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Parque Tecnológico UPM, Pozuelo de Alarcón,

Madrid, Spain
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Abstract

Data grid services have been used to deal with the increasing needs of applications
in terms of data volume and throughput. The large scale, heterogeneity and dynamism
of grid environments often make management and tuning of these data services very
complex. Furthermore, current high-performance I/O approaches are characterized by
their high complexity and specific features that usually require specialized administra-
tor skills. Autonomic computing can help manage this complexity. The present pa-
per describes an autonomic subsystem intended to provide self-management features
aimed at efficiently reducing the I/O problem in a grid environment, thereby enhancing
the quality of service (QoS) of data access and storage services in the grid.

Our proposal takes into account that data produced in an I/O system is not usually
immediately required. Therefore, performance improvements are related not only to
current but also to any future I/O access, as the actual data access usually occurs later
on. Nevertheless, the exact time of the next I/O operations is unknown. Thus, our
approach proposes a long-term prediction designed to forecast the future workload of
grid components. This enables the autonomic subsystem to determine the optimal data
placement to improve both current and future I/O operations.
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1. Introduction

Grid-based data infrastructures have been used in the last decades to address the
increasing needs of applications in terms of data volume and throughput. Data grids
have been defined as a set of storage resources and data retrieval elements, which allow
applications to access data through specific software mechanisms [6]. The usual man-
ner of providing this functionality is through the creation of data access and storage
services. Nevertheless, the use of a grid infrastructure poses an increasing challenge to
the efficient management of these data services. This increased complexity may have
an impact on the QoS. To date, there is no simple and efficient way of accessing data
resources whilst safeguarding a committed QoS level. Ross et al. [32] identified sev-
eral challenges for I/O systems emphasizing the need to increase the manageability of
I/O systems due to their high complexity. Autonomic computing [21] can offer self-
management features to I/O systems, which constitutes an important step forward in
the I/O field. This approach is commonly known as autonomic storage.

Autonomic storage can improve I/O performance and QoS, especially when access-
ing large volumes of data such as that stored in data grids. Our proposal, called Grid-
based Autonomic Storage (GAS), combines concepts from autonomic computing and
I/O for the creation of an autonomic subsystem intended to provide self-management
features to a data grid. This autonomic subsystem can predict the future performance of
the grid components which can vary due to dynamic changes in the grid infrastructure.
Based on the prediction, the target resources for data placement can be selected. This
contributes to improving the QoS of data access and storage services in the grid.

The rest of this document is organized as follows: Section 2 presents the overview
of GAS. Section 3 shows the internal structure of GAS. Section 4 shows our monitoring
subsystem aimed at obtaining data that will be used in the following stages. Section 5
deals with all the aspects related to data analysis and scheduling. Section 6 describes
a sample scenario where GAS is applied and shows the evaluation of our proposal.
Section 7 shows several studies related to our proposal. Finally, Section 8 analyzes the
conclusions and describes any open issues.

2. Proposal: Providing Grid Autonomic Storage

Although grid computing enables creating infrastructures to address grand chal-
lenge problems, its own characteristics imply a highly complex distributed system.
Dealing with this complexity is a top priority in term of efficiently managing the sys-
tem.

Obtaining proper information about the system is the first step for its management.
Since grid systems are focused on services, monitoring mechanisms should provide
relevant information, i.e. information relating to the overall service rather than the in-
ternal composition of each specific element. Thus, there is a case for efficiently adjust-
ing distributed monitoring techniques to highly complex infrastructures. The solution
presented in this paper is data aggregation, i.e. monitoring each storage resource as a
single entity even if it is composed of several nodes.

Selecting the appropriate data resources to provide a high QoS is another challeng-
ing area of grid storage management. The QoS for data accesses is normally more
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related to the read operation behavior, since data is usually read more times than it is
written [32]. As data is not usually required immediately after having been generated,
enhancing the overall QoS requires improving the later read accesses instead of current
write accesses. Thus, data placement should be chosen depending not only on current
behavior of the storage elements but also considering predictions about their future
operation. Predictions must be made in the long term as the exact time of future I/O
operations is unknown.

This idea, based on monitoring and decision-making, is closely related to the way
most autonomic computing applications work. Autonomic computing solutions are
based on monitoring managed resources and analyzing retrieved data. After this analy-
sis, they plan and execute the best actions according to the data analyzed and the poli-
cies defined. The whole process follows a MAPE (Monitor-Analyze-Plan-Execute)
processing loop [19]. GAS is defined in the same way, following the principles of
autonomic computing. GAS is also composed of four phases, whose main responsi-
bility is providing autonomic self-management features. These four phases of GAS,
following the MAPE loop, are i) System Monitoring (Monitor), responsible for col-
lecting monitoring data ii) System Analysis and Prediction (Analyze), responsible
for analyzing the monitoring data and constructing a prediction model for the storage
elements, iii) Decision Making (Plan), responsible for deciding the data placement
and actions to be carried out and iv) Request Execution (Execute), responsible for
interpreting the decisions made and accessing suitable elements.

Our proposal presents a formal study of all the tasks required to provide autonomic
features, reduce management complexity and improve data access QoS: self-managing
capabilities, long-term prediction and decision-making. As a result, the proposed GAS
system incorporates self-management and self-optimizing capabilities. On the one
hand, GAS allows the system to adapt its behavior in the face of environment changes,
making appropriate decisions according to the expected behavior. These decisions are
intended to improve both current and later I/O operations. On the other hand, GAS ad-
justs its own internal parameters to improve its operation and future decision making.

3. GAS architecture

In a generic grid scenario, brokering is a useful technique to determine the extent
to which the user requirements are met and how efficiently the underlying resources
are being used. The broker not only performs the decision-making but is also essential
for managing these systems. In this sense, GAS has been conceived as a brokering-
based solution and can therefore be used with minor changes in conjunction with any
data access service, such as Storage Resource Manager (SRM) [28], Grid Datafarm
(Gfarm) [36], MAPFS-Grid [33], etc. designed to provide self-management features to
the system.

Furthermore, the broker can act act as a provider of autonomic features. To create
an autonomic broker, the GAS architecture covers the following functionalities:

1. Monitoring grid resources.

2. Predicting the future state of the storage elements, according to the data moni-
tored.

3



Monitor Analyze & Plan

Storage Element 1 Storage Element n

….

Monitoring 
database

Logs & Monitored data

GAS

retrieve/store

Cluster 1 Data Storage Cluster n Data StorageServer 2 Data Storage

query
access

Storage Element 2

Monitoring 
module

Client

request

System
Prediction

Module
Request

Translation
ModuleDecision Making

Module
GMonEDB

GMonEAccess

Plug-ins

Execute
MonitorAccess

Data Service
MonitorAccess

Data Service

MonitorAccess
Data Service

Figure 1: GAS architecture

3. Decision-making about suitable data placement to ensure a high QoS data access.

4. Decision-making about the adjustment of GAS internal parameters.

Figure 1 shows the GAS architecture. The storage elements can be clusters of
workstations, standalone servers with attached disks or storage-based systems, e.g. a
Network Attached Storage (NAS). The architecture is divided into two main compo-
nents: the first is related to the monitoring phase and the second concerned with the
Analyze and Plan phases. The following sections describe both components in detail.

4. Monitor

GAS needs a powerful monitoring tool which provides the required state informa-
tion, without affecting the QoS of the system. To provide the required information,
we have developed GMonE (Grid Monitoring Environment). Although we have im-
plemented GMonE as a part of GAS, it is a standalone tool that can run and work
independently on any computing environment. GMonE is a set of MDS-compliant
services (Monitoring and Discovery Service) [35] designed to work together. GMonE
provides efficient access to information, in terms of both response times and data size.
It coordinates monitored information from the whole grid, providing a unified interface
for information management and queries. It also performs statistical aggregation and
pre-processing of the monitored data.

GMonE components are spread throughout the entire infrastructure, monitoring
each resource. These components have been designed to cooperate in order to obtain
and manage the monitored data, performing four basic tasks (see Figure 1).

First, the raw monitored data is obtained using a service called MonitorAccess. The
aim of this service is to provide an efficient way to access monitored information from
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each grid resource, performing statistical pre-processing of the data. MonitorAccess
provides an abstraction layer to access all resource-monitored information from the
same interface.

Second, the monitored data is aggregated. Grid systems are composed of different
and heterogeneous resources. Clusters stand out among them because of their good
relation in terms of power vs. cost. Since most grid resources are clusters, abstracting
each cluster by aggregating data as a single entity helps understand the system more
easily. In spite of its complexity, it is possible to consider a cluster as a virtual element
defined on the basis of monitored data from every node. Using MonitorAccess it is
possible to monitor different Pi j parameters of each node j of cluster i. Each parameter
is grouped to obtain a representative value of the whole cluster, using different methods
depending on each parameter. Examples of these methods are arithmetic functions of
all the node values (e.g. the average value), pessimistic or optimistic case (e.g. taking
the worst or best measurement of all nodes), individual evaluation function of a single
parameter, evaluation function including all the parameters (Pi j, Qi j, . . .), etc. By
means of this aggregation, all grid elements can be compared regardless of whether
they are clusters or not.

Third, the monitored data is gathered and managed. The GMonEDB service is
in charge of gathering and managing the monitored information, once this has been
obtained. This means collecting the monitored information from each element and
storing it in its own database.

Fourth, the post-processed monitored data is made available to the autonomic sys-
tem. The GMonEAccess service provides a common interface to query monitored data
and manage the GMonE system.

5. Analyze & Plan

After the monitoring stage, GAS i) analyzes the obtained data, ii) creates a pre-
diction model and iii) makes decisions about the target storage elements, in order to
enhance the QoS of current and later data accesses.

5.1. Data analysis
Due to the high number of different resources present in a grid, the volume of

monitoring information generated can be enormous. Data mining techniques can be
used to identify behavior patterns. Since the number of data items is high, it is advisable
to group or cluster them in different categories or states, defined by certain parameters.

For this task the k-means algorithm [23] was selected, due to its simplicity and
fast execution1. K-means provides a way of grouping the monitored data. However,
it is important to determine the number of clusters. This is not known a priori and, in
fact, there might not be a unique answer as to what value it could take. Each method
to determine the number of clusters has its own limitations, i.e. there is no definitive
method for determining the number of clusters [26]. Since the number of states must be

1The system is intended to provide a fast response. Thus, the whole approach is based on methods with
low computational cost.
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automatically determined according to monitored values, Hartigan’s rule [16] is used,
due to its simplicity and good results.

5.2. Prediction

A priori and on-line models provide different approaches to address the prediction
task. A priori models perform an in-depth analysis of the past system behavior in
order to forecast its future operation. However, this is based on the assumption that the
system will not change its usual behavior. Long-term predictions can be made based
on this assumption. Unlike a priori models, on-line models are capable of detecting the
system changes in the short term. That is, they can adapt themselves to drastic changes
in the system behavior due to the fact that they give more importance to current data.

Since GAS provides an autonomic system that can adapt itself to system changes,
it should tackle the problem following an on-line model approach. However, the spe-
cific moment when a grid user makes a data request is unknown. Therefore, GAS must
improve future I/O requests as a whole instead of concentrating on a given moment.
Thus, in order to improve not just current operations but also future ones, long-term
prediction is useful. This kind of prediction can be made by means of a priori mod-
els. Among the a priori models analyzed , Markov chains [25] can be used to predict
how every parameter of each grid element usually behaves in the future. Nevertheless,
the usual Markov chain approach does not meet the needs of dealing with short-term
changes. In order to provide a trade-off solution, we have built an enhanced Markov
chain approach (see Section 5.2.2), which includes on-line model functionalities.

5.2.1. Prediction calculation
The size, complexity, heterogeneity, and constant variability of the system require

the creation and solution of several Markov chains, one for each storage element. Pre-
dicting a single grid resource performance requires comprehensive knowledge of its
past behavior. GMonE is used to obtain all the monitored data required. GAS then
obtains basic knowledge about the monitored data by means of the data analysis phase
shown above to discover relations between data. This stage defines a set of states de-
scribing the expected grid element behavior. These states are dynamically defined,
making it possible to self-adapt to the problem. Although it might be easier to use
pre-defined and static states – since they can be defined before obtaining the data –
, this would restrict the knowledge about the evolution of the grid elements, there-
fore reducing the system’s self-management capabilities. Through this data analysis
phase it is possible to predict the reachable states and the probability of reaching them.
These states can be used to define a typical Markov chain. Modeling the system in this
way enables making long term predictions due to the stationary probability properties.
These stationary probabilities can be used for the decision-making phase.

Markov chains represent a system whose state changes over time and which can
be represented as a transition matrix. The matrix obtained from a regular chain does
not facilitate solving the system. However, it can be turned into a system of equations,
which can be easily solved. Among the solving methods available, direct methods
have been ruled out due to response-time restrictions. In this case GAS uses approxi-
mative methods. The selected algorithm is the Successive OverRelaxation (SOR) [13]
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which offers performance improvements over the traditional Gauss-Seidel algorithm
[20]. The matrix and a vector of independent components are introduced in the SOR
algorithm to obtain the probability of each state in the long term. As an initial hy-
pothesis, a vector is defined based on historical data – which is calculated at the time
of defining the states – to represent the probability of a certain state. This approach
offers some advantages over the usual equiprobability vector, namely that it takes into
account the significant influence of past behavior on future operation.

As the system is regulated by external factors, transition probabilities are extracted
by studying the system behavior using the GMonE tool. To do this, GAS requests from
GMonE a monitored parameter value for each time window. These requests generate a
time series. Defining the limit values of each state, the time series is scanned counting
transitions from each state to all others. This allows the transition matrix to be directly
obtained from the data returned by GMonE. When the transition-counting phase is
completed, it is necessary to normalize the resulting matrix. As each matrix element
represents a probability, its value must be in the rank [0,1] and the sum of the row values
must be equal to one. Normalization can be performed using Laplace’s correction
formula to obtain a confidence probability value:

pi =
Favorable cases + λi

Total cases +
∑n

i=1 λi
(1)

where n is the number of classes and λi is the priority for class i. In this case, it
is set to 1. Equation (1) is applied to each matrix element where the number of total
cases is the sum of all values of the row and favorable cases is the element value.
Thus it is possible to obtain the transition matrix for each parameter and grid element.
The computational overhead of this matrix calculation is very small, as will be shown in
Section 6.1. However, if it were only calculated once, there would be a single prediction
about the further behavior of each grid element. Therefore, as new monitored data can
vary the expected future state, the predictions need to be reconsidered when new data
is acquired. The next section explains our approach in solving this problem.

5.2.2. Adaptation to new data (historical Markov chain approach)
Regarding on-line models, it is important to take into account that new data can vary

the expected future system behavior. Thus, it is necessary to analyze the past system
operation every time new data is acquired. There are several ways to incorporate new
behavior-related data in the prediction phase. GAS could perform a new prediction
for each client write request. This would create several Markov chains over time, one
for each request. Nevertheless, this alternative raises some problems. First, it could
cause an overload of the autonomic system and therefore a decrease in the perceived
QoS from the client point of view. Second, the monitored data time parameter which
needs to be taken into account in the prediction is highly significant, since it represents
the total time of the past behavior being analyzed. This means the rest of the time is
not considered in the study. Thus, other alternatives have been analyzed where data
is gathered since the beginning of the system execution and the monitored data time
parameter can be neglected.

Our proposal is based on the idea of gathering data until a drastic change occurs in
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the system. Instead of performing a prediction for each client request, the predictions
are made at certain times and different Markov chains are required:

• A Markov chain PrT
i that represents only a time interval [(i − 1)T, iT ]. Each pe-

riod T a new Markov chain is calculated with all monitoring values correspond-
ing to this period. The predictions performed correspond to the time interval
when they have been calculated.

• A historical Markov chain PrH
i . This historical chain aggregates all the historical

data from the beginning of the execution up until the time iT .

The chain PrH
i−1 can be evolved by using a new Markov chain corresponding to the

last time interval PrT
i . PrT

i is the Markov chain in each step of the evolution.

PrH
1 = PrT

1

PrH
2 = PrH

1 · PrT
2

...

PrH
i = PrH

i−1 · PrT
i

At any time in this process, it is possible to evolve the historical chain to obtain the
stationary probability for a certain state in the long term, as described in Section 5.2.1.
To do this, the period T must be constant and the states must not change in all PrT

i in
order to allow the historical Markov chain to evolve properly. Finally, the stationary
Markov chain can be calculated from the historical chain PH

i taking into account that
its states are dynamically defined once, when this matrix is created from PrT

1 . This
allows taking into account all the monitored data from the beginning of the system run.
This way of evolving the historical chain allows GAS to adapt itself to gradual changes
in the system behavior. In this sense, the predictions are slightly modified as new data
is collected enabling to gradually change their meaning in several steps. Nevertheless,
drastic changes in the system can abruptly modify this prediction. When a drastic
change occurs in the system, the values of the monitored data are modified, causing
the new acquired data not to fit with the states defined in the historical matrix. This
causes empty states or states without transitions that indicate that the matrix does not
comply with the regularity property. This case makes the calculation of the stationary
probabilities difficult (and sometimes impossible).

Determining whether the matrix is regular or not can be reduced to determining
whether all the states can be reached from any other state. This problem can be ad-
dressed using graph theory determining if the graph created according to the relations
between the states is strongly connected . Kosaraju’s algorithm calculates the strongly
connected components of a graph using two Depth-First Searches [8]. If there is only a
single strongly connected component the matrix represented by this graph is regular. If
the matrix is not regular, it means that the new data, collected after defining the states,
does not fit with the known states. This is caused by a drastic change in the system.
In this case new states have to be dynamically defined according to the last monitored
values so as to calculate a new historical chain.

8



5.2.3. Interpretation of results
Once the historical chain PrH

i of each parameter in each storage element has been
evolved, the stationary probability of remaining in each of the defined states in the long
term is obtained. Since each grid element can have a different representative pattern,
different states can be created for each of them. The states are not comparable, making
the decision process difficult. To overcome this problem a single value is obtained for
each parameter and grid resource that represents an aggregation of the probabilities
obtained in each state for the parameter in question. The problem is approached as a
piecewise defined function that indicates the probability of the possible values of the
parameter studied. The centroid or center of gravity g is the most common method to
obtain a single value that represents the whole function:

g =
∑n

i=1 xi f (xi)∑n
i=1 f (xi)

(2)

where xi are equidistant points which cover the whole range of values where the
function is not 0. The separation between these points can be adjusted according to
the precision needed in the result. This single numerical value represents the observed
parameter in the long term. This result is consistent with the expected probabilities
of remaining in each state and it is possible to make decisions by comparing with the
values obtained for the same parameter in every storage element.

5.2.4. Influence of the monitoring data period
The monitoring data period Ds

P refers to the time interval used by GAS to request
a parameter P from GMonE. This parameter, monitored in a specific resource s, deter-
mines the data set used in the prediction phase. If Ds

P is too high, the system changes
occurring during this period are not visible resulting in a loss of precision. A reduction
of the monitoring data period allows more detailed tracking of the system changes but
also requires a higher amount of monitoring data from GMonE, causing a performance
decrease when a prediction is performed. Thus, careful adjustment of this parameter
allows the system to better adapt itself to environment changes avoiding overheads in
the prediction algorithm. The system adjusts Ds

P autonomically, finding a trade-off
between the size of Ds

P and the overhead caused. In order to automatically select a
suitable value, it is possible to compare results obtained in the prediction phase for
different values of Ds

P.
As the initial aim is the reduction of Ds

P to enhance operation, a prediction is car-
ried out with a smaller value than the current Ds

P (the minimum size of this value is
the monitoring period). Its result then is compared with the result previously obtained
for the same parameter and grid resource. If the results differ1, it means that system
changes are not properly recognized and therefore it is necessary to reduce the moni-
toring data period, even though this involves an overhead. The initial monitoring data
period used is 5 minutes because it is considered relevant enough, although it is ad-
justed depending on the data supplied. If both predictions are similar, reducing the

1The degree of similarity indicates the adjustment between Ds
P and the overhead caused. A similarity of

5% is considered sufficient to prevent loss of accuracy
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number of observations does not obtain higher accuracy. In this case, a new prediction
is carried out with a larger Ds

P to know if it is possible to reduce the amount of data
without losing accuracy (the maximum size of Ds

P is a fraction of the prediction period
T ). If results are similar to the current prediction, then both predictions are similar
and it is possible to increase the size of the monitoring data period in order to work
with fewer observations. The amount by which to reduce or increase the monitoring
data period is a fraction of the difference between the maximum and minimum period.
Since this proportion is not a multiple of the current monitoring data period, periodic
system changes can be discovered.

5.3. Decision-making

Decision-making means selecting the most suitable storage elements to deal with
client requests. Whereas future behavior prediction is made at certain intervals, decision-
making is carried out when a client requests an I/O operation from the system. Different
methods have to be applied depending on the kind of I/O operation. Depending on the
specific data access service used the degree of development of each of these methods
is different. The reason is that each grid I/O system uses a different data access mode.
To give a comprehensive overview of the decision-making involved, the most difficult
process is shown in terms of the use of data parallelism and the replication of the most
used parts of each file instead of whole files.

5.3.1. Decision-making for read requests
This type of requests requires reading a file. File data can be replicated into the sys-

tem to provide fault tolerance capabilities. The replication involves the broker selecting
the replica of each file part that currently offers the highest quality access.

The basic discovery of file data in GAS is carried out by means of MDS. Impor-
tant information is then extracted from the meta-data stored in its corresponding WS-
resource properties, which allows GAS to analyze the completeness of all the data that
makes up the whole file. If the file is complete, GAS decides which replicas provide
the most efficient access to the requested file. In order to make this decision, the trans-
fer time Tr of each replica r is calculated. Tr takes into account both the latency Latc

s
and the data transfer rate TRc

s. The data transfer rate TRc
s is calculated for the data size

DS r. DS r corresponds to the size of the replica and is the same in each data service
resource that contains a replica of this information. This information is included in
the meta-data since it is useful to know the file size to book space. Since this article
is concerned with distributed storage, it is worth noting that both the I/O and network
bandwidths are limiting factors. Thus, TRc

s is obtained as the minimum between the
internal read bandwidth, IRs, of the storage element and the network bandwidth Ec

s
between the client and the storage element. Both parameters IRs and Ec

s are obtained
by means of GMonE. If GMonE does not provide a value Ec

s (traffic between client c
and element s may not yet have been observed by the monitoring system) ∞ is taken
as the value, which turns Ec

s into a non-limiting factor. Normally IRs will be higher
than Ec

s . By setting Ec
s to ∞, the system will select those replicas stored in the re-

sources not previously accessed by the client. As this access implies a connection, in
later accesses other replicas will be selected, namely those that are stored in resources
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which the client has never previously connected to. Though this does not improve the
data operations in the short term, it does, however, increase the number of connections
between the client and new elements thus obtaining more knowledge. This knowledge
will enhance the QoS later on.

To calculate the transfer time the number of messages sent between the storage
element and the client has to be taken into account. Not all the data blocks are sent
in the same message if the transfer is carried out slice by slice. The block size of the
slice is a key factor that indicates the number of messages. As in the case of DS r, the
block size BS s

r – which is is calculated during file creation to optimize I/O access (as
explained in Section 5.3.2) – is stored in the meta-data. To calculate the number of sent
messages Ms,c

r , the data size of the replica DS r and the size of the slice of the same
BS s

r must be considered in the following way:

Ms,c
r = b

DS r

BS s
r
c + 1

The number of messages has an impact on the I/O operation latency (Latc
s), since it

increases the time spent to establish the communication. Latc
s is provided by GMonE. If

there is no value for Latc
s, the client has never connected to this element. In this case, 0

is taken as the value, which implies a higher probability of selecting the non-connected
resources. Finally, the transfer time is expressed as:

T s,c
r =

(
Latc

s × Ms,c
r

)
+

(
DS r

TRc
s

)
(3)

Once all the transfer times of each replica have been calculated, GAS chooses the
replica with the shortest T s,c

r time to read this part of the file. It then provides the
client with a list of the data services used to store the selected replicas including their
appropriate block size BS s

r . This allows the client to find and efficiently access all the
parts of the file in a parallel way using BS s

r as block size.

5.3.2. Decision-making for file creating requests
These requests require creating a new file of a certain size. GAS must not only

determine the currently suitable data locations to create and write the data with their
indicated size, but it must also estimate the appropriate storage elements in order to
perform later I/O operations. This estimate is made by means of the prediction phase
shown before.

The decision-making to obtain a suitable trade-off between improving current and
later operation is a very complex process. When a huge amount of elements are work-
ing together, each element can have a different representative pattern. Section 5.2.3
explained how the results obtained from the prediction phase can be interpreted and
concentrated in a single value. This value represents a parameter observed in a storage
element in the long term.

Since several parameters can be taken into account, it is necessary to determine a
goodness value Xs for every storage resource s. This value concentrates all the pa-
rameters in an aggregated value representing current and later behavior of the storage
resource. To model this problem, the goodness is calculated from the different behavior
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of each storage element. The influence of every parameter on the goodness is weighted
according to its importance. Since these weights constitute a key factor, the system
itself should automatically decide these values following high-level policies. This can
be defined as an optimization problem between all the parameters affecting the sys-
tem, thereby maximizing the goodness of the storage elements to ultimately simplify
decision-making.

The parameters to be considered in the decision-making process must be related
with the monitoring of the I/O system phase in a data grid. The transfer rate for read
TRRc

s and write TRWc
s operations and the latency Latc

s stand out as parameters defined
by both the client c and the storage element s. Parameters that are related with the
behavior of each storage element s include the percentage of available storage capacity
CPs, the workload WLs and the number of simultaneous I/O requests Rs

1. Further-
more, since the QoS should not only be related to current but also later data accesses,
the prediction of parameters must be taken into account in the calculation of the good-
ness. The parameters that have an influence on later accesses are those related with
read accesses and the behavior of the resource, such as T̂RRc

s,R̂s, ŴLs and ĈPs
2, and

thus they have to be predicted following the method explained in Section 5.2. The im-
portance of every monitoring parameter in the goodness calculation can be established
by means of a weight W, which allows GAS to decide which parameters have more
influence during decision-making.

Xs = WTRR × T̂RRc
s +WTRW × TRWc

s +WCP × ĈPs +

+WWL × ŴLs +WR ∗ R̂s +WLat × Latc
s (4)

Equation (4) shows the goodness of each grid element. Since each parameter has
its own units, their values are standardized before adding. WP represents the impor-
tance weighting assigned to each parameter P. As the aim is to obtain the values of WP

that yield the best decision-making process, the decision will be easier if the goodness
of every storage element is the highest. Thus, the objective function should represent
the calculation of the weights WP1 ,WP2 , . . . ,WPn that obtain a goodness Xs for each
element s as long as there are no other weights W ′P1

, . . . ,W ′
Pn

whose goodness assigned
to a resource X′s is higher than the one calculated with the previous weights Xs. How-
ever, this problem is NP-complete. To avoid this, the joint system goodness can be
optimized instead of the goodness of each element. In this sense the objective function
is:

max(X1 + X2 + . . . + Xn) (5)

The relations between these weights must be defined through high-level policies.
The policies indicate which parameters are more important for the definition of the QoS
and they can be expressed by means of constraints on the relation between weights.

1Note that any other parameters can easily be included in the model.
2The symbol P̂ stands for the predicted value of parameter P.
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Since policies are intended to improve the I/O phase so as to enhance data-intensive
applications, the following restrictions have been defined based on expert knowledge
in the I/O field1:

1. The transfer rate of read operations has a higher priority than that of write oper-
ations because the aim is to improve the QoS of later read accesses, i.e. WTRW ≤

WTRR

2. Due to the great volume of data to store, the transfer rate for write operations is
more important than the workload in the storage element, i.e. WWL ≤ WTRW

3. Since the problem is focused on storage in a distributed environment, latency is
a key factor. Therefore, its weight has to have more priority than the processing
capacity, i.e. WWL ≤ WLat

4. It is important not to saturate the storage capacity of the few grid elements which
have the best characteristics, since data should be distributed between all the
resources. Therefore, the free capacity percentage is more important than the
number of expected simultaneous connections and the current transfer rate for
write operations, i.e. WTRW ≤ WCP; WR ≤ WCP

This problem is solved by means of linear programming, namely the Simplex
method [10], since all the constraints shown and the objective function are linear. The
problem is solvable since there is a basic solution available, i.e. ∀i ∈ [1, n],WPi = 1/n.

The dynamic calculation of weights allows GAS to asses the goodness of each
element in order to automatically make a decision about where to place the data when
creating a new file. To take full advantage of the available client network bandwidth
BWc a sufficient number of elements are selected. This involves analyzing the transfer
rate TRc

s that each element provides to the client. This analysis is performed by order
of goodness and includes checking that the sum of the transfer rates of the previously
selected elements is less than BWc, to prevent the client being saturated.

Data distribution and block size. The way to access data services has a clear influence
on the QoS. Data is usually accessed by means of slices. Thus, the size of the slice sent
to each storage element affects the QoS obtained. In view of the importance of this
parameter, GAS calculates a suitable block size BS .

Chen and Paterson [5] indicate the block size that maximizes the performance in
a striped disk array. Disk arrays can be regarded as a previous step to the proposed
storage element arrays. Their proposal consists in balancing the benefit and the cost
of the operation. The benefit is the transfer time of a single request, and the cost is
the time spent until data actually starts being accessed. For disk arrays, the benefit
can be expressed as the slice size divided by the transfer rate of the disk, and the cost
is its positioning time. In a data grid, where disks are replaced by storage resources
distributed over WAN, the benefit and cost are represented by different parameters.

1These policies are adapted to large amounts of data. For smaller volumes the constraints need to be
changed accordingly.
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These parameters must take into account the operation of the network instead of the
disk, since the network establishes the communication between the client and the data.
Following the previous idea, the benefit would be the block size divided by the transfer
rate of the connection and the cost would be its associated latency. Thus, a suitable
block size to optimize the access between a storage element s and a client c can be
expressed as:

BS c
s = Z × Latc

s × TRc
s (6)

where Z is the zero-knowledge coefficient, that is, if no information about the work-
load is known. Chen and Patterson demonstrate that Z is roughly 2

3 . Since (6) is based
on the Chen and Paterson formula developed for homogeneous disk arrays, this slice
size can be used when a single storage element is accessed to obtain data. If parallelism
between heterogeneous networks and elements is used, it is possible to asynchronously
send the suitable block size BS c

s to each resource. The block size of each element is
obtained independently by means of (6). In this sense, faster storage elements receive
more blocks according to their transfer rate. This makes reconstructing and recovering
the file difficult. In fact, any grid element must inform GAS1 about the file parts it con-
tains by publishing each file block through MDS using its corresponding WS-resource.
The size of a file block in each storage element s is equal to the calculated slice BS c

s.
The present proposal provides a seamless approach, since parallelism logic does not
require waiting for the lowest element.

5.3.3. Decision-making for write requests to an existing file
This kind of requests requires writing a file that is in the file system. Since file data

can be replicated into the system, a write involves selecting the replica of each file part
that enhances the QoS of not only current but also later data accesses. However, since
replication and file creation aim to optimize later access, decision-making for write
operations is only concerned with current access. Therefore, the decision can be made
as for read operations.

To select the most efficient replicas, the storage location of the old data must pro-
vide sufficient capacity for the new file size. This is verified during the whole process
of selecting a replica of each file part. If there is not enough space available to store the
file in the data distribution, decisions need to be made about other suitable locations
for the new file size in the way explained in Section 5.3.2. The file must then be re-
constructed following the selected new distribution. This task can be performed using
selective operations. These operations read data slices of the most effective replicas
that belong to the first topology and subsequently write them into the new distribution
of storage elements. [29] shows the file reconstruction stage by using selective oper-
ations in cluster environments. In a grid these operations are applied analogously, as
this alternative is more efficient than brute force.

If there is enough space, GAS decides which replicas provide the most efficient
write access. The transfer time is the key factor in selecting the best replicas (see (3)).

1GAS checks if the whole file is in the system obtaining the total number of parts in which the file was
distributed and checking if all the parts are stored by any elements.

14



Nevertheless, the data transfer rate TRc
s for sending from the client c to each storage

element s is different, since parameters affecting write operations must be considered.
In this case, the data transfer rate is obtained as the minimum between the internal I/O
bandwidth of writing IWs in each site and the network bandwidth Ec

s between the client
and the storage resource.

When a write is performed on the replica that provides the most efficient write
access, the non-selected replicas must be marked as obsolete because their data is not
updated. The consistency problems derived from this data update can be solved by
using a Consistency Service [11] that propagates the update to the other sites.

6. Evaluation

In order to evaluate GAS, some non-idle storage elements distributed on the Inter-
net have been used to build a simple but complete grid testbed. The storage elements
are distributed over Spain and run the GridFTP version of the MAPFS-Grid service [33]
for parallel file storage, called MAPFS-DSI. Both the storage elements and the client,
are connected via the Spanish scientific wide area network, called RedIRIS. The re-
sources are heterogeneous and belong to different sites with different administrators
and security policies:

• Universidad Politécnica de Madrid: its resources are three clusters, UPM 1, UPM
2 and UPM 3, located in Madrid, Spain. UPM 1 has 8 Intel Xeon 2.40GHz nodes
with 1 GB of RAM memory, their hard disks providing approx. 30 MB/s each.
UPM 2 has 8 Intel Xeon 3.0GHz nodes with 2 GB of RAM memory, their hard
disks providing approx. 50 MB/s each. UPM 3 has 2 Intel Pentium IV 3.20GHz
nodes with 512 MB of RAM memory, their hard disks providing approx. 30
MB/s each.

• Universidad Rey Juan Carlos: the URJC node is an Intel Pentium IV 2.80GHz
node with 1 GB of RAM memory located in Mostoles, Spain.

• Barcelona Supercomputing Centers: the BSC resource is an Intel Pentium IV
3.0GHz node with 1 GB of RAM memory located in Barcelona, Spain.

• Universidad de Castilla La Mancha: the UCLM cluster is composed of 8 Intel
Pentium IV 3.0GHz nodes with 2 GB of RAM memory located in Albacete,
Spain.

• Universidad de Murcia: the UM node is an Intel Pentium III 1.0GHz node with
384 MB of RAM memory located in Murcia, Spain.

The GAS broker is running on an Intel Xeon 3.00GHz node, with 2 GB of RAM
memory. It is located at the computer science faculty of the Universidad Politecnica
de Madrid. Finally, the client is running on an Intel Core 2 2.13GHz node with 1 GB
of RAM memory and network bandwidth limited to 40MB/s. It is located at the Oper-
ating Systems Group’s laboratory of the Universidad Politecnica de Madrid. Figure 2
shows the grid testbed with the topology of the network that interconnects the different
grid elements. The network bandwidths shown refer to the maximum values of their
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Figure 2: Grid testbed

network interfaces, their actual value being lower because of third-party network traffic
and the internal RedIRIS topology. Furthermore, in order to understand the results it
is important to emphasize that the whole set of grid elements used in the testbed are
shared by other local users.

6.1. Evaluation of the prediction model

This section analyzes the time required to make predictions, the weight of selected
algorithms in the workload and the evaluation of the predictions.

Several predictions have been made by GAS to evaluate the complete prediction
time. Every period T , a new prediction is made for each storage element and parameter
required in the decision-making. Since the system is designed to work in the long term
and the aim is not to overload the system, 1 day is considered an acceptable minimum
value fo T . The average prediction time for each grid element and parameter is then
analyzed. It takes approximately 20 ms to predict every parameter of each resource.
This low time illustrates the high capacity offered by the proposed system: a typical
machine can predict the future state of 12.5 resources per second. Furthermore, the
possibility of increasing the period T shows the scalability of the system.

Most of the prediction time is spent on gathering data, especially accessing database.
Around three quarters of the prediction time (73.68%) is consumed by the database ac-
cesses to gather the information required for making predictions. This indicates the im-
portance of having fast database access. Only around a quarter (26.32%) is consumed
in processing data, defining the states and making the prediction. The prediction model
designed in this work takes less than 2 ms for each parameter and storage element.

With the aim of understanding how well the predicted model works, the predic-
tion of the expected distribution should be checked against real observations. The
chi-square (χ2) test can be used to check this. The χ2 statistic calculates a discrepancy
measure between observed values Obs and the values Exp of the expected distribu-
tion. In this test, both states i and expected frequencies Expi of every parameter p
of each storage element s are calculated by means of the data analysis and prediction
phases shown. The predictions were made based on 10 days of historical data. These
predictions are compared with the data set Obsi obtained for each parameter and grid
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element during the following 20 days (measured every 4 hours) classifying each value
according to the states previously calculated. Once the χ2 statistic is calculated, it can
be compared to the χ2 distribution to determine its goodness of fit and therefore its
confidence level. The confidence level indicates the probability of the result being cor-
rect, i.e. if the prediction has been correct. In the tests, 57.14% of the predictions made
achieve a statistically meaningful confidence level (higher than 90%). The parameter
for internal I/O bandwidth of reading (Ir) showed the highest probability of a statisti-
cally meaningful confidence level, reaching 71.48%. Regarding the confidence level of
the predictions of the different storage elements, no statistically meaningful differences
were found.

6.2. Evaluating decision-making

In evaluating decision-making attention should be focused on the time consumed in
read/write operations and the time dedicated to file create operations. These operations
consume much more processing time because they have to calculate the most efficient
data placements to enhance the QoS of later data accesses.

The decision-making performance of read/write operations depends on the number
of parts into which the file was divided when it was created and the number of replicas
of each part. For each replica, the broker has to obtain the corresponding current data
by means of GMonE to make the decision. The average time to request this data is 30
ms per replica. The processing time to select the appropriate replicas only represents a
very low percentage (13.4%) of this time because of the high cost of database accesses.

The study of file create operations requires a deeper analysis. For this purpose,
the weights of the different stages are examined step by step: i) analysis of the active
grid resources to obtain their predictions and the historical information of each of the
different parameters analyzed, ii) obtaining the objective function and sorting the stor-
age resources from higher to lower expected QoS of current and later data accesses
according to the predictions and the high-level policies defined, and iii) selection of the
set of storage elements required to store the file, taking advantage of most of the client
network bandwidth and calculating a suitable block size to access each resource. The
processing time (200 ms on average) is mostly spent on the first step (44.5%) because
this phase requests a higher number of data from the monitoring system. Most of this
time (72.25%) is consumed in accessing the database whereas only a minor percentage
(27.75%) is used for processing data. The next high workload stage (37.8%) is the
resource selection and block size calculation step, since it has to make the decision.
Finally, the objective function calculation is the step that requires the least workload
(17.7%) ensuring the selection of suitable algorithms to obtain the goodness of each
resource.

6.3. Autonomic capabilities

GAS aims at making system management easy by incorporating autonomic capa-
bilities. The self-management capability is intrinsic to the GAS operation. Section
5.3.2 analyzes in depth how GAS configures the importance (WP) of every parameter
P in order to make decisions following high-level policies. Self-optimizing aims at
enhancing the QoS of not only data accesses but also the GAS itself. The autonomic
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Figure 3: Average time to make predictions regarding the monitoring data period Ds
P.

GAS automatically adapts this value in accordance with the behavior of the parameter
P observed in the storage element s

configuration of the internal parameter data period (Ds
P) allows the system to adapt bet-

ter to changes in the environment. Figure 3 shows the average time taken by the system
to make predictions according to different values of Ds

P. If GAS detects a stable behav-
ior for a specific storage element s and parameter P, it increases Ds

P achieving faster
access to the database and avoiding overheads in the prediction algorithm. If the be-
havior is too variable, GAS reduces Ds

P to obtain more information about the resource
and the parameter thus adapting itself better to changes. In this case, prediction results
can change around 16% moving closer to actual resource behavior as Ds

P is decreased.

6.4. GAS performance and QoS
To measure the GAS influence on the system performance and the quality of the

overall data services provided, a MAPFS-DSI client application has been used. This
application performs read and write operations on the selected resources in a paral-
lel way. For comparison purposes, the client and GAS have been configured in four
different working modes during these experiments:

• Random mode: the client randomly selects how many and what storage resources
are used to perform parallel read and write operations. It uses a 2 MB block size,
since results obtained in previous analyses show that this size is suitable in all
tests.

• Best resource mode: the broker selects the best resource for read and write oper-
ations based on static characteristics of grid elements instead of dynamic work-
load. In these experiments UPM 2 was selected as the best resource. The appro-
priate block size for effectively accessing the selected resource is calculated by
the broker.

• Decision mode: the broker selects data placements according to the decision
making phase explained in this work. The prediction phase described in this pa-
per is not performed, i.e. the broker only uses the current state of each resource.
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As in the case of best resource mode, the client obtains the appropriate block
sizes to access every resource.

• Prediction & decision mode: the GAS broker is in charge of calculating the
predictions and the decision-making. The client obtains the suitable block sizes
from the broker.

The last two working modes (decision, and prediction & decision) contain the main
elements of the GAS proposal. They are the center of this experimental evaluation and
represent the main contribution of this paper. The first two working modes (random
and best resource) represent typical distributed storage configurations and are included
in the study for comparison purposes. Several experiments have been performed in
order to analyze the QoS of I/O operations according to the client access mode and the
file sizes. These tests consisted in creating and writing 10 MB, 100 MB and 1GB files
for the purpose of performing consecutive read operations from the same files every
six hours. For read operations, average and standard deviation bandwidth values were
selected as representative descriptors. Brokering times were measured in order to study
the overhead of the decision and prediction phases.

Regarding brokering overhead, the experiments performed show that decision and
prediction times are not dependent on the specific characteristics of each I/O opera-
tion. The brokering overhead is basically constant for all operations, regardless of the
amount of data that is being accessed.

The random and best resource modes do not have any brokering overhead, since
the resource selection is performed by the client in the first case (simply by selecting
random resources) and is static and performed before the experiments in the latter case.
The other two modes (decision and prediction and decision) present a very similar con-
stant overhead of around 0.86 seconds. The prediction and decision mode presents the
higher overhead (0.89 seconds), which is not surprising given that it presents the most
complex brokering process. The small difference between this and the decision mode
is explained by the fact that most of the prediction process (Markov chain calculations,
etc.) is performed asynchronously, and therefore adds no direct overhead to the I/O
operations time. The extra time spent due to the prediction process is insignificant.

Figure 4 shows the different average read bandwidths of each client access mode
and file size. Regarding small operations (10 MB), the random mode obtains better
results since the file size is very small. I this mode the client itself has the required
location information whereas in the other modes the client requests the data location
information from the broker. The effective read bandwidth shown is calculated using
the request time and the file size. The request time is the sum of the time of the con-
nection to the broker and the decision-making to select the appropriate replicas. The
request time affects the 2 broker-based modes. The high influence of the request time
due to the low file size means that the best option to read low-size files is to use the
random mode.

The 100 MB read operation performance in random mode has a high average read
bandwidth compared to the 10 MB case. I/O operations in random mode benefit from
the parallel access if several resources are randomly selected, whereas only one re-
source is used in best resource mode, limiting its performance. Regarding the two
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Figure 4: Average Read Bandwidth

proposed decision-based modes, which represent the fundamental contribution of this
paper, the average read bandwidths of both modes are very close because there are sev-
eral suitable combinations for this file size in which the bandwidths are not saturated
during a long time.

The 1 GB read operation bandwidth in each mode is noticeably different. The ran-
dom mode client is clearly penalized because it is equally likely to select either the
best or the worst resources. On the other hand, both proposed decision-based mode
approaches guarantee the use of optimal resources because decisions are focused on
obtaining high-performance. Thus, although the random mode client does not contact
the broker, eliminating the extra overhead, it takes around 38% more time than decision
mode client and around 46% time more than prediction & decision mode client. In the
case of 1 GB read operations, the difference observed between the two decision-based
modes is due to the prediction enabling more constant data access in the long term.
The decision mode client is penalized by the grid changes because write operations do
not take into account the behavior prediction. The prediction & decision mode client
achieves an improvement of around 10% with regard to the decision mode client. As in
10 MB and 100 MB file size accesses, the best resource mode obtains the worst perfor-
mance since clients only access a single grid resource. From a general perspective, both
decision-based modes (the fundamental part of this contribution) obtain significantly
better results.

When the file size is increased, the performance is significantly improved by using
the decision-based modes. The decision & prediction mode obtains the highest band-
widths for both read and write operations, with their transfer rates exceeding 25 MB/s
and 20 MB/s, respectively. These are higher than the theoretical network transfer rate
of every storage element of the grid testbed. Despite obtaining slightly worse results
than the decision & prediction mode, the decision mode still presents an improvement
over the other two mechanisms, proving that both key elements of the GAS framework
(decision and prediction) are necessary to obtain the highest performance.
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Figure 5: Average Read Bandwidth Standard Deviation

These results show how the proposed techniques improve data access performance.
However, to obtain quality of service a certain bandwidth stability in all operations
and the ability to adapt to system changes have to be guaranteed. Not only the aver-
age bandwidth has to observed, but also the degree of dispersion of the performance
observed (how close each individual operation is to the average value). To provide
a descriptor of this dispersion, Figure 5 shows the different read bandwidth standard
deviations for each client access mode and file size.

In the case of small operations (10 MB), the dispersion is negligible, with all de-
viation values less than 0.1 regardless of the access mode. In this scenario the small
file size and access time make most read operations almost identical, regardless of the
resource selected.

In the 100 MB read access scenario higher deviations have been observed, showing
that in large I/O operations resource selection is a key factor. However, the dispersion
observed is still very low, between 0.2 and 0.3. he random mode presents a lower
deviation than both decision-based modes. If we consider again the data from Figure
4, showing that the random mode performance is clearly lower than the other two
mentioned, the conclusion is that this mode always produces low performance results.
The best resource mode brings up the rear, with even lower performance and a deviation
similar to the decision-based modes.

The 1 GB scenario shows that the significant performance improvement obtained
by the decision-based modes is concomitant with an increase in deviation. This is
due to the fact that the grid constantly changes, and the best possible performance
that can be obtained varies with time. The decision-based modes try to obtain the
best performance at each moment, reflecting the variability of the grid infrastructure
in their results. However, the deviation values observed are still very low (less than
0.7), guaranteeing a very stable service with substantially better performance than in
the random and best resource modes.
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The increase in file size has an impact on service stability, since resource selection
is the key element of operation QoS. The random and best resource modes generally
provide poor results, with low dispersion but also low performance. These modes fail
to take advantage of the grid potential and present sub-optimal solutions. Our decision-
based proposals (both decision and decision & prediction modes) show slightly higher
dispersion due to the fact that they adapt to the grid variability and try to achieve opti-
mal performance in each situation. The slightly higher deviation observed is still very
low, guaranteeing a higher performance and stable operation, and therefore increasing
QoS.

7. Related Work

The main difference between the work presented in this paper and the previous
work done on data grids is the way write operations are performed. In most systems,
files are written locally and once the write is completed the files are either sent to the
server that will finally store them or replicated to the right places (according to the
replication policies) [2, 3, 22, 39]. Our proposal is based on providing efficient access
to large volumes of data, such as those stored in data grids. Therefore, it is necessary
to enhance the quality of data services, writing data in those storage elements that will
offer high quality access when the file is to be read.

Although, as far as the authors are aware, no previous work has followed the pro-
posed approach, many projects have tried to model grid resources to be able to make
decisions on how and where to replicate data. The first approach, widely used in grids,
is based on measured performance values. In these systems, the load is measured once
(peak value), periodically or every time an event occurs. This observed performance
serves as the basis for making decisions [4, 12, 22, 31, 39]. This approach is based
on the assumption that the future will be like the measured state, i.e. that the system
is somehow static. A second approach consists in modeling using analytical models
[1, 17, 27, 30, 38]. Another family of models is based on correlation between events.
The idea is to be able to predict events by its correlation to previous events [7] or
workload characteristics [40]. As an evolution of these models, there have also been
proposals going beyond building the model, by checking the accuracy of the model
and deciding to remodel whenever needed [37]. The proposed models are not adequate
for our objective because they cannot predict the behavior at a given time when this
time is not known a priori, making it impossible to dynamically adapt to changes in
the system behavior.

Finally, the main cluster file systems that have autonomic capabilities [14, 15, 18,
24, 41] need to be mentioned. Although these file-systems have different target envi-
ronments, they are the precursors of autonomic storage for grid systems.

8. Conclusions and Open Issues

Grids are highly complex systems. The autonomic framework GAS has been de-
signed and implemented to manage this complexity, enhancing the quality of data stor-
age services. Firstly, GAS allows the system to adapt its behavior facing environment
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changes. Additionally, it adjusts internal parameters to improve the QoS of the over-
all system and the decision-making processes. This paper describes in depth all the
required phases to provide autonomic features: monitor, analyze and plan. The an-
alyze & plan phases are based on data analysis, Markov chain-based prediction and
decision-making, whereas the monitoring phase is provided by GMonE, a proposed
set of services for GAS designed to work together and intended to provide a complete
monitoring infrastructure for the grid.

The use of GAS provides substantial benefits both in the areas of data access per-
formance and, most importantly, quality of service. These benefits have been observed
in real experimental scenarios, further validating the scientific contribution of this auto-
nomic framework. Additionally, the decision and prediction techniques here presented
are based on an enhanced Markov chain model, an extension of traditional Markov
chain models that addresses the special needs of grid resource behavior modeling.

There are, however, pending tasks to be considered for possible future work. GAS
is a broker-based solution, which means that every client query is first submitted to
the broker, thus making it a central element (creating a single point of failure). To ad-
dress this problem, GAS could evolve into a distributed architecture using a distributed
database, thus allowing more efficiency, availability, scalability and fault tolerance.
Furthermore, although the prediction phase is relatively short, scalability is a crucial
feature since there could be thousands of storage elements in a grid. Thus, an alterna-
tive could be to move the prediction capabilities to the server-side and analyzing the
possible benefits and drawbacks.
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