Carrier Dynamics and Microwave Characteristics of GaAs-Based Quantum-Well Lasers

I. Esquivias, Member, IEEE, S. Weisser, B. Romero, J. D. Ralston, Life Member, IEEE, and J. Rosenzweig

Abstract—We investigate the effects of carrier capture and re-emission on the electrical impedance, equivalent circuit, and modulation response of quantum-well (QW) laser diodes. The electrical impedance is shown to be a sensitive function of the time constants associated with carrier capture/transport and carrier re-emission. We compare the theoretical results with measured values of the electrical impedance of high-speed InGaAs–GaAs multiple-quantum-well lasers fabricated using different epilayer structures with a common lateral structure. The experimental results agree well with the theoretical model, allowing us to extract the effective carrier escape time and the effective carrier lifetime in the QW’s, and to estimate the effective carrier capture/transport time.

Index Terms—Equivalent circuit, gallium compounds, impedance measurement, laser measurements, quantum-well lasers, semiconductor lasers.

I. INTRODUCTION

The maximum modulation bandwidth that can be achieved using quantum-well (QW) active regions in semiconductor lasers is still the subject of intense debate, both theoretically and experimentally. While it was theoretically predicted that QW lasers could attain substantially higher direct modulation bandwidths than their bulk counterparts [1], [2], it is only recently that direct modulation bandwidths exceeding the record values for InP-based and GaAs-based bulk devices have really been measured [3]–[6]. Electrical parasitics, device or carrier heating, and nonlinear gain can limit the modulation bandwidth of both bulk and QW lasers. However, one problem intrinsic to QW devices is the additional bandwidth limitation arising from the processes of carrier capture into the QW’s, carrier escape from the QW’s into the core, and carrier transport across the core [7]–[10]. The influence of these processes on the modulation response and the relative intensity noise (RIN) [11] have been extensively studied using a rate-equation approach. However, the values of the time constants entering into the rate equations describing carrier capture, transport, and re-emission are not well known for practical laser structures. Furthermore, the unambiguous determination of these time constants from measured values of the modulation response or RIN is not possible in general.

Using a rate-equation approach, we have derived the expressions for the electrical impedance of a QW laser [12]. Accurate knowledge of the laser electrical impedance and the laser equivalent circuit is not only required for the design of electronic laser drivers, but is also useful to gain further insight into the laser dynamics, since the electrical impedance is a sensitive function of the time constants describing carrier capture and re-emission. An analysis of the frequency dependence of the subthreshold electrical impedance can provide reasonable estimations for the values of the dynamic time constants. This approach has been applied to extract the escape time and to estimate the capture time for GaAs-based QW lasers with different layer structures and device geometry [12]–[16].

In this paper, we extend the theoretical analysis and present further experimental data to illustrate the dependence of the electrical impedance, the laser equivalent circuit, and the modulation response of strained InGaAs–GaAs lasers on the values of these time constants. The paper is organized as follows. In Section II, we review the rate-equation model used to calculate the modulation response, electrical impedance, and the laser equivalent circuit. In Sections III and IV, we provide analytical expressions for the steady-state and small-signal characteristics, respectively. Simplified expressions for the impedance, modulation response, and equivalent circuit in some special cases are given in Section V. Section VI presents the results of measurements of the electrical impedance of high-speed laser diodes fabricated using different epilayer structures with a common lateral structure. We demonstrate that the measured values of the impedance versus frequency can be accurately modeled using the simple expressions derived from the rate equations. Three qualitatively different behaviors of the impedance versus frequency are observed, which are predominantly due to different values of the carrier escape time in the different epilayer structures. In this section, we further present the values of the time constants describing the carrier dynamics extracted from these measurements. Finally, we summarize our main results in Section VII.

II. RATE-EQUATION MODEL

In order to model the dynamical properties of QW lasers, we use single-particle rate equations describing the dynamics of electron–hole pairs. The more general two-particle models...
require the analysis of four (or more) nonlinear coupled rate equations [17], for which simple solutions do not exist. However, as will be shown in this paper, this single-particle model accurately describes the measured values of both electrical (differential diode resistance and electrical impedance) properties and the modulation response of the GaAs-based lasers investigated in this study, so that the use of two-particle models is not merited. We assume a homogeneous vertical carrier distribution in the total core region (including the barriers between the QW’s) and neglect carrier transport effects between the QW’s in multiple-quantum-well (MQW) lasers [18], resulting in a homogeneous carrier distribution in the QW’s. In addition, the lateral carrier distribution in the core and in the QW’s is assumed to be homogeneous, neglecting the effects of lateral carrier diffusion [19].

Fig. 1 illustrates the dominant processes in QW lasers. The dynamic behavior of a QW laser is modeled using three rate equations, one each for the photon number in the cavity $N_p$, the number of unconfine carriers $N_{uc}$, and the total number of confine carriers in the QW’s $N_{cw}$. In analogy to the models for bulk lasers [20], we include the influence of the space-charge capacitance $C_{sc}$ into the rate equations, which, as will be evident from the experimental results in Section VI, is important to explain the dynamical laser properties. Considering the effect of $C_{sc}$, the net current used to change the amount of charge stored in the core and in the QW’s is written as $I - C_{sc} \cdot \frac{dV_c}{dt}$ where $I$ is the total injection current and $C_{sc} \cdot \frac{dV_c}{dt}$ is the current required to change the amount of charge stored in the depletion region of the junction, where $V_c$ is the junction voltage. Carriers are injected into the core from the highly doped cladding layers, building up a population of unconfine carriers in the core. The carrier population in the core interacts with the confine carriers in the QW’s by the processes of carrier capture into the QW’s (rate $N_{cw}/\tau_{cap}$ with the effective capture time $\tau_{cap}$) and carrier re-emission from the QW’s (rate $N_{cw}/\tau_{esc}$ with the effective escape time $\tau_{esc}$). In this analysis, we neglect the recombination of carriers in the core and the re-emission of carriers from the core into the cladding layers. Both effects could be included in the analysis by adding an additional loss rate for carriers in the core to the corresponding rate equation [21]. The carriers in the QW’s recombine via stimulated emission with the rate $N_p \cdot \Gamma G(N_{cw}, N_p)$ where $G(N_{cw}, N_p)$ is the optical material gain and $\Gamma$ is the confinement factor, and by nonradiative recombination and spontaneous emission into all optical modes. The latter two processes are summarized in the rate $N_{cw}/\tau_{eff}$ where $\tau_{eff}$ is the effective carrier lifetime in the QW’s. The rate equations are thus written as

$$\begin{align*}
\frac{dN_p}{dt} &= [\Gamma G(N_{cw}, N_p) - \frac{1}{\tau_p}] \cdot N_p \\
\frac{dN_{cw}}{dt} &= -\left[\frac{1}{\tau_{eff}} + \frac{1}{\tau_{esc}}\right] \cdot N_{cw} + \frac{N_{cw}}{\tau_{cap}} - N_p \cdot \Gamma G(N_{cw}, N_p) \\
\frac{dN_{uc}}{dt} &= \frac{I}{q} - \frac{dV_c C_{sc}}{dt} - \frac{N_{uc}}{\tau_{cap}} + \frac{N_{cw}}{\tau_{esc}} 
\end{align*}$$

(1)

where $\tau_p$ is the photon lifetime and $q$ is the elementary charge.

It is important to note that the physical capture time $\tau_{cap,phys}$ is not identical to the effective capture time $\tau_{cap} = \tau_{cap,phys} \cdot d_c/d_{cw}$, appearing in the rate equations, the latter containing a scale-up factor given by the ratio of the total core thickness $d_c$ and the total QW thickness $d_{cw}$ [22]. Transport effects of carriers across the core lead to an inhomogeneous carrier distribution in the core [23]. However, the dynamic properties of QW lasers in the presence of carrier transport effects can also be described by (1), but with the effective carrier capture time replaced by the carrier transport time [7]. In the general case, the combined effects of carrier transport and carrier capture can be included in the analysis by using the expression for the effective carrier capture time $\tau_{cap} = \tau_{diff} + \tau_{cap,phys} \cdot d_c/d_{cw}$ [22] where $\tau_{diff}$ is the carrier diffusion time across the core in (1).

The dependence of the optical material gain on the photon number is phenomenologically described using the nonlinear gain coefficient $\varepsilon$. Throughout this paper, we restrict the analysis to the case of weak gain suppression $\varepsilon S \ll 1$, where the photon density $S$ is given by $S = N_p A/Ad_{cw}$ ($A$ denotes the active region area), and use the linearized expression

$$G(N_{cw}, N_p) = G_0(N_{cw}) \cdot (1 - \varepsilon \cdot S).$$

(2)

For the InGaAs–GaAs lasers investigated in this study, typical values of the nonlinear gain coefficient as determined from RIN measurements, are in the range of $\varepsilon = 4.6 - 8.6 \times 10^{-17}$ cm$^3$ [24]. Maximum CW photon densities in these devices are typically $S_{max} \approx 2.5 \times 10^{15}$ cm$^{-3}$, confirming the validity of the approximation (2) even at the highest photon densities.

A key step in the derivation of the laser equivalent circuit is to relate the carrier number in the core to the voltage applied across the core, $V_c$. Numerical calculations considering the whole set of semiconductor equations have shown that the quasi-Fermi levels for the unconfine carriers are flat throughout the core region and that the separation is given by the applied voltage [25]; assuming Boltzmann statistics for the unconfine carriers and neglecting electrical parasitics, the former can be used to express $N_c$ as

$$N_c \propto e^{V_c/mV_T} \text{ with } V_T = kT/q$$

(3)
where \( k \) and \( T \) are the Boltzmann constant and the absolute temperature, respectively. The factor \( m \) takes a value of one (two) when the injected unconfine carrier density is lower (higher) than the core-doping density.

### III. STEADY-STATE CHARACTERISTICS

The steady-state solution of (1) is obtained by setting the time derivatives to zero. In the following analysis, we assume that \( \tau_{\text{eff}}, \tau_{\text{esc}} \), and \( \tau_{\text{cap}} \) do not depend on the carrier numbers in the core and in the QW’s. This assumption is used only to obtain simple expressions with clear physical insight; an analysis of the steady-state characteristics considering the carrier density dependencies of the time constants yields the same qualitative results. The exact solution for the steady-state carrier number in the core \( N_{c0} \) is then given as

\[
N_{c0} = \eta N_{a0} + \frac{I_0 \tau_{\text{cap}}}{q}
\]  

where \( I_0 \) is the bias current, \( N_{a0} \) is the steady-state carrier number in the QW’s, and \( \eta = \tau_{\text{cap}}/\tau_{\text{esc}} \). As can be seen from (4), \( \eta \) denotes the equilibrium ratio \((I_0 = 0)\) of the carrier numbers in the core and in the QW. The value of \( \eta \) is determined by the band structures in the QW’s and in the core. In order to obtain satisfactory dynamical performance of the laser, the relation \( \eta \ll 1 \) must hold (see the discussion in Section V). Under forward bias, the carrier number in the core is larger than the value of \( \eta N_{a0} \) due to the additional contribution \( I_0 \tau_{\text{cap}}/q \) arising from the finite capture time. In the subthreshold regime \((N_p = 0)\), the steady-state carrier numbers are given as

\[
N_{c0} = \frac{I_0 \tau_{\text{eff}}}{q} \quad \text{and} \quad N_{a0} = \eta \frac{I_0 \tau_{\text{eff}}}{q} \left( 1 + \frac{\tau_{\text{esc}}}{\tau_{\text{eff}}} \right).
\]  

In the limit \( \tau_{\text{esc}} \ll \tau_{\text{eff}} \), the ratio \( N_{c0}/N_{a0} \) is identical to the equilibrium value \( \eta \) which is the minimum value that can be achieved. In the opposite case \( \tau_{\text{esc}} \gg \tau_{\text{eff}} \), the carrier number in the core is dominated by carrier accumulation due to the finite capture time, yielding a ratio \( N_{c0}/N_{a0} \) well above the equilibrium value. Above threshold, the optical material gain in the absence of nonlinear gain \((\varepsilon = 0)\) is clamped to its threshold value \( 1/\Gamma \tau_p \) resulting in a clamping of the carrier number in the QW’s to \( N_{a0} = N_{\text{th}} \). When nonlinear gain is taken into account, the carrier number in the QW’s above threshold is slightly larger than the threshold value. For the following calculation of the steady-state properties above threshold, we neglect this small contribution and set \( N_{a0} = N_{\text{th}} \). This approximation (perfect gain clamping) is frequently used for the calculation of steady-state properties [26] of bulk lasers. This yields

\[
N_{c0} = \eta N_{\text{th}} + \frac{I_0 \tau_{\text{cap}}}{q} = \tau_{\text{cap}} \cdot \frac{I_0 + (\tau_{\text{esc}}/\tau_{\text{cap}}) \cdot I_{\text{th}}}{q} \quad \text{(6)}
\]

in which the threshold current \( I_{\text{th}} \) is given by \( I_{\text{th}} = qN_{\text{th}}/\tau_{\text{eff}} \). In general, the carrier number in the core above threshold with increasing bias current beyond the value \( N_{\text{th}} \). The absence of clamping for the unconfine carriers in the core has been experimentally confirmed from above-threshold spontaneous emission [17], [27] and differential resistance measurements, on which we will comment later.

### IV. SMALL-SIGNAL CHARACTERISTICS

In the following discussion, we use the small-signal solution of (1) to calculate the laser intrinsic equivalent circuit, intrinsic electrical impedance, and intrinsic modulation response. The intrinsic electrical impedance and the intrinsic equivalent circuit of bulk laser diodes have been derived in [28] and [29]. In [30], the intrinsic equivalent circuit of a QW laser considering carrier capture and re-emission has been derived. A similar intrinsic equivalent circuit for QW laser diodes in the presence of carrier transport effects was published in [31]. We follow the analysis in [30] but explicitly include the effect of the space-charge capacitance [12]. The solution of (1) in the small-signal regime is obtained by expanding the variables \( I, N_p, N_{a0}, \) and \( N_c \) around their steady-state values, e.g., \( I(t) = I_0 + i(\omega) e^{j\omega t} \). The relation between the small-signal values of the voltage across the core \( v_c(\omega) \) and the carrier number in the core \( n_c(\omega) \) is obtained by linearization of (3), yielding

\[
v_c(\omega) = \frac{q N_c(\omega)}{C_c}, \quad C_c = \frac{q N_{a0}}{mVT} \quad \text{(7)}
\]

In analogy to (7), we further define the small-signal voltage related to the separation of the quasi-Fermi levels in the QW’s as

\[
v_{w}(\omega) = \frac{q m_w(\omega)}{C_w}, \quad C_w = \frac{C_c}{\eta} \quad \text{(8)}
\]

The capacitances \( C_c \) and \( C_w \) are associated with the unconfine carriers and with the confine carriers in the QW’s, respectively. As shown in the Appendix, the linearization of (1), using (7) and (8) to eliminate \( n_c(\omega) \) and \( n_{w}(\omega) \), yields the small-signal intrinsic equivalent circuit of a QW laser diode shown in Fig. 2. The remaining circuit elements are given as

\[
R_c = \frac{\tau_{\text{cap}}}{C_c}, \quad R_{w} = \frac{\tau_{w}}{C_w}, \quad 1/\tau_{w} = 1/\tau_{\text{eff}} + \omega_p^2 \tau_p \quad \text{above threshold} \quad \text{(9)}
\]

where the differential gain \( G'_0 \) is given by \( G'_0 = \frac{\partial N_c}{\partial N_w} \) and the classical expression for the angular relaxation frequency is \( \omega_p = \sqrt{G'_0 N_{\text{th}}/\tau_p} \). The time constant \( \tau_w \) denotes the total differential carrier lifetime in the QW’s,
summarizing the effects of nonradiative recombination and spontaneous emission into all cavity modes (via $\tau_{\text{eff}}$) and of stimulated emission above threshold (via $\omega^2 G_0$). The latter contribution vanishes below threshold, yielding $\tau_{\text{w}} = \tau_{\text{eff}}$. Note that the small-signal current $i_L(\omega)$ flows through the inductance $L_w$ is proportional to the small-signal portion of the emitted stimulated output power above threshold $\dot{q}_L(\omega) = q \eta_{\text{eff}}(\omega)/\tau_p$. The equivalent circuit shown in Fig. 2 is valid below and above threshold with vanishing elements $L_{\text{th}}$ and $R_c$ below threshold.

The exact expressions for the intrinsic impedance $Z_\omega(\omega) = \eta_{\text{eff}}(\omega)/i_{\text{th}}(\omega)$ and the normalized intrinsic modulation response $H(\omega) = \eta_{\text{eff}}(\omega)/i_{\text{th}}(\omega)$ calculated using this equivalent circuit are given by (10), shown at the bottom of the page, where $\gamma_I = 1/\tau_{\text{esc}} + \gamma$, and the damping rate and electrical time constant are given, respectively, by

$$\gamma = 1/\tau_{\text{eff}} + \omega^2 \tau_p + \varepsilon/G_0$$

(11)

$$\tau_0 = \tau_{\text{esc}}(1 + C_{\text{sc}}/C_c) = \tau_{\text{esc}} + R_c C_{\text{sc}}$$

(12)

The second equation in (10) is valid above threshold; the expression for the intrinsic impedance below threshold is recovered in the limit $N_{\text{th}} = 0$ (set $\omega_I = 0$ and $\gamma = 1/\tau_{\text{eff}}$).

The intrinsic differential diode resistance $R_d = Z_\omega(0)$ is obtained by inspection of the equivalent circuit in Fig. 2 as $R_d = R_c + R_{\text{th}}$ below threshold, and $R_d = (R_c||R_p)$ above threshold, where || denotes a parallel combination. Using (7)–(9) in conjunction with (5) and (6), we derive the following equations:

Below threshold:

$$R_c(I_0) = \frac{mV_T}{I_0} \cdot \frac{1}{1 + \frac{\tau_{\text{eff}}}{\tau_{\text{esc}}}}$$

and

$$R_d(I_0) = \frac{mV_T}{I_0}$$

Above threshold:

$$R_c(I_0) = \frac{mV_T}{I_0 + \frac{\tau_{\text{eff}}}{\tau_{\text{esc}}} I_{\text{th}}}$$

and

$$R_d(I_0) = R_c(I_0)$$

(13)

In the expression for $R_d$ above threshold, we have neglected the contribution of $R_c$ and have further assumed perfect gain clamping in the QW’s ($N_{\text{th}} = N_{\text{utth}}$ above threshold).

V. SIMPLIFIED EXPRESSIONS

In general, a simple decomposition of the denominator in (10) into a low-pass filter term and a resonance term containing the relaxation frequency and the damping rate does not exist.

In this section, we discuss three special cases, where simple analytical formulas can be derived. Throughout this section, we further assume $\varepsilon/(G_0 \tau_{\text{eff}}) \ll 1$.

We first consider the case $\eta \ll 1$, which is the case of interest for high-speed laser diodes with deep QW’s and narrow confinement regions. For a finite ratio $C_{\text{sc}}/C_c$, the condition $\eta \ll 1$ is equivalent to $\tau_0 \ll \tau_{\text{esc}}$. In this case, the modulation response and the intrinsic impedance simplify to

$$H(\omega) = \frac{\omega^2 \tau_p}{(1 + j\omega \tau_0)(\omega^2 - \omega^2 + j\omega \gamma)}$$

and

$$Z_\omega(\omega) = R_c \cdot \frac{1}{1 + j\omega \tau_0} \cdot T(\omega)$$

(14)

where the function $T(\omega)$ is given by

Below threshold:

$$T(\omega) = \frac{1 + j\omega \tau_I}{1 + j\omega \tau_{\text{eff}}}$$

Above threshold:

$$T(\omega) = \frac{\omega^2 - \omega^2 + j\omega \gamma_I}{\omega^2 - \omega^2 + j\omega \gamma}$$

and $1/\tau_I = 1/\tau_{\text{eff}} + 1/\tau_{\text{esc}}$. In this case, the only influence on the modulation response is an additional low-pass filter with the time constant $\tau_0$, whereas the expressions for the relaxation frequency and the damping rate are not modified by the carrier capture/transport and re-emission processes. However, depending on the ratio of $\tau_{\text{eff}}$ and $\tau_{\text{esc}}$, qualitatively different behaviors of the frequency-dependent impedance are observed, which are schematically plotted in Fig. 3.

1) Case I—$\eta \ll 1$ and $\tau_{\text{esc}} \gg \tau_{\text{eff}}$: In this case, $T(\omega) = 1$ below and above threshold, and the impedance simplifies to a simple low-pass filter with time constant $\tau_0$, allowing only the extraction of $\tau_0$ from measured curves. The equivalent circuit in this case is shown in Fig. 4(a) with $R_c = mV_T/I_0$ and $R_c C_c = \tau_c$. The intrinsic differential diode resistance (13) simplifies to the corresponding expression for conventional diodes $R_d = mV_T/I_0$ both below and above threshold.

2) Case II—$\eta \ll 1$ and the Same Order of Magnitude of $\tau_{\text{esc}}$ and $\tau_{\text{eff}}$: Below threshold, two poles at $\tau_{\text{eff}}$ and $\tau_0$ and one zero at $(\tau_{\text{esc}}^{-1} + \tau_{\text{esc}}^{-1})^{-1}$ with significant different values are observed in the impedance, allowing the extraction of $\tau_{\text{eff}}$, $\tau_{\text{esc}}$, and $\tau_0$ from measured curves. Above threshold, the impedance exhibits a peak at the relaxation frequency with the relative height $T(\omega_I) = 1 + 1/\tau_{\text{esc}}$. In addition, the impedance shows a low-pass filter due to the influence of $\tau_0$. 

$$H(\omega) = \frac{\omega^2 \tau_p}{(1 + j\omega \tau_0)(\omega^2 - \omega^2 + j\omega \gamma)}$$

and

$$Z_\omega(\omega) = R_c \cdot \frac{1}{1 + j\omega \tau_0} \cdot T(\omega)$$

(10)
Equation (13) predicts a drop in the intrinsic differential diode resistance at lasing threshold, given by

\[ \frac{R_d(I_0 \rightarrow I_{th}, \Delta I = 0)}{R_d(I_0 \rightarrow I_{th}, \Delta I > 0)} = 1 + \frac{\tau_{\text{eff}}}{\tau_{\text{esc}}}. \]  

In this case, the ratio \( \tau_{\text{eff}}/\tau_{\text{esc}} \) can be estimated from measured values of the differential diode resistance.

3) Case III—\( \eta \ll 1 \) and \( \tau_{\text{esc}} \ll \tau_{\text{eff}} \). In this case, the pole at \( \tau_0 \) and the zero are both at high frequencies, thus the pole at \( \tau_{\text{eff}} \) dominates the frequency-dependent impedance below threshold. Above threshold, there is a pronounced peak at the relaxation frequency. The intrinsic differential diode resistance exhibits a large drop at threshold and vanishes above threshold due to clamping of the carrier number in the core above threshold. In this case, the behavior of \( R_d \) is the same as for ideal bulk lasers, in which the carrier number in the active region is clamped above threshold \([32]\). Taking into account the influence of \( R_c \) and assuming nonperfect gain clamping, the intrinsic differential resistance takes on a small but finite value.

In the case of general values of \( \eta \), the dynamic behavior becomes far more complicated. However, it is instructive to study the influence of \( \eta \) on the dynamical properties in the case \( \omega \tau_{\text{trap}} \ll 1 \). In this case, \( R_c \) vanishes, and the small-signal intrinsic equivalent circuit of Fig. 2 simplifies to the equivalent circuit shown in Fig. 4(b) with \( C_w = \tau_{\text{eff}} I_0/mV_T \), \( R_w = \tau_{\text{eff}}/C_w \), and \( C_c = \tau_{\text{eff}}/C_w \), with vanishing elements \( L_w \) and \( R_c \) below threshold and \( C_w = \tau_{\text{eff}} I_0/mV_T \) and \( R_w = \tau_{\text{eff}}/C_w \) above threshold. The intrinsic impedance below threshold is then given as

\[ Z_d(\omega) = \frac{1}{R_d + j\omega((1 + \eta)\tau_{\text{eff}} + R_d C_c)} \]  

with

\[ R_d = \frac{mV_T}{I_0}. \]

The expression for the impedance in this case is similar to that of an ideal bulk laser, but with the time constant \( (1 + \eta)\tau_{\text{eff}} \) due to the additional contribution of the unconfine carriers in the core. This case was previously considered in \([33]\). Above threshold, the modulation response and the intrinsic impedance are given as

\[ H(\omega) = \frac{\omega^2 \tau_{\text{eff}}}{\omega^2 - j\omega \gamma_{\text{eff}}} \]  

and

\[ Z_t(\omega) = \frac{R_c + j\omega L_w}{\omega^2 \tau_{\text{eff}} - \omega^2 + j\omega \gamma_{\text{eff}}}, \]

where the effective angular relaxation frequency \( \omega_{\tau_{\text{eff}}} \) and the effective damping rate \( \gamma_{\text{eff}} \) are given by

\[ \omega_{\tau_{\text{eff}}} = \frac{\omega_p}{\sqrt{1 + \eta + C_c/C_w}}, \]

\[ \gamma_{\text{eff}} = \frac{1}{\tau_{\text{eff}}((1 + \eta + C_c/C_w) + \omega_p^2 \tau_{\text{eff}}^{-1} + \omega_p^2 \tau_{\text{trap}}^{-1})}. \]
In this case, the intrinsic impedance takes on a very low value at zero frequency, vanishing in the case of $\varepsilon = 0$, and has a pronounced peak at the relaxation frequency. Note that, in the usual case $C_{\text{eff}} / C_{\text{eff}} \ll 1$, the effective relaxation frequency is lower than the intrinsic value $\omega_r$, and the effective damping rate is higher than the intrinsic value $\gamma_r$ if the condition $\eta \ll 1$ does not hold. Both effects degrade the modulation response, lowering the maximum achievable modulation bandwidth and the modulation bandwidth at a given bias current. In the limit $\eta \ll 1$, (19) reduces to the corresponding expression for bulk laser diodes.

VI. EXPERIMENTAL RESULTS
In this section, we present the results of measurements of the frequency-dependent electrical impedance of high-speed laser diodes. Along with the discussion of the measured curves, we present the main parameters extracted by fitting the theoretical expressions of the electrical impedance derived in Section IV to the measured curves.

A. Epilayer and Laser Structures
In the following, we discuss the results of measurements performed on InGaAs–GaAs lasers fabricated from different epilayer structures with a common lateral mesa structure. Structure 1 (p-doped In$_{0.35}$Ga$_{0.65}$As MQW) and structure 2 (undoped In$_{0.35}$Ga$_{0.65}$As MQW) consist of four 5.7-nm In$_{0.35}$Ga$_{0.65}$As–GaAs quantum wells (QW’s) separated by 20-nm GaAs barriers, upper and lower 48-nm-thick GaAs confinement layers, and Al$_{0.2}$Ga$_{0.8}$As cladding layers. Further details of these structures are reported in [24]. Structure 3 (undoped In$_{0.25}$Ga$_{0.75}$As MQW) contains three 7-nm In$_{0.25}$Ga$_{0.75}$As–GaAs QW’s in a 178-nm-thick GaAs core region and Al$_{0.6}$Ga$_{0.4}$As cladding layers [34]. The properties of these three epilayer structures are summarized in Table I with $V_f(e)$ and $V_f(h)$ denoting the barrier height for the confine electrons and holes in the first QW energy level, respectively (calculated assuming parabolic subbands and 60% of the total band offset in the conduction band). All devices were fabricated in a triple mesa structure [35] with mesa widths in the range of $w = 3-40 \mu m$, suitable for direct on-wafer probing, and cleaved to lengths of 200–900 $\mu m$. For the mesa structure, the parasitics entering into the laser equivalent circuit are the series resistance $R_s$, originating from the finite conductance of the cladding layers and from the metal–semiconductor contacts, a parallel capacitance $C_{\text{par}}$, and a series inductance $L_s$. Using these elements in conjunction with the intrinsic equivalent circuit derived in Section IV, we obtain the equivalent circuit for mesa laser diodes shown in Fig. 5.

B. Electrical Impedance
The measurements of both magnitude and phase of the frequency-dependent impedance below and above threshold were carried out using an HP 8722A network analyzer fully calibrated up to 40 GHz in conjunction with an on-wafer measurement setup. If not otherwise stated, all the measurements were performed at 25 °C.

Fig. 6 shows the measured magnitude of the frequency-dependent impedance $|Z(f)|$ for 3x200 $\mu m^2$ lasers fabricated from various structures for different bias currents. A distinct behavior can be clearly observed, coincident with cases I–III in Fig. 3. Below threshold, the impedance of the p-doped In$_{0.35}$Ga$_{0.65}$As MQW laser has one real pole with a cut-off frequency exceeding 1 GHz [Fig. 6(a), case I]. The impedance of the undoped In$_{0.35}$Ga$_{0.65}$As MQW laser shows two real poles and a real zero [Fig. 6(b), case II]. The impedance of the undoped In$_{0.25}$Ga$_{0.75}$As MQW device again has one real pole, but at a much lower cut-off frequency [Fig. 6(c), case III]. Above threshold, the p-doped In$_{0.35}$Ga$_{0.65}$As MQW laser has, again, a real pole in the frequency-dependent impedance [Fig. 6(d), case I], whereas the curves of the undoped In$_{0.35}$Ga$_{0.65}$As [Fig. 6(e), case II] and the undoped In$_{0.25}$Ga$_{0.75}$As MQW lasers [Fig. 6(f), case III] show a resonance peak at the relaxation frequency.

These three different behaviors of the differential diode resistance and of the frequency-dependent impedance correspond to the three cases described in Section V for differ-

---

### Table I

<table>
<thead>
<tr>
<th>Structure No.</th>
<th>Structure</th>
<th>QWs</th>
<th>Barriers</th>
<th>Core</th>
<th>Cladding</th>
<th>$V_f(e)$ (eV)</th>
<th>$V_f(h)$ (eV)</th>
<th>Doping (cm$^{-3}$)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p-doped In$<em>{0.35}$Ga$</em>{0.65}$As MQW</td>
<td>4x5.7 nm</td>
<td>20 nm GaAs</td>
<td>162 nm GaAs</td>
<td>Al$<em>{0.2}$Ga$</em>{0.8}$As</td>
<td>0.145</td>
<td>0.129</td>
<td>–</td>
<td>[24]</td>
</tr>
<tr>
<td>2</td>
<td>undoped In$<em>{0.35}$Ga$</em>{0.65}$As MQW</td>
<td>4x5.7 nm</td>
<td>20 nm GaAs</td>
<td>162 nm GaAs</td>
<td>Al$<em>{0.2}$Ga$</em>{0.8}$As</td>
<td>0.145</td>
<td>0.129</td>
<td>2x10$^{19}$ cm$^{-3}$Be</td>
<td>[24]</td>
</tr>
<tr>
<td>3</td>
<td>undoped In$<em>{0.25}$Ga$</em>{0.75}$As MQW</td>
<td>3x7 nm</td>
<td>17 nm GaAs</td>
<td>200 nm GaAs</td>
<td>Al$<em>{0.2}$Ga$</em>{0.8}$As</td>
<td>0.108</td>
<td>0.093</td>
<td>–</td>
<td>[34]</td>
</tr>
</tbody>
</table>

---

Fig. 5. Equivalent circuit of a mesa diode laser.
ent values of the ratio $\tau_{\text{esc}}/\tau_{\text{eff}}$, with $\tau_{\text{esc}}/\tau_{\text{eff}}$ much higher than, comparable to, and much lower than unity for devices fabricated from structures 1–3, respectively. The physical origin of the differences in $\tau_{\text{esc}}/\tau_{\text{eff}}$ arises from the epilayer structure and can be qualitatively understood by considering the expected dependencies of $\tau_{\text{eff}}$ on the doping level and of $\tau_{\text{esc}}$ on the barrier height: $\tau_{\text{eff}}$ decreases with the addition of p-doping in the active region, and $\tau_{\text{esc}}$ increases with the barrier height. The active layer of structure 3 is In$_{0.25}$Ga$_{0.75}$As, and, therefore, the barrier height is lower than in structures 1 and 2 with In$_{0.35}$Ga$_{0.65}$As active regions. As a consequence, $\tau_{\text{esc}}$ (undoped In$_{0.25}$Ga$_{0.75}$As MQW) $\ll \tau_{\text{esc}}$ (undoped In$_{0.35}$Ga$_{0.65}$As MQW). Since $\tau_{\text{eff}}$ is only slightly dependent on the active region material, the ratio $\tau_{\text{esc}}/\tau_{\text{eff}}$ is much lower than for the undoped In$_{0.25}$Ga$_{0.75}$As MQW devices and comparable to unity for the undoped In$_{0.35}$Ga$_{0.65}$As MQW devices.

The exact small-signal solutions of the rate equations (10) in conjunction with the parasitic circuit elements in Fig. 5 were fitted to the values of both magnitude and phase of the frequency-dependent impedance of lasers with various cavity widths and lengths. Below threshold, the fitting parameters were the dynamic time constants ($\tau_0$ for p-doped In$_{0.35}$Ga$_{0.65}$As MQW lasers, $\tau_{\text{esc}}$, $\tau_{\text{eff}}$, and $\tau_0$ for undoped In$_{0.35}$Ga$_{0.65}$As MQW lasers, and $\tau_{\text{eff}}$ for undoped In$_{0.25}$Ga$_{0.75}$As MQW lasers), as well as $R_d$ and the electrical parasitics. As can be observed from the lines in Fig. 6, the fitting quality at frequencies lower than 20 GHz was very good. Above threshold, the values of $R_d$ were too small to obtain reliable values for all the involved parameters: only $\tau_0$, $R_d$, $R_s$, and, in some cases, the relaxation frequency could be accurately determined.

C. Differential Diode Resistance

In Fig. 7, we plot the measured $(R_d + R_s) \times I_0/kT$ versus bias current $I_0$ for 3×200 μm$^2$ p-doped In$_{0.35}$Ga$_{0.65}$As, undoped In$_{0.35}$Ga$_{0.65}$As, and undoped In$_{0.35}$Ga$_{0.75}$As MQW devices. These characteristics present three qualitatively different behaviors originated from different values of the ratio $\tau_{\text{eff}}/\tau_{\text{esc}}$. For the p-doped sample, no drop is observed at threshold, implying $\tau_{\text{esc}} \gg \tau_{\text{eff}}$ (case I in Section V). Thus, $\tau_{\text{esc}}$ cannot be directly determined from these curves. However, we can estimate a lower limit for $\tau_{\text{esc}}$ considering the value of $\tau_{\text{eff}}$ extracted from the modulation response of the spontaneous emission [36]. These measurements were performed on the p-doped devices [37], and we obtained values of typically 0.2 ns, yielding a lower limit for $\tau_{\text{esc}}$ of roughly 2 ns. In contrast, in both the undoped In$_{0.35}$Ga$_{0.65}$As and In$_{0.25}$Ga$_{0.75}$As MQW samples, a drop in $R_d$ is observed at threshold. From the values slightly below and above threshold of the undoped In$_{0.35}$Ga$_{0.65}$As MQW devices, the escape time can be estimated, yielding $\tau_{\text{esc}} \ll \tau_{\text{eff}}$ (case II). For the undoped In$_{0.25}$Ga$_{0.75}$As device, the value of $R_d$ above threshold drops to a very small value, yielding $\tau_{\text{esc}} \approx \tau_{\text{eff}}$ (case III). Below threshold, the values of $R_d$ for all samples present a dependence $R_d = mV_T/I_0$ with $m \approx 2.7$ for p-doped and undoped In$_{0.35}$Ga$_{0.65}$As devices and $m \approx 2.0$ for undoped In$_{0.25}$Ga$_{0.75}$As devices, respectively.

D. Carrier Lifetime

In order to check the validity of the impedance technique to obtain reliable dynamical laser parameters, we compare the
Fig. 7. $(R_d + R_s) \times I_0/kT$ versus bias current $I_0$ for (a) undoped $\text{In}_{0.35}\text{Ga}_{0.65}\text{As}$, (b) p-doped $\text{In}_{0.35}\text{Ga}_{0.65}\text{As}$, and (c) undoped $\text{In}_{0.25}\text{Ga}_{0.75}\text{As}$ MQW lasers.

Fig. 8. Comparison of the values of the effective lifetime of carriers in the QW’s $\tau_{\text{eff}}$ versus bias current, as extracted from measurements of the impedance versus frequency (filled symbols) and the modulation of the spontaneous emission versus frequency (open symbols), for a 16×200 $\mu$m$^2$ undoped $\text{In}_{0.35}\text{Ga}_{0.65}\text{As}$ MQW laser below threshold.

Fig. 9. Carrier escape time $\tau_{\text{esc}}$ versus QW carrier density for undoped $\text{In}_{0.35}\text{Ga}_{0.65}\text{As}$ MQW lasers with different cavity widths. The line is drawn as a visual aid.

extracted values of $\tau_{\text{eff}}$ for undoped $\text{In}_{0.35}\text{Ga}_{0.65}\text{As}$ MQW lasers with the values obtained from the modulation response of the spontaneous emission measured simultaneously for the same device [37] in Fig. 8. The discrepancy between both sets of values is attributed to the nonuniformity of the lateral carrier profile caused by surface recombination at the external mesa sidewalls [38]. Nevertheless, the discrepancy is small enough to consider the impedance technique as a valid method to determine the effective carrier lifetime in QW lasers. The observed dependence of $\tau_{\text{eff}}$ on the injection level and mesa width has been analyzed in [37].

E. Escape Time

Fig. 9 shows $\tau_{\text{esc}}$ for undoped $\text{In}_{0.35}\text{Ga}_{0.65}\text{As}$ MQW lasers with different mesa widths as a function of the carrier density in the QW’s. The relation between the steady-state carrier density in the QW’s $N_{\text{st}}/A d_w$ and the bias current was derived using

$$N_{\text{st}}(I)/A d_w = \frac{1}{q A d_w} \int_0^I \tau_{\text{eff}}(I')dI'$$

(20)

obtained from (5) in the case of a bias-dependent $\tau_{\text{eff}}$. The experimental points lie on a single curve within experimental error, indicating that the extracted $\tau_{\text{esc}}$ for a given layer structure depends only on the injection level and not on the device dimensions. The same conclusion was obtained by comparing the escape times for lasers with different lateral confinement structures (mesa or ridge waveguide). The extracted values of $\tau_{\text{esc}}$ for undoped $\text{In}_{0.35}\text{Ga}_{0.65}\text{As}$ MQW devices increase with carrier density up to a saturation value of ≈0.7 ns. In the case of p-doped $\text{In}_{0.35}\text{Ga}_{0.65}\text{As}$ and undoped $\text{In}_{0.25}\text{Ga}_{0.75}\text{As}$ MQW samples, $\tau_{\text{esc}}$ cannot be directly determined from the fit of the theoretical impedance to the experimental results, but the absence of a clear zero in the impedance curves in Fig. 6 indicates an upper or lower limit: $\tau_{\text{esc}} \approx 0.2$ ns for a p-doped $\text{In}_{0.35}\text{Ga}_{0.65}\text{As}$ MQW and $\tau_{\text{esc}} \ll 1$ ns for undoped $\text{In}_{0.25}\text{Ga}_{0.75}\text{As}$ MQW devices. A more detailed characterization in terms of $\tau_{\text{esc}}$ of the above samples and of other laser devices with different epitaxial structures was presented in [15].

The validity of the model can be further checked by investigating the temperature dependence of the escape time. As an example, Fig. 10 shows the values of the magnitude of the electrical impedance normalized to the zero-frequency value for an undoped $\text{In}_{0.35}\text{Ga}_{0.65}\text{As}$ MQW sample at a bias current of 4 mA at various heat-sink temperatures $T$ in the range of 10°C–85°C. The inset of this figure shows an Arrhenius plot of $\tau_{\text{esc}}$ at a QW carrier density of 5.2×10$^{17}$ cm$^{-3}$ versus $1/kT$. We have analyzed the temperature dependence of $\tau_{\text{esc}}$ at a constant injected carrier density and not at a constant injection current, but the differences between both approaches are not
The extracted escape times can be approximated by

\[ \tau_{\text{esc}}(N_{\text{w}}, T) = \tau_{\text{esc0}}(N_{\text{w}}) \exp \left( \frac{E_a}{kT} \right) \]  

(21)

where \( E_a = 0.17\pm0.02 \text{ eV} \). Considering the small temperature range and the experimental error, the extracted values of \( E_a \) are in reasonable agreement with the electron barrier height of 0.145 eV, as predicted by thermionic emission theory [39].

The extracted values for \( \tau_{\text{esc}} \) are more than one order of magnitude higher than those theoretically calculated considering carrier–polar longitudinal optical phonon interactions [40]. The observed increase of \( \tau_{\text{esc}} \) with the p-doping concentration and the carrier density dependence in the case of undoped InGaAs MQW lasers are attributed to the combination of different effects: 1) an increase of the effective electron barrier height caused by the band-bending in the p-doped structures; 2) band-fillin at high injection levels; 3) carrier-induced bandgap narrowing; and 4) a residual and nonuniform p-doping profile in the case of nominally undoped InGaAs MQW structures [41]. A detailed analysis relating the measured escape times and its bias and temperature dependencies on the epilayer structure is beyond the scope of this paper; theoretical calculations considering the above described physical effects can be found in [42] and [43].

**G. Relaxation Frequency**

The measurement of impedance above threshold is an alternative technique to the measurement of the modulation response for the determination of the relaxation frequency \( f_r \) and the damping rate \( \gamma \), in the case \( \tau_{\text{esc}} < \tau_{\text{eff}} \). As an example, we have plotted in Fig. 12 the values of \( f_r^2 \) versus bias current for an undoped InGaAs MQW laser. These values present a linear behavior. From the slope of this curve, the differential gain can be extracted, yielding \( G_{\text{d}}/v_g = 0.9 \times 10^{-15} \text{ cm}^2 \) with group velocity \( v_g \). This value is lower than the corresponding values of \( 2.2 \times 10^{-15} \text{ cm}^2 \) and \( 2.5 \times 10^{-15} \text{ cm}^2 \) for the undoped and p-doped InGaAs MQW devices, respectively, reported in [24] due to lower In content in the QW’s and the higher carrier density per QW.

**VII. CONCLUSION**

We have performed measurements of the electrical impedance of InGaAs–GaAs laser diodes fabricated from
Fig. 12. Values of the squared relaxation frequency $f_r^2$ as extracted from the measured values of the impedance versus frequency for 3× 200 μm² undoped In$_{0.35}$Ga$_{0.65}$As MQW laser.

different epilayer structures. The results were shown to be in good agreement for all layer structures with the predictions of a three-rate-equation model, which takes into account the influence of carrier capture/transport into and carrier re-emission out of the QW’s. Impedance measurements were shown to be a powerful method for extracting the carrier escape time $\tau_{\text{esc}}$, which cannot be unambiguously determined using conventional dynamical measurements such as modulation response or RIN measurements. For undoped In$_{0.35}$Ga$_{0.65}$As MQW devices, we obtain $\tau_{\text{esc}} \sim 0.7$ ns with a weak bias dependence. In addition, we get an estimate for the physical capture time from these measurements of $\tau_{\text{cap,phys}} \sim 0.2$–0.5 ps for undoped and p-doped In$_{0.35}$Ga$_{0.65}$As MQW devices. Using these values of $\tau_{\text{esc}}$ and $\tau_{\text{cap,phys}}$, we conclude that carrier capture and escape does not limit the modulation bandwidth of properly designed InGaAs–GaAs lasers with MQW active regions and narrow confinement regions. The bandwidth limit in these devices originates from internal damping due to nonlinear gain or power dissipation.

**APPENDIX**

Linearization of (1) yields (A1), shown at the bottom of the page.

Substitution of $n_c(\omega)$ and $n_t(\omega)$ using (7) and (8) in conjunction with the equivalent circuit elements define (7)–(9) results in (A2), shown at the bottom of the page, translating into the small-signal equivalent circuit in Fig. 2. The determinant $\Delta(\omega) = \det(A)$ of the rate matrix in (A1) is calculated by replacing the second row by the sum of the second and third rows

$$
\Delta(\omega)\tau_{\text{cap}} = \begin{vmatrix}
 j\omega + \omega_r^2 \frac{\varepsilon}{C_0} & -\omega_r^2 \tau_p & 0 \\
 \frac{1}{\tau_p} & j\omega + \left(\omega_r^2 \tau_p + \frac{1}{\tau_{\text{eff}}}\right) & j\omega\tau_0 \\
 0 & -\frac{1}{\tau_{\text{esc}}} & j\omega\tau_0 + 1
\end{vmatrix}.
$$

Evaluation of this determinant yields

$$
\Delta(\omega)\tau_{\text{cap}} = (1 + j\omega\tau_0)\det \begin{vmatrix}
 j\omega + \omega_r^2 \frac{\varepsilon}{C_0} & -\omega_r^2 \tau_p \\
 \frac{1}{\tau_p} & j\omega + \left(\omega_r^2 \tau_p + \frac{1}{\tau_{\text{eff}}}\right) \\
 0 & j\omega + \omega_r^2 \frac{\varepsilon}{C_0}
\end{vmatrix}.
$$

The $2\times 2$ determinant in (A4) is exactly the denominator of the small-signal transfer function of a bulk laser. Using the expression for the damping rate of a bulk laser, $\gamma = 1/\tau_{\text{eff}} + \omega_r^2 (\tau_p + \varepsilon/C_0)$, (A4) simplifies to

$$
\Delta(\omega)\tau_{\text{cap}} = (1 + j\omega\tau_0) \cdot \left(\omega_r^2 \left(1 + \frac{\varepsilon}{\tau_0 C_0}\right) - \omega^2 + j\omega\gamma\right) \\
+ j\omega \frac{\tau_0}{\tau_{\text{esc}}} \cdot \left(j\omega + \omega_r^2 \frac{\varepsilon}{C_0}\right).
$$

**ACKNOWLEDGMENT**

The authors wish to thank W. Benz, J. Fleissner, B. Matthes, K. Räuber, B. Wieber, M. Maier, R. E. Sah, E. Larkins, J. Arias, K. Czotscher, and M. Mikulla for their assistance with sample preparation and characterization.


I. Esquivias (M’94), photograph and biography not available at the time of publication.

S. Weisser, photograph and biography not available at the time of publication.

B. Romero, photograph and biography not available at the time of publication.

J. D. Ralston (M’50–LM’87), photograph and biography not available at the time of publication.

J. Rosenzweig, photograph and biography not available at the time of publication.