitled to do so). Some of these components can be used to classify the norms into

four categories: obligations, prohibitions, social commitments and social codes [121].
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To comply with a norm, the agent’s deliberation process evaluates the set of goals

that might be hindered by satisfying the normative goals, and set of goals that might

benefit from the associated rewards. On the other hand, to reject a norm, an agent

evaluates the damaging effects of punishments. The agents use the importance of

their goals to make these decisions. There are different strategies to select the norms

to be intended or rejected as explained in the paper [122] (social, rebellious, pressured,

opportunistic). One example is the pressured strategy where an agent fulfils a norm

only if one of its goals is threatened by punishments.

This normative framework provides the means to understand the normative be-

haviour of autonomous agents with explicit representation of their goals (BDI-like

models). It assumes that these agents have a preference order over their goals, oth-

erwise it would not be possible to take the decision regarding rejecting or complying

with a given norm.

2.4.9 Meneguzzi and Luck (2009)

Assuming that agents are to operate in open environments, they need to adapt to

changes in the norms that regulate such multiagent environments. In response, the

paper [80] provides a technique to extend BDI languages by enabling them to enact

behaviour modification at runtime in response to newly accepted norms.

To represent norms it proposes a schema, which contains the norm itself, its

activation condition and expiration condition. The norm has two possible deontic

modalities: prohibition and obligation. Both can refer to declarative world states or

actions. The interpreter includes meta-level actions that allow an agent to scan its own

plan library for plans that would violate a set of norms that an agent has previously

accepted to comply. For prohibitions, violating plans are temporarily removed from

the library while the prohibition is in effect. On the contrary, for obligations, new

plans are created using a planning mechanism [79] so that an agent has plans that

can accomplish such norms.

This work focuses on the problem of adapting the agent’s behaviour to the accepted

norms. The technique show in this work could be employed on the development of

agents capable of violating norms, however it would demand the implementation of a

process for deciding what norms are accepted or rejected.
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2.4.10 Cardoso and Oliveira (2009)

Cardoso and Oliveira [26] implement norm-aware utilitarian agents characterized by

different levels of risk tolerance and social awareness, which makes possible the gener-

ation of heterogeneous populations. The risk tolerance affects the decisions regarding

opportunities to sign new contracts, and corresponds to the agent’s willingness to

contract in the presence of violation penalties. An agent decides to contract on the

basis of the highest fine that is associated with the commitments for the assigned role.

In order to contract, the following relation must be true:

highestF ine(role) ≤ b ∗RT/(1−RT )

where b is a slope parameter related to the agent’s budget and RT is the risk

tolerance parameter. The social awareness, on the other hand, is related to decisions

concerning ongoing contracts. This last parameter impels the agent to fulfil its obli-

gations even when it does not have a strict advantage in doing so. An agent decides

to fulfil an obligation o whenever the following relations is true:

violationOutcome(o)− fulfilmentOutcome(o) ≤ b ∗ SA/(1− SA)

where b is a slope parameter related to the agent’s budget and SA is the social

awareness parameter.

2.4.11 Joseph et al. (2010)

Joseph et al. [64] formalize the principles of deductive coherence proposed by Thagard

[112], and then, specifies a coherence-driven agent architecture which extends the BDI

theory with the theory of coherence. Such an agent architecture takes decisions and

actions, possibly non-normative, based on the coherence maximization. In other

words, the agent obeys a norm only if it seems to be coherent.

Thagard’s theory of coherence is the study of associations, that is, how a piece

of information influences another and how best different pieces of information can fit

together. Each piece of information imposes constraints on others, the constraints be-

ing positive (coherence degree) or negative (incoherence degree). Hence, a coherence

problem is to put together those pieces of information that have a positive constraint

between them, while separating those having a negative constraint. The pieces of

information are represented as nodes in a graph with weighted links, or constraints,
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between these nodes. Further, some of these constraints are positive and others nega-

tive, and associated with each constraint is a number that indicates the weight of the

constraint. Therefore, maximising coherence is formulated as the problem of partition-

ing the set of nodes into accepted nodes and rejected nodes. The weight (strength)

of a constraint is calculated by a deductive coherence function which captures the

deductive relationship between propositions.

Based on the coherence framework, the authors propose a BDI architecture for

coherence-driven agents. This agent architecture is an adaptation of the multi-context

graded BDI model [27], on which the theories of the contexts will produce coherence

graphs. For example, the belief theory τB gives rise to a coherence graph whose

nodes are graded formulas of the belief language LB used in the belief context. The

coherence values between the belief nodes are determined not only by virtue of the

deduction relationship, but also taking into account the grades (belief degree) as

specified in the theory presentation τB . The same approach is used for the desire,

intention and norm contexts.

In the norm context, a graded norm is interpreted in terms of its priority, which

corresponds to a measure of its importance within a system of norms. To represent

and reason with norms, the authors use the Probability-valued Deontic Logic [40],

which do not represent of sanctions. In order to relate norm violations to sanctions,

the coherence-driven agents use the implication operator: a proposition representing a

violating state entails a proposition representing the effects of the respective sanction.

2.4.12 Oh et al. (2011)

Oh et al. [87] describe an agent for normative reasoning assistance that can proactively

prevent human users from violating norms in a time-constrained environment. This

assistant agent is composed of a plan recognizer, a norm reasoner and a planner.

The plan recognizer, introduced in [86], identifies the user’s needs in advance so

the agent works in parallel with the user to ensure the assistance is ready by the

time the user needs it. Based on the assumption that human users generally reason

about consequences and take decisions to maximize their long-term rewards, the agent

represents the planning problem as a Markov Decision Process (MDP) and uses an

optimal policy to predict the future activities of the user.
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Inspired by the normative structure proposed in [53], a norm is defined in terms of

its deontic modality, its context condition specifying when a norm is relevant to a state,

and its normative condition specifying the constraints imposed to the agent when the

norm is relevant. If a given state is relevant to a norm, the normative condition is

evaluated to determine the state’s compliance, which depends on the deontic modality

of the norm. Specifically, an obligation is violated if the normative condition is not

satisfied in the given state, while a prohibition is violated if the normative condition

is satisfied in the given state.

Given a predicted user plan in a plan-tree, the norm reasoner visits each node in

the tree and evaluates the associated user state for any norm violations. Thus, the

assistant can alert the user of active violations and proactively steer the user away

from those violations that are likely to happen in the future. In order to accomplish

this, for each state that violates a norm, the agent looks for the nearest state that is

compliant with all norms. When a compliant state is found, this state becomes a new

goal state for the agent, generating a planning problem to the planner module such

that the agent needs to find a series of actions to move from initial state to this goal

state.

2.5 Analyzing the norm-aware agent models

In order to compare the agent models described in Section 2.4, they are analyzed

along five dimensions. Table 2.1 provides a summary of the outcome of this analysis,

where the properties accounted for in the respective agent architectures are checked.

• Norm-autonomy : This dimension determines whether an agent is capable of

violating norms, that is, norm-autonomous. On the other hand, an agent with

no autonomy with respect to norms does not exercise control over its own actions

that are regulated by the norms.

• Explicitness of norms: Concerns to the property of having norms represented as

some explicit normative structure, which allows mirroring changes in the norms

regulating the environment.

• Explicitness of sanctions: This property can be found in an agent model if it

explicitly represents sanctions and takes them into account for deciding whether

to comply with the norms;
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• Quantitative decision model : This dimension refers to architectures that make

decisions exclusively on the basis of quantitative information, namely expected

utilities, obtained from certain action and/or states of the world. On the other

hand, goal-oriented agent models, usually use some preference orderings related

to the agents’ mental states. Some of these models associate utilities with goals,

however, it does not necessarily mean that the goals are selected exclusively on

the basis of their utilities. Usually, these goal-oriented agents run a deliberation

process that considers sources of qualitative information to decide which goals

to pursue.

• Probabilistic planning : Concerns techniques that an autonomous agent can use

to choose actions in the face of uncertainty about its environment and the results

of its actions.

The generic architecture proposed by Castelfranchi et al. [28] introduces the idea of

useful norm violations, highlighting the importance of not hard-wiring norms into the

agents’ code, and discusses principles for agents that are able to behave deliberatively

on the basis of explicitly represented norms. According to the authors, the precise

knowledge by which goals are generated depends on the application addressed; on

this basis, this generic normative agent model does not commit to a specific decision

model or planning algorithm.

In Boman [16], norms are used as constraints to filter the agent’s alternatives to

disable any deviant behaviour. That is, the agent has no autonomy to violate norms.

Furthermore, norms and sanctions are not explicitly represented. To decide between

norm-compliant options, this agent model uses supersoft decision data concerning

probability, utility, credibility and reliability, and to construct plans, it formulates

exclusive and exhaustive action strategies.

Dignum et al. [42] focus on the development of socially responsible norm-autonomous

BDI agents which adopt norms in an attempt to support collaborative behaviour.

Norms are explicitly represented using a preference-based dyadic deontic logic (PDL)

[114], and the choices between conflicting norms are made with predefined preference

orderings. Sanctions, on the other hand, are not explicitly represented; instead, they

are encoded in the function that computes the social worth of the situations. In order

to achieve normative and personal goals, this agent architecture selects plans from a

library based on meta-plans or hard-wired strategies.
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The compliance with norms in the BOID architecture [24] depends on the es-

tablishment of commitments to the respective normative goals, which are generated

from explicit representations of the norms. The agent’s candidate goals are selected

based on a static priority function on the rules that govern the agent’s behaviour.

The authors briefly discuss the impact of obligations in the planning and scheduling,

however the specification of these tasks are beyond the scope of this work.

NoA [68] is one of the first practical architectures to support the implementation

of norm-governed practical reasoning agents. This architecture is based on classic BDI

models, with extensions that allow an agent to reason about norms. It takes influences

from classical planners with respect to the declaration of plans – the behaviour of the

agent is determined by pre-specific plans composed of deterministic actions. In this

model, punishments for norm violations are not taken into account – the agents aim

at maximizing the consistency level of the adopted norms, and norm violations take

place only in circumstances where compliance is not possible.

Ågotnes et al. [1] account for strategic behaviour by agents when deciding whether

to comply with the normative system or not. To do so, the authors use an ordinal

utility which allows the interpretation of their Kripke-based normative system as

games, in which agents determine whether to follow the norms. In this work, norms

are limited to prohibitions, which are explicitly represented as forbidden transitions

in the Kripke structure, and sanctions are not taken into account. A scenario with

sequential decision making is not considered as well.

Through EMIL-A [2], Andrighetto et al. explain the phases that norms undergo so

as to evolve from the environment into the internal state of norm-autonomous agents.

The decision about norm compliance is determined by the expected utility that agents

should obtain if they fulfil or violate the norm, taking into account the penalties and

incentives associated to the normative frame. However, this agent model, as shown in

[2], neither includes an explicit representation of sanctions nor details the normative

action planner.

Similarly to the BOID architecture, the autonomous normative agent architecture

proposed by López et al. [122] adopts the notion of stereotypes (i.e. opportunistic,

social, rebellious), which are mapped to goal selection strategies ruled by priority

functions. This work proposes three normative reasoning processes (none of them

related to planning): one for agents to decide whether to adopt a norm, another to

decide whether to comply with a norm, and the other to update the goals.
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The technique proposed by Meneguzzi and Luck [80] focuses on the problem of

adapting the agent’s behaviour to the accepted norms, letting outside the scope the

module for choosing which norms are accepted or rejected. The authors demonstrate

the viability of their approach through an implementation in the AgentSpeak(L) [97],

a language to develop BDI agents, which uses first-order logic to represent beliefs,

with which is not possible to represent probabilistic information.

Cardoso and Oliveira [26] study adaptive mechanisms that enable a normative

framework to change its deterrence sanctions depending on the population. The

agents developed in that work do not construct plans or policies, but are utility

maximizers defined by two parameters: social awareness and risk tolerance. Based on

these parameters, they decide whether to violate a norm or not.

Joseph et al. [64] adapt the multi-context BDI model [27], which accounts for rep-

resenting non-deterministic information through grades. Obligations are represented

through propositions in a graded normative language, while sanctions are represented

via the implication operator: a violation entails a proposition representing the effects

of the sanction (in the context of this discussion, both have been considered explicit

representations). The norm adoption process is made by maximizing the coherence

between mental attitudes in the place of maximizing expected utilities.

Oh et al. [87] describe an agent for normative reasoning assistance that is capable

of proactively preventing human users from violating norms. The norms are explicitly

represented through obligations and prohibitions. As the norms are addressed to the

human users, the assistant agent cannot be considered norm-autonomous. The agent

is deployed in a time-constrained collaborative environment with no sanctions.

2.6 Discussion

This chapter has provided some relevant literature and background for this thesis.

Starting with the MDP theory, we have covered computational methods to construct

optimal policies, approaches for achieving computational leverage, and generalizations

of the MDP framework to address several problems. Among these proposals to solve

coordination problems and for achieving computational leverage, none have exploited

norms for these purposes.
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In analyzing the norm-aware agent models, we have studied several proposals for

enabling agents to reason about norms. The analysis has shown that no agent model

has covered all the analyzed dimensions, and only three models are capable of planning

with probabilistic information.

Clearly, there is gap between the advances in normative multiagent systems, and

the generalizations and computational methods for Markov Decision Processes. By

bridging this gap, each research area could benefit from the native strengths of the

other. Norms could help with coming up with a way to shape the agents’ behavior,

enabling coordination and improving the tractability of MDPs by restricting the state

space to be explored. On the other side, MDPs can help with their ability to perform

quantitative evaluations, which in this case, could be used to evaluate the impact of

norms in the agents’ utilities.

35





Part II

NMDP framework and agent

models

37





Chapter 3

Normative MDP framework

Simplicity is prerequisite for reliability.

Edsger Dijkstra

As we have seen in Chapter 2, there have been several proposals for enabling

agents to reason about norms, acknowledging the advantages of norms as a means

to condition agent behavior. However, the emphasis in these proposals has been on

the feasibility of such normative reasoning rather than on the ability to quantitatively

reason about agent performance, especially in the presence of uncertainty. In Chapter

2, we also have seen that there have been some proposals to constrain the search space

of policies of MDPs in order to tackle coordination problems or get computational

leverage, but none of these proposals have employed solutions based on normative

systems.

The proposal for modeling norm-aware rational agents put forward in this chapter

combines the native strengths of the MDPs and norms in order to cover their indi-

vidual limitations. It combines, on one hand, the analytic advantages of MDPs to

model the domain of interaction and agent decision-making under uncertainty, and,

on the other, it uses normative structures to support coordination and computational

leverage techniques.
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This chapter introduces the Normative Markov Decision Process (NMDP) frame-

work, a proposal for modelling norm-aware rational agents acting in non-deterministic

environments. Section 3.1 formalizes the NMDP framework utilizing set theoretical

notions to define norms and detection models of norm violations. Section 3.2 deals

with the identification of properties of norms, such as conflicts between norms and

conflicts between sanctions. Section 3.3 shows how factored state spaces can be ex-

ploited in order to compactly encode norms and detection models. Finally, Section

3.4 closes this chapter by promoting a discussion about the NMDP framework.

3.1 Normative Markov Decision Processes

The NMDP framework extends the well-known MDPs, broadly utilized for modeling

sequential decision making of single agents in stochastic domains, in order to explicitly

represent norms, sanctions and detection probabilities of norm violations. The MDP

framework has been extended by two additional components: N denotes a set of norms

ruling system, and D denotes a detection probability function of norm violations.

Definition 4 (Normative Markov Decision Process). A NMDP is a tuple

〈S,A,C,T,R,N,D〉 where: N is a set of norms designed to regulate a group of agents

in the system; D : N × S → R is a detection function, also referred to as detection

model (D(q, s) indicates the detection probability of the violation of the norm q ∈ N in

the state s ∈ S); the remaining components are inherited from the MDP framework.

Several normative languages have been proposed in previous research on norma-

tive multiagent systems, being the majority of these proposals established on deontic

notions [117, 123, 53]. In the present work, norms are described using set theoretical

notions. A norm is described as a set of states that are prohibited or obliged for a

group of agents. So, depending on its deontic modality, a norm is classified into obli-

gation or prohibition. A norm has a context (set of states) where it applies. Any state

outside the context is irrelevant to the norm. The obliged or prohibited states are

determined by the content of the norm, which corresponds to a subset of states of the

context. A sanction consists of a penalty and an enforced state-transition aiming at

updating the current state of the addressee agents. The underlying intention of these

sanctions is to punish the transgressors by decreasing their utility, and moving them

from violating states to states where the norms are obeyed and/or their capabilities

are constrained.
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Definition 5 (Norm). A norm is a tuple 〈α, δ,G,X,E,σ〉 where the following con-

straints hold:

• α ∈ N is an unique identifier denoting the priority of the norm, such that

1 ≤ α ≤ |N | . Here, α=1 is the highest priority and α=|N | is the lowest.

• δ ∈ {obligation, prohibition} is the deontic modality.

• G is the group of agents to which the norm applies.

• X ⊆ S is the set of states composing the normative context where the norm

applies.

• E ⊆ X is the set of states contained in the normative context which are obliged

or prohibited depending on the deontic modality.

• σ is a sanction represented by a tuple 〈ρ,φ〉 where:

– ρ : S→ R is a function that provides the penalty for violating this norm in

a given state ( ρ(s) gives the penalty to be paid in s).

– φ : S → S is a function that calculates the outcome state resulting from

an enforced state-transition in response to the violation of this norm (φ(s)

gives the outcome of an enforced transition in s).

A norm is read as follows: if the norm is a prohibition, in the set of states X where

the norm applies, any agent in the group G is prohibited to be in any state in E; if the

norm is an obligation, in the set of states X where the norm applies, any agent in the

group G is obliged to be in some state in E. As we can see, depending on the deontic

modality, a norm designates prohibited or obliged states. If the agent is sanctioned

in response to the violation of the norm, this agent is penalized with ρ(s) and moved

to the state φ(s), where s is the state where the norm violation took place. Example

1 provides an example of norm in the traffic domain.

Example 1. Suppose a norm that obligates a travel direction in a given street. If an

agent violates this norm by traveling in the opposite direction of the one prescribed by

the norm, then this agent receives a fine, apart from being forced to turn around and

go to the norm-compliant direction, or in some situations, even losing its license. This

obligation is addressed to a group of agents G that are drivers. Clearly, the context X of

this norm consists of all states representing the given street, and the content E of this
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norm consists of all states where the agent is traveling in the prescribed direction. The

sanctions are implemented with functions from violating states to penalty values, and

from violating states to outcome states in the case of the enforced state-transitions.

Definition 6 (Prohibited state). Let s ∈ S be a state, q ∈ N be a prohibition

denoted as 〈α, prohibition,G,X,E,σ〉. The state s is prohibited by q iff s ∈ E.

Definition 7 (Obliged state). Let s ∈ S be a state, q ∈ N be an obligation denoted

as 〈α, obligation,G,X,E,σ〉. The state s is obliged by q iff s ∈ E.

A set of states is relevant to a norm 〈α, δ,G,X,E,σ〉 if this set of states is a subset

of X, which indicates the context where the norm applies. Given a set of states that

are relevant to a norm, we can determine which of them violate or comply with it.

Definition 8 (Set of states that violate a norm). Given a norm q ∈ N denoted

as 〈α, δ,G,X,E,σ〉, the set of states of an NMDP 〈S,A,C,T,R,N,D〉 that violate q,
denoted as SOq , is defined as:

SOq =

 E if (δ = prohibition)

X \ E if (δ = obligation).

That is, for a prohibition, every prohibited state is norm violating. On the other

hand, for an obligation, a state is violating if it is in the normative context but it is

not obliged. The set of states that comply with the norm q = 〈α, δ,G,X,E,σ〉 ∈ N,

denoted as S♦q , consists of those states in the normative context X which do not violate

the norm q, that is:

S♦q = X \ SOq .

It is possible to define the set of norm violating states, which contains all states

that violate some norm. This definition is useful to define norm-compliant behaviours,

which avoid violating states regardless of the norms that they violate.

Definition 9 (Norm violating states). The set of violating states of an NMDP is

composed of all states in which at least one norm in N is violated:

SO =
⋃

q∈N

SOq .
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From the relative complement of the set of norm violating states in the entire state

space, we obtain the set of norm-compliant states, denoted as S♦, which contains the

states in S that comply with all norms in N:

S♦ = S \ SO.

Regarding the detection model, it is assumed that detected violations are sanc-

tioned, so, the function D(q, s) provides the measure of the rate at which the sanction

of q is executed if q is violated in the state s. For example, if the violation of the

norm in Example 1 is detected with probability 0.1 in all states, then the agent goes

unpunished with probability 0.9.

3.2 Properties of norms

Norms provide a useful abstraction with which restrictions can be addressed to the

agents. An important aspect to be taken into account during the design of the norms

is that they may conflict with one another. In such situations, an agent has no option

of complying with the norms given that whatever they do causes a norm violation.

Definition 10 (Conflicting norms). Two norms, denoted as qi and qj, are in

conflict in a given state s ∈ S iff this state simultaneously complies with one norm

and violates the other, formally:

(
s ∈ SOqi

∧ s ∈ S♦qj

)
∨
(
s ∈ SOqi

∧ s ∈ S♦qj

)
.

In this case, the given state violates one norm and complies with the other, which

makes impossible to follow both norms in this state. Example 2 provides examples of

conflicting norms, showing that conflicts can happen between norms with the same

deontic modality or between norms with different deontic modalities.

Example 2. Suppose two norms that regulate the travel direction in the same street.

The following items describe the possible conflicts between these norms, which let the

agents with no option of complete norm-compliance given that no state satisfy both

norms simultaneously:
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(i) These norms obligate opposite travel directions.

(ii) Together, these norms prohibit all travel directions.

(iii) One norm obligates a particular travel direction, and the other prohibits it.

If the entire state space if free of normative conflicts, then we say that the set of

norms is normative consistent.

Definition 11 (Normative consistency). A set of norms N is consistent if there

is no state in S that presents a conflict between norms.

Another aspect to be considered in the design of norms is the existence of conflicts

between sanctions, given that in such circumstances, the imposition of conflicting

sanctions affects the outcome of each other. Therefore, the outcome of the enforced-

state transitions depends on the order of execution of the conflicting sanctions.

Definition 12 (Conflicting sanctions). Two sanctions, denoted as 〈ρi,φi〉 and
〈ρj ,φj〉, are in conflict in a given state s ∈ S iff the functions φi and φj are not

permutable 1:

φi(φj(s)) 6= φj(φi(s)).

Example 3 provides an example of sanctions which intend to bring about mutu-

ally exclusive outcomes. In this example, it is assumed that the last sanction to be

executed cancels the outcome of the other.

Example 3. Suppose that two traffic norms are violated in a given state, where the

sanction of the first norm determines that the permanent license of the agent must be

suspended, and the sanction of the second norm determines that the license must be

downgraded to probationary. There is a conflict of sanctions here, given that there is

no state where the license is simultaneously suspended and probationary.

Notice that this section aims exclusively at the identification of conflicts between

sanctions. Their resolution is discussed in Chapter 4, where the normative reasoning

problem is approached with the NMDP framework.

1According to Ritt [100], two rational functions f and g are permutable if f(g(x)) = g(f(x)). This
thesis uses the same definition, however, with functions that calculate the outcome resulting from
enforced state-transitions in response to norm violations.
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3.3 Compact representation of NMDPs

Previous research, as shown in the overview by Boutilier et al. [19], has demonstrated

that factored representations for state spaces can be used to design efficient MDP

solution techniques that exploit a certain structure in the state space. The factored

approach2, differently from an extensional representation, structures the state space

explicitly through factors or features. This section shows how factored state spaces

can be exploited to construct compact representations of norms and detection models.

3.3.1 Factored state space

Let F be the set of all features, a feature fi ∈ F takes on a finite number of values, and

Vfi
stand for the finite set of possible values of fi. A state is any possible assignment

of values to these features, and the state space S is the cross product of the value

spaces for the features as follows:

S = ×F
i=1Vfi

Table 3.1 provides an example of factored state space of an agent in an urban

road network made up of streets composed of discrete cells. In this network, the

position of agent is defined by Street and Cell, and its orientation is defined by

Direction. The Status of the agent indicates its present situation, which can be

holding a position, moving through the network or ended. The License indicates the

type of driving license that the agent possesses, and finally, Seatbelt indicates if the

agent’s seatbelt is fastened or not.

Table 3.1: Example of factored state space.
i fi Vfi

1 Street {00, 01, . . . 07}
2 Cell {00, 01, . . . 23}
3 Direction {Up, Right, Down, Left}
4 Status {Still, Moving, Ended}
5 License {Permanent, Probation, Suspended}
6 Seatbelt {Fastened, Unfastened}

2Factored MDPs, as defined in [19], use compact representations for the transition model. How-
ever, the work developed in this thesis uses an extensional representation of transitions, focusing this
way on the factored representation of the new components N and D.
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3.3.2 Norms

In factored state spaces, the states in X and E can be described by a logical formula ξ

over the features. The syntax of this formula can be defined according to the following

grammar:

NC ::= ¬NC | (NC ∨ NC) | (NC ∧ NC) | FV

FV ::= ( feature = value )

where value ∈ Vfeature is the value assigned to feature; ¬ is the negation operator;

and ∨ and ∧ are the connectives disjunction and conjunction. In the definition of

X, this formula is called normative context, and in the definition of E, it is called

normative content.

The procedure of verifying if a state is relevant to a norm constitutes a boolean

satisfiability problem on which we aim at determining if the features defining the

state satisfy the normative context. Linking this feature-based approach with the set

theoretical Definition 4, s ∈ X if s satisfies the normative context formula, and s ∈ E

if s satisfies the normative content formula.

Definition 13 (Satisfiability). A state s ∈ S satisfies a formula ξ (denoted as s � ξ)

if the value of the features defining the state s can be assigned to ξ in such a way as

to make this formula evaluate to true.

To find out if a state s ∈ S complies or violates a norm q ∈ N, we first have to

determine if q applies in s. Let ξX be the formula specifying the normative context of

q; if s � ξX then q applies in s. In this case, we determine if s satisfies ξE, the formula

specifying the content of q. If s � ξE then s is obliged or prohibited, depending on

the deontic modality of q. Then, the compliance of q in s is determined as follows:

• if (δ = obligation), (s � ξX) and (s � ξE) then s complies with q.

• if (δ = obligation), (s � ξX) and (s 2 ξE) then s violates q.

• if (δ = prohibition), (s � ξX) and (s � ξE) then s violates q.

• if (δ = prohibition), (s � ξX) and (s 2 ξE) then s complies with q.

• if (s 2 ξX) then q is not relevant in s.

46



Chapter 3. Normative MDP framework

In order to specify the penalty function ρ, an ordered set of rules was used, which

is defined by the following grammar:

RULESET ::= {RULE,DEFRULE } | {DEFRULE }
RULE ::= RULE,RULE | RC→ penalty

DEFRULE ::= > → penalty

RC ::= ¬RC | (RC ∨ RC) | (RC ∧ RC) | FV

FV ::= ( feature = value )

where value ∈ Vfeature is the value assigned to feature, and penalty ∈ R. In

this grammar, a rule has the form ω → λ, where ω is a condition represented by a

logical formula and λ is a penalty. To obtain the penalty for an input state s ∈ S, the

applicability of the rules is checked sequentially until this state satisfies the condition

of some rule. If s � ω then λ is the penalty to be paid in s. The default penalty is

provided by the last rule > → λ whose condition is always interpreted as true.

The same rule-based approach is used in the specification of the function φ, whose

rules are defined as follows:

RULESET ::= {RULE,DEFRULE } | {DEFRULE }
RULE ::= RULE,RULE | RC→ {FEATLIST }

DEFRULE ::= > → {FEATLIST }
RC ::= ¬RC | (RC ∨ RC) | (RC ∧ RC) | FV

FEATLIST ::= FEATLIST,FEATLIST | FV

FV ::= ( feature = value )

where value ∈ Vfeature is the value assigned to feature. In this grammar, a rule has

the form ω → {θ1, . . . ,θn}, where ω is a condition represented by a logical formula

and θi, such that 1 ≤ i ≤ n, is a feature with an assigned value. In order to obtain

the outcome state resulting from an enforced transition in an input state s ∈ S (to

determine φ(s)), the applicability of the rules is checked sequentially. When s � ω,

the list of features {θ1, . . . ,θn} is used to update s by overwriting the value of some

of its features, obtaining in this way the outcome state of an enforced state-transition

in s. Again, the default outcome state is given by the last rule > → {θ1, . . . ,θn}.
Example 4 shows how the factored state space specified in Table 3.1 can be used

in the specification of a norm regulating the traffic direction.
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Example 4 (revisiting Example 1). As an example of normative structure instance,

assume an obligation indicating that agent 01 on street 00 must be heading right. The

sanction specifies that if the agent’s license is suspended, it pays −5.0 and is ended. If

the agent is a probationary driver, it pays −2.5 and its license is suspended. Finally,

in the remaining cases, the agent pays −1.0 and turned to the right direction.

〈1, Obligation, {Agent 01},

(Street=00), (Direction=Right),

〈 { (License=Suspended) → −5.0,

(License=Probation)→ −2.5,

> → −1.0 },

{ (License=Suspended) → {(Status=Ended)},

(License=Probation) → {(License=Suspended)},

> → {(Direction=Right)} } 〉〉

Example 5 provides an example of normative conflicts in a given state using a

feature-based representation.

Example 5 (revisiting Example 2). Suppose two norms (qi and qj) that intend to

regulate the traffic in the context of (Street=00), which admits two travel directions:

from left to right or from right to left. Let s ∈ S be a state that s � (Street=00),

so s is part of the context of qi and qj. These norms are in conflict in s if:

(i) qi obligates (Direction=Right) and qj obligates(Direction=Left),

qi obligates (Direction=Left) and qj obligates(Direction=Right),

qj obligates (Direction=Right) and qi obligates(Direction=Left), or

qj obligates (Direction=Left) and qi obligates(Direction=Right).

(ii) qi prohibits (Direction 6=Right) and qj prohibits (Direction 6=Left).

(iii) qi prohibits (Direction=Right) and qj obligates (Direction=Right),

qi prohibits (Direction=Left) and qj obligates (Direction=Left),

qj prohibits (Direction=Right) and qi obligates (Direction=Right), or

qj prohibits (Direction=Left) and qi obligates (Direction=Left).
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In this feature-based approach, a conflict of sanctions occurs in a given state if

there are sanctions updating the same feature with different values. In this case, the

final value of this feature is determined by the order of application of the functions

φ: the last function invoked overrides the value assigned by the previous. If two

sanctions 〈ρi,φi〉 and 〈ρj ,φj〉 are in conflict in a given state s ∈ S and the first has

priority over the second, then the correct order of application is φi(φj(s)). Example

6 provides an example of sanctions in conflict.

Example 6 (revisiting Example 3). Suppose that an agent, currently possessing a

permanent license (License=Permanent), simultaneously violates two norms whose

sanctions are in conflict. The sanction of the first norm determines the suspension

of the agent’s license (License=Suspended), while the sanction of the second norm

determines that the agent must be placed on probation (License=Probation).

3.3.3 Detection model

One way of representing the detection probabilities consists of creating a lookup table

with three columns, where the first column specifies the norm q, the second column

specifies the state s and the third column provides the probability of detecting the

violation of the norm q in the state s. In this extensive approach, D(q, s) returns the

corresponding probability after finding it in the table.

Fortunately, many large state spaces have significant internal structure, and often,

the probability of detecting the violation of a norm depends only on a small number

of features of the state space. So, as an alternative to the extensive approach, it is

possible to utilize Bayesian networks [92, 63], which exploit the structure (factoriza-

tion) of the state space to construct a compact representation of the detection model.

For instance, the probability of some policeman to detect the violation of the norm

shown in Example 4 is likely to depend on the city region (the concentration of po-

lice forces in the city center is likely to be higher than in a quiet neighbourhood, so

wrong-way driving in these regions may have different detection probabilities), but it

is very unlikely to depend on the driver’s license type.

A Bayesian network expressing the probabilities of detecting the violation of a

norm (or set of norms) is composed of n parent nodes, each of them representing a

feature of the state space that is relevant to the prediction of the probabilities (features

not represented are assumed to be irrelevant), and one child node that provides the

detection probabilities. The Conditional Probability Table (CPT) of the child node
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contains the probabilities of detecting the norm violation given the conditions imposed

by the parent nodes. These conditions are set by hard evidences (certain observations

of feature values) on the parent nodes, indicating the state for which we intend to

calculate the detection probability. Based on the evidences on the parent nodes, we

perform a probabilistic inference to calculate the posterior distribution on the child

node. This way, we obtain the detection probability of the given norm in the state

indicated by the evidences.

Formally, a Bayesian network (W,P) expressing a detection model consists of a

directed acyclic graph W = (F′ ∪ {Detect},L) and a set of conditional probability

distributions P. In the graph W, the set F′ ⊆ F contains the parent nodes of the net-

work, and each fi ∈ F′ represents a feature of the state space. Detect is the child

node that provides the detection probabilities. The set L contains the directed arcs

from the parent nodes to the child node. The elements of L are tuples (fi,Detect)

that specify causal relation between fi ∈ F′ and Detect. Each feature node fi ∈ F′

has a finite set of mutually exclusive values and an unconditional probability distri-

bution pi ∈ P. The set P also contains the conditional probability distribution of

Detect, which is conditionally dependent on the features represented by the parent

nodes in F′.

Figure 3.1 shows an example of Bayesian network which expresses the detection

model for the norm shown in Example 4. In this network, the detection probabilities

are conditionally dependent only on the features Street and Cell. Notice that the

values of these features have been grouped in order to produce an even more compact

representation.

DETECT

STREET

CELL

{00,03,04,07}
{01,02,05,06}

-

-

YES

NO

{00,03,04,07} {01,02,05,06}
{00...04,19...23} {05...18} {00...04,19...23} {05...18}

0.01

0.99

0.10

0.90

0.05

0.95

0.40

0.60
{00...04,19...23}
{05...18}

-

-

Figure 3.1: Compact detection model for the norm in Example 4.
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Using this compact representation of the detection model, the computation of

D(q, s) is made as follows: (i) select the network that represents the detection model

of the norm q (a single network can express the detection model of multiple norms),

(ii) use the state s to set the evidences on the parent nodes of the network, and (iii)

perform a causal reasoning to calculate the detection probabilities of q in s.

Figure 3.2 illustrates the outcome of two probabilistic inferences over the Bayesian

network specified in Figure 3.1 using different evidences (see label e in the networks).

In Figure 3.2 (a), the evidences indicate that the agent is in a peripheral region, which

has a low detection probability:

Pro(Detect=Yes | Street ∈ {00, 03, 04, 07},Cell ∈ {00...04, 19...23}) = 0.01;

while in Figure 3.2 (b), the evidences indicate that the agent is in a central region,

which has a high detection probability of wrong-way driving:

Pro(Detect=Yes | Street ∈ {01, 02, 05, 06},Cell ∈ {05...18}) = 0.40.

CELL CELL

DETECTDETECT

STREET STREET

YES

NO

0.01

0.99

YES

NO

0.40

0.60

(a) (b)

{00,03,04,07}
{01,02,05,06}

1.0

0.0

{00...04,19...23}
{05...18}

1.0

0.0

{00,03,04,07}
{01,02,05,06}

0.0

1.0

{00...04,19...23}
{05...18}

0.0

1.0

e

e

e

e

Figure 3.2: Example of outcomes of an inference process over the Bayesian network
shown in Figure 3.1.

3.4 Discussion

This chapter has introduced a mathematical formal framework for modeling normative

sequential decision problems in stochastic domains. This framework, namely NMDP,

generalizes the well-known MDP framework by including explicit representations of

norms and detection probabilities of norm violations, and methods for identifying
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conflicts between norms and between sanctions. This generalization provides a frame-

work upon which we can develop general algorithms for normative sequential decision

making in rational agent models, such as the norm-compliant and self-interested agent

models put forward in Chapter 4.

From a theoretical viewpoint, many of the normative languages shown in Section

2.3 provide principles that allow their implementation in a wide range of normative

multiagent systems. From a practical perspective, as commented in Section 2.6, there

is a gap between the current normative languages and the efforts made in the MDP

community to coordinate and improve the tractability of the processes. To the best of

our knowledge, the extension put forward in this chapter is the first attempt to bridge

this gap [45, 46, 47]. In Oh et al. [87], norms are explicitly represented and used with

MDPs, however, no generalization of the MDP framework is formalized. Furthermore,

neither sanctions nor probabilities of detecting norm violations are considered, which

limits the range of applications of their approach.
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Chapter 4

Norm-aware sequential decision

making agents

There are no morals about technology at all.

Technology expands our ways of thinking about

things, expands our ways of doing things. If

we’re bad people we use technology for bad

purposes and if we’re good people we use it for

good purposes.

Herbert Simon

This chapter puts forward two norm-aware agent models, namely self-interested

and norm-compliant, capable of normative reasoning. Both agent models use the

NMDP framework as knowledge representation, however, they reason about norms in

distinct ways: the self-interested agent prioritizes the maximization of utilities over

the compliance with norms, while norm-compliant agent prioritizes the norm-abiding

behaviour over the utility maximization. These distinct normative reasonings are

based on distinct notions of rationality, which highlights the relativity of this concept.

The self-interested agents are capable of thinking through all possible outcomes and

choosing the actions that bring about the best possible outcome, which is perfect or
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economic rationality1. The norm-compliant agents, on the other side, choose that

course of action which results in the best possible norm-compliant outcome. I refer to

this as economic norm-compliant rationality, which can be seen as a type of bounded

rationality2 given that the norm-compliant agents do not think through all possible

outcomes, only through those that comply with the norms.

In Cognitive and Social Action [33, p. 90], Conte and Castelfranchi state:

Normative reasoning is neither necessary nor sufficient for a norm-abiding

behaviour to occur: (a) it is by no means necessary since it might occur

either accidentally or out of simple imitation; (b) it is not sufficient since

normative reasoning and decision-making may produce a transgression of

norms, . . . Therefore, to model the normative reasoning does not imply

modeling a norm-abiding system.

The normative reasoning performed by norm-compliant and self-interested agents

is not necessary for a norm-abiding behaviour. Even ignoring the existence of norms

ruling the system, these agents may accidentally choose actions that respect them.

In the self-interested model, the normative reasoning is not sufficient for a norm-

abiding behaviour, given that the agents implemented according to this model violate

the norms if the expected utility of doing so exceeds the expected utility of following

them. On the other side, in the norm-compliant model, the normative reasoning is

sufficient for a norm-abiding behaviour, that is, the decisions taken by the norm-

compliant agents introduced in this chapter never produce transgressions of norms.

This chapter is organized as follows. Section 4.1 presents elements and assump-

tions shared by the agent models proposed in this chapter. Section 4.2 introduces

the self-interested agent model, and Section 4.3 introduces the norm-compliant agent

model. Finally, Section 4.4 closes the chapter by promoting a discussion about these

norm-aware agent models.

1In economics and game theory, the agents are sometimes considered to have perfect or economic
rationality, that is, they are perfectly logical and geared toward maximum economic gain. This is
the case of the self-interested agent model, presented in Section 4.2, which explores its entire state
space in order to compute an optimal policy that maximizes its expected utilities.

2Concept introduced by Herbert Simon [109] to define that decision-makers in real-world situa-
tions have to face constraints such as limited, often unreliable, information regarding the possible
alternatives and their consequences, and limited capacity to process the information that is available.
The norm-compliant agents, presented in Section 4.3, are boundedly rational given that they always
comply with the norms and do not exploit the entire state space as the self-interested agents do.
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4.1 Common elements of the agent models

Generally speaking, the problem addressed by the agent models proposed in this thesis

is how to reason about norms with the NMDP framework in such a way that we can

quantitatively assess the impact of a particular set of norms on the performance of the

agents. Although each agent model addresses this problem from different perspectives,

both models share the same structure as we can see in Figure 4.1.

NMDP

Compute
a policy
for the
MDP.

MDP PolicyNormative reasoning.

(implemented by the agent models)

Figure 4.1: Control flow of the agent models, consisting of a normative reasoning over
the NMDP input, followed by the policy computation for the resulting MDP.

The following delineate the control flow of the agent shown in Figure 4.1:

• Agent knowledge: The knowledge input into the agents is an NMDP, which rep-

resents the environment where the agents are launched. It is assumed that this

environment is stochastic, memoryless3 and ontologically fixed (properties cap-

tured by the NMDP framework). The agents assume that the NMDP instance

is an accurate and complete representation of the environment, even though this

is not the case.

• Normative reasoning : This process transforms an NMDP input into an MDP

that can be computationally solved with known algorithms. The way the nor-

mative reasoning is performed depends on the agent model: while the self-

interested individuals are norm-autonomous, the norm-compliant ones are not.

Section 4.2 and Section 4.3 details the normative reasoning of the self-interested

and norm-compliant agents, respectively.

3A stochastic process is memoryless, or has the Markov property, if the conditional probability
distribution of future states of the process depends only upon the present state, not on the sequence
of events that preceded it.
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• Policy computation: The quantitative assessment of the impact of a particular

set of norms on the performance of an agent is made on the basis of the expected

utility of the agent’s policies. To compute the policies (solve the MDP) we can

employ well-known algorithms, such as Value Iteration [6], Policy Iteration [61],

or Modified Policy Iteration [115, 95].

4.2 Self-interested agent model

A self-interested agent violates a norm only if the expected utility of doing so exceeds

the expected utility of complying with the norm. The control flow of this agent

model, shown in Figure 4.2, consists of identifying which states violate which norms,

and then, representing the respective sanctions within these states. Finally, the agent

constructs a policy for the resulting MDP.

NMDP

Identify
which states

violate
which norms.
(Algorithm 3) (Algorithm 4)

Represent
the

respective
sanctions.

Compute
a policy
for the
MDP.

MDP

NMDP

Q |...1 QS|

Policy

Normative reasoning.

Figure 4.2: The control flow of the self-interested agent model consists of three serial
processes: identification of which states violate which norms (Algorithm 3), represen-
tation of sanctions (Algorithm 4) and policy computation.

Embodying norms in a normative model in the form of hard-wired constraints

[111] has been remarked as problematic for many applications given that it automat-

ically enforces the norms and constrains the ability of mirroring changes in the set of

norms [28]. Bearing in mind this fact, the algorithms specified in this chapter have

declarative descriptions of norms as input.
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Algorithm 3 specifies how to identify which norms are violated in which states.

During the algorithm’s execution, the norms violated in s ∈ S are added to Qs. For

all norms q ∈ N (L3), the algorithm checks if the agent is an addressee of q (L4):

if so, it assesses SOq , the set of states that violate q (L5–L7). For all states in SOq , if

the violation of q can be detected in s (L9), q is added to Qs. Finally, the algorithm

returns the NMDP with no updates and the sets Q1 . . .Q|S|, where Qi contains the

norms violated in the ith state in S.

Algorithm 3 – Identify which states violate which norms.
Input: 〈S,A,C,T,R,N,D〉 (NMDP).
Output: 〈S,A,C,T,R,N,D〉 (NMDP),

Q1 . . .Q|S| (Norms violated in each state).
1. for all (s ∈ S) do
2. Qs← ∅
3. for all (q = 〈α, δ,G,X,E,σ〉 ∈ N ) do
4. if (agent ∈ G) then
5. if (δ = prohibition) then
6. SOq ← E

7. else SOq ← X \ E

8. for all (s ∈ SOq ) do
9. if (D(q, s) > 0) then

10. Qs ← Qs ∪ {q}
11. return 〈S,A,C,T,R,N,D〉, Q1 . . .Q|S|

At the moment that the violating states have been identified by Algorithm 3, the

respective sanctions are represented within these violating states. That is, any NMDP

〈S,A,C,T,R,N,D〉 can be transformed into an regular MDP 〈S′,A′,C′,T′,R′〉 that
encodes the sanctions.

It is assumed that the sanctions are imposed by an enforcer with no knowledge

about the agents’ capabilities and policies. This means that norm violations cannot

be foreseen by the enforcer. It is also assumed that norm violations are detectable

only in the states they take place, and the norm enforcement cannot be made in a

later time step when the agent has left the states that violate the norm.

The conflicts between sanctions are dealt with on the basis of the priority of the

sanctions (here, the sanction’s priority is the norm’s priority α). For instance, if

〈ρ1,φ1〉 has priority over 〈ρ2,φ2〉, φ1 and φ2 must be called in such an order that

the first function overrides, possibly partially, the updates made by the second.
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The combinations of sanctions in a given state s are provided by the powerset of

Qs denoted as Pow(Qs). For instance, if Qs = {q1, q2} then Pow(Qs) = {∅, {q1}, {q2},
{q1, q2}}.

The outcome state resulting from a combination of sanctions B ∈ Pow(Qs) in the

state s ∈ S is calculated by the function Out(s,B) as follows:

Out(s,B) =

 Hi(B).σ.φ(Out(s,B \ Hi(B))) if |B |> 1

Hi(B).σ.φ(s) if |B |= 1

where Hi(B) returns the norm in B with highest priority:

Hi(B) = argmin
q∈B

(q.α),

and Hi(B).σ.φ refers to the function φ of the sanction σ of the norm Hi(B). For

details on the priority of norms and normative structure, see Definition 5.

The set containing the combinations of sanctions W(s, s′) ⊆ Pow(Qs) which exe-

cuted in s ∈ S bring about s′ ∈ S is:

W(s, s′) = {B ∈ Pow(Qs) | (B 6= ∅) ∧ Out(s,B) = s′}.

Using the detection probability of the violation of individual norms provided by

the function D, the probability that a combination B ∈ Pow(Qs) occurs in s ∈ S is

calculated as follows:

Pro(B, s) =
∏
q∈B

D(q, s)
∏

q∈Qs\B

(1−D(q, s)).

Thus, T′(s, a, s′) is determined as follows:

T′(s, a, s′) = T(s, a, s′) Pro(∅, s) +
∑

B∈W(s,s′)

Pro(B, s) (4.1)

The penalty of a combination of sanctions B ∈ Pow(Qs) is the sum of the penalties

of each sanction in B:

Pen(B, s) =
∑
q∈B

q.σ.ρ(s).
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And R′(s, a, s′) is determined as follows:

R′(s, a, s′) =

Pro(∅, s) T(s, a, s′) R(s, a, s′) +
∑

B∈W(s,s′)

Pro(B, s)Pen(B, s)

T′(s, a, s′)
(4.2)

Example 7. Assume an obligation indicating that the direction of the agent 01 in

the street 00 must be right, and a prohibition indicating that it cannot drive with the

seatbelt unfastened. Suppose that in a given state s ∈ S both norms are violated by

the agent 01: it is driving left in the street 00 and its seatbelt is unfastened. Let these

norms be respectively named as q1 and q2, then Qs = {q1, q2}, and let the detection

probability of their violations in s be D(q1, s) = 0.7 and D(q2, s) = 0.2.

q1 = 〈1, Obligation, {Agent 01},

(Street=00), (Direction=Right),

〈 { > → −1.0},

{ > → {(Direction=Right)} } 〉〉

q2 = 〈23, Prohibition, {Agent 01},

(Status=Moving), (Seatbelt=Unfastened),

〈 { > → −0.5},

{ > → {(Seatbelt=Fastened)} } 〉〉

The norms introduced in Example 7 originate four possible combinations of sanc-

tions. Each line in Table 4.1 specifies one of these combinations and its probability

of occurrence calculated with the detection probabilities given in the example.

Table 4.1: Probabilities of combinations of sanctions with respect to the norms intro-
duced in Example 7.

B Pro(B, s)
∅ (1 – 0.7) * (1 – 0.2) = 0.24

{q1} 0.7 * (1 – 0.2) = 0.56
{q2} (1 – 0.7) * 0.2 = 0.06

{q1, q2} 0.7 * 0.2 = 0.14

59



Moser Silva Fagundes

For each combination B in Table 4.2, Pen(B, s) indicates the sum of penalties, and

Out(B, s) describes the outcome state. For the sake of simplicity, this last column

specifies only the updated features. Notice that there are no values for B = ∅ given
that there is no penalty and no enforced transition when no sanction is imposed.

Table 4.2: Penalties and outcome states of combinations of sanctions with respect to
the norms introduced in Example 7.

B Pen(B, s) Out(B, s)
∅ – –

{q1} –1.0 + 0.0 = –1.0 . . . (Direction=Right)
{q2} 0.0 – 0.5 = –0.5 . . . (Seatbelt=Fastened)

{q1, q2} –1.0 – 0.5 = –1.5 . . . (Direction=Right)
(Seatbelt=Fastened)

Algorithm 4 specifies how sanctions are represented within the violating states

indicated by Algorithm 3. First, from L1 to L6, Algorithm 4 creates the parameters

of the MDP to be outputted using the NMDP parameters. The sets S′ and A′ are

augmented by one element each, the absorbing state sι and the action aι, which are

used to represent sanctions within the absorbing states which violate some norm.

For each s ∈ S, if there is some sanction to be represented in s (L8) and s is not

absorbing (L9), T′ and R′ are determined as specified in the expressions (4.1) and

(4.2). Otherwise, if s is absorbing, the algorithm adds a deterministic non-rewarded

transition from s to sι with the action aι (L15–L17). Then, it determines T′ and R′

as specified in the expressions (4.1) and (4.2) (L18–L20).

A self-interested agent searches for a policy that maximizes its expected utilities,

no matter the type of policy. In order to construct a policy for the MDP outputted by

Algorithm 4, this agent can use any standard method. Regarding the complexity of the

algorithms specified in this section, the order of growth of Algorithm 3 is O(|N ||S |).
The time required for Algorithm 4 is O(| S |2| A | 2ψ) where ψ = maxs∈S | Qs | is
the largest number of norms that can be violated in any state. Thus, as long as the

number of norms that can be violated in a given state is small, it is computationally

feasible for a self-interested agent to use the conversion procedure provided and then

solve the resultant MDP in order to determine its best policy.
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Algorithm 4 – Represent sanctions.
Input: 〈S,A,C,T,R,N,D〉 (NMDP),

Q1 . . .Q|S| (Norms violated in each state).
Output: 〈S′,A′,C′,T′,R′〉 (MDP).
1. S′ ← S ← S ∪ {sι}
2. A′ ← A ← A ∪ {aι}
3. C′ ← C

4. T′ ← T

5. R′ ← R

6. C(sι) ← ∅
7. for all (s ∈ S) do
8. if (Qs 6= ∅) then
9. if (C(s) 6= ∅) then

10. for all (a ∈ C(s)) do
11. for all (s′ ∈ S) do
12. determine T′(s, a, s′)
13. determine R′(s, a, s′)
14. else
15. C′(s) ← C(s) ← {aι}
16. T(s, aι, sι)← 1.0
17. R(s, aι, sι)← 0.0
18. for all (s′ ∈ S) do
19. determine T′(s, aι, s′)
20. determine R′(s, aι, s′)
21. return 〈S′,A′,C′,T′,R′〉

4.3 Norm-compliant agent model

Starting from a norm-compliant state does not ensure norm-compliance for the agent’s

whole life. If an agent starts in such a state we can only infer that it is fulfils the

norms in this state, but eventually, executing a given policy, this agent may end up in

some violating state. If this agent aims at guaranteeing norm-compliance during its

whole life, then it must ensure that no state in SO, the set of states that violate some

norm, can be reached. This is exactly what the norm-compliant agent model does.

The control flow of the norm-compliant agent model, shown in Figure 4.3, begins

by assessing SO. Once the assessment of this set has been accomplished, N and D are

discarded from the NMDP so as to get an regular MDP. Using the norm violating

states in SO, the agent constructs a certainly norm-compliant MDP by confining its

state space to S \ SO and by restricting its capability function as follows:

61



Moser Silva Fagundes

CH(s) = {a ∈ C(s) | Imo(s, a) ∩ SO = ∅}

where Imo(s, a) gives the possible immediate outcome states of executing the action

a in the state s:

Imo(s, a) = {s′ ∈ S | T(s, a, s′) > 0}.

Normative reasoning.

NMDP

Assess the
set of 

violating
states S .▽

(Algorithm 5) (Algorithm 6)

Construct 
a norm-

compliant 
MDP.

Compute
a policy
for the
MDP.

MDP

S▽
MDP Policy

Figure 4.3: The control flow of a norm-compliant agent consists of three serial pro-
cesses: assessment of SO (Algorithm 5), construction of a norm-compliant MDP (Al-
gorithm 6), and policy computation.

Algorithm 5 assesses the norm violating states and stores them in the set SO.

For every norm in N (L2), the algorithm verifies if the agent is an addressee of this

norm. If the norm is a prohibition, the prohibited states are added to SO (L4–L5).

Otherwise, if the norm is an obligation, then all states in context where the norm

applies, except the obliged ones, are added to SO (L6). Finally, the algorithm returns

SO and an regular MDP obtained by eliminating N and D from the input NMDP.

Algorithm 5 – Assess SO.
Input: 〈S,A,C,T,R,N,D〉 (NMDP).
Output: 〈S,A,C,T,R〉 (MDP),

SO (States that violate some norm).
1. SO ← ∅
2. for all (q = 〈α, δ,G,X,E,σ〉 ∈ N ) do
3. if (agent ∈ G) then
4. if (δ = prohibition) then
5. SO ← SO ∪ E

6. else SO ← SO ∪ (X \ E)
7. return 〈S,A,C,T,R〉, SO
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Once Algorithm 5 has determined SO, Algorithm 6 is called to generate a certainly

norm-compliant MDP. If there is some violating state (L3), Algorithm 6 limits the

capability function CH in such a way that no state in SO can be reached from states

in SH = S \ SO (L4–L7). This guarantees that the norms are followed if the agent is

launched from some state in SH.

Algorithm 6 – Construct a certainly norm-compliant MDP.
Input: 〈S,A,C,T,R〉 (MDP),

SO (States that violate some norm).
Output: 〈SH,A,CH,T,R〉 (MDP).
1. SH ← S \ SO

2. CH ← C

3. if (SO 6= ∅) then
4. for all (s ∈ SH) do
5. for all (a ∈ CH(s)) do
6. if (Imo(s, a) ∩ SO 6= ∅) then
7. CH(s) ← CH(s) \ {a}
8. return 〈SH,A,CH,T,R〉

Regarding the complexity of the algorithms specified in this section, the order of

growth of Algorithm 5 is O(|N || S |), therefore, polynomial in the number of norms

and number of states. Algorithm 6 is performed in O(|SH||S ||A |), that is, polynomial

in the number of violating states, number of states and number of actions. However,

in practice, Algorithm 6 tends to perform better as the capability function limits the

number of admissible actions (L5). In these cases, the order of growth in the number

of actions is smaller than |A |.

4.4 Discussion

This chapter describes rigorous models of how norms impact the sequential decision

making of norm-aware agents. In particular, it describes computational models of

normative reasoning for two agent types: self-interested agents incorporate sanctions

into the state-transition and reward functions, while norm-compliant agents use norms

to create smaller norm-compliant MDPs. The normative reasoning processes built in

these agent models are specified by means of general algorithms which operate on the

NMDP framework introduced in Chapter 3.

63



Moser Silva Fagundes

The norm-compliant agent model covers all the properties, except norm-autonomy

as it never deviates from the norms. The main advantage of this model is that it uses

norms to prune the decision space, and this way it can ensure coordination with other

norm-compliant agents and achieve computational leverage in the policy construction

(this is demonstrated in the experiments performed in Chapter 5).

The self-interested agent model covers all the properties analyzed in Section 2.5.

To do so, the NMDP framework provides explicit representations of norms and sanc-

tions, while the algorithms built on the top of the framework ensure norm-autonomy

by way of quantitative decisions and probabilistic planning. That is, the self-interested

agent model provides a quantitative principled method for norm-autonomous decision

making on the basis of evaluations of explicitly represented norms and sanctions.

Unlike the MDP extensions for collaborative multiagent systems [17, 9, 59, 5, 54,

7, 83] shown in Section 2.1.4, the approach presented in this thesis allows coordinating

self-interested agents. In this case, coordination can be enforced through the imposi-

tion of adequate sanctions (norm enforcement intensities, penalty values) which make

the self-interested agents to give up on norm violations. Chapter 5 studies the impact

of different sanctions in the agents’ behavior.
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Experimentation
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Chapter 5

Motion problem

It doesn’t matter how beautiful your theory is,

it doesn’t matter how smart you are. If it

doesn’t agree with experiment, it’s wrong.

Richard Feynman

The norm representation and normative reasoning methods for NMDPs give us the

chance to measure the impact of norms on the sequential decision-making of norm-

aware agents, allowing a sort of quantitative evaluations of the agents’ performance.

This chapter provides examples of the type of evaluations that can be made. For this

purpose, several experiments with norm-aware agents were performed in a simulated

environment that models a motion problem governed by norms.

Section 5.1 presents a general description of the motion problem, which elucidates

the motion environment, the actions available to the agents for solving the motion

problem, the reward-based performance measurement used to evaluate the quality of

the solutions, the coordination problems that may take place in multiagent scenarios,

and the normative approach to cope with these problems. Section 5.2 describes how

the motion problem, more specifically the motion environment, is represented with

the NMDP framework, focusing on the technical details of the NMDP specification.

Section 5.3 presents the motion simulator developed to investigate the behaviour of

the norm-aware agents in the normative motion environment under study. Finally,

Section 5.4 explains the experiments, and Section 5.5 presents and discusses the results

of the experiments.
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5.1 General description

5.1.1 Motion Environment

The motion environment resembles an urban road network, however, it is not an at-

tempt to provide a faithful representation of a real traffic situation. This environment,

shown in Figure 5.1, is made up of discrete cells, where the agents (represented by

triangles indicating their direction) are able to move one cell at a time. There are

8 streets, 4 vertical and 4 horizontal (16 intersections), and each street contains 24

contiguous cells. There are 8 gateways via which the agents enter and leave the envi-

ronment: north-west (NW), north-east (NE), south-west (SW), south-east (SE), west-

north (WN), west-south (WS), east-north (EN) and east-south (ES). Once placed in

a gateway, an agent decides between two adjoining streets. For example, in Figure

5.1 (a), the agent in the gateway WS decides between Street=02 and Street=03.

Taken this decision, the agent is free to move around using the available actions. Its

interaction with the environment ends when it leaves through a gateway. For example,

the agent highlighted in Figure 5.1 (b) is terminated when it leaves the environment

via the gateway EN.

From an agent’s perspective, the motion problem consists of moving from an ori-

gin gateway, where the agent is launched from, to a destination gateway, where the

agent receives a positive reward (incentive). Each agent has its own origin and desti-

nation gateways. The motion environment is partially observable: the agents always

know their own position, but they do not know each other’s position. To reach the

destination gateways, the following actions are available for the agents:

• Start : This action is the only one available in the gateways, and it consists of

starting in one of the two adjoining streets. For example, in Figure 5.1 (a) the

agent in the gateway WS decides between street 02 and 03. Taken this decision,

the agent moves into the next cell of the chosen street.

• Move: Consists of moving to an adjacent cell, which is calculated based on the

current direction of the agent. If there is no such an adjacent cell, as illustrated

in Figure 5.1 (c), the agent stays in the same cell.

• Turn: This action changes the agent’s direction based on the rotation parameter,

clockwise or counterclockwise.
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Figure 5.1: Normative multiagent motion environment populated with agents repre-
sented by triangles. Situation (a) shows an agent entering the environment through
the gateway WS. Situation (b) shows an agent that is about to leave the environment
through the gateway EN. In Situation (c), if the agent executes Move, it remains in
the same cell. Situation (d) and (e) indicate crash situations, and Situation (f) gives
an intersection approaching example.

• Stop: This action is available only if the agent is moving, and it consists of

stopping in an adjacent cell, which is calculated based on the current direction

of the agent. Furthermore, if there is no such an adjacent cell, the agent stays

in the same cell.

• End : This action is available only in the cells adjacent to a gateway, and corre-

sponds to leaving the environment using the adjoining gateway. For example, if

the agent shown in Figure 5.1 (b) executes this action, it leaves the environment

via the gateway EN.

Non-determinism is modeled by the fact that Move, Turn and Stop are unreliable:

their intended outcome occurs with probability 0.99, but with probability 0.01 the

agent remains in the same position. The agents’ actions are handled synchronous

with the motion environment, that is, each agent executes one action per time slice

(the synchronization of actions is detailed in Section 5.3 with the motion simulator).
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For every state-transition implied by an action, the agent receives a reward, which

may be positive (motivation) or negative (cost). For this environment, the reward is

−0.01RN for all state-transitions (RN is the normalizing constant), except for stopping

which gives −0.05RN and ending in the destination gateway which gives +0.6RN (an

incentive to reach this gateway quickly). Notice that leaving the environment via any

other gateway gives −0.01RN.

5.1.2 Coordination problem and normative solution

To successfully tackle the motion problem in a multiagent setting, it may not be

enough to find a path from the origin gateway to the destination gateway. It is also

important to avoid crashes along the route. If an agent crashes, its interaction with

the environment is immediately terminated, which makes impossible the achievement

of the destination gateway.

A crash occurs when agents coming from different cells try to occupy the same cell

or when agents occupying adjacent cells try to cross each other in opposite directions.

The first case is illustrated in Figure 5.1 (d), where two agents are about to move into

the same cell, and the second case is shown in Figure 5.1 (e), where two agents are

about to cross each other. Notice that agents moving to the same direction can move

into the same cell with no problems. At intersections, crashes can be avoided if the

agents stop before crossing. It is assumed that in this way the agents are slow enough

to safely cross the intersection, either autonomously or with the help of some central

mechanism provided by the environment infrastructure. The following rule is applied

at intersections: if n > 1 agents do not stop before moving into an intersection, these

n agents crash; any agent that stops before moving into this intersection is immune

to crashes. In Figure 5.1 (f), if one of the agents stops before crossing, no one crashes,

and if no one stops, both crash.

To cope with the motion problem, more specifically with the coordination problems

that cause crashes, I will introduce two groups of norms to regulate the traffic of agents

in the motion environment. The first group specifies a flow direction for each street.

With these norms, it is expected to avoid crashes such as the ones shown in Figure 5.1

(d) and (e). The second group aims at forcing any agent travelling along horizontal

streets to stop before crossing intersections, thus giving priority to agents on vertical

streets. With these norms, it is expected to avoid crashes such as the one illustrated

in Figure 5.1 (f). Detected violations of these norms are punished with penalties, and
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the transgressors are forced behave according to the norms.

In the motion environment, autonomous transgressions of norms are allowed, and

the detection and sanctioning of norm violations is carried out by an enforcement

mechanism. As this mechanism is not capable of observing and controlling the internal

states and processes of the agents, norm enforcement is based on the detection of

violating states in terms of observations in the environment. However, this mechanism

is assumed to be resource-bounded, so the detections are made only to some extent,

that is, some violations may go unpunished. In this context, consider the following

assumptions:

(i) If a norm violations is not immediately detected, it is no longer detectable (there

is no history of the environment, and the agents do not blow the whistle on any

of their acquaintances). If a norm violation is detected, the respective sanction

is imposed immediately.

(ii) The detection probability is the same, regardless of the state and the norm that

has been violated in this state.

(iii) The agents do not know if their norm violations will be detected, but they always

know the detection probabilities1.

5.2 NMDP instances

This section describes the NMDP instances, which represent the motion environment

presented in Section 5.1 from the perspective of the individual agents. First of all,

there are 8 NMDP instances, one for each possible destination gateway. The only

difference between the instances is on the reward function, which gives the positive

reward for ending in the corresponding destination gateway. That is, each instance

incites to reach a different destination gateway. All the remaining components, from

state space to detection function, are shared by all NMDP instances. Said this, the

following details the specification of the NMDP instances (for a detailed specification,

see Appendix B).

From the perspective of an agent, the environment can be observed only partially.

An agent always knows its current street, cell, direction and status, but has no infor-
1Although the assessment of these probabilities is essential to several applications, this problem

is outside the scope of this thesis, which assumes that these probabilities have already been assessed
and focuses on the normative reasoning problem.
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mation about the other agents in the environment. More precisely, the agents do not

know that there are other agents running in the same environment. This can be seen

in the NMDP instances that represent neither features about other agents nor joint

actions. In this context, norms are expected to cope with the coordination problems

between these agents, which are incapable of observe each other.

The state space S, specified in Table 5.1, is composed of 4 features: Street, Cell,

Direction and Status. The features Street and Cell designate the location

of the agent. There are 8 streets made up of 24 contiguous cells, and there are 8

gateways, treated as streets, composed of a single cell named Gateway. The valid

combinations of values for Street and Cell are numbered streets with numbered

cells, and non-numbered streets (gateways) with Gateway2. There are 4 possible

directions: Right, Left, Up and Down. There are 2 possible statuses: Still if the

agent is holding its position; and Moving if the agent is in motion.

Table 5.1: Factored state space representing the motion environment.
i fi Vfi

1 Street {00, 01, . . . 07, NW, NE, SW, SE, WN, WS, EN, ES}
2 Cell {00, 01, . . . 23, Gateway}
3 Direction {Up, Right, Down, Left}
4 Status {Still, Moving}

An intersection is made up of two overlaying cells that represent the same loca-

tion, but belonging to different streets. So, when an agent occupies an intersection,

which Street and which Cell is this agent in? To answer this question, we must

check the agent’s current direction. If Direction∈{Up,Down}, the agent is in

the vertical street, and if Direction∈{Left,Right}, the agent is in the horizontal

street. Figure 5.2 shows the four possible combinations of values for Street, Cell

and Direction at a given intersection, where Street=X meets Street=X’, and

Cell=i and Cell=j represent the same location. Figure 5.2 (a) and (b) illustrate

situations where Direction∈{Left,Right}, which puts the agent in the horizontal

street, while (c) and (d) illustrate situations where Direction∈{Up,Down}, which

puts the agent in the vertical street.

2The agent’s capabilities (admissible actions) are defined in such a way that invalid combinations
of Street and Cell cannot occur.
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(a)
STREET = X
CELL = i
DIRECTION = RIGHT

(b)
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STREET = X
CELL = i
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(c)
STREET = X’
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STREET = X’
CELL = j
DIRECTION = DOWN

Figure 5.2: Situations (a) and (b): if Direction∈{Left,Right} the agent is in the
horizontal street X. Situations (c) and (d): if Direction∈{Up,Down} the agent is
in the vertical street X’. Notice that i is part of X and j is part of X’.

The action space consists of 5 actions,

A = {Start(s),Move,Turn(r),Stop,End},

which are detailed as follows:

• Start(s): The agent is capable of executing this action only when Street∈{NW,

NE, SW, SE, WN, WS, EN, ES} and Cell=Gateway, that is, the agent

is placed in a gateway. The parameter s indicates the street where the agent

decided to start in. This action operates over the features Street and Cell.

For instance, if the agent in Figure 5.1 (a) executes Start(02), Street changes

from WS to 02, and Cell changes from Gateway to 00. The reward for this

action is −0.01RN from any gateway to any adjacent cell.

• Move: This action is available in states where Street∈{00, 01, . . . 07} and

Cell∈{00, 01, . . . 23}. This action updates the value of Cell based on the

current value of Direction, and changes the value of Status to Moving if

its current value is Still. As mentioned in Section 5.1, the intended outcome

of this action occurs with probability 0.99, but with probability 0.01 Cell and

Status stay unchanged. The reward for executing Move is −0.01RN from any

origin state to any outcome state. For example, if an agent executes Move in

the state
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(Street=04, Cell=05, Direction=Up, Status=Moving)

with probability 0.99 the outcome is

(Street=04, Cell=06, Direction=Up, Status=Moving)

and with probability 0.01 it remains in the same state.

• Turn(r): The agent is capable of performing this action in states where Street

∈{00, 01, . . . 07} and Cell∈{00, 01, . . . 23}. This action updates Direction

based on the rotation parameter r∈{Clockwise, Counterclockwise} and

changes the value of Status to Moving if its current value is Still. At inter-

sections, turning also updates Street and Cell based on the new Direction

(see Figure 5.2). The intended outcome of this action occurs with probability

0.99, but with probability 0.01 all features stay unchanged. The reward for this

action is −0.01RN from any origin state to any outcome state. For example, if

an agent executes Turn(Clockwise) in the following intersection

(Street=00, Cell=04, Direction=Right, Status=Moving)

with probability 0.99 the outcome is

(Street=04, Cell=19, Direction=Down, Status=Moving)

and with probability 0.01 it remains in the same state. Notice that the value

of Street is expected to change from 00 to 04 (the perpendicular street), and

Cell is expected to change from 04 to 19 (the overlying cell).

• Stop: This action is available in any state where Street∈{00, 01, . . . 07},

Cell∈{00, 01, . . . 23} and Status=Moving. Like in the action Move, the

value of Cell is updated based on the current value of Direction. The dif-

ference between these actions is that Stop changes Status from Moving to

Still. The intended outcome of this action occurs with probability 0.99, but

with probability 0.01 Cell and Status stay unchanged. The reward for this

action is −0.05RN from any origin state to any outcome state. For example, if

an agent executes Stop in the state

(Street=04, Cell=05, Direction=Up, Status=Moving)
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with probability 0.99 the outcome is

(Street=04, Cell=06, Direction=Up, Status=Still)

and with probability 0.01 it remains in the same state.

• End: The agent is capable of ending only in states where Cell∈{00, 23}, that

is, cells adjacent to gateways. This action operates over Street and Cell. For

instance, if the agent in Figure 5.1 (b) executes End, Street changes from 01

to EN, and Cell changes from 23 to Gateway. The reward for this action

is +0.6RN from any state to the destination gateway, and −0.01RN from any

cell to the remaining gateways. As highlighted in the beginning of this section,

here is the only difference between the NMDP instances: each of them rewards

+0.6RN for ending in a different destination gateway.

As mentioned previously, the agents modeled in this chapter are unaware about

the presence of other agents operating in the motion environment, which may give

rise to crashes. In this context, norms are expected to cope with the coordination

problems between these agents, which are incapable of observe each other. As said

in Section 5.1, the norms active in this environment are divided in two groups. The

first group, named N1, is addressed to all agents in the system and specifies a flow

direction for each street. If a violation of these norms is detected, the agent is set to

the intended direction and loses λRN. The coefficient λ multiplies RN to determine

the penalty imposed by the sanction (Section 5.4 specifies the range of values of λ

that have been used in the experiments). The norms in N1 are specified using the

following template, where α is the norm priority, > means true (the norm is addressed

to all agents in the system), X is a particular street and Y is its flow direction:

〈α, Obligation, >,
(Street=X),
(Direction=Y),

〈 { > → −λRN },
{ > → {(Direction=Y)} } 〉〉

The second group of norms, named N2, aims at forcing any agent travelling along

horizontal streets to stop before crossing intersections, thus giving priority to agents

on vertical streets. If a violation of these norms is detected, the agent loses λRN and

is forced to stop. The norms in N2 are specified according to the following template,

where α is the priority of the norm, > means that this norm is addressed to all agents,
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X is a horizontal street, Y is the obliged flow direction in this street, and Z is a cell

adjacent to an intersection:

〈α, Prohibition, >,
(Street=X) ∧ (Direction=Y) ∧ (Cell=Z),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

Figure 5.3 indicates with arrows the traffic direction for each street as determined

by N1. This figure also indicates with the label S the cells along horizontal streets in

which the agents must stop to give priority to agents travelling in the vertical streets.
N
W

N
E

S
W S
E

WN EN

WS ES

S S S S

S S S S

SS S S

SS S S

Figure 5.3: Traffic direction for each street, indicated by the arrows, and cells where
the agents must stop before moving into the adjacent intersection, indicated by the
label S.

The full set of norms ruling the environment, known by all agents, is N = N1∪N2.

The set of norms N is consistent (see Definition 11), and their respective sanctions are

free of conflicts in S (see Definition 12). The number of norms in N is proportional to

the number of the streets: in N1 there are 8 norms, each one ruling the traffic flow in

the corresponding street, and in N2 there are 16 norms, each one at the corresponding

intersection, ruling the access of agents coming from horizontal streets. As specified

in Appendix B, α ranges from 01 to 24, denoting the unique identifier of the norms.
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As said in Section 5.1, the detection probability of norm violations is the same,

regardless of the state and the norm that has been violated in this state. This makes

the specification of D quite simple, given that D(q, s) = β for any q and s. Section

5.4 specifies the range of values of β used in the experiments. A more sophisticated

detection function, which varies with norms and states, will be presented in the case

study of Chapter 6.

The following remarks close this section:

• There are 8 NMDP instances, each of them providing an incentive by means of

a positive reward for ending in a different destination gateway. These instances,

combined with the agent models, will compose the agent classes employed later

in Section 5.4 to create the agent populations.

• The range of values of λ (penalty coefficient), as well as the range of values of

β (detection probability), are part of the settings utilized in the experiments.

Section 5.4 specifies these settings, which allow to run experiments with different

situations of the environment.

• Any gateway provides access to two streets with different traffic direction rules,

so the agents always have the option of complying with N since the beginning

of their lives, regardless the gateway they are launched from.

• The agents know the topology of the road network and their own location in this

network, but they have no sensors to perceive the presence of other agents. This

limitation gives rise to coordination problems (crashes) that affect their utilities.

In this context, it is expected that the norms help with these problems.

5.3 Simulator

The motion simulator is an implementation of the motion environment described in

Section 5.1 programmed with the Java Platform Standard Edition (Java SE)3.

3http://www.oracle.com/us/technologies/java/overview/index.html
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In each simulation, the simulator, in a synchronous cyclic fashion, provides sensory

information to the participating agents and expects their actions. Time is represented

as discrete time slices, and within a time slice the simulator collects the agents’ actions,

executes the actions, and provides to the agents their respective percepts containing

the outcome of their actions. Figure 5.4 provides an overview of a simulation, where

an active population of agents receives percepts of the simulator (sai is the current

state of the agent ai) and informs the actions to be executed (π(sai) is the action to

be executed by the agent ai in the state sai). The simulator regulates the simulation

according to the norms and the detection function provided. To illustrate the motion

environment as the simulation runs, the simulator communicates with a graphical

interface, where the self-interested agents are depicted as red triangles and the norm-

compliant agents are drawn as blue triangles. The triangles’ orientation indicates the

agents’ current direction. The simulator saves the utilities gained by the agents, the

number of agents that crash, and the penalties paid by the agents for detected norm

violations. With these data, we can calculate the average utility per agent, percentage

of agents that crash, and sum of penalties paid by the agents, which makes possible

to compare agent models, as well as sets of norms.

Close

GUI Log 

Motion Simulator

WN

WS

EN

ES

NW NE

SW SE

Active population

Motion simulator

Percepts Actions
sa1 san... )

...
a1 a2 a3

an

Norms and detection function

⦁
⦁ Crashes

Utilities

⦁ Penalties

...sa1( ) san(¼ ¼

Figure 5.4: Simulation overview.
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The simulator, for a specific environment setting, determines the real utility that

an agent gets from its policy, which not necessarily corresponds to the expected utility

calculated on the basis of a partial view of the environment (as previously mentioned,

the agents cannot observe each other, which in multiagent settings may cause crashes,

which in turn, prevent the involved agents from receiving the positive reward on their

respective destination gateway). For this reason, the simulator determines the state

and the utility (accumulated rewards) of all agents at each time slice based on their

actions utilizing: (i) the state-transition probabilities and the rewards given in Section

5.1.1; (ii) the crash rules provided in Section 5.1.2; and (iii) the penalties and detection

probabilities (later detailed in Section 5.4 with the experimental settings). Notice that

the state-transition probabilities and the reward values are accurately represented by

the agents, as we can see in Section 5.2.

Figure 5.5 depicts the interaction protocol between an agent and the simulator, ex-

pressed as a sequence diagram. First, the agent requests to join the motion simulator,

which has a choice of either accepting or rejecting the proposal (the × in the decision

diamond indicates an exclusive or decision). If the agent is accepted, it will inform

the simulator about its action (the first action is based on the initial state, which the

agent already knows). In the following step, the simulator informs the agent’s per-

ception, which is the outcome state resulting from its action. This action-perception

interaction (illustrated in Figure 5.4 as well) repeats until the agent crashes or exits

the environment through some gateway. At the moment that one of these two events

occur, the simulator informs the agent about the termination of their interaction.

Agent Simulator

request-for-join

accept-join

refuse-join

inform-action

[crash,exit]
inform-termination

inform-percept

Figure 5.5: Interaction protocol between an agent and the simulator.

79



Moser Silva Fagundes

The simulation state-transition is as follows:

1. Handle joining requests from new agents. A request-for-join message contains

a sender (the identification of the agent that intends to join the simulator), a

receiver (simulator), an initial state where the agent requests to start in, and

the agent’s destination gateway, so the simulator knows the gateway where the

agent receives the positive reward. For example, consider the following message

from Agent01 (moving to the destination gateway SE) to Simulator, requesting

to join the environment via the gateway WN:

〈REQUEST–FOR–JOIN〉
〈SENDER〉Agent01 〈/SENDER〉
〈RECEIVER〉Simulator 〈/RECEIVER〉
〈INITIAL–STATE〉
〈STREET〉WN 〈/STREET〉
〈CELL〉Gateway 〈/CELL〉
〈DIRECTION〉Right 〈/DIRECTION〉
〈STATUS〉Still 〈/STATUS〉

〈/INITIAL–STATE〉
〈DESTINATION〉
〈GATEWAY〉SE 〈/GATEWAY〉

〈/DESTINATION〉
〈/REQUEST–FOR–JOIN〉

If the message is understood, the simulator accepts the request and informs the

current iteration (time slice) of the simulator, used to synchronize actions:

〈ACCEPT–JOIN〉
〈SENDER〉Simulator 〈/SENDER〉
〈RECEIVER〉Agent01 〈/RECEIVER〉
〈ITERATION〉 1 〈/ITERATION〉

〈/ACCEPT–JOIN〉

Otherwise, the simulator refuses the request for join:

〈REFUSE–JOIN〉
〈SENDER〉Simulator 〈/SENDER〉
〈RECEIVER〉Agent01 〈/RECEIVER〉

〈/REFUSE–JOIN〉
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2. Collect and execute all actions. In the motion simulator, the actions are exe-

cuted synchronously, that is, the simulator collects all actions (one per agent)

for the current iteration (time slice), and then it executes the actions. As the

simulator implements a stochastic normative environment, the outcome of the

actions is uncertain and depends on the detection of norms violations. The

transition rules of the simulator have been implemented according to the gen-

eral description given in Section 5.1. The following message gives an example

of inform-action, which informs the simulator that Agent01 decided to start in

street 00:

〈INFORM–ACTION〉
〈SENDER〉Agent01 〈/SENDER〉
〈RECEIVER〉Simulator 〈/RECEIVER〉
〈ACTION〉Start(00) 〈/ACTION〉
〈ITERATION〉 1 〈/ITERATION〉

〈/INFORM–ACTION〉

3. Inform terminated agents. All agents that crash or leave the environment receive

a message informing that they have been terminated. The inform-termination

message also includes the cause of the termination. For instance, the following

message informs Agent01 that it has been terminated because it crashed in the

iteration 21:

〈INFORM–TERMINATION〉
〈SENDER〉Simulator 〈/SENDER〉
〈RECEIVER〉Agent01 〈/RECEIVER〉
〈ITERATION〉 21 〈/ITERATION〉
〈CAUSE〉Crash 〈/CAUSE〉

〈/INFORM–TERMINATION〉

4. Deliver the percepts. Each agent still active in the simulator receives a sensory

information by indicating its current street, cell, direction and status. This is

a self-perception given that any information about the other agents running in

the simulator is not provided. For example, after executing the action Start(00)

in the iteration 1 (first time slice), Agent01 receives an inform-percept message

informing its state in the iteration 2 (second time slice):
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〈INFORM–PERCEPT〉
〈SENDER〉Simulator 〈/SENDER〉
〈RECEIVER〉Agent01 〈/RECEIVER〉
〈ITERATION〉 2 〈/ITERATION〉
〈STATE〉
〈STREET〉 00 〈/STREET〉
〈CELL〉 00 〈/CELL〉
〈DIRECTION〉Right 〈/DIRECTION〉
〈STATUS〉Still 〈/STATUS〉

〈/STATE〉
〈/INFORM–PERCEPT〉

And this process repeats as long as there is some agent in the simulator.

5.4 Description of the experiments

The NMDP framework and its algorithms for normative reasoning give us the chance

to measure the impact of norms on the sequential decision-making of agents, allowing

a sort of quantitative evaluations of the agents’ performance. This section presents

comparative experiments, where various experimental settings are applied to estimate

the performance of norm-compliant and self-interested agents in distinct situations of

the environment. The criteria by which the performance of individual agents (micro

perspective) is measured are: (c1) the computational resources spent in the normative

reasoning and policy construction; and (c2) the average utility gained in the motion

simulator by executing its policy.

• According to criterion (c1), we say that the norm-compliant agent model over-

passes the self-interested agent model if the norm-compliant consumes less com-

putational resources than the self-interested during the reasoning processes.

• According to criterion (c2), we say that the norm-compliant agent model over-

passes the self-interested agent model if the utility gained during the simulation

is on average higher in norm-compliant agents than in self-interested agents.
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Furthermore, from the macro perspective, the experiments assess the performance

or effectiveness of various penalties and norm enforcement intensities (detection prob-

abilities) in several populations of agents. This performance is estimated by means of

a simulation (see Figure 5.4) using one of the following criteria: (c3) the percentage

of agents that crash into each other along the simulation; or (c4) the average amount

in penalties (sanctions) collected from the agents, that is, the amount of utility taken

from the agents as a reaction against the norm violations.

Let λiRN and λjRN be penalties, and βi and βj be detection probabilities denoting

norm enforcement intensities:

• According to criterion (c3), (λiRN,βi) outperforms (λjRN,βj) if the percentage

of agents that crash into each other during the simulation is lower with (λiRN,βi)

than with (λjRN,βj).

• According to criterion (c4), (λiRN,βi) outperforms (λjRN,βj) if the income

from the imposition of sanctions (penalties collected from the agents) during

the simulation is higher with (λiRN,βi) than with (λjRN,βj).

While a “good” set of norms according to the crash criterion (c3) clearly aims at

helping the agents by minimizing the occurrence of crashes, we cannot affirm the same

about the penalty criterion (c4). According to this last criterion (profit-oriented), a

“good” set of norms maximizes the income from the imposition of penalties, which

is dissociated from helping the agents to reach their destination gateways. For this

reason, in some contexts, this type of profit-seeking motivation to design and en-

force norms can be considered inappropriate. However, the appropriateness of the

motivation behind the norms lies outside the scope of this thesis.

The simulations have been made under a variety of experimental settings, defined

as follows on the basis of some initial runs:

(s1) λ: The penalty coefficient that multiplies RN to determine the penalty imposed

by the sanctions. The values of λ used in the experiments range from 0.01 to

0.30 with intervals of 0.01.
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(s2) β: The detection probability of norm violations (norm enforcement intensity).

As assumed in Section 5.1, the detection probability is the same, regardless of

the state and the norm that has been violated in this state, that is, D(q, s) = β

for any q ∈ N and s ∈ S. The values of β used in the experiments range from

0.01 to 0.30 with intervals of 0.01.

(s3) µ: Population setting, which determines the properties of the active population

of agents running the motion simulator, The population can be either homo-

geneous, composed of one agent model (self-interested or norm-compliant), or

heterogeneous, composed of both agent models. The content of µ determines the

number of agents per agent model. For example, µ = 10/20 indicates that the

population must be composed of 10 norm-compliant agents and 20 self-interested

agents, totaling 30 agents.

(s4) ζ: Determines the algorithm to be employed in the policy construction process

of the agents, which consists of searching for an exact solution (non-stationary

optimal policy) to an infinite horizon MDP problem. Two algorithms have been

employed to this end: Value Iteration [6] and Modified Policy Iteration [115, 95]

(see Section 2.1.2 for details on these algorithms).

In the experiments throughout this chapter, RN = 4.33. Using this normalization

constant, the average utility gained by the norm-compliant agent running in a single

agent setting is equal to 1.0 (see Section 5.5.1). This way, we can easily visualize the

difference between self-interested and norm-compliant agents in percentage terms, and

establish a comparison between these models under different situations.

An experiment in the motion environment is carried out in three sequential phases,

or processes, as illustrated in Figure 5.6:

(p1) Construction of the agent classes: In this phase, we construct the agent classes,

which will be employed in third phase to create the agents to be launched in

the motion simulator. At this point, it is essential to distinguish agent model

from agent class. The notion of agent model concerns to the internal reasoning

processes that determine the behaviour of an agent. In this thesis, there are

two agent models, norm-compliant and self-interested. An agent class, on the

other hand, is a construct used to create agents, which enables them to have

not only behaviour, but state as well. That is, an agent class consists of an

agent models’ implementation that determines its behaviour, and an NMDP
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instance, described in Section 5.2, that contains the agent’s knowledge and

determines its destination gateway where it receives the positive reward. In

the experiments presented in this chapter, there are 16 agent classes resulting

from the combination of 2 agent models and 8 possible destination gateways.

Notice that the penalty coefficient λ (s1) and the detection probability β (s2)

complete the specification of the norms and detection function, as the agents

are supposed to know these settings. By creating new agents and removing the

ones that have ended or crashed, we maintain an active population running in

the motion simulator (this is detailed in the third phase).

(p2) Reasoning : In this phase, each agent class constructed in (p1) autonomously

computes an optimal policy by reasoning over its NMDP instance. The norma-

tive reasoning processes are determined by the agent model, while the policy

construction algorithm is indicated in the MDP solver setting ζ (s4). The reason-

ing processes are performed offline, that is, each agent computes its individual

policies before it joins the motion simulator. In this second phase, we measure

the computational resources (the agents’ state space size and computation time)

consumed in the reasoning processes. Notice that the outcome of this phase is

a set of optimal policies (one per agent class) regardless the algorithm deter-

mined in ζ (s4), Thus, ζ (s4) impacts only on the consumption of computational

resources. Section 5.5.4 will present and discuss the results of this phase.

(p3) Simulation: This phase consists of launching agents in the motion simulator so

as to measure the utility, crashes and penalties of individual agents or certain

groups of agents. The agents running in the motion simulator compose the active

population generated on the basis of the population setting µ (s3). The penalty

coefficient λ (s1) and the detection probability β (s2) complete the specification

of the detection function and the norms that will regulate the simulation. The

results of this phase will be discussed from Section 5.5.1 to Section 5.5.3.
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NMDP instances (Section 5.2)
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Figure 5.6: Phases of an experiment, illustrated as grey boxes, and their respective
input and output data specified within the arrows. The black star denotes the criteria
by which the performance of individual agents (micro perspective) is measured, while
the white star denotes the criteria by which the effectiveness of the norms is measured.

Figure 5.7 details the sub-processes that compose the simulation phase (p3): the

motion simulator, already introduced in Section 5.3, the active population of agents

running in the simulator, the population manager, which launches and removes agents

to keep the active population operating in the simulator, and finally, the graphical

interface that illustrates the simulation as it advances on the time. Whenever an

agent leaves or crashes in the simulated motion environment, it receives an inform-

termination message from the simulator (see Section 5.3 for details on the communi-

cation protocols between the agents and the simulator). At this moment, the popu-

lation manager replaces this agent by a new one of the same model in order to keep

the population size per agent model as determined in the population setting µ (s3).

The NMDP instance, which determines the destination gateway, as well as the origin

gateway (the agent’s initial state), are randomly selected by the population manager:

the probability of choosing any destination gateway is 1/8 (remind that there are 8

gateways) and the probability of choosing any origin gateway, excluding the selected

destination gateway, is 1/7. This way, we obtain an uniform distribution whereby any
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combination (without repetition) of origin and destination is equally likely to happen.

However, the uniformity of the traffic flow cannot be ensured given that the agents are

autonomous to decide their own routes and destinations. Once the population man-

ager has chosen the agent model and the destination gateway, it constructs the new

agent from the corresponding agent class, and assigns to this agent the chosen origin

gateway as the initial state and its corresponding policy already computed during the

second phase (p2). Finally, the newborn agent autonomously sends a request-for-join

message to the simulator requesting to join the simulated environment. If the agent

is accepted by the simulator, it operates in the environment until it crashes or leaves.

At this moment, the agent is replaced by a new one.

The simulation ends when the population manager stops to create new agents and

the agents in the active population end. The interruption of the population manager

can be made directly by the user, or alternatively, the number of agent replacements

can be determined prior to the simulation. In this case, when the population manager

reaches the number of agent replacements, it no longer creates new agents.

Motion
simulator...

Population
manager

⦁
⦁ Crashes

Utilities

⦁ Penalties

Active population

(p3) Simulation

Optimal policies

New agents

Termin. agents

Actions

Percepts

Agent classes

Norms and detection function

Graphical interface

(s3) µ

µ Population setting(s3)

Figure 5.7: Simulation phase (p3) composed of the following sub-processes: population
manager, motion simulator, graphical interface and active population of agents. The
arrows denote data flow between the processes.
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The experiments are organized as follows:

(e1) Single agent experiments:

The active population must have one agent:

(s3) µ = 1/0 (one norm-compliant agent) or
(s3) µ = 0/1 (one self-interested agent).

As there is only one agent at time in the motion simulator, we can affirm that

the agents’ knowledge about the environment is complete and precise, thus, the

expected utility calculated by the agent expresses with accuracy the average

utility gained in the simulator. Furthermore, since these agents run alone in the

motion simulator (one enters only another exits), crashes never happen. These

experiments measure the performance of the agent models (micro perspective)

by means of the utilities they gain in the motion simulator (c2). The experiments

have been executed under a range of penalties and norm enforcement intensities,

(s1) λ ∈ [0.01, 0.30] and

(s2) β ∈ [0.01, 0.30].

This way, we can measure and compare the performance of the agents in several

situations. From the macro perspective, the sum of penalties collected (c4) is

measured. Section 5.5.1 will present and discuss the results.

(e2) Multiagent experiments with homogeneous populations:

The active population is composed of multiple agents of the same agent model:

(s3) µ = x/0 (multiple norm-compliant agents), where x > 1, or
(s3) µ = 0/x′ (multiple self-interested agents), where x′ > 1.

In settings with norm-compliant agents, crashes never occur as the compliance

with the norms ensures the absence of coordination problems. On the other

hand, in settings with self-interested agents, crashes may happen as long as

the agents violate some norm. Here, the agents’ knowledge about the motion

environment is incomplete: as previously mentioned, the agents know nothing

about their acquaintances. These experiments measure the performance of the

agents by means of the utilities they gain in the motion simulator (c2). A range

of penalties and norm enforcement intensities,

(s1) λ ∈ [0.01, 0.30] and

(s2) β ∈ [0.01, 0.30],
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has been used in the experiments, so we can estimate and compare the agents’

performance under different situations. With self-interested agents, the percent-

age of agents that crash (c3) and the sum of penalties imposed by sanctions (c4)

are measured as well. Section 5.5.2 will present and discuss the results.

(e3) Multiagent experiments with heterogeneous populations:

The active population is composed of multiple agents of both agent models:

(s3) µ = x/x′, where x ≥ 1 and x′ ≥ 1.

As in (e2), these experiments measure the performance of the agent models by

means of the utilities they gain in the motion simulator. The experiments have

been carried out under a range of penalties and norm enforcement intensities,

(s1) λ ∈ [0.01, 0.30] and

(s2) β ∈ [0.01, 0.30],

so we can estimate the performance of the agents (c2) in several situations.

Here, self-interested agents and norm-compliant agents are launched together

in the simulator, and both agent models are subject to crashes as long as some

self-interested agent violates some norm. From the macro perspective, we com-

pare the percentage of agents that crash by agent model (c3), and we sum

the penalties imposed by the sanctions addressed to the self-interested agents

(c4). With these multiagent simulations with heterogeneous populations, it is

expected to understand to what extent the behaviour of one agent model affects

the performance of the other in different environment situations. The results of

these experiments are presented and discussed in Section 5.5.3.

Finally, the assessment of computational resources spent in the reasoning processes

(p2), common to the experiments (e1), (e2) and (e3), is presented in Section 5.5.4.

5.5 Results

5.5.1 Single agent experiments

These are the simplest experiments since there is only one agent at time in the simu-

lator:

(s3) µ = 1/0 (one norm-compliant agent) or
(s3) µ = 0/1 (one self-interested agent).
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The experiments have been executed under a range of penalties and norm enforce-

ment intensities,

(s1) λ ∈ [0.01, 0.30] and
(s2) β ∈ [0.01, 0.30].

Figure 5.8 shows that the average utility gained by a norm-compliant agent run-

ning alone in the motion environment is constant. This is explained by the fact that

this agent model always follows the norms, no matter the penalty coefficient λ (s1)

or detection probability β (s2). The non-normalized average utility is 0.2309RN, and

the value 1.0 has been obtained by setting RN = 4.33. This normalization constant is

used throughout this chapter, so we can easily visualize the difference of performance

between any agent and this norm-compliant agent in percentage terms.
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Figure 5.8: Average utility gained by the norm-compliant agent running alone in the
motion environment – (s3) µ = 1/0.

In the absence of norms regulating the road segments, the optimal choice would

be taking the shortest path to the destination gateway. However, in such an envi-

ronment ruled by norms, a self-interested agent takes the sanctions into account to

maximize its utility. Figure 5.9 shows the average utilities gained by a self-interested

90



Chapter 5. Motion problem

agent running alone in the simulator. As the penalty coefficient λ (s1) and the detec-

tion probability β (s2) increase, the average utility decreases until it reaches 1.0 (the

same average utility gained by the norm-compliant model). At this moment, the self-

interested agent decides to obey the norms because violating them no longer exceeds

the expected utility of complying with them. So, in the single agent motion environ-

ment, where crashes are not possible, the norm-compliant agent never outperforms

the self-interested agent with respect to the average utility gains (c2).
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Figure 5.9: Average utility gained by the self-interested agent running alone in the
motion environment – (s3) µ = 0/1. Each point in the surface gives the average utility
under a particular penalty coefficient λ (s1) and detection probability β (s2).

In the experiments on which the self-interested agent has outperformed the norm-

compliant agent according to the average utility criterion (c2), the self-interested agent

has violated some norm (i.e the norm regulating the traffic direction in the street) in

order to take a shorter path to the destination gateway. In these situations, the cost

saved by taking the non norm-compliant shorter path is larger than the cost imposed

by the sanctions. Figure 5.10 shows the average percentage of the lifetime of the self-

interested agents spent in norm violating states under a particular penalties λ (s1) and

detection probabilities β (s2). As λ and β decrease, the time spent in norm violating
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states increase. Starting from the bottom of the chart (λ=0.30,β=0.30), there is an

area which corresponds to combinations of λ and β that ensure the absence of norm

violations (0.0 per cent). Then, the chart shows an increment on the norm violations,

up 7.6 per cent, followed by a stabilization on the values. Finally, the norm violations

rise again towards (λ = 0.01,β = 0.01), up to 41 per cent.

Notice that the percentage of the agents’ lifetime spent in norm violating states is

not adopted as a performance criterion. Here, this data is used to explain where the

utility gains of the self-interested agents, shown in Figure 5.9, come from.
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Figure 5.10: Average percentage of the lifetime of the self-interested agents spent in
norm violating states. Each point in the surface gives the average percentage under
a particular penalty coefficient λ (s1) and detection probability β (s2).

From the macro perspective, the experiments (e1) estimate the effectiveness of

various penalties and norm enforcement intensities by means of the average income

from penalties collected in a given period of time (c4). Figure 5.11 illustrates the

average amount in penalties collected in a period of 1000 time-steps as a reaction

against the norm violations. Each point in the chart corresponds to the utility taken

under a particular penalty coefficient λ (s1) and detection probability β (s2). Notice

that the chart has been rotated, so the entire surface can be visualized.
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Figure 5.11: Average value in penalties collected in a period of 1000 time-steps. Each
point in the surface gives the average value under a particular λ (s1) and β (s2).

Analyzing Figure 5.11, we can observe that high penalties and norm enforcement

intensities result in no income as these settings inhibit any violation of norms4. As λ

and β decrease (from the right side to the left side of the chart) we can see an abrupt

rise on the values. After this, the values tend to decrease as λ and β decrease. The

maximum value (13.17) has been obtained with λ = 0.16 and β = 0.25.

Figure 5.12 shows in the same chart the average percentage of the self-interested

agents’ lifetime spent in norm violating states (in red, left y-axis) and the average

amount in penalties collected in a period of 1000 time-steps (in green, right y-axis).

The x-axis indicates the norm enforcement intensity β (s2) for the fixed coefficient

λ = 0.20 (s1) arbitrarily chosen. This chart is analyzed in different intervals of β:

• [0.01, 0.02] and [0.04, 0.06]: As β increases, the norm violations decrease and the

income from penalties increases. In this case, the gain caused by the ascent on

β compensates the loss caused by the descent on the number of norm violations.

4Notice that the area in Figure 5.11 where there is no income from penalties corresponds to the
area in Figure 5.10 where there is no norm violations, and corresponds to the area in Figure 5.9
where the agent’s utility is 1.0 (the self-interested agent assumes a norm-compliant behaviour).
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• [0.02, 0.03], [0.06, 0.07] and [0.20, 0.21]: As β increases, the norm violations

decrease and the amount in penalties collected decreases as well. Here, the gain

caused by the ascent on β do not compensate the loss caused by the descent on

the number of norm violations.

• [0.03, 0.04] and [0.07, 0.20]: The quantity of norm violations is stable in these

intervals, and the income from penalties rises as β increases.

• [0.21, 0.30]: The norm enforcement intensity is high enough to inhibit any norm

violating behaviour. In this case, there is no penalties to be collected.
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 (s2)

(s1)  = 0.20, (s3) µ = 0/1
Average percentage of the agents’ lifetime spent in norm violating states

Average value in penalties collected in 1000 time-steps (c4)

Figure 5.12: Average percentage of the agents’ lifetime spent in norm violating states
(left y-axis) and the average value in penalties collected in 1000 time-steps (right y-
axis). The x-axis indicates the norm enforcement intensity β (s2). The experimental
setting is completed with λ = 0.20 (s1) and µ = 0/1 (s3).

As we can observe, the percentage of the agents’ lifetime spent in norm violation is

a monotonic function – it does not increase as β (or λ) increases. However, we cannot

affirm the same about the income from penalties collected from the agents, which is

determined not only by β and λ, but also by the quantity of norm violations, which

in turn, is determined by the autonomous agents on the basis of β and λ. Example 8

shows how these parameters determine the income from penalties.
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Example 8. Consider the following three combinations of β and λ:

(λ = 0.20,β = 0.05),

(λ = 0.20,β = 0.06),

(λ = 0.20,β = 0.07).

Under these combinations, the self-interested agents stay on average 12.2%, 11.5%

and 7.6% of its lifetime in norm violating states, respectively. In 1000 time-steps, it

corresponds to 122, 115 and 76 time-steps occupying norm violating states. Using the

respective β, we can calculate how many times, on average, the norm violations are

detected and the norm violators are punished:

122× 0.05 = 6.10,

115× 0.06 = 6.90,

76× 0.07 = 5.32.

Then, we multiply these values by λRN in order to calculate the income from sanctions

in a period of 1000 time-steps (λ = 0.20,RN = 4.33):

6.10× 0.20× 4.33 = 5.28,

6.90× 0.20× 4.33 = 5.97,

5.32× 0.20× 4.33 = 4.61.

In conclusion, if we increase the enforcement intensity β from 0.05 to 0.06, the income

increases from 5.28 to 5.97. However, if we increase to 0.07, the income decreases to

4.61 (see Figure 5.12). In both cases, the norm violations decrease.

Example 8 shows that the income collected from penalties is a function of λ, β

and the quantity of norm violations. However, only λ and β are determined by the

entity that imposes the norms. The quantity of norm violations is determined by the

autonomous agents. Increasing λ and β means higher income per sanction and higher

percentage of norm violations detected, respectively. But, increasing λ and β also

means that the agents tend to deviate less from the norms. In conclusion, according

to the criterion (c4), to increase λ and β is a good deal only if such an ascent on these

values compensates the loss caused by the change in the agents’ behavior.
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5.5.2 Multiagent experiments with homogeneous populations

In these experiments, the active population is composed of multiple agents of the

same agent model (homogeneous population):

(s3) µ = x/0 (multiple norm-compliant agents), where x > 1, or
(s3) µ = 0/x′ (multiple self-interested agents), where x′ > 1.

The experiments have been executed under a range of penalties and norm enforcement

intensities,

(s1) λ ∈ [0.01, 0.30] and (s2) β ∈ [0.01, 0.30].

In the motion environment, the norms are reasonable designed in the sense that

the addressee agents are capable of achieving any destination gateway by fully com-

plying with the norms, and this fully compliance by the whole population guarantees

the absence of crashes and impositions of sanctions. In this context, the average

utility gained by an agent in norm-compliant homogeneous populations is constant

(equal to 1.0) for any penalty coefficient λ (s1), norm enforcement intensity β (s2) or

population size x (s3). Thus, the utility chart of individual agents in norm-compliant

homogeneous populations is identical to the chart in Figure 5.8.

On the other hand, in self-interested populations, as long as some agent violates

some norm, their individual utility is affected not only by the imposition of sanctions

to punish the norm violations, but also by crashes. Figure 5.13 specifies the average

utility per agent in a homogeneous population of 10 self-interested agents, µ = 0/10

(s3), under different combinations of λ (s1) and β (s2). Starting from the right side

of the chart, where λ=0.30/β=0.30 (notice that the chart has been rotated, so the

entire surface can be visualized), there is an area where the utility is equal to 1.0.

In this area, the penalty coefficient λ (s1) and the detection probability β (s2) are

high enough to force the self-interested agents to follow the norms. Then, the utility

drops abruptly as a result of the norm violations (imposition of penalties) and crashes.

Notice that this abrupt fall coincides with the first rise of norm violations and crashes

(see Figure 5.10 and Figure 5.14). After such an abrupt fall, as long as the amount of

norm violations and crashes stay constant, the utility rises as the λ and β decrease.

Finally, the average utility drops again as a consequence of successive increments on

the norm violations and crashes. Using the utility criterion (c2), in the experiments

(e2), the norm-compliant agents outperform or perform as well as the self-interested

agents under any combination of λ (s1) and β (s2).
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Figure 5.13: Average utility per agent in a population of 10 self-interested agents –
(s3) µ = 0/10. Each point in the surface gives the average utility under a particular
penalty coefficient λ (s1) and detection probability β (s2).

As previously said, the agents have no information about their acquaintances. In

this context, crashes between the agents may happen as long as some of them violate

the norms. From the macro perspective, the experiments estimate the percentage of

agents that crash (c3) and the income from the collection of penalties against norm

violations in self-interested populations (c4).

Figure 5.14 shows the percentage of agents that crash as a consequence of norm

violations. Starting from the bottom of the chart, where λ=0.30/β=0.30, we observe

a flat area with no crashes. Under these setups, the agent obeys the full set of norms.

Then, an increment is observed, followed by a stabilization of the values. Finally, we

can see successive increments on the percentage.

Observe that the surface form of this chart matches the surface form of the chart

in Figure 5.10, indicating that the percentage of agents that crash is directly propor-

tional to the percentage of the agents’ lifetime spent in norm violating states. Thus,

according to the criterion (c3), the largest values of λ (s1) and β (s2) are the best –

enforcing fully norm-compliance ensures the absence of crashes.
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Figure 5.14: Average percentage of agents that crash in a population of 10 self-
interested agents – (s3) µ = 0/10. Each point in the surface gives the percentage
under a particular penalty coefficient λ (s1) and detection probability β (s2).

A correlation between crashes and average utility can be observed in Figure 5.15,

which presents: (a) the average utility of the agents and (b) the average percentage of

agents that crash. These experiments have been carried out with several population

sizes (s3), ranging from µ = 0/1 to µ = 0/10, and with two fixed combinations of λ

(s1) and β (s2):

• (s1) λ = 0.01 and (s2) β = 0.01; and
• (s1) λ = 0.10 and (s2) β = 0.10.

Figure 5.15 (a) shows that the average utility of the self-interested agents (red

lines) declines as the population of self-interested agents increases, while the average

utility of the norm-compliant agents (blue line) is constant. The descent on the self-

interested agents’ utilities is caused by the ascent on the percentage of agents that

crash, illustrated in Figure 5.15 (b). According to the utility criterion (c2), if (s1)

λ=0.01 and (s2) β=0.01, the self-interested agents outperform the norm-compliant

agents only in populations smaller than 5 agents; if (s1) λ=0.10 and (s2) β=0.10,

the self-interested agents outperform the norm-compliant agents only in populations

smaller than 7 agents.
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(b)
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Figure 5.15: Graphs showing (a) the average utility of the individual agents and (b)
the average percentage of agents that crash with several population sizes ranging from
1 to 10 agents (s3).
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Still, from the macro perspective, the experiments (e2) estimate the effectiveness

of several penalties and norm enforcement intensities with respect to the income from

penalties collected in a given period of time (c4). Figure 5.16 shows the average

amount in penalties collected from 10 self-interested agents, (s3) µ = 0/10, during

1000 time-steps. Each point in the chart indicates the utility taken under a particular

λ (s1) and β (s2). The surface of the chart in Figure 5.16 has the same form (shape)

of the surface of the chart in Figure 5.11. The only difference between these charts

is the income (z-axis), which is ∼10 times larger in the last for any λ and β. This

indicates that the income from penalties rose proportionally to the number of agents

running in the motion environment. The maximum value (141.36) has been obtained

with λ = 0.16 and β = 0.25 as well.
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Figure 5.16: Average value in penalties collected in a period of 1000 time-steps from
a population of 10 self-interested agents – (s3) µ = 0/10. Each point in the surface
gives the average income under a particular λ (s1) and β (s2).

100



Chapter 5. Motion problem

5.5.3 Multiagent experiments with heterogeneous populations

In the multiagent experiments with heterogeneous populations, the active population

is composed of multiple agents of both agent models:

(s3) µ = x/x′, where x ≥ 1 and x′ ≥ 1.

Three combinations of penalty coefficients (s1) and norm enforcement intensities (s2)

have been used to create several situations of the environment:

• (s1) λ = 0.01 and (s2) β = 0.01,

• (s1) λ = 0.10 and (s2) β = 0.10, and

• (s1) λ = 0.20 and (s2) β = 0.20.

The previous experiments have shown that these three combinations produce dif-

ferent levels on the amount of norm violations by self-interested agents, which in turn,

impacts on the agents’ utility (c2), amount of crashes (c3) and income collected from

penalties imposed against norm violations (c4). This makes these settings adequate

to produce different situations of the environment.

Here, self-interested agents and norm-compliant agents are launched together in

the motion simulator, and both agent models are subject to crashes as long as some

self-interested agent violates some norm. This means that the behaviour of the self-

interested agents may worsen the performance of the norm-compliant agents.

From the micro perspective, Figure 5.17 shows the average utility per agent with

the population setting fixed to µ = 5/x′, that is, the number of norm-compliant

agents in the active population is fixed to 5, so we can check the impact of varying

the number of self-interested agents. In Figure 5.17 (a) we set a low penalty and norm

enforcement intensity, (s1) λ = 0.01 an (s2) β = 0.01, while in Figure 5.17 (b) we

set a high penalty and norm enforcement intensity, (s1) λ = 0.20 an (s2) β = 0.20.

In both cases, the utilities of all agents fall as the number of self-interested agents

increase. The difference is that with the lower penalty the utilities fall in higher

rates. We can also observe that with the lower penalty, the self-interested agents

outperform the norm-compliant agents, and with higher penalty, the norm-compliant

agents outperform the self-interested agents.
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Figure 5.17: Average utilities of agents in a heterogeneous society.

From the macro perspective, Figure 5.18 shows the average percentage of agents

that crash with different settings. In Figure 5.18 (a) the population setting is µ = x/5,

that is, the number of self-interested agents in the active population is fixed to 5, and

the number of norm-compliant agents in the active population varies as indicated in

the x-axis. As we can see, as the crashes rise slightly as the number of norm-compliant

agents grows. On the other hand, in Figure 5.18 (b), we can observe steeper rises on

the crashes. In this chart, the population setting is µ = 5/x′, that is, the number

of norm-compliant agents in the active population is fixed to 5, and the number of

self-interested agents in the active population varies as indicated in the x-axis. The
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steeper rises are explained by the fact that the higher the number of self-interested

agents violating norms, the more likely that any agent in the environment crashes.

In Figure 5.18 we can also observe that the higher λ (s1) and β (s2), the smaller the

average number of agents that crash.
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Figure 5.18: Average percentage of agents that crash in a heterogeneous population
with different settings.
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Still, from the macro perspective, the experiments (e3) estimate the average in-

come from penalties against norm violations (c4), collected in a given period of time

from heterogeneous populations. Figure 5.19 shows the average value in penalties

collected in 1000 time-steps from heterogeneous populations composed of 5 norm-

compliant agents and x′ self-interested agents, µ = 5/x′ (s3). As we can observe, for

any of the three combinations of λ (s1) and β (s2), the income rises as the number of

self-interested agents in the active population grows. That is, the larger the number

of agents violating the norms, the larger the income. On the other hand, varying the

number of norm-compliant agents in the active populations has shown no increase on

the income as these agents are never penalized.
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5.5.4 Resource consumption

This section empirically estimates the resource consumption of the reasoning processes

of the agent models. To this end, the time consumed by the algorithms is measured

with the Java Interactive Profiler (JIP)5, a high performance, low overhead profiler

that is written entirely in Java and distributed under the BSD license (freeware). The

output of this tool is provided and explained in Appendix C.

As we can see in Figure 5.6, the reasoning phase (p2) has two inputs: the agent

classes (see the construction of the agent classes (p1) in Section 5.4) and ζ (s4), an

algorithm to construct policies for MDPs.

Two algorithms have been experimented:

(i) ζ = Value Iteration (VI), and

(ii) ζ = Modified Policy Iteration (MPI).

Figure 5.20 illustrates the internal processes of the agent models, which provide

the structure by which the remaining of this section is organized:

• Firstly, this section estimates the time spent by the normative reasoning of the

agent models so as to establish a comparison between them. More specifically,

it compares Algorithm 3 with Algorithm 5, and Algorithm 4 with Algorithm 6.

• Then, it calculates the size of the state space of the MDP that results from the

normative reasoning. The size of the state space is related to the time necessary

to compute an optimal policy: the smaller the state space, the faster the policy

construction tends to be.

• Finally, this section presents the results on the policy construction.

5http://jiprof.sourceforge.net
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Normative reasoning.
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Figure 5.20: (a) Self-interested agent model and (b) norm-compliant agent model.
For details on the agent models, see Section 4.2 and Section 4.3, respectively.

Table 5.2 specifies the time (in milliseconds) consumed in the normative reasoning

of the agent models. As we can see, Algorithm 5 has been 1.04 times faster than Al-

gorithm 3, and Algorithm 6 has been 3.48 times faster than Algorithm 4. Considering

the total time spent in the normative reasoning, the norm-compliant agent model has

been ∼1.35 times faster than the self-interested agent model.

Table 5.2: Time in milliseconds consumed in the normative reasoning.
Agent model Algorithm Time (ms) Total time (ms)

Self-interested
Algorithm 3 2856,3

4297,7
Algorithm 4 1441,4

Norm-compliant
Algorithm 5 2746,4

3160,4
Algorithm 6 414,0
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The time spent by Algorithm 3 and Algorithm 5 has been determined to a greater

extent by the Java Expression Parser (JEP)6, a Java library for parsing and evaluating

mathematical expressions, which is used in the normative reasoning to determine if a

state satisfy the normative context/content of a norm (boolean satisfiability problem).

In Algorithm 3, the parsing and evaluation of boolean expressions correspond to ∼97%
of the time, while in Algorithm 5, these procedures represent ∼88% of the time. See

Appendix C for further details on the assessment of this data.

The NMDP instances specified in Section 5.2 contain 3200 states, resulting from

the combination of the features: 16 values for Street, 25 for Cell, 4 for Direction,

and 2 for Status. Out of these 3200 states, 50% are invalid combinations of Street

and Cell, which are unreachable from any valid state by means of state-transitions.

The valid combinations,

{00, 01, . . . 07} ×
{00, 01, . . . 23} ×
{Up, Right, Down, Left} ×
{Still, Moving} = 1536 states, and

{NW, NE, SW, SE, WN, WS, EN, ES} ×
{Gateway} ×
{Up, Right, Down, Left} ×
{Still, Moving} = 64 states,

sum 1600 states, which correspond to the agents’ working state space. While the

self-interested agents explore the entire working state space to construct their policies,

the norm-compliant agents explore only part of it – the subset of states that comply

with all norms. By excluding the states that violate some norm, the working state

space of the norm-compliant agents is reduced from 1600 to 432 states, a reduction of

73%. The number of admissible actions per state of the norm-compliant agents has

been reduced as well. While the self-interested agents have to decide among 4 actions

on average, the norm-compliant agents have to choose from 2 actions on average. Of

course, the magnitude of these reductions depends on the specification (design) of the

norms, since the norm-compliant states are determined on this basis.

6The experiments performed in this thesis use the version 2.4.1 of JEP, distributed under the GPL
license. The developer states that the latest version (3.4) parses and evaluates expressions faster than
the past releases. However, the versions higher than 2.4.1 are distributed under a commercial license
(payware), and for this reason, they have not been tested in this thesis. More information about the
library can be found in developer’s page: http://www.singularsys.com/jep/
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To study the relation between the size of the state space of each agent model and

the time consumed by them to construct an optimal policy, two algorithms for solving

MDPs (s4) have been tested: Value Iteration (VI) [6] and Modified Policy Iteration

(MPI) [95]. In the VI version used here, described in Chapter 2, the error tolerance is

ε = 10−3RN and the discount factor is γ = 0.99. With the MPI, described in Chapter

2 as well, a series of initial runs have been made to identify an effective configuration,

detailed later.

To construct an optimal policy with VI, both agent models had to perform 42 value

iterations. Although the number of value iterations is the same for both agent models,

the time spent by each value iteration in the self-interested model is significantly

higher. As we can observe in Table 5.3, the construction of an optimal policy using

VI in the norm-compliant agent model is ∼4.66 faster than in the self-interested agent

model. The times shown in Table 5.3 have been measured with the JIP in millisecond

(ms) precision.

Table 5.3: Agent models and their respective number of value iterations, and total
time in milliseconds consumed in the construction of an optimal policy using the VI
algorithm.

Agent model Value iterations Total time (ms)
Norm-compliant 42 2599,2
Self-interested 42 11816,9

Figure 5.21 shows the evolution of the utility estimates as the VI algorithm iterates:

(a) shows the utilities for the norm-compliant agent heading to WN, while (b) shows

the utilities for the self-interested agent heading to the same destination. Each line in

the graph illustrates the evolution of the expected utility for running from a particular

origin gateway. Starting with initial values of zero, the utilities immediately drop to

−0.02 (two actions, starting and ending in the same gateway) until, at some point, a

path is found to the destination, whereupon the utility rises.
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Figure 5.21: Graphs showing the evolution of the utilities as the VI algorithm iterates:
(a) shows the utilities for the norm-compliant agent, while (b) shows the utilities for
the self-interested agent. The destination gateway for both agents is WN. The lines
illustrate the utility evolution for the agent from the possible origin gateways.

To construct an optimal policy, the MPI with order 5 required less time than the

VI. The order of the MPI (number of value iterations per policy evaluation) has been

selected on the basis of some preliminary experiments. The initial policy consists of

executing Move where this action is admissible; in the states where this action is not

available, the initial policy determines the execution of Start, End, Turn or Stop,

in this order, according to their availability.
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Table 5.4 shows the time in milliseconds (ms) and the number of policy iterations

to compute an optimal policy with the MPI. The time consumed by the self-interested

model using the selected setup has been ∼2.4 times greater than the time consumed by

the norm-compliant model. While the self-interested model made 9 policy iterations

to compute an optimal policy, the norm-compliant model has found it with 7 policy

iterations. Although the norm-compliant model performs more policy iterations, the

time consumed by each iteration is significantly lower. This is explained by the fact

that the state space of the norm-compliant agent is smaller, which saves time during

the policy evaluation and policy improvement.

Table 5.4: Agent model (MPI order), number of policy iterations, and total time in
milliseconds consumed in the construction of an optimal policy using the given MPI
order.

Agent model (MPI order) Policy iterations Total time (ms)
Norm-compliant (5) 9 1601,9
Self-interested (5) 7 3836,0

In the experiments, the norm-compliant agent model overpassed the self-interested

agent model according to criterion (c1), given that the norm-compliant consumed less

computational resources than the self-interested during the reasoning processes.

5.6 Discussion

This chapter has presented a series of experiments in a simulated multiagent motion

environment with the intention of measuring the impact of norms on the sequential

decision-making of norm-aware agents. The experiments have been performed under

a wide range of settings and the results have been analyzed and compared by way of

well defined performance criteria.
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5.6.1 Impact of norms on agents’ utility

In the single agent experiments (e1), for any combination of penalty coefficient λ (s1)

and enforcement intensity β (s2), the self-interested agents outperform or perform as

well as the norm-compliant agents according to the average utility criterion (c2). Here,

the coordination function of the norms is superfluous, however, the norm-compliant

agents cannot detect this. The lower the penalty and detection probability, the more

self-interested agents are willing to explore the forbidden partitions of the state space,

which in single agent settings, lead to higher agent utility.

In the multiagent experiments with homogeneous populations (e2), when the num-

ber of agents exceeds a certain threshold (see Figure 5.15 (a)), the usefulness of norms

as a coordination device becomes apparent. As an effect of the adequate coordination

provided by the norms, norm-compliant agents have a larger average utility (c2) than

self-interested agents. Thus, in this case, norms diminish the computational effort of

decision making and help to achieve coordination in highly populated environments.

5.6.2 Norms and coordination problems

In the multiagent experiments (e2) and (e3), the largest the penalties λ (s1) and norm

enforcement intensities β (s2), the lower is the number of crashes (c3). In Figure 5.14

we can observe that some combinations of large values for λ and β enforce full norm

compliance and ensure the absence of crashes.

In the multiagent experiments with heterogeneous populations (e3), as we can see

in Figure 5.18, the average percentage of agents that crash increases as the number

of agents in the environment increases. If we increase the number of self-interested

agents, the percentage of agents that crash rises at higher rates than increasing the

number of norm-compliant agents.
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5.6.3 Income from penalties against norm violations

From the macro perspective, the combinations of penalties λ (s1) and norm enforce-

ment intensities β (s2) that make the self-interested agents comply with the norms

result in no income from penalties (c4) as there are no norm violations to be penal-

ized. With the rest of combinations of λ and β, the income tends to increase as λ and

β rise, except for some small descents caused by reductions on the amount of norm

violations committed by the agents.

In multiagent settings, the income from penalties against norm violations (c4) is

proportional to the number of self-interested agents running in the motion simulator.

For example, compare the income from a single self-interested agent, shown in Figure

5.11, with the income from 10 self-interested agents, shown in Figure 5.16. The last

is approximately 10 times larger than the first.

5.6.4 Norm abidance and the cost of making rational decisions

The results presented in this chapter illustrate how norms can be used to prune the

agents’ search space. Thus, the reasoning problem that genuinely norm-compliance

agents have to face becomes simpler (they only reason with the norm-compliant

states). As a result, their cognitive load is reduced and it takes them less time to

compute their policies, when compared to self-interested agents that need to search

the entire problem space.

In the experiments, the normative reasoning in the norm-compliant agents is∼1.35
times faster than in the self-interested agents, and the size of state space of the norm-

compliant agents is 27% the size of the state space of the self-interested agents. Using

Value Iteration (s4), the norm-compliant agents construct an optimal policy ∼4.66
times faster than the self-interested agents, and using Modified Policy Iteration (s4),

the norm-compliant agents construct an optimal policy ∼2.4 times faster than their

self-interested acquaintances.
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Evaluation of contracts

Any time you take a chance you better be sure

the rewards are worth the risk because they can

put you away just as fast for a ten dollar heist

as they can for a million dollar job.

Stanley Kubrick

In regulated multiagent systems [52, 123, 32] the agents may be subject to mech-

anisms for adjusting their behaviour at some level in order to orchestrate a global

behaviour. The usefulness of such regulations becomes more prominent in open sys-

tems, where heterogeneous agents are able to join and leave the system at runtime.

In these open systems, there are no guarantees that the agents will act in a particular

manner, and in this case, the establishment of some type of control over them makes

possible the coordination of tasks and the avoidance of undesired states of the world.

Contracts have demonstrated to be suitable for regulating the behaviour of agents

in several domains, such as for service procurement in the insurance industry, service

level agreement management in software engineering, and aircraft engine aftercare.

While we do not detail the specific applications in this thesis, Jakob et al. [62] provide

substantial further details of the use cases for these. In particular, contracts express

the responsibilities of each of the involved parties through the specification of norms;

it is this core normative aspect of contracts that is the focus of this chapter. These

contracts thus represent agreements of the parties, making explicit what each party

can expect from the others, but providing flexibility in how they accomplish their own

obligations.
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Once the contracts have been specified by means of norms, the contracts’ lifetime

can be divided in two sequential phases:

• Pre-signing: In order to evaluate the contracts, the agents calculate the expected

earnings of signing the contracts and the norm violations probabilities (risks)

by the addressees of the contracts; then, based on the information obtained in

the evaluations, the agents engage in negotiations [104, 99, 60, 12] that might

result in agreements;

• Post-signing: If the contract is signed, the agents engage in its execution; the

signed contract establishes a commitment whose violation implies the execution

of sanctions; in order to detect contract violations, monitoring activities are

performed [81, 82].

In order to behave rationally in a system regulated by contracts, a self-interested

agent must be capable of calculating the expected utilities of signing them, and esti-

mating the likelihood, or risk, of norm violations for a particular course of action. In

this chapter, we focus on the pre-signing phase, aiming at the evaluation of contracts

by rational agents in stochastic environments where norm violations may happen

intentionally or as a consequence of the intrinsic uncertainty of the system.

The idea behind this chapter is to demonstrate, by way of a case study in a

simulated aerospace aftermarket, the applicability of the NMDP framework to model

contracts in stochastic sequential decision making settings. Furthermore, this case

study demonstrates that the general algorithms introduced in Chapter 4 provide a

principled method that can be used to determine contract violations, quantitatively

evaluate contracts and assess contract violations risks.

The chapter is organized as follows. Section 6.1 introduces the aerospace after-

market domain. Section 6.2 details the case study developed in this domain. Section

6.3 shows how an engine manufacturer agent can be modeled with the NMDP frame-

work. Section 6.4 describes how contract violations can be identified and how the risks

of these contract violations can be calculated in a stochastic aerospace aftermarket

environment. Finally, Section 6.5 closes this chapter by promoting a discussion.
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6.1 Aerospace aftermarket domain

The aerospace aftermarket use case described in this section was first introduced by

Jakob et al. [62], and further developed by Meneguzzi et al. [78]. According to

the authors, the aerospace aftermarket is increasingly populated by customers buying

a service rather than a product. In this domain, the aircraft engine manufacturers

provide long term commitments, which make these manufacturers responsible for

providing serviceable engines to airline operators at specific locations (a given engine

manufacturer may service an airline operator at multiple sites), not allowing any

aircraft to be idle for greater than an agreed duration.

Minimum service level commitments are stipulated in aftercare contracts. If these

commitments are violated (for example, when an airline aircraft is on the ground,

awaiting functioning engines for a period of time greater than that agreed with

the engine manufacturer), then engine manufacturers receive predetermined financial

penalties. In this business model, servicing and maintenance becomes a key driver of

profitability for the engine manufacturer since aftercare contracts are worth millions

of euros.

On the basis of these aftercare contracts, the engine manufacturers establish parts

supply contracts with engine part suppliers. In order to repair an engine, a manufac-

turer requests the required engine parts from contracted suppliers. Once all engine

parts have been obtained, the manufacturer resumes repairing the engine, and readies

it in the designated aircraft, notifying the airline operator that the repair has been

accomplished.

There are three relevant types of autonomous agents in the aerospace aftermarket

domain (see Figure 6.1):

• Airline operators are the customers for aftercare contracts; each operator has

its own fleet of aircraft which needs to be kept in service;

• Engine manufacturers are providers of aftercare contracts; they attempt to per-

form the engine repair as specified in the contract or incur penalties; moreover,

manufacturers are customers for parts supply contracts;

• Part suppliers are providers of parts supply contracts; they deliver engine parts

to the manufacturers.
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Figure 6.1: Actors and services in the aerospace aftermarket domain.

The provision of services is regulated by contractual agreements between the in-

volved parties. Two particular types of contract are studied in this work:

• Aftercare contract which specifies the terms and conditions under which an

engine manufacturer undertakes to supply and maintain engines for an airline

operator; an aftercare contract can specify, for example, the serviceable engine

rate, financial penalties applicable if the agreed service levels are not met, etc;

• Parts supply contract which regulates how an engine manufacturer asks a sup-

plier of engine parts to produce and deliver new parts or refurbished old parts

of a given type over a given period; this contract can specify, for example, the

locations where part supplies should be delivered, the cost of parts, delivery

times, etc.
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6.2 Description of the case study

The present case study is develop in an aerospace aftermarket populated by an engine

manufacturer (AGEM), an airline operator (AGAO) and three engine part suppliers

(AGSX, AGSY and AGSZ). The case study is made from the perspective of the engine

manufacturer, which is faced with deciding between contracts: an aftercare contract

COAC to be signed with AGAO, and three parts supply contracts, COPSX, COPSY

and COPSZ, which can be signed with AGSX, AGSY and AGSZ, respectively (for the

sake of simplicity, it is assumed that a single part P is required to repair the engine, and

the three part suppliers are capable of providing this part). Thus, the manufacturer

AGEM signs one aftercare contract and one parts supply contract, which results in

three possible sets of contracts:

SETCO1={COAC, COPSX}
SETCO2={COAC, COPSY}
SETCO3={COAC, COPSZ}

The case study developed in this chapter focuses on the engine manufacturer agent

AGEM, showing in Section 6.3 how this agent can be modeled with the NMDP frame-

work introduced in Chapter 3, and describing in Section 6.4 how the self-interested

agent model introduced in Chapter 4 can be employed to reason about contracts.

6.3 Engine manufacturer agent

This section describes the NMDP instances, which represent the knowledge of the

engine manufacturer agent (AGEM) inhabiting the simulated aftermarket introduced

in Section 6.2. There are three NMDP instances, one for each set of contracts:

nmdp1 = 〈S1,A,C1,T1,R1,N1〉
nmdp2 = 〈S2,A,C2,T2,R2,N2〉
nmdp3 = 〈S3,A,C3,T3,R3,N3〉

The state space of the NMDPs is described using sets of multi-valued features:

• Engine part (f1). Has AGEM ordered the part P required to perform the repair

of the engine? If false, this feature assumes the value o. If the engine part P

has been ordered, it assumes the value o. If P has been received, the feature

assumes the value x, y or z, which corresponds to the respective supplier AGSX,

AGSY or AGSZ.
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• Order deadline (f2). Is the engine part supplied by the order deadline specified

in the supply contract? Initially, this feature assumes the value a, which means

that the supplier still have time to deliver the part P; if this deadline has passed

and the part has not been received, this feature assumes the value a, otherwise

it remains a.

• Engine condition (f3). Is the engine repaired by engine manufacturer AGEM?

Is the engine handed over to the airline operator AGAO? If the engine is not

repaired, then this feature assumes the value r; if the engine is repaired but

not delivered, it assumes the value r; if the engine is repaired and delivered, it

assumes the value d.

• Repair deadline (f4). Has AGEM repaired the engine by the deadline in the

aftercare contract COAC with AGAO? Initially, this feature assumes the value

b, which means that AGEM have time to repair and deliver the engine; if this

deadline has passed and the engine has not been repaired and delivered, it

assumes the value b.

For instance, the initial state oarb means the part P has not been ordered, the

engine is neither repaired nor delivered, and the engine manufacturer AGEM has

satisfied both deadlines. In this work, deadlines are represented simply as features of

the state space. A more sophisticated treatment of time in normative systems, such

as the use of branching time logic [25] is certainly interesting, but not necessary for

the purpose of this case study.

The action space is composed of six actions: order an engine part from a supplier,

receive an ordered part, repair an engine and deliver an engine.

A = { order(Part, Supplier),
receive(Part, Supplier),
repair(Engine),
deliver(Engine, Operator) }

For example, Figure 6.2 illustrates the state space of the NMDP instance nmdp1

and the admissible actions in each state (capabilities C1). The label i indicates the

initial state of the process, while the label t indicates the absorbing (terminal) states.

In nmdp2, the feature x is rseplaced by y and AGSX is replaced by AGSY, while in

nmdp3, z replaces x and AGSZ replaces AGSX.
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Figure 6.2: State space of nmdp1 and admissible actions in each state (C1).

In this simulated aerospace aftermaket, order and deliver are deterministic, but

receive and repair are not. The state-transitions caused by these non-deterministic

actions are specified as follows:

T1 = { (oarb, receive(P,AGSX), xarb)→ 0.85,
(oarb, receive(P,AGSX), xarb)→ 0.10,
(oarb, receive(P,AGSX), xarb)→ 0.05,
(xarb, repair(E), xarb)→ 0.95,
(xarb, repair(E), xarb)→ 0.05,
(xarb, repair(E), xarb)→ 0.95,
(xarb, repair(E), xarb)→ 0.05, . . . }
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T2 = { (oarb, receive(P,AGSY), yarb)→ 0.90,
(oarb, receive(P,AGSY), yarb)→ 0.09,
(oarb, receive(P,AGSY), yarb)→ 0.01,
(yarb, repair(E), yarb)→ 0.95,
(yarb, repair(E), yarb)→ 0.05,
(yarb, repair(E), yarb)→ 0.95,
(yarb, repair(E), yarb)→ 0.05, . . . }

T3 = { (oarb, receive(P,AGSZ), zarb)→ 0.98,
(oarb, receive(P,AGSZ), zarb)→ 0.01,
(oarb, receive(P,AGSZ), zarb)→ 0.01,
(zarb, repair(E), zarb)→ 0.95,
(zarb, repair(E), zarb)→ 0.05,
(zarb, repair(E), zarb)→ 0.95,
(zarb, repair(E), zarb)→ 0.05, . . . }

According to the transition model, receive changes the engine part feature from

o to x, y or z, depending on the supplier; if the engine part is not received from the

supplier by the deadline, then the order deadline feature changes from a to a. The

action repair changes the repair feature from r to r; if the repair is not performed by

the deadline, the repair deadline feature changes from b to b.

Dealing with different counterparts may provide different rewards, so each NMDP

instance has its own reward function. R2 and R3 are partially specified as the rest of

their entries are equal to R1 except for x that is replaced by y and z, respectively.

R1 = {(oarb, order(P,AGSX), oarb) → –1.0,
(oarb, receive(P,AGSX), xarb) → 0.0,
(oarb, receive(P,AGSX), xarb) → 0.0,
(oarb, receive(P,AGSX), xarb) → 0.0,
(xarb, repair(E), xarb) → –1.0,
(xarb, repair(E), xarb) → –1.0,
(xarb, repair(E), xarb) → –1.0,
(xarb, repair(E), xarb) → –1.0,
(xarb, repair(E), xarb) → –1.0,
(xarb, repair(E), xarb) → –1.0,
(xarb, deliver(E,AGAO), xadb) → 3.0,
(xarb, deliver(E,AGAO), xadb) → 3.0,
(xarb, deliver(E,AGAO), xadb) → 3.0,
(xarb, deliver(E,AGAO), xadb) → 3.0 }

120



Chapter 6. Evaluation of contracts

R2 = {(oarb, order(P,AGSY), oarb) → –0.8,
(oarb, receive(P,AGSY), yarb) → 0.0,
(oarb, receive(P,AGSY), yarb) → 0.0,
(oarb, receive(P,AGSY), yarb) → 0.0, . . . }

R3 = {(oarb, order(P,AGSZ), oarb) → –1.5,
(oarb, receive(P,AGSZ), zarb) → 0.0,
(oarb, receive(P,AGSZ), zarb) → 0.0,
(oarb, receive(P,AGSZ), zarb) → 0.0, . . . }

The first contract is an aftercare contract between the engine manufacturer AGEM

and the airline operator AGAO. This contract, named COAC, includes the following

norms:

• q1 – An obligation on the engine manufacturer AGEM to repair and deliver

the engine by the repair deadline b; if this norm is violated then the engine

manufacturer will have to pay a penalty to the airline operator AGAO in order

to accomplish the delivery (paying the penalty resets the repair deadline); the

penalty is −2.0; any transition that arrives at states with the repair deadline

feature equal to b characterizes a violation.

• q2 – A prohibition on the manufacturer AGEM to repair the engine with parts

from AGSY; if the manufacturer repairs the engine with parts from AGSY then

the airline operator AGAO refuses the engine and charges a penalty of −5.0;

this norm is violated if the manufacturer achieves any state with the features y

and r.

In the supply contracts, the engine manufacturer AGEM is not an addressee of

the norms since the obligations are on the suppliers. However, the manufacturer, as

the beneficiary of the contract, expects to receive the engine parts by the deadline.

The following three norms correspond to the parts supply contracts COPSX, COPSY

and COPSZ, with AGSX, AGSY and AGSZ, respectively:

• q3 – An obligation on the supplier AGSX to produce and deliver the requested

part P by the order deadline a; if this norm is violated, the engine manufac-

turer can charge a penalty on the part supplier AGSX for delaying the delivery

(charging resets the order deadline); the reward for charging the penalty is 1.0;

any transition that arrives at states with the order deadline feature equal to a

characterizes a violation of this norm.
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• q4 – As in q3 except that AGSY replaces AGSX.

• q5 – As in q3 except that AGSZ replaces AGSX and the reward for charging the

penalty is 1.5.

So, for each set SETCOi we construct a set of norms Ni containing the union of

the contractual norms in SETCOi:

N1= COAC
⋃

COPSX = {q1, q2, q3}

N2= COAC
⋃

COPSY = {q1, q2, q4}

N3= COAC
⋃

COPSZ = {q1, q2, q5}

The norms in the contracts are encoded according to Definition 5 (see Chapter 3).

In order to represent the beneficiaries of the norms, each element in G is defined as

follows:

Addressee → Beneficiary

where Addressee is the agent to which the norm applies, and Beneficiary is the

agent that benefits from the norm compliance, to which the addressee pays the penalty

in case of norm violation.

The specification of the norms is as follows:

q1 = 〈1, Obligation,
{AGEM → AGAO},
>, (f4=b),

〈 { > → −2.0 },
{ > → {(f4=b)} } 〉〉

q2 = 〈2, Prohibition,
{AGEM → AGAO},
(f3=r) ∨ (f3=d), (f1=y),

〈 { > → −5.0 },
{ > → {(f3=r)} } 〉〉

q3 = 〈3, Obligation,
{AGSX → AGEM},
¬(f1=o), (f2=a),

〈 { > → +1.0 },
{ > → {(f2=a)} } 〉〉
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q4 = 〈4, Obligation,
{AGSY → AGEM},
¬(f1=o), (f2=a),

〈 { > → +1.0 },
{ > → {(f2=a)} } 〉〉

q5 = 〈5, Obligation,
{AGSZ → AGEM},
¬(f1=o), (f2=a),

〈 { > → +1.5 },
{ > → {(f2=a)} } 〉〉

Notice that in q1 and q2, AGEM is the addressee of the norms and the penalty is

a negative value to be paid by this agent in case of norm violation. In q3, q4 and q5,

AGEM is the beneficiary, and for this reason the penalty is a positive value, meaning

that AGEM receives this reward as a compensation for the norm violation performed

by the part supplier.

The detection function of AGEM is defined by means of Bayesian networks, an

example of compact representation introduced in Section 3.3.3. The conditional prob-

abilities in the networks have been arbitrarily chosen. Figure 6.3 shows the Bayesian

networks, explained as follows:

(a) The norm q1 is violated if the delivery deadline passes (f4 =b), and the detection

of its violations (and imposition of sanction) is more likely to happen when the

engine has been delivered (f3 =d). For this reason, the detection probabilities

for q1 depend only on the engine condition (f3).

(b) The violation of q2 can only be detected when the engine has been delivered to

AGON (an inspection is necessary to check the supplier of the part used in the

maintenance). As in q1 the detection probabilities for q2 depend only on f3.

(c) The norms q3, q4 and q5 are violated if the order deadline passes (f2 =a). The

violation of these norms is more likely to be detected when the engine has not

been repaired (f3 =r), in the first stages of the process when AGEM is waiting

for the part. Furthermore, it is more likely to detect that the order deadline has

passed if the delivery deadline has passed as well (f4 =b).
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6.4 Reasoning about contracts

6.4.1 Identifying norm violations and representing sanctions

In this section, the self-interested agent model, introduced in Section 4.2, is used to

implement the engine manufacturer agent. In this case study, there is no policy that

ensures the absence of norm violations, and for this reason, the norm-compliant agent

model is not applicable.
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First of all, the normative reasoning is performed with the NMDP instances. Al-

gorithm 3 is called to identify which states violate which contractual norms, and

Algorithm 4 is called to represent the respective sanctions with the norm violating

states. Thus, for each nmdpi described in Section 6.3, there will be a mdpi.

Figure 6.4 illustrates mdp1, the MDP resulting from the normative reasoning over

nmdp1 using the self-interested agent model. The violating states are drawn as red

nodes with labels indicating which norms are violated in these states. From each

violating state, new state-transitions have been added to represent the sanctions.

The state sι and the action aι, used to represent sanctions from absorbing states, are

added as well.
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Figure 6.4: MDP resulting from the normative reasoning over nmdp1 using the self-
interested agent model. The norm violating states are represented as red nodes with
labels indicating which norms are violated in the respective states.
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For example, consider xarb in Figure 6.4, which violates q1 and q3. If AGEM

executes the action repair in this state, there are four possible outcomes:

1. xarb – If the process move to this state, no norm violation has been detected

in the origin state xarb.

2. xarb – If the process move from the origin state xarb to this state, the violation

of the norm q3 has been detected, AGSX pays 1.0 to AGEM as a compensation

for the norm violation (penalty) and the order deadline is reset (a).

3. xarb – If the process move to this state, the violation of the norm q1 has been

detected, AGEM pays 2.0 to AGAO (penalty for not delivering the engine by

the repair deadline) and the repair deadline is reset (b).

4. xarb – If the process move from the origin state xarb to this state, the viola-

tions of q1 and q3 have been detected. In this case, the agent receives 1.0 from

AGSX and pays 2.0 to AGAO (AGEM loses 1.0). Both deadlines are reset.

6.4.2 Calculating expected utilities and risks

The decision taken by AGEM concerning which contracts to sign is supported by the

expected utilities calculated for each resulting MDP using the Value Iteration algo-

rithm [6]. The agent compares the expected utility (EU) for the initial state of each

mdpi, and then, it chooses the one with the maximum value. In this aerospace after-

market case study, the engine manufacturer decides to sign the contracts in SETCO1

given that mdp1 provides the highest EU in oarb:

EU(oarb, mdp1) = 0.9603

EU(oarb, mdp2) = −0.8708

EU(oarb, mdp3) = 0.4158

In this case study, SETCO2 is not optimal primarily because the violation of q2
is very likely to be detected and it implies in a high penalty, and SETCO3 is not

optimal because the cost of purchasing the part P from AGSZ is more expensive than

purchasing from AGSX.

At the moment that the states that violate the norms in the contracts in SETCOi

have been determined, the risks (probabilities) of violating a given norm qj can be

assessed. To do so, the following steps are taken:
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(1) Each mdpi is combined with its respective policy, obtaining this way a Markov

Chain [66] referred to as mci.

(2) Every state of mci that violate qj is transformed into an absorbing state by

removing the arcs departing from it.

(3) Finally, the absorption probabilities in mci starting from the initial state oarb

are calculated1. By summing the chances of ending in the absorbing states that

violate qj , we calculate the risk of violating qj .

For example, Figure 6.5 and Figure 6.6 show the probabilities of violating the

contracts in SETCO1, which are COAC={q1, q2} and COPSX={q3}. The norm

violating states are represented as red nodes labeled with the probability of reaching

them from the initial state. In Figure 6.5 we can see the probabilities of violating q1
which sum 0.09755, that is, 9.755%. The nodes reachable from xarb and xarb have

been omitted as they do not violate q1.
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Figure 6.5: Probabilities of violating the norm q1.

1The probability that an absorbing chain will be absorbed in a given absorbing state if it starts
in a given transient state can easily calculated with the fundamental matrix and transition matrix
in the canonical form. For details on the computation of the absorption probabilities, see [85].
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In Figure 6.6 we can observe the probabilities of violating q3 which sum 0.15. The

norm q2 cannot be violated in this example since AGEM does not purchase the engine

part from AGSY. The nodes reachable from xarb have been omitted as they do not

violate the norm q3.
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Figure 6.6: Probabilities of violating the norm q3.

6.5 Discussion

This chapter has shown a case study in a simulated aerospace aftermarket domain,

which demonstrates the applicability of the NMDP framework and self-interested

agent model for evaluating contracts in sequential decision making settings. This

case study shows how an engine manufacturer agent and a set of contracts can be

modeled with the NMDP framework, and how this agent can evaluate these contracts

by assessing their expected utilities and likelihoods, or risks, of norm violations for a

particular course of action.

The related work in contractual agent societies is quite extensive and has covered

a wide range of issues, such as frameworks, languages, negotiation protocols and tech-

niques, monitoring mechanisms. Dellarocas [39] proposes an abstract model of open

information systems where autonomous agents configure themselves through a set of

dynamically negotiated contracts. Sallé [103] develop a framework for the automa-

tion of the lifecycle of contractual relationships between agents in a B2B platform.

Kollingbaum and Norman [67] propose an approach, named supervised interaction, to

the problem of establishing trust between contracting autonomous agents. The super-

vised interactions are made via an organizational framework, a contract specification
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language and a contract management process. Governatori and Milosevic [56] formal-

ize a system to provide a logic-based foundation for the policy aspects of the language

BCL [74], developed to support business contract specification for contract monitor-

ing. Oren et al. [88] formalize an electronic contracting language, in which clauses

within contracts are specified as permissions, obligations and prohibitions on contract

parties. The norms in this language are associated with a status, which allows for the

determination of whether contract violations takes place and who is the responsible

for causing the violations. Boella and van der Torre [12] formalize contracts as sys-

tems of regulative and constitutive norms, and develop a game theory wherein agents

negotiate contracts in organizations. Modgil et al. [82] develop a global monitoring

architecture for determining the source of violations in signed contracts. The moni-

tor agents gather information from entrusted observers and generate explanations for

violations within a supply chain in a simulated aerospace aftermarket.

In this context, the NMDP framework provides a language to specify not only

contracts, but also the stochastic domains to be regulated by them. Even though the

case study presented in this chapter does not include contract negotiation or contract

monitoring, we believe that the type of evaluations shown here can be helpful to

support decisions in negotiations and to improve monitoring activities by indicating

situations in which contract violations are more likely to happen.
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Chapter 7

Conclusion

Science never solves a problem without

creating ten more.

George Bernard Shaw

7.1 Contributions

The main contributions of this thesis are detailed as follows:

(i) Generalization of MDPs to allow normative reasoning.

In Chapter 3 we have focused on the problem of representing the knowledge of

norm-aware rational agents. To this end, we have introduced the NMDP frame-

work, an extension of the well-known MDP framework to allow the representa-

tion of normative structures and probabilistic knowledge regarding the detec-

tion of norm violations. The NMDP framework provides a principled method to

check the norm compliance of states and the consistency of norms and sanctions

(conflict detection). Furthermore, we have shown how factored state spaces can

be exploited in order to compactly encode norms and detection models.

In a broader context, we believe that the NMDP framework can serve to ground

new research on normative reasoning, in particular, the development of general

algorithms for reasoning about norms in stochastic domains.
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(ii) Computational models of normative reasoning.

To address the problem of reasoning about norms with the NMDP framework

introduced in Chapter 3, two decision-theoretical models of normative reasoning

have been developed in Chapter 4. In particular, these normative reasoning pro-

cesses are specified as sound algorithms and embedded in two norm-aware agent

models: self-interested agents incorporate sanctions into the state-transition and

reward functions, while norm-compliant agents utilize norms to create smaller

norm-compliant MDPs.

In these agent models, we cover all the properties employed in the analysis made

in Section 2.5: norm-autonomy, explicitness of norms and sanctions, quantita-

tive decision model and probabilistic planning. By taking advantage of the syn-

ergy between these properties, we enable the development of norm-aware agents

capable of planning sequential actions for maximizing utilities in stochastic en-

vironments regulated by explicitly represented norms.

(iii) Synergistic interactions between MDPs and norms.

One of the key contributions of this thesis is that we explore the combination of

native strengths of the MDPs and normative systems to cover their individual

limitations. On the one hand, we use the analytic advantages of MDPs to model

the domain of interaction and agent decision-making under uncertainty, and, on

the other hand, we use norms to support computational leverage techniques and

coordinate agents.

(a) Quantitative evaluation of norms.

From a micro perspective, our agent models allow the agents to calculate

the impact of particular sets of norms on their expected utilities, taking into

account uncertainty, rewards and sanctions. Such quantitative evaluation

is especially vital in domains where the performance of the agents is linked

to important metrics such as amount of crashes in a motion environment or

profit in activities regulated by contracts. From a macro perspective, these

quantitative evaluations have been made with the motion simulator, which

keeps record of crashes and payments of penalties received from the self-

interested agents. Several examples of quantitative evaluations of norms

have been provided in Section 5.5. There, we observe the impact of various

normative settings on the agents’ individual behaviour and utility.
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(b) Norms to achieve computational leverage with MDP-based agents.

By means of the norm-compliant agent model, we develop a novel approach

to get computational leverage in the policy construction. Our technique re-

stricts the state space to norm-compliant partitions, which results in gains

in tractability by curtailing MDP policy search. Section 5.5.4 presents re-

sults where we can see significant speedups in MDP policy search due to

the techniques introduced in this thesis.

(c) Coordination of MDP-based agents.

An MDP is a model of an individual agent unaware of other agents when

running in multiagent systems, such as the motion simulator described in

Section 5.3. In this context, the activities of the agents can interfere with

each other, and this might have undesirable consequences. Assuming that

fully norm-compliance ensures the absence of coordination problems, it is

possible to achieve coordination in multiagent systems composed of norm-

compliant agents and/or self-interested agents. The difference is that with

norm-compliant agents, the coordination is unconditionally supported, and

with self-interested agents, the coordination must be enforced via adequate

sanctions and norm enforcement intensities.

Notice that the proposed coordination approach is flexible in the sense that

changes in the norms do not require the reconstruction of the agents. Once

the new norms are mirrored into the NMDP instance, the new policy can

be automatically generated by the reasoning processes.

(iv) Applications.

To validate our approach, two applications have been developed in this thesis.

In Chapter 5, we have measured the performance of the different agent types in

relation to specific controlled settings in a simulated motion environment. These

experiments illustrate the kind of quantitative evaluations that we envision in

normative multiagent systems. Chapter 6 demonstrates, by way of a case study

in a simulated aerospace aftermarket, the applicability of our approach to model

and reason about contracts in stochastic sequential decision making settings.
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7.2 Limitations

The thesis has unleashed the synergistic potential of combining MDPs and norm-

aware agent models. By doing so, it has overcome some of the drawbacks of existing

approaches. While the objectives mentioned in the introduction of this thesis have

been fully achieved, some problems still pertain:

(i) Some limitations have been inherited from the MDP framework, which for in-

stance accounts neither for partial observability, nor for joint actions.

(ii) In this thesis, the norms encoded in the NMDPs are assumed to be consistent,

that is, there is no state that simultaneously complies with one norm and violates

other. To face this limitation, we would start looking into the mechanisms for

the resolution of normative conflicts proposed by Vasconcelos et al. [116].

(iii) In some applications, specially when modeling contracts, it might be interesting

to have a more sophisticated treatment of time (e.g. deadlines). In this work,

we simply represent deadlines as features of the state space that change their

values when the respective deadlines pass. The work by Broersen et al. [25, 11]

in normative reasoning with deadlines can be used as starting point for tackling

this second limitation.

7.3 Future research directions

This thesis has opened several possible new areas for further research. This section

summarizes the four main agenda for future research.

(i) To deal with problems in which the agent cannot directly observe the underlying

state, we would like to put forward the Partially Observable Normative Markov

Decision Process framework (PONMDP), an extension of the NMDP framework

including a set of observations and a set of conditional observation probabilities.

In addition, we intend to approach the specification of transitions and rewards

using factored representations (in this thesis, we only use factored state spaces

and factored detection models), and then, to revisit the algorithms proposed in

Chapter 4 in order to deal with these compact representations.
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(ii) In Chapter 5 we have seen that in certain situations the norm-compliant agents

outperform the self-interested agents, and in other situations we have seen the

opposite. Bearing in mind this fact, we would like to develop a more sophisticate

norm-aware agent model that considers only a subset of norms for violation. By

doing this, we can save some computational resources by partially following the

norms, and we can reason about certain norm violations that are more likely to

boost the agent’s expected utility.

(iii) From a macro perspective, we would like to further investigate the global benefits

of norms (reduction of coordination problems, increments on the income from

penalties) together with their enforcement cost (not considered in this research)

so as to design and implement economically viable adaptive mechanisms for

norm evolution in heterogeneous agent societies.

(iv) The last strand of future research will deal with cases where the agents explicitly

account for the actions of other agents in the normative multiagent system. To

this respect we intend to look into the field of stochastic games [105] and how

they can be used to further generalize our approach.
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Publications

The publications listed below are direct consequence of the evolution of this thesis:

• Using Normative Markov Decision Processes for evaluating electronic contracts,

in collaboration with Sascha Ossowski, Michael Luck and Simon Miles, pub-

lished in AI Communications (2012) [50].

• Representing and evaluating electronic contracts with Normative Markov Deci-

sion Processes, in collaboration with Sascha Ossowski, Michael Luck and Simon

Miles, published in the 1st Conference on Agreement Technologies (2012) [49].

• Normative Agents, in collaboration with Michael Luck, Samhar Mahmoud, Fe-

lipe Meneguzzi, Martin Kollingbaum, Tim Norman and Natalia Criado, pub-

lished in Agreement Technologies book (2012) [76].

• Normative Reasoning with an Adaptive Self–interested Agent Model Based on

Markov Decision Processes, in collaboration with Holger Billhardt and Sascha

Ossowski, published in the 12th Ibero-American Conference on AI (2010) [46].

• Reasoning about Norm Compliance with Rational Agents, in collaboration with

Holger Billhardt and Sascha Ossowski, published in the 19th European Confer-

ence on Artificial Intelligence (2010) [47].

• Behavior Adaptation in RMAS: An Agent Architecture based on MDPs, in col-

laboration with Holger Billhardt and Sascha Ossowski, published in the 20th

European Meeting on Cybernetics and Systems Research (2010) [45].
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• Designing Organized Multiagent Systems through MDPs, in collaboration with

Roberto Centeno, Holger Billhardt and Sascha Ossowski, published in the 7th

German Conference on Multi-Agent System Technologies (2009) [48].
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Motion problem’s NMDP

This appendix specifies the NMDP input utilized the experiments in Chapter 5. For

the sake of space, the capability function C, the state-transition function T and the

reward function R are partially shown.

NMDP = 〈S,A,C,T,R,N,D〉

//======================
// State space
//======================

f1 = Street
f2 = Cell
f3 = Direction
f4 = Status

Vf1 = {00,01, ...07,NW,NE,SW,SE,WN,WS,EN,ES}
Vf2 = {00,01, ...23,Gateway}
Vf3 = {Up,Right,Down,Left}
Vf4 = {Still,Moving}

S = Vf1 × Vf2 × Vf3 × Vf4

//======================
// Actions
// s ∈ {00,01, ...07}
// r ∈ {cw,ccw}
//======================

A = {Start(s),Move,Turn(r),Stop,End}
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//======================
// Capabilities
//======================

C((Street=00,Cell=00,Direction=Up,Status=Still)) = {Move,Turn(r),End}
C((Street=00,Cell=00,Direction=Up,Status=Moving)) = {Move,Turn(r),Stop,End}
C((Street=00,Cell=00,Direction=Right,Status=Still)) = {Move,Turn(r),End}
C((Street=00,Cell=00,Direction=Right,Status=Moving)) = {Move,Turn(r),Stop,End}
C((Street=00,Cell=00,Direction=Down,Status=Still)) = {Move,Turn(r),End}
C((Street=00,Cell=00,Direction=Down,Status=Moving)) = {Move,Turn(r),Stop,End}
C((Street=00,Cell=00,Direction=Left,Status=Still)) = {Move,Turn(r),End}
C((Street=00,Cell=00,Direction=Left,Status=Moving)) = {Move,Turn(r),Stop,End}

. . .

C((Street=00,Cell=01,Direction=Up,Status=Still)) = {Move,Turn(r)}
C((Street=00,Cell=01,Direction=Up,Status=Moving)) = {Move,Turn(r),Stop}
C((Street=00,Cell=01,Direction=Right,Status=Still)) = {Move,Turn(r)}
C((Street=00,Cell=01,Direction=Right,Status=Moving)) = {Move,Turn(r),Stop}
C((Street=00,Cell=01,Direction=Down,Status=Still)) = {Move,Turn(r)}
C((Street=00,Cell=01,Direction=Down,Status=Moving)) = {Move,Turn(r),Stop}
C((Street=00,Cell=01,Direction=Left,Status=Still)) = {Move,Turn(r)}
C((Street=00,Cell=01,Direction=Left,Status=Moving)) = {Move,Turn(r),Stop}

. . .

C((Street=07,Cell=23,Direction=Up,Status=Still)) = {Move,Turn(r),End}
C((Street=07,Cell=23,Direction=Up,Status=Moving)) = {Move,Turn(r),Stop,End}
C((Street=07,Cell=23,Direction=Right,Status=Still)) = {Move,Turn(r),End}
C((Street=07,Cell=23,Direction=Right,Status=Moving)) = {Move,Turn(r),Stop,End}
C((Street=07,Cell=23,Direction=Down,Status=Still)) = {Move,Turn(r),End}
C((Street=07,Cell=23,Direction=Down,Status=Moving)) = {Move,Turn(r),Stop,End}
C((Street=07,Cell=23,Direction=Left,Status=Still)) = {Move,Turn(r),End}
C((Street=07,Cell=23,Direction=Left,Status=Moving)) = {Move,Turn(r),Stop,End}

. . .

C((Street=NW,Cell=Gateway,Direction=Up,Status=Still)) = {Start(s)}
C((Street=NW,Cell=Gateway,Direction=Up,Status=Moving)) = { }
C((Street=NW,Cell=Gateway,Direction=Right,Status=Still)) = {Start(s)}
C((Street=NW,Cell=Gateway,Direction=Right,Status=Moving)) = { }
C((Street=NW,Cell=Gateway,Direction=Down,Status=Still)) = {Start(s)}
C((Street=NW,Cell=Gateway,Direction=Down,Status=Moving)) = { }
C((Street=NW,Cell=Gateway,Direction=Left,Status=Still)) = {Start(s)}
C((Street=NW,Cell=Gateway,Direction=Left,Status=Moving)) = { }

. . .

//======================
// State-transitions
//======================

. . .

T((Street=00,Cell=00,Direction=Right,Status=Still),Move,
(Street=00,Cell=00,Direction=Right,Status=Still)) = 0.01

T((Street=00,Cell=00,Direction=Right,Status=Still),Move,
(Street=00,Cell=01,Direction=Right,Status=Moving)) = 0.99
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T((Street=00,Cell=00,Direction=Right,Status=Still),Turn(cw),
(Street=00,Cell=00,Direction=Right,Status=Still)) = 0.01

T((Street=00,Cell=00,Direction=Right,Status=Still),Turn(cw),
(Street=00,Cell=00,Direction=Down,Status=Moving)) = 0.99

T((Street=00,Cell=00,Direction=Right,Status=Still),Turn(ccw),
(Street=00,Cell=00,Direction=Right,Status=Still)) = 0.01

T((Street=00,Cell=00,Direction=Right,Status=Still),Turn(ccw),
(Street=00,Cell=00,Direction=Up,Status=Moving)) = 0.99

. . .

T((Street=00,Cell=00,Direction=Left,Status=Moving),End,
(Street=NW,Cell=Gateway,Direction=Left,Status=Moving)) = 1.00

. . .

T((Street=NW,Cell=Gateway,Direction=Right,Status=Still),Start(00),
(Street=00,Cell=00,Direction=Right,Status=Moving)) = 1.00

T((Street=NW,Cell=Gateway,Direction=Right,Status=Still),Start(01),
(Street=01,Cell=00,Direction=Right,Status=Moving)) = 1.00

. . .

//======================
// Rewards
//======================

. . .

R((Street=00,Cell=00,Direction=Right,Status=Still),Move,
(Street=00,Cell=00,Direction=Right,Status=Still)) = -0.01RN

R((Street=00,Cell=00,Direction=Right,Status=Still),Move,
(Street=00,Cell=01,Direction=Right,Status=Moving)) = -0.01RN

R((Street=00,Cell=00,Direction=Right,Status=Still),Turn(cw),
(Street=00,Cell=00,Direction=Right,Status=Still)) = -0.01RN

R((Street=00,Cell=00,Direction=Right,Status=Still),Turn(cw),
(Street=00,Cell=00,Direction=Down,Status=Moving)) = -0.01RN

R((Street=00,Cell=00,Direction=Right,Status=Still),Turn(ccw),
(Street=00,Cell=00,Direction=Right,Status=Still)) = -0.01RN

R((Street=00,Cell=00,Direction=Right,Status=Still),Turn(ccw),
(Street=00,Cell=00,Direction=Up,Status=Moving)) = -0.01RN

. . .

R((Street=00,Cell=00,Direction=Left,Status=Moving),End,
(Street=NW,Cell=Gateway,Direction=Left,Status=Moving)) = 0.6RN

. . .

R((Street=NW,Cell=Gateway,Direction=Right,Status=Still),Start(00),
(Street=00,Cell=00,Direction=Right,Status=Moving)) = -0.01RN

R((Street=NW,Cell=Gateway,Direction=Right,Status=Still),Start(01),
(Street=01,Cell=00,Direction=Right,Status=Moving)) = -0.01RN

. . .
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//======================
// Norms
//======================

N = {q01, q02, q03, . . . q24}

q01 = 〈01, Obligation, >,
(Street=00),
(Direction=Right),

〈 { > → −λRN },
{ > → {(Direction=Right)} } 〉〉

q02 = 〈02, Obligation, >,
(Street=01),
(Direction=Left),

〈 { > → −λRN },
{ > → {(Direction=Left)} } 〉〉

q03 = 〈03, Obligation, >,
(Street=02),
(Direction=Right),

〈 { > → −λRN },
{ > → {(Direction=Right)} } 〉〉

q04 = 〈04, Obligation, >,
(Street=03),
(Direction=Left),

〈 { > → −λRN },
{ > → {(Direction=Left)} } 〉〉

q05 = 〈05, Obligation, >,
(Street=04),
(Direction=Up),

〈 { > → −λRN },
{ > → {(Direction=Up)} } 〉〉

q06 = 〈06, Obligation, >,
(Street=05),
(Direction=Down),

〈 { > → −λRN },
{ > → {(Direction=Down)} } 〉〉

q07 = 〈07, Obligation, >,
(Street=06),
(Direction=Up),

〈 { > → −λRN },
{ > → {(Direction=Up)} } 〉〉

q08 = 〈08, Obligation, >,
(Street=07),
(Direction=Down),

〈 { > → −λRN },
{ > → {(Direction=Down)} } 〉〉
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q09 = 〈09, Prohibition, >,
(Street=00) ∧ (Direction=Right) ∧ (Cell=03),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

q10 = 〈10, Prohibition, >,
(Street=00) ∧ (Direction=Right) ∧ (Cell=08),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

q11 = 〈11, Prohibition, >,
(Street=00) ∧ (Direction=Right) ∧ (Cell=13),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

q12 = 〈12, Prohibition, >,
(Street=00) ∧ (Direction=Right) ∧ (Cell=18),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

q13 = 〈13, Prohibition, >,
(Street=01) ∧ (Direction=Left) ∧ (Cell=05),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

q14 = 〈14, Prohibition, >,
(Street=01) ∧ (Direction=Left) ∧ (Cell=10),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

q15 = 〈15, Prohibition, >,
(Street=01) ∧ (Direction=Left) ∧ (Cell=15),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

q16 = 〈16, Prohibition, >,
(Street=01) ∧ (Direction=Left) ∧ (Cell=20),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

q17 = 〈17, Prohibition, >,
(Street=02) ∧ (Direction=Right) ∧ (Cell=03),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉
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q18 = 〈18, Prohibition, >,
(Street=02) ∧ (Direction=Right) ∧ (Cell=08),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

q19 = 〈19, Prohibition, >,
(Street=02) ∧ (Direction=Right) ∧ (Cell=13),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

q20 = 〈20, Prohibition, >,
(Street=02) ∧ (Direction=Right) ∧ (Cell=18),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

q21 = 〈21, Prohibition, >,
(Street=03) ∧ (Direction=Left) ∧ (Cell=05),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

q22 = 〈22, Prohibition, >,
(Street=03) ∧ (Direction=Left) ∧ (Cell=10),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

q23 = 〈23, Prohibition, >,
(Street=03) ∧ (Direction=Left) ∧ (Cell=15),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

q24 = 〈24, Prohibition, >,
(Street=03) ∧ (Direction=Left) ∧ (Cell=20),
(Status=Moving),

〈 { > → −λRN },
{ > → {(Status=Still)} } 〉〉

//======================
// Detection function
//======================

. . .

D(q01,(Street=00,Cell=00,Direction=Up,Status=Still)) = β
D(q01,(Street=00,Cell=00,Direction=Up,Status=Moving)) = β
D(q01,(Street=00,Cell=00,Direction=Down,Status=Still)) = β
D(q01,(Street=00,Cell=00,Direction=Down,Status=Moving)) = β

. . .
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Time consumption results

This appendix presents detailed reports about the time consumption during the rea-

soning processes of the agent models, from which the time consumption data shown

in Section 5.5.4 have been obtained1. These reports have been generated with the

Java Interactive Profiler (JIP)2, a profiling information tool.

The columns of a JIP output file are, from left to right:

• Count : The number of times that the given method is called by the enclosing

method.

• Total time: The time, in milliseconds, that was taken up by the execution of

the given method.

• Net Time: The amount of time that was actually spent performing the given

method if you factor out the total time taken by calling other (listed) methods.

It important to note that the net time is the total time less the sum of the total

times for all of the listed child methods.

• Location: The method called.

1The experiments have been performed in a MacBook Pro, 2.53GHz Intel Core 2 Duo processor,
4GB DDR3, 250GB 5400-rpm hard drive, OS X Snow Leopard, Java Platform SE 6.

2The Java Interactive Profiler is a high performance, low overhead profiler that is written entirely
in Java and distributed under the BSD license (freeware). More information about this tool can be
found at http://jiprof.sourceforge.net.
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This appendix contains six reports, which are explained as follows:

Report (i): As defined in Chapter 4, the normative reasoning of the self-interested

agent model is performed by means of Algorithm 3 and Algorithm 4, which

identify violating states and represent sanctions, respectively. This report high-

lights in red the total time consumed by these algorithms in the experiments

carried out in Chapter 5.

Report (ii): The normative reasoning of the norm-compliant agent model, as de-

fined in Chapter 4, is executed by means of Algorithm 5 and Algorithm 6. This

report highlights in red the total time consumed by these algorithms in the

experiments made in Chapter 5.

Report (iii): This report shows the time consumed by the Value Iteration algorithm

used in the policy construction of the self-interested agents in the experiments

made in Chapter 5. This report highlights in red the total time spent by the

algorithm and the number of value iterations counted during its execution.

Report (iv): This report shows the time consumed by the Value Iteration algorithm

used in the policy construction of the norm-compliant agents in the experiments

made in Chapter 5. This report highlights in red the total time spent by the

algorithm and the number of value iterations counted during its execution.

Report (v): This report shows the time consumed by the Modified Policy Iteration

algorithm used in the policy construction of the self-interested agents in the

experiments made in Chapter 5. This report highlights in red the total time

spent by the algorithm and the number of policy iterations counted during its

execution.

Report (vi): This report shows the time consumed by the Modified Policy Iteration

algorithm used in the policy construction of the norm-compliant agents in the

experiments made in Chapter 5. This report highlights in red the total time

spent by the algorithm and the number of policy iterations counted during its

execution.
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Report (i) – Normative reasoning of the self-interested agent model.

Time
--------------

Count Total Net Location
===== ===== === ========

1 2856,3 201,4 +--Algorithm3:run
76800 11,6 11,6 | +--Norm:getNormID
76800 122,3 109,0 | +--NMDP:getDetection
76800 13,3 13,3 | | +--Detection:getProbability
78432 2520,9 1651,5 | +--Algorithm3:match
392160 81,4 81,4 | | +--MDP:getFeatureLength
313728 50,2 50,2 | | +--MDP:getFeature
313728 49,9 49,9 | | +--Feature:getName
313728 138,9 138,9 | | +--MDP:getState
313728 51,7 51,7 | | +--State:getFeatureValue
3288 311,1 311,1 | | +--Algorithm3:parseExpression
78432 186,2 186,2 | | +--Algorithm3:evaluateExpression

1 1441,4 473,8 +--Algorithm4:run
80001 27,8 27,8 | +--NMDP:getNormLength

1 352,5 352,5 | +--NMDP:deepcopy
16085 2,5 2,5 | +--MDP:getStateLength
1216 26,9 1,3 | +--NMDP:getDetection
1216 25,6 25,6 | | +--Detection:getProbability
1216 61,4 61,4 | +--State:isAbsorbing
11040 3,9 3,9 | +--MDP:getActionLength
9728 2,2 2,2 | +--MDP:isCapable
38640 71,8 59,6 | +--MDP:getOutcomeLength
38640 6,1 6,1 | | +--MDP:getState
38640 6,1 6,1 | | +--State:isAbsorbing
9248 2,0 2,0 | +--MDP:getOutcomeArray
8704 11,7 10,0 | +--MDP:getProbability
8704 1,7 1,7 | | +--Outcome:getProbability
17408 21,2 17,1 | +--MDP:setProbability
17408 4,1 4,1 | | +--Outcome:setProbability
29232 37,8 32,6 | +--MDP:getOutcome
29232 5,2 5,2 | | +--Outcome:getState
8704 11,2 8,2 | +--MDP:getReward
8704 3,1 3,1 | | +--Outcome:getReward
4816 31,5 23,4 | +--State:<init>
4816 2,1 2,1 | | +--State:setIndex
4816 3,3 3,3 | | +--State:isAbsorbing
4816 149,4 137,4 | +--Algorithm4:updateState
14512 2,4 2,4 | | +--MDP:getFeatureLength
14512 2,3 2,3 | | +--MDP:getFeature
14512 2,2 2,2 | | +--Feature:getName
9632 4,2 4,2 | | +--Algorithm4:updateState
4816 1,0 1,0 | | +--State:updateFeatureValue
4816 111,5 60,3 | +--MDP:getStateIndex
19264 22,9 22,9 | | +--State:getFeatureValue
19264 20,6 20,6 | | +--MDP:getFeature
19264 4,7 4,7 | | +--Feature:getNumberValues
19264 3,1 3,1 | | +--MDP:getFeatureLength
8704 9,4 8,0 | +--MDP:setReward
8704 1,4 1,4 | | +--Outcome:setReward
4480 28,8 12,5 | +--Outcome:<init>
4480 15,0 15,0 | | +--Outcome:setReward
4480 1,2 1,2 | +--MDP:setOutcomeArray
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Report (ii) – Normative reasoning of the norm-compliant agent model.

Time
--------------

Count Total Net Location
===== ===== === ========

1 2746,4 75,4 +--Algorithm5:run
78432 2670,9 1746,3 | +--Algorithm5:match
392160 62,0 62,0 | | +--MDP:getFeatureLength
313728 81,1 81,1 | | +--MDP:getFeature
313728 90,7 90,7 | | +--Feature:getName
313728 60,5 60,5 | | +--MDP:getState
313728 70,8 70,8 | | +--State:getFeatureValue
3288 282,1 282,1 | | +--Algorithm5:parseExpression
78432 277,4 277,4 | | +--Algorithm5:evaluateExpression

1 414,0 11,0 +--Algorithm6:run
1 400,2 400,2 | +--MDP:deepcopy

Report (iii) – Policy construction of the self-interested
agent model using the Value Iteration algorithm

Time
--------------

Count Total Net Location
===== ===== === ========

1 12137,3 953,9 +--ValueIteration:solve
140890 26,0 26,0 | +--MDP:getStateLength

1 18,9 18,0 | +--UtilityFunction:<init>
4817 23,6 17,3 | +--MDP:isCapable
16840 6,4 6,4 | | +--MDP:isCapable
207100 36,5 36,5 | +--MDP:getState

42 1,7 1,7 | +--History:startIteration
42 317,0 317,0 | +--UtilityFunction:deepcopy

137643 28,8 28,8 | +--State:isAbsorbing
67872 10,2 10,2 | +--State:isCompliant
203616 41,5 41,5 | +--UtilityFunction:getUtility
69488 10620,7 4879,1 | +--ValueIteration:calculateMeuAction
625392 115,3 115,3 | | +--MDP:getActionLength
555904 104,0 104,0 | | +--MDP:isCapable
1243904 2626,2 2142,6 | | +--MDP:getOutcomeLength
1243904 260,3 260,3 | | | +--MDP:getState
1243904 223,3 223,3 | | | +--State:isAbsorbing
694880 880,4 717,5 | | +--MDP:getProbability
694880 163,0 163,0 | | | +--Outcome:getProbability
694880 860,8 736,9 | | +--MDP:getOutcome
694880 123,8 123,8 | | | +--Outcome:getState
694880 153,2 153,2 | | +--UtilityFunction:getUtility
694880 148,4 148,4 | | +--Utility:getUtility
694880 835,0 712,8 | | +--MDP:getReward
694880 122,2 122,2 | | | +--Outcome:getReward
69488 18,3 18,3 | | +--ValueIteration$MeuAction:<init>
67872 11,2 11,2 | +--ValueIteration$MeuAction:getEU
67872 12,8 12,8 | +--Utility:setUtility
135744 30,2 30,2 | +--Utility:getUtility

42 1,1 1,0 | +--History:stopIteration
3201 1,1 1,1 | +--Decision:<init>

150



Appendix C. Time consumption results

Report (iv) – Policy construction of the norm-compliant
agent model using the Value Iteration algorithm

Time
--------------

Count Total Net Location
===== ===== === ========

1 2603,6 604,6 +--ValueIteration:solve
140890 25,3 25,3 | +--MDP:getStateLength

1 7,5 6,8 | +--UtilityFunction:<init>
4753 22,0 17,4 | +--MDP:isCapable
17784 4,6 4,6 | | +--MDP:isCapable
204476 62,4 62,4 | +--MDP:getState

42 2,5 2,5 | +--History:startIteration
42 330,2 330,2 | +--UtilityFunction:deepcopy

137643 32,4 32,4 | +--State:isAbsorbing
65184 13,2 13,2 | +--State:isCompliant
48384 9,7 9,7 | +--UtilityFunction:getUtility
17680 1468,5 706,1 | +--ValueIteration:calculateMeuAction
159120 49,0 49,0 | | +--MDP:getActionLength
141440 28,7 28,7 | | +--MDP:isCapable
155792 346,8 284,0 | | +--MDP:getOutcomeLength
155792 28,2 28,2 | | | +--MDP:getState
155792 34,6 34,6 | | | +--State:isAbsorbing
76080 96,6 82,6 | | +--MDP:getProbability
76080 14,0 14,0 | | | +--Outcome:getProbability
76080 108,2 86,2 | | +--MDP:getOutcome
76080 22,0 22,0 | | | +--Outcome:getState
76080 15,5 15,5 | | +--UtilityFunction:getUtility
76080 28,9 28,9 | | +--Utility:getUtility
76080 84,5 71,6 | | +--MDP:getReward
76080 12,9 12,9 | | | +--Outcome:getReward
17680 4,3 4,3 | | +--ValueIteration$MeuAction:<init>
16128 2,7 2,7 | +--ValueIteration$MeuAction:getEU
16128 8,5 8,5 | +--Utility:setUtility
32256 9,4 9,4 | +--Utility:getUtility

42 1,8 1,7 | +--History:stopIteration
3201 1,1 1,1 | +--Decision:<init>
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Report (v) – Policy construction of the self-interested
agent model using the Modified Policy Iteration algorithm

Time
--------------

Count Total Net Location
===== ===== === ========

1 3836,0 142,1 +--PolicyIteration:solve
25617 3,9 3,9 | +--MDP:getStateLength
48015 9,0 9,0 | +--MDP:getState
25608 3,9 3,9 | +--State:isAbsorbing
1616 4,5 2,4 | +--MDP:isCapable
2080 2,1 2,1 | | +--MDP:isCapable

1 28,0 20,7 | +--Policy:<init>
3776 2,6 2,2 | | +--MDP:isCapable
3201 2,3 2,3 | | +--Policy:setDecision

1 3,9 3,3 | +--UtilityFunction:<init>
7 1,5 1,5 | +--History:startIteration
7 2196,0 1143,2 | +--EvaluationVI:evaluate

112070 17,4 17,4 | | +--MDP:getStateLength
168595 27,7 27,7 | | +--MDP:getState
112035 17,1 17,1 | | +--State:isAbsorbing
56560 8,4 8,4 | | +--State:isCompliant
56560 8,3 8,3 | | +--Policy:getDecision
56560 10,7 10,7 | | +--Decision:getAction
255410 452,5 373,9 | | +--MDP:getOutcomeLength
255410 41,8 41,8 | | | +--MDP:getState
255410 36,9 36,9 | | | +--State:isAbsorbing
142290 155,5 127,9 | | +--MDP:getProbability
142290 27,6 27,6 | | | +--Outcome:getProbability
142290 142,4 119,6 | | +--MDP:getOutcome
142290 22,7 22,7 | | | +--Outcome:getState
198850 32,8 32,8 | | +--UtilityFunction:getUtility
142290 28,8 28,8 | | +--Utility:getUtility
142290 141,8 121,3 | | +--MDP:getReward
142290 20,5 20,5 | | | +--Outcome:getReward
56560 9,3 9,3 | | +--Utility:setUtility
22407 3,5 3,5 | +--State:isCompliant
11312 1430,7 656,4 | +--PolicyIteration:calculateMeuAction
101808 15,5 15,5 | | +--MDP:getActionLength
90496 15,9 15,9 | | +--MDP:isCapable
202496 355,9 294,0 | | +--MDP:getOutcomeLength
202496 32,6 32,6 | | | +--MDP:getState
202496 29,3 29,3 | | | +--State:isAbsorbing
113120 120,0 101,6 | | +--MDP:getProbability
113120 18,4 18,4 | | | +--Outcome:getProbability
113120 113,5 95,5 | | +--MDP:getOutcome
113120 18,0 18,0 | | | +--Outcome:getState
113120 18,5 18,5 | | +--UtilityFunction:getUtility
113120 18,1 18,1 | | +--Utility:getUtility
113120 115,1 96,3 | | +--MDP:getReward
113120 18,7 18,7 | | | +--Outcome:getReward
11312 1,9 1,9 | | +--PolicyIteration$MeuAction:<init>
11312 2,0 2,0 | +--PolicyIteration$MeuAction:getEU
13944 2,2 2,2 | +--UtilityFunction:getUtility
11319 1,9 1,9 | +--Utility:getUtility
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Report (vi) – Policy construction of the norm-compliant
agent model using the Modified Policy Iteration algorithm

Time
--------------

Count Total Net Location
===== ===== === ========

1 1601,9 118,3 +--PolicyIteration:solve
32021 6,3 6,3 | +--MDP:getStateLength
49891 9,8 9,8 | +--MDP:getState
21066 10,9 10,9 | +--State:isAbsorbing
1568 2,7 2,3 | +--MDP:isCapable

1 37,9 23,0 | +--Policy:<init>
3203 5,3 5,3 | | +--MDP:getStateLength
3201 1,8 1,8 | | +--MDP:getState
3201 1,8 1,8 | | +--State:isAbsorbing
3320 4,3 3,7 | | +--MDP:isCapable

1 8,4 4,8 | +--UtilityFunction:<init>
3201 3,6 3,6 | | +--Utility:<init>

9 1,9 1,9 | +--History:startIteration
9 1120,8 691,6 | +--EvaluationVI:evaluate

144090 26,7 26,7 | | +--MDP:getStateLength
213885 36,6 36,6 | | +--MDP:getState
144045 47,6 47,6 | | +--State:isAbsorbing
69840 11,6 11,6 | | +--State:isCompliant
17280 3,7 3,7 | | +--Policy:getDecision
17280 3,9 3,9 | | +--Decision:getAction
67460 139,0 106,1 | | +--MDP:getOutcomeLength
67460 22,4 22,4 | | | +--MDP:getState
67460 10,4 10,4 | | | +--State:isAbsorbing
32900 39,3 29,1 | | +--MDP:getProbability
32900 10,2 10,2 | | | +--Outcome:getProbability
32900 50,8 31,8 | | +--MDP:getOutcome
32900 19,0 19,0 | | | +--Outcome:getState
50180 15,1 15,1 | | +--UtilityFunction:getUtility
32900 12,0 12,0 | | +--Utility:getUtility
32900 40,0 35,0 | | +--MDP:getReward
32900 5,0 5,0 | | | +--Outcome:getReward
17280 2,8 2,8 | | +--Utility:setUtility
28809 6,9 6,9 | +--State:isCompliant
3456 267,9 125,9 | +--PolicyIteration:calculateMeuAction
31104 21,2 21,2 | | +--MDP:getActionLength
27648 5,1 5,1 | | +--MDP:isCapable
28800 55,7 43,5 | | +--MDP:getOutcomeLength
28800 4,7 4,7 | | | +--MDP:getState
28800 7,6 7,6 | | | +--State:isAbsorbing
14112 16,0 13,4 | | +--MDP:getProbability
14112 2,7 2,7 | | | +--Outcome:getProbability
14112 16,3 12,7 | | +--MDP:getOutcome
14112 3,7 3,7 | | | +--Outcome:getState
14112 2,9 2,9 | | +--UtilityFunction:getUtility
14112 8,9 8,9 | | +--Utility:getUtility
14112 15,0 12,6 | | +--MDP:getReward
14112 2,4 2,4 | | | +--Outcome:getReward
3463 2,4 2,4 | +--Utility:getUtility
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Resumen en castellano

Todas las teorías son legítimas y ninguna tiene

importancia. Lo que importa es lo que se hace

con ellas.

Jorge Luis Borges

D.1 Antecedentes

Diariamente nos enfrentamos a problemas en los cuales debemos hacer decisiones

secuenciales. Por ejemplo, cuando conducimos nuestro coche desde una dirección

hasta otra, tenemos que decidir la ruta; cuando una empresa tiene la intención de

lanzar un nuevo producto en el mercado, tiene que decidir de que proveedor comprar

los componentes necesario para construir el nuevo producto. Cuando un estudiante

empieza un doctorado, tiene que decidir su linea de investigación.

La esencia de las decisiones secuenciales es que nuestras elecciones hoy dependen

de las decisiones que hicimos en el pasado, y el resultado de tales decisiones tomadas

ahora pueden afectar las decisiones que haremos en el futuro. Esto quiere decir que

nuestra mejor decisión depende de las situaciones futuras y de como las afrontamos.

En las ciencias de la computación, el problema de desarrollar mecanismos para que

agentes puedan tomar decisiones secuenciales ha sido extensamente investigado por

medio de Markov Decision Processes (MDPs) [6, 61, 95, 10, 93], los cuales han de-

mostrado tener gran adaptabilidad para análisis cuantitativo del rendimiento de los

agentes. En principio, MDPs pueden ser usados para generar y evaluar decisiones se-

cuenciales, aunque el problema de computar un plan óptimo es muy complejo [90, 75].
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En algunas situaciones, normas afectarán significativamente la toma decisiones

secuenciales. Ellas influencian nuestras decisiones a través de reglas que restringen

nuestras opciones con el objetivo de fomentar algún tipo de coordinación. Por ejem-

plo, cuando conducimos nuestro coche por las calles, existen normas regulando el

tráfico con el objetivo de evitar accidentes; cuando las empresas compran produc-

tos de otras empresas, las interacciones entre ellas casi siempre son reguladas por

contratos previamente establecidos; cuando un estudiante accede a un programa de

doctorado, se esperan que él cumpla con las normas de la universidad.

En estos ejemplos, se supone que los participantes son autónomos para decidir

si cumplen o no las normas. Tomar tales decisiones en entornos sencillos no suele

ser un problema. Aun así, la situación cambia en entornos complejos donde hay

incertidumbre. En este caso, los agentes no siempre estarán seguros de los resultados,

recompensas y costes de sus acciones, bien como no siempre estarán seguros de cuando

las violaciones de normas serán detectadas y castigadas.

En las últimas décadas, varios modelos de agentes para permitir razonamientos

normativos fueron propuestos [28, 42, 24, 68, 2, 123]. Una de las principales ventajas

de estos modelos de agente normativo vienen del hecho que podemos usarlos para

desarrollar sistemas donde las interacciones entre los agentes pueden ser coordinadas

por medio de normas que restringen sus actividades [107, 3].

Estudiando el estado del arte en MDPs y modelos de agente normativo hemos

observado la inexistencia de trabajos combinando ambos abordajes para la toma de

decisión. Esta tesis se enfoca en la clase de problemas en los cuales agentes utilita-

rios modelados como MDPs toman decisiones secuenciales en entornos regulados por

normas. Creemos que con esto, cada una de estas áreas de investigación pueden bene-

ficiarse de los puntos positivos de la otra. Por un lado, las normas nos podrían ayudar

a moldear el comportamiento de los agentes, fomentando la coordinación de activi-

dades y reduciendo el coste de computar planes de acción. Por otro lado, los MDPs

pueden ayudar con su capacidad para realizar evaluaciones cuantitativas, permitiendo

de este modo evaluar el impacto de las normas en la utilidad de los agentes.
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D.2 Objetivos

El objetivo principal de esta tesis es desarrollar y evaluar métodos computacionales de

agentes racionales capaces de generar planes de acción complejos en entornos dinámi-

cos y estocásticos regulados por normas.

El objetivo principal puede ser divido en los siguientes objetivos específicos:

(i) Formalizar un framework que permita la especificación de agentes utilitarios

normativos en entornos estocásticos donde hay normas regulando sus activi-

dades.

(ii) Desarrollar modelos de razonamiento normativo en entornos estocásticos para

permitir que agentes utilitarios normativos puedan incorporar las normas en su

base de conocimiento y decidir cumplir o no las normas.

(iii) Investigar el impacto de los modelos de razonamiento normativo propuestos en

las decisiones secuenciales y utilidades de los agentes.

(iv) Desde una perspectiva global, estudiar como las normas pueden ser usadas para

coordinar sociedades de agentes utilitarios.

D.3 Metodología

Para cumplir el objetivo (i), hemos extendido los Markov Decision Processes, in-

cluyendo estructuras normativas y una distribución de probabilidad que determina

la probabilidad de que las violaciones de normas sean detectadas. La formalización

de nuestro framework (NMDPs) ha sido hecha por medio de la teoría de conjuntos,

y nuestra noción de normas tiene su raíz en trabajos previos en sistemas normativos

informáticos.

Para desarrollar los métodos de razonamiento normativo propuesto en el objetivo

(ii), hemos utilizado el framework del objetivo (i) como base de conocimiento. La

estructura del framework nos permitió formular algoritmos generales y eficientes para

implementar diferentes nociones de racionalidad. Una vez codificados los algoritmos,

les hemos integrado en dos modelos de agentes, llamados self-interested y norm-

compliant.

Los objetivos (iii) y (iv) fueron cumplidos a través de experimentaciones basadas

en simulaciones realizadas en entornos multiagente normativos.
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D.4 Conclusiones

D.4.1 Contribuciones

Las principales contribuciones de la presente tesis son las siguientes:

(i) Generalización de los MDPs para permitir el razonamiento sobre normas.

En el Capítulo 3, nos hemos centrado en la representación de conocimiento

en agentes racionales capaces de percibir normas. Con este fin, hemos intro-

ducido los NMDPs, que permiten la representación de estructuras normativas

y distribuciones de probabilidad con respecto a la detección de violaciones de

normas. Los NMDPs proporcionan un método para constatar el cumplimiento

de las normas en los diferentes estados, y verificar la consistencia de normas

y sanciones (detección de conflictos). Además, hemos demostrado como repre-

sentaciones factorizadas de un espacio de estados pueden ser explotadas para

que se pueda codificar normas y modelos de detección de un modo compacto.

En un contexto mas amplio, creemos que los NMDPs pueden ser utilizados como

base para el desarrollo de nuevos modelos de razonamiento normativos, en par-

ticular, permitiendo la especificación de algoritmos generales para razonamiento

normativo en entornos estocásticos.

(ii) Modelos de razonamiento normativo.

Para abordar el problema de como razonar sobre normas con los NMDPs in-

troducidos en el Capítulo 3, hemos propuesto dos modelos de razonamiento

normativo en el Capítulo 4. En particular, esos modelos son especificados por

medio de algoritmos e incorporados en dos modelos de agentes. Los agentes

egoístas incorporan las normas en su funciones de transición y recompensa, y

de ese modo son capaces de razonar sobre posibles violaciones de normas. Por

otro lado, los agentes que cumplen las normas utilizan las estructuras normati-

vas para eliminar aquellos estados que violan las normas, generando así MDP

reducidos.

En esos modelos de agentes, hemos cubierto todas las propiedades utilizadas en

el análisis hecho en la Sección 2.5: autonomía con respecto a normas, repre-

sentaciones explicitas de normas y sanciones, modelo cuantitativo de decisión

y planeamiento probabilístico. Al tomar ventaja de la sinergia entre estas

propiedades, hemos posibilitado el desarrollo de agentes normativos capaces
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de tomar decisiones secuenciales con el objetivo de maximizar sus utilidades en

entornos estocásticos regulados por normas explícitamente representadas.

(iii) Sinergia entre MDPs y normas.

En el ámbito de la presente tesis, exploramos la combinación de los puntos

fuertes nativos de los MDPs y de los sistemas normativos con el propósito de

cubrir sus respectivas limitaciones individuales. Por un lado, usamos las venta-

jas analíticas de los MDPs para modelar el dominio de interacción y el proceso

de toma de decisión del agente llevando en cuenta la incertidumbre en relación

al entorno. Por otro lado, usamos las normas para fomentar la coordinación

en las sociedades de agentes y acotar el espacio de búsqueda en la construcción

de los planes con la intención de reducir el tiempo necesario para computar un

plan óptimo.

(a) Evaluación cuantitativa de normas.

Desde una perspectiva local, nuestro modelos permiten que los agentes

calculen el impacto de las normas en sus utilidades esperadas, teniendo

en cuenta incertidumbre, recompensas y sanciones. Tal evaluación cuan-

titativa es particularmente vital en dominios donde el rendimiento de los

agentes esta enlazado con métricas importantes tales como cantidad de

accidentes en un entorno de movilidad o ganancias provenientes de activi-

dades reguladas por contratos. Desde una perspectiva global, las evalua-

ciones cuantitativas fueron realizadas con un simulador de movilidad que

mantiene registro de accidentes y retribuciones de multas relacionadas con

violaciones de normas. En la Sección 5.5 enseñamos varios ejemplos de

evaluaciones cuantitativas, donde se puede observar el impacto de varias

normas en el comportamiento y utilidad de los agentes.

(b) Reducciones en el tiempo necesario para computar un plan óptimo.

Por medio del agente norm-compliant, hemos desarrollado un abordaje

original para reducir el tiempo necesario para computar un plan óptimo.

Nuestra técnica restringe el espacio de estados a una partición que respecta

las normas. En la Sección 5.5.4 se presentan los resultados en los cuales

podemos ver significantes reducciones en el tiempo necesario para generar

un plan.
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(c) Coordinación de agentes basados en MDPs.

Un MDP es un modelo de agente individual que no tiene conocimiento de

otros agentes que se encuentran en su mismo entorno, tal como presen-

tamos en el simulador de movilidad en la Sección 5.3. En ese contexto,

las actividades de un agente pueden interferir con las actividades de los

demás, y eso puede traer indeseables consecuencias. Suponiendo que el to-

tal cumplimiento de las normas da por hecho la inexistencia de problemas

de coordinación, es posible coordinar sistemas multiagentes compuestos

por agentes self-interested y/o norm-compliant. La diferencia es que con

agentes norm-compliant, la coordinación es incondicionalmente soportada,

y con agentes self-interested, la coordinación debe ser implementada por

medio de sanciones adecuadas.

Perciba que la técnica de coordinación propuesta en esta tesis es flexible

en el sentido que modificaciones en las normas no requieren un nueva im-

plementación de los agentes. Una vez que las normas son reflejadas en los

NMDPs, el nuevo plan puede ser generado automáticamente.

(iv) Aplicaciones.

Para validar nuestro abordaje, dos aplicaciones fueron desarrolladas en el ámbito

de la presente tesis. En el Capítulo 5, hemos medido el rendimiento de los

diferentes modelos de agente en relación a determinados parámetros controlados

en un entorno de movilidad multiagente. Esos experimentos ilustran el tipo de

evaluación cuantitativa que ideamos en sistemas multiagente normativos. El

Capitulo 6 demuestra a través de un caso de estudio en un dominio de mercados

secundarios aeroespaciales la aplicabilidad de nuestro abordaje para modelar y

razonar sobre contratos.

D.4.2 Limitaciones

La fortaleza de esta tesis se basa en la sinergia entre áreas de investigación, que indi-

vidualmente, presentan sus proprias limitaciones. Algunas de esas limitaciones fueron

superadas en esta tesis, todavía otras siguen aguardando una solución satisfactoria,

en gran parte debido a las restricciones impuestas en esta investigación de doctorado.

Los siguientes elementos enumeran las principales limitaciones de la presente tesis:
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(i) Algunas limitaciones fueron heredadas de los MDPS, como por ejemplo, la im-

posibilidad de tratar observaciones parciales y acciones colectivas.

(ii) En esta tesis, se supone que las normas codificadas en los NMDPs son consis-

tentes, o sea, no hay estados que simultáneamente cumplen con una norma y

violan otra. Vasconselos et al. [116] estudian ese tema y proponen mecanismos

para la resolución de conflictos normativos.

(iii) En determinadas aplicaciones, como por ejemplo en los contratos electrónicos,

sería interesante tener un tratamiento mas sofisticado del tiempo (por ejemplo,

deadlines). En esto trabajo, los deadlines son representados como propiedades

de los estados que cambian de valor cuando el deadline es alcanzado. El trabajo

de Broersen et al. [25, 11] en razonamiento normativo con deadlines puede ser

usado como un punto de partida para una investigación mas detallada con los

NMDPs.

D.4.3 Trabajos Futuros

Esta tesis ha abierto varias lineas para futuras investigaciones:

(i) Para abordar con problemas en los cuales los agentes no pueden observar direc-

tamente el estado actual, nos gustaría proponer los Partially Observable Nor-

mative Markov Decision Processes (PONMDPs), una extensión de los NMDPs

incluyendo un conjunto de posibles observaciones y probabilidades condicionales

para las observaciones. Además, tenemos la intención de representar transi-

ciones y recompensas usando representaciones factorizadas (en esta tesis, el uso

de factores esta restricta a los espacios de estados y modelos de detección) y

remodelar los algoritmos de razonamiento propuestos en el Capitulo 4 para que

puedan manipular esas representaciones compactas.

(ii) En el Capitulo 5 hemos visto que en determinadas situaciones los agentes norm-

compliant superan el rendimiento de los agentes self-interested, y que en otras

situaciones acontece al revés. Teniendo en cuenta esta observación, nos gustaría

desarrollar un nuevo modelo de agentes capaz de considerar apenas un subcon-

junto específico de normas para violación. Con eso, esperamos ahorrar recursos

computacionales (aún estaríamos explorando apenas parte del espacio de esta-

dos) y permitir el razonamiento sobre determinadas violaciones de normas que

muy probablemente aumentan las utilidades de los agentes.
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(iii) Desde una perspectiva global, queremos investigar mas a fondo los beneficios de

las normas para la sociedad de agentes (reducciones en los problemas de coordi-

nación, aumento de recaudaciones provenientes de sanciones contra violaciones

de normas) junto con el coste económico de implementar dichos mecanismos

normativos (no considerado en esta tesis). El propósito de tal investigación

es propiciar el desarrollo de mecanismos económicamente viables y adaptables

para la evolución de normas en sociedades de agentes heterogéneos.

(iv) La última linea de investigaciones futuras aborda casos donde los agentes tienen

conocimiento de las posibles acciones de los demás agentes compartiendo su

mismo entorno. Con respecto a esa linea, nos gustaría estudiar trabajos en

juegos estocásticos [105] y como estos pueden ser usados para generalizar nuestro

abordaje.
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