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A mi familia,
con el amor y la gratitud propia
de un niño que sigue creciendo.





Lo que más necesitan, aun los mejores de nuestros buenos estudiantes, es mayor
intensidad de vida, mayor actividad para todo, en espíritu y cuerpo: trabajar más, sentir
más, pensar más, querer más, jugar más, dormir más, comer más, lavarse más, divertirse
más. Francisco Giner de los Ríos.

El espíritu de la casa, como llamaban los residentes al esfuerzo para transmitir la
mejor tradición española de educación liberal, quedaba reflejado en una cierta forma de
vida construida en torno a la responsabilidad personal, el trabajo, la búsqueda de la
excelencia, el culto a la amistad y el ocio creativo, con el fin de que el esfuerzo particular
se viera proyectado en la sociedad [...] El espíritu de la casa simboliza su modelo de
educación integral, basado en la tolerancia, el pluralismo y el diálogo entre distintas
disciplinas de las artes y las ciencias, entre diferentes generaciones, y entre tradición y
modernidad [...] Nota sobe El Espíritu de la casa;

Exposición 100 años de la residencia de estudiantes.
Residencia de estudiantes, Madrid.

La libertad positiva se identifica con la realización plena de las potencialidades del
individuo, así como su capacidad para vivir activa y espontaneamente. [...] La victoria de
la libertad es solamente posible si la democracia llega a constituir una sociedad en la que
el individuo, su desarrollo y felicidad constituyan el fin y el propósito de la cultura; en la
que la vida no necesite justificarse por el éxito o por cualquier otra cosa, y en la que el
individuo no se vea subordinado ni sea objeto de manipulaciones por parte de ningún otro
poder exterior a él mismo, [...]; una sociedad, por fin, en la que la conciencia y los ideales
del hombre no resulten de la absorción en el Yo de demandas exteriores y ajenas, sino
que sean realmente suyos y expresen propósitos resultantes de la peculiaridad de su Yo.

Erich Fromm,
El miedo a la libertad.

El germanista, que viaja de forma intermitente, cuando y como puede, a lo largo de
todo el curso del río que mantiene unido su mundo [...]

Desde la canción de los Nibelungos el Rin y el Danubio se enfrentan y se desafían
[...] El Danubio [...] es el río a través del cual se encuentran, se cruzan y se mezclan gentes
diversas, en lugar de ser como el Rin un místico guardian de la pureza de la estirpe.

Claudio Magris,
El Danubio.

Al hablar de viaje, por supuesto no tengo en mente una aventura turística. A nuestro
entender de reporteros, el viaje significa desafío y esfuerzo, cansancio y sacrificio, cometido
difícil y proyecto ambicioso. Cuando recorremos el mundo, sentimos que ocurren cosas
importantes, que estamos inmersos en algo de los que somos parte y testigo a la vez, que
tenemos una obligación que cumplir y una responsabilidad que asumir. ¿Y de qué somos
responsables? Del camino.

Ryszard Kapuscinski.
Encuentro con el otro.





Abstract

The main goal of this dissertation is to develop optimal control techniques for aircraft
trajectory planning looking at reduction of fuel consumption, emissions and overfly
charges in flight plans. The calculation of a flight plan involves the consideration of
multiple factors. They can be classified as either continuous or discrete, and include non-
linear aircraft performance, atmospheric conditions, wind conditions, airspace structure,
amount of departure fuel, and operational constraints. Moreover, multiple differently
characterized flight phases must be considered in flight planning, which typically also
involves decision-making processes.

The flight planning problem can be regarded as a trajectory optimization problem.
The most natural way to address a trajectory optimization problem is using optimal
control techniques. One of the main advantages of using optimal control is that it
allows the aircraft continuous non-linear dynamics to be considered. The solution to
the problem provides the optimal amount of departure fuel, the optimal four dimensional
trajectory (horizontal route and the vertical profile over time), speed, consumption and
attitude profiles over time, and the corresponding optimal control inputs of the aircraft.

The multiphase nature of the problem, the non-linear dynamics of the aircraft, and
the introduction of integer variables to model decision-making processes lead to the
formulation of a multiphase mixed-integer optimal control problem. The duration of
the phases is optimized including the switching times as unknowns of the problem,
which is modeled using a direct numerical approach. In particular, a collocation
method is employed to transcribe the infinite dimensional optimal control problem into
a finite dimensional optimization one, which is solved using a mixed integer nonlinear
programming solver.

It is shown that the flight planning problem can be effectively tackled using mixed-
integer optimal control, considering multiple phases and including decision-making
processes. Results show that the efficiency of current flight plans could be substantially
improved and that the techniques studied in this thesis have a strong potentiality to
be employed in the definition of more efficient flight plans under future operational
concepts in air traffic management.





Resumen

El objetivo de esta tesis doctoral es el desarrollo de técnicas de control óptimo para
la planificación de trayectorias de aviones comerciales, minimizando el consumo de
combustible y los costes de navegación en los planes de vuelo. El cálculo de un plan de
vuelo implica la consideración de múltiples factores, los cuales pueden ser considerados
de forma general como continuos o discretos. Entre ellos se puede destacar la dinámica
no lineal de la aeronave, las condiciones de la atmósfera, el viento, la estructura del
espacio aéreo, la cantidad de combustible a despegue, restricciones operativas, etc. Un
plan de vuelo viene definido por múltiples fases, cada una caracterizada de manera
particular. Además, es habitual tener que modelizar procesos de toma de decisiones.
En suma, la obtención de la trayectoria óptima de una aeronave (asociada a un plan
de vuelo) en entorno ATM es un problema altamente complejo.

Antecedentes: En la planificación de vuelos, el método más comúnmente utilizado
es la descomposición del problema en dos etapas: la optimización de la ruta en 2D
primero, y después la optimización de los perfiles de altitud y velocidad sobre la ruta
2D previamente calculada. Esta aproximación se conoce como problema de planificación
de rutas. Las líneas aéreas suelen usar este método para calcular sus planes de vuelo
diarios. En la optimización de las rutas 2D, la ruta óptima se calcula considerando la
estructura del espacio aéreo, esto es, zonas de exclusión aérea, aerovías, waypoints, etc.
Algunos de los algoritmos más empleados son: algoritmos de optimización de redes,
métodos de programación lineal entera mixta o algoritmos evolutivos. Obtenida la ruta
2D óptima, los perfiles de altitud y la velocidad se calculan usando técnicas heurísticas.
La principal ventaja de estos métodos es que son capaces de resolver problemas bastante
complejos en tiempos relativamente bajos, siendo mucho más fácil incorporar restricciones
específicas (por ejemplo, modelizar procesos de toma de decisiones).

Sin embargo, la solución completa a un problema de planificación de trayectorias
es una optimización de la trayectoria en 4D (espacio y tiempo). En este sentido,
el problema de optimización de trayectorias puede ser estudiado como un problema
de control óptimo en el que el objetivo es encontrar la trayectoria y las entradas
de control que guían el estado del avión (considerado como sistema dinámico) entre
dos configuraciones, satisfaciendo un conjunto de restricciones sobre el estado y/o las
variables de control, mientras se minimiza una cierta función objetivo. En comparación
con el método de descomposición antes mencionado, las principales ventajas de utilizar
control óptimo son que:



x

• Permite considerar no linealidades, dando como resultado una dinámica más
exacta de la aeronave, de tal forma que la solución proporciona la trayectoria
4D completa, así como la velocidad, el consumo de combustible de la aeronave y
los ángulos de actitud (cabeceo, guiñada, y asiento) en función del tiempo.

• Proporciona las leyes de control óptimo de tal manera que la aeronave pueda
ser guiada de manera óptima. La ley de control óptimo es útil en el diseño en
lazo abierto del autopiloto, dando los valores de referencia para las variables de
control.

Objetivos: Para la consecución del objetivo fundamental, esto es, desarrollar técnicas
de control óptimo para planificación de trayectorias de aeronaves comerciales, se han
alcanzado los siguientes objetivos intermedios:

• Revisión exhaustiva de la literatura sobre teoría de control óptimo y métodos
numéricos para la resolución de problemas de control óptimo.

• Construcción de un modelo para abordar el problema de planificación de vuelos.
Se contemplan por tanto modelos que incluyan la dinámica no lineal del avión,
el viento, las características de la atmósfera, la estructura del espacio aéreo y
procesos de toma de decisiones, entre otros.

• Desarrollo de técnicas para la formulación y resolución de problemas de control
óptimo que incluyan múltiples fases, eventos discretos y procesos de toma de
decisiones.

• Definición de planes de vuelo más eficientes en base a las técnicas anteriores.

Metodología: La naturaleza multifase del problema, la dinámica no lineal de la
aeronave, así como la estructura discreta del espacio aéreo, conduce a la formulación
de un problema de control óptimo entero mixto multifase. La duración de las fases se
ha optimizado incluyendo los tiempos de conmutación entre fases como variables del
problema. Se han introducido variables enteras para modelizar los fenómenos discretos.
Los procesos de toma de decisiones se han modelizado con variables binarias.

Por lo general, es muy difícil encontrar soluciones analíticas para los problemas de
control óptimo. La práctica común es el uso de métodos numéricos. El problema se ha
resuelto usando un método numérico directo. En particular, se ha empleado un método
de colocación para transcribir el problema de control óptimo de dimensión infinita en
un problema de optimización de dimensión finita, que se ha resuelto usando un solver
de programación entera mixta no lineal.

Conclusiones: Se muestra que el problema de planificación de vuelos comerciales
puede ser tratado de manera eficiente con técnicas de control óptimo entero mixto
multifase, dado que permite formular el problema considerando múltiples fases, así
como incorporar variables de carácter entero/binario, las cuales permiten modelizar
fenómenos discretos y procesos de toma de decisiones. Los resultados muestran que
la eficiencia de las trayectorias actuales podría mejorarse substancialmente. Por lo
tanto, las técnicas estudiadas en esta tesis doctoral tienen un gran potencial para ser
explotadas con el objetivo de definir planes de vuelo más eficientes e, indirectamente,
más respetuosos con el medio ambiente.
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Notation

Vectors are not explicitly denoted. Units are denoted in brackets. Superindexes denote
phases, whereas subindexes denote discretization samples. We provide a not exhaustive
list of terms.

(O, xw , yw , zw ) = wind axis reference frame.
(·)w = subindex for values expressed in the wind axis reference frame.
(O, xe, ye, ze) = Earth reference frame.
(·)e = subindex for values expressed in the Earth reference frame.
al,max(civ) = maximum longitudinal acceleration for civil flights.
an,max(civ) = maximum normal acceleration for civil flights.
CD = coefficient of drag.
CD0

= coefficient of parasite drag.
CDi = coefficient of induced drag.
CL = coefficient of lift.
CL0 = zero coefficient of lift.
CLα = slope of the lift curve.
CLmax = maximum coefficient of lift.
CT c,4 = first thrust temperature coefficient.
CVmin = minimum speed coefficient.
D = drag force = 0.5ρV 2SCD .
Gt = temperature gradient on maximum altitude.
GW = mass gradient on maximum altitude.
g = acceleration due to gravity.
he = altitude.
hM0

= maximum operational height.
hmax = maximum altitude at MTOW under ISA conditions.
hu = maximum altitude as a function of the mass of the aircraft.
Hmax = threshold altitude for different flap configurations..
L = lift force = 0.5ρV 2SCL.
M = Mach number.
MM0 = maximum operating Mach number.
m = mass.
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mmax = maximum mass (Maximum Take Off Weigh).
mmin = minimum mass (Operating Empty Weigh).
ṁ = fuel flow.
ṁmin = minimum fuel flow.
q̂ = dynamic pressure, q̂ = 1

2ρV
2.

Re = Earth radius.
S = reference wing surface area.
T = thrust.
Tmax = maximum thrust.
Tmin = minimum thrust.
V = true airspeed.
VCAS = calibrated air speed.
VM0

= maximum operating calibrated airspeed.
VS = stall speed.
W = wind vector, W = (Wx , Wy, Wz).
α = angle of attack.
χ = heading angle.
∆TISA = temperature deviation from ISA.
η = thrust specific fuel flow.
γ = flight path angle.
λe = longitude.
µ = bank angle.
µmax,civ = maximum bank angle for civil flights.
π = throttle setting.
ρ = atmospheric density.
ρ0 = atmospheric density at sea level.
ρ11 = atmospheric density at the tropopause.
θe = latitude.
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1
Introduction

1.1 Motivation

A flight plan is an aviation term defined by the International Civil Aviation
Organization (ICAO) as: “Specified information provided to air traffic services
units, relative to an intended flight or portion of a flight of an aircraft" [1].

A flight plan is prepared on the ground and specified in three different manners: as
a document carried by the flight crew, as a digital document to be uploaded into the
Flight Management System (FMS), and as a summary plan provided to the Air Transit
Services (ATS). It gives information on route, flight levels, speeds, times, and fuel for
different flight phases, alternative airports, and other relevant data for the flight, so that
the aircraft properly receives support from ATS in order to execute safe operations. Two
safety critical aspects must be fulfilled: fuel calculation, to ensure that the aircraft can
safely reach the destination, and compliance with Air Traffic Control (ATC) requirements,
to minimize the risk of collision.

Flight planning is the process of producing a flight plan to describe a proposed
aircraft flight. It requires accurate weather forecasts so that fuel consumption calculation
can account for the effects of wind. Furthermore, due to ATC supervision requirements,
aircraft flying in controlled airspace must follow predetermined routes.

A route is a description of the path followed by an aircraft when flying between
two airports. A complete route often uses several airways. An airway has no physical
existence, but can be thought of as a motorway in the sky. On an airway, aircraft fly
at different flight levels to avoid collisions and are enforced to fly at specific velocities.
On a bi-directional airway, each direction has its own set of flight levels. Each airway
starts and finishes at a waypoint, and may contain some intermediate waypoints as well.
Airways may cross or join at a waypoint, so an aircraft can change from one airway
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Figure 1.1: En-route upper navigation chart. Source: AIP AENA (http://www.aena.es).

to another at such points. Where there is no suitable airway between two waypoints,
ATC may allow a direct waypoint to waypoint routing which does not use an airway.
Additionally, there exist special tracks known as ocean tracks, which are used across
some oceans. Free flight is also permitted in some areas over the oceans.

The routes of the complete network are referred to as ATS routes. The use of
the airspace by ATS routes is restringed in some areas of special use due to military
operations, environmental policies, or simply security reasons. ATS routes go across
certain regions of airspace known as Flight Information Regions (FIR)1, in which flight
information services and alerting services are provided by ATC. Aviation authorities
charge airlines that overfly FIR/UIR regions to cover air traffic control costs. Very
different charging schemes are applied including purely traveled distance-based charges,
aircraft weight and traveled distance charges, flat rate charges, or communication rate
charges [2].

The ATS routes are published in the basic manual for aeronautical information,
referred to as Aeronautical Information Publication (AIP). AIP publishes information for
en-route and aerodromes in different charts, which are usually updated once a month
coinciding with the Aeronautical Information Regulation and Control (AIRAC) cycle.
Ocean tracks might change twice a day to take advantage of any favorable wind. In
free flight areas the path is defined by the user, and thus finding the optimal path
considering the effects of wind is essential.

1FIR are derived for the lower airspace. In the upper airspace, the regions are called Upper Information
Regions (UIR). Both perimeters generally coincide.

http://www.aena.es/csee/Satellite/navegacion-aerea/es/Page/1078418725020/
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Figure 1.2: Instrumental approximation chart. Madrid Barajas RWY 18L.
Source: AIP AENA (http://www.aena.es).

The complete route of an aircraft flying between two airports can be divided in
three main parts: origin, en-route, and destination. The en-route phase is defined by
a series of waypoints and airways. An en-route upper navigation chart for the Iberian
Peninsula is given in Figure 1.1, illustrating the different ATS routes (in blue), the
limited areas (in pink), and the UIR regions (in green). However, airports may not
be directly connected by airways. Terminal Maneuvering Areas (TMA) are defined to
describe a designated area of controlled airspace surrounding an airport (or various
close airports) due to high volume of traffic. Operational constraints, arrival procedures,
and departure procedures are defined inside an airport TMA.

A flight departing from an airport must follow a Standard Instrument Departure
(SID) which defines a pathway from the runway to a waypoint or airway, so that
the aircraft can join the en-route sector in a controlled manner. Before landing, an
aircraft must follow two different procedures. It must follow first a Standard Terminal

http://www.aena.es/csee/Satellite/navegacion-aerea/es/Page/1078418725020/
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Figure 1.3: SID chart. Madrid Barajas RWY 15R day.
Source: AIP AENA (http://www.aena.es).

Arrival Route (STAR), which defines a pathway from a waypoint or airway to the Initial
Approach Fix (IAF). Then, it must proceed from the IAF to the runway following a final
approach procedure. Figure 1.2 and Figure 1.3 show a final approach chart and a SID
chart in Madrid Barajas TMA, respectively.

An effective flight plan can reduce fuel costs, time-based costs, overflight costs, and
lost revenue from payload that can not be carried, simply by choosing efficient routes
and altitudes, speed, and the optimal amount of departure fuel.

Optimizing the flight plan to reduce fuel not only saves money, but indirectly
reduces the environmental fingerprint of air transportation. An overview on aviation
environmental impact is given in [3]. Emissions from aviation account for approximately
3% of total green house effect gases in Europe [4, Section 2.3] and 3.5% of CO2 man
made European emissions [5]. In 1999 the United Nations Intergovernmental Panel on
Climate Change (IPCC) forecasted, as aviation was expected to grow to meet increasing
demand, that its share of global man made CO2 emissions would increase to around 3%
to 5% in 2050 (in 1999 it was estimated to be 2%) [6].

Reducing thus the aviation environmental fingerprint is peremptory. The Advisory
Council for Aeronautics Research in Europe (ACARE) has defined a Strategic Research
Agenda (SRA) for aeronautics and air transport in Europe. The SRA has launched
the Clean Sky Joint Technology Initiative, which pursues a greener aviation. The
objective of Clean Sky is to demonstrate and validate the technological innovations

http://www.aena.es/csee/Satellite/navegacion-aerea/es/Page/1078418725020/
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that are necessary to make major steps towards the environmental goals set by ACARE
and to be reached in 2020 when compared to 2000 levels [7] : 50% reduction of CO2

emissions; 80% reduction of NOx emissions; 50% reduction of external noise; and a green
product life cycle. The reduction in fuel consumption and CO2 emissions will require
contributions from new technologies in aircraft design (engines, airframe materials, and
aerodynamics), alternative fuels (bio fuels), improved Air Traffic Management (ATM),
and operational efficiency (mission and trajectory management). Indeed, Eurocontrol
estimates that approximately 6% of the burnt fuel and CO2 emissions related to aviation
in Europe is due to inefficiencies in the ATM European system [5, Section 3.5].

In particular, Clean Sky aims at defining new approaches for the optimization of
trajectory and mission management by implementing two new concepts referred to as
green trajectories and green missions:

• Green trajectories, based on more precise, reliable and predictable tridimensional
flight paths, optimized for minimum noise impact and low emission, including agile
trajectory management in response to meteorological hazards.

• Green mission from start to finish, with management of new climb, cruise, and
descent profiles based on aircraft performances which include noise and allows
multi-criteria optimization (noise, emissions, fuel, and time), including weather
conditions which could negatively impact the aircraft optimum route resulting in
additional fuel consumption.

The improvement of flight planning techniques must be done in coordination with
the definition of a new ATM paradigm. ATM, which is responsible for sustainable,
efficient, and safe operations in civil aviation, is still a very complex and highly regulated
system. Indeed, the need to fit aircraft trajectories to ATM system requirements makes
them difficult to be optimized and thus generally suboptimal flight plans are flown. A
substantial change in the current ATM paradigm is needed because this system is
reaching the limit of its capabilities [8]. Its capacity, efficiency, environmental impact,
and flexibility should be improved to accommodate airspace users’ requirements [9]. The
Next Generation of air transportation system (NextGen), in the United States of America
(USA), and the Single European Sky ATM Research (SESAR) Program, in Europe, are
facing these challenges aiming at developing a new generation of ATM system.

Looking at Europe, the main goals of SESAR can be summarized as [9]: 3-fold
increase the air traffic movements whilst reducing delays; improvement ot the safety by
a factor of 10; 10% reduction in the effects that aircraft have on the environment; and
50% reduction in the ATM services cost charge to airspace users.

In particular, looking at single flights, SESAR pursues by 2020 [10]: 8-14 [min]
gain per flight on average; 300-500 [kg] reduction in fuel consumption per flight on
average; 945-1575 [kg] reduction of CO2 emissions per flight on average. In order
to validate this intended savings, SESAR Joint Undertaking collaborates with the US
Federal Aviation Administration (FAA) and a large number of international partners
in an international program for the reduction of aircraft emissions: AIRE2 (Atlantic

2http://www.sesarju.eu/environment/aire

http://www.sesarju.eu/environment/aire
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Interoperability Initiative to Reduce Emission). AIRE has been testing more than 9000
trial flights since 2009. A summary of the results achieved in such tests in 2010 and
2011 can be found in [11].

In the future ATM system the trajectory becomes the fundamental element of a
new set of operating procedures collectively referred to as Trajectory-Based Operations
(TBO) [12, 13]. The ATM system has historically grown along a clearance-based ATC
paradigm. TBO will provide the capabilities, decision-support tools, and automation to
manage aircraft movement by trajectory. This shift from clearance-based to trajectory-
based ATC will enable aircraft to fly negotiated flight paths. In order to understand
TBO, two fundamental ideas must be exposed: the concept of the business trajectory,
and the idea of trajectory ownership.

The business trajectory is the trajectory that will best meet airline business interests.
This business interests may be minimum time for the flight, minimum consumption,
minimum cost index, minimum environmental impact, or any other characteristic of the
trajectory. Any modification in that trajectory will result in a change in the cost
effectiveness of the operation. Thus, the future ATM system should try to keep the
overall business trajectory as much intact as possible. The necessary changes to be
made on the overall trajectory must consider downstream effects and not only consider
a control sector or even a control center. These changes should be proposed by ATC
and agreed with the airline, which holds the ownership of the trajectory.

This ownership entails certain rights as well as obligations. The owner will submit
the trajectory to ATS authorities in order to be provided with support to perform
safe operations. In exchange, the owner accepts the obligation of sharing information,
reacting to requests, following clearances, and so forth. In any case, the owner remains
the master over the trajectory to approve changes on it. The trajectories (typically into
an onboard FMS) will be agreed and updated in real-time.

Derived from the TBO concept of operations to be designed around the notion of
business trajectory, the following consequences emerge [12, Chap. 2.4.2.3]:

• Aircraft will fly accurate four dimensional (4D) trajectories (three spatial
dimensions and time).

• All necessary data regarding the trajectory will be shared by all concerned
actors through system wide information management to facilitate gate to gate
collaborative decision-making processes.

• Intervention in the trajectory will happen in full knowledge of the downstream
effects and hence it will be possible to pick the option causing the least amount
of trajectory distortion.

• The increase in the predictability around the trajectory, together with the
provision of decision support tools to assist humans to handle much larger number
of trajectories, will enable to increase the capacity into a given airspace volume.



1.2 Goals 7

Nevertheless, TBO can only work if the current strict constraints on airspace usage
are reduced or eliminated. Indeed, airspace should be seen as an unlimited resource
through which the trajectories are allowed to be flown with minimal artificial distortion.
Today’s view focusing on individual flights and actions to separate them tactically should
be replaced by a more strategic view focusing on the trajectories, managing them by
accurate planning and reducing tactical intervention to exceptions.

This does not necessary mean an airspace with no constraints and no ATC
intervention. Airports, where aircraft must take-off and land, will keep being the
bottlenecks of the air navigation system. Even though the predictability of the system
will be increased in the future, it will still be subject to certain degree of uncertainty,
for instance, due to the atmosphere. Moreover, safety will always be the primary goal
in civil aviation. Thus, TBO will work best based upon a constrained paradigm, where
ATC will issue constraints to be met and the airline will decide the most economical
way to meet them.

Therefore, the underlying motivation of this thesis is to conduct research towards
the real implementation of TBO, leading to more flexible, efficient, and environmentally
friendly flight planning concepts framed into a constrained based paradigm, considering
decision-making processes, reducing airlines operating costs, and allowing green
trajectories and green missions to be carried out in the future, which will also result in
less emissions to the atmosphere.

1.2 Goals

The main goal of this dissertation is to develop optimal control techniques for optimal
aircraft trajectory planning looking at reduction of fuel consumption and overfly costs
in flight plans.

To reach this main goal the following intermediate objectives must be achieved:

• Exhaustive revision of the literature on optimal control theory and numerical
methods for optimal control.

• Accurate modeling of the elements of the flight planning problem. They include
an aircraft performance model, a wind model, a model of the discrete airspace
structure, models of operational constraints and operational procedures, models of
the different aerodynamic configurations, and finally a model for decision-making
processes.

• Definition of techniques to solve optimal control problems that include multiple
phases, discrete events, and decision-making processes.

• Based on the devised techniques, design of more efficient flight plans.

• Validation of the approach by solving numerical instances.
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1.3 Modeling

As it has been described so far, the calculation of a flight plan is subject to many factors,
which makes finding the optimal flight plan a very difficult task. Therefore, modeling
the phenomena involved in the calculation of a flight plan in a clever way is key to
tackle the problem. Models must be not too complex so that problems are solvable,
but yet accurate to represent reality in a reliable way. They include continuous
phenomena, discrete phenomena, and decision-making processes. Continuos models
include aircraft performance, atmospheric conditions and meteorological conditions.
Discrete models include airspace structure, operational constraints and procedures,
aerodynamic configurations of the aircraft, and overfly charges.

In this thesis a 3 Degree Of Freedom (DOF) dynamic model that describes the
point variable-mass motion of the aircraft has been considered. The Earth has been
considered flat, non rotating, and approximate inertial reference frame. The acceleration
due to gravity in the atmospheric flight of an aircraft has been considered constant
and perpendicular to the surface of Earth. The aircraft has been considered as a
conventional jet airplane with fixed engines. The external actions acting on an aircraft
can be decomposed into propulsive, aerodynamic, and gravitational. The aircraft has
been assumed to have a plane of symmetry, and thus it flies in symmetric flight, i.e., all
forces act on the center of gravity and the thrust and the aerodynamic forces lay in the
plane of symmetry. This model for aircraft performance has been extensively used in the
calculation of trajectory for long-time horizons in which the focus is not on maneuvers
(for which more precise assumptions would be needed), but in global performance.

The Eurocontrol Base of Aircraft DAta (BADA) 3.6 [14] has been considered, which
provides data for a total of 295 aircraft types, operations, and procedures. BADA also
includes models for thrust, consumption, aerodynamics, and performance limitations. In
particular, the aerodynamic model considers a parabolic drag polar, and therefore, does
not take into account compressibility effects on the aerodynamic behavior of the aircraft.
This leads to lower than real drag at high Mach numbers, resulting in higher than
real optimum speeds and altitudes. Five different aerodynamic configurations, for take-
off, initial climb, cruise, approach, and landing are given. These different aerodynamic
configurations which correspond to different flap deflections give rise to different dynamic
behaviors of the aircraft. BADA enables the standardization of aircraft model and thus
the comparison of achieved results. By proper processing of data, BADA also enables
the automation of the flight plan calculation for different types of aircraft.

The model of atmosphere that has been considered is the standard one used in
aviation and weather studies, in which the density of air is a function of the altitude
given by the profiles established by the International Standard Atmosphere (ISA) in the
different layers of the atmosphere.
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Figure 1.4: Wind field. GRIB data treated with Matlab software.

Wind has been taken into account due to its important influence in flight planning.
As said before, wind forecasts are crucial for the periodic definition of airways in
oceans tracks, and obviously for obtaining the optimal path in zones where free flight
is permitted. In the future, under TBO concepts, it will become even more crucial. The
meteorological predictions have been obtained from the Rapid Update Circle (RUC)3,
a numerical model developed at the National Oceanic and Atmospheric Administration
(NOAA) Forecasts System Laboratory (FSL) that incorporates aircraft measurements,
balloon soundings, and other sensor data [15, 16]. Forecasts are provided via GRIdded
Binary (GRIB) files. GRIB is a format with high compactness and high capacity used
by the meteorological institutes of the world to store, share, and manipulate weather
data. Data are provided four times a day into a 1◦ × 1.25◦ grid and fourteen different
barometric altitudes. In particular, GRIB files provide wind forecasts giving the three
components (vertical, north and east) of the wind vector at each node of the grid.
See Figure 1.4.

In the wind model, we have assumed the wind field to be stationary. Wind in
the vertical direction has been assumed to be zero due to its low values. Since the
model does not take into account stochasticity, we have considered wind forecasts
as deterministic. In order to include wind data into the optimal control problem, an
analytical function is needed, which has been obtained via a multiple regression fit of
wind discrete data into polynomial functions.

3http://ruc.noaa.gov/

http://ruc.noaa.gov/
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We turn now to the explanation of the models underlying the discrete phenomena
involved in the calculation of a flight plan.

In order to model the airspace structure of ATS routes, we have not considered
airways and we have supposed that the aircraft can fly an arbitrary route among
waypoints. However considering a complete directed graph structure over the set
of waypoints is redundant because aircraft must fly through closer waypoints before
reaching farther waypoints. A graph structure which is capable to reflect this simple
observation is the multipartite graph structure [17]. Therefore, the airspace structure
has been modeled as a complete multipartite graph in which the vertex set of waypoints
is partitioned into pairwise independent subsets of waypoints connected if and only if
they belong to different (adjacent) partite sets.

The trajectory of an aircraft has inherently a discrete nature due to the presence
of multiple flight phases corresponding to different dynamic models. Thus, a discrete
dynamics must be considered together with the aircraft continuous dynamics. The
discrete dynamics governs the evolution of a set of discrete variables in which the
discrete states of the system are stored. The different discrete states give rise to different
dynamical subsystems and their corresponding sets of path constraints which govern
the continuous motion of the aircraft throughout the phases of the flight. The discrete
variables have been included to model the flight phase, the aerodynamic configuration
(flap configuration), the dynamic mode (3D, vertical or horizontal motion), the operational
procedure (for instance, constant velocity), the atmosphere mode (below or above the
troposphere), and the waypoints of the multipartite graph.

The coupling of the discrete structure of a flight plan with the continuous aircraft
dynamics results in a hybrid system [18]. In particular the flight of an aircraft has
intrinsically the characteristics of a controlled switched dynamical system [19].

Therefore, flights have been modeled as a collection of phases connected by
end trigger conditions which make the system “switch" between one phase and the
following, resulting thus in a switched system. The end trigger conditions can be
of two types: internally forced (autonomous), in which the switching are triggered by
capture conditions such as waypoint’s coordinates, velocity or altitude; externally forced
(controlled), in which the switchings are triggered by an external control input. Each
phase is characterized by a determined dynamical subsystem governing the continuos
motion of the aircraft and a set of active constraints.

Decision-making processes have been introduced in the model in order to determine
the discrete dynamics of the system throughout the different phases. They have been
modeled utilizing time-dependent binary control functions and time-independent binary
variables.
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1.4 Prior work

In commercial aircraft flight planning, the most commonly used approach, called aircraft
routing problem [20], is based on a decomposition of the problem into 2D route
optimization and profile/speed optimization. Airlines typically rely on this approach to
compute their flight plans daily. Some commercial suppliers are Jeppesen JetPlanner4

and Lufthansa’s LIDO5 flight planning services for airlines.

Given the airspace structure with no-fly zones, airways, waypoints, etc., the
approaches to solve the 2D route optimization problem include network optimization
based algorithms [21], mixed-integer linear optimization approaches [22, 23], or
evolutionary based algorithms [24]. Once the 2D optimal route has been obtained,
altitude and velocity profiles can be selected using heuristics. The main advantage of
these approaches is that they are able to solve rather complicated, highly constrained
problems in which it is easy to include specific restrictions.

However, the most complete strategy to tackle a flight planning problem is to solve
a 4D trajectory optimization problem.

Trajectory optimization

The trajectory optimization problem can be studied as an optimal control problem of a
dynamic system in which the goal is to find the trajectory and the corresponding control
inputs that steer the state of the system between two configurations satisfying a set of
constraints on the state and/or control variables while minimizing an objective functional.
Compared to the decomposition approaches above mentioned, the fundamental advantage
of using optimal control is that allows aircraft dynamics to be considered. In this
manner, without any decomposition, the solution to the problem provides the optimal
4D trajectory, speed profile, consumption profile, and attitude profile. Moreover, it
provides the control inputs that govern the continuous motion of the aircraft.

Typically, it is very difficult to find analytical solutions to optimal control problems,
even for the simplest cases. The common practice is to use numerical methods to
get approximated solutions. Numerical approaches to optimal control problems can be
mainly classified into indirect [25] and direct methods [26]. Indirect methods are based
on the use of necessary optimal conditions [27], whereas the underlying idea in direct
methods is to transcribe the infinite dimensional optimal control problem into a finite
dimensional optimization one, which can be solved using mathematical programming
techniques [28].

Both, direct and indirect methods only ensure local optima. Even though direct
methods present less accuracy than indirect methods [29], its computational efficiency
has made them the most used methods for solving real optimal control problems, and
in particular for solving aircraft and spacecrafts trajectory optimization problems [26].
Compared with indirect methods, the use of direct methods for solving optimal control

4http://www.jeppesen.com
5http://www.lhsystems.com

http://www.jeppesen.com
http://www.lhsystems.com
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problems reduce the size and the complexity of the problem [30]. One of the main
disadvantages of using indirect methods has to do with properly setting a suitable
initial guess [26, 31]. Moreover, using direct methods is much easier to consider multiple
equality and inequality constraints. Furthermore, direct methods allow us to overcome
in a natural way one of the classical limitations of optimal control: combining integer
and continuous variables.

The existence of different flight phases give rise to a so called multiphase trajectory
optimization problem [32], which can be formulated as a multiphase optimal control
problem. However, due to the complex nature of commercial aircraft’s flight plans,
decision variables are needed for better modeling of trajectory optimization problems
[33]. Therefore, integer or binary variables are introduced to model decision-making
processes in optimal control problems. These problems can be formulated as multiphase
Mixed-Integer Optimal Control Problems (Miocp) [34]. The direct collocation methods,
such as those based on Hermite-Legrende-Gauss-Lobatto (HLGL) schemes [35, 36] or
the so called pseudospectral collocation methods [37, 38], are among the most suitable
direct methods to transcribe the infinite dimensional Miocp.

Then, the resulting optimization problem can be solved using Non-Liner
Programming (Nlp) [39] and Mixed Integer Non-Linear Programming (Minlp) [40]
techniques. A suitable Minlp solver for large-scale, sparse, nonlinear, non-convex
optimization problems with a large number of equality and inequality constraints, which
include integer variables is Bonmin [41] which implements a Nlp based branch and
bound (Nlp Bb) algorithm, and uses Ipopt [42] as Nlp solver. Bonmin and Ipopt are
open-source solvers; source codes and binaries are available from Coin-or6.

We turn now the discussion to the analysis of the prior related work on aircraft
trajectory optimization considering both multiple phases and decision-making processes.

In the scope of multiphase optimal control, multiphase (also referred to as multistage)
trajectory optimization problems have been solved for many applications in aerospace
engineering. Just to name a few, in [43] and [44], an Unmanned Air Vehicle (UAV)
flight mission was presented considering the route as a given sequence of waypoints.
Multistage problems for space flight trajectory optimization have also been solved. They
include multistage launch [45], multistage ascent [46], and multistage orbit transfer [47].
Military applications of multiphase trajectory optimization with radar-range constraints
[48] have been also published. Some applications of multiphase optimal control to
commercial aircraft are [49], where optimal trajectories with airspace constraints have
been discussed, and [32], where the flight of an aircraft was modeled as a collection
of phases and procedures and a sequence of minimum-fuel consumption problems was
solved.

The fundamental approaches followed for solving multiphase optimal control
problems are either based on pseudospectral methods [50, 51] or on concatenating phases
[32]. Such approaches have one main drawback: one must add linkage constraints to
ensure continuity along time domain, increasing the size and complexity of the problem.

6http://www.coin-or.org

http://www.coin-or.org
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Few works considering decision-making processes have been presented in the scope
of aircraft trajectory optimization: In [33], two examples are solved, an asteroid mission
and a refueling mission, using a pseudospectral knotting method to generate a mixed-
variable programming problem; in [52, 53], evolutionary algorithms including decision-
making processes are derived for space mission planning; a bi-level algorithm was
derived in [54] to solve a collision avoidance problem under collaborative decisions.
Moreover, to our best knowledge, none application to commercial aircraft trajectory
optimization considering decision-making variables within optimal control has been
published. Therefore, more efforts in deriving new strategies to solve instances of
this problem that include decision-making processes in aircraft trajectory optimization
problems are needed.

Operational concepts

We analyze now recent ATM research activity towards greener operational concepts.

In particular, the definition of Continuous Descent Approaches (CDA) has led
to important fuel savings and environmental benefits in real scenarios. In contrast
to a conventional approach, in the CDA procedure the aircraft stays higher for
longer, descending continuously from as higher as possible and avoiding any level
segments of flight prior to intercepting the final approach glide path (typically 3◦ with
Instrumental Landing Systems (ILS)). A continuous descent requires significantly less
engine thrust than prolonged level flight, resulting in less noise, less consumption,
and less emissions. Figure 1.5 illustrates a comparison between CDA and conventional
approaches.

Top of descent

Final Approach Fix

γd

Conventional approach

Continuous Descent Approach

Figure 1.5: Comparison between CDA and a conventional approach.

An optimal control model for advanced CDAs procedures can be found in [55]. CDA
simulations in high-density terminal airspace have been presented, for instance, in [56]
and [57]. Real flight scenarios have also been studied, for instance, an analysis of
tailored arrivals for datalink-enabled CDAs for San Francisco Airport [58], the analysis
of the CDA results of project AIRE in Miami and Atlanta airports [59], and the design
and flight test evaluation of a CDA procedure for nighttime operation at Louisville
International Airport [60].
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The simulation and real implementation of Continuous Climb Departures (CCD),
also refereed to as green departures, has not received so far the same attention.
The idea is analogous to CDA. In contrast to a standardized procedure, a CCD
procedure aims at climbing continuously to as higher as possible and avoiding any level
segments of flight that will result in excess of noise, fuel consumption, and emissions.
So far all approaches to the design of procedures for takeoff and climb have been
devoted to individual operations, focusing in defining more efficient, environmentally
friendly procedures. Figure 1.6 illustrates a comparison between CCD and conventional
departures.

Top of climb

γa

Conventional departure

Continuous Climb Departure

Figure 1.6: Comparison between CCD and a conventional departure.

Extensive work has been done in the field of CCD to design Noise Abatement
Procedures (NAP) that minimize noise nuisance around airport during departures. To
name a few, in [61, 62] multi-objective optimization strategies for designing departure
abatement procedures were presented with application to Girona airport. More detailed
background can be found in [63]. In [64] the benefits of aircraft trajectory design to
reduce noise and fuel consumption were analyzed. The problem is addressed as an
optimal control problem and solved using a Gauss pseudospectral method. In [65] a
multi-objective, constrained, nonlinear optimization problem is solved to obtain optimal
departure procedures taking into account noise, air quality, and global warming.

Optimal cruise performances have been also extensively studied and discussed. In
[66] an aircraft model with mass and speed as state variables is considered, and an
indirect method is used to solve the optimal control problem to minimize fuel consumption
during cruise phase at constant altitude. The optimal speed decreases as fuel is being
burnt during the flight, and savings of 7% when compared to steady (constant speed)
profile are reported. Similar conclusions are reported in [67], where the minimum fuel
cruise trajectory at constant altitude with fixed arrival time is solved using optimal
control, and [68] where the same problem is analyzed including wind effects. Derived
from such cruising velocity profiles, new concepts of operation have arisen such as
the possibility of absorbing ground delays on air within new airspeed reduction Air
Traffic Flow Management (ATFM) concepts [69], resulting in less fuel consumption and
emissions. Moreover, research has also been focused on the design of optimal cruising
trajectories to mitigate climate impact in persistent contrail formation areas [70].
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An observation that arises from the considerations given above is that all the
research on optimizing trajectories and operational procedures in ATM has been limited
to one portion of the flight. These studies are not exhaustive since the optimal solution
of a complete flight could significantly differ if we take into account the influence of
all portions of the flight at the same time. Figure 1.7 illustrates a comparison between
future and conventional operational concepts for complete flights.

Take-off Landing

SID Steady ascent Steady cruise Steady descent STAR Final approach

CCD Continuos ascent Non-steady cruise Continuos descent CDA

Figure 1.7: Comparison between conventional and future operational concepts

So far, the use of optimal control has been limited to the optimization of trajectories
and operational procedures for a single-aircraft, and typically within a portion of the
flight (departure and arrival, or cruising performances). In order to cope with the
complexity of the ATM system, the study of complete trajectories for a single-aircraft is
not enough. A more realistic study should include at least multiple aircraft scenarios,
so that potential conflicts and capacity restrictions can be tackled, and uncertainty, so
that the obtained trajectories have more chances to be feasible and thus increasing their
predictability and the effectiveness of the strategic trajectory planning process. However,
this thesis does not consider multiple aircraft scenarios and focuses in deterministic,
single-aircraft trajectory optimization.
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1.5 Contributions

The original contribution of this dissertation include:

a) A modeling framework for tackling the constraint-based trajectory planning
problem using optimal control techniques. The framework is based on switched
systems theory and it is capable to reflect continuous dynamics, discrete dynamics,
and decision-making processes.

b) A multiphase optimal control approach to aircraft trajectory planning [71]. The
multiphase optimal control problem is converted into a Nlp problem, first making
the unknown switching times part of the state, and then applying a Hermite-
Simpson collocation method to convert the dynamic equations of the system
into constraints. The resulting Nlp problem has been solved using the interior
point based nonlinear solver Ipopt. This approach overcomes some of the above
mentioned drawbacks in solving multiphase optimal control problems. A minimum
fuel application to vertical motion can be found in [72, 73], in which we define
and validate what are termed optimized-procedured profiles, proposing a new
methodology for flight plan definition. A minimum fuel application to 3D motion
can be found in [74, 75]. Moreover, we also present an application to the optimal
take-off weight trajectory planning problem. Results show that the efficiency of
current flight plans could be substantially improved.

c) A multiphase mixed-integer optimal control approach to trajectory planning [76].
The multiphase mixed integer optimal control problem is converted into a Minlp
problem, first making the unknown switching times part of the state, then applying
a 5th degree HLGL collocation method to convert the dynamic equations of the
system into constraints, and finally including binary variables to model decision-
making processes. The resulting Minlp problem has been solved using the Nlp
Bb algorithm implemented in the solver Bonmin. A minimum cost (fuel and overfly
charges) application to en-route trajectory planning under wind effects can be
found in [76, 77]. The decision-making process arises in determining the optimal
sequence of waypoints among a set of alternatives that compose the airspace
structure. The approach has also been extended to a collision avoidance problem
[78]. It represents a promising approach in a complex environment as ATM since
it overcomes a classical optimal control limitation: solving an optimal control
problem that combines binary and continuous variables.

Overall, this dissertation aims at defining and validating optimal control based
techniques for aircraft trajectory planning towards future operational concepts. Results
show that the flight planning problem can be effectively tackled using optimal control
based techniques. Therefore, the techniques studied in this thesis have shown a strong
potentiality to be further exploited towards defining more efficient flight plans based on
TBO.



1.6 Outline of the dissertation 17

1.6 Outline of the dissertation

This dissertation is organized as follows:

In Chapter 2 the optimal control problem is presented, stating the problem and
discussing the different numerical approaches to finally focus on the so called direct
collocation methods, specifically on those based in HLGL schemes.

In Chapter 3 the multiphase mixed-integer optimal control problem is presented.
The focus is first on defining briefly what are the characteristics of a switched system.
Then, the multiphase optimal control problem is stated, presenting an approach to
solve it based on a parameterization of the switching instants. Finally, the multiphase
mixed-integer optimal control problem is stated.

In Chapter 4 the models used in this dissertation are presented. They include
continuous phenomena, discrete phenomena, and decision-making processes. Continuos
models include aircraft performance, atmospheric conditions, and meteorological
conditions. Discrete models include airspace structure, operational constraints and
procedures, aerodynamic configurations of the aircraft, and overfly charges. Finally,
decision-making processes are also modeled.

The multiphase optimal control applications to aircraft trajectory planning are
presented in Chapter 5. The optimized-procedured profiles are compared with free-
flight and fully-procedured profiles over short and medium range vertical flights. An
extension to 3D motion is also presented, solving the optimal take-off weight trajectory
planning problem. Numerical results are discussed.

The multiphase mixed-integer optimal control application to en-route trajectory
planning is presented in Chapter 6. The Nlp Bb used to solve the problem is presented.
Numerical results are discussed.

Finally, in Chapter 7 some conclusions and future lines of research are drawn.

In Appendix A the BADA 3.6 aircraft performance model is reported. Data for an
Airbus 320 and Airbus 330 are included.





2
Optimal Control

I n this chapter we give general background on the continuous time optimal control
problem. We begin with the definition of the problem and the description of the main
optimality criteria for its resolution. Optimality conditions can be derived either

from Pontryagin’s Maximum Principle or from the Hamilton-Jacobi-Bellman equation.
However, it is very difficult to solve analytically optimal control problems even for the
simplest cases. Numerical methods must be employed. There exist three basic numerical
approaches to solve continuos time optimal control problems: dynamic programming
methods, indirect methods, and direct methods. The characteristics of these methods
will be described and their advantages and disadvantages discussed. Direct methods, in
particular direct collocation methods, appear to be the most suitable. Direct collocation
methods using Hermite-Legendre-Gauss-Lobatto polynomials habe been used in this
thesis for solving continuous time optimal control problems. Thus, a detailed description
of these methods will be given.
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2.1 Problem definition

Control theory is a discipline that studies the behavior of dynamical systems with
control inputs. In general, the aim is to control the state of the dynamical system in
some prescribed manner.

Control systems can be classified in two categories: terminal and tracking control.
Terminal control refers to the task of guiding a system from a given initial state to a
desired final state in a given time, often in the presence of constraints. The objective of
tracking control is to maintain the system’s state in a close neighborhood of the nominal
trajectory.

The control exerted over the system through the control inputs can follow two
fundamental strategies: open-loop and closed-loop. The main difference is that in
open-loop there is no knowledge of the actual state of the system at a given time, and
the control is exerted based upon a model of the system dynamics and an estimate of
its state. On the contrary, in a close-loop strategy the actual state of the system is
estimated based on measurements and recursively provided to the controller through a
feedback loop.

The goal of optimal control theory is to determine the control input that will cause
a system to achieve the control objectives, satisfying the constraints, and at the same
time optimize some performance criterion.

The trajectory planning problem is in general solved following an open loop terminal
control problem. This strategy allows all the constraints acting on the dynamical
system, including the dynamic constraints, to be taken into account in such a way that
the resulting trajectory is admissible. However this problem has an infinite number of
solutions. To eliminate this redundancy optimal control techniques can be used to select
only one of them, the trajectory that optimize a given criterion. Once an admissible
trajectory or the optimal one has been found, a closed loop tracking control strategy is
in general used to follow it.

In this thesis we are interested in commercial aircraft trajectory planning. To
solve this problem we use open-loop optimal control techniques. Also, we focus on
dynamical systems evolving in continuous time. Then, the general continuous, open-loop
optimal control problem studied in this thesis consists in finding the control law and
the corresponding trajectory that steers a given dynamic system between an initial and
a final state, and satisfies the constraints while minimizing certain optimality criterion.
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2.1.1 Preliminary definitions

The dynamical systems studied in this thesis can be modeled by a set of differential
state equations and a set of algebraic equations. Such system is called Differential
Algebraic Equations (DAE) system and can be defined as follows [34]:

Definition 2.1 (DAE system). A DAE system is a dynamical system of the form:

ẋ(t) = f(t, x(t), u(t), l); (2.1a)

0 = g(t, x(t), u(t), l). (2.1b)

The set of equations (2.1a) is a set of first-order differential equations and the set
of equations (2.1b) is a set of algebraic equations. Variable t ∈ [t I , tF ] ⊂ R

represents time and l ∈ R
nl is a vector of parameters. x(t) : [t I , tF ] 7→ R

nx

represents the state variables. The state variables x(t) contain both differential
and algebraic variables, that is, x(t) = (y(t), z(t)). y(t) : [t I , tF ] 7→ R

ny

represents the differential states variables, i.e., the state variables with time derivative,
and z(t) : [t I , tF ] 7→ R

nz represents the algebraic state variables, i.e., the state
variables without time derivative. u(t) : [t I , tF ] 7→ R

nu represents the control
functions, also referred to as control inputs, assumed to be measurable. The function
f : [t I , tF ]×R

nx ×R
nu ×R

nl 7→ R
nx is assumed to be piecewise Lipschitz continuous

to ensure existence and uniqueness of a solution. The derivative of the algebraic right
hand side function g : [t I , tF ] × R

nx × R
nu × R

nl 7→ R
nz with respect to z , i.e.,

∂g
∂z ∈ R

nz×nz , is assumed to be regular in order to guarantee System (2.1) is a DAE
system of index 1.

We are interested in studying controllable systems, i.e., dynamic systems which
have the following property:

Definition 2.2 (Controllability). A dynamical system is said to be controllable if for
every vector initial conditions x I = x(t I) and every state xF ∈ R

nx , there exist a finite
time tF and control function u(t) ∈ R

nu , t ∈ [t I , tF ], such that x(tF ) = xF .

In particular, we are interested in studying trajectories of such systems. Then, let
us define trajectory:

Definition 2.3 (Trajectory). Given the DAE System (2.1), a trajectory is given by

T (x, u, l) = {(x(t), u(t), l) | t ∈ [t I , tF ]} (2.2)

with functions x : [t I , tF ] → R
nx , u : [t I , tF ] → R

nu and a parameter vector l ∈ R
nl

that satisfy set of equations (2.1).
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2.1.2 Problem statement

The optimal control problem can be stated as follows:

Problem 2.1 (Optimal Control Problem).

min J(t, x(t), u(t), l) = E(tF , x(tF ))+
∫ tF

tI
L(x(t), u(t), l)dt;

subject to:

ẋ(t) = f(x(t), u(t), l), dynamic equations;

0 = g(x(t), u(t), l), algebraic equations;

x(t I) = x I , initial boundary conditions;

ψ(x(tF )) = 0, terminal boundary conditions;

φl ≤ φ[x(t), u(t), p] ≤ φu, path constraints.

(OCP)

The variables t , x(t), u(t), and parameter l are as in Section 2.1.1. Notice that
the initial time t I is fixed and the final time tF might be fixed or left undetermined.
The objective function J : [t I , tF ] × R

nx × R
nu × R

nl → R is given in Bolza form.
It is expressed as the sum of the Mayer term E(tF , x(tF )) and the Lagrange term
∫ tF

tI L(x(t), u(t), l)dt . Functions E : [t I , tF ]×R
nx → R and L : Rnx ×R

nu×R
nl → R

are assumed to be twice differentiable. The system is a DAE system in which the right
hand side function of the differential set of equations f : Rnx × R

nu × R
nl → R

nx

is assumed to be piecewise Lipschitz continuous, and the derivative of the algebraic
right hand side function g : Rnx × R

nu × R
nl → R

nz with respect to z is assumed
to be regular. x I ∈ R

nx represents the vector of initial conditions given at the initial
time t I and the function ψ : Rnx → R

nq provides the terminal conditions at the final
time and it is assumed to be twice differentiable. The system must satisfy algebraic
path constraints given by the function φ : Rnx × R

nu × R
nl → R

nφ with lower bound
φl ∈ R

nφ and upper bound φu ∈ R
nφ . Function φ is assumed to be twice differentiable.

Let us now briefly explain the different elements of the problem.

The dynamical system is a DAE system as in Equation 2.1 without explicit
dependence on time. The system has to be steered from an initial state x I to a
final state throughout the time interval [t I , tF ]. The constraint on the final state is
expressed as ψ(x(tF )) = 0. Thus, the boundary conditions can be expressed as:

x(t I) = x I ; (2.3a)

ψ(x(tF )) = 0. (2.3b)

Moreover, the solution must satisfy algebraic path constraints of the form

φl ≤ φ[x(t), u(t), l] ≤ φu, t ∈ [t I , tF ]. (2.4)
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Notice that such path constraint entail also simple bounds on the state variables

xl ≤ x(t) ≤ xu, t ∈ [t I , tF ],

and control variables

ul ≤ u(t) ≤ uu, t ∈ [t I , tF ].

A performance index gives a quantitative measure of the performance of the dynamic
system over time domain. It can be expressed in terms of final time and value of the
state at final time plus the integral of some function of the state, control inputs and
time over the domain t ∈ [t I , tF ]:

J(t, x(t), u(t), l) = E(tF , x(tF )) +

∫ tF

tI
L(x(t), u(t), l)dt. (2.5)

Let us now introduce the concepts of admissibility and optimality of trajectories
[34]:

Definition 2.4 (Admissibility). A trajectory T (x(t), u(t), l) is said to be admissible
if x(t) is absolutely continuous, u(t) is measurable and essentially bounded, and
there exists a 3-tuple (x(t), u(t), l) which satisfies the set of differential-algebraic
equations (2.1) and set of Constraints (2.3)-(2.4). A control function û(t) is admissible
if there exists at least one admissible trajectory T (x(t), û(t), l).

Definition 2.5 (Optimallity). A trajectory T (x∗(t), u∗(t), l∗) is said to be globally
optimal if it is feasible and

J(t, x∗(t), u∗(t), l∗) ≤ J(t, x(t), u(t), l) (2.6)

holds for all admissible trajectories T (x(t), u(t), l). A trajectory T (x∗(t), u∗(t), l∗)
is said to be locally optimal if it is admissible and there exists a δ > 0 such that
equation (2.6) holds for all admissible trajectories within a neighborhood such that

||u∗(t) − u(t)|| ≤ δ ∀t ∈ [t I , tF ]; ||l∗ − l|| ≤ δ. (2.7)

The function x∗(t) is called a (local) optimal state, the vector l∗ is called a (local)
optimal vector of parameters, and the function u∗(t) is called a (local) optimal control
if they are components of a (local) optimal trajectory T (x∗(t), u∗(t), l∗).

Hence, the optimal control problem (OCP) consists in finding an admissible control
u∗(t) such that there exists an admissible trajectory T (x∗(t), u∗(t), l∗) between the
initial state and the final state that minimizes the performance index (2.5). The final
time, tF , may be fixed or left undetermined.

The reader is referred to [25] for a more general overview on different classes of
optimal control problems.
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2.2 Numerical methods

Typically, optimal control problems are highly nonlinear and it is very difficult to find an
analytical solution even for the simplest cases. The common practice is to use numerical
methods to obtain solutions.

There are three main approaches to numerically solve continuos time optimal control
problems such as problem (OCP):

1. Dynamic Programming (DP) methods: The optimality criteria in continuos time
is based on the Hamilton-Jacobi-Belman partial differential equation [79].

2. Indirect methods: The fundamental characteristic is that they explicitly rely
on the necessary conditions of optimality that can be derived from the
Pontryagin’s Maximum Principle [27]. Bryson and Ho [25] provide a thorough
and comprehensive overview of necessary conditions for different types of
unconstrained and constrained optimal control problems.

3. Direct methods: They can be applied without deriving the necessary condition
of optimality. Direct methods are based on a finite dimensional parameterization
of the infinite dimensional problem. The finite dimensional problem is typically
solved using an optimization method, such as Nlp techniques. Nlp problems can
be solved to local optimality relying on the so called Karush-Kuhn-Tucker (KKT)
conditions, which give first-order conditions of optimality. These conditions were
first derived by Karush in 1939 [80], and some years later, in 1951, independently
by Kuhn and Tucker [81].

2.2.1 Dynamic programming methods

The basic idea in using DP is to subdivide the problem to be solved in a number of
stages. Each stage is associated with one subproblem and the subproblems are linked
together by a recurrence relation. The solution of the whole problem is thus obtained
by solving the subproblems using recursive computations. For a more detailed insight
in DP and optimal control, the reader is referred to [82].

DP has been extensively applied with success to discrete optimal control problems.
Unfortunately, its application is severely restricted in the case of continuous states
systems because of the “curse of dimensionality," a term coined by Bellman to describe
the problem caused by the exponential increase in the size of the state space.

Therefore, for solving nonlinear, continuous optimal control problems with a large
number of variables, e.g., the aircraft trajectory planning problem, DP is clearly not
adequate. Other approaches, such as indirect or direct methods, must be used.
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2.2.2 Indirect methods

Indirect methods rely on Pontryagin’s Maximum Principle [27]. Typically, the optimal
control problem is turned into a two point boundary value problem containing the
same mathematical information as the original one by means of necessary conditions of
optimality. Then, the boundary value problem is discretized by some numerical technique
to get a solution. Thus, Indirect methods follow a “first optimize, then discretize" scheme.
Numerical techniques for solving this two point boundary value problem can be classified
as gradient methods [83], indirect shooting and indirect multiple shooting [84, 85], and
indirect collocation [86].

The practical drawbacks of indirect methods are [26, Chap. 4.3], [31]:

• Proper formulations of the necessary conditions of optimality in a numerically
suitable way must be derived. Since this formulation is rather complicated,
significant knowledge and experience in optimal control is required by the user
of an indirect method.

• In order to handle active constraints properly, their switching structure must be
guessed.

• Suitable initial guesses of the state variables and, with special relevance, to the
adjoint variables must be provided to start the iterative method. State variables
have physical meaning, but adjoint variables do not, so that giving a proper
initial guess might be hard and a non-proper one usually leads to non-optimal
solutions. Even with a reasonable guess for the adjoint variables, the numerical
solution of the adjoint equations can be ill conditioned.

• Changes in the problem formulation, e.g., by a modification of the model equations,
imply formulating again the optimality conditions of the problem.

• Finally, model functions with low differentiability properties are difficult to tackle
with indirect approaches.

Because of these practical difficulties, indirect methods are not suitable to solve
highly constrained trajectory planning problems. In fact, rather than indirect approaches,
direct methods have been extensively used for solving aerospace trajectory optimization
problems in spite of the fact that they present less accuracy than indirect methods
[29]. Two comprehensive surveys analyzing direct and indirect methods for trajectory
optimization are [30, 87].

2.2.3 Direct methods

The so called direct methods do not use the first-order necessary conditions of the
continuous optimal control problem. They convert the infinite dimensional problem into
a problem with a finite set of variables, and then solve the finite dimensional problem
using optimization methods. Direct methods thus follow a “first discretize, then optimize"
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approach. A typical strategy is to convert the infinite problem into a Nlp problem which
is solved using mathematical programming techniques [28, 88].

The most important direct numerical methods are direct shooting [89], direct multiple
shooting [90] and direct collocation [91]. A good reference on the practical importance
of direct methods is [26].

The direct single shooting method has been broadly used because it allows optimal
control problems to be easily converted into an Nlp problem with a small number of
variables even for very large problems. In single shooting only initial guesses for the
control Nlp variables are required. In contrast, it is very sensitive to small perturbations
on the initial condition.

The direct multiple shooting method reduces some of the problems that single
shooting has. However, the multiple shooting approach increases the size of the problem
because additional variables and constraints have to be included. When the problem
includes inequality constraints, there is the additional disadvantage that the sequence
of unconstrained and constrained arcs has to be specified in advance.

The direct collocation method do not suffer from most of the drawbacks mentioned
above, and therefore they are the most suitable for aerospace trajectory optimization
problems [26, 30, 87].

A taxonomy of optimal control methods for trajectory optimization is given
in Figure 2.1. Notice that this taxonomy is not necessarily exhaustive.

Trajectory optimization

Analytical optimal control Numerical optimal control

Indirect methods Direct methods Dynamic programming

Shooting methods Collocation methods

Pseudoespectral
HLGL collocation

Radau
collocation

collocation
Gauss

collocation

LGL CGL LG LGR

Figure 2.1: Taxonomy of trajectory optimization methods using optimal control.
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2.3 Direct collocation methods

Collocation methods enforce the dynamic equations through quadrature rules or
interpolation [35, 91]. A suitable interpolating function, or interpolant, is chosen such
that it passes through the state values and maintains the state derivatives at the nodes
spanning one interval, or subinterval, of time. The interpolant is then evaluated at
points between nodes, called collocation points. At each collocation point, a constraint
equating the interpolant derivative to the state derivative function is introduced to ensure
that the equations of motion are approximately satisfied across the entire interval of
time [92].

Collocation methods are characterized by the interpolating function and by the
nodes and collocation points they use. One of the simplest methods of collocation is
the Hermite-Simpson collocation method [35, 93]. In this method a third-order Hermite
interpolating polynomial is used locally within the entire sequence of time subintervals,
each solved at the endpoints of a subinterval and collocated at the midpoint. When
arranged appropriately, the expression for the collocation constraint corresponds to the
Simpson integration rule. A generalization of the method is obtained using the n-th
order Hermite interpolating polynomial, and choosing the nodes and collocation points
from a set of Legendre-Gauss-Lobatto points defined within the time subintervals. These
choices give rise to the Hermite-Legendre-Gauss-Lobatto (HLGL) collocation method
[92]. Other collocation methods are based, for instance, on Gauss or Radau collocation
schemes [94, 95].

There exist also discretizations for collocation based on pseudospectral methods,
which generally use global orthogonal Lagrange polynomial as the interpolants while
the nodes are selected as the roots of the derivative of the named polynomial,
such as Legendre-Gauss-Lobatto (LGL) (Legendre pseudospectral collocation methods),
Chebyshev-Gauss-Lobatto (CGL) (Chebyshev pseudospectral collocation methods),
Legendre-Gauss (LG) (Gauss pseudospectral collocation methods), or Legendre-Gauss-
Radau (LGR) (Radau pseudospectral collocation methods). Since these methods use
global interpolants defined over the entire time interval, the Gauss-Lobatto nodes are
clustered near the endpoints.

The reader is referred to [50, 51] and references therein for recent and comprehensive
reviews of pseudospectal methods for optimal control.

Needless to say, each method may be more appropriate under certain conditions.
The accuracy of such discretizations has been compared in the literature [96]. In this
thesis, we will use HLGL collocation methods.
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2.3.1 Direct collocation using HLGL polynomials

In this collocation method the resulting polynomial interpolants take the form of a family
of modified-Gaussian quadrature rules known as the Gauss-Lobatto rules [35, 36, 93].
In this section we follow [36].

For the sake of simplicity of exposition, let us consider the following unconstrained
version of problem (OCP):

min J(t, x(t), u(t)) = E(tF , x(tF )) +

∫ tF

tI
L(x(t), u(t))dt; (2.8a)

subject to:

ẋ(t) = f(x(t), u(t)); (2.8b)

x(t I) = x I ; (2.8c)

x(tF ) = xF ; (2.8d)

where the initial conditions x(t I) = x I are given at the fixed initial time t I , and the
final time tF is also fixed. The symbols J, E, L, f , t, x, u have the same meaning than
in problem (OCP). The vector of parameters l has not been considered.

As Figure 2.2 illustrates, in these methods the time domain is split into a certain
number Nd of smaller subintervals:

t I = t0 < t1 < . . . < tNd−1 < tNd
= tF .

In each time subinterval [ti, ti+1], xi = x(ti) and ui = u(ti) are the values of the
state and controls variables at the grid point ti, respectively. We can also define
hi = (tF−t I)/Nd , which is called the integration step size for step i, i = 0, . . . , Nd−1.
Thus, the independent variables of the corresponding Nlp will be

{x0, u0, x1, u1, . . . , xNd
, uNd

},

together with other independent variables according to the integration rule and the
control scheme employed. They include, in general, the values of both state and control
at the collocation points, e.g., the center point of the subinterval xi,C , ui,C and the
controls at the points ui,a, ui,b.

Then, the ordinary differential equation (2.8b) is replaced by a finite number of
equality constraints called defect equations, that can be written in the most general
form as

ci(xi, xi+1, ui, ui+1, xi,C , ui,a, ui,b, ui,C ) = 0, i = 0, . . . , Nd − 1. (2.9)

Each integration scheme leads to a different formulation of this set of transcribed
constraints as explained in the following sections.
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t I = t0 t1 t2 t3 t4 t5 t6 t7 tF = t8

(x0, u0)

(x1, u1)

(x2, u2)

(x3, u3)

(x4, u4)

(x5, u5)

(x6, u6)

(x7, u7)

(x8, u8)

Figure 2.2: Example of time discretization scheme with Nd = 8 subintervals.

Basic methods

Consider a simplified form of differential equation (2.8b), dx/dt = f(t).

Basic numerical integration methods to solve this differential equation rely on the
trapezoidal rule

x(ti+1) − x(ti) =

∫ ti+1

ti

f(t)dt ≈ hi
2
[f(ti) + f(ti+1)], (2.10)

with hi = (ti+1 − ti), where the integrand is approximated with a linear function, and
on the Simpson’s rule

∫ ti+1

ti

f(t)dt ≈ hi
6
[f(ti) + 4f(ti,C ) + f(ti+1)], (2.11)

in which the integrand is approximated using a quadratic polynomial which depends
on the values of the integrand at the endpoints of the subinterval [ti, ti+1] and at the
midpoint ti,C = (ti+1 + ti)/2 of this subinterval. These points are called collocation
points. Both the trapezoid rule and the Simpson’s rule belong to the so called Gauss-
Lobatto family of integration rules in which the degree of the integrated polynomial
coincides with the number of discrete value of the integrand used to generate the
interpolating polynomial. Thus, the trapezoid rule is the second-degree rule and
Simpson’s rule is the third-degree Gauss-Lobatto integration rule. Higher order Gauss-
Lobatto rules can be also used such as the fourth and fifth-degree rules.
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An important aspect to be studied is the location of the collocation points when
the interpolant is of degree higher than two. This choice depends on the discretization
error which will be discussed in the next section.

Error analysis

Truncation errors in numerical integration are of two kinds: local truncation errors and
global truncation errors.

The local truncation represents the error in the approximate integration over a
subinterval [ti, ti+1] and it is a function of the subinterval length hi to an integer
power. This power should be as large as possible. Let pm(t) be a polynomial in time
of order m. This polynomial is constructed by choosing the coefficients associated with
each term so that the resulting polynomial evaluates the integrand f(t) at selected
points in the subinterval [ti, ti+1]. Thus, the integration of pm(t) is an approximation
of the integral of the function f(t). Let the error in the integral of pm(t) over the
subinterval [ti, ti+1] be defined by

ε(f) =

∫ ti+1

ti

f(t)dt −
∫ ti+1

ti

pm(t)dt.

ε(f) is called the local truncation error. For instance, the local truncation errors for the
trapezoid and Simpson’s rules are proportional to h3i and h5i , respectively. This means
that as hi is reduced, the local truncation error of the trapezoid rule improves cubically
whereas the local truncation error of the Simpson’s rule improves with a power 5, that
is much faster.

The global truncation error results from using a method to integrate a function over
an interval that has been divided into a finite number of subintervals. Thus, the global
truncation error results from the accumulation of local truncation errors.

The order of accuracy of the approximation is that power of the step size hi to
which the truncation error is proportional. If the numerical method is employed only
over one subinterval, the order of accuracy will be related to the local truncation error.
Most commonly, as it is in our case, the numerical method will be employed over a finite
number of subintervals, and thus the order of accuracy will be related to the global
truncation error.

Because the step size and the number of local truncation error values to be summed
are both proportional to the number of subintervals, the global truncation error is of
order one less than the local truncation error. Therefore, the order of accuracy for the
trapezoid and Simpson’s rules are proportional to 2 and 4, respectively.

When analyzing the effectiveness of a numerical method to approximate a solution,
the order of accuracy is the most important measure. The greater is the order of accuracy,
the greater is the reduction in error if the step size is made smaller. Therefore, as the
order of accuracy increases, a specified accuracy may be achieved with larger step sizes.

The relatively high order of accuracy and the simplicity of the Simpson’s rule
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makes it very attractive to be used in direct transcription methods for optimal control
problems. Moreover, the fifth-degree Gauss-Lobatto integration scheme, which has order
of accuracy 8, is a good option for large optimal control problems because employing
them leads to a consistent reduction of the number of subintervals of the discretization
and thus of the number of variables of the problem. However, it is necessary to seek
an appropriate trade off between the number of subintervals for the discretization and
the integration rule in order to achieve a determined accuracy.

For a deeper insight on the importance of the order of accuracy in HLGL collocation
schemes the reader is referred to [97, Chap. 4].

Collocation point determination

In this section the choice of the collocation points will be discussed. The collocation
points used to formulate an integration rule must be chosen to increase the order of
accuracy of the resulting integration rule to the highest order possible. We consider a
family of modified Gaussian integration rules known as the Gauss-Lobatto rules [36].

The collocation points that maximize the power of hi in the local truncation
error are the roots of the corresponding Jacobi polynomials, which are the set of
polynomials that are orthogonal on the interval [−1, 1] with respect to the weight
function W = (1 − s)α(1 + s)β . In the Gauss-Lobatto rules, α = β = 1. A
subinterval with endpoints [ti, ti+1] can be transformed to the interval [−1, 1] using
the transformation s = 2(t− ti)/hi−1. The interpolating polynomial can be calculated
by interpolating f(t) at the endpoints of the interval [−1, 1] and at the zeros of the
corresponding Jacobi polynomial.

Thus, the trapezoid rule is the second-degree rule and Simpson’s rule is the third-
degree Gauss-Lobatto integration rule.

For the fourth-degree Gauss-Lobatto integration rule the roots of the corresponding

Jacobi polynomial (the collocation points) are {−
√

1
5 ,

√
1
5}, yielding the following

approximate integration rule:
∫ ti+1

ti

f(t)dt ≈ hi
12

[f(ti)+5f(ti,C −
√

1

5
hi)+5f(ti,C +

√
1

5
hi)+ f(ti+1)], (2.12)

which has an order of accuracy of 6.

For the fifth-degree Gauss-Lobatto integration rule the roots of the corresponding

Jacobi polynomial (the collocation points) are {−
√

3
7 , 0,

√
3
7}, yielding the following

approximate integration rule:
∫ ti+1

ti

f(t)dt ≈ hi
180

[9f(ti) + 49f(ti,C −
√

3

7
hi) + 64f(ti,C )+

49f(ti,C +

√
3

7
hi) + 9f(ti+1)], (2.13)

which has an order of accuracy of 8.
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Application to differential equations

Trapezoid defect constraints: Applying the trapezoid rule in equation (2.10) to the
differential equation dx

dt = f(x) we obtain the resolution scheme

xi+1 = xi +
hi
2
(f(xi) + f(xi+1)), i = 0, . . . , Nd − 1.

which give rise to the following constraints

cTi (xi, xi+1) = xi − xi+1 +
hi
2
(f(xi) + f(xi+1)) = 0, i = 0, . . . , Nd − 1,

called the trapezoid system constraints or trapezoid defect constraints.

Hermite-Simpson defect constraints: Consider the differential equation dx
dt = f(x).

Simpson’s rule in equation (2.11) is formulated considering a quadratic approximation
of the integrand, and thus the state as a function of time x(t) must be approximated
by a cubic polynomial. Moreover, the polynomial used to interpolate f(x) at the
endpoints and center points of the subinterval is obtained as an integration of the
above mentioned cubic polynomial. In this case, parameters representing the state at the
endpoints xi and xi+1 are used to formulate a constraint. Knowing xi, xi+1, fi = f(xi)
and fi+1 = f(xi+1), a Hermite-cubic polynomial representing the state x(t) between
the endpoint times ti and ti+1 can be constructed such as both the values and first
derivatives of the interpolant polynomial coincide with the values and first derivatives
of function f(x) at the extremes of the subinterval. Figure 2.3 illustrates it. Such
polynomial is used to generate an internal collocation point xi,C per subinterval, whose
numerical expression is

xi,C =
1

2
(xi + xi+1) +

hi
8
(f(xi) − f(xi+1)), (2.14)

where xi,C is a discrete approximation for x(t) at ti,C = ti+ti+1

2 and i = 0, . . . , Nd −1.
The Simpson’s system constraint is then formulated using xi,C to evaluate the system
equation resulting in a discrete value at center point of the subinterval fi,C = f(xi,C ).
Then, by enforcing fi,C to be equal to the first time derivative of the Hermite-cubic
interpolant polynomial at the center point of the subinterval, i.e., ẋi,C = fi,C , one defect
equation per subinterval is generated:

cSi (xi, xi+1) = xi − xi+1 +
hi
6
(f(xi) + 4f(xi,C ) + f(xi+1)) = 0, (2.15)

with i = 0, . . . , Nd − 1. These constraints are known as Hermite-Simpson defect
constraints [35, 93].

For the fourth and fifth-degree Gauss-Lobatto integration rules, the process of
transforming the integration rule to yield a constraint is analogous to that of Hermite-
Simpson defect constraints. It is however more complex, yielding two system constraints
per subinterval. For the sake of brevity, we will not go in depth. The reader is referred
to [36, 97] for more details.
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Figure 2.3: Hermite-Simson collocation scheme.

Fourth-degree Gauss-Lobatto defect constraints: Consider the differential equation
dx
dt = f(x). The fourth-degree Gauss-Lobatto integration rule is based on the fourth-
degree Jacobi polynomial representing the state x(t) between the endpoint times ti and
ti+1. In order to uniquely define the polynomial, five pieces of information are required.

As in the Hermite-Simpson case, four pieces of information are available, namely, xi,
xi+1, fi = f(xi), and fi+1 = f(xi+1). In order to complete the five pieces of information,
an additional variable per subinterval is required. This variable is chosen to be the
value of the state at the center point xi,C .

The fourth-degree polynomial interpolant is used to compute discrete approximations

for the state variables at the two collocation points ti,a = ti,C −
√

1
5
hi
2 and

ti,b = ti,C +
√

1
5
hi
2 , yielding:

xi,a =
1

50
{(7

√
5 + 9)xi + 32xi,C + (−7

√
5 + 9)xi+1+

hi[(
√
5 + 1)f(xi) + (

√
5 − 1)f(xi+1)]}; (2.16)

xi,b =
1

50
{(−7

√
5 + 9)xi + 32xi,C + (7

√
5 + 9)xi+1+

hi[(−
√
5 + 1)f(xi) + (−

√
5 − 1)f(xi+1)]}; (2.17)

with i = 0, . . . , Nd − 1.
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Figure 2.4: Fourth-degree collocation scheme.

As Figure 2.4 illustrates, the fourth-degree Gauss-Lobatto system of constraints is
formulated to approximate the differential equation at the internal collocation points ti,a
and ti,b, resulting in the discrete values fi,a = f(xi,a) and fi,b = f(xi,b), respectively.
Then, fi,a and fi,b are equated with the first derivative of the fourth-degree interpolant
polynomial evaluated at the same collocation points, ẋi,a and ẋi,b, respectively.

The resulting two defect equations per subinterval are:

c
4,a
i (xi, xi,C , xi+1) =

1

120
{(32

√
5 + 60)xi − 72

√
5xi,C + (32

√
5 − 60)xi+1+

hi[(5 + 3
√
5)f(xi) + 50f(xi,a) + (5 − 3

√
5)f(xi+1)]} = 0; (2.18)

c
4,b
i (xi, xi,C , xi+1) =

1

120
{(−32

√
5+60)xi+72

√
5xi,C+(−32

√
5−60)xi+1+

hi[(5 − 3
√
5)f(xi) + 50f(xi,b) + (5 + 3

√
5)f(xi+1)]} = 0; (2.19)

with i = 0, . . . , Nd − 1.
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Fifth-degree Gauss-Lobatto defect constraints: Consider the differential equation
dx
dt = f(x). The fifth-degree Gauss-Lobatto integration rule is based on the fifth-
degree Jacobi polynomial representing the state x(t) between the endpoint times ti
and ti+1. In order to uniquely define the polynomial six pieces of information are
required. As in the previous case, four pieces of information are available, namely, xi,
xi+1, fi = f(xi), and fi+1 = f(xi+1), and therefore, two additional pieces of information
per subinterval are required. One variable is chosen to be the value of the state at
the center point of the subinterval (which indeed is one of the three collocation points),
xi,C . The remaining piece of information results from the evaluation of the function f at
the same center point of the subinterval, fi,C = f(xi,C ).

As Figure 2.5 illustrates, the fifth-degree polynomial interpolant is used to compute
discrete approximations for the state variables at the other two collocation points:

ti,a = ti,C −
√

3
7
hi
2 and ti,b = ti,C +

√
3
7
hi
2 , yielding:

xi,a =
1

686
{(39

√
21 + 231)xi + 224xi,C + (−39

√
21 + 231)xi+1+

hi[(3
√
21 + 21)f(xi) − 16

√
21f(xi,C ) + (3

√
21 − 21)f(xi+1)]}; (2.20)

xi,b =
1

686
{(−39

√
21 + 231)xi + 224xi,C + (+39

√
21 + 231)xi+1+

hi[(−3
√
21 + 21)f(xi) + 16

√
21f(xi,C ) + (−3

√
21 − 21)f(xi+1)]}; (2.21)

with i = 0, . . . , Nd − 1.

The fifth-degree Gauss-Lobatto system of constraints is formulated to approximate
the differential equation at the two internal collocation points ti,a and ti,b, resulting in
the discrete values fi,a = f(xi,a) and fi,b = f(xi,b), respectively. Then, fi,a and fi,b
are equated with the first derivative in time of the fifth-degree interpolant polynomial
evaluated at the same collocation points, ẋi,a and ẋi,b, respectively.

The resulting fifth-degree defect equations per subinterval are:

c
5,a
i (xi, xi,C , xi+1) =

1

360
{(32

√
21 + 180)xi − 64

√
21xi,C+

(32
√
21 − 180)xi+1 + hi[(9 +

√
21)f(xi) + 98f(xi,a) + 64f(xi,C )+

(9 −
√
21)f(xi+1)]} = 0; (2.22)

c
5,b
i (xi, xi,C , xi+1) =

1

360
{(−32

√
21 + 180)xi + 64

√
21xi,C+

(−32
√
21 − 180)xi+1 + hi[(9 −

√
21)f(xi) + 98f(xi,b) + 64f(xi,C )+

(9 +
√
21)f(xi+1)]} = 0; (2.23)

with i = 0, . . . , Nd − 1.
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Figure 2.5: Fifth-degree collocation scheme.

Control interpolation schemes: In order to find an optimal control input, the set of
differential equations (2.8b) can be solved using any of the above given sets of defect
equations.

Within the subinterval [ti, ti+1], the control variables are also discretized following
different interpolation schemes.

In the Hermite-Simpon rule, the control interpolation schemes that have been
typically used are three: linear (center control interpolation scheme), i.e., ui,C =
(ui+ui+1)/2; cubic control interpolation scheme in which a Hermite cubic interpolation
is used to determine the control at the center ui,C ; and free control interpolation scheme,
by simply adding ui,C as a new independent variable in each subinterval. In the fourth
and fifth-degree, the typical control interpolation scheme is the free one.

See [98, Chap. 3.3] for more details on control interpolation schemes.

For instance, in the case of free control interpolation scheme the fifth-degree defect
constraints (2.22-2.23) can be expressed as:

c
5,a
i (xi, xi,C , xi+1, ui, ui,a, ui,C , ui+1) = 0; (2.24)

c
5,b
i (xi, xi,C , xi+1, ui, ui,C , ui,b, ui+1) = 0; (2.25)

i = 0, . . . , Nd − 1.



2.3 Direct collocation methods 37

Nlp problem

In this thesis both Hermite-Simpson and fifth-degree Gauss-Lobatto integration schemes
will be used. For the Hermite-Simson integration scheme, a center control interpolation
scheme will be employed for the control variables. For the fifth-degree Gauss-Lobatto
integration scheme, a free control interpolation scheme will be employed for the control
variables. Focusing for instance in the later case, the resulting Nlp problem can be
expressed as follows:

min E(xn) +
∫ ti+1

ti

L(xi, xi,C , xi+1, ui, ui,a, ui,b, ui,C , ui+1)dt,

i = 0, . . . , Nd; (2.26a)

subject to:

c
5,a
i (xi, xi,C , xi+1, ui, ui,a, ui,C , ui+1) = 0, i = 0, . . . , Nd − 1; (2.26b)

c
5,b
i (xi, xi,C , xi+1, ui, ui,C , ui,b, ui+1) = 0, i = 0, . . . , Nd − 1; (2.26c)

x0 = x I ; (2.26d)

xNd
= xF ; (2.26e)

where equation (2.26a) is a Bolza type objective functional, the set of equations (2.26b-
2.26c) correspond to the defect equations for the fifth-degree Gauss-Lobatto integration
scheme and equations (2.26d-2.26e) correspond to the initial an final constraint,
respectively. In this problem, the integral in equation (2.26a) will be approximated
according to the integration rule in equation (2.13). Notice that inequality and equality
path constraints can be also included in the Nlp formulation by just expressing them
in terms of discretized state and discretized control variables.

Nlp problems can be solved to local optimality relying in the KKT conditions, which
give first-order conditions of optimality. The reader is referred to the following text
books [28, 88] for a comprehensive treatment of Nlp.

It is interesting to point out that it has been demonstrated in [26] that the KKT Nlp
necessary conditions approach the optimal control necessary conditions of optimality as
the number of variables grows. Indeed, at the solution of the Nlp problem, the Lagrange
multipliers can be interpreted as discrete approximations to the optimal control adjoint
variables [26].





3
Multiphase Mixed-Integer

Optimal Control

I n this chapter we introduce the multiphase mixed-integer optimal control problem.
In this problem the dynamical system is a switched dynamical system evolving
over continuous time. Switched dynamical systems are particular classes of hybrid

systems. We begin with a formal description of switched systems. Then, we define the
multiphase optimal control problem. In order to tackle such problem, we present an
approach based on a parametrization of the switching instants. Finally, we define the
multiphase mixed-integer optimal control problem.
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3.1 Switched dynamical systems

A switched dynamical system, also referred to as switched system, is a type of
hybrid dynamical system. A hybrid system is a dynamical system which exhibits
interacting continuous and discrete dynamic behavior. The continuous and discrete
dynamics interact at “trigger” times, which are referred to as switching instants. The
main characteristic of switched systems is that the continuous state does not exhibit
discontinuities at the switching instants, as in the case of general hybrid systems.

A switched system consists of a finite number of dynamical subsystems and a
switching sequence. In each subsystem, also referred to as a mode of the system, the
dynamics is described by a set of differential-algebraic equations. Such subsystem
is also typically subject to a set of constraints. The switching sequence provides
the sequence of indexes for subsystems together with the switching times at which
the interactions between subsystems (switchings) take place. The switching between
different subsystems is governed by certain “rules”. These switching rules are termed
as discrete dynamics, and they are described by logic constraints. A particular mode
at any given time may be triggered by some “external process”, such as a controller,
computer, or human operator, in which case the switch is said to be controlled. It may
also be governed by an “internal process” such as a function of time or state or a
combination of both, in which case the switch is said to be autonomous.

3.1.1 Definitions

Let us define the phenomena under which the switchings are triggered:

Definition 3.1 (Autonomous switching). Autonomous switching (also referred to as
internal forced switching) is the phenomenon where the dynamical system changes
discontinuously, or switches, when the continuous state hits certain regions of the state
space. This can be interpreted as switching between different dynamical subsystems
due to internal actions.

Thus, autonomous switching refers to the inherent behavior of the system itself. An
example of autonomous switching is the modification in the algebraic equations that
govern the evolution of the temperature when the aircraft reaches the tropopause at an
altitude of 11000 [m]. In this case, there is a mode change due to different atmospheric
conditions that modify the dynamic behavior of the aircraft. See Section 4.1.4 for more
information.

Definition 3.2 (Controlled switching). Controlled switching (also referred to as external
forced switching) is the phenomenon where the dynamical mode changes in response
to a control command, usually with an associated cost. This can be interpreted as
switching between different dynamical subsystems due to external actions.
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Consider an aircraft with two different power settings for climbing and cruising,
respectively. An example of controlled switching is the action over the proper commands
to shift from the climbing to the cruising setting that is made by the pilot commanding
the aircraft. This shift from one power setting to another implies a modification in the
dynamic equations of the aircraft and can take place within an interval of time, but it
is an external agent (the pilot in this case) that triggers the switching. Notice that a
controlled switching can be thought as a degree of freedom, so that the switching is to
be set in an optimal way.

Remark 3.1. Controlled switchings can sometimes be modeled as autonomous switchings
in the problem. An instance of this could be the change between take-off flap
configuration and initial climb flap configuration. This is a controlled switch but in
strategic in strategic planning, one may preset the switching according to a certain
trigger condition, for instance, a given velocity: the switching must be triggered when
the aircraft reaches this velocity. See Definition 4.7 for more information.

Let us also formally define a switched system [19]:

Definition 3.3 (Switched system). A switched system is a 3-tuple Hss = [G,Σ,S],
where:

• G = (K, E ) is a directed graph indicating the discrete structure of the system.
K = {0, . . . , N − 1} is the set of indices for subsystems. The directed edge
set E is a subset of K × K − {(k, k)|k ∈ K} which contains the valid events,
e ∈ E . For instance, if an event e = (1, 2), 1, 2 ∈ K, takes place, the systems
switches from subsystem 1 to 2.

• Σ is the set of dynamical subsystems, so that Σk = {fk : Xk × Uk × R
n
lk →

R
n
xk |k ∈ K; gk : Xk × Uk × R

n
lk → R

n
zk |k ∈ K}, where fk describes

the right-hand side of the differential equation ẋ(t) = fk(x(t), u(t), l) for k th

subsystem, gk describes the algebraic constraints 0 = gk (x(t), u(t), l) for k th

subsystem. Xk ∈ R
n
xk ⊆ R

nx and Uk ∈ R
n
uk ⊆ R

nu are the state and
control sets for the k th subsystem, respectively. x(t) ∈ R

nx is a nx-dimensional
piecewise state variable and u(t) ∈ R

nu is a nu-dimensional piecewise control
input. l ∈ R

nl is a vector of parameters.

• S = SA ∪ SC provides logic constraints that relate the continuous state and
mode switchings. SA corresponds to the set of autonomous (internally forced)
switchings, and SC corresponds to the set of controlled (externally forced)
switchings. For instance, for an autonomous switch, when the state trajectory
intersects a certain set of the state space at subsystem 1, the event e = (1, 2)
must be triggered and the system is forced to switch to subsystem 2. For
controlled switches, only when the state belongs to a certain set, a transition
1 to 2 is possible. This controlled switch might take place in response to the
control law.

Let us now define the concepts of switching sequence and switching law [19]:
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Definition 3.4 (Switching sequence). For a switched system HSS , a switching sequence
σ in t ∈ [t I , tF ] is defined as

σ = [(t̃0, e0), (t̃1, e1), . . . , (t̃N−1, eN−1)], (3.1)

where 0 ≤ N − 1 < ∞, t I = t̃0 ≤ t̃1 · · · ≤ t̃N−1 ≤ t̃N = tF and ek is the event
for superindex k ∈ K. t̃1, . . . , t̃N−1 are the switchings of the system. The switching
sequence σ in [t I , tF ] is denoted as σ[tI ,tF ]. In this sequence, the pair (t̃k , ek ) indicates
that at time t̃k the dynamic subsystem of the switched system changes from Σk−1 to Σk .
As a consequence, in the time subinterval [̃tk , t̃k+1] the system evolution is governed by
the dynamic subsystem Σk . In the subinterval [̃tN−1, tF ] the active dynamic subsystem
is ΣN−1.

Therefore, a switching sequence consists of the number and value of switching
times together with the sequence of active dynamical subsystems and the correspondent
sequence of constraints’ sets. A switching sequence is given by a switching law.

Definition 3.5 (Switching law ). For a switched system HSS , a switching law is defined
to be a mapping s : Rnx ×R → ⋃

tI σ[tI ,∞) which specifies a switching sequence σ for

any initial point x I and any initial time t I .

A general reference for hybrid systems is [99]. For more insight in switched systems
the reader is referred to [19].

3.2 Multiphase optimal control

Multiphase optimal control problems are simplified cases of optimal control problems of
switched dynamical systems in which both the number of switchings and the sequence of
events are given. The given sequence of events defines the sequence of active dynamical
subsystems with the corresponding sets of constraints. However, in order to obtain the
optimal switching sequence of the system, the optimal value of the switching instants
is to be determined.

3.2.1 Problem definition

Consider a switched system Hss = [G,Σ,S] as in Definition 3.3 and the time interval
t ∈ [t I , tF ]. Consider also a switching sequence σ[tI ,tF ] as in Definition 3.4 with a
prescribed sequence of active dynamical subsystems Σ = {Σ0,Σ1, . . . ,ΣN−1} and
their corresponding sets of constraints.
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The multiphase optimal control problem can be stated as follows:

Problem 3.1 (Multiphase Optimal Control Problem).

min J(t, x(t), u(t), l) =
N−1∑

k=0

[
Ek(t̃k+1, x(t̃k+1))+

∫ t̃k+1

t̃k
Lk(x(t), u(t), l)dt

]
;

subject to:

ẋ(t) = fk(x(t), u(t), l), k = 0, . . . , N − 1,multiphase dynamic equations;

0 = gk (x(t), u(t), l), k = 0, . . . , N − 1,multiphase algebraic equations;

x(t I) = x I , initial boundary conditions;

ψ(x(tF )) = 0, final boundary conditions;

φlk ≤ φk (x(t), u(t), l) ≤ φuk , k = 0, . . . , N − 1,

multiphase path constraints;

0 = θ keq(x(t̃
k+1), l), k = 0, . . . , N − 2,

0 ≤ θ kieq(x(t̃
k+1), l), k = 0, . . . , N − 2,

interior point equality and inequality constraints.

(MOCP)

The variables t , x(t), u(t), k , the switching times t̃1, . . . , t̃N−1, and the parameter l
are as in Section 3.1. Notice that the initial time t I is fixed and the final time tF might
be fixed or left undetermined. If the final time is undetermined, it is denoted as tF = t̃N .
The objective function J : [t I , tF ]×R

nx ×R
nu ×R

nl → R is given in multiphase Bolza
form. It is expressed as the summatory on superindex k = 0, . . . , N − 1 of the sum

of a Mayer term Ek (t̃k+1, x(t̃k+1)) and a Lagrange term
∫ t̃k+1

t̃k Lk(x(t), u(t), l)dt .
Functions Ek : [̃tk , t̃k+1] × R

n
xk → R and Lk : R

n
xk × R

n
uk × R

n
lk → R are

assumed to be twice differentiable. Dimensions nxk , nuk , nlk can be different for each
phase. fk and gk are as in Definition 3.3. fk is assumed to be piecewise Lipschitz
continuous within the time subinterval [̃tk , t̃k+1], and the derivative of the algebraic
right hand side function gk is assumed to be regular within the time subinterval
[̃tk , t̃k+1]. x I ∈ R

nx represents the vector of initial conditions given at the initial
time t I . The function ψ : Rnx → R

nq provides the terminal conditions at the final
time and it is assumed to be twice differentiable. The system must satisfy multiphase
algebraic path constraints within the time subinterval [̃tk , t̃k+1] given by the functions
φk : Rn

xk × R
n
uk × R

n
lk → R

n
φk with lower bound φlk ∈ R

n
φk and upper bound

φuk ∈ R
n
φk . Function φk is assumed to be twice differentiable. Dimensions nφk can be

different for each phase. The system must also satisfy equality and inequality interior
point constraints given by the functions θ keq ∈ R

n
eqk and θ kieq ∈ R

n
ieqk , which are

assumed to be twice differentiable. Dimensions neqk and nieqk can be different for each
phase.
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Let us now briefly explain the different elements of the problem:

The evolution of the switched system Hss = [G,Σ,S] within phase k ∈ K is
governed by the following differential-algebraic dynamical subsystem:

ẋ = fk(x(t), u(t), l), t ∈ [̃tk , t̃k+1]; (3.2a)

0 = gk (x(t), u(t), l), t ∈ [̃tk , t̃k+1]; (3.2b)

with k = 0, . . . , N − 1.

The switched system Hss = [G,Σ,S] has to be steered from an initial state x I to
a final state throughout the time interval [t I , tF ]. The constraints on the final state can
be expressed as ψ(x(tF )) = 0. Thus, the boundary conditions are expressed as:

x(t I) = x I ; (3.3a)

ψ(x(tF )) = 0. (3.3b)

Moreover, in each phase the solution must satisfy algebraic path constraints of the form

φlk ≤ φk(x(t), u(t), l) ≤ φuk , t ∈ [̃tk , t̃k+1]. (3.4)

Notice that a particular case of path constraints (3.4) are simple bounds on the piecewise
state variables

xlk ≤ x(t) ≤ xuk , t ∈ [̃tk , t̃k+1],

and piecewise control variables

ulk ≤ u(t) ≤ uuk , t ∈ [̃tk , t̃k+1],

for k = 0, . . . , N − 1.

The logic constraints S that relate the continuous state and mode switchings are
modeled including interior point equality and inequality constraints:

0 = θ keq(x(t̃
k+1), l), k = 0, . . . , N − 2; (3.5a)

0 ≤ θ kieq(x(t̃
k+1), l), k = 0, . . . , N − 2. (3.5b)

The following performance index is considered:

J(t, x(t), u(t), l) =

N−1∑

k=0

[
Ek [̃tk+1, x(t̃k+1)] +

∫ t̃k+1

t̃k
Lk [x(t), u(t), l]dt

]
. (3.6)

Definition 2.4 (admissibility) and Definition 2.5 (optimality) can be carried over to
problem 3.1.
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Hence, the multiphase optimal control problem consists in finding an admissible
control u∗ and the switching instants, (t̃1∗, . . . , t̃N−1∗), such that the switched system
Hss = [G,Σ,S] follows an admissible trajectory T (x∗, u∗, l∗) between the initial and
final state that minimizes the performance index (3.6). The final time, tF = t̃N∗, may
be fixed or left undetermined.

A typical approach to solve problem (MOCP), as followed for instance in [32], is to
solve N sequenced optimal control subproblems. In such approach, linkage constraints
are needed to enforce continuity across different phases. The linkage constraints are
typically transition conditions of the form

(t̃k−, x(t̃k−), u(t̃k−)) = (t̃k+, x(t̃k+), u(t̃k+)), k = 1, . . . , N − 1.

Such an approach has one main drawback: one must add linkage constraints to
ensure continuity along time domain, increasing the size and complexity of the problem.

3.2.2 Switching times parametrization

We present an approach to tackle the multiphase optimal control problem (MOCP)
avoiding the main drawback above mentioned [71]. Problem (MOCP) is converted into
a conventional optimal control problem, first making the unknown switching times part
of the state and then introducing a new independent variable with respect to which
the switching times are fixed [100, 101]. In this reformulated problem there is a linear
relation between the new variable and time, but the slope of this linear relation changes
on each time interval between two switches. These slopes, which are part of the solution
to the optimal control problem, are actually time scaling factors that determine the
optimal switching times. Figure 3.1 illustrates it.

t

τt̃1

t̃2

t̃N−1

t̃N

0 1

N
2

N
N−1

N 1

Figure 3.1: Relation between scaled time, τ , and real (unscaled) time t .
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The number of switches, N − 1, and the sequence of dynamical subsystems,
Σ = {Σ0,Σ1, . . . ,ΣN−1} with their corresponding sets of constraints are considered
to be known. They are given by the switching sequence σ[tI ,tF ]. Without loss of
generality, we can assume that t I = t̃0 = 0 and tF = t̃N = 1. The first step is to
introduce the new state variables, xnx+1(t), . . . , xnx+N−1(t), which correspond to the
switching times, t̃k , k ∈ {1, . . . , N − 1} i.e., xnx+k(t) = t̃k , with ẋnx+k (t) = 0.

We then introduce the new independent variable, τ . The relation between τ and t
changes on each subinterval

[̃
tk , t̃k+1

]
. We establish piecewise linear correspondence

between time, t , and the new independent variable, τ , so that for every chosen fixed
point, τk , k = 1, . . . , N − 1, t equals t̃k , i.e., xnx+k(τ) = t̃k , with x ′

nx+k
(τ) = 0,

where (·)′ denotes the derivative of (·) with respect to the new independent variable,
τ . Any monotonically increasing sequence of N+1 numbers on interval [0, 1] could be
used. We set τk = k/N, k = 0, . . . , N . As a result we obtain the following expression:

t =






N · xnx+1(τ) · τ, 0 ≤ τ ≤ 1

N
;

. . .
N · (xnx+k+1(τ) − xnx+k(τ)) · τ + (k + 1) · xnx+k(τ) − k · xnx+k+1(τ), k

n+1
< τ ≤ k+1

N
;

. . .
N · (1 − xnx+N−1(τ)) · τ + N · xnx+N−1(τ) − (N − 1), N−1

N
< τ ≤ 1.

(3.7)

By introducing the new independent variable, τ , the set of differential-algebraic
equations (3.2a)-(3.2b) that govern the evolution of the switched system on the
subinterval

[̃
tk , t̃k+1

]
become:

x ′(τ) = N · (xnx+k+1(τ) − xnx+k(τ)) · f̂k(x(τ), u(τ), l), τ ∈ [τk , τk+1]; (3.8a)

0 = ĝk(x(τ), u(τ), l), τ ∈ [τk , τk+1]; (3.8b)

where:

f̂k(x(τ), u(τ), l) = fk(x(t(τ)), u(t(τ)), l), τ ∈ [τk , τk+1]; (3.9a)

ĝk(x(τ), u(τ), l) = gk (x(t(τ)), u(t(τ)), l)), τ ∈ [τk , τk+1]. (3.9b)

Let x̂ be the extended state vector

x̂(τ) = [x1(τ), . . . , xnx (τ), xnx+1(τ), . . . , xnx+N−1(τ)]
T , (3.10)

where x̂(τ) ∈ R
nx+N−1.

The switched system Hss = [G,Σ,S] has to be steered from an initial to a
final configuration throughout the entire interval τ ∈ [0, 1], i.e., initial and final
conditions (3.3) become:

x̂(0) = x̂ I ; (3.11)

ψ̂(x̂(1)) = 0; (3.12)

where x̂ I ∈ R
nx+N−1 and the function ψ̂ : Rnx+N−1 → R

nq .
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Remark 3.2. Notice that boundary conditions (3.11-3.12) apply, in all its generality,
over the extended state vector. However, since the switching times are to be determined,
the boundary conditions do not apply for the last N −1 elements of the extended state
vector, i.e., the switching times.

The extended state vector x̂ and the control variables are subjected to the following
set of inequality path constraints:

φ̂kl ≤ φ̂k(x̂(τ), u(τ), l) ≤ φ̂ku , τ ∈ [τk , τk+1], (3.13)

where

φ̂k(x̂(τ), u(τ), l) = φk(x̂(t(τ)), u(t(τ)), l)), τ ∈ [τk , τk+1].

Notice that a particular case of path constraints (3.13) are simple bounds on the
extended state variables

x̂lk ≤ x̂(τ) ≤ x̂uk , τ ∈ [τk , τk+1],

which include simple bounds on the switching times, and control variables

ulk ≤ u(τ) ≤ uuk , τ ∈ [τk , τk+1].

Interior point equality and inequality constraints (3.5) become:

0 = θ̂ keq(x̂(τ
k+1), l), k = 0, . . . , N − 2; (3.14a)

0 ≤ θ̂ kieq(x̂(τ
k+1), l), k = 0, . . . , N − 2. (3.14b)

where:

θ̂ keq(x̂(τ
k+1), l) = θ keq(x(t(τ

k+1)), l)), k = 0, . . . , N − 2;

θ̂ kieq(x̂(τ
k+1), l) = θ kieq(x(t(τ

k+1)), l)), k = 0, . . . , N − 2.

Then, let us define on each subinterval k
N < τ ≤ k+1

N , k = 0, . . . , N − 1:

L̂k(x̂(τ), u(τ), l) = N · (xnx+k+1(τ)− xnx+k(τ)) · Lk (x(t(τ)), u(t(τ)), l). (3.15)

We can rewrite the objective functional (3.6) as

Ĵ(x̂(τ), u(τ), l) = E (x̂(1)) +

∫ 1
N

0
L̂0(x̂(τ), u(τ), l)dτ + · · ·

· · · +
∫ 1

N−1
N

L̂n(x̂(τ), u(τ), l)dτ. (3.16)

Notice that performance index (3.16) is a Bolza functional as in equation (2.5) with
a Mayer term at the end point τ = 1 and a multiphase Lagrange term.



48 Multiphase Mixed-Integer Optimal Control

Definition 2.4 (admissibility) and Definition 2.5 (optimality) remain herein valid.

Hence, the problem consists in finding and admissible control u∗(τ) such
that the switched system Hss = [G,Σ,S] follows an admissible trajectory T =
(x̂∗(τ), u∗(τ), l∗) that minimizes Ĵ in the extended state space.

The parametrized optimal control problem can be defined as follows:

Problem 3.2 (Parametrized Optimal Control Problem).

min Ĵ(x̂(τ), u(τ), l) = E (x̂(1)) +

∫ 1
N

0
L̂0(x̂(τ), u(τ), l)dτ + · · ·

· · · +
∫ 1

N−1
N

L̂n(x̂(τ), u(τ), l)dτ;

subject to:

x ′ = N · (xnx+k+1(τ) − xnx+k (τ)) · f̂k(x(τ), u(τ), l), k = 0, . . . , N − 1,

multiphase dynamic equations;

x ′
nx+1(τ) = . . . = x ′

nx+N−1(τ) = 0, switching differential constraints;

0 = ĝk (x(τ), u(τ), l), k = 0, . . . , N − 1, multiphase algebraic equations;

x̂(0) = x̂ I , initial boundary conditions;

ψ̂(x(1)) = 0, final boundary conditions;

φ̂lk ≤ φ̂k(x̂(τ), u(τ), l) ≤ φ̂uk , k = 0, . . . , N − 1,

multiphase path constraints;

0 = θ̂ keq(x̂(τ
k+1), l), k = 0, . . . , N − 2,

0 ≤ θ̂ kieq(x̂(τ
k+1), l), k = 0, . . . , N − 2,

interior point equality and inequality constraints.

(POCP)

In this problem τ , x̂ , x̂ I and ψ̂ are as exposed in this section, while x , u, l and k are as in
problem (MOCP). Designators f̂k , ĝk are equivalent to designators fk , gk , respectively,
besides introducing the dependence on t(τ). Designators Ĵ , L̂k , φ̂k , θ̂ kieq, θ̂

k
eq are

equivalent to designators J, Lk , Ek , φk , θ kieq, θ
k
eq, respectively, besides introducing the

dependence on t(τ) and the extended state vector x̂ instead of x .

Thus, the resulting problem (POCP) is equivalent to problem (MOCP).
Problem (POCP) is a conventional optimal control problem and can be solved as shown
in Chapter 2. The last N − 1 components of the optimal solution of this problem, x̂∗,
will be the optimal switching times t̃k∗, k = 1, . . . , N − 1. If the final time, tF , is
undetermined, an extra element must be added to the extended state vector so that
x̂T = (x1, . . . , xnx , xnx+1, . . . , xnx+N) being xnx+N = t̃N = tF .
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3.3 Multiphase mixed-integer optimal control

Multiphase mixed-integer optimal control problems are simplified cases of optimal
control problems of switched dynamical systems in which the sequence of events for
switching is unknown. The optimal switching sequence must be determined and this
task is actually a decision-making process. Decision processes are typically modeled
using integer or binary variables. See [34, 102, 103].

3.3.1 Problem definition

Preliminary definitions

Let us start with some definitions [34]:

Definition 3.6 (Integer and binary variables). Let w : [t I , tF ] → R
nw be a measurable

function and v ∈ R
nv a vector. A time-dependent or time-independent variable,

respectively wj(t), 1 ≤ j ≤ nw or vj , 1 ≤ j ≤ nv , is called an integer variable
if it is restricted to values in Z. If it is restricted to values in {0, 1}, it is called a
binary variable or, in the case of wj(t), also a binary control function.

Definition 3.7 (Binary control switching). Let w(t) be a binary control function vector.
If we have a discontinuity in at least one component of w(t) at time t̃, we say that the
control function w(t) switches.

Remark 3.3. Note that if the control function w(t) switches at time t̃ , the time point t̃
is the switching time defined in Definition 3.4.

Definition 3.8 (Feasible switching set ). The feasible switching set Ψ is the set of
time points when a discontinuity in the binary control function vector w(t) may occur.
Ψ is either Ψt = {t̃1, t̃2, . . . , t̃N−1}, a finite set of possible switching times, or
Ψfree = [t I , tF ], the whole time interval.

Remark 3.4. Notice that Ψt is due to allowance of switchings only at time points
from a prefixed given set. In contrast, if Ψ = Ψfree, there are no restrictions on the
switchings and the controls can switch infinitely often, as w(t) is only assumed to be
measurable. An infinite number of switchings is not applicable in practice, therefore a
limitation on the number of switchings of the binary control functions must be imposed.
This limitation is achieved by a lower limit ΨMIN on the length of the time subinterval
between two consecutive switching times.

Definition 3.9 (Binary admissibility). w(t) is called a binary admissible control
function vector on [t I , tF ], if w(t) ∈ Ω(Ψ), where Ω(Ψ) = {w : [t I , tF ] →
{0, 1}nw ;w(t) piecewise constant with jumps only at times t̃ j ∈ Ψand t̃ j − t̃ j−1 ≥
ΨMIN with j > 1}.
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Problem statement

Consider a switched system Hss = [G,Σ,S] as in Definition 3.3, and the time interval
t ∈ [t I , tF ]. We can state the multiphase mixed-integer optimal control problem as:

Problem 3.3 (Multiphase mixed-integer optimal control problem).

min J(t, x, u, w, v , l) =
N−1∑

k=0

[
Ek [̃tk+1, x(t̃k+1), w(t̃k+1), v ]+

∫ t̃k+1

t̃k
Lk [x(t), u(t), w(t), v , l]dt

]
;

subject to:

ẋ(t) = fk(x(t), u(t), w(t), v , l), k = 0, . . . , N − 1,

multiphase dynamic equations;

0 = gk (x(t), u(t), w(t), v , l), k = 0, . . . , N − 1,

multiphase algebraic equations;

x(t I) = x I , initial boundary conditions;

ψ(x(tF )) = 0, final boundary conditions;

φlk ≤ φk [x(t), u(t), w(t), v , l] ≤ φuk , k = 0, . . . , N − 1,

multiphase path constraints;

0 = θ keq[x(t̃
k+1), v , l], k = 0, . . . , N − 2,

0 ≤ θ kieq[x(t̃
k+1), v , l], k = 0, . . . , N − 2,

interior point equality and inequality constraints;

w(t) ∈ Ω(Ψ), binary admissible constraints;

v ∈ {0, 1}nv , integer constraints.

(MMIOCP)

The variables t , x(t), u(t), k , the switching times t̃1, . . . , t̃N−1, the vector x I , the
designator ψ , and the parameter l are as in problem (MOCP). Notice that the initial
time t I is fixed and the final time tF might be fixed or left undetermined. If the final time
is undetermined, it is denoted as tF = t̃N . Designators J, Lk , Ek , fk , gk , φk , θ kieq, θ

k
eq

are as in problem (MOCP) besides changes of dimension due to the additional integer
(binary) variables v ∈ {0, 1}nv and the binary control functions w : [t I , tF ] →
{0, 1}nw .

Let us now briefly explain the different elements of the problem:

The evolution of the switched system Hss = [G,Σ,S] within phase k ∈ K is
governed by the following differential-algebraic dynamical subsystem:

ẋ = fk(x(t), u(t), w(t), v , l), t ∈ [̃tk , t̃k+1]; (3.17a)

0 = gk (x(t), u(t), w(t), v , l), t ∈ [̃tk , t̃k+1]; (3.17b)
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with k = 0, . . . , N−1. The switched system Hss = [G,Σ,S] has to be steered from an
initial state x I to a final state throughout the time interval t ∈ [t I , tF ]. The constraint
on the final state is expressed as ψ(x(tF )) = 0. Thus, the boundary conditions can be
stated as:

x(t I) = x I ; (3.18a)

ψ(x(tF )) = 0. (3.18b)

Moreover, the solution must satisfy algebraic path constraints of the form

φlk ≤ φk [x(t), u(t), w(t), v , l] ≤ φuk , t ∈ [̃tk , t̃k+1], k = 0, . . . , N − 1. (3.19)

Notice that a particular case of path constraints (3.19) are simple bounds on the
piecewise state variables

xlk ≤ x(t) ≤ xuk , t ∈ [̃tk , t̃k+1],

and piecewise control variables

ulk ≤ u(t) ≤ uuk , t ∈ [̃tk , t̃k+1],

for k = 0, . . . , N − 1.

The logic constraints S that relate the continuous state and mode switching are
modeled including interior point equality and inequality constraints:

0 = θ keq[x(t̃
k+1), v , l], k = 0, . . . , N − 2; (3.20a)

0 ≤ θ kieq[x(t̃
k+1), v , l], k = 0, . . . , N − 2. (3.20b)

Binary admissible control functions are considered on the interval t ∈ [t I , tF ]

w(t) ∈ Ω(Ψ), (3.21)

where Ψ = Ψt = {t̃1, t̃2, . . . , t̃N−1}, prefixing thus the number of switching times, or
Ψ = Ψfree, in which case the number of switchings is undetermined. Moreover, time
independent integer (binary) variables are also included in the problem:

vj ∈ {0, 1}, j = 1 . . . nv . (3.22)

The following performance index is considered:

J(t, x, u, w, v , l) =
N−1∑

k=0

[
Ek [̃tk+1, x(t̃k+1), w(t̃k+1), v ]+

∫ t̃k+1

t̃k
Lk(x(t), u(t), w(t), v , l)dt

]
. (3.23)
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Definition 3.10 (Feasibility of binary control functions). A vector w(t) of binary control
functions is said to be feasible if it is binary admissible and there exists an admissible
trajectory for problem (MMIOCP).

Definition 2.3 (trajectory), Definition 2.4 (admissibility), and Definition 2.5 (only
in the case of global optimality) can be carried over to problem (MMIOCP). However,
the local optimality definition can not be extrapolated to problem (MMIOCP) because
it makes no sense to use a δ neighborhood when dealing with binary variables. Instead,
a Hamming distance for binary variables can be used. This distance corresponds to
||(·)||1 in the space {0, 1}nv . See [34, Chap. 1].

Hence, the multiphase mixed-integer optimal control problem consists in finding
an admissible control u∗(t), the switching instants, (t̃1∗, . . . , t̃N−1∗), a feasible
binary control function w∗(t), and a vector of integer (binary) variables v∗

such that the switched system Hss = [G,Σ,S] follows an admissible trajectory
T (x∗(t), u∗(t), w∗(t), v∗, l∗) between the initial state and the final state that
minimizes the performance index (3.23). The final time, tF = t̃N , may be fixed or
left undetermined.

Remark 3.5. Notice that the set of binary control functions w∗(t) and the vector
of integer (binary) variables v∗ provide the sequence of events for switching. Thus,
the optimal switching sequence σ ∗ is also obtained as part of the solution to
problem (MMIOCP).

An important concept in the numerical resolution of multiphase mixed-integer optimal
control problems is the notion of relaxed optimal control problem:

Definition 3.11 (Relaxed multiphase optimal control problem). The relaxation of a
multiphase mixed-integer optimal control problem is the multiphase optimal control
problem obtained by replacing equation (3.21) and equation (3.22) by

w(·) ∈ Ω̄(Ψ), and

v ∈ [0, 1]nv .

The relaxed function space Ω̄(Ψ) is defined as: Ω̄(Ψ) = {w : [t I , tF ] → [0, 1]nw ;w(·)
piecewise constant with jumps only at times t̃k ∈ Ψ}.



4
Problem Modeling

I n this chapter we present the models used to solve the aircraft trajectory planning
problem. Due to the nature of the problem, continuos phenomena, discrete
phenomena, and decision-making processes must be described.

First, we focus on the continuos part of the model. We present the aircraft equations
of motion based on a three degrees of freedom model, together with the atmospheric
model, the meteorological model, and the aircraft performance model. Additionally, since
the continuous motion of the aircraft is typically constrained by performance limitations,
path constraints must be taken into account for defining the domain of both states and
control variables.

Then, we model the discrete phenomena of a flight. The flight of an aircraft
has inherently a discrete nature made of multiple flight phases and multiple dynamic
subsystem. Thus, together with the aircraft continuous dynamics, a discrete dynamics
must be considered. The discrete dynamics governs the evolution of a set of discrete
variables that represent the discrete state of the system. The different discrete states are
characterized by different dynamical subsystems and different sets of path constraints
which govern the continuous motion of the aircraft through the phases of the flight.
Thus, we present the discrete variables that have been included to model the flight
phase, the aerodynamic configuration (flap configuration), the dynamic mode (3D, vertical,
or horizontal motion), the operational procedure (for instance, constant velocity), the
atmosphere mode (below or above the troposphere), and the airspace structure of ATS
routes (a set of waypoints).

Finally, we focus on modeling the decision-making processes introducing binary
variables.
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4.1 Continuous dynamics

A common assumption in aircraft trajectory optimization is to consider a 3-DOF dynamic
model that describes the point variable-mass motion of the aircraft over a flat Earth
model. For further details on aircraft continuous dynamics see for instance [104].

4.1.1 Reference frames

Definition 4.1 (Earth reference frame). An Earth reference frame Fe(Oe, xe, ye, ze) is
a rotating topocentric (measured from the surface of the Earth) system. The origin Oe
is any point on the surface of Earth defined by its latitude θe and longitude λe. Axis
ze points to the center of Earth, xe lies in the horizontal plane and points to a fixed
direction (typically north), and ye forms a right-handed reference (typically east).

The system Fe(Oe, xe, ye, ze) is sometimes referred to as navigational system since
it is used to represent the trajectory of an aircraft from the departure airport. Typically,
in order to express the altitude the axis he (he ≡ −ze) is used.

Definition 4.2 (Wind axis frame). A wind axes frame Fw(Ow , xw , yw , zw) is linked to
the instantaneous aerodynamic velocity of the aircraft. It is a system of axes centered
in any point of the symmetry plane (assuming there is one) of the aircraft, typically the
center of gravity. Axis xw points at each instant to the direction of the aerodynamic
velocity of the aircraft V . Axis zw ≡ −hw lies into the plane of symmetry, perpendicular
to xw and pointing down according to regular aircraft performance. Axis yb forms a
right-handed reference. r = (xe, ye, he) is the radio-vector representing the position
of the aircraft with respect to an Earth reference frame.

Oe

xe

xe

he

he

CG ≡ Ow

hw

xw

V

r

Figure 4.1: Wind axis reference frame.
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4.1.2 Modeling assumptions

Consider also the following hypotheses:

Hypothesis 4.1. Flat Earth model: The Earth is considered flat, non rotating, and
approximate inertial reference frame.

Hypothesis 4.2. Constant gravity: The acceleration due to gravity in the atmospheric
flight of an aircraft is considered constant (g = 9.81[m/s2]) and perpendicular to the
surface of Earth.

Hypothesis 4.3. Moving atmosphere: Wind is taken into account. Vertical component
is neglected due to its low influence. Only kinematic effects are considered. Dynamic
effects of wind are neglected due to their low influence.

Hypothesis 4.4. 6-DOF model: The aircraft is considered as a rigid solid with six
degrees of freedom, i.e., all dynamic effects associated to elastic deformations, to degrees
of freedom of articulated subsystems (flaps, ailerons, etc.), or to the moment of inertia
of rotating subsystems (fans, compressors, etc.), are neglected.

Hypothesis 4.5. Point mass model: The translational equations are uncoupled from
the rotational equations by assuming that the airplane rotational rates are small and
that control surface deflections do not affect forces. This leads to consider a 3-DOF
dynamic model that describes the point mass motion of the aircraft.

Hypothesis 4.6. Fixed engines: The aircraft is assumed to be a conventional jet
airplane with fixed engines.

Hypothesis 4.7. Variable mass: The aircraft is modeled as variable mass particle.

Hypothesis 4.8. Forces acting on an aircraft: We assume that the external forces
acting on an aircraft can be generally decomposed into propulsive, aerodynamic, and
gravitational forces.

Hypothesis 4.9. Symmetric flight: We assume that the aircraft has a plane of symmetry,
and that the aircraft flies in symmetric flight, i.e., all forces act on the center of gravity
and the thrust and the aerodynamic forces lie on the plane of symmetry.

Hypothesis 4.10. Small thrust angle of attack: The thrust angle of attack is assumed
to be small.
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4.1.3 Aircraft equations of motion

3D equations of motion

Under Hypothesis 4.1-Hypothesis 4.10, the 3-DOF equations governing the
translational 3D motion of an aircraft are:

• three dynamic equations relating forces to translational acceleration;

• three kinematic equations giving the translational position relative to an Earth
reference frame; and

• one equation defining the variable-mass characteristics of the airplane over time.

The equations of motion are hence defined by the following Ordinary Differential
Equations (ODE) system.

Definition 4.3 (3-DOF equations of 3D motion).

m(t)V̇ (t) = T (t) − D(he(t), V (t), CL(t)) − m(t)g sin γ;

m(t)V (t)χ̇(t) cos γ(t) = L(he(t), V (t), m(t)) sin µ(t);

m(t)V (t)γ̇(t) = L(he(t), V (t), CL(t)) cos µ(t) − m(t)g cos γ(t);

ẋe(t) = V (t) cos γ(t) cos χ(t) +Wx(xe(t), ye(t)); (4.1)

ẏe(t) = V (t) cos γ(t) sin χ(t) +Wy(xe(t), ye(t));

ḣe(t) = V (t) sin γ(t);

ṁ(t) = −T (t)η(V (t)).
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(a) Top view.
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(b) Front view.
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(c) Lateral view.

Figure 4.2: Aircraft forces.

In the above equations:

• The three dynamics equations are expressed in an aircraft based reference frame,
the wind axes system Fw(O, xw , yw , zw), usually xw coincident with the velocity
vector.
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• The three kinematic equations are expressed in a ground based reference frame,
the Earth reference frame Fe(Oe, xe, ye, ze), and are usually referred to as down
range (or longitude), cross range (or latitude), and altitude, respectively.

• The vector r = (xe, ye, he) represents the position of the center of gravity of the
aircraft expressed in the Earth reference frame Fe(Oe, xe, ye, ze).

• Wx and Wy denote the components of the wind vector, W = (Wx , Wy, 0), along
the axes xe and ye of the Earth reference frame Fe(Oe, xe, ye, ze).

• µ, χ and γ are the bank angle, the heading angle, and the flight-path angle,
respectively.

• m is the mass of the aircraft, and η is the specific fuel consumption.

• g is the acceleration due to gravity.

• V is the true air speed of the aircraft.

• T is the engines’ thrust, i.e., the propulsive force generated by the aircraft’s
engines. It depends on the altitude h, Mach number M , and throttle π by a
relationship T = T (h,M, π) that is supposed to be known.

• Lift, L = CLSq̂, and drag, D = CDSq̂, are the components of the aerodynamic
force, where CL is the dimensionless coefficient of lift, CD is the dimensionless
coefficient of drag, q̂ = 1

2ρV
2 is referred to as dynamic pressure, ρ is the air

density, and S is the wet wing surface.

Additional modeling assumptions are the following:

Hypothesis 4.11. Parabolic drag polar: A parabolic drag polar is assumed, i.e.,
CD = CD0

+ CDiC
2
L .

Hypothesis 4.12. Standard atmosphere model: The ISA model is used for the
atmosphere.

The set of equations (4.1) contains the following ten variables:

(xe(t), ye(t), he(t), V (t), γ(t), χ(t), µ(t), m(t), T (t), CL(t));

and seven differential equations. Therefore the system has three DOF, i.e., the system
allows three variables which can be used as control variables.

In general the bank angle µ, the engine thrust T , and the lift coefficient CL are
the control variables for the aircraft, u(t) = (µ(t), T (t), CL(t)). The bank angle
is commanded combining rudder and ailerons trims. The thrust is commanded by the
engine throttle π. Within standard values, the coefficient of lift can be considered
linearly related to the angle of attack according to CL = CL0 + CLαα . The angle of
attack, and thus the coefficient of lift, is commanded by elevator trims.

Remark 4.1. In the calculation of aircraft performance, the lift coefficient will be used
as a control variable instead of the angle of attack.
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Vertical motion

In the vertical motion of an aircraft, besides Hypothesis 4.1-Hypothesis 4.12, the
following additional hypotheses hold:

Hypothesis 4.13. Vertical motion: The motion of the aircraft is constrained to a vertical
plane, i.e., with constant course and thus constant heading angle χ . Without loss of
generality, we assume that the heading angle is zero, that is, χ = 0.

Hypothesis 4.14. Leveled flight: We suppose that the aircraft performs a leveled wing
flight, thus the bank angle is zero, that is, µ = 0.

Hypothesis 4.15. Vertical actions: We suppose that there are no actions out of the
vertical plane, thus we do not consider wind perpendicular to the plane of motion, that
is, Wy = 0.

Then, the 3-DOF equations governing the translational vertical motion of an
airplane are:

• two dynamic equations relating forces to translational acceleration;

• two kinematic equations giving the translational position relative to an Earth
reference frame; and

• one equation defining the variable-mass characteristics of the airplane over time.

The equations of motion of the aircraft are in this case given by the following ODE
system:

Definition 4.4 (3-DOF equations of vertical motion).

m(t)V̇ (t) = T (t) − D(he(t), V (t), CL(t)) − m(t)g sin γ(t);

m(t)V (t)γ̇(t) = L(he(t), V (t), CL(t)) − m(t)g cos γ(t);

ẋe(t) = V (t) cos γ(t) cos χ(t) +Wx(xe(t), ye(t)); (4.2)

ḣe(t) = V (t) sin γ(t);

ṁ(t) = −T (t)η(V (t));

where the symbols have the same meaning as in Definition 4.3. In general, the engine
thrust T and the lift coefficient CL are the control variables in a vertical motion, i.e.,
u(t) = (T (t), CL(t)).
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Horizontal motion

In the horizontal motion of an aircraft, besides Hypothesis 4.1-Hypothesis 4.12, the
following additional hypotheses hold:

Hypothesis 4.16. Horizontal motion: The motion of the aircraft is constrained to a
horizontal plane, i.e., the altitude is constant and then ḣe = 0.

Looking at set of equations (4.1) and considering Hypothesis 4.16, it is easy to see
that the flight path angle is zero, i.e., γ = 0.

Then, the 3-DOF equations governing the translational horizontal motion of an
airplane are:

• two dynamic equations relating forces to translational acceleration;

• one algebraic equation for the vertical equilibrium;

• two kinematic equations giving the translational position relative to an Earth
reference frame; and

• one equation defining the variable-mass characteristics of the airplane over time.

The equations of motion of the aircraft are in this case defined by the following
Differential-Algebraic Equations (DAE) system:

Definition 4.5 (3-DOF equations of horizontal motion).

m(t)V̇ (t) = T (t) − D(V (t), CL(t));

m(t)V (t)χ̇(t) = L(V (t), CL(t)) sin µ(t);

0 = L(V (t), CL(t)) cos µ(t) − m(t)g; (4.3)

ẋe(t) = V (t) cos χ(t) +Wx(xe(t), ye(t));

ẏe(t) = V (t) sin χ(t) +Wy(xe(t), ye(t));

ṁ(t) = −T (t)η(V (t));

where the symbols have the same meaning as in Definition 4.3. In general, the engine
thrust T and the bank angle µ are the control variables in the horizontal motion, i.e.,
u(t) = (T (t), µ(t)).
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4.1.4 Performance, atmospheric, and meteorological models

For the complete description of the continuos motion of the aircraft additional models
are required, namely, and aircraft performance model, an atmospheric model, and a
meteorological model.

Aircraft performance model

BADA 3.6 [14] has been used as aircraft performance model, which provides data for
a total of 295 types of aircraft, operations, and procedures. BADA also includes,
among others, models for thrust, consumption, aerodynamics, and performance limitations.
These models are reported in Appendix A.

Atmospheric model

The standard model of the atmosphere used in aviation and weather studies has been
employed. The density of air, ρ, is a function of the altitude, he, given by the profiles
established by the ISA model in the different layers of the atmosphere. The basic
hypotheses of the ISA model are:

Hypothesis 4.17 (Standard atmosphere). ISA complies with the perfect gas equation.
In the troposphere the temperature gradient is constant. In the tropopause the
temperature is constant.

For the sake of brevity only the final expressions of the ISA model relating ρ = f(he)
in the different layers will be reported:

Troposphere (0 ≤ he < 11000 [m]) :

ρ/ρ0 = (1 − 22.558 · 10−6 · he [m])4.2559;
Tropopause (he = 11000 [m]) :

ρ/ρ0 = 0.2971; and

Inferior part of the stratosphere (11000 [m] ≤ he ≤ 20000 [m]) :

ρ11/ρ0 = 0.2971e(−157.69·10−6 ·(he[m]−11000));

where subindexes “0" and “11" correspond to sea level and tropopause, respectively, and
ρ0 = 1.225 [kg/m3].

Meteorological model

The wind velocity can be regarded as the sum of two terms: a deterministic component
which represents the meteorological predictions available to the ATC, and a stochastic
component which represents the uncertainty in these predictions.

Hypothesis 4.18. Deterministic wind: The wind is considered as deterministic.
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The meteorological prediction are obtained form the RUC, a numerical model
developed at the NOAA forecasts system laboratory [15] and [16]. Forecasts are provided
via GRIB files. Data are provided four times a day into a 1◦ × 1.25◦ grid and 14
different barometric altitudes.

Hypothesis 4.19. Stationary wind field: The wind field is assumed to be stationary,
i.e., its evolution over time has not been considered.

In particular, GRIB files provide wind forecasts giving the three components (west,
north and vertical) of the wind velocity vector, W = {Wx , Wy, Wz}, at each node of
the grid. GRIB data are given in spherical coordinates, i.e., longitude (λe), latitude (θe)
and altitude (he). The spherical coordinates are transformed into plain coordinates by
the following transformation:

xe = λe(Re + he) cos θe;

ye = θe(Re + he); (4.4)

ze = −he;

where Re is the radius of Earth.

In order to take into account wind in the optimal control problem, an analytical
representation of wind data is needed. There are two main approaches to compute this
analytical representation: interpolation and regression. We will give now a very brief
overview on both approaches. Most of the introductory books on numerical analysis
give detailed information on interpolation. A classical reference is [85]. In regard of
regression analysis, we refer the reader, for instance, to [105].

Given a set of points (Xi, Yi), i = 1, . . . , n, the objective of interpolation is to find
a function f within a class of functions that connects them, i.e., such that

Yi = f(Xi).

Usually, the interpolation function f is used to approximate a function Y (X ) whose
values are known only at specified values of X .

In regression analysis, usually the goal is to find a function f within a class of
functions that best fits data points (Xi, Yi), i.e., that which minimizes the following
least-square sum:

n∑

i=1

[Yi − f(Xi)]
2.

Polynomials, are the most common classes of functions used in both approaches. A
polynomial of order m, pm(X ), has the form:

pm(X ) = β0 + β1X + β2X
2 + · · · + βmX

m, (4.5)

where β0, . . . βm are parameters.

The most commonly used polynomials in polynomial interpolation are cubic splines.
Cubic splines are piecewise cubic polynomials with a piecewise continuos first derivative
and second derivative.
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However, as the number of points to be interpolated grows, the resulting analytical
expressions wiggles a lot to reach all of the data points. Moreover, in the case of wind
data spline interpolation, the big amount of data results in a great amount of polynomial
terms and therefore including them into the optimal control problems is cumbersome and
the resolution of the corresponding optimization problem is very difficult.

On the contrary, regression analysis provides rather simple analytical functions for
a given set of tabular data, but at a cost of less precision in fitting data, making the
inclusion of wind data in the optimal control problem a feasible task. Therefore, in this
thesis regression analysis with polynomial functions has been used.

Multiple regression analysis [105, Chap. 8]: Multiple regression analysis can be
regarded as an extension of simple linear regression analysis (which involves only one
independent variable) to the situation where two or more independent variables are
considered. The general form of a polynomial regression model for m independent
variables is

Y = β0 + β1X1 + β2X2 + . . . + βmXm + ε, (4.6)

where β0, β1, . . . , βm are the regression coefficients that need to be estimated. The
independent variables X1, X2, . . . , Xm may all be separate basic variables, or some of
them may be functions of a few basic variables. For instance, identifying terms in
equation (4.5) and equation (4.6): X1 = X, X2 = X 2, . . . , Xm = Xm. Y represents an
individual observation and ε is the error component reflecting the difference between
an individual’s observed response Y and the true average response µY |X1,X2,...,Xm .

The following assumptions must be fulfilled for multiple regression analysis:

Hypothesis 4.20. Existence: For each specific combination of values of the independent
variables X1, X2, . . . , Xm, Y is a univariate random variable with a certain probability
distribution having finite mean and variance.

Hypothesis 4.21. Independence: The Y observations are statistically independent of
one another.

Hypothesis 4.22. Linearity: The mean value of Y for each specific combination of
X1, X2, . . . , Xm is a linear function of X1, X2, . . . , Xm. That is,

µY |X1,X2,...,Xm = β0 + β1X1 + β2X2 + . . . + βmXm, or

Y = β0 + β1X1 + β2X2 + . . . + βmXm + ε.

Notice that if some of the independent variables are high-order functions of a
few basic independent variables, e.g., X2 = X 2

1 or X3 = X1X2, the expression
β0 + β1X1 + β2X2 + . . . + βmXm is nonlinear in the basic variables but linear in
the parameters β0, . . . , βm.
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Hypothesis 4.23. Homoscedasticity: The variance of Y is the same for any fixed
combination of X1, X2, . . . , Xm, i.e.,

σ2Y |X1,X2,...,Xm = Var(Y |X1, X2, . . . , Xm) = σ2, or σ2error|X1,X2,...,Xm = σ2.

Hypothesis 4.24. Normality: For any fixed combination of X1, X2, . . . , Xm, the variable
Y is normally distributed, i.e.,

Y ∼ N(µY |X1 ,X2,...,Xm , σ
2), or ε ∼ N(0, σ2).

Notice that Hypothesis 4.24 is not necessary for the least-squares fitting of the
regression model, but it is required in general for inference making.

There are two basic approaches to estimating the coefficients of a multiple regression
equation: the least-squares method and the minimum variance method. In this
dissertation, least-squares method is considered.

The least-squares method chooses as the best fitting model the one that minimizes
the sum of squares of the distances between the observed responses and those predicted
by the fitted model, i.e., it seeks the smaller deviations between observed and predicted
values. Thus, the estimated regression equation can be expressed as:

Ŷ = β̂0 + β̂1X1 + β̂2X2 + . . .+ β̂mXm,

where β̂0, β̂1, β̂2, . . . , β̂m correspond to the estimated coefficients and Ŷ corresponds to
the predicted value. The sum of squares of deviations of n observed Y -values from the
corresponding predicted values can be expressed as:

n∑

i=1

(Yi − Ŷi)
2 =

n∑

i=1

(Yi − β̂0 − β̂1X1i − β̂2X2i − . . . − β̂mXmi)
2. (4.7)

The least-squares solution consists of the values β̂0, β̂1, . . . , β̂m, that are called the
least-squares estimates, for which equation (4.7) is a minimum. The minimum sum of
squares is called the residual sum of squares.

In the case of study in this dissertation, the wind velocity vector W is given in a
grid of n points, and we want to estimate the value of the wind velocity vector at every
point r = (xe, ye, he) ∈ R

3. Notice that Polynomial (4.5) becomes in this case:

pm(r) = β000 + β100xe + β010ye + β001ze + β200x
2
e + β110xeye

+ β020y
2
e + β101xeze + β011yeze + β002z

2
e + · · · + β00mz

m
e , (4.8)

where pm(r) : R3 → R, r ∈ R3 and β000, . . . β00m are parameters.

In order to estimate the wind velocity vector, a three-dimensional multiple variable
regression should be used. However, the following hypotheses are considered:

Hypothesis 4.25. Wind vertical component negligible: The vertical component of the
wind is assumed to be negligible, i.e., Wz ≈ 0.
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Hypothesis 4.26. Wind components are not correlated: We assume that the two
horizontal components of the wind velocity vector, i.e., Wx , Wy, are non correlated.

Hypothesis 4.25 is fulfilled in our case since the values of the vertical component of
wind are negligible. Hypothesis 4.26 is valid since the linear correlation between Wx

and Wy is typically in the intervals [−0.3,−0.2] or [0.2, 0.3]. Under these hypotheses,
the regression analysis can be carried out over each component independently.
Therefore, two independent multiple variable regressions as described previously are
used to estimate the east-west and south-north wind components. Hypothesis 4.21-
Hypothesis 4.24 are also considered.

In such a form, the wind velocity east-west component can be expressed as:

Wx = pxm(r) + εx = βx000 + βx100xe + βx010ye + βx001ze + βx200x
2
e + βx110xeye

+ βx020y
2
e + βx101xeze + βx011yeze + βx002z

2
e + · · · + βx00mz

m
e + εx , (4.9)

where the parameters βx000, . . . , β
x
00m are referred to as regression coefficients and are

to be estimated as explained above.

The wind velocity south-north component can be expressed as:

Wy = p
y
m(r) + εy = β

y
000 + β

y
100xe + β

y
010ye + β

y
001ze + β

y
200x

2
e + β

y
110xeye

+ β
y
020y

2
e + β

y
101xeze + β

y
011yeze + β

y
002z

2
e + · · · + β

y
00mz

m
e + εy, (4.10)

where the parameters βy000, . . . , β
y
00m are referred to as regression coefficients and are

to be estimated as explained above.

The last step of regression analysis is to confirm the goodness of fit of the model.
Commonly used tests of goodness of fit include the R-squared and the analysis of the
patterns of residuals. The goodness of fit will be discussed based upon a practical
example in Chapter 6. For more information on regression diagnostics, see for instance
[105, Chap. 12].

4.1.5 Performance limitations

The continuous motion of the aircraft is typically constrained by performance limitations
that must be taken into consideration to define the domain of both states and control
variables. They are as follows:

0 ≤ he(t) ≤ min[hM0, hu(m(t))];

CVminVstall(he(t), V (t)) ≤ V (t) ≤ VMo;

M(he(t), V (t)) ≤ MM0;

mmin ≤ m(t) ≤ mmax ;

0 ≤ CL(t) ≤ CLmax ;

T (t) ≤ Tmax(he(t));

Tmin(he(t)) ≤ T (t);

µ(t) ≤ µmax,civ ;

V̇ (t) ≤ al,max(civ);

γ̇(t) ≤
an,max(civ)

V (t)
.

More information about the performance limitations model, including the definition
of the different coefficients, is given in Appendix A. For more details, the reader is
referred to [14].
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4.2 Discrete dynamics

The flight of an aircraft has inherently a discrete nature made of multiple flight phases
and multiple dynamic subsystems. Thus, together with the aircraft continuous dynamics
a discrete dynamics must be considered. The discrete dynamics governs the evolution of
a set of discrete variables that represent the discrete state of the system. The different
discrete states are characterized by different dynamical subsystems and different sets of
path constraints which govern the continuous motion of the aircraft through the different
phases of the flight.

4.2.1 Flight model

The flight of an aircraft is modeled as a collection of flight phases connected by end
trigger conditions which make the system “switch" between phases. Switches can be
of two types: internally forced (autonomous switches) or externally forced (controlled
switches) [18].

In internally forced switches, the switch is triggered by a capture condition expressed
in terms of the components of the state of the system, such as waypoint’s coordinates,
velocity, or altitude. Externally forced switches are triggered by an external command,
for instance by the pilot or by the air traffic controller. Each phase is described by a
discrete state and characterized by a determined dynamical subsystem Σk governing
the continuos motion of the aircraft and a set of path constraints.

Discrete state of the system

The discrete state of the system is characterized by a vector of discrete variables. Each
one of these discrete variables takes value within a discrete set as described below:

Ph denotes the flight phase variable, Ph ∈ {0, . . . , N − 1};
AC denotes the aerodynamic configuration variable, AC ∈ {TO, IC , CR, AP, LD};
AM denotes the atmosphere mode variable, AM ∈ {Be, Ab};
DM denotes the dynamic mode variable, DM ∈ {3D,HM, VM};
OP denotes the operational procedure variable, OP ∈ {PATH, CAS, CM, Tmax , Tmin}; and
Wp denotes the waypoint variable, Wp ∈ {pj : j ∈ P}.

Definition 4.6 (Flight phase variable). The flight phase variable represents the index
of phases constituting the flight:

Ph ∈ {0, . . . , N − 1}.

Thus, we consider N discrete states for the discrete variable Ph.
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Definition 4.7 (Aerodynamic configuration variable). The aerodynamic configuration
variable represents the flap configuration of the aircraft, which affects its aerodynamic
model. In general, five different aerodynamic configurations can be distinguished:
take off (TO), initial climb (IC), cruise (CR), approach (AP), and landing (LD). Thus,
AC ∈ {TO, IC , CR, AP, LD}.

AC = TO

VSTO
< V < VSIC

AC = IC

VSIC
< V < VSCR

AC = CR

VSCR
< V

hdes > HmaxAP

AC = AP
HmaxLD

< hdes
hdes ≤ HmaxAP

AC = LD

hdes ≤ HmaxLD

V ≥ VSIC
V ≥ VSCR

hdes ≤ HmaxAP
hdes ≤ HmaxLD

Figure 4.3: Finite state machine for AC.

Thus, we consider five different discrete states for the discrete variable AC . Switching
between flap configurations is triggered by two different conditions: stall speed and
threshold altitude as described in [14]. Figure 4.3 shows the finite state machine
representing the typical evolution of the discrete variable AC during a flight. For
instance, during take off AC = TO as long as VSTO < V ≤ VSIC , and there is a
switch between AC = TO and AC = IC when V ≥ VSIC . Also, during the approach
AC = AP as long as hdes ≤ HmaxAP and HmaxLD < hdes, and there is a switch between
AC = AP and AC = LD when hdes ≤ HmaxLD .

Definition 4.8 (Dynamic Mode variable). The dynamic mode variable represents the
ODE/DAE system governing the motion of the aircraft, assuming three-dimensional
motion (3D), vertical motion (VM), or horizontal motion (HM). Thus, DM ∈
{3D, VM,HM}, where DM = 3D corresponds to set of equations (4.1), DM = VM

to set of equations (4.2), and DM = HM to set of equations (4.3).

Thus, we consider three different discrete states for the discrete variable DM . Figure 4.4
shows the finite state machine representing the typical evolution of the discrete variable
DM during a flight. For instance, consider an aircraft whose flight is described by a
3D motion model. In this case DM = 3D, and thus µ 6= 0 and γ 6= 0. There is a
switch between DM = 3D and DM = HM when γ = 0, and there is a switch between
DM = 3D and DM = VM when µ = 0.

Definition 4.9 (Operational procedure variable). The operational procedure variable
represents the different operational specifications in the different phases of the flight.
We assume that OP ∈ {PATH, CAS,CM, Tmax , Tmin}, which correspond to a constant
flight path angle procedure (PATH), a constant calibrated airspeed procedure (CAS),
a constant Mach procedure (CM), a maximum thrust procedure (Tmax ), and a minimum
thrust procedure (Tmin), respectively.
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DM =HM DM =VM

DM = 3D

µ 6= 0; γ = 0

γ 6= 0; µ = 0

γ 6= 0

γ 6= 0

γ 6= 0

γ = 0

γ = 0

µ = 0

µ = 0

µ 6= 0

µ 6= 0

µ 6= 0

Figure 4.4: Finite state machine for DM.

Thus, we consider five different discrete states for the discrete variable OP .

Remark 4.2. Operational procedure specifications are modeled in the optimal control
problem using the algebraic constraints (2.1b).

Definition 4.10 (Atmosphere mode variable). The atmosphere mode variable represents
whether the aircraft is below (Be) or above (Ab) the tropopause. Thus, AM ∈ {Be, Ab}.

As described in Section 4.1.4, the ISA model considers a piecewise defined function
T (h) with two subfunctions, one applying below the tropopause and the other above
the tropopause. Therefore, a discrete variable with two discrete states must be added
to reflect this fact. Figure 4.5 shows the finite state machine representing the evolution
of the discrete variable AM during a flight.

AM = Be

he ≤ 11000 [m]

AM = Ab

he > 11000 [m]

he > 11000 [m]

he ≤ 11000 [m]

Figure 4.5: Finite state machine for AM.
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Definition 4.11 (Waypoint variable). The waypoint variable represents a waypoint
within a set P of waypoints in the airspace:

Wp ∈ {pj : j ∈ P}.

This set of waypoints is a subset of the total existing waypoints. It would only
include the relevant waypoints for a flight between two given ariports.

4.2.2 Airspace structure

Figure 4.6 shows the waypoints and navigation aids corresponding the the AIRAC cycle
published in June 2012. Airways have been omitted for the sake of clarity. A flight plan
must be defined specifying a certain number of waypoints which the aircraft is going
to fly. The huge number of waypoints in this figure reflects the inherent complexity of
defining an efficient flight plan in a structured airspace.

 150° W  120° W   90° W   60° W   30° W    0°     30° E   60° E   90° E  120° E  150° E 

 75° S 

 60° N 

 75° N 

 60° S 

 45° S 

 30° S 

 15° S 

  0°   

 15° N 

 30° N 

 45° N 

Figure 4.6: Waypoints and navigation aids AIRAC June 2012.

In the model assumed in this dissertation, airways are not considered and it
is supposed that the aircraft can fly an arbitrary route among waypoints. However
considering a complete directed graph structure over the set of waypoint is redundant
because aircraft must fly through closer waypoints before reaching farther waypoints. A
graph structure which is capable to reflect this simple observation is the multipartite
graph structure.
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Thus, the airspace structure is modeled as a complete multipartite graph G = (V, E ),
whose vertex set V is partitioned into pairwise disjoint subsets which are called partite
sets. In this model nodes represent waypoints and arcs represent possible transitions
between them. In a complete multipartite graph vertices are adjacent if and only if they
belong to different (adjacent) partite sets. The complete multipartite graph considered
is composed of a sequence of N + 1 partite sets, V0,V1, . . . VN , where V0 and VN

contain 1 node each, the initial and final waypoints pI and pF , respectively, and
Vk , k = 1, . . . , N − 1, contains nvk nodes. Let P = {p1,1, . . . , pN−1,n

vN−1} be the
collection of waypoints of the partite sets V1, . . . ,VN−1. Figure 4.7 illustrates it.

V0 V1 V2 VN−1 VN

pI

p1,1

p1,2

p1,nv1

p2,1

p2,2

p2,nv2

pN−1,1

pN−1,2

pN−1,n
vN−1

pF

Figure 4.7: Multipartite graph structure.

4.3 Decision-making modeling

Decision-making can be regarded as the processes resulting in the selection of a
course of actions or options among several alternatives. Every decision-making process
produces a final choice.

Decision-making processes are modeled using the binary admissible functions w(t)
and the vector v introduced in Definition 3.6 and Definition 3.7.

Decision-making processes are modeled with time-dependent binary variables
or control functions w(t) if and only if the switching set is of the form Ψfree

(see Definition 3.8 and Remark 3.4.), in which the system can switch infinitely often.
On the contrary, if the switching set is of the form Ψt , in which the system switches
within a given finite set of switching times, the decision-making process can be modeled
using time-independent binary variables v .

In this dissertation the switching set is of the form Ψt because, for any given
ordered sequence of phases, the switchings can be considered fixed with respect to the
scaled time variable τ . Thus, we will use binary variables v to model decision-making
processes.





5
Trajectory Planning based on

Multiphase Optimal Control

I n this chapter we present an application of multiphase optimal control to commercial
aircraft trajectory planning: given an aircraft performance model, initial and final
conditions, a set of path constraints, and a flight plan model characterized by a

collection of phases as defined in Section 4.2.1, we study the problem of finding the
control inputs that steer the aircraft from the initial state to the final state and the
corresponding 4D trajectory that minimize aircraft’s fuel consumption. The sequence of
dynamical subsystems with the corresponding sets of constraints, and the end trigger
conditions that constitute the flight plan model are supposed to be known. Optimal
switching times between phases, including the final time, are to be determined. The
problem is formulated as a multiphase optimal control problem. The multiphase optimal
control problem is converted into a Nlp problem, first making the unknown switching
times part of the state as in Section 3.2.2, and then applying a Hermite-Simpson
collocation method as in Section 2.3.1 to convert the dynamic equations of the system
into constraints. The resulting Nlp problem has been solved using the interior point
based nonlinear solver Ipopt. Two different cases are studied and discussed. In the first
case we present a solution to the vertical trajectory planning problem in the presence
of different flight procedure constraints. In the second one we study the tridimensional
motion, presenting a solution to the optimal take-off weight trajectory planning problem.
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5.1 Multiphase trajectory optimization problem

5.1.1 Problem statement

In this chapter the multiphase optimal control techniques described in Chapter 3 will
be applied to the the following flight planning problem: given an aircraft performance
model, initial and final conditions, a set of path constraints, and a flight plan model
characterized by a collection of phases, we study the problem of finding the control inputs
that steer the aircraft from the initial state to the final state and the corresponding 4D
trajectory that minimize aircraft’s fuel consumption.

Consider a flight planning problem in which the flight plan model is defined by a
switching sequence

σ = [(t̃1, e1), . . . , (t̃N−1, eN−1)].

The sequence of events, (e1, . . . , eN−1), where e1 = (0, 1), . . . , eN−1 =
(N − 2, N − 1), gives rise to the following sequence of indexes for subsystems
(0, 1, . . . , N − 1). This sequence of indexes corresponds to a sequence of phases
represented by the phase variable Ph = k, k = 0, 1, . . . , N − 1. Each phase is
characterized by a constituent dynamical subsystem, Σk , and the corresponding set of
constraints. The switch between phases takes place at switching times t̃1, · · · , t̃N−1,
so that:

t I = t̃0 ≤ t̃1 ≤ · · · ≤ t̃N−1 ≤ t̃N = tF .

Thus, for t ∈ [̃tk , t̃k+1] the system is in phase k , k = 0, . . . , N − 1, governed by the
dynamical subsystem, Σk . A switch between phase k and phase k + 1 takes place at
switching time t̃k+1 due switching conditions Sk , k ∈ {1, . . . , N − 1}.

In the problem to be solved the sequence of dynamical subsystems, the corresponding
set of constraints, and the switching conditions are known. As a consequence, the
sequence of discrete states of the system is a priori known. Therefore, the optimal
control to the problem entails finding only the switching instants and the control vector
u(t).

Figure 5.1 shows the finite state machine representing the evolution of the discrete
trajectory of the flight plan model.

Dynamic and algebraic constraints: The dynamic and algebraic constraints defined
in the set of equations (3.2) govern the continuos motion of the aircraft through the air,
which have been modeled in Chapter 4. In general, they depend on the aerodynamic
configuration of the aircraft, the layer of the atmosphere, the given operational procedure,
and the assumptions made on the flying modes. The flying mode of the aircraft can be
found in any of the given forms in Definition 4.3, Definition 4.4, and Definition 4.5. The
flying mode is governed by the discrete variable DM . The aerodynamic configuration
is governed by the discrete variable AC , and the atmospheric layer by the discrete
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Ph = 0

subsystem 0

Σ0
Ph = 1

subsystem 1

Σ1

Ph = k

subsystem k

Σk
Ph = N − 1

subsystem N − 1

ΣN−1

Final condition

S1

(̃t1, e1)
S2

(̃t2, e2)

Sk

(̃tk , ek)
Sk+1

(̃tk+1, ek+1)
SN−1

(̃tN−1, eN−1)
t̃N. . .. . .

Figure 5.1: Finite state machine for the flight plan model.

variable AM . Moreover, algebraic constraints associated to operational procedures
might be defined. The different procedures are governed by the discrete variable OP .

Thus, the dynamical subsystem Σk depends on the discrete values taken by the
discrete variables AC , DM , AM , and OP , i.e., the number of differential-algebraic
equations, the number of state and control variables, and the value of aerodynamic and
atmospheric parameters will differ according to the set of discrete values taken by these
discrete variables.

Initial and final conditions: The initial condition will be given, in general, by the
coordinates at the origin airport, a heading direction corresponding to the take-off
runway head, take-off velocity, take-off flight path angle, and take-off mass. This
corresponds to a set of values for the vector of state variables at the initial time,
x I ∈ R

nx . Notice that one or more of these initial conditions might be not specified,
such as the initial mass in the optimal take-off weight trajectory planning problem.

In the same manner, the final conditions correspond, in general, to a set of values
for the vector of state variables at the final time, xF ∈ R

nx . In particular, in order
to define a flight plan one needs the coordinates at the destination airport and the
heading direction of the landing head of the runway. In the case of the optimal take-off
weight trajectory planning problem, the final weight of the aircraft must be specified.

Path constraints: The path constraints of the multiphase optimal control problem
given in the set of equations (3.4) refers to physical limits that an aircraft should not
exceed. These limitations are described in Section A.2 and are given as inequality
constraints in the set of equations (4.11). Notice that some of the limits given in the
set of equations (4.11), namely, maximum coefficient of lift, stall speed, and threshold
altitude, depend on the aerodynamic configuration, and thus the set of path constraints
is a function of the discrete variable AC .

Interior point constraints: Let S = {S1, . . . ,SN−1} be the set of end trigger
conditions for switching. In strategic flight planning, end trigger conditions give rise to
autonomous or controlled switchings.
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Thus, the interior point equality constraints given in the set of equations (3.5a) can
be expressed as follows:

Sk+1 : 0 = θ keq(x(t̃
k+1)), k = 0, . . . , N − 2. (5.1)

Inequality interior point constraints in set of equations (3.5b) might be applied to
constraint the switching instants. However, we will not use them in the problem.

Objective function: The objective functional in equation (3.6) becomes:

J =

N−1∑

k=0

∫ t̃k+1

t̃k
ṁk(t) dt, (5.2)

where ṁk(t) is the fuel flow of the aircraft during phase k . This cost functional
represents the fuel burnt by the aircraft in flight, which is directly related to the
emitted CO2.

5.1.2 Nlp solution approach

According to the method described in Section 3.2.2 to incorporate the switching times
into the multiphase optimal control problem, the interval [0, 1] must be subdivided into
N subintervals [τk , τk+1], k = 0, . . . , N−1, by means of any monotonically increasing
sequence of N+1 values. For the sake of simplicity these values can be equally spaced,
i.e., we can take τk = k/N, k = 0, . . . , N , where τ0 = 0 and τN = 1.

Furthermore, according to the numerical collocation method explained
in Section 2.3.1, the subinterval [τk , τk+1], k = 0, . . . , N − 1 is subdivided into Nk

subintervals. In this case subintervals having the same amplitude hk = (τk+1−τk )/Nk

are considered. They are denoted [τki , τ
k
i+1], i = 0, . . . , Nk − 1. This discretization

gives rise to a subdivision of the interval [0, 1] into Nd =
∑N−1

k=0 N
k subintervals.

The relation between τki and τk , is τki = τk + i · (τk+1 − τk )/Nk = τk + i · hk ,
k = 0, . . . , N − 1, i = 0, . . . , Nk .

Equations (3.7) relate the values of t and τ , so that t̃k corresponds to τk , k =
0, . . . , N and t̃ki corresponds to τki , k = 0, . . . , N − 1, i = 0, . . . , Nk . Moreover, the
switching times t̃k are related to the values of time t̃ki that correspond to τki by the
relation t̃ki = t̃k + i · (t̃k+1 − t̃k)/Nk , k = 0, . . . , N − 1, i = 0, . . . , Nk .

Figure 5.2-Figure 5.5 illustrate the discretization of the problem in the two time
scales.
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Figure 5.2: Multiphase discretization for time variable t .
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Figure 5.3: Multiphase discretization for time variable τ .
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Figure 5.4: Phase discretization for time variable t .
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Figure 5.5: Phase discretization for time variable τ .

The Hermite-Simpson collocation scheme described in Section 2.3.1 has been used.
In the subinterval [̃tki , t̃

k
i+1], k = 0, . . . , N−1, i = 0, . . . , Nk−1, the collocation point

xki,C is calculated from the state variables xki and xki+1.Figure 2.3 illustrates how the state
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variables of the problem are discretized in the subinterval [̃tki , t̃
k
i+1]. A linear control

scheme has been used for control variables, that is, uki,C = 1
2(u

k
i+u

k
i+1). The discretized

control variables represent discrete values for the controls at each discrete time at
which the system equation are evaluated, uki = u(tki ), u

k
i,C = u(tki,C ), u

k
i+1 = u(tki+1).

For the sake of clarity, let us define X k
i = (xki , x

k
i,C , x

k
i+1), U

k
i = (uki , u

k
i,C , u

k
i+1),

k = 0, . . . , N − 1, i = 0, . . . , Nk − 1.
Thus, the Nlp problem takes the form:

min N ·
N−1∑

k=0




(̃tk+1 − t̃k) ·
Nk−1∑

i=0

Q(X ki , U
k
i )




 ;

subject to:

AS(X
k
i ) + N · (̃tk+1 − t̃k) · hk · CS(X ki , U ki ) = 0, k = 0, . . . , N − 1, i = 0, . . . , Nk − 1;

0 ≤ φk(X ki , U ki ), k = 0, . . . , N − 1, i = 0, . . . , Nk − 1;

0 = θ k(xk0), k = 1, . . . , N − 1;

x00 = x I , xN−1

Nk
= xF ;

(NLP)

where

Q(X k
i , U

k
i ) =

hk

6
(f(xki , u

k
i ) + 4f(xki,C , u

k
i,C ) + f(xki+1, u

k
i+1)),

and both AS(X
k
i ) and CS(X k

i , U
k
i ) come from the defect equation (2.15) with k =

0, . . . , N − 1, i = 0, . . . , Nk − 1. The unknowns of this problem are

(xki , x
k
i+1, u

k
i , u

k
i+1)

for k = 0, . . . , N − 1, i = 0, . . . , Nk − 1, together with the switching times t̃k for
k = 1, . . . , N − 1. For the sake of clarity, unknowns t̃k for k = 1, . . . , N − 1 have
not been renamed as elements of the extended state vector as in Section 3.2.2. Note
that t̃N = tF is also a variable of the problem if the final time is unknown.

The multiphase optimal control problem has now been recast as a Nlp problem:
minimizing a nonlinear function subject to a number of nonlinear constraints in a space
where the variables take values in R. We now turn to the explanation of the solution
method to solve problem (NLP).

There exist several off the shelf Nlp solvers to solve such problem. Among the most
used ones are for instance Conopt, Knitro, Loqo, Minos, Snopt, and Ipopt. For more
information, the reader is referred to the following website: Neos-server solvers.1

For the problem considered in this chapter, the Nlp solver Ipopt (Interior Point
Optimizer) is the most suitable one because it handles properly large-scale, sparse,
non-convex problems, with a large number of equality and inequality constraints. Ipopt

is an open source software package for large scale nonlinear optimization problems. It
can be used to solve general nonlinear programming problems. Ipopt implements an
interior point line search filter method. The mathematical details of Ipopt algorithm can
be found in [42]. Source and binary files can be found at Coin-or.2

1http://www.neos-server.org/neos/solvers/index.html
2http://www.coin-or.org

http://www.neos-server.org/neos/solvers/index.html
http://www.coin-or.org
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5.2 Optimized-procedured vertical trajectory planning

In this section we present the results of a case study in which vertical trajectories are
analyzed and discussed. Based on the flight plan model in Section 4.2.1, we define what
we term as optimized-procedured flights. In order to evaluate them, short and medium
range vertical optimized-procedured flights are compared with free and fully-procedured
flights. Aircraft performances, flight procedures, and the resulting consumptions are
analyzed and discussed.

5.2.1 Case study

Recall equation (4.2) for the the 3-DOF vertical motion of an aircraft over a flat Earth
and neglecting wind effects. The airplane is a conventional jet airplane and BADA 3.6
[14] is used as aircraft performance model (see Appendix A).

Thus, the 3-DOF equations governing the translational vertical motion of an airplane
are the following:

m(t)V̇ (t) = T (t)− D(h(t), V (t), CL(t))− m(t)g sin γ(t);

m(t)V (t)γ̇(t) = L(h(t), V (t), CL(t))− m(t)g cos γ(t);

ẋe(t) = V (t) cos γ(t); (5.3)

ḣe(t) = V (t) sin γ(t);

ṁ(t) = −T (t)η(V (t));

where x(t) = (V (t), xe(t), he(t), γ(t), m(t)) are the state variables and u(t) =
(T (t), CL(t)) are the control inputs.

We consider an Airbus A-320 BADA aircraft model. The different A-320
aerodynamic configurations, governed by the integer variable AC , and the value of
the aerodynamic parameters are listed in Table 5.1.

AC Flap CLmax
CD0 CDi

TO 1+F 2.43 0.0393 0.0396
IC 1 2.19 0.0242 0.0469
CR Clean 1.50 0.024 0.0375
AP 2 2.76 0.0456 0.0381
LD Full 3.09 0.0838 0.0371

Table 5.1: A-320 flap configurations.



5.2 Optimized-procedured vertical trajectory planning 79

The path constraints of the problem are those related with performance limitations
(see Section A.2) and are also given in the BADA database manual. For this example,
we have used:

0 ≤ he(t) ≤ min[hM0, hu(m(t)), H
k
max (AC )];

CVminV
k
S (m(t), he(t), AC ) ≤ V (t) ≤ VMo;

M(V (t), he(t)) ≤ MM0; (5.4)

mmin ≤ m(t) ≤ mmax ;

0 ≤ CL(t) ≤ C k
Lmax

(AC );

Tmin(he(t)) ≤ T (t) ≤ Tmax(he(t));

where hu = hmax +Gt(∆TISA−CT c,4)+GW (mmax −m), and CVmin = 1.3 (except for
TO, where CVmin = 1.2). The threshold, Hk

max , the stall velocity, V k
S , and the maximum

coefficient of lift, C k
Lmax

, depend on the flap configuration and, therefore, are governed
by the discrete variable AC at each phase, k = 0, . . . , N − 1.

Current ILS set the constant descent path between -2.5◦ and -3.5◦ , generally -3◦.
Within the landing phase, we constraint the flight path angle according to more flexible
values of an aircraft’s final descent path, i.e.,

−6◦ ≤ γLanding ≤ −2
◦.

We continue the description of the case study defining the different flights to be
compared over short and medium range:

Fully-procedured flights: They reflect current ATM paradigm and have been defined
accurately according to typical vertical profiles that are flown nowadays. They can
be found in BADA. Modeling flights in such a way enforces the specification of two
operational procedures per phase, for instance, to climb with constant calibrated air
speed (VCAS) and constant throttle setting, or to perform a steady cruise, i.e., with
defined constant Mach and constant altitude.

Optimized-procedured flights: They are based on a relaxation of current procedures
by setting, in general, just one procedure per phase, and relaxing some capture
conditions for switching, including thus controlled switches. They are defined seeking
more flexible and efficient flight planning concepts within a constrained based paradigm.

Free flights: Such profiles are considered as optimal benchmark and represent a
comparison baseline. They are useful for a better understanding of optimal performances
and a quantitative analysis of current inefficiencies.
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Short range

Table 5.2, Table 5.3, and Table 5.4 show, respectively, the fully-procedured, optimized-
procedured, and free flight plan models herein used for the numerical experiments. The
short range fully-procedured flight has been derived from a real Madrid-Oviedo flight
plan following BADA-like flight procedures with airline-defined speed and altitude
profile values.

The boundary conditions of the flight are the following: x Ie = 0, hIe = 0,
V I = 1.2VSTO , γ I = 0.05 [rad], mI = 63070 [kg]; xFe = 476 [km], hFe = 0.

Ph Name AC S OP OC*

0 Take Off TO V = 1.3V IC
S Tmax VCAS < 250[kt]

1 Initial Climb IC V = 1.3V CR
S Tmax VCAS < 250[kt]

2 Res. Free Climb CR he = 10000[ft] Tmax VCAS < 250[kt]
3 Climb Accel. CR VCAS = 300[kt] he = 10000[ft], Tmax -
4 Climb CAS CR CM= 0.78 CAS = 300[kt], Tmax -
5 Climb Mach CR he = FL320 CM= 0.78, Tmax -
6 Cruise CR - he = FL320,CM= 0.78 -
7 Descent Mach CR VCAS = 300[kt] CM= 0.78, Tmin -
8 Descent CAS CR he = 10000[ft] CAS = 300[kt], Tmin -
9 Descent Decel. CR VCAS = 250[kt] he = 10000[ft], Tmin -
10 Res. Free Des. CR he = 6000[ft] Tmin VCAS < 250[kt]
11 Approach AP he = 2000[ft] PATH = −3◦ VCAS < 250[kt]
12 Landing LD Final cond. PATH = −3◦ VCAS < 250[kt]
* OC is an acronym that stands for Operational Constraints due to operations near airports.

Table 5.2: Short range: fully-procedured flight plan model.

Ph Name AC S OP OC

0 Take Off TO V = 1.3V IC
S - VCAS < 250[kt]

1 Initial Climb IC V = 1.3V CR
S - VCAS < 250[kt]

2 Res. Free Climb CR he = 10000[ft] - VCAS < 250[kt]
3 Climb Accel. CR - he = 10000[ft] -
4 Climb CAS CR - CAS, Tmax -
5 Climb Mach CR - CM, Tmax -
6 Cruise CR - HM -
7 Descent Mach CR - CM -
8 Descent CAS CR he = 10000[ft] CAS -
9 Descent Decel. CR - he = 10000[ft] -
10 Res. Free Des. CR he = 6000[ft] Tmin VCAS < 250[kt]
11 Approach AP he = 2000[ft] PATH VCAS < 250[kt]
12 Landing LD Final cond. PATH VCAS < 250[kt]

Table 5.3: Short range: optimized-procedured flight plan model.



5.2 Optimized-procedured vertical trajectory planning 81

Ph Name AC S OP OC

0 Take Off TO V = 1.3V IC
S - VCAS < 250[kt]

1 Initial Climb IC V = 1.3V CR
S - VCAS < 250[kt]

2 Res. Free Climb CR he = 10000[ft] - VCAS < 250[kt]
3 Free CL/CR/DS CR he = 10000[ft] -
4 Res. Free Descent CR he = 6000[ft] - VCAS < 250[kt]
5 Approach AP he = 2000[ft] - VCAS < 250[kt]
6 Landing LD Final cond. - VCAS < 250[kt]

Table 5.4: Short range: free flight plan model.

It can be observed in Table 5.3 that the trigger conditions of the optimized-
procedured flight plan model are of two types, either autonomous or controlled switches.
If the switch is autonomous, it takes place when the aircraft reaches the capture condition,
e.g., when it reaches the prescribed altitude or velocity. On the contrary, switches
between phases without capture conditions are controlled switches, and thus, they are
given by the control law within the optimal solution. Then, the main differences between
fully-procedured and optimized-procedured flight plan models are: less restricted
procedures, and the fact that controlled switches are considered. As a consequence,
the transition Mach, the cruising altitude, or the constant calibrated speed of descent
are not pre-fixed, but are set by the optimal solution, leading the system to an overall
minimum fuel consumption.

Medium range

Table 5.5, Table 5.6 and Table 5.7 show, respectively, the fully-procedured, optimized-
procedured and free flight flight plan models herein used for the numerical experiments.
The medium range fully-procedured flight has been derived from a real Madrid-Berlin
flight plan following BADA-like flight procedure with airline-defined speed and altitude
profile values [14].

The boundary conditions of the flight are the following: x Ie = 0, hIe = 0,
V I = 1.2VSTO , γ I = 0.05 [rad], mI = 69415 [kg]; xFe = 2035 [km], hFe = 0.
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Ph Name AC S OP OC

0 Take Off TO V = 1.3V IC
S Tmax VCAS < 250[kt]

1 Initial Climb IC V = 1.3V CR
S Tmax VCAS < 250[kt]

2 Res. Free Climb CR he = 10000[ft] Tmax VCAS < 250[kt]
3 Climb Accel. CR VCAS = 300[kt] he = 10000[ft], Tmax -
4 Climb CAS CR CM= 0.78 CAS = 300[kt], Tmax -
5 Climb Mach CR he = FL360 CM= 0.78, Tmax -
6 Cruise CR - he = FL360,CM= 0.78 -
7 Descent Mach CR VCAS = 300[kt] CM= 0.78, Tmin -
8 Descent CAS CR he = 10000[ft] CAS = 300[kt], Tmin -
9 Descent Decel. CR VCAS = 250[kt] he = 10000[ft], Tmin -
10 Res. Free Des. CR he = 6000[ft] Tmin VCAS < 250[kt]
11 Approach AP he = 2000[ft] PATH = −3◦ VCAS < 250[kt]
12 Landing LD Final cond. PATH = −3◦ VCAS < 250[kt]

Table 5.5: Medium range: fully-procedured flight plan model.

Ph Name AC S OP OC

0 Take Off TO V = 1.3V IC
S - VCAS < 250kt

1 Initial Climb IC V = 1.3V CR
S - VCAS < 250kt

2 Res. Free Climb CR he = 10000[ft] - VCAS < 250kt
3 Climb Accel- CR - he = 10000[ft] -
4 Climb CAS CR - CAS, Tmax -
5 Climb Mach CR - CM, Tmax -
6 Cruise CR - HM -
7 Descent Mach CR - CM -
8 Descent CAS CR he = 10000[ft] CAS -
9 Descent Decel. CR - he = 10000[ft] -
10 Res. Free Descent CR he = 6000[ft] Tmin VCAS < 250kt
11 Approach AP he = 2000[ft] PATH VCAS < 250kt
12 Landing LD Final cond. PATH VCAS < 250kt

Table 5.6: Medium range: optimized-procedured flight plan model.

Ph Name AC S OP OC

0 Take Off TO V = 1.3V IC
S - VCAS < 250[kt]

1 Initial Climb IC V = 1.3V CR
S - VCAS < 250[kt]

2 Res. Free Climb CR he = 10000[ft] - VCAS < 250[kt]
3 Free CL/CR/DS CR he = 10000[ft] -
4 Res. Free Descent CR he = 6000[ft] - VCAS < 250[kt]
5 Approach AP he = 2000[ft] - VCAS < 250[kt]
6 Landing LD Final cond. - VCAS < 250[kt]

Table 5.7: Medium range: free flight plan model.
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5.2.2 Numerical results

The computation of the fully-procedured flights have been carried out using a tool
combining 3-DOF flight dynamics differential equations with procedure-oriented 3D
flight control. More precisely, the aircraft’s ODE set (5.3) with the performances based
on BADA and ISA atmosphere models is integrated using the set of path constraints (5.4),
while controls are properly set so that the aircraft follows the given flight procedures.

Optimized-procedured and free flights are defined, formulated, and solved according
to Section 5.1. The resulting sparse Nlp problem (NLP) has been solved using Ipopt

[42]. Ipopt showed robustness in solving infeasible subproblems in the iterative process
even when dealing with infeasible initial guesses. Ipopt showed also robustness
when dealing with different initial conditions, showing similar result patterns. Both
optimized-procedured and free flights have a discretization grid with Nd = 650
(N0 = N1 = . . . N12 = 50) sample points. In the free flight, for the sake of
comparison, the 4th phase is composed by 350 samples. Fully-procedured flights are
computed in real times with samples every second. To illustrate computational issues,
focusing for instance on the medium range optimized-procedured flight, the resulting
Nlp problem (NLP) had 4299 variables, 3597 equality constraints, and 4151 inequality
constraints. The total computational time on a Mac OS X 2.56 GHz laptop with 4 GB
RAM was 1369.86 [s].

Table 5.8 and Table 5.9 show respectively the short and medium range results: they
contain the total flight times and times of switching (̃tk∗[s]), the consumptions including
the accumulate consumption at the end of every phase (C k [kg]), and the constant
values that describe the optimized-procedured aircraft performance in the different flight
procedures (Value opt).

Ph t[s]
1

t̃k∗[s]
2

t̃k∗[s]
3

C [kg]
1

C k [kg]
2

C k [kg]
3

Value opt
2

0 - 8.69 8.69 - 18.16 18.16 Free
1 - 25.04 25.06 - 52.94 52.96 Free
2 - 225.3 225.38 - 441.44 441.57 Free
3 - 249.41 - - 482.71 - he = 10000[ft]
4 - 755.409 - - 1161.36 - VCAS = 150.459[m/s] & Tmax

5 - 1193.11 - - 1550.29 - CM= 0.7297,Tmax
6 - 1243.9 - - 1554.87 - he = 10875.4[m]
7 - 1243.9 - - 1554.87 - CM= 0.6422
8 - 2416.84 - - 1681.77 - VCAS = 108.406[m/s]
9 - 2416.84 2368.83 - 1681.77 1661.55 he = 10000[ft]
10 - 2677.17 2642.83 - 1716.68 1698.26 Tmin
11 - 2826.22 2853.54 - 1737.66 1728.08 γ = −4.3911◦

12 2592.8 2922.08 2942.26 1967.15 1752.71 1741.09 γ = −4.3911◦

Table 5.8: Vertical motion: short range results. Column for variable Ph corresponds
to the optimized-procedured flight. Columns with superindex 1 correspond to the fully-
procedured flight, those with superindex 2 to the optimized-procedured flight, and those
with superindex 3 to free flight.
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Ph t[s] t̃k∗[s] t̃k∗[s] C [kg] C k [kg] C k [kg] Value opt

0 - 11.61 11.61 - 24.26 24.26 Free
1 - 33.28 33.29 - 70.25 70.27 Free
2 - 254.66 254.71 - 498.50 498.58 Free
3 - 287.89 - - 555.43 - he = 10000 ft
4 - 796.57 - - 1258.31 - VCAS = 154.817m/s & Tmax

5 - 1653.76 - - 1995.43 - M = 0.7249 & Tmax
6 - 7774.07 - - 6034.37 - he = 11295.4 m
7 - 7774.08 - - 6034.38 - M = 0.6772
8 - 8964.12 - - 6161.77 - VCAS = 111.138 m/s
9 - 8964.12 8929.65 - 6161.77 6068.77 he = 10000 ft
10 - 9222.08 9184.45 - 6196.36 6102.95 Tmin
11 - 9369.81 9388.6 - 6217.16 6131.87 γ = −4.3823◦

12 9403.5 9464.6 9475.87 6529.85 6231.05 6144.66 γ = −4.3823◦

Table 5.9: Vertical motion: medium range results. The interpretation of the columns is
the same as in Table 5.8.

Notice that the phases herein named as Descent Mach and Descent Decel. are
eliminated by the optimal solution by setting the corresponding durations to zero. In
this manner, the algorithm is capable of eliminating inefficient phases.

Controls, states, and optimal switching instants are represented for short and
medium range in Figure 5.6-Figure 5.9. Regarding the state variables, in general,
except for the case of γ (Figure 5.7(a) and Figure 5.7(b)), all state variables vary
smoothly. γ exhibit high-frequency dynamics at some points near the switchings. This
suggests discontinuity around those points. Notice that this behavior is normal since
the purpose here is not to capture short duration maneuvers, for which we would
need a finer discretization around the switchings. The optimized-procedured flight
controls show some high-frequency behavior near the switchings. This is due to not
capturing sharp maneuvers near the switchings. Moreover, we can also observe a
bang-bang behavior in the phase named Descent Mach for both short and medium
range. See Figure 5.7(e), Figure 5.7(g), Figure 5.9(e), and Figure 5.9(g). The reason
behind this behavior is that the algorithm has neglected this phase resulting in some
numerical instability which, however, is not transferred to real time flight controls since
the duration of the phase is set to zero. See Figure 5.7(f ), Figure 5.7(h), Figure 5.9(f ),
and Figure 5.9(h). Free flight controls show, on the contrary, a rather smooth behavior.

Results show that the proposed optimized-procedured profiles save 10.9% and 4.6%
of fuel for short and medium range, respectively, i.e, 214.44 [kg] and 298.8 [kg], when
compared to fully-procedured flights. Furthermore, results also show that free flights
achieve 11.5% and 5.9% of fuel savings for short and medium range, respectively, i.e.,
226,06 [kg] and 385.19 [kg], when compared to fully-procedured flights. This means
that the efficiency of the optimized-procedured flights is very close to the considered
optimal benchmark.
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Figure 5.6: Vertical motion: short range altitude, he, distance, xe, True Air Speed, V ,
and Calibrated AirSpeed, VCAS : dashed red line corresponds to fully-procedured profile;
solid dotted-orange line corresponds to optimized-procedure flight (being the dots the
computed sample points); solid dotted-green corresponds to free flight (being the dots
the computed sample points). Note that the depicted vertical dashed lines correspond
to the optimized-procedured flight switching times.
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Figure 5.7: Vertical motion: short range consumption, flight path angle, γ , and control
laws, T & CL: dashed red line corresponds to fully-procedured flight; solid dotted-
orange line corresponds to optimized-procedure flight (being the dots the computed
sample points); solid dotted-green corresponds to free flight (being the dots the
computed sample points). Note that the depicted vertical dashed lines correspond
to the optimized-procedured flight switching times.
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Figure 5.8: Vertical motion: medium range altitude, h, distance, x , True Air Speed, V ,
and Calibrated AirSpeed, VCAS : dashed red line corresponds to fully-procedured flight;
solid dotted-orange line corresponds to optimized-procedure flight (being the dots the
computed sample points); solid dotted-green corresponds to free flight (being the dots
the computed sample points). Note that the depicted vertical dashed lines correspond
to the optimized-procedured flight switching times.
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Figure 5.9: Vertical motion: medium range consumption, flight path angle, γ , and control
laws, T & CL: dashed red line corresponds to fully-procedured flight; solid dotted-
orange line corresponds to optimized-procedure flight (being the dots the computed
sample points); solid dotted-green corresponds to free flight (being the dots the
computed sample points). Note that the depicted vertical dashed lines correspond
to the optimized-procedured flight switching times.
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5.2.3 Discussion on the results

Short range

We first analyze free flight performances. In the optimum solution of the free flight
the aircraft seeks to achieve maximum altitude in minimum time, since flying at low
altitudes with maximum thrust setting is very fuel consuming. As the aircraft gets
higher, it progressively softens its rate of climb until it suddenly performs a sharp climb
maneuver to intercept the optimum descent path, thus skipping the cruise phase. With
this maneuver, the aircraft consumes the excessive speed with respect to the optimum
descent speed, while enabling an anticipated interception of the optimum descent path
thanks to the fast altitude gain. Otherwise, the climb would last longer, resulting in
greater fuel consumption. The optimum descent path is the result of descending at
maximum gradient speed, which allows the aircraft to fly the greatest distance possible
at idle thrust, thus minimizing fuel consumption. This optimum speed is the minimum
drag speed, also known as base speed. This speed decreases as air density increases,
so the aircraft lowers its speed as it descends. The base speed also changes as the
aircraft deploys high-lift devices, so the aircraft speed is adjusted by regulating the
flight path angle when a change in aerodynamic configuration is to be performed. At
the very end of the flight, when the only aim is to land at any flyable speed, the flight
path angle is increased to cover the greatest distance possible before touching ground,
consuming the excess of speed above minimum speed.

There are two main differences when performing the descent between fully-
procedured and free flights. The first one is that fully-procedured flights descend
at a speed much higher than the base speed (300kt Vs. 210kt). This permits fully-
procedured flights to reduce flight duration at the cost of increasing fuel consumption.
The second difference is that fully-procedured flights perform the approach at the ILS
-3◦glide path. When the approach glide path is less inclined than the maximum gradient
path (as in this case), the glide path becomes too low for the aircraft to maintain the
desired speed at idle thrust. Thus, some extra thrust is required during the approach,
resulting in increased fuel consumption.

In the solution of the optimized-procedured flight the aircraft tries always to
follow the patterns of free flight optimal performance fulfilling some prefixed procedures.
Consequently, it seems that the algorithm aims to minimize climb phase duration since
it is very fuel consuming, but at the same time it needs to prevent negative effects on
the optimality of the subsequent flight phases. The obtained 292 [kt]/0.73 climb speed
is similar to the fully-procedured one in the constant Calibrated AirSpeed (CAS) phase
but shows a significantly lower speed for the constant Mach phase because it provides
a higher rate of climb. Then, the aircraft performs a short cruise (4 [s]). This is the
duration needed to decelerate from the climbing velocity to the descending one. The
aircraft intercepts the descending path, performing it at 108 [m/s] (CAS), 211 [kt] approx.,
considerably different than the fully-procedured 300 [kt]. This is optimal thanks to the
minimum drag CAS being almost constant along the descent, consequently neglecting
the constant Mach phase. Finally, the constant flight path angle of initial and final
approach, -4.39◦, is more inclined than the fully-procedured one, -3◦.
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Medium range

As in the previous case, medium range optimum free flight seeks to achieve maximum
altitude in minimum time. As the aircraft gets higher, it progressively reduces its rate of
climb to make a smooth transition to the subsequent pseudo-cruise phase, in which the
aircraft asymptotically approaches its operating ceiling. The optimization target during
cruise is to maximize the specific range, which is the distance traveled per unit of fuel
consumed. As the aircraft mass decreases due to fuel burn, the optimum profile shows an
increasing trend in altitude following the also increasing operating ceiling, while speed
is conveniently adjusted, typically in a slightly decreasing trend. Such a performance
is known as continuous cruise climb. Cruise phase ends when the optimum descent path
is intercepted. For the optimum descent path, the principles of free optimal performance
explained for short range flights remain valid.

Again, as pointed out for the short-range flights, the optimized-procedured flight
tries always to follow the patterns of free flight optimal performance. The obtained
301[kt]/0.72 climb shows a significantly lower speed for the constant Mach phase. Then
the aircraft performs the cruise at an altitude that is limited by the operating ceiling at
the beginning of cruise (where the ceiling is lower due to the greater mass). Eventually,
the aircraft intercepts the descending path, performing it at 111 [m/s] (CAS), 215 [kt]
aprox. Finally, the constant flight path angle of initial and final approach, -4.38◦, is
more inclined than the typical one, -3◦. Notice that a closer performance to free flight’s
continuous cruise climb could have been achieved by defining at least one step climb.

General remarks

Whereas some differences exist in ascent and cruise, the key differences of performance
between current and future concept of operations arise in descent phases, where indeed
descent velocity and ILS arrival flight path angle exhibit high deviations from what has
been shown as optimal benchmark: to descent at base velocity and to perform approach
and landing at maximum gradient path.

Focusing on descent, we should consider separately the track going from the top
of descent to the initial approach fix, and the track going from that fix to the runway.
The first track could be improved without operational problems by just following the
profile given by maximum gradient velocity at idle thrust. In lack of that, a constant
CAS procedure around the average base velocity could be defined, which as it has been
said is not far from the optimal benchmark. The main reason that current flights use a
constant CAS up to 300 [kt] is to reduce descent duration. Regarding final and initial
approach, it does not seem to be easily achievable to perform the obtained results. Free
flight’s optimal path shows a very steep path, while performing landing with quasi-level
flight. This profile is unsafe because descent path are designed as a trade off between
obstacle avoidance handling and not excessive descent rates. Free flight shows rather
high descent rate followed by a potentially non-handling obstacles horizontal path.
Optimized-procedured flights’ descent paths showed, however, higher than nowadays
ILS constant path angles, closer to optimal benchmark path, avoiding also potential
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obstacles. Such paths would lead to higher descent rates, but lower than free flights’
descent paths. The paradigm of Global Navigation Satellite System (GNSS) descent
procedures will help defining ad hoc descent paths within safety standards and thus,
some of the above obtained fuel savings could be achieved.

It is necessary to point out that BADA aerodynamic model does not take into
account compressibility effects on the aerodynamic behavior of the aircraft. This leads
to lower than real drag at high mach numbers, resulting in higher than real optimum
speeds and altitudes.

5.3 3D optimal take-off weight trajectory planning

We extend the work exposed in the previous section, presenting a solution to the optimal
take-off weight trajectory planning problem. We model the three dimensional, spherical
motion of the aircraft, introducing new airspace constraints, such as the case of a SID
procedure. Aircraft performances, flight procedures, and the resulting fuel consumption
are analyzed. Moreover, we discuss the effects of the excess of take-off weight on the
optimal 4D trajectory.

5.3.1 Case study

Recall Definition 4.3 for the the 3-DOF, 3D motion of an aircraft over a spherical Earth.
We neglect wind effects. The airplane is a conventional jet airplane and BADA 3.6 [14]
is used as aircraft performance model.

Thus, the 3-DOF equations governing the translational 3D motion of an airplane
are the following:

V̇ (t)m(t) = T (t)− D(he(t), V (t), CL(t))− m(t)g sin γ(t);

λ̇e(t)Re cos θe(t) = V (t) cos γ(t) cos χ(t);

χ̇(t)m(t)V (t) cos γ(t) = L(he(t), V (t), CL(t)) sin µ(t);

θ̇e(t)Re = V (t) cos γ(t) sin χ(t);

γ̇(t)m(t)V (t) = L(he(t), V (t), CL(t)) cos µ(t)− m(t)g cos γ(t);

ḣe(t) = V (t) sin γ(t);

ṁ(t) = −T (t)η(V (t));

where x(t) = (V (t), λ(t), θ(t), he(t), γ(t), χ(t), m(t)) are the state variables and
u(t) = (T (t), CL(t), µ(t)) are the control inputs. The cartesian coordinates xe, ye
have been transformed into spherical coordinates according to relations (4.4). With
abuse of notation, the discrete variable DM ∈ {3D,VM,HM} refers now to spherical
dynamics.
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We consider an Airbus A-320 BADA aircraft model. The different A-320
aerodynamic configurations, governed by the integer variable AC , and the value of
the aerodynamic parameters are listed in Table 5.1.

The path constraints of the problem are those related with performance limitations
and can also be found in the BADA database manual. For this experiment, we have
used:

0 ≤ he(t) ≤ min[hM0, hu(m(t)), Hmax k (AC )];

CVminV
k
S (m(t), he(t), AC ) ≤ V (t) ≤ VMo;

M(V (t), he(t)) ≤ MM0;

mmin ≤ m(t) ≤ mmax ;

0 ≤ C(t)L ≤ C k
Lmax

(AC );

Tmin(he(t)) ≤ T (t) ≤ Tmax(he(t));

µ(t) ≤ µmax,civ ;

V̇ (t) ≤ al,max(civ);

γ̇(t) ≤
an,max(civ)

V
.

The reader is referred to Section A.2 for more details. The threshold, Hk
max , the

stall velocity, V k
S , and the maximum coefficient of lift, C k

Lmax
, depend on the flap

configuration and, therefore, are governed by the discrete variable AC at each phase,
k = 0, . . . , N − 1.

Within the landing phase, we constraint the flight path angle according to

−6◦ ≤ γLanding ≤ −2
◦.

The flight plan model used for the numerical experiment is given in Table 5.10.
Notice that the aim of such flight plan is at performing an optimized-procedured flight.
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Ph Name DM OP AC AM S OC

0 Take Off VM Tmax TO Be V = 1.3V IC
S VCAS < 250[kt]

1 Ini. Climb VM Tmax IC Be V = 1.3V CR
S VCAS < 250[kt]

2 MD034 3D Tmax CR Be MD034 VCAS < 250[kt]
3 MD035 3D - CR Be MD035 VCAS < 250[kt]
4 Res. Free Climb 3D - CR Be he = 10000[ft] VCAS < 250[kt]
5 RBO 3D - CR Be RBO -
6 PINAR HM - CR Be PINAR he ≥ 13.000[ft]
7 Ver. Climb VM - CR Be he = 11000[m] -
8 Cruise 1 HM - CR Ab - -
9 Free Step 3D - CR Ab - -
10 Cruise 2 HM - CR Ab - -
11 Free Des. 3D - CR Ab he = 11000[m] -
12 Ver. Descent VM - CR Be he = 10000[ft] -
13 Descent Decel. HM - CR Be - VCAS < 250[kt]
14 Res. Free Descent 3D Tmin CR Be he = 6000[ft] VCAS < 250[kt]
15 Approach VM PATH AP Be he = 2000[ft] VCAS < 250[kt]
16 Landing VM PATH LD Be Final cond. VCAS < 250[kt]

Table 5.10: 3D motion: flight plan model.

The boundary conditions of the state variables have been selected according to a
realistic flight from Madrid Barajas (Lemd) to Berlin Schoenefeld (Eddb). The departure
runway head in Madrid Barajas corresponds to 15L, denoting the initial heading. The
arrival runway head in Berlin Schoenefeld corresponds to 25L, denoting the final heading.
Notice that, while the departure is modeled to be flown following a SID procedure, the
arrival is modeled to be flown as a continuous descent approach from top of descent
towards the runway head. Initial velocity and initial flight path angle have been selected
according to standard values. In regard of the boundary conditions referring to the mass
of the aircraft, notice that the optimal take-off weight trajectory planning problem entails
the calculation of the optimal initial mass. Therefore, the initial mass of the aircraft is
not specified. On the contrary, the final mass of the aircraft must be given. This can
be done assuming we know the minimum required landing weight of the aircraft, which
can be expressed as:

LW = OEW + PL+ RF,

where LW stands for Landing Weight, OEW stands for Operating Empty Weight, PL
stands for PayLoad, and RF stands for Reserve Fuel. Notice that this means that the
aircraft consumes the total amount of Trip Fuel (TP) during the flight.

The boundary conditions are therefore: λIe = −3.56
◦ , θ Ie = 40.47◦ , hIe = 620 [m],

V I = 77.40 [m/s], γ I = 4.5◦, χ I = −54◦; λFe = 13.52◦ , θFe = 52.38◦ , hFe = 48.67
[m], χF = 21◦, mF = 58000 [kg].

The selected SID procedure is Madrid Barajas PINAR1AU shown in Table 5.3.1.
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Figure 5.10: SID PINAR.

The definition of the SID can be found in the AIP Spain, published by AENA,
where the SID is textually described as:

To MD034 on heading 144◦(Magnetic North) at 2600 [ft] or above,
turn left. To MD035 at 5700 [ft] or above, turn left. To RBO at 13000 [ft]
or above, turn right. To PINAR at 13000 [ft] or above.

The coordinates of the different waypoints and navaids are:

• MD034 (RNAV waypoint): 40◦26’37.3164”N; 003◦30’21.2360”W.

• MD035 (RNAV waypoint): 40◦21’30.9920”N; 003◦19’52.5450”W.

• RBO (VOR/DME): 40◦51’14”N; 003◦14’47”W.

• PINAR (RNAV waypoint): 40◦58’49.0620”N; 002◦35’56.9980”W.

5.3.2 Numerical results

The problem is defined, formulated and solved as exposed in Section 5.1. The resulting
sparse Nlp problem (NLP) has been solved using Ipopt , which showed robustness in
solving infeasible subproblems in the iterative process even when dealing with infeasible
initial guesses. Ipopt showed also robustness when dealing with different initial
conditions, showing similar result patterns. The discretization grid with Nd = 250
sample points is as follows: N8 = N10 = N12 = N15 = 30; rest Nk = 10. To
illustrate computational issues, the resulting Nlp problem (NLP) had 2437 variables,
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1897 equality constraints, and 1465 inequality constraints. The total computational
time on a Mac OS X 2.56 GHz laptop with 4 GB RAM was 1543.93 [s].

Table 5.11 shows the optimal switching times (̃tk∗), the accumulated consumption
(C k ), and the constant values that describe aircraft performance in the different flight
procedures (Value opt.). The optimal initial mass is mI = 63307.2 [kg]. The optimal
cruise altitude is he = 12005.9 [m]. The final descent flight path angle is γ = −4.5 ◦.
Notice that, as it was already illustrated in the previous example, the algorithm is
capable of elimination those phases that are considered inefficient. The phases herein
named Cruise 1 and Descent Decel. are eliminated by the algorithm setting the duration
to zero.

Phase t̃k∗ [s] C k [kg] Value opt.

1 7.12 13.13 mI = 63307.2 [kg], χ = χ I

2 34.16 68.16 χ = χ I

3 62.87 126.1 Tmax
4 196.1 357.0 Free
5 222.8 396.1 Free
6 532.2 673.5 Free
7 873.0 973.8 he = 4030 [m]
8 1762.36 1903.5 χ = 50.2◦

9 1762.36 1903.5 he = 11000 [m]
10 1803.1 1931.2 Free
11 7380.8 5095.4 he = 12005.9 [m]
12 7555.7 5110.4 Free
13 8761.04 5240.0 χ = 41.4◦

14 8761.04 5240.0 he = 10000 [ft]
15 9013.95 5273.9.0 Tmin
16 9157.28 5294.1 γ = −4.5◦

17 9247.31 5307.2 γ = −4.5◦

Table 5.11: Optimal take-off weight trajectory results.

Flight optimal path, optimal control law, and the evolution of the state variables
over time are also obtained as part of the solution. We present the optimal path
in Figure 5.12, and the SID procedure in Figure 5.11 using Google Earth. Notice
that Figure 5.11 represents a zoom-in vision of the compete optimal path given
in Figure 5.12.

State variables and control inputs are shown in Figure 5.13-Figure 5.15. Regarding
state variables, in general, all of them vary relatively smoothly. γ and V might exhibit
high-frequency dynamics at some points near the switchings. As illustrated in the
previous example, this suggests discontinuity around those points. Notice that this
behavior is normal since the purpose here is not to capture short duration maneuvers,
for which we would need again a finer discretization around the switchings. Figure 5.15
shows the behavior of the control inputs. µ evolves rather smoothly, within reasonable
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Figure 5.11: Flight optimal path: SID.
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Figure 5.12: Flight optimal path.

values. CL shows also reasonable values, even though its evolution can be claimed as
saw-type most of the time domain and it hits the minimum constraint (CL = 0) at the
beginning of the cruise phase. Finally, thrust shows a bang-bang behavior during the
sixth and seventh phases, both phases defined within the SID procedure. The drastic
constrained environment that with find within a SID procedure, together with the fact
that the aircraft is allowed to move freely in 3D might have probably caused such
instability.
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heading angle, flight path angle, and consumption: the dots correspond to the computed
sample points and the depicted vertical dashed lines correspond to the switching times.
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5.3.3 Discussion on the results

We start the discussion analyzing aircraft performances.

In the first part of the flight, the aircraft takes off from the assigned runway head
and proceeds on fulfilling the constraints imposed by the SID procedure. After having
reached PINAR it starts the ascent phase up to 11000 [m], when the fist part of the
cruise starts. The ascent phase is to be flown into a vertical plane, i.e., with constant
course, and with no specified procedures in terms of velocity. The velocity profile results
in a slightly decreasing CAS profile. After having reached an altitude of 11000 [m],
the aircraft is supposed to start a cruise phase at constant altitude and, afterwards,
perform a step climb to reach the final cruising altitude. However, cruising at 11000
[m] is considered inefficient and thus neglected. Instead, it immediately starts the step
climb towards the optimal cruising altitude. This step climb is freely performed in
3D, where the aircraft increases its rate of climb employing its kinetic energy rapidly
gaining altitude, and therefore reducing its Mach number. This maneuver lasts up to
the point in which the aircraft is not producing lift anymore, i.e., when CL = 0. At that
point, which results in the optimal altitude, the aircraft pitches down to balance itself,
acquiring again lift and gaining velocity to start performing the cruise phase.

The cruise phase is performed at constant altitude. Focusing on velocity, first the
aircraft needs to speed up as illustrated above. After achieving a stationary value, we
observe how the velocity profile slightly decreases as fuel is burnt. This is due to
the fact that the optimal cruising speed reduces as the aircraft loses weight due to
fuel consumption. At the end of the cruise, it must also adjust the speed to start the
descent. Notice that, in case of a finer discretization, we would have observed shorter
and smoother velocity changes at the beginning and at the end of the cruise. It is worth
to mention that cruising at varying speed profiles is a very efficient strategy.

The aircraft starts then the descent, which is divided in several stages. First, the
aircraft performs a 3D free descent down to 11000 [m], from which the aircraft must
descent with constant course down to 10000 [ft]. At that point the aircraft is supposed
to perform a horizontal deceleration in order to fulfill ATC velocity restrictions. However,
this phase is considered inefficient and thus neglected, mainly because the descent is
performed at varying velocity and the aircraft is capable of reaching 10000 [ft] below
250 [kt] (CAS). Indeed, the resulting velocity profile follows the patterns of the free flight
performances exposed in the previous example. We can observe how the CAS profile
is nearly constant below the tropopause. After reaching 10000 [ft], there is a 3D free
phase which is employed to orientate the aircraft towards the assigned runway head.
Then, the aircraft reaches the Final Approach Fix (FAP), deploys flaps and proceeds
to runway. In order to analyze the final descent flight path angle, all exposed in the
previous experiment holds. In this case, the value is -4.5◦, also more inclined than
current ILS procedures. Notice that whole descent is continuously performed, from the
top of descent direct to the runway head.
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We analyze now how the excess of take-off weight affects aircraft optimal trajectory.
For this purpose we conducted a series of computational experiments in which the
initial mass is set to a value over the obtained optimal initial mass whereas the final
mass is not specified. Initial masses and fuel consumptions are shown in Table 5.12
and Figure 5.16.

Initial mass [kg] Consumption [kg]

63307∗ 5307.2
63407 5316.0
63507 5323.5
63607 5330.9
63707 5340.3
63807 5346.0
63907 5353.6
64007 5363.0
64107 5370.6
64207 5376.5

∗ Optimal initial mass.

Table 5.12: Consumption comparison.
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Figure 5.16: Consumption comparison.

In Figure 5.16 we quantify the effects of the take-off weight excess in terms of
extra fuel to be consumed during the trip. Figure 5.17(a) shows it in absolute terms,
and Figure 5.17(b) shows it in relative terms, as a percentage of the optimal fuel
consumption. The take-off weight excess is linearly related with the excess in fuel
consumption. This linear relation can be quantified in 40 [kg] of extra fuel consumed
per every extra 500 [kg] of initial take-off mass, i.e., a 0.75% of extra fuel consumption
during the flight.
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(b) Relative terms.

Figure 5.17: Excess of consumption due to excess of take-off weight.

In order to discuss the effects that the initial mass has on performances, we also
present altitude and speed profiles in Figure 5.18. For the sake of clarity, we do not
explicitly differentiate the different trajectories, but only the optimal one. All of them
follow very similar patterns, and this is true for the rest of variables.
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Figure 5.18: Optimal take-off trajectory: velocity and speed profiles comparison.
Optimal take-off weight trajectory is the orange solid-dotted line (black dots correspond
to the computed samples) and the rest are all in blue solid lines.

However, if we take a zoom-in look to the cruise phase such as in Figure 5.19,
we can observe how the deviation from the optimal take-off weight affects the optimal
altitude and the optimal speed profiles during the cruise. The optimal take-off weight
leads to an optimal cruising (constant) altitude whose value is higher as the initial mass
gets closer to the optimal one. The optimal take-off weight also leads to an optimal
cruising (varying) velocity profile whose values are lower as the initial mass gets closer
to the optimal one. The higher altitude and lower velocity profiles explain the lower
consumption of the optimal take-off weight trajectory.
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Figure 5.19: Velocity and speed profile comparison during cruise phase. Optimal take-off
weight trajectory is the orange solid-dotted line (black dots correspond to the computed
samples) and the rest are all in blue solid lines.
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I n this chapter we present the application of the multiphase mixed-integer optimal
control problem to aircraft trajectory planning, considering thus integer and
continuous variables. Integer variables model decision-making processes, and

continuous variables describe the state of the aircraft which evolves according to
differential-algebraic equations. The problem is formulated as a multiphase mixed-
integer optimal control problem which is converted into a mixed integer non linear
programming problem first making the unknown switching times part of the state as
in Section 3.2.2, then applying a fifth-degree Gauss-Lobatto direct collocation method
as in Section 2.3.1, and finally introducing binary variables to model the decision-
making processes as in Section 4.3. The resulting mixed-integer non linear programming
problem has been solved using a nonlinear programming based branch-and-bound
algorithm. The approach is applied to the following en-route flight planning problem:
given an aircraft point mass model, a wind forecast, an airspace structure, and the flying
information regions with their associated overfly costs, we study the problem of finding
the control inputs that steer an aircraft from the initial fix to the final fix following
a route of waypoints while minimizing the fuel consumption and overfly costs during
the flight. The decision-making process arises in determining the optimal sequence
of waypoints. The optimal times at which the waypoints are to be overflown are also
to be determined. The numerical results are presented and discussed, showing the
effectiveness of the approach.
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6.1 Multiphase mixed-integer trajectory optimization problem

6.1.1 Problem statement

In this chapter the multiphase mixed-integer optimal control techniques described in
Chapter 3 will be applied to the the following en-route flight planning problem: given
an aircraft point mass model, a wind forecast, an airspace structure, and the flying
information regions with their associated overfly costs, find the control inputs that
steer an aircraft from an initial fix to a final fix following a route of waypoints while
minimizing the fuel consumption and overfly costs during the flight. The optimal sequence
of waypoints is to be determined as well as the optimal overfly times over waypoints.
This fight planning problem is a particular case of the general multiphase mixed-integer
optimal control problem (MMIOCP) in which the number of switching times is prefixed,
i.e., the feasible switching set is Ψ = Ψt = {t̃

1, t̃2, . . . , t̃N−1}.

The airspace structure is modeled as a complete multipartite graph G = (V, E ) as
exposed in Section 4.2.2. We assume that the aircraft is constrained to pass through one
edge within every partite set of the graph in Figure 4.7, i.e., the aircraft is constrained
to fly over the initial waypoint, N − 1 waypoints, each belonging to a different partite
set V1, . . . VN−1, and the final waypoint. Thus, N phases can be identified during the
motion of the aircraft.

The selection of the sequence of waypoints results from a decision-making process
that is modeled using time-independent binary variables as explained in Section 4.3.
In particular, we consider N − 1 vectors of binary variables v k ∈ {0, 1}nvk , k =
1, . . . , N − 1, whose components are v k,j , k = 1, . . . , N − 1, j = 1, . . . , nvk .

Initial and final conditions: The initial and final positions of the aircraft will be given
by the coordinates at the initial and final waypoints, pI = (λIe, θ

I
e) and pF = (λFe , θ

F
e )

respectively. Let x̄ I = (λIe, θ
I
e), x̄

F = (λFe , θ
F
e ) be the initial and final horizontal

positions or the aircraft. The initial condition x I will be given by the initial position
and a set of feasible initial values for the rest of state variables. The final condition
coincides with the final position of the aircraft. The set of conditions (3.18) for initial
and final states become:

x(t I) = x I ; (6.1)

x̄(tF ) = x̄F . (6.2)
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Dynamical subsystems: The flight is divided into N phases, and thus there is a
dynamical subsystem Σk governing the motion of the aircraft within each phase k . The
dynamical subsystem Σk is characterized by the dynamic and algebraic constraints that
were defined in the set of equations (3.17). As already mentioned in Chapter 5, in
general, the dynamical subsystem Σk is a function of the discrete variables AC , DM ,
AM , and OP .

We assume the flight is performed in horizontal motion, and thus the differential-
algebraic equations correspond to those given in Definition 4.5. As a consequence, the
aircraft flies at constant altitude during the entire flight, always in the same atmospheric
layer. We also assume that no operational procedure is specified throughout the flight.
Moreover, we assume the aircraft flies during the whole flight with cruise configuration.
Therefore, the values of the discrete variables AC , DM , AM , and OP are assumed to
be known, and thus the dynamical subsystem Σk is uniquely determined and does not
change during the N phases of the flight.

Path constraints: The path constraints of the general multiphase mixed-integer
optimal control problem (MMIOCP) are represented by equation (3.19) and described
in Section A.2. As previously mentioned in Chapter 5, the set of path constraints is in
general a function of the discrete variable AC . We assume the aircraft flies in cruise
configuration, and therefore the value of the discrete variable AC is known. Thus, the
corresponding set of path constraints is uniquely determined and does not change during
the N phases of the flight.

Interior point constraints: Let S = {S1, . . . ,SN−1} be the set of end trigger
conditions. In this problem end trigger conditions correspond only to autonomous
switchings. They are expressed by means of capture conditions associated to reaching
a waypoint p ∈ P, which is to be determined.

Each of the binary variables v k,j , k = 1, . . . , N−1 , j = 1, . . . , nvk , is associated
to a waypoint pk,j of the set P, and v k,j = 1 means that the aircraft flies over waypoint
j of partite set Vk at time t̃k . Let X̄ = {x̄1,1, . . . , x̄N−1,n

vN−1}, with x̄k,j = (λk,j , θk,j ),
be the set of waypoint locations. According to Figure 4.7, the interior point equality
constraints given in the set of equations (3.20a) can be expressed as follows:

Sk : x̄(t̃k) =

n
vk∑

j=1

v k,j x̄k,j , k = 1, . . . , N − 1. (6.3)

Additional constraints are

n
vk∑

j=1

v k,j = 1, k = 1, . . . , N − 1. (6.4)
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Condition (6.3) means that, if v k,j = 1, it will be x̄k,j(t̃k) = x̄k,j , that is, the
aircraft will overfly waypoint in location x̄k,j at time t̃k , k = 1, . . . , N − 1. Condition
(6.4) means that the aircraft must overfly only a single waypoint of partite set Vk at
time t̃k , k = 1, . . . , N − 1. Inequality interior point constraints in equation (3.20b)
might be applied to constraint the switching instants. However, we will not use them
in the problem.

Objective function: The objective functional in equation (3.23) to be minimized is

J =
N−1∑

k=0

∫ t̃k+1

t̃k
ṁk(t) dt + D , (6.5)

where ṁk(t) is the fuel flow of the aircraft during phase k , and D is the cost due to
overflying charges which is computed taking into account the actual travelled distances in
the relevant FIRs/UIRs when flying between couples of waypoints belonging to adjacent
partite sets. The calculation of these overflying charges is described in Section 6.2. The
expression for D , which is a function of the binary variables v k,j , is omitted for the sake
of clarity in the exposition.

Notice that the objective functional (6.5) could be seen as a multi-objective
functional balancing continuous costs corresponding to fuel consumption and costs
corresponding to overflying charges. The natural choiceis to combine these two terms
using their monetary cost. In Section 6.2.2, the impact of the costs due to overflying
charges will be discussed by varying the weight of these cost in the objective functional.

6.1.2 Minlp solution approach

Recall what has already been exposed in Section 5.1.2 about the discretization of the
problem for both time scales (see Figure 5.2-Figure 5.5).

The fifth degree Gauss-Lobatto collocation scheme described in Section 2.3.1 has
been used. In the subinterval [̃tki , t̃

k
i+1], k = 0, . . . , N − 1, i = 0, . . . , Nk − 1 the

collocation points xki,a and xki,b are calculated from the state variables xki , xki,C and xki+1.
The reader is referred to Figure 2.5 which illustrates how the state variables of the
problem are discretized in the subinterval [̃tki , t̃

k
i+1]. A free control scheme has been used

for control variables. In this control interpolation scheme the discretized control variables
represent discrete values for the controls at each discrete time at which the system
equation are evaluated, uki , u

k
i,a, u

k
i,C , u

k
i,b, u

k
i+1. For the sake of clarity, let us define

X k
i = (xki , x

k
i,C , x

k
i+1), U

k
i = (uki , u

k
i,a, u

k
i,C , u

k
i,b, u

k
i+1), U

k
i,a = (uki , u

k
i,a, u

k
i,C , u

k
i+1),

and Uk
i,b = (uki , u

k
i,C , u

k
i,b, u

k
i+1), k = 0, . . . , N − 1, i = 0, . . . , Nk − 1.
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Applying the described transformations, the Minlp problem takes the form:

min N ·
N−1∑

k=0




(̃tk+1 − t̃k) ·
Nk−1∑

i=0

Q(X ki , U
k
i )




 + D ;

subject to:

A5,a(X
k
i ) + N · (̃tk+1 − t̃k) · hk · C5,a(X ki , U ki,a) = 0, k = 0, . . . , N − 1, i = 0, . . . , Nk − 1;

A5,b(X
k
i ) + N · (̃tk+1 − t̃k) · hk · C5,b(X ki , U ki,b) = 0, k = 0, . . . , N − 1, i = 0, . . . , Nk − 1;

0 ≤ φk(X ki , U ki ), k = 0, . . . , N − 1, i = 0, . . . , Nk − 1;

x00 = x I , x̄N−1
Nk

= x̄F ;

x̄k0 =

n
vk∑

j=1

v k,j · x̄k,j , k = 1, . . . , N − 1;

n
vk∑

j=1

v k,j = 1, k = 1, . . . , N − 1;

v k,j ∈ {0, 1}, k = 1, . . . , N − 1, j = 1, . . . , nvk ;

(MINLP)

where Q(X k
i , U

k
i ) is obtained using a fifth-degree integration scheme as follows:

∫ t̃ki+1

t̃ki

f(t)dt ≈
hk

180
[9f(t̃ki ) + 49f(t̃ki,C −

√
3/7hk)+

64f(t̃ki,C ) + 49f(t̃ki,C +
√

3/7hk) + 9f(t̃ki+1)],

D is as defined in the previous section, and A5,a(X
k
i ), C5,a(X

k
i , U

k
i,a), A5,b(X

k
i ), and

C5,b(X
k
i , U

k
i,b) come from equations (2.22)-(2.23). The unknowns of this problem are

(xki , x
k
i,C , x

k
i+1, u

k
i , u

k
i,a, u

k
i,C , u

k
i,b, u

k
i+1)

for k = 0, . . . , N − 1, i = 0, . . . , Nk − 1, together with v k,j for k = 1, . . . , N − 1,
j = 1, . . . , nvk , and the switching times t̃k for k = 1, . . . , N − 1. For the sake of
clarity, unknowns t̃k for k = 1, . . . , N − 1 have not been renamed as elements of the
extended state vector as in Section 3.2.2. Note that t̃N = tF is also a variable of the
problem if the final time is not specified.

The multiphase mixed-integer optimal control problem has now been recast as a
mixed-integer nonlinear program: minimizing a nonlinear function subject to a number
of nonlinear constraints in a space where some of the variables only take 0− 1 values
while others take value in R. We now turn to the explanation of the numerical method
to solve problem (MINLP).
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Minlp resolution

Fixing all variables v k,j , k = 1, . . . , N − 1, j = 1, . . . , nvk , is equivalent to fixing the
sequence of alternatives and if this is done the multiphase Miocp becomes a conventional
multiphase optimal control problem. A simple algorithmic approach could therefore be
to enumerate all possible values for v k,j , solve the associated multiphase optimal control
problems and pick the best solution. Unfortunately, a rapid calculation of the number
of problems to solve if one follows this approach shows that it is impractical for more
than a handful of possible values for v k,j . A common approach to try to address bigger
problems is to do an implicit enumeration via a branch-and-bound algorithm [106, 107].
Branch-and-bound is a standard algorithm for integer programming (see for example
[108] and references therein). A brief sketch of it in the context of this dissertation
is given below, with an emphasis on the particularities that arise in the context of
multiphase Miocp. For a more complete exposition the reader is invited to refer to the
references above.

Branch-and-bound is a divide-and-conquer method. The problem is divided by
partitioning the set of feasible solutions into smaller and smaller subsets. The
conquering is done by computing bounds on the value of the best feasible solution
in each subset and discard subsets based on this bound. Branch-and-bound is an exact
algorithm when the bound used in the fathoming phase is a valid lower bound. However,
the problem of interest here is particular in that systematically obtaining a good lower
bound on the value of the multiphase Miocp is a daunting task.

Indeed, to compute a valid lower bound one has to build a convex approximation of
the optimization problem where a convex function is minimized over a convex feasible
region. Here, there are two sources of non-convexities: the binary variables of the
problem and the nonlinear equations used to describe the feasible region. Dealing
with binary variables is standard and can simply be done by replacing the set {0, 1}
with the interval [0, 1], i.e., relaxing them. Dealing with nonlinear and highly non-
convex equations is much more involved. Although systematic methods exist to compute
convex approximations for such nonlinear equations (for example within the solvers
Baron [109, 110] and Couenne [111]) their efficiency is limited. In the experiment herein
presented they are not able to yield any good lower bound.

Therefore, the approach does not rely on a true lower bound but rather uses
approximate solutions. In that case the procedure is heuristic (i.e. does not return the
exact optimal solution). The quality of the final solution depends on the quality of the
approximation. To the best of our knowledge, there is no theoretical guarantee on the
quality of the approximation. Its practical efficiency is the subject of the computational
section of this chapter.



6.1 Multiphase mixed-integer trajectory optimization problem 109

Algorithm 1 Nlp Bb

0. Initialize.

Γ← {(∅, ∅)}. BU =∞. v∗ ← NONE.

1. Terminate?

Is Γ = ∅? If so, stop and return the sequence described by v∗.

2. Select.

Choose and delete a problem N l = (Ll,Ul) from Γ.

3. Evaluate.

Solve the Riocp(Ll , Ul). If no solution can be found go to step 1, else let
B RLl,U l be its objective function value and v̂ be the values for the relaxed binary
variables.

4. Prune.

If B RLl,U l ≥ BU go to step 1. If v̂ 6∈ {0, 1}N−1 × {0, 1}nvk go to step 5, else

let BU ← B RL,U , v∗ ← v̂ , and delete from Γ all problems with B kL ≥ BU . Go to
step 1.

5. Divide.

Create two new nodes N |Γ|, and N |Γ|+1. Choose k̂ and ̂ such that
v̂ k̂ ,̂ 6∈ {0, 1}. Let B |Γ| ← B |Γ|+1 ← B RL,U and add the problem N |Γ| =

(Ll ∪ v k̂ ,̂,Ul) and N |Γ|+1 = (Ll,Ul ∪ v k̂ ,̂). Go to 1.

Approximations are computed by using the relaxed integer optimal control problem
(Riocp), where the constraints v k,j ∈ {0, 1} are relaxed to v k,j ∈ [0, 1], for
k = 1, . . . , N − 1, j = 1, . . . , nvk . A locally optimal solution to the Riocp can
be computed with a nonlinear programming algorithm, for instance the interior point
algorithm implemented by Ipopt. The branch-and-bound framework is then used to find
a solution that satisfies also the integrity requirements v k,j ∈ {0, 1}, k = 1, . . . , N−1,
j = 1, . . . , nvk . This variant of branch-and-bound is usually called Nlp based branch-
and-bound or Nlp Bb for short (for more details, see for example [40] and references
therein).

The first step of the branch-and-bound algorithm is to solve the Riocp. If the
solution obtained by solving the Riocp is integer feasible (all variables v k,j take value
0 or 1) it specifies a sequence of points and the algorithm stops. If no solution to the
Riocp is found the algorithm stops. If an upper bound BU on the value of the optimal
solution is known and the value of the solution of the Riocp is above BU , the algorithm
also stops (fixing the infeasibility of the solution should increase the objective value of
the solution). Otherwise, the algorithm divides the feasible region in two by fixing one
of the variables v k,j such that v̂ k,j 6∈ {0, 1} to 0 and to 1 successively.
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Applying the above steps recursively, yields to a tree Γ of partial assignment for
the binary variables. At each node of this tree, a subset L of the variables v are
fixed to 0 and a subset U are fixed to 1, and a local optimum of the restriction of the
Riocp where the variables in L and U are fixed is to be sought. This restricted relaxed
optimal control program is referred to as Riocp(L,U). The value of the upper bound
BU is initially +∞ and is updated whenever a new integer feasible solution is found
such that the cost is improved.

The pseudo-code of the Nlp Bb is given in Algorithm 1. Several solvers implement
this algorithm for example Minlp Bb [112] and Sbb [113]. In this dissertation, the solver
Bonmin has been used [41]. Bonmin is an open-source Minlp solver implementing
several different algorithms for solving mixed integer nonlinear optimization problems.
Source code and binaries of Bonmin are available from Coin-or1. Bonmin is called
through the Ampl2 modeling language.

Two critical steps for the practical efficiency of Algorithm 1 which have not been
explicated are the selection of the next subproblem to evaluate (step 2), and the choice
of the variable to divide the feasible region (step 5). For these two steps standard
rules implemented in Bonmin are used. The subproblem selected in step 2 is always
the one with lowest B k,j (best-bound rule). Whereas for choice of the variable v̂ k,j ,
a default strategy in Bonmin is used which is a combination of strong-branching and
pseudo-costs [40].

6.2 Case study

In this section the results of the application of the method described in the the
previous sections to a realistic instance of the aircraft optimization problem will be
described. More specifically, the trajectory optimization problem of an A330-301 aircraft
performing the en-route part of a flight New York-Rome between the waypoint Yahoo:
pI = (−69.74◦, 41.69◦), as initial fix, and the waypoint Amtel: pF = (11.60◦, 43.21

◦), as final fix, is presented. The altitude of the route has been considered constant
at 38000 [ft], that is, at flight level 380. The initial conditions of the problem were:
V (t I) = 235 [m/s], γ(t I) = 0◦, χ(t I) = 0◦, m(t I) = 174000 [kg].

The en-route part of the flight has been divided into N = 9 phases, also referred
to as legs, with an initial and final waypoint, and 8 intermediate waypoints. Thus, 8
partite sets with nvk = 5 waypoints in each set have been considered.

The selection of the number of intervals has been done comparing solutions to the
Minlp computed with increasing number of subintervals in each phase until a negligible
change in the objective function was observed. Based on this criterion, the fifth-degree
Gauss-Lobatto collocation method has been applied with a discretization using a total
of 72 subintervals in which for the first 3 phases the number of subintervals is N0 =
N1 = N2 = 12 and for the other phases N3 = N4 = N5 = N6 = N7 = N8 = 6.

1http://www.coin-or.org
2http://www.ampl.com/

http://www.coin-or.org
http://www.ampl.com/
http://www.coin-or.org
http://www.ampl.com/
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Horizontal flight dynamics

The horizontal motion over a spherical Earth including wind effects is considered.
Recall Definition 4.5 for the 3-DOF horizontal motion of an aircraft over a spherical
Earth including wind effects. The airplane is a conventional jet airplane and BADA 3.6
[14] is used as aircraft performance model (see Appendix A).

The differential-algebraic equations governing the translational horizontal motion
of the airplane are the following:

m(t)V̇ (t) = T (t)− D(V (t), CL(t));

m(t)V (t)χ̇(t) = L(V (t), CL(t)) sin µ(t);

L(V (t), CL(t)) cos µ(t) = m(t)g; (6.6)

λ̇e(t)Re cos θe(t) = V (t) cos χ(t) +Wx(λe(t), θe(t));

θ̇e(t)Re = V (t) sin χ(t) +Wy(λe(t), θe(t));

ṁ(t) = −η(V (t))T (t).

In general, the engine thrust T (t) and bank angle µ(t) are the control variables of the
aircraft, that is u(t) = (T (t), µ(t)). The thrust is commanded by the engine throttle
and the bank angle is commanded combining rudder and ailerons trims. The state vector,
x , will be: x(t) = (λe(t), θe(t), V (t), χ(t), m(t)). The cartesian coordinates xe, ye
have been transformed into spherical coordinates according to relations (4.4).

The path constraints of the problem are those that define aircraft’s flight envelope
and restrictions in the control actions. They can be found in BADA database manual
[14]. See Appendix A for details. The path constraints are then:

CVminVs(m(t)) ≤ V (t) ≤ VM0; M(V (t)) ≤ MM0;

mmin ≤ m(t) ≤ mmax ; 0 ≤ CL(t) ≤ CLmax ; (6.7)

Tmin(he(t)) ≤ T (t) ≤ Tmax(he(t)); µ(t) ≤ µmax,civ .

Waypoints

The waypoints and navaids of the AIRAC cycle published in June 2012 have been
considered and a set P of 8 × 5 waypoints have been selected from them. For those
phases entering or exiting oceanic regions, the waypoints have been selected manually
coincident with the FIR/UIR bounds. This was the case of the first, second, and third
partite sets. On the contrary, for those phases overflying the intra-European area, the
waypoints have been selected randomly according to the following steps. First the
trajectory optimization problem has been solved without waypoint constraints, obtaining
the free flight trajectory. Then, the subpath from the intersection point between the
free flight path and the French FIR/UIR to the final waypoint was considered. Since
six phases had to be defined in this subpath, five equidistant points along it have been
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p1,1 = (41.11◦,−67.00◦) Dovey p1,2 = (40.11◦,−67.00◦) Jaboc

p1,3 = (41.78◦,−67.00◦) Vitol p1,4 = (42.63◦,−67.00◦) Kanni

p1,5 = (43.56◦,−67.00◦) Tusky p2,1 = (44.93◦,−51.00◦) Vodor

p2,2 = (45.83◦,−51.00◦) Urtak p2,3 = (46.87◦,−51.00◦) Ronpo

p2,4 = (47.82◦,−51.00◦) Novep p2,5 = (48.77◦,−51.00◦) Logsu

p3,1 = (46.00◦,−8.00◦) Rivak p3,2 = (47.00◦,−8.00◦) Lapex

p3,3 = (48.00◦,−8.00◦) Reghi p3,4 = (49.50◦,−8.00◦) Ratka

p3,5 = (45.00◦,−8.00◦) Begas p4,1 = (45.93◦,−5.22◦) Erwan

p4,2 = (44.50◦,−4.94◦) Atlen p4,3 = (44.61◦,−5.40◦) Kolek

p4,4 = (46.32◦,−3.69◦) Novan p4,5 = (45.08◦,−3.86◦) Pepet

p5,1 = (43.69◦,−1.41◦) Sigos p5,2 = (45.01◦,−0.78◦) Bmc11

p5,3 = (46.05◦,−2.25◦) Godem p5,4 = (45.73◦,−1.06◦) Maren

p5,5 = (44.55◦,−1.12◦) Cazaux Ndb p6,1 = (44.78◦, 1.47◦) Ratra

p6,2 = (43.54◦, 1.36◦) Lfbf 12 Gs p6,3 = (45.33◦, 1.23◦) Makox

p6,4 = (44.12◦, 2.16◦) Depes p6,5 = (44.95◦, 2.36◦) Aurillac Ndb

p7,1 = (43.38◦, 4.84◦) Rhone p7,2 = (44.37◦, 5.26◦) Xirbi

p7,3 = (45.66◦, 4.89◦) Rusit p7,4 = (45.10◦, 5.16◦) Romam

p7,5 = (46.50◦, 4.95◦) Alura p8,1 = (42.89◦, 8.67◦) Rapur

p8,2 = (44.59◦, 8.66◦) Testo p8,3 = (44.04◦, 8.03◦) Lbn32

p8,4 = (45.15◦, 7.99◦) Sirlo p8,5 = (43.45◦, 7.59◦) Gonto

Table 6.1: Cordinates and designators of the waypoints.

selected. Finally, a random selection of the waypoints has been done using bivariate
Gaussian probability density functions centered at the selected points in which the
directions of the principal axes of the ellipses that correspond to equidensity contours
are parallel to the tangent and normal directions to the subpath at each point. The
resulting set P of waypoints is given in Table 6.1.
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Wind Data

The wind forecast of July the 3rd, 2012 has been considered. Focusing on the North
Atlantic region at an altitude of 200 [Hpa] (he = 11769 [m]), the wind forecast vector
field is shown in Figure 6.1. Wind vectors (blue arrows) represent the direction and
speed of the wind. Longer arrows represent faster winds. There is a region where the
phenomena of stronger eastward winds can be identified. This phenomena is referred to
as Jet stream, characterized by fast flowing, narrow air currents found in the atmosphere.
The main jet streams are located near the tropopause at different latitudes. For aviation,
characterizing the jet stream over the North Atlantic ocean is crucial in order to take
advantage of favorable winds.

Figure 6.1: Wind vector field July the 3rd, 2012.

As exposed in Section 4.1.4, the NOAA wind forecast tabular data are fitted into
analytical functions by means of multivariate regression analysis. A fourth-degree
polynomial is fitted to the data. In this way, the east-west component can be expressed
as:

Wx = βx0 + βx10λe + βx01θe + βx20λ
2
e + . . . + βx13λeθ

3
e + βx04θ

4
e , (6.8)

and the north component as:

Wy = β
y
0 + β

y
10λe + β

y
01θe + β

y
20λ

2
e + . . . + β

y
13λeθ

3
e + β

y
04θ

4
e , (6.9)

where βx0, . . . , β
x
04 and β

y
0 , . . . , β

y
04 correspond to the coefficients of the regressions

applied to the east and north components of the forecast tabular data, respectively.
Analytical functions (6.8)-(6.9) are valid within a domain covering Eastern North
America, the North Atlantic and Western Europe, i.e., λe ∈ [-70◦,12◦] and θe ∈
[40◦, 55◦]. Functions (6.8)-(6.9) can be included in set of equations (6.6). Notice that
some of the terms of the fourth-degree polynomials, that have been expressed in their
general forms, may be neglected if they are found to be not significant according to
their p-values.
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Figure 6.2: North and East component of the wind speed at 200 [HPa] (h=11769 [m])
and the corresponding analytic functions that result from the regression analysis.

Figure 6.2 shows both forecast tabular data (blue dots) and polynomial functions
(surfaces) for Wx and Wy at 200 [Hpa] (h=11769 [m]). In order to illustrate the
important effects of the jet stream in trajectory optimization, Figure 6.3 shows the great
circle distance (minimum distance) path and the free flight path that has been computed
including wind effects.
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Figure 6.3: Great circle distance path (red dashed line) and approximated optimal
free flight path (solid green line).

The last step of multiple regression analysis is to check the goodness of fit of the
model. Commonly used tests of goodness of fit include the multiple R-squared [105,
Chap. 10.3] and the analysis of the patterns of residuals [105, Chap. 12.3].

In multiple regression, the multiple R-squared coefficient is a statistical measure of
how well a regression approximates the real data points. Multiple R-squared ranges in
the interval [0, 1]. A value of 1.0 indicates that the regression perfectly fits the data.
A value over 0.7 is considered reasonably good, meaning that approximately seventy
percent of the variation in the dependent variable can be explained by the least-squares
linear combination of independent variables. The multiple R-Squared coefficient was
0.788 for Wx and 0.726 for Wy. This ensures that the predicted values fit reasonably
well the data.
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The residuals reflect the discrepancy between observed and predicted values
that remain after the data have been fitted by the least-squares method. Each
residual represents an estimate of the corresponding unobserved error. Hypothesis 4.21-
Hypothesis 4.24 assume that these residuals are independent, have a zero mean, the
same variance, and follow a normal distribution. The basic strategy underlying residual
analysis is to assess the goodness of a regression model according to the behavior of
the residuals in fulfilling the above mentioned hypotheses.

The most direct and revealing way to examine a set of residuals is to plot the
errors between observed and predicted values against the dependent variables. If the
model fitted to the data were correct, the residuals would approximate the random
errors that make the relationship between observed and predicted values a statistical
relationship fulfilling independence, zero mean, homogeneity in the variance, and
normality. Therefore, if the residuals appear to behave randomly, it suggests that
the model fits well the data. On the other hand, if non-random behavior is present
in the residuals, it is a clear sign that the model fits the data poorly. The residuals
are given in Figure 6.4. It can be observed that the errors do not behave completely
random, in particular, the errors of the wind north function along the longitude. This
suggest that the errors are not normally distributed.
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Figure 6.4: Regression residuals.

In order to check whether the errors are normally distributed one can run a Quantile-
Quantile Plot (QQ Plot). A QQ-plot is a graphical method for comparing two probability
distributions by plotting their quantiles against each other: in this case, the quantiles
of the errors versus the quantiles of the standard normal. If data are related linearly,
errors are normally distributed. QQ-plots are shown in Figure 6.5. It can be observed
how data behave nearly linear in the central range of values, but they deviate within
the tails of the the normal distribution. Therefore, we can conclude that errors are not
normally distributed.
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Figure 6.5: QQ-Plots.

A more quantitative criteria for assessing the validity of the normality assumption can be
based on standard statistical tests such as the Kolmogorov-Smirnov test. Running such
test over the two regressions, it confirms that the residuals are not normally distributed.

Therefore, a first conclusion is that the regression model herein applied is not able
to completely capture the tabular data. However, it fits fairly good, being able to
capture the fundamental tendencies, such as, the jet stream regions.

As already exposed in Section 4.1.4, regression is much more suitable than
interpolation to be used in optimal control problems. Interpolation results in extremely
large functions and make the optimization cumbersome. In regard of multiple regression
analysis, higher order polynomial have been also tested, resulting in very low
improvement in the regression while increasing complexity in the optimization problem.
Other regression functions have been tested, for instance, combining polynomial and
sinusoidal functions. Although such functions capture rather well some of the peaks, with
multiple R-Squared values of about 0.85, the optimization problem does not converge.
Thus a fourth-degree polynomial has shown the best trade off between goodness of fit
and computational performance.

En-Route Overflying Charges

Figure 6.6 shows the FIR/UIR structure of the North Atlantic airspace. In general,
national aviation authorities apply overflying fees for the services they provide. Very
different charging schemes are applied including purely traveled distance-based charges,
aircraft weight and traveled distance charges, flat rate charges (FR ), or communication
rate charges (CR ) [2].

The charging methodologies in the relevant regions for the flight to be analyzed in
the experiment, namely, United States of America (USA), Canada, and Europe, including
the North Atlantic oceanic regions, are briefly presented.

In Europe, the standard Eurocontrol charge formula for en-route services in the
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Figure 6.6: Relevant FIR/UIR regions for flights between North America and Europe.

Eurocontrol members countries is:

rEur
i = URi

GCDi
100

√
MTOW

50
,

where URi is the service unit rate in FIRi (referring to member country i), GCDi is the
great circle distance in Kilometers [km] traveled in FIRi, and MTOW is the maximum
take-off weight in metric tonnes [t] of the aircraft. The unit rates of en-route charges are
established by each Eurocontrol member state and updated every month [114]. In the
USA, the Federal Aviation Administration (FAA) only charges overflight fees to operator
that fly in the USA controlled airspace, but neither take off nor land in the USA. In the
continental airspace, the en-route charges rUSACon are $ 38.44 per 100 nautical miles
(measured in Great Circle Distance (GCD)). In the oceanic airspace, the fee rUSAOc

is $ 17.22 per 100 nautical miles (in GCD)3. Nav Canada applies different fees for
its oceanic and continental airspaces. Canadian oceanic charges in Gander Oceanic
FIR are based on a flat rate that can be decomposed into navigation fee FRGanOc of
C$ 93.24 and a communication fee CRGanOc of C$ 22.04 [115]. Canadian continental
airspace charges are based on aircraft weight and traveled distance as follows:

rCanCon = UR · GCD ·
√
MTOW ,

where the Unit Rate (UR) is $ 0.03445, the travelled GDC in [km], and MTOW
in [t]. Charges for services provided in the Shanwick Oceanic FIR comprise a flat
communication rate CRShOc of C 45 (charged by Ireland) and a flat navigation fee
FRShOc of £ 65.70 (charged by United Kingdom) [116].

Focusing now in the case study herein analyzed, the overflying cost for a flight from
a USA airport to Europe through Canadian continental airspace, Gander Oceanic, and
Shanwick Oceanic FIRs can be expressed as

rCanCon + FRGanOc + CRGanOc + FRShanOc + CRShanOc +
∑

i

rEur
i ,

3http://www.faa/gov/air_traffic/international_aviation/overflight_fees. Last visited 06-25-2012.

http://www.faa/gov/air_traffic/international_aviation/overflight_fees
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where ri makes reference to the ith relevant European FIR/UIR. The components of
this cost have been defined in Section 6.2. Notice that, since the flight departs from
JFK airport, the USA do not apply any navigation fee. The unit rates employed in
the European regions are those corresponding to European regions adjusted unit rates
applicable to April 2012 flights4. For continental Canada and oceanic regions the rates
are those given in Section 6.2. All rates have been converted to C. It has been assumed
that 1 kg of fuel costs C 1.

Flight plan model

The case we study involves a flight plan with a 9-phases model, which is given
in Table 6.2. The values taken by the discrete variables Ph, DM , OP , AC , and
AM are preset. On the contrary, the value of the discrete variable Wp is not specified
and so are the end trigger conditions Sk , k = 1, . . . , N − 1. The waypoint’s sequence
is to be selected according to the values taken by the binary variables v k,j .

Ph DM OP AC AM S

0 HM - CR Ab
∑nv1

j=1 v
1,jp1,j

1 HM - CR Ab
∑nv2

j=1 v
2,jp2,j

2 H - CR Ab
∑nv3

j=1 v
3,jp3,j

3 H - CR Ab
∑nv4

j=1 v
4,jp4,j

4 H - CR Ab
∑nv5

j=1 v
5,jp5,j

5 H - CR Ab
∑nv6

j=1 v
6,jp6,j

6 H - CR Ab
∑nv7

j=1 v
7,jp7,j

7 H - CR Ab
∑nv8

j=1 v
8,jp8,j

8 H - CR Ab pF

Table 6.2: Horizontal motion: flight plan model.

6.2.1 Results

The computed sequence of waypoints, denoted by the active set of binary variables v k,j ,
is given in Table 6.3. The corresponding route is: Yahoo, Dovey, Vodor, Rivak, Pepet,
Bmc11, Ratra, Xirbi, Lbn32, Amtel.

The approximated optimal path has been depicted in Figure 6.7, where the dots
represent the computed discrete samples. The switching and final times of the
approximated optimal solution are given in Table 6.4 together with the accumulated
consumed fuel at the end of each leg and the overflying costs for each leg. The
approximated optimal evolution of both state and control variables within the time
domain are represented in Figure 6.8 and Figure 6.9, where the dots represent the
computed discrete samples and the vertical lines correspond to the switching times.

4 Santa Maria: C 9.79; United Kingdom France: C 83.23; Spain (continent): C 71.84; France: C

64.63; Italy: C 78.69; Portugal (Lisbon UIR): C 33.06.



v k,j v k,1 v k,2 v k,3 v k,4 v k,5

v1,j 1 0 0 0 0
v2,j 1 0 0 0 0
v3,j 1 0 0 0 0
v4,j 0 0 0 0 1
v5,j 0 1 0 0 0
v6,j 1 0 0 0 0
v7,j 0 1 0 0 0
v8,j 0 0 1 0 0

Table 6.3: Switching sequence.

Switching times [s] Accumulated Consumption [kg] Overflying Costs [ C]

t̃1 = 951.0 1192.8 0
t̃2 = 6064.3 7995.1 0
t̃3 = 18407.7 23150.3 218.2
t̃4 = 19720.1 24687.4 447.7
t̃5 = 20671.4 25794.2 326.0
t̃6 = 21388.5 26626.2 245.9
t̃7 = 22613.5 28042 413.0
t̃8 = 23533.4 29103.6 310.5
t̃9 = 24829 30417.1 399.4

Table 6.4: Switching times, fuel consumption, and overflying costs.
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Figure 6.7: Approximated optimal path: the dots correspond to the computed samples.
The triangles correspond to the waypoints of set P.
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Figure 6.8: State variables V , χ , m; and consumption (dots corresponding to the

computed samples). Vertical dashed lines correspond to the switching instants.
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Figure 6.9: Control variables µ and T ; and variables CL and VCAS (dots corresponding

to the computed samples). Vertical dashed lines correspond to the switching instants.
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6.2.2 Discussion on the results

The Minlp model used to solve this problem had 1730 variables (40 of them being
integer variables) and 1672 constraints. The Minlp solver took 4726 iterations and 30
nodes, with maximum depth 6 on tree, to find a solution whose objective value was C
32778.48.

The velocity of the aircraft of the approximated optimal solution represented
in Figure 6.8(b) shows a non-steady behaviour in which it slightly decreases as fuel is
burnt. Non steady flight performances are interesting in defining more efficient flight
profiles within a future TBO concept of operations. For instance, varying velocity profiles
have been shown to save fuel [66] [67], but could also serve to absorb ground delays
on air or for defining a more efficient ATFM [69].

The heading angle of the aircraft of the approximated optimal solution represented
in Figure 6.8(d) is also non-steady. Instead of flying segments with constant course,
the aircraft flies slightly modifying the course by acting on ailerons and rudder so that
the bank angle is in general non zero. These maneuvers can be also observed in the
evolution of the bank angle reported in Figure 6.9(d).

The trajectory planning problem can be solved on the ground, as part of the strategic
planning, or during the tactical planning to redefine the trajectory. In both cases a
reduced computational time is a key factor to deliver flight plans or to agree modifications
of planned trajectories with ATC. Therefore, a special effort has been spent on reducing
the computational time and two different strategies have been combined to achieve this
goal.

On the one hand, a 5th degree Gauss-Lobatto integration rule has been used with
72 subintervals. The computation time was 598.69 [s] on a Mac OS X 2.56 [GHz] laptop
computer with 4 GB RAM. To give a quantitative measure of the computational time
reduction that can be achieved with this integration rule, it is worth mentioning that the
resolution of the Minlp problem discretized using a Hermite-Simpson collocation method
with 290 subintervals took 2987 [s] on the same computer and the same approximated
optimal solution was obtained. This is congruent with the analysis given in [36].

On the other hand, an efficient heuristic has been implemented. As exposed
in Section 6.1.2, this heuristic approach has two main steps. First, the integer values
are relaxed to the continuous domain [0, 1], and the resulting Nlp subproblems are
solved to local optimality. Then, using a branch-and-bound framework, a solution that
satisfies the integer requirements is sought. In the branching process the branching
rules can be seen as heuristics aimed at reducing the size of the search tree, i.e., some
regions in which no good integer feasible solution is expected are discarded but there
is no theoretical guarantee that supports the choice.

As pointed out before, there exist exact Minlp solvers for problems such as the
one presented in this dissertation, although they are typically limited to problems of
medium difficulty. To show that exact solvers are not adequate for the problem at hand,
the state-of-the-art solver Couenne [111] was tested. It was not able to compute any
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feasible trajectory. It is worth stressing out again that the difficulty in solving exactly
the aircraft trajectory optimization problem lies not only in its size but also in its highly
nonlinear and non-convex nature. To the best of our knowledge, there exist no practical
method to compute the optimal solution of this problem. Therefore, assessments on the
quality of the solution can only be heuristic. To this purpose, three different tests have
been carried out and will be described below.

First, the problem presented in this dissertation has 58 = 390625 feasible solutions
for the binary variables. Since it is impractical to solve all the corresponding Nlp

subproblems and compare the obtained values of the objective function with the solution
found by Bonmin, a sample of feasible values for the binary variables have been selected.
This sample has been generated based on slight modifications of Bonmin’s computed
sequence of waypoints, in which one of the Bonmin’s computed waypoints is permuted by
another waypoint within its partite set, whereas the remaining waypoints are unchanged.
This sampling results in 32 integer feasible Nlp subproblems, which have been solved
using Ipopt and have been compared to Bonmin’s computed solution. Results show that
Bonmin’s computed solution is always the best.

Second, the sensitivity of the Minlp algorithm to costs due to overflying charges has
been analyzed. For this purpose, a parameter δ ∈ [0, 1] that multiplies the Mayer term
in the objective functional (6.5) has been considered. In this way, δ = 1 corresponds to
the problem in which overflying charges are considered, whereas δ = 0 corresponds to
the problem considering only fuel consumption cost. Table 6.5 shows the performances
of the algorithm for different values of the parameter δ . It can be observed that the
number of explored nodes decreases as the weight assigned to overflying costs increases,
resulting in faster computation and that the selected route is very sensitive to changes
of the values of δ . The 7 values of δ reported in Table 6.5 give rise to 4 different routes
A, B, C , and D listed in Table 6.6.

δ Iterations Nodes tcomp.[s] Obj. func. [ C ] Route Con. [kg] Overflying Costs [ C ]

0 21723 401 1835.67 30014.8 D 30014.8 -

0.05 16553 258 1505.15 30390.38 C 30015.7 374.68

0.1 9147 58 953.09 30647.45 B 30410.1 237.35

0.25 7602 49 788.80 31002.87 B 30410.1 592.77

0.5 6095 36 633.11 31595.23 B 30410.1 1185.1

0.75 5873 37 607.07 32187.6 B 30410.1 1777.5

1 4726 30 598.69 32778.48 A 30417.1 2361.38

Table 6.5: Sensitivity of the algorithm to changes of the overflying costs.
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Route Waypoints

A Yahoo Dovey Vodor Rivak Pepet Bmc11 Ratra Xirbi Lbn32 Amtel

B Yahoo Dovey Vodor Rivak Erwan Bmc11 Ratra Xirbi Lbn32 Amtel

C Yahoo Kanni Ronpo Lapex Kolek Maren Aurillac Ndb Xirbi Lbn32 Amtel

D Yahoo Kanni Novep Lapex Kolek Maren Aurillac Ndb Xirbi Lbn32 Amtel

Table 6.6: Routes A, B, C, and D.

δ Route A Route B Route C Route D

0 30417.6 30410.5 30016.1 30014.8

0.05 30535.6 30528.9 30390.38 30690.86

0.75 32188.26 32187.6 35629.9 36047.5

1 32778.48 32779.96 37501.21 37960.65

Table 6.7: Values of the objective function [ C ] for different routes.

Another test has been conducted to establish if the algorithm provides the most
efficient route for different values of the parameter δ . In Table 6.7 the values of the
objective function corresponding to different routes and different values of δ are reported.
It can been seen that the algorithm always selected the most efficient route for each
value of δ .

Third, the sensitivity of the algorithm to the initial guess of both continuous and
discrete variables has been analyzed. To generate the initial guess of the continuous
variables of each Nlp subproblem, using information on the physical system is important
since a bad initial guess might lead to non-convergence of the Nlp problem. In general,
common flight performances are sufficient to create a general initial guess that leads
to relatively rapid and robust convergence. Such initial guess for the Nlp subproblems
contributes to reduce the overall computational time of the Minlp algorithm since a
large amount of Nlp subproblems must be solved in the branch-and-bound algorithm.
Moreover, having a good initial guess in terms of convergence is important in the branch-
and-bound algorithm since a failure in solving any of the Nlp subproblems might lead
to reject a branch of the search tree that contains the optimal solution. It is worth
pointing out that every single Nlp subproblem computed in the different tests whose
results are reported in Table 6.5 resulted to be feasible and that the interior point
strategy implemented in Ipopt to deal with infeasible initial guesses has contributed to
this result.
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In regard of the initial guesses for the binary variables, as said before, the first
step of the branch-and-bound algorithm is to solve the relaxed Minlp problem, which
is obtained replacing the integrality constraint v k ∈ {0, 1}nvk by v k ∈ [0, 1]nvk ,
k = 1, . . . , N−1. Therefore, the initial guesses for the variables v k , k = 1, . . . , N−1
are actually vectors of real numbers in the interval [0, 1]. Relaxing the integrity of the
variables vq corresponds to request that, at the switching times, the aircraft overflies
points that are convex combinations of the waypoints pk,j , k = 1, . . . , N − 1, j =
1, . . . , nvk . In the case in which overfly costs are not considered, the best option is
to set the initial values so that its convex combination results in the best achievable
solution to the relaxed problem. Using these initial guesses, the results presented
in Table 6.5 for δ = 0 have been obtained. Using different initial guesses for the
variables v k , k = 1, . . . , N − 1, the algorithm converged to the same solution but with
higher computation time.

In the case in which overflying costs are considered, i.e., δ 6= 0, it is not easy to
calculate the best achievable solution to the relaxed problem and thus applying the above
mentioned strategy to compute the initial guesses for the variables v k , k = 1, . . . , N−1,
is difficult. Therefore, the previously described procedure to compute initial guesses for
δ = 0 has been also used for δ = 1 and the algorithm converged with an objective
function value of C 32779.13. To check the quality of this strategy, 25 different initial
guesses have been generated and tested. The algorithm converged 19 times with a
slightly lower value of the objective function C 32778.48, 3 times with C 32779.13,
and 3 times with the value C 37497.92 of the objective function. This shows that, if
overflying costs are considered, the algorithm is more sensitive to the initial guesses
for the binary variables.





7
Conclusions and Future Work

I n this dissertation optimal control techniques have been developed to devise more
efficient aircraft trajectory planning concepts. Since flight planning involves many
factors that can be classified either as continuous or discrete phenomena, together

with decision-making processes, a first effort was made in finding a complete modeling
framework capable of accurately reflect them. A framework modeling based on multiphase
mixed-integer optimal control was proposed to that end. Then, we have concentrated
efforts in finding numerical optimal control techniques and algorithms in order to
effectively find optimal solutions to the trajectory planning problem. First, a multiphase
optimal control approach has been devised in which multiple phases and multiple
dynamical subsystems have been considered. Then, decision-making processes have
been included in the trajectory planning problem, presenting a realistic multiphase
mixed-integer optimal control approach to aircraft trajectory optimization.

The effectiveness of these approaches has been proven solving different single-
aircraft, deterministic trajectory optimization problems. The multiphase mixed-integer
optimal control approach permits discrete and continuous dynamics to be combined.
The decision-making processes have been modeled using binary variables. With these
approaches we have been able to find solutions to flight planning problems considering
issues such as nonlinear aircraft performances, different flap configurations, different
layers of the atmosphere, wind forecasts, amount of departure fuel, multiple operational
constraints, and the determination of the route of waypoints to be followed within an
airspace structure.
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Conclusions

According to the obtained results, we can draw three main conclusions:

a) The multiphase optimal control approach is suitable for effectively define
complete, more efficient, single-aircraft trajectories framed into a constrained-
based trajectory planning paradigm.

b) The multiphase mixed-integer optimal control approach is suitable for modeling
decision making-processes using binary variables and solving fairly realistic
flight planning problems. In particular, the combination of integer variables
and continuous variables in optimal control problems is viable in a complex
environment as it is ATM.

c) The numerical algorithms devised for both approaches are able to find solutions
in time frames compatible not only with strategic but also with tactical planning.

Overall, we can conclude that the optimal control techniques studied in this
dissertation have a strong potentiality in defining more efficient flight plans towards
future operational concepts based on 4D business trajectories.

Open problems and future work

Natural extensions of the applications solved in this thesis are threefold. First,
decision-making processes could involve not only interior point constraints as described
in Chapter 6, but also the selection of dynamical subsystems as introduced in [78].
Second, decision-making processes could be also included into a three dimensional flight
planning problem in which an airspace structure with flight levels and waypoints are
considered as introduced in [117]. Third, environmentally friendly trajectories including
aircraft CO2 and NOx emissions in the objective function and considering areas of
persistent contrail formation could be studied. Moreover, more efforts in wind forecast
modeling are needed to improve the predictability of the trajectory.

The multiphase mixed-integer optimal control approach presented in this dissertation
has also certain limitations that can be considered open problems. First, the (local)
optimality of the Nlp solution has not been proven in practice. Therefore, efforts in
this direction are needed. Second, the Minlp algorithm is only capable of handling a
limited number of binary variables to achieve a solution within reasonable computational
times. In order to increase the number of binary variables, for instance to model a
more realistic airspace graph structure, efforts in finding heuristic approaches capable
of solving harder combinatorial problems with similar computational times are needed.
Third, the approach is restricted to a fixed number of phases. Future work entails thus
extending the approach to problems with variable number of phases.
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From an ATM perspective, the deterministic, single-aircraft trajectory optimization
approach has also limitations since the flight planning problem entails, among other
aspects, considering multiple aircraft and tackling uncertainty. Achievements to these
ends would empower the real implementation of 4D business trajectories, leading to
increases of capacity, safety, economical efficiency, and reductions in the aviation
environmental fingerprint.

Other applications of these methods are, for instance, the design of arrival and
departure procedures in high density airports that include decision-making processes.

Finally, it is interesting to point out that the approaches presented in this thesis
are not exclusively suitable to commercial aircarft flight planning purposes. Other
potential applications include planning UAV missions, such as surveilance misions, or
space missions, such as asteroid interception.





A
The Base of Aircraft DAta

T he Base of Aircraft DAta (BADA) is a collection of ASCII files which specifies
operation performance parameters, airline procedure parameters, and performance
summary tables for 295 aircraft types. This information is designed for use

in trajectory simulation and prediction algorithms within ATM domain. All files are
maintained within a configuration management system at the Eurocontrol Experimental
Centre (EEC) in Brétigny-sur-Orge, France. In particular, we expose here BADA
Revision 3.6 [14].

This appendix aims to summarize the BADA performance models and BADA
performance limitations that have been used in this thesis. For more details and further
information on performance models, performance limitation or airline procedure models,
the reader is encouraged to see BADA Revision 3.6 [14] and posterior versions.
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A.1 BADA performance models

BADA is based in several models for characterizing the 295 aircraft types included
in BADA Revision 3.6. We will detail only those models used in this thesis. For an
in-depth insight on other useful models, the reader is referred to [14, Chap. 3].

Aircraft type

The aircraft model can be found in the so called aircraft type block, in which the
following characteristics are given: ICAO aircraft code; number of engines, neng; engine
type; and wake category (heavy, medium or light).

Four mass BADA operation performance parameters, given in tons, are specified for
each aircraft:

• mref : reference mass;

• mmax : maximum mass (MTOW);

• mmin: minimum mass (OEW); and

• mpyld : maximum payload mass.

Aircraft operating speeds vary with the aircraft mass. This variation is calculated
according to the formula below:

V = Vref

√
m

mref
. (A.1)

Notice that all velocities given as parameters in BADA are reference velocities (Vref ),
and thus, only apply for the reference mass. For any other given mass, the velocity
must be calculated using equation (A.1).

Thrust model

The thrust is calculated in Newtons and includes the contribution from all engines.
The first thrust to be calculated is the maximum climb thrust because it is used as a
reference for the other modes. Under ISA conditions with no temperature deviation the
maximum climb thrust is:

(Tmaxclimb )ISA = CTC1

(
1− he

CTC2
+ CTC3h

2
e

)
,

where he is the altitude above sea level measured in feet, and CTC1 , CTC2 , CTC3 are
BADA operation performance parameters.
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The maximum climb thrust is corrected for temperature deviations in the following
manner:

Tmaxclimb = (Tmaxclimb )ISA(1− CTC5(∆TISA)eff),

where

(∆TISA)eff = ∆TISA − CTC4

constrained to

0 ≤ (∆TISA)effCTC5 ≤ 0.4 and CTC5 ≥ 0,

where ∆TISA measures the deviation from the standard atmosphere in Kelvin degress,
and CTC4 , CTC5 are BADA operation performance parameters.

BADA also provides thrust reference performance values for the different phases:
For climb: T = (Tmaxclimb ). For cruise, the thrust is derived from the dynamic equations
in the case of a cruise at constant speed and constant altitude:

T = D + mg sin γ.

The descent thrust is set by two coefficients depending on the altitude. If the aircraft
is flying above hdes (set by BADA as an attribute of the aircraft) then the thrust is:

T = Cdeshigh(Tmaxclimb ).

If the aircraft is flying below hdes (set by BADA as an attribute of the aircraft) then
the thrust is:

T = Cdeslow (Tmaxclimb ),

which coincides with the thrust when the throttle is in the idle detent position.

Fuel consumption model

The aircraft losses weight while it has the engines running. To model this mass reduction
BADA provides a consumption model in which the thrust specific fuel consumption, η,
given in [kg/(s ·N)], is specified as a function of the true airspeed for jets and truboprop
engines. Herein, we will focus on jets. The fuel flow, ṁ, will be set by the thrust and
the specific fuel consumption. The specific fuel consumption and the fuel flow are
respectively:

η = Cf1
60000 (1 +

3600V
1852Cf2

),

ṁ = −ηT ,

where Cf4, Cf2 are BADA operation performance parameters.

The minimum fuel flow, ṁmin, corresponding to idle thrust or descent conditions is
specified in [kg/minute] as a function of altitude above sea level, h [ft]. Cruise fuel flow,
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ṁcr is calculated using the thrust specific fuel consumption, η, and a cruise fuel fuel
flow factor, Cfcr :

ṁmin = Cf3(1− he
Cf4

),

ṁcr = ηTCfcr ,

where Cf3, Cf4, Cfcr are BADA operation performance parameters. Notice that ṁmin
is related to Tmin.

Aerodynamic model

We give here a brief summary of the aerodynamic characteristics of an aircraft. We
consider the aircraft flying in incompressible subsonic regime, so that the effects of
Mach number, M , on the aerodynamics are dismissed. We also assume symmetric flight,
so that the lateral aerodynamic force, Q, is also necgletable. This means there are two
basic aerodynamic forces defined in the wind axes frame, lift, L, and drag, D. If we
also assume that L and D do not depend on the deflexion of command surfaces, these
aerodynamic forces depend on true airspeed, density of the atmosphere, and geometric
parameters of the aircraft. Turning lift and drag non-dimensional by means of the
dynamic pressure (1/2ρV 2) and the wing surface (S), the lift and drag coefficients can
be calculated as follows:

CL =
2L

ρSV 2 ;

CD = 2D
ρSV 2 .

As will be shown in Section A.2.1, CL can be modeled as a linear function of the angle
of attack, α , except for high angles in which linearity is lost and aircraft stalls, reaching
the maximum coefficient of lift, CLmax .

Drag and lift are related by their coefficients in what is know as aircraft polar. CD
is basically parabolic with respect to CL in incompressible regime, so it is commonly
said that the aircraft has a parabolic drag polar, expressed as:

CD = CD0 + CDiC
2
L , (A.2)

where CD0 is the parasite coefficient, and CDi is the induced coefficient of the polar. Both
are approximately constant in subsonic regime and will be obtained through BADA as
operation performance parameters. Note that both CD0

and CDi vary depending on the
flap configuration. BADA provides operation performance parameters for the following
five flap configurations: take-off (TO); Initial climbing (IC), cruise (CR), approach (AP),
and landing (LD). Notice that BADA uses the notation CD2 (instead of CDi ) for the
induced coefficient of drag, and thus, the BADA operation performance parameters are
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the following:

CD0,TO : parasite drag coefficient (take-off);

CD0,IC : parasite drag coefficient (initial climb);

CD0,CR : parasite drag coefficient (cruise);

CD0,AP : parasite drag coefficient (approach);

CD0,LD : parasite drag coefficient (landing);

CD2,TO : induced drag coefficient (take-off);

CD2,IC : induced drag coefficient (initial climb);

CD2,CR : induced drag coefficient (cruise);

CD2,AP : induced drag coefficient (approach);

CD2,LD : induced drag coefficient (landing);

Given that during landing phase the landing gear must be deployed, the parasite
drag is increased. BADA also provides an operation performance parameter to consider
this fact:

CD0,∆LDG : parasite drag coefficient (landing gear).

Therefore, during landing phase equation (A.2) must be considered as

CD = CD0 + CD0,∆LDG + CDiC
2
L ,

where CD0 + CD0,∆LDG represents the total parasite drag coefficient.

A.2 BADA performance limitations

Since an aircraft has, among other characteristics, a fixed geometry, a limited strength
of the materials used, a maximum thrust for every altitude, the performance is limited.
BADA provides a flight envelope model [14, Chap. 3] and global aircraft parameters [14,
Chap. 5] to take into account such performance limitations.

A.2.1 Flight envelope model

Maximum speeds

For aerodynamic and structural reasons there is an speed or Mach number that must
not be exceeded. If these speeds are exceeded an structural failure may occur, what
normally ends up in a major or fatal failure. Furthermore shock waves may appear
in some locations around the aircraft what increases the drag and generate vibrations.
Thus, the operating maximum speed are:
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1. VMO : This speed expressed in IAS1 may not be deliberately exceeded in any
flight phase.

2. MMO : This Mach number may not be deliberately exceeded in any flight phase.

3. VFE : This speed expressed in IAS is established so that it does not exceed the
design flaps speed.

4. VLO : This speed expressed in IAS may not exceed the speed at which it’s safe
to both extend or retract the landing gear.

5. VLE : This speed expressed in IAS may not exceed the speed at which it’s safe
to fly with the landing gear down and locked.

Minimum speed (Stall)

As there are some maximum speeds there is also a minimum flying speed called stall
speed. For aerodynamic reasons, the aircraft, for a certain aerodynamic configuration,
can reach only a maximum value of lift coefficient depending on the maximum allowable
angle of attack. If the aircraft exceeds the maximum angle of attack, the lift coefficient
will drop heavily and the aircraft would be in stall. The relation between the angle of
attack and the lift coefficient is shown in Figure A.1.

CLmax

CL0

αstall
α

CL

Figure A.1: Lift coefficient curve as a function of angle of attack.

1 VIAS Indicated airspeed (IAS): The direct cockpit instrument reading obtained from the airspeed
indicator, uncorrected for variations in atmospheric density, instrument error or installation error.
Manufacturers use this airspeed as the basis for determining aircraft performance. Normally the difference
between IAS and CAS is very little.
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As the lift coefficient expression is CL = 2L/ρSV 2, and defining the load factor,
n = L/(mg), then we can express the stall speed using the maximum lift coefficient as

VS =

√
2 · n · mg
ρSCLmax

. (A.3)

It is important to note that the stall speed is a function of the load factor as the
maximum lift coefficient is constant for a certain aerodynamic configuration. The load
factor is normally equal to 1 but in some situations like in a turn it uses to be greater.
Therefore the stall speed depends on how the aircraft is moving. The reference stall
speed is when the aircraft is flying straight, with no turns. Below this speed the aircraft
can not fly leveled at constant altitude.

The minimum speed for the aircraft is specified by BADA as follows:

Vmin = CVmin,TO · VS , if in take off; (A.4)

Vmin = CVmin · VS , otherwise; (A.5)

where CVmin,TO, CVmin are BADA global aircraft parameters (see Section A.2.2).

BADA defines stall speeds as aircraft performance parameters, (Vstall)i given in
knots, for the following five flap configurations: take-off (TO); initial climb (IC); cruise
(CR); approach (AP); landing (LD):

(Vstall)TO ≤ (Vstall)IC ≤ (Vstall)CR ≤ (Vstall)AP ≤ (Vstall)LD.

Flight envelope

Structural limitations must be considered in order to establish a safe range for certain
parameters that should not be exceeded in flight. One major parameter to take into
consideration regarding structural stress is the load factor. This parameter has maximum
(nmax ) and minimum (nmin) values that correspond to the maximum strength of the
aircraft structure. Also maximum and minimum speeds are to be considered. Figure A.2
illustrates it.

The closed area belongs to the flyable zone, where the aircraft structural stress
and the speed are within limits. The boundary of stall is calculated using the reference
stall velocity exposed in Section A.2.1.

Ceiling

The ceiling is the maximum altitude at which an aircraft can fly. The ceiling is defined
in a rectilinear, steady, and symmetrical flight with no wind. At the ceiling the ratio of
climb is zero, so the pitch angle of velocity is also zero.
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Stall Zone

Stall Zone

n

nmax

nmin

Flight Zone

VM0 V

Divergency
Zone

Figure A.2: Sketch of a flight envelope.

Using the dynamic equations: T = D = 1
2ρSCDV

2, and remembering the relations
of the drag coefficient with the speed for n=1:

CD = CD0
+ CDi

4(mg)2

ρ2S2V 2
,

then the necessary thrust to fly under those conditions is:

T =
1

2
ρSCD0

V 2 + CDi
2(mg)2

ρSV 2
.

Figure A.3 shows the necessary thrust for an airbus A320 with a clean configuration
at its reference mass. As can be derived from Figure A.3 a minimum thrust is required.
This minimum can be calculated doing the derivative and making it equal to zero,
Tmin = 2mg

√
CD0

CDi . The altitude at which the maximum available thrust is equal to
the minimum one is the ceiling of the aircraft. Using the model described in Section A.1
for the thrust and with an ISA atmosphere, the maximum available thrust is:

Tmax = CTC1(1−
h

CTC2
+ CTC3h

2) · (1 + CTC4CTC5), (A.6)

and after some calculations, herein omitted for the sake of brevity, the operational
ceiling (in feet) is:

hmax/act =

1
CTC2
−

√
1

C2
TC2

− 4CTC3(1−
2mg
√
CD0CDi

CTC1(1+CTC4CTC5)
)

2CTC3
.
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Figure A.3: A-320 thrust required at mref .

BADA defines the operational ceiling as:

hmax/act = hmax + Gt(∆TISA − CTC4) + GW (mmax − m),

where

hmax : maximum altitude at MTOW under ISA conditions for maximum mass;

GW : mass gradient on maximum altitude;

Gt : temperature gradient on maximum altitude;

with:

GW ≥ 0;Gt ≤ 0; if (∆TISA − CTC4) < 0, then: (∆TISA − CTC4) = 0,

with m is the mass of the aircraft [kg]. Notice that hmax is provided by BADA as an
operation performance parameter considering a residual 300 f.p.m. Rate Of Climb (ROC).
Gw and Gt are also provided by BADA as operation performance parameters.

Finally, BADA defines the maximum altitude as:

hu = MIN[hM0, hmax/act ],

where hM0 is the maximum operational height, provided by BADA as an operation
performance parameter in feet above see level.

Figure A.4 shows the operational ceiling for an Airbus A320 in an ISA atmosphere.
Remember that the ceiling is calculated at the minimum required thrust speed. If the
maximum flyable altitude at another speed is to be known, then the equations are to
be derived again for a generic speed.



140 The Base of Aircraft DAta

30000 40000 50000 60000 70000 80000 30000 40000 50000 60000 70000
0

5000

10000

15000

m [Kg]

h m
ax

/a
ct

 [m
]

Figure A.4: Operational ceiling for an Airbus A320.

A.2.2 Global aircraft parameters

BADA also defines parameters that do not depend on the aircraft model, but remain valid
for all aircrafts. These parameters are defined by BADA as global aircraft parameters.
We will detail only those global aircraft parameters used in this thesis. For an in-depth
insight on global aircraft parameters, the reader is referred to [14, Chap. 5].

Maximum acceleration

Maximum acceleration parameters are used to limit the increment in longitudinal true
airspeed (longitudinal acceleration) and rates of climb or descent (normal acceleration).
Among others, BADA defines the following maximum values:

al,max (civ) = 2 [ft/s2];

an,max (civ) = 5 [ft/s2];

where al,max (civ) corresponds to the maximum is the maximum longitudinal acceleration
for civil flights, and an,max (civ) corresponds to the maximum normal acceleration for civil
flights.
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Bank angles

Nominal and maximum bank angles are defined for civil flights. Among others, BADA
defines the following maximum values:

µmax,civ (TO,LD) = ±25◦;

µmax,civ (OTHERS) = ±45◦;

where µmax,civ (TO,LD) corresponds to the maximum bank angles for civil flight during
phases of take-off and landing, and µmax,civ (OTHERS) corresponds to the maximum bank
angles for civil flight during all other phases.

The limitations on the bank angle leads also to limit the rate of turn (χ̇ ) as a
function of the bank angle: χ̇ = g

V tan µ.

Configuration altitude threshold

BADA defines threshold altitudes for the following four flap configurations: take-off
(TO), initial climb (IC), approach (AP), and landing (LD), so that:

Hmax,TO = 400 [ft];

Hmax,IC = 2000 [ft];

Hmax,AP = 8000 [ft];

Hmax,LD = 3000 [ft].

Notice that the selection of the different flap configurations can be done according to
the threshold altitudes above defined, but also considering the different stall speeds.

Minimum speed coefficients

Two minimum speed coefficients are defined by BADA:

CVmin,TO = 1.2;

CVmin = 1.3.

Notice that such global parameters are to be used in equation (A.4) and equation (A.5).
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A.3 A320 performance parameters

# Airbus A320-212

# with CFM56_5_A3 engines

# Block Mass (kg)

m_ref = 64000.0;

m_min = 39000.0;

m_max = 77000.0;

m_pyld = 21500.0;

# Block Aerodynamics

S = 122.6;

CD0_CR = 0.024;

CD0_IC = 0.0242;

CD0_TO = 0.0393;

CD0_AP = 0.0456;

CD0_LD = 0.0838;

CD0_LDG = 0.031200;

CD2_CR = 0.0375;

CD2_IC = 0.0469;

CD2_TO = 0.0396;

CD2_AP = 0.0381;

CD2_LD = 0.0371;

# Block Engine Thrust

C_tc1 = 136050.0;

C_tc2 = 52238.0;

C_tc3 = 2.6637E-11;

C_tc4 = 10.29;

C_tc5 = 0.0058453;

C_tdes_low = 0.009437;

C_tdes_high = 0.031014;

h_des_ft = 15000.0;

C_tdes_app = 0.13;

C_tdes_ld = 0.34;

V_des_ref_kn = 310.0;

M_des_ref = 0.78;

# Block Fuel Consumption

C_f1 = 0.94;

C_f2 = 100000.0;

C_f3 = 8.89;

C_f4 = 81926.0;

C_fcr = 1.06;

# Block Flight Envelope

h_MO_ft = 34354.0;

h_max_ft = 39000.0;

G_t = -130.0;

G_w = 280.0;

# Block airspeed limitations

V_MO_kn = 350.0;

M_MO = 0.82;

(Vstall)_CR = 145.0; # Clean

(Vstall)_IC = 120.0; # 1

(Vstall)_TO = 114.0; # 1+F

(Vstall)_AP = 107.0; # 2

(Vstall)_LD = 101.0; # FULL
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A.4 A330 performance parameters

# Airbus A330-301

# with CF6 80E1 A2 engines

# Block Mass (kg)

m_ref = 174000.0;

m_min = 126000.0;

m_max = 212000.0;

m_pyld = 38000.0;

# Block Flight Envelope

h_MO_ft = 37232.0;

h_max_ft = 41000.0;

G_t = -0.224;

G_w = 99.200005;

# Block Aerodynamics

S = 361.6;

CD0_CR = 0.0186;

CD0_IC = 0.0259;

CD0_TO = 0.0344;

CD0_AP = 0.0555;

CD0_LD = 0.078;

CD2_CR = 0.0297;

CD2_IC = 0.0404;

CD2_TO = 0.037;

CD2_AP = 0.0325;

CD2_LD = 0.0345;

# Block Engine Thrust

C_tc1 = 353620.0;

C_tc2 = 54057.0;

C_tc3 = 1.6042E-11;

C_tc4 = 9.6284;

C_tc5 = 0.00804;

C_tdes_low = 0.026815;

C_tdes_high = 0.040128;

h_des_ft = 15000.0;

C_tdes_app = 0.18;

C_tdes_ld = 0.3;

V_des_ref_kn = 330.0;

M_des_ref = 0.82;

# Block Fuel Consumption

C_f1 = 0.9224;

C_f2 = 1000000.0;

C_f3 = 21.059;

C_f4 = 108280.0;

C_fcr = 0.9184;

# Block airspeed limitations

V_MO_kn = 330.0;

M_MO = 0.86;

(Vstall)_CR = 134.0; # Clean

(Vstall)_IC = 120.0; # 1

(Vstall)_TO = 112.0; # 1+F

(Vstall)_AP = 105.0; # 2

(Vstall)_LD = 99.0; # FULL
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L
Lo siento, pero no quiero ser emperador. Eso no me va. No quiero gobernar o

conquistar a nadie. Me gustaría ayudar a todo el mundo, si fuera posible: a judíos y
gentiles; a negros y blancos. Todos queremos ayudarnos mutuamente. Los seres humanos
son así. Queremos vivir para la felicidad y no para la miseria ajena. No queremos odiarnos
y despreciarnos mutuamente. En este mundo hay sitio para todos. Y la buena tierra es
rica y puede proveer a todos.

El camino de la vida puede ser libre y bello; pero hemos perdido ese camino. La
avaricia ha envenenado las almas de los hombres, ha levantado en el mundo barricadas
de odio, nos ha llevado a la miseria y a la matanza. Hemos aumentado la velocidad. Pero
nos hemos encerrado nosotros mismos dentro de ella. La maquinaria, que proporciona
abundancia, nos ha dejado en la indigencia. Nuestra ciencia nos ha hecho cínicos; nuestra
inteligencia, duros y faltos de sentimientos. Pensamos demasiado y sentimos demasiado
poco. Más que maquinaria, necesitamos humanidad. Más que inteligencia, necesitamos
amabilidad y cortesía. Sin estas cualidades, la vida será violenta y todo se perderá.

El avión y la radio nos han aproximado más. La verdadera naturaleza de estos
adelantos clama por la bondad en el hombre, por la fraternidad universal, por la unidad
de todos nosotros. Mi voz está llegando a millones de seres de todo el mundo, a millones
de hombres, mujeres y niños desesperados, víctimas de un sistema que tortura y encarcela
a personas inocentes. A aquellos que puedan oírme, les digo: No desesperéis.

La desgracia que nos ha caído encima no es más que el paso de la avaricia, la
amargura de los hombres, que temen el camino del progreso humano. El odio de los
hombres pasará, y los dictadores morirán, y el poder que arrebataron al pueblo volverá al
pueblo. Y mientras los hombres mueren, la libertad no perecerá jamás.

¡Soldados! ¡No os entreguéis a esos bestias, que os desprecian, que os esclavizan,
que gobiernan vuestras vidas; diciéndoos qué hacer, qué pensar o qué sentir! Que os
obligan ha hacer la instrucción, que os mal alimentan, que os tratan como a ganado y os
utilizan como carne de cañón. ¡No os entreguéis a esos hombres desnaturalizados, a esos
hombres-máquina con inteligencia y corazones de máquina! ¡Vosotros no sois máquinas!
¡Sois hombres! ¡Con el amor de la humanidad en vuestros corazones! ¡No odiéis! ¡Sólo
aquellos que no son amados odian, los que no son amados y los desnaturalizados!

¡Soldados! ¡No luchéis por la esclavitud! ¡Luchad por la libertad!
En el capítulo diecisiete de san Lucas está escrito que el reino de Dios se halla dentro

del hombre, ¡no de un hombre o de un grupo de hombres, sino de todos los hombres! ¡En
vosotros! Vosotros, el pueblo, tenéis el poder, el poder de crear máquinas. ¡El poder
de crear felicidad! Vosotros, el pueblo, tenéis el poder de hacer que esta vida sea libre
y bella, de hacer de esta vida una maravillosa aventura. Por tanto, en nombre de la
democracia, empleemos ese poder, unámonos todos. Lucharemos por un mundo nuevo, por
un mundo digno, que dará a los hombres la posibilidad de trabajar, que dará a la juventud
un futuro y a los ancianos seguridad.

Prometiéndoos todo esto, las bestias han subido al poder. Pero mienten. No han
cumplido esa promesa. ¡Ni la cumplirán! Los dictadores se dan libertad a sí mismos,
pero esclavizan al pueblo. Ahora, unámonos para liberar el mundo, para terminar con
las barreras nacionales, para terminar con la codicia, con el odio y con la intolerancia.
Luchemos por un mundo de la razón, un mundo en el que la ciencia y el progreso lleven
la felicidad a todos nosotros. ¡Soldados, en nombre de la democracia, unámonos!

Hannah, ¿puedes oírme? Dondequiera que estés, alza los ojos. ¡Mira, Hannah! ¡Las
nubes están desapareciendo! El sol se está abriendo paso a través de ellas. Estamos
saliendo de la oscuridad y penetrando en la luz.¡Estamos entrando en un mundo nuevo,
un mundo más amable, donde los hombres se elevarán sobre su avaricia, su odio y su
brutalidad! ¡Mira, Hannah! ¡Han dado alas al alma del hombre y, por fin, empieza a
volar! ¡Vuela hacia el arco iris, hacia la luz de la esperanza! ¡Alza los ojos, Hannah!
¡Alza los ojos!

Alza los ojos, Hanna.
"El Gran Dictador", escrita y dirigida por Charles Chaplin en 1940.
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