
Universidad Rey Juan Carlos
Departamento de Arquitectura y Tecnoloǵıa de Computadoras,

Ciencias de la Computación e Inteligencia Artificial

Gaming with Emotions: An Architecture
for the Development of Mood-Driven

Characters in Video Games

Thesis defended by

Luis Peña

for the degree of

PhD in Computer Science (Doctor en Informática)

Supervised by

Prof. Dr. Sascha Ossowski & Prof. Dr. Jose M Peña

Madrid, España

Junio 2013

c©2013 - Luis Peña

All rights reserved.

Don Sascha Ossowski, Catedrático del Departamento de Arquitectura y Tec-

noloǵıa de los Computadores, Ciencia de la Computación e Inteligencia Artificial de la

Universidad Rey Juan Carlos.

AUTORIZA:

La presentación de la Tesis Doctoral titulada:

Gaming with Emotions: An Architecture for the Development of

Mood-Driven Characters in Video Games

Realizada porDon Luis Peña Sánchez bajo su inmediata dirección y supervisión

en el Departamento de Arquitectura y Tecnoloǵıa de los Computadores, Ciencia de la Com-

putación e Inteligencia Artificial y que presenta para la obtención del grado de Doctor por

la Universidad Rey Juan Carlos.

Móstoles, 19 de junio de 2013

iii

Don José Maŕıa Peña, Profesor Titular de Universidad del Departamento de Ar-

quitectura y Tecnoloǵıa de Sistemas Informáticos de la Universidad Politécnica de Madrid.

AUTORIZA:

La presentación de la Tesis Doctoral titulada:

Gaming with Emotions: An Architecture for the Development of

Mood-Driven Characters in Video Games

Realizada por Don Luis Peña Sánchez bajo su inmediata dirección y que pre-

senta para la obtención del grado de Doctor por la Universidad Rey Juan Carlos.

Boadilla del Monte, 20 de junio de 2013

v

Thesis advisors Author

Prof. Dr. Sascha Ossowski & Prof. Dr. Jose M Peña Luis Peña

Gaming with Emotions: An Architecture for the Development of

Mood-Driven Characters in Video Games

Abstract

In the present dissertation, we study the emotional component of the behavior of

artificial characters in video games. Our primary aim is to improve the video game playing

experience by increasing the sense of realism in gaming scenarios.

For this purpose, we develop an emotion simulation model called EEP that ac-

counts for the impact of external events on a character’s mood state, and analyze its rel-

evance for the development of mood-driven behaviors as part of the control strategies of

artificial characters. In addition, we provide a mechanism that improves the development

procedure of video game characters, by developing a new hybrid machine learning model

called WEREWoLF that purposefully combines reinforcement learning and evolutionary

techniques, so as to automatically generate character control strategies associated to dif-

ferent mood states. Both models are integrated into the AGCBAR architecture, which

constitutes the solution proposed in this dissertation to the problem of efficiently designing

mood-driven strategies for artificial characters in video games. The AGCBAR architecture

is capable of encompassing a broad variety of game engine cores, and is thus applicable to

a wide spectrum of video games.

We assess the adequacy of the above architecture and its components in different

ways. While the EEP model has been evaluated on the basis of the judgment of expert

gamers, the WEREWoLF algorithm has undergone a quantitative evaluation in a video

game scenario. Finally, we implement the complete architecture together with an experi-

mental video game framework in a complex case study, comparing the development effort of

mood-driven artificial characters using the AGCBAR architecture together with EEP and

WEREWoLF, to traditional implementation techniques.

vii

Acknowledgments

Completing this doctoral work has been a wonderful and often overwhelming ex-

perience. It would not have been possible to write this doctoral thesis without the help and

support of the kind people around me, to only some of whom it is possible to give particular

mention here. But, I want to extend all my thanks to all of them.

First, this thesis would not have been possible without the help, support and

patience of my supervisors, Prof. Dr. Sascha Ossowski and Prof. Dr. José-Maŕıa Peña.

Their advice have been invaluable on both academic and personal level, for which I extremely

grateful.

I would like to acknowledge the support of the Artificial Intelligence Group of the

Universidad Rey Juan Carlos, they make possible my research and the success of this work

was mostly done thank to their financial, technical and human support.

Thanks also to all people from the Game Intelligence Group at the University of

Essex for hosting me there. I really appreciate their help, their warm welcome, and their

support.

Loads of thanks to the people that review and comment my work. Thanks Diego

Fradejas for his development in the vBattle interface and his valuable ideas about the

game. And, Carlos Millan for his aid in the development of the storytelling scenario.

Now, I want to include some words in Spanish:

Gracias a todos mis amigos que he dejado de ver por realizar esta tesis y que, aún

aśı, me siguen hablando.

Quiero agradecer muy especialmente a toda mi familia por su incondicional apoyo,

ellos han hecho posible mis largas horas de trabajo, animándome y ayudándome cont́ınuamente.

¡Gracias a todos!

Papá, mamá, ¡muchas gracias por estar ah́ı en todo momento! Gracias hermano

por animarme de principio a fin en esta nueva etapa, por tus consejos y por tus ideas.

Y, finalmente, ¡gracias Vero! tu has estado a mi lado desde que pensé empezar

este trabajo y siempre me has apoyado, en mis éxitos y en mis fracasos. A ti te debo la

fuente más importante de enerǵıa para este trabajo, nuestros fantásticos hijos: Claudia y

Daŕıo.

ix

to Vero,

Claudia,

and Dario.

x

Contents

List of Figures . xv

List of Tables . xvii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Why making a video-game related thesis? 1

1.2 Objectives . 4

1.3 Methodology . 6

1.3.1 Architecture Design . 7

1.3.2 Emotional Model Implementation 7

1.3.3 Learning Algorithm Implementation 8

1.3.4 Integration of the Architecture Components 8

1.4 Structure of the Thesis . 9

2 State of the Art 11

2.1 Cognitive Psychology Models of Emotions 11

2.1.1 Appraisal Theory . 12

2.1.2 OCC Appraisal Theory . 14

2.1.3 Dimensional Theory . 16

2.2 Emotional Models for Computational Agents 20

2.2.1 EMA: A Process Model of Appraisal Dynamics 20

2.2.2 FearNot! . 26

2.2.3 ALMA Model . 30

2.2.4 WASABI: Affect Simulation for Agents with Believable Interactivity 33

2.3 Reinforcement Learning Techniques . 36

2.3.1 SARSA and Q-Learning . 38

2.3.2 Win or Learn Fast. WoLF . 41

2.3.3 Evolutionary Techniques for Reinforcement Learning 41

2.4 Discussion . 44

3 General Model Architecture 49

3.1 General Description of AGCBAR Architecture 50

3.1.1 AGCBAR Architecture Concerns . 51

3.2 AGCBAR Architecture. Structural View . 51

3.2.1 AGCBAR Architecture: Engines . 55

xi

xii Contents

3.3 AGCBAR Architecture. Dynamic View . 58

3.3.1 Concerns Application Phases . 60
3.4 AGCBAR Architecture Design and Implementation Guidelines 66

3.4.1 Events and Moods Dictionaries . 69
3.4.2 Environment State Dictionary . 70

3.4.3 Emotional Event Interface . 71
3.4.4 Mood Interface . 72

3.4.5 Environment State Interface . 72
3.4.6 Goal Dictionary, Interface and Selection Process 73

3.4.7 Action Dictionary and Action Interface 74
3.4.8 Strategy Selection Process . 75

3.4.9 Game Engine . 76
3.4.10 Emotional Engine . 77

3.4.11 Learning Engine . 77
3.5 Discussion . 78

4 Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 81

4.1 EEP Model as Emotional Engine inAGCBAR Architecture 82
4.2 Usage of Cognitive Psychology Concepts in EEP 83

4.2.1 OCC Model . 83
4.2.2 Big Five Personality Traits . 84

4.2.3 P leasure-Arousal-Dominance Emotional & Temperament Model . . 85
4.2.4 Emotional Engine Requirements . 85

4.3 Emotional Elicitation Process . 88
4.3.1 Architecture Overview . 88

4.3.2 Architecture Dynamic View . 90
4.3.3 Mood Vector Space . 91

4.3.4 Conceptual Dictionaries . 93
4.3.5 Character Profile . 95

4.3.6 EEP Engine . 99
4.3.7 EEP Event Evaluation Cycle . 104

4.4 EEP Applied to Character Controllers . 105
4.4.1 Mood Evolution . 107

4.4.2 Evaluation of the Combat Scenario 111
4.5 EEP for Storytelling Support . 112

4.5.1 Proposed Storyline . 113
4.5.2 General Flow: The Traditional Way 114

4.5.3 Emotional Alternative Paths: EEP-based Design 116
4.5.4 Evaluation of the Storytelling Scenario 119

4.6 Discussion . 120

5 WEREWoLF Model 125
5.1 WEREWoLF as Learning Engine inAGCBAR Architecture 126

5.2 WEREWoLF Algorithm . 128
5.2.1 WEREWoLF Elements . 128

Contents xiii

5.3 Evaluating WEREWoLF Performance . 131

5.3.1 Experimental Framework . 131

5.3.2 Experimental Setup . 133

5.3.3 Experimental Results . 137

5.4 Discussion . 142

6 vBattle Experimentation Framework 143

6.1 vBattle Game Design . 144

6.1.1 Game Concept . 144

6.1.2 Game Elements: Players, Avatars and Game Bits 144

6.1.3 Game Mechanisms . 150

6.1.4 Goals . 155

6.1.5 Game State and Visible Information 156

6.1.6 vBattle Implementation . 157

6.2 Integration Proof-of-Concept . 163

6.2.1 vBattle Scenario Implementation 163

6.2.2 AGCBAR Architecture Integration Issues 165

6.2.3 Evaluation Criteria Overview . 168

6.2.4 Development Costs Evaluation . 169

6.3 Discussion . 173

7 Conclusion 176

7.1 Contributions . 176

7.1.1 Contributions Overview . 176

7.1.2 Contribution in the Emotional Modeling Context 177

7.1.3 Contribution in the Learning Controller Context 178

7.1.4 Contribution in the Game Development Architectures Context . . . 179

7.1.5 Other Contributions . 179

7.2 Future Work . 180

7.3 Key Publications Produced during this Thesis 182

A Terminology and Acronyms 183

A.1 Glossary . 183

A.2 Symbols and Variables . 186

B EEP Model Appendix 188

B.1 Mood Vector Space: Formal Representation 188

B.1.1 Mood Space . 189

B.1.2 Mood Vector Space . 189

B.1.3 Extended Mood Space . 191

B.1.4 Topological Mood Space . 192

B.1.5 Attenuated Mood Space . 193

B.1.6 Emotional Agent System in a Mood Vector Space 193

B.2 Mood Ontology . 194

B.3 Combat Scenario Example . 196

xiv Contents

B.3.1 Orc Boss Profile . 196
B.3.2 Orc Boss’s Mood Evolution Through Time Steps 197
B.3.3 Human Archer Profile . 197
B.3.4 Combat Scenario Questionnaire . 199

B.4 Storytelling Scenario Example . 199
B.4.1 Sad Girl Profile . 199
B.4.2 Storytelling Questionnaire . 201

C WereWoLF Algorithm Appendix 202

D vBattle Experimentation Framework 204
D.1 AGCBAR Architectural Dictionaries . 204
D.2 EEP Model Conceptual Dictionaries . 206

E Resumen en español 207
E.1 Antecedentes . 207

E.1.1 ¿Por qué hacer una tesis sobre videojuegos? 207
E.2 Objetivos . 211
E.3 Metodoloǵıa . 212
E.4 Conclusiones . 213

E.4.1 Mejorar la experiencia del jugador 213
E.4.2 Contribuciones al modelado emocional 214
E.4.3 Contribuciones en el contexto de los controladores de aprendizaje . . 215
E.4.4 Contribución en el contexto de desarrollo de arquitecturas de juego . 216

References 217

List of Figures

2.1 A history of computational model of emotions 13

2.2 Event appraisal on OCC Model . 15

2.3 ALMA layer model . 31

2.4 ALMA Pull-Push Mood Change Function 32

2.5 WASABI Embodiment Architecture . 35

2.6 A standard reinforcement-learning model 36

3.1 AGCBAR Architecture: Structural View. 52

3.2 AGCBAR Architecture: Dictionaries. 54

3.3 AGCBAR Architecture: Goal and Strategy Matching. 55

3.4 AGCBAR Architecture: Dynamic View. 59

3.5 AGCBAR Architecture Components: Run-Time. 61

3.6 AGCBAR Architecture Components: Off-Line 61

3.7 AGCBAR Automatic Controller Creation: Learning Engine. 62

3.8 AGCBAR Automatic Controller Creation: Goal and Strategy Matching. . . 62

3.9 AGCBAR Run-Time Strategy Selection. 63

3.10 AGCBAR Mood Dynamics: Game Engine. 64

3.11 AGCBAR Mood Dynamics: Emotional Engine. 64

3.12 AGCBAR Architecture Components: Action Selection. 65

3.13 AGCBAR Basic Game Loop. 65

3.14 AGCBAR Architecture: Concern Composition. 67

3.15 AGCBAR Architecture: Concern Implementation. 68

4.1 EEP Architecture Analysis. 83

4.2 EEP General Architecture. 89

4.3 EEP Instances per Character. 92

4.4 MVS example. 93

4.5 EEP Engine Event Evaluation. 100

4.6 Combat Scenario: Orc Boss mood evolution along time. 110

4.7 Combat Scenario: Human Archer ’s mood evolution along time. 111

4.8 Storytelling Scenario: Abstract general plot of the story. 115

4.9 Storytelling Scenario: Representation of the Relationships. 117

4.10 Storytelling Scenario: Representation of action dependencies. 119

xv

xvi List of Figures

5.1 WEREWoLF Architecture Analysis. 127
5.2 WEREWoLF General Schema. 129
5.3 WEREWoLF Individual Implementation. 131
5.4 WEREWoLF Evaluation: Behavior Trees I. 134
5.5 WEREWoLF Evaluation: Behavior Trees II. 135
5.6 WEREWoLF Evaluation: Behavior Trees III. 136
5.7 WEREWoLF Evaluation: Average win ratio Vs ”easy” controllers 138
5.8 WEREWoLF Evaluation: Average win ratio Vs ”hard” controllers 140
5.9 WEREWoLF Evaluation: Fitness evolution vs E SMART. 141
5.10 WEREWoLF Evaluation: Fitness evolution vs E BT ALL. 141

6.1 vBattle battlefield elements. 147
6.2 vBattle timeline of the event sequence. 151
6.3 vBattle game state. 157
6.4 vBattle Framework Components: Analysis View. 160
6.5 vBattle Framework Components: Design View 160
6.6 vBattle Proof-of-Concept: Contrast Static Controllers. 165
6.7 vBattle Proof-of-Concept: Scenario Setup. 166
6.8 Mood Dynamics & Number of controllers ratio. 169
6.9 vBattle Proof-of-Concept: COCOMO Development Effort Metric 173

B.1 EEP Mood Ontology Example . 195
B.2 EEP Mood Ontology Example: Angry . 196

List of Tables

2.1 PAD Space Octants . 20

2.2 Cognitive Operators of EMA . 24

2.3 Appraisal variables of EMA . 25

2.4 Coping Strategies in EMA . 27

2.5 Primary emotions at WASABI . 34

4.1 Emotions used in the EEP Model . 84

4.2 Examples of different EEP Conceptual Dictionaries. 95

4.3 Example of the EEP Emotional Parameters 97

4.4 Mehrabian’s Big Five to PAD transformation rules 98

4.5 Example of Mood Tags in Combat Scenario 99

4.6 EEP Attribution Emotions Production . 101

4.7 EEP Well-Being and Fortune-of-Others Emotions Production 102

4.8 EEP Compound Emotions Production . 102

4.9 EEP Attraction Emotions Production . 102

4.10 OCC to PAD Mapping. 103

4.11 Combat Scenario: Questionnaire Results . 112

4.12 Storytelling Scenario: List of Non-Playing Characters 114

4.13 Storytelling Scenario: Target Mood Tags for the EEP-Based Design 116

4.14 Storytelling Scenario: Questionnaire Results 120

4.15 EEP Model compared with EMA and ALMA. 124

5.1 WEREWoLF Evaluation: Average Ranking and Win Ratio. 138

5.2 WEREWoLF Evaluation: Statistical validation 139

5.3 WEREWoLF Evaluation: Average Reward. 140

6.1 vBattle Basic Elements . 145

6.2 vBattle Battlefield Elements . 146

6.3 vBattle Combatant’s Characteristics. 149

6.4 vBattle Faction Leader’s Actions . 153

6.5 vBattle Combatant’s Action Groups . 154

6.6 vBattle Combatants’ Combat Actions . 154

6.7 vBattle Combatants’ Defensive Actions 155

6.8 vBattle Proof-of-Concept: Lines of Code 172

xvii

List of Tables 1

6.9 vBattle Proof-of-Concept: COCOMO Development Effort 172

B.1 Combat Scenario: Mood State Evolution of the Orc Boss. 197
B.2 Combat Scenario: Evaluation Questionnaire. 199
B.3 Storytelling Scenario: Evaluation Questionnaire 201

Chapter 1

Introduction

It should be noted that the games of

children are not games, and must be

considered as their most serious actions

Michel de Montaigne

1.1 Motivation

1.1.1 Why making a video-game related thesis?

From a business perspective, the foremost reason for doing research in the field of

video games is their ever-growing economic relevance.1

The last market trend report “Gaming Ecosystem 2011” 2 states that hardware and

game sales exceeded US$74.000 millions in 2011, which exceeds the US$67.000 millions from

2010. The video game industry is the major entertainment business since the last decade,

outperforming then cinema and the music ones. As clearly shown by the CBS analysis:

only the video game contents (considering them as the final game product) represent a

US$23.000 millions of economic profit that is three times bigger than the music industry

gains (US$6.900 million) and double than the cinema (US$10.600 million). In the context of

software development, the numbers also show that video game development represents not

only the most profitable branch in the ICT-related industry but also the largest in terms of

gross income.

Nevertheless, as a software development industry, video game development has its

own particular shortcomings: it is constrained by very short software development cycles

in which the activities of graphics and music designers, story script writers, or final editors,

1http://www.theesa.com/facts/pdfs/VideoGames21stCentury 2010.pdf

2http://www.gartner.com/newsroom/id/1737414

1

http://www.theesa.com/facts/pdfs/VideoGames21stCentury_2010.pdf
http://www.gartner.com/newsroom/id/1737414

2 Chapter 1: Introduction

represent a significant amount of time and resources, compared to the time and resources

spent by the developers and programmers [8]. In such scenario, the software development

is restricted by the appropriate adjustment of some particular behaviors, like the design

of artificial intelligence controllers, the programming of graphical effects and the typing of

all the different pieces of the project together. This kind of development process deeply

relies on the existence of powerful and complete frameworks to support rapid and effective

development [70]. These frameworks include graphical engines, event control mechanisms,

templates for control mechanisms, basic search, and planning and decision algorithms to

name only a few of the most relevant aspects.

Nowadays, the video game industry has evolved towards more realistic games, not

only in terms of the visual and graphic qualities, but also in terms of the behavior of the

different characters of the game. In the last few years, Massive Multiplayer On-Line Games

(MMOGs), such as World of Warcraft, emerged to satisfy the needs of more exigent Gamers

(game players) that demanded that the new characters in their games were something more

than carbon-copy versions of stereotypes. To respond to such consumer demands, playing

with other human players offers the thrill of interesting enemies or allies with surprising

reactions to the events of the game, a kind of behavior not fully achieved by virtual players

controlled by artificial intelligence game controllers. These MMOGs have represented a

revolution that has improved the gaming experience and the satisfaction of a large number

of players interacting in the virtual world.

Although the MMOGs have boosted the industry in the last few years3, the New-

zoo’s trend report shows that their market is growing in terms of number of games, amount

of people paying and the money spent. But, the gamers also demand more advanced games

that require aspects far beyond more realistic graphics. For them, there are considerations

of great importance in aspects such as human-like behavior, adaptive strategies of the op-

ponents, on-the-fly level and scenario generation or open interaction with the agents and

the environment.

On top of that, the video game industry, and in particular the European industry

has to compete with huge companies in the US or Asia4, companies that are able to recruit

large teams of designers and developers for the creation of the next versions of any of the

AAA class games (big budget video game productions) that each year are issued worldwide.

These teams can develop not only the contents for the new games but also the additional

resources to update or even re-design the software platform they use.

In today’s video game development field, the success factor has not only been

the mere technological supremacy but mostly the intuition and the creativity of the game

designers in the conception or in the approach of the game. Here is an example that clearly

3http://www.newzoo.com/trend-reports/mmo-trend-report/

4http://www.b105.fi/egdf/wp-content/uploads/2011/06/EGDF-Policy-papers-2nd-edition-Game-
Development-and-Digital-Growth-web.pdf

http://www.newzoo.com/trend-reports/mmo-trend-report/
http://www.b105.fi/egdf/wp-content/uploads/2011/06/EGDF-Policy-papers-2nd-edition-Game-Development-and-Digital-Growth-web.pdf

Chapter 1: Introduction 3

illustrates this situation5: from the three major home video consoles, Sony PS3 has been

the most advanced in terms of the core technology underneath, followed by Microsoft Xbox

and far away from Nintendo Wii. Even though the technological possibilities of the Sony

platform outperform the Nintendo alternative, Wii developers have succeeded in the design

of highly participative and interactive video games that have opened new markets and

rocketed Nintendo’s market share to 27% more than Sony’s share in its segment. This has

been supported by the design of new interactive game devices that have made the brilliant

ideas of new game concepts possible.

Thus, if we observe the budget and the sale figures of this industry, it is easy to

infer the importance and relevance in terms of investments and, so then, the interest in

research in the different fields of the computer science that can be applied successfully in

their projects6.

Why writing an AI video game thesis?

As reported by Ralph Edwards’ article on the economics of games7, the necessity

of high-quality graphics, complex content and richer storytelling and scripting have made:

. . . the size of teams required to make games for the newer consoles dou-
bling when compared to the previous generation, particularly with the number of
modelers, animators, and other artists now needed, you can see why the cost of
development keeps making significant jumps for each subsequent new generation
of consoles.

Thus, today’s AAA class games require sophisticated character models. Still,

while in such games the visual aspects of the virtual characters are usually well polished,

their behavior has only recently been considered as important as the visual effects. In the

past few years, game development has applied static off-the-shelf solutions that sometimes

led to inflexible and unrealistic behaviors. Of course, this could cause players to become

dissatisfied with the game: they wanted to have the feeling that the characters in the

scenario had a purpose and a goal, and were not just roaming around the scene. Today,

different planning and reasoning techniques have been adapted to produce more effective

(rational) behaviors of the virtual characters as well as more complex interactions with

them. Still, in order for the virtual characters to be more realistic and believable, they

should also be (sometimes) surprising and challenging for the player, not always making

fully rational decisions, but also the ones that are motivated by an emotional response to

the environment and the recent events. This task grows in complexity as both the number

of different game agents and the number of possible actions increase.

5http://www.vgchartz.com/tools/hw date.php?reg=Global&ending=Yearly

6http://www.polygon.com/2012/10/1/3439738/the-state-of-games-state-of-aaa

7http://www.ign.com/articles/2006/05/06/the-economics-of-game-publishing

http://www.vgchartz.com/tools/hw_date.php?reg=Global&ending=Yearly
http://www.polygon.com/2012/10/1/3439738/the-state-of-games-state-of-aaa
http://www.ign.com/articles/2006/05/06/the-economics-of-game-publishing

4 Chapter 1: Introduction

Even when the graphic quality of a video game is one of the major issues for

selling a new product, the fidelity of the users, buying new editions year after year, relies

on other aspects such as the story script or the playing experience. A key factor in this

playing experience is the behavior of the agents in the game[33]. We must consider that the

behavior of the agents, as well as the rest of the aspects of the game, are developed inside

of a short-term highly-demanding industry. Putting all these considerations together, the

design of appropriate agent controllers in the least-expensive manner is a requirement of

modern video game design.

As it was previously stated, besides the graphics, the success of a game also depends

heavily on other aspects such as the story script or the playing experience. A key factor

of the playing experience is the behavior of the agents in the game, which are controlled

by the artificial intelligence routines (agent controllers and planners)[91]. State-of-the-art

artificial intelligence in video games has greatly evolved in the last few years. More advanced

intelligence techniques have substituted the traditional rule-based controllers. Although

these new methods have improved the quality of new controllers, they require a lot of hand

coding and tuning efforts by the developers. Moreover, the development of more believable

and human-like behaviors are still pending issues in today’s video games.

The industry needs to adopt a new technology in order to achieve these results in a

constrained time frame, derived from the timings and work flows of their development[17].

Unfortunately, the industry, pushed by market deadlines, invests less than it would be

desirable on the research of new advances in this field. The reason behind this is that it is

important for the industry to speed-up the development time of the characters’ controllers

reaching the best quality of these controllers in a limited amount of time. They tend to

apply those well-established procedures to develop existing controllers.

Nevertheless, even when the industry follows the aforementioned path, there is a

huge opportunity to conduct active research on adaptive and tailored artificial intelligence

mechanisms, focused on two major objectives (1) to create more believable charac-

ter behavior and (2) to assist game design in the coding of intelligent game

controllers.

1.2 Objectives

This thesis is motivated by the insight that the success of a new video game product

does not only rely on pure technology but also on the ideas that make game experience

challenging, addictive and new. Therefore, we set out from the following hypothesis:

It is possible to facilitate the development of video game controllers for the virtual
characters applying learning techniques and personality traits.

Furthermore, the automatic or computer-assisted creation of controllers and the

application of emotional models to characters’ behaviors can provide an improvement in

Chapter 1: Introduction 5

the design of the simulated environments provided by the video games. Thereby, it can

introduce a new factor to bring sense of a more realistic environment and a better player

experience through the support tools that can be included in the development cycle of

the video games, producing more believable characters. Thus, this thesis pursues a set of

objectives:

1. After considering the different open issues that can provide an improvement in the

development phase of the entertainment software, there are many focused on the

character’s behavior (aside from their visual appearance and animation). The

main goal of this thesis is to come up with methods and mechanisms that improve

this specific software development on:

(a) The automatic creation of controllers that produce strategies that can

be used, at least as baseline, for the video game characters. The pro-

gramming of character controllers is time consuming and error-prone, so mecha-

nisms that can automatically provide some baseline behaviors in certain scenarios

could save many resources in the development phase.

(b) The sense of realism that can lead to a richer experience has primordial impor-

tance on the development of new video games. Photo realistic graphics (which

have greatly improved) must be complemented with believable behaviors. Thus,

we identify the necessity of dealing with the emotional characteristics

and personality profiles of the characters influenced by the perception of the

environment.

Therefore, to achieve this objective, we propose the creation of a model or archi-

tecture that can introduce a formalized and standardized mechanism with

these two features.

2. The architecture must be flexible enough to allow the application of a variety of

components that can bring up different implementations of controllers and emotional

models, so it can be used by different approaches whenever they are compliant with

the requirements of the architecture. It makes the model more applicable and ex-

tensible getting profit from the knowledge of the different development teams, which

are usually specialized in some techniques that can be applied to the development

through this architecture.

3. In terms of experimentation and applicability, another main goal is to create a set of

techniques, models and algorithms that can be applied on the proposed architec-

ture which meet the requirements of the field of application, not only on the

computational aspects, but on the final objective of making more believable characters

that can be controlled by automatically created behaviors. Therefore, we present the

objective of creating an algorithm that can build strategies in complex environments

6 Chapter 1: Introduction

(as any scenario of a commercial video game) guided by different goals; these goals

are set by the final objectives endowed by the current mood of the character. Thus,

the character must “experience” the emotions produced by the environment events

so he can reach different moods. We also need to create an emotional model that

is flexible enough to be generally used in the video game environments, and that is

powerful enough to represent faithfully the emotional mechanisms.

4. Finally, we find of crucial importance the demonstration of the architecture and

the models in the real environment of video game development, focusing our

attention on the constraints of the development process of this kind of software which

are mainly time and complexity. The architecture and the models that we propose

must be tested on frameworks or products that validate their application in future

developments.

1.3 Methodology

This thesis addresses the objectives described above: creating an architecture that

can include the components necessary to support the automatic creation of controllers for

video game characters, adding the emotional behavior to increase the believability in these

characters.

Therefore, we apply a top-down approach in the design of the solution.

➀ We formulate a general description of the components that we want to include (de-

tailed in Section 1.3.1).

➁ The different components are analyzed in a bottom-up approach, because we want an

architecture applicable to the specific field of video game design and production, so we

need to extract the key features of the application environment. This phase details

the processes expected to be performed by each of the components according to a

set of pre and post conditions: an abstract specification of the procedural components

(these steps are described in Sections 1.3.2 and 1.3.3).

➂ We establish the necessary information exchange interfaces that grant the intercommu-

nication between the components across the architecture. At this point, we describe

the input data required by the components and the output data produced by the

components.

With the aforementioned three steps, we define the architecture proposed as solution (fully

described in Section 1.3.4).

➃ As an example, we implement the architecture in a video game framework to apply the

techniques to create the automatic controllers and to provide the emotional behavior

in a game scenario.

Chapter 1: Introduction 7

➄ We validate each of the implemented components of the architecture following the

specifications, and we also test each of them independently.

➅ Finally, we test the integration of the components to provide a complete solution in

the context of a video game.

1.3.1 Architecture Design

For the architecture design, we decompose the whole solution in three major com-

ponents: the game engine, the mechanism to simulate the emotions and the support for the

automatic creation of controllers.

The first element, the game engine, represents the basic component of any video

game. It encloses the logic, rules and features of the game itself. This element maintains

the environment where the characters are at. For the experimental part of the thesis, we

propose to use both an existing commercial game engine, wrapped to match the expected

interfaces, and a custom game engine with configurable levels of details as well.

The simulation of emotional responses is substantiated by a component that con-

tains the necessary structures to ensure its credibility. These structures are the emotional

models, which have their basis in applied psychology. We analyze some models from cogni-

tive psychology to extract its characteristics, so we can apply them in our architecture.

The creation of the controllers can be addressed by different approaches. The

soft computing approach arises as a feasible mechanism. The automatic exploration of the

possible solutions to a proposed problem is pretty similar to the way that a character can

learn to play a game. These techniques explore different strategies in different scenarios

trying to maximize their expected outcome as result of the application of the rules of

the game. We study the novel combination of soft computing and reinforcement learning

algorithms as a possible solution as each of them has previously been applied on a wide

set of problems. From these algorithms, we select the features that the architecture must

provide in order to enable the learning of strategies by the characters involved in a video

game.

Therefore, with the features extracted from the different models we specify the

interfaces that are defined to ensure the communication among the different components.

These interfaces, characteristics and constraints, are specified for the component implemen-

tations.

1.3.2 Emotional Model Implementation

With the specifications extracted during the design of the architecture we im-

plement an emotional model that can act as the component in charge of the emotional

responses. The characters using the architecture must take the changes produced in the

environment as feedback to produce their emotional responses according to the simulation

model implemented by the component.

8 Chapter 1: Introduction

As an exemplification of the usage of the proposed emotional model, we test it

on a small scenario where the emotional responses can be seen in action. The emotional

model is flexible enough to make possible the development of this scenario on top of the

aforementioned commercial video game engine.

Therefore, the emotional model is presented as a deliverable component that

matches the parameters, structures and interfaces to be included in the proposed archi-

tecture.

1.3.3 Learning Algorithm Implementation

As in the case of the emotional model, we implement an algorithm that meets the

requirements of the architecture and environment. The algorithm must be applicable to the

video game environment. Thus, the learning phase length, the complexity of the environ-

ment and the diversity of actions are problems for the application of many of the standard

learning algorithms. Furthermore, a challenging research question it is the application of

an approach based on a combination of different techniques of computation learning.

Henceforth, a new hybrid algorithm is tested as a solution to this kind of problems.

We create a customized version of a video game and prove the convergence of the learned

strategies to a competitive solution generated in an automatic way for the case of this game

engine.

Finally, the interfaces and features required by the automatic controller proce-

dure referred by the architecture are fulfilled by the implementation of this new learning

algorithm.

1.3.4 Integration of the Architecture Components

Finally, we include the two components in the architecture. We extend the custom

video game framework to test the integration of the elements with a game engine. The game

should be complex enough to represent the characteristics of, at least, one genre of video

game. Moreover, the characters and environments included in this video game should be

rich enough to display the learned strategies and the emotional responses addressed by this

thesis.

As a matter of fact, this part of the methodology tackles the cost-effectiveness of

the approach presented by this thesis. Once each of the components have been indepen-

dently validated, the integration of both has to be tested. In this sense, the comparison of

the resources required to fulfill the development of the character controllers is performed be-

tween a standard hand-coded version against the assisted way for a fully-integrated strategic

and emotional control set.

Chapter 1: Introduction 9

1.4 Structure of the Thesis

The thesis is structured as follows:

1. Chapter 2 provides a survey of the state of the art in the different research fields that

this thesis is draws upon; in particular:

• emotional models developed in different scenarios for virtual characters. We

analyze the psychology rationale underlying these models and the main parts

needed for a well founded model for the application of emotions.

• soft computing approaches that can be used for automatic controller creation

and that we use as basis for the design of the Learning Engine implemented in

the proposed architecture.

2. In Chapter 3, we present the AGCBAR Architecture developed in order to achieve the

main objectives pursued by this thesis. We illustrate the different restrictions and in-

terfaces needed by components that implement the different parts of the architecture.

Later on, we present a set of guidelines for easing the application of the architecture

in different scenarios.

3. Chapter 4 describes the definition, implementation and validation of the EEP Model

which is used as a sample implementation of an Emotional Engine that can be used in

the AGCBAR Architecture. In order to carry out the validation, we have considered

as set of independent tests to evaluate EEP model, outside of AGCBAR Architecture.

4. Next, Chapter 5 presents a proposed Learning Engine (called WereWoLF) imple-

mented for the architecture. As in the case of the EEP Model, the preliminary vali-

dation is made outside from the AGCBAR Architecture.

5. The experimental results of the AGCBAR Architecture, presented at Chapter 6, were

obtained by the implementation of the different components in a video game frame-

work named vBattle. The implemented scenario compares the development effort

of the different controller development approaches.

6. Finally, in Chapter 7 we discuss the results achieved in the thesis and propose future

work guidelines for the models and the architecture.

Chapter 2

State of the Art

Human behavior flows from three main

sources: desire, emotion, and

knowledge.

Plato

Video games are supported by many technologies, from the purely visual and aes-

thetic disciplines, such as graphics design, to the extremely technical hardware technology,

like GPU massive multi-threading. In this enormous pastiche of mechanisms, technologies

and methodologies, an important aspects to be considered are the models that represent

the behavior of the characters, as presented in the previous chapter. From these models we

observed some technologies that are not fully applied in the video game development and

we think that should be applied and that they would make a significant improvement on

the results of the final product and even in the process itself.

In this chapter we review the current advances in the fields of machine learning

and of cognitive psychology that can be applied on video game environment. Moreover,

these fields are so wide that they enclose a large number of technologies and models. We

will center our review on some particular models from these fields that we considered as

promising for the application on these specific developments.

2.1 Cognitive Psychology Models of Emotions

The quantitative analysis of human emotions is a topic widely treated in psy-

chology. From biology approaches to cognitive science, within the domain of all of these

approaches, there are a variety of ideas applied to projects that try to create a synthetic

emotional framework in order to evaluate and/or to simulate the emotional response of

humans or agents. As Scherer et al. said in their review work [77]:

Affective computing is a growing concern both in industry and science. In-
dustry hopes to render technologies such as robotic systems, avatars in service-

11

12 Chapter 2: State of the Art

related human computer interaction, e-learning, game characters, or companion
devices more marketable by endowing the “soulless” robots or agents (which one
might reasonably gloss as “lacking affect”) with the ability to recognize and adjust
to the users’ feelings as well as to send appropriate emotional signals.

The synthetic model for emotions came from the necessity of formalizing the theo-

retical assumptions described in formal psychology. Psychological theories of emotion have

typically been cast at an abstract level and through informal (natural language) descrip-

tions. Concepts in the theory are usually not defined formally, and how processes work may

not be laid out in systematic detail. The formulation of a computational model enforces

more detail.

As computational modeling exposes hidden assumptions of the theory, addressing

those assumptions can extend the scope of the theorizing. Thereby, computational models

become not only a way to specify theories, but also a framework for theory construction.

Thus, computational modeling also extends the language of emotion theorizing by incorpo-

rating concepts, processes, and metaphors drawn from computation, as much as concepts

such as how information processing and symbol systems impacted psychology in general.

For example, several computational models have recast the appraisal theory in terms of con-

cepts drawn from AI, including knowledge representation, planning [21, 31], neural networks

[76], BDI agents [69] and decision–making [34].

The complete family of theories and models applied to computational models of

emotions is large, but there are a set of widely used theories for the creation of these model.

The main theoretical fields used are the Appraisal theory and the Dimensional theory but

many others are also proposed (anatomical and rational approaches), a figure that can

illustrate this vast family is extracted for the Scherer’s work [77] (see Figure 2.1).

In order to illustrate the different models used in this thesis, in this Section, we

briefly introduce the different theories that are used as basis in the models studied during

this work. Hereafter, we explain the different basic psychology theories that mainly support

the principal branches and models of emotions (Appraisal and Dimensional Theories). In

the next section, we present some models that are used as a baseline for the emotional

model researches proposed in this thesis. First we review the EMA models (Section 2.2.1)

and FearNot! (Section 2.2.2) as models purely derived from Appraisal theories, and then

we review the ALMA (Section 2.2.3) and WASABI models (Section 2.2.4) as models that

present some principles from the two main branches, mixing the Appraisal and the Dimen-

sional theories.

2.1.1 Appraisal Theory

The predominantly applied theory to emotional models is the Appraisal Theory. In

Appraisal Theory, emotion is argued to arise from patterns of individual judgment concern-

ing the relationship between the events and the individual’s beliefs, desires and intentions,

Chapter 2: State of the Art 13

Figure 2.1: A history of computational model of emotions[77]

sometimes referred to as the person-environment relationship [39]. These judgments, for-

malized through reference to devices, such as situational meaning structures or appraisal

variables [26], characterize aspects of the personal significance of events.

In terms of the underlying components of an emotion, the Appraisal Theory fore-

grounds appraisal as a central process. Appraisal theorists typically view appraisal as the

cause of emotion, or at least of the physiological, behavioral and cognitive changes associ-

ated with emotion. Some appraisal theorists emphasize “emotion” as a discrete component

within their theories, whereas others treat the term emotion more broadly to refer to some

configuration of appraisals, bodily responses and subjective experience (see Ellsworth’s work

[23] for a discussion).

Some theories arise from this assumption. Roseman’s appraisal theory [73] treats

the emotional events as motive accordance or motive non-accordance. This distinction

allows the agent to evaluate the goal alignment with the event. Therefore, it provides

mechanisms to estimate the emotion produced by this event. The model proposed by

Scherer and Ekman [78] makes use of appraisal as an information processing system, and

by means of this, the model examines changes in the present emotional status based on

five subsystems. Besides, the OCC model [60] estimates emotions as derived from three

different sources: (1) the consequences, (2) the actions of the agents and (3) the evaluations

14 Chapter 2: State of the Art

of the objects.

Recently, the scientific community has experienced a significant expansion in re-

search on computational models of human emotional processes, driven both by their poten-

tial for basic research on emotion and cognition as well as their promise for an ever-increasing

range of applications.

In general, appraisal theories of emotion usually present a complex architecture

with well-founded principles of psychology and robust pillars of cognitive models, such as

the EMA model [46], WASABI [7] or FearNot! [21].

2.1.2 OCC Appraisal Theory

The OCC model was proposed on 1988 by Ortony, Clore and Collins in their Cog-

nitive Model of Emotions [60], now it is treated as a standard model for emotion synthesis.

A large set of applications uses the OCC model to simulate or analyze emotion in artifi-

cial characters [4, 22, 21]. A synthetic model for emotions is needed in order to achieve

more believability for embodied characters or even for artificial characters that represent

human-like actors. Characters need a model so they can understand the emotions and ex-

press them. The emotional model enables artificial characters to argue about emotions as a

human actor does. A given event, perceived by an agent, that could produce on a human a

specific emotion, as losing money, must raise the same emotion on the agent. According to

the OCC model, every situation that a character may encounter can be evaluated and this

model, indeed, has a structure of variables, such as likelihood of an event or the familiarity

of an object, that can quantify the intensity of the emotion.

In the Cognitive Model of Emotions each of the emotions described has three main

elements:

1. The type specification provides, in a concise sentence, the conditions that elicit an

emotion of the type in question.

2. A list of tokens is provided, showing which emotion words can be classified as belonging

to the emotion type in question. For example, “fright”, “scared”, and “terrified” are

all types of fear. (Of course, “fear” is also a type of fear.)

3. For each emotion type, a list of variables affecting intensity is provided. These vari-

ables are local to the emotion type in question, i.e., global variables (such as arousal)

that affect all emotions are not included. The idea is that higher values for these

variables result in higher emotional intensities.

The OCC model presents 22 hierarchic emotional categories based on balanced

reactions to situations constructed either as being goal-relevant events, as it acts of an

accountable agent (including itself), or as attractive or unattractive objects. The hierarchy

contains three branches, namely emotions concerning consequences of events (e.g., joy and

pity), actions of agents (e.g., pride and reproach), and aspects of objects (e.g., love and

Chapter 2: State of the Art 15

hate). Additionally, some branches combine to form a group of compound emotions, namely

emotions concerning consequences of events caused by actions of agents (e.g., gratitude and

anger). Because these notions (i.e. events, actions, and objects) are also commonly used in

agent models, this makes the OCC model suitable for use in artificial agents.

Figure 2.2: Event appraisal on OCC Model[4]

This model also offers a structure for the variables, such as likelihood of an event

or the familiarity of an object, which determines the intensity of the emotion types. It

contains a sufficient level of complexity and detail to cover most situations an emotional

character might have to deal with.

The analytic decomposition of the events to produce the corresponding emotions

is based on the branch selection according to the aspect to evaluate at each time (see

Figure 2.2), for instance, the consequence analysis of an event can produce utterly the

emotions related to “The Fortune of Other” emotions. To identify the correct emotions

the OCC Model bases its mechanism in a set of variables that represent the corresponding

relation of the subject with his environment and the relationships that he has. Following

the same example, the consequences are related with the goals pursued by the subject of

the analysis (the desirability of the consequences aligned to the goals of the target), but

it is also important to estimate the relationships with the target of the consequence of the

event (i.e, friend, foe or oneself).

Bartneck et al. [6] discuss the complexity of the OCC model, to clarify the process

that characters follow from the initial categorization of an event to the resulting behavior

of the character. They suggest that it can be split into phases:

1. Classification: In the classification phase the character evaluates an event, action or

16 Chapter 2: State of the Art

object, resulting in information on what emotional categories are affected.

2. Quantification: In the quantification phase, the character calculates the intensities of

the affected emotional categories.

3. Mapping: The OCC model distinguishes 22 emotional categories. These need to be

mapped to a possibly lower number of different emotional expressions.

Classification on OCC

In the classification phase an event, action or object is evaluated by the character,

which results in information on what emotional categories are affected. This categorization

requires the character to know the relation of a particular object, for example, to its atti-

tudes. Depending on this evaluation either the “love” or “hate” emotional category will be

affected by the object.

Quantification on OCC

The intensity of an emotional category is defined separately for events, actions

and objects. The intensity of the emotional categories resulting from an event is defined as

the desirability and for actions and objects praiseworthiness and appealing respectively (see

Figure 2.2). One of the variables that is necessary to calculate desirability is the hierarchy

of the character’s goals.

Mapping on OCC

If the emotion model has more categories than the character has abilities to express

them, the emotional categories need to be mapped to the available expressions. This is

very domain dependent, but in many cases it is not necessary to identify or distinguish

between all the 22 categories. It is interesting to observe that the emotions produced along

the appraisal evaluation are clearly identified in each category and it is only a matter of

simplification that the mapping reduces the categories to a subset.

2.1.3 Dimensional Theory

Dimensional theories of emotion argue that emotion and other affective phenomena

should be conceptualized, not as discrete entities but as points in a continuous (typically

two or three) dimensional space [75, 52]. These theories de-emphasize the concept of the

discrete categorization of the emotion, arguing that the label of the emotions and emotional

states are error prone and tend to relegate the classification to a label that can be identified

as certain body state. Rather the Dimensional theories emphasize concepts such as mood,

affect or more core affect. Thus, a person is said to be in exactly one affective state at

any moment [75] and the space of possible core affective states is characterized in terms of

Chapter 2: State of the Art 17

broad, continuous dimensions. The most widely used representation for these continuous

dimensions is the PAD three dimensional model proposed by Mehrabian and Russell [52],

where these dimensions correspond to Pleasure (a measure of valence), Arousal (indicating

the level of affective activation) and Dominance (a measure of power or control).

Models influenced by dimensional theories, not surprisingly, emphasize processes

associated with core affect; other components (e.g., appraisal) tend to be less elaborately

developed. Core affect is typically represented as a continuous time–varying process that

is represented at a given period of time by a point in 3D space that is“pushed around” by

eliciting events. Computational dimensional models often have detailed mechanisms that

explain how this point changes over time (e.g., decay to some resting state) and incorporates

the impact of dispositional tendencies such as personality or temperament [29].

PAD Dimensional Emotional & Temperament Models

The works on the use of the three parameters for classifying, measuring and ap-

plying emotions and temperament are presented by Mehrabian in [49] and [51]. These two

works are fundamental for the representation of continuous space that can handle the emo-

tion and moods of an agent, in these works is proposed a framework for the representation of

emotional states and temperament of a person. Therefore, the emotions can be represented

in a three dimensional space and this space we can also present more stable and lasting

emotional states that they are called moods.

The models (as well as, the scales and space associated to its framework) were

designed specifically to address substrate of connotative and metaphorical meanings which

were viewed as being essentially emotion-based. The PAD model presents three orthogonal

scales of emotions: pleasure-displeasure (±P component, representing affective states) as the

emotional counterpart of positive-negative evaluations, arousal-nonarousal (±A component,

i.e., mental and/or physical activity) as the correlate of stimulus activity, and dominance-

submissiveness (±D component, as, for example, the control over the situations) as the

negative correlate of stimulus potency. Mehrabian postulates that every emotional state

predisposes a person toward certain select sets of behavior. For example:

• a more pleasant emotional state is more conducive to a person acting in a friendly

and sociable manner with others; conversely, an unpleasant emotional state (e.g., a

headache) tends to heighten chances that the individual will be unfriendly, inconsid-

erate, or even rude with others

• very high arousal is detrimental to concentration on complex tasks and is likely to

result in avoidance of, or poor performance on, such tasks

• a more pleasant and, for most tasks, a less aroused emotional state enhances one’s

desire to work (so, if your office is uncomfortably cold or hot, you are less likely to

want to do the jobs that await your attention)

18 Chapter 2: State of the Art

• sexual desire increases with pleasure, particularly when pleasure is combined with

greater arousal and/or dominance; sexual dysfunction (e.g., impotence, inability to

experience orgasm) becomes more probable when the individual is experiencing dis-

pleasure, particularly with displeasure is combined with greater arousal and/or sub-

missiveness

• of all emotional states (i.e., all possible combinations of high vs. low P, A, and D),

the pattern of -P-A-D or boredom is the most conducive to nagging desire for food

and overeating.

Behaviors, in turn, influence how a person feels. For instance, eating is generally

arousing and pleasant and these emotional effects vary depending on the complexity, variety,

and quality of the food consumed. Repetitious physical behavior (e.g., rocking in a chair,

pacing back and forth in a limited space, walking, jogging, rowing) tends to reduce arousal

and increase pleasure and dominance. Thus, repetitious activities are common among non-

medicated schizophrenics or autistic children who experience uncontrollably high arousal

states. Exercise is also an excellent way in which anyone can counteract anxious or depressed

mood. Because exercise reduces arousal, it is even more beneficial in counteracting anxiety

than it is in relieving depression.

In general, from the standpoint of simulating human behavior, it is far more im-

portant to focus on emotion effects on behavior than on behavior effects on emotion. This

is because changing situations throughout the day have continuously powerful effects on

emotions and thereby influence action. Action, in turn, tends to reflect the emotional sub-

strate and, in this way, the behavior-emotion linkage is strengthened. There are exceptions,

as when a bored person eats (an action that increases pleasure and arousal and thus tem-

porarily counteracts the underlying emotion). So, early AI models can probably perform

a reasonably satisfactory simulation by simply focusing on the following chain: Effect of

situations on emotions and then the impact of emotions on behavior.

The models proposed by Mehrabian are used in two different processes of the affect

evaluation. Both models are extremely general and both uses the PAD dimensions. The

first model evaluates the emotions and the second one the temperament, namely the short

and long term affect influence mapping, which enables the regular representation of these

two aspects of the cognitive psychology.

The PAD Emotion Model

The PAD Emotion Model[49] is a system for the measurement and description

of emotions. Three basic dimensions of emotion are used: Pleasure-Displeasure (±P) or

estimation of the liking or disliking, Arousal-Nonarousal (±A) or general level of physical

activity and mental alertness, and Dominance-Submissiveness (±D) or feelings of control vs.

lack of control over one’s activities and surroundings. +P and −P can be used as shorthand

Chapter 2: State of the Art 19

notations for pleasure and displeasure; +A and −A represent arousal and nonarousal; +D

and −D represent dominance and submissiveness, respectively.

Thus, for instance, anger is represented by very low pleasure (−P), high arousal

(+A), and high dominance (+D). Fear, in contrast, is represented as −P +A−D. It is seen

that anger differs mainly from fear, because anger involves greater feelings of dominance

(or control) than fear. More precisely,

Anger : (−0.51, 0.59, 0.25) Fear : (−0.64, 0.60,−0.43)

showing that fear involves even less pleasure than anger, about the same level of

arousal as anger, and considerably less dominance than anger. Any emotion term can be

described similarly using the three PAD dimensions. According to the 22 emotional tags

of the OCC model, the complete projection of the emotions into the PAD space can be

done as shown in the Gebhard’s model [29]. The descriptions are of course obtained using

mini experiments in which participants are given a single emotion term and are asked to

describe that feeling using the PAD Emotion Scales. Anywhere from 20 to 50 individuals

independently rate a single feeling. Averages of their ratings on the P, A, and D dimensions

yield the coefficients in equations such as the two for anger and fear.

Thus, based on the moderately positive correlation between dignity and anger,

the likelihood that a dignified robot will act in an angry way would be moderately high,

whereas, using the negative correlation between sadness and anger, the likelihood that a

sad robot will act in an angry way would be quite low.

PAD Temperament Model

The PAD Temperament Model[51] is a very general descriptive system for the

study of temperament and personality. The model is based on same three dimensions of

the PAD Emotion Model (P-A-D).

Temperament is distinguished from emotional states in that it refers to an in-

dividual’s stable or lasting emotional characteristics (i.e., emotional traits or emotional

predispositions). More precisely, temperament is an average of a person’s emotional states

across a representative variety of life situations. A set of three PAD temperament scales has

been developed and shown to provide a reasonably general description of emotional traits

or temperament.

The three basic dimensions of temperament in the PAD Model are Trait Pleasure-

displeasure, Trait Arousability, and Trait Dominance-submissiveness. The relative predom-

inance, across situations and over time, of a person’s positive affective states over nega-

tive ones defines that person’s Trait Pleasure-displeasure. Trait Arousability refers to the

strength of an individual’s arousal reactions to high-information (i.e., unusual, complex,

or changing) situations. Stated somewhat imprecisely, but simply, arousability indexes the

strength of a person’s emotional reactions to both positive and negative situations. Trait

20 Chapter 2: State of the Art

Dominance is defined in terms of characteristic feelings of control and influence over one’s

affairs and surroundings versus typical feelings of being influenced and controlled by situa-

tions and others.

The PAD temperament space can be conceptually and semantically divided into

eight different octants according to the different sign of the different components (view Table

2.1). This division is important in order to fully understand the different representations of

the variety of emotions and moods that a character could experience.

+P+A+D Exuberant -P+A+D Hostil

+P+A-D Dependent -P+A-D Anxious

+P-A+D Relaxed -P-A+D Disdainful

+P-A-D Docile -P-A-D Bored

Table 2.1: PAD Space Octants

2.2 Emotional Models for Computational Agents

2.2.1 EMA: A Process Model of Appraisal Dynamics

As we said previously, the model proposed by Marsella and Gratch [46] represents

an emotional model driven by the appraisal theory. In it, the emotions are considered as

inherently dynamic, linked to the world’s dynamics and the dynamics of the individual’s

physiological, cognitive and behavioral process. Appraisal theories posit that the emotion

arises from the person’s interpretation of his relationship with the environment.

The multi-level theories of appraisal [54, 80] propose that the appraisal process

conflates appraisal (fast, memory-based process of association) and inference (slow, delib-

erative process). On the other hand, the EMA model argues that the appraisal and inference

are different processes that operates over the same mental representation of the person’s

relationship with the environment. Inference is sequential and slow, but the Appraisal is

fast, parallel and automatic. Differences in the temporal course of the emotion dynamics are

accordingly due to the differences in the temporal course of the perceptual and inferential

processes that constructs the representation of the person-environment relationship.

The EMA model is a fast, single-level of appraisal that can flexibly utilize the

output of variety of perceptual and inferential cognitive processes, some slow and delib-

erative and some fast and automatic. The appraisal dynamics are essentially dictated by

the time course of whatever cognitive processes are involved in interpreting and responding

to an event: Appraisal results evolve as cognitive processes update the agent-environment

relationship.

To fully address the question of the processes that underlie appraisal, we must go

beyond such abstract descriptions to detail the processes by which the values of the different

appraisal variables are determined. Additionally, the basic mapping from the appraisal

to emotions of specific type, intensity and durations must be specified. Completing the

Chapter 2: State of the Art 21

cycle, the impact of the emotions on the coping responses and subsequent changes in the

environment-person relationship must be detailed.

Theoretical Basis

The EMA model gets the basic considerations about the emotional theories:

• Appraisal is a process of interpreting a person’s relationship with their environment.

• The interpretation can be characterized in terms of a set of criteria (appraisal dimen-

sions, variables or checks).

• The specific emotions are associated with certain configurations of these criteria.

• Certain inferences are minimally necessary to distinguish between emotions [81]:

– Relevance, valence and intensity : emotions are associated with the detection

and assessment of events of personal significance. In computational models they

must represent events, actions and their immediate consequences, as well as the

valence and intensity of these consequences to the agent.

– Future Implications: Some emotions are about the events to come (hope or

fear) or are reactions to expectation violations (surprise, disappointment). A

computational model must represent future goals and expectations and must

include mechanisms for assessing the likelihood of events and actions and their

consequences. Interactions between possible outcomes must also be included.

– Blame and responsibility : Appraisal theories assume that a first step for repre-

sent a response to an emotion-evoking event is, usually, on the cause and the

source agent responsible for its occurrence. Unlike causal reasoning, appraisal

theories argue that causal attribution and responsibility are key factors on the

emotional prompting, also the intentions of the source and/or the consequences

for thirds are important for the appraisal of emotions. The computational mod-

els of appraisal must withstand the notions of causality and agency, as well as

other actor’s motivations.

– Power and coping potential : An important factor in people’s emotional response

is their subjective sense of control over emotion-eliciting event. To reason about

individual power, a computational model of emotion must therefore represent

the social power of the agents, the coercive relationships between agents such

organizations or hierarchies, the external power of the individuals (over the world

and other agents) and the internal power of the agents (the ability to abandon a

cherished goal or overturn a preconception). To reason about adaptability and

to support so-called emotion-focused coping strategies, the models must be open

to subjective reinterpretation.

22 Chapter 2: State of the Art

– Coping strategies: Patterns of appraisal elicit emotional behavior, but they can

also trigger cognitive responses referred as coping strategies. These cognitive

responses act changing the environment or person’s representation (e.g. plans,

beliefs, desires and/or intentions). These includes problem-focused strategies

(plans, etc.) and emotion-focused motivations (state changing, etc.). A compu-

tational model of emotions must provide mechanisms for translating the patterns

of appraisal into appropriate external actions or changes of configurations such

as beliefs, desires, intentions and plans.

EMA Computational Model Assumptions

The basic theory ambiguities are resolved in the EMA model with the following

assumptions.

Appraisal causes emotions: As Frijda referred as law of situated meaning [26], the

appraisal of events in the environment causes the emotional responses on the agents and

allow the incidental influence of emotional states through the simple notion of mood.

Cycle of appraisal and re-appraisal : The person’s coping response is central to

explain the dynamics of appraisal and emotional responses [39]. The EMA model assumes a

cyclical relationship between appraisal, coping and re-appraisal. A person’s initial appraisals

if a situation provokes a variety of cognitive and behavior responses that change the person’s

relationship to the environment. The resulting cycle of appraisal and re-appraisal is a central

element in explaining the dynamics of emotion.

Appraisal is shallow and quick : The EMA model proposes a clean distinction

between inference (the cognitive processes) and appraisal (simple evaluations, reactive, par-

allel and unique). The appraisal, as a single-level process, is fast and parallel with other

processes (some slow, some fast) that perform inferences over the representation of the

person-environment relationship.

The EMAmodel assumes that a representation of the “agent-environment relation-

ship” is continuously update. Furthermore, the represented agent-environment relationship

is appraised, continuously and automatically, resulting in emotional and coping responses.

The actions of the agent also change the environment (and his relationship with it), both

action and inference are influenced by the coping responses. In addition, the world also

change dynamically without agent intervention, due to other agents taking actions, as well

as natural events and processes.

The model explicitly represents intermediate knowledge state, that may be ap-

praised, augmented by further inference, and transformed by coping responses. The repre-

sentation of this knowledge states and facilitates fast appraisals.

Chapter 2: State of the Art 23

EMotion and Adaptation Model

To support the rapid and sequential unfolding of emotional responses EMA uses a

representation built on the causal representations developed for decision-theoretic planning,

augmented by the explicit representation of intentions and beliefs. Planning representations

capture a number of essential distinctions required for computing appraisal, such as causal

reasoning, detect future benefits and threats, etc. The decision-theoretic notions of prob-

ability and utility allow EMA to compute the appraisals of desirability and likelihood.

Explicit representations of beliefs and intentions allow to distinguish merely contemplated

actions from those an agent is committed to perform, an important distinction for comput-

ing attributions of blame and responsibility.

The agent’s interpretation of its “agent-environment relationship” (called causal

interpretation) can be seen as corresponding to the content of the agent’s working memory

and provides a uniform, explicit representation of the agent’s beliefs, desires, intentions,

plans and probabilities that, in turn, allows uniform, fast appraisal processes. At any

point in time, the causal interpretation represents the agent’s current view of the agent-

environment relationship which changes further observation or inference.

Knowledge Representation

The agent-environment relationship is a mixture of symbolic and numeric repre-

sentations. The causal interpretation is organized into: (1) record of past events, (2) current

world state and (3) possible future outcomes.

1. States and actions: EMA represents the state of the world as a conjunction of proposi-

tions. Actions are represented with preconditions and effects. Actions are assumed to

have a duration and their effects can occur asynchronously, so at a given time several

actions can be executing simultaneously.

2. Beliefs and intentions: States and actions are annotated with epistemic variables

representing the beliefs, desires and intentions of agents in the situation. Belief corre-

spond to commitments to the truth value of propositions and are binary (true/false)

although probabilities represent a measure of the certainty in this commitment. The

model allows the agent to distinguish between act intention and outcome-intention.

This allows the model to represent unintended effects of actions. The model also

represents probabilities over these intentions to represent uncertainty when inferring

another agent’s intentions or uncertainty in another agent’s ability or willingness to

fulfill public commitments.

3. Causal relations: The causal interpretation represents several relationships between

actions and states.

4. Establishment relations represent that an effect of some action establishes a precondi-

tion of some other actions. Threat relations represent that the effect of some actions

24 Chapter 2: State of the Art

blocks the precondition of another action.

5. Probabilities and Utilities: Utilities represent agents’ preferences for states. Proba-

bilities over states represents the agent’s certainty in the truth-value of the state at

some point in time. Probabilities over actions are of two forms. PI represents the

likelihood that an agent intends to execute an action; PE represents the probability

that an action can be executed.

Cognitive Operators

EMA is built on SOAR architecture [58] which presents the operators correspon-

dence to deliberative processes that are posited to be relatively slow and sequential; and

reactive processes are posited to be fast, automatic and parallel. EMA organizes mental

processes around a set of primitive cognitive operators (Table 2.2) that utilize and update

the current causal interpretation. Some but not all cognitive operators change the contents

of the causal interpretation.

Cognitive

Update belief

Update Intention

Update plan

Understand speech

Output speech

Wait

Perceptual

Monitor goal

Monitor expected effect

Monitor expected act

Listen to speaker

Expect speech

Monitor unexpected event

Motor
Initiate action

Terminate action

Table 2.2: Cognitive Operators of EMA

Appraisals

The EMA model assumes that the appraisal is fast, parallel and automatic. This

is achieved by modeling appraisal as a set of continuously active features, and the detectors

that map these features of the causal interpretation are modeled into appraisal variables.

In this sense, appraisal do not change the causal interpretation but provides a continuously

updated “affective summary” of its content.

Chapter 2: State of the Art 25

EMA appraises each and every proposition that is represented in the causal inter-

pretation. The model associates a data structure, called appraisal frame, with each propo-

sition. This appraisal frame maintains a continuously updated set of appraisal variables

(Table 2.3) associated with each proposition.

Relevance Derived from the util-

ity of a state for the

agent or the utility of

a state causally derived

from the current state

Perspective The viewpoint from

which the proposition

is analyzed. Usually

(or only used) is the

agent’s own viewpoint.

Desirability Positive or negative

value of the proposition

to the agent whose

perspective is being

taken.

Likelihood The measure of the like-

lihood of outcomes

Expectedness This the extents to

which the truth value

of a state could have

been predicted from the

causal interpretation.

Causal Attri-

bution

Who deserves credit /

blame for executing an

actions

Controllability Measure of the possi-

bility that the outcome

can be altered by ac-

tions under control of

the agent.

Changeability The extent to which an

event will change of its

own accord.

Table 2.3: Appraisal variables of EMA

Emotions, Mood and Focus of Attentions

The EMA model supports a two-level notion of emotions state - appraisal and

mood - that can account for some of the indirect effects of emotion documented in empirical

research. The appraisal level determines the agent’s coping response but this is biased

by an overall mood state. The EMA theoretical perspective on mood is that the initial

appraisal of a situation leads to recruitment of brain and bodily resources that facilitate

certain mental and physical activities and thereby change the subsequent appraisal of the

situation. However, EMA does not explicitly model such bodily consequences of appraisal.

The appraisal level maintains multiple appraisal frames (one for each proposition

in causal interpretation) each of which is labeled with a specific emotion type and intensity,

and each competing to determine the agent’s coping response. At the mood level, individual

frames are also aggregated into a higher-level mood. This aggregate frame: (1) is a summary

26 Chapter 2: State of the Art

of various appraised events; (2) dissociated form the original eliciting event and (3) which

tends to change slowly over time as appraised frames are added or removed in response to

changes in the causal interpretation.

The Mood State representation is made by a set of emotion labels (e.g. Hope,

Fear, . . .) with an [0..1] intensity that is a function of all appraisal frames with the corre-

sponding type. The mood state has an indirect effect on appraisal in that EMA applies a

mood adjustment to individual appraisal frames depending of the type of mood related.

EMA’s moment-to-moment coping response is determined by a simple activation-

based focus of attention model that incorporates both appraisal and mood. Specifically, the

appraisal frame that determines the coping is the most recently accessed appraisal frame

with the highest mood-adjusted intensity.

Coping Strategies

Coping determines, moment-to-moment, how the agent responds to the appraised

significance of events. Within EMA, coping strategies are proposed to maintain desirable

or overturn undesirable in-focus events (appraisal instances). Coping strategies essentially

work in the reverse direction of the appraisal that motivates them, by identifying features

of the causal interpretation that produced that appraisal and that should be maintained or

altered.

The EMA coping strategies can be classified as referred at Table 2.4

2.2.2 FearNot!

The architecture built by Dias and Paiva [21] was also an application of the Ap-

praisal Theories inspired on the OCC model. The proposed agent architecture aims to

create an autonomous agent believable and empathic, inspired by some of the elements

present on the traditional animation:

• Believability and Empathy: The characters must be believable and be able to

produce empathic reactions with users.

• Reactive and Cognitive Capacities: Believable characters should display motiva-

tions, goals and desires, which is only possible if they have cognitive capacities. Also,

the character should react as quickly as necessary in a rapidly changing environment.

• User Interaction: The character should be able to interact with an external user

and receive suggestions.

• Generality: The agent architecture should be domain independent. It must allow the

easy creation of different characters with different personalities for different domains.

Chapter 2: State of the Art 27

Related

To

Strategy Description

Attention
Seek Information Form a positive intention to monitor the pending, un-

expected or uncertain state that produced the appraisal

frame

Suppress Information Form a negative intention to monitor pending, unex-

pected or uncertain state that produced the appraisal

frame

Belief
Shift Responsibility Shift an attribution of blame/credit from (toward) the

self and toward (from) some other agent

Wishful Thinking Increase / Lower the probability of a pending desirable

/ undesirable outcome or assume some intervening act

or actor will improve desirability.

Desire
Distance / Mental Dis-

engagement

Lower utility attributed to a desired but threatened

state.

Positive Reinterpreta-

tion

Increase utility of a positive side-effect of some action

with a negative outcome.

Intention

Planning / Action Se-

lection

Form an intention to perform some external action that

improves an appraised negative outcome.

Seek Instrumental

Support

Form an intention to get someone else to perform an

external action that changes the agent-environment re-

lationship.

Make Amends Form an intention to redress a wrong.

Procrastination Defer an intention to some time in the future.

Resignation Drop an intention to achieve a desired state.

Avoidance Take an action that attempts to remove the agent from

a looming threat.

Table 2.4: Coping Strategies in EMA

Emotion and Dynamics of Emotion

The concept of emotion of this work steams from OCC cognitive theory of emo-

tions. The OCC emotion type represents a family of related emotions differing in terms

of their intensity and manifestation, for example, it references the possible set of emotions

resulting from appraising the prospect of a goal expect to fail, with a varying degrees of

intensity: concerned, frightened, petrified . . . The prospected model considers the following

attributes for the description of an emotion:

• Type: The type of the emotion being experimented.

• Valence: Denotes the basic types of emotional response. Positive or negative value

28 Chapter 2: State of the Art

of reaction.

• Target: The agent targeted by the emotion.

• Cause: The event/action that causes the emotion.

• Intensity: The intensity of the emotion.

• Time-Stamp: The moment in time when the emotion was created or updated.

Every emotion has associated an Intensity attribute which is assigned with differ-

ent values depending on the different situation that generated the particular emotion. The

emotion does not remain constant during its life cycle in the system, the emotion must be

attenuated through time in order to reflect the dynamics of the emotional system itself.

This characteristic reflects the notion that an emotion does not last forever and does not

affect the evaluation of the subsequent emotional states in the same way. The model uses

a decay function for emotions proposed by Picard [72]:

Intensity(em, t) = Intensity(em, t0)× e−b·t (2.1)

Mood and Arousal

In addition to emotions, the proposed model represents arousal and mood:

• Arousal represents the degree of excitement of the character, this model only uses the

psychological arousal. Aroused characters will feel intense emotions. Every time that

a character experiences a high intensity emotion his arousal level will rise. Therefore,

if nothing new happens, the character will “calm down”.

• Mood represents an overall valence of the character’s emotional state and is also used

to influence the intensity of emotions. The idea, based on Picard, is that characters

with bad mood will tend to experience more negative emotions, and characters with

good mood will experience more positive emotions. Mood is represented as an internal

variable that increases when positive emotions are created and decreased with negative

emotions. This variable also decays over time until it reaches its neutral value.

Personality

The character’s personality is based in OCC and is defined by: (1) a set of goals,

(2) a set of emotional reaction rules, (3) the character’s action tendencies, (4) emotional

thresholds and (5) decay rates for each of the 22 emotion types defined in OCC. This model

uses two of OCC goal types, active-pursuit goals and interest goals. Active-pursuit goals

are goals that the characters actively try to achieve. Interest goals represent goals that

a character has but does not pursue, like avoiding to be hurt. The emotional reaction

rules assess how generic events are appraised and represent the character’s standards and

Chapter 2: State of the Art 29

attitudes. Action tendencies represent the character’s impulsive actions as action tendencies

is due by Lazarus [39], which states that action tendencies are innate biological impulses,

while coping is “a much more complex, deliberate and often planed psychological process”.

OCC model specified for each emotion type an emotional threshold and decay rate. The

emotional threshold represents the resistance of the character towards an emotion type.

The decay rate specifies how fast the emotion decays over time.

Architecture

The model presents two layers for appraisal coping processes. The reactive layer

is responsible for the character’s action tendencies, while the deliberative layer achieves the

agent planned behavior. Action tendencies represent hardwired reactions to emotions and

events that are rapidly triggered and performed, these tendencies depend on the character’s

emotional state, so it can only be made after the appraisal process. The cognitive appraisal

depends on the agent’s plans and can take some time; when an event is received the continu-

ous planner has to update the active plans, even before the start of the emotional reactions.

The deliberative level generates prospect-based emotions (hope, fear, satisfaction,. . .) based

on the agent’s plans and goals, the reactive level generates all other types of OCC emotions

using a set of domain dependent emotional reaction rules as used by Martinho in S3A [47].

When an event is perceived, the reactive appraisal matches the event against the set of

defined emotional rules, generating the corresponding emotions.

Cognitive Appraisal

A continuous planner [75] that uses a partial-ordered-plan builds up the core of

the deliberative layer. This planner was extended to include probability information about

actions and to perform emotion-focused coping strategies. Each character has defined a

set of active-pursuit goals that are triggered upon certain conditions. Thus, every time

the agent receives a new perception from the environment, the deliberative layer checks all

deactivated goals to determine if any of them become active. If so, an intention to achieve

the goal is added to the intention structure. Initial hope and fear emotions based on the

goal’s importance are created in this process. The OCC theory of emotions does not specify

how emotions affect reasoning/cognition and action selection. The model uses the emotions

to determine the most relevant intention: the ones generating the strongest emotions are

the ones that require the most attention from the agent, and thus are the ones selected by

the planner to continue deliberation. After selecting the strongest intention, the best plan

built so far is brought into consideration. This process is named focus and generates the

following prospect based emotions:

• Hope of success: to achieve the intention.

• Fear of failure: to achieve the intention.

30 Chapter 2: State of the Art

• Inter-goal fear : for not being able to preserve an interest goal, a goal to protect/-

maintain.

The final phase of the deliberative appraisal checks all the active goals to determine

whether they succeed or fail. When such events occur or if the planner is unable to make a

plan, more prospect based emotions will be generated, such as Satisfaction, Disappointment,

Relief and Fear-Confirmed.

Coping

The coping strategies performed over the selected plan depend on the character’s

emotional state and personality. This model uses two types of coping: problem focused

coping and emotional focused coping. The first one focuses on acting on the environment

to cope with the situation, thus it consists on planning a set of actions that achieve the

pretended final result and executing them. The second works by changing the agent’s

interpretation of circumstances, thus lowering strong negative emotions.

2.2.3 ALMA Model

The ALMA Model [29] is based on Affects: General term for feelings, emotions,

or moods the conscious subjective aspect of feeling. This model creates a hybrid approach

between the Appraisal Theory, based on the OCC Model and the Dimensional Theory of

Merhabian.

This model is divided into three layers, with time-related decomposition (see Fig-

ure 2.3):

1. long-term provided by the personality,

2. middle-term by the moods and,

3. short-term emotional component.

Personality

The long-term layer provided by the personality is based on theBig Five Norman-

Goldberg’s theory [59] centered on five factors and their constituent traits:

• Openness: appreciation for art, emotion, adventure, unusual ideas, curiosity, and

variety of experience.

• Conscientiousness: a tendency to show self-discipline, act dutifully, and aim for

achievement; planned rather than spontaneous behavior.

• Extraversion: energy, positive emotions, urgency, and the tendency to seek stimu-

lation in the company of others.

Chapter 2: State of the Art 31

A
ffe
c
ts

Emotions

Moods

Personality

la
s

tin
g

 tim
e

Figure 2.3: ALMA layer model

• Agreeableness: a tendency to be compassionate and cooperative rather than suspi-

cious and antagonistic towards others.

• Neuroticism: a tendency to experience unpleasant emotions easily, such as anger,

anxiety, depression, or vulnerability.

The personality of a character sets the initial value of the mood of the character

in a “neutral” state. The personality is not easily changed and, for virtual characters, may

be considered constant.

Mood

The middle layer of the ALMA model is based on the mood of the character,

which it derives from the default mood and the affects that the character has received

recently. Moods are stable affective states which have a great influence on human’s cognitive

functions[57] and they are modeled by the PAD model[51]. According to Mehrabian, every

possible human emotion can be represented as definite points in the three dimensions. The

following emotions exist as points in that space: angry, bored, curious, dignified, elated,

hungry, inhibited, loved, puzzled, sleepy, unconcerned, and violent. Violent, for instance,

represents a displeased, highly aroused, and highly dominant emotional state. This layer

centers the perception, as said by Gebhard: “The mood is the base of the perception of the

environment of a character.”

Emotions

The third layer of the ALMA model is defined by the emotions produced by an

affect perceived by the character. The emotions reflect short-term affects, which are usually

bound to a specific event, action or object. After their elicitation emotions usually decay

32 Chapter 2: State of the Art

and disappear of individual’s focus These emotions are cataloged by the OCC Emotional

Model (Ortony, Clore y Collins on the 1988)[60]. Each event perceived by a person is

cataloged according with: (1) the effects that it has on the target, source and observer

of the action, (2) the action itself and (3) by the objects involved in the action and the

perception and relevance that it has for the observer. There are many agents based on this

model, the emotional characters include COSMO [40], Émile [31], Peedy [2], and the Greta

agent [15] although the approaches differ in the granularity of modeling, the mathematical

machinery for computing emotions, and in the way of how the model has been implemented

on a technical level.

Appraisal Mechanism

Each appraisal of an action, event or object, lets the engine of the ALMA model

produce an active emotion. This emotion, after been generated, decays over a certain

amount of time. All active emotions are used as input of the pull and push mood change

function. It first computes the virtual emotion center of all currently active emotions in the

PAD space by using a certain mapping.

The pull and push mood change function works in the following way (see Fig-

ure 2.4): If the current mood position is between the PAD space zero point and the virtual

emotion center, the current mood is attracted towards the virtual emotion center. This

is called pull phase. If the current mood is beyond (or at) the virtual emotion center the

current mood is pushed away, further into the current mood octant (from octants described

in the PAD Temperament Model, Section 2.1.3) in which the mood is located. This is called

push phase. The push phase realizes the concept that a person’s mood gets more intense

the more experiences the person make that are supporting this mood. The intensity of the

virtual emotion center defines how strong the current mood is attracted respectively pushed

away.

Mood Octant

Current

Mood

Future

Mood

Virtual Emotion

Center

Pull PhasePush Phase

Figure 2.4: ALMA Pull-Push Mood Change Function

Chapter 2: State of the Art 33

2.2.4 WASABI: Affect Simulation for Agents with Believable Interactiv-

ity

The WASABI architecture [7] combines bodily emotion dynamics with cognitive

appraisal in order to simulate infant-like primary emotions as well as cognitively elaborated

(more adult) secondary emotions. The specification works with the concepts of Emotions

and Moods.

• Emotions are understood as current states with a specific quality and intensity, which

are the outcome of complex neurophysiological processes for communication. These

processes include neural activity of the brain as well as physiological responses of the

body. One gets aware of one’s emotions in two cases: (1) if his awareness likelihood

w exceeds a certain threshold or (2) if one concentrates on the underlying processes

by means of introspection.

Emotions can be classified into primary and secondary ones, but every emotion has

either positive or negative valence of a certain value and compared to mood an emotion

lasts significantly less. Therefore, the WASABI model differentiates the secondary

emotions from primary since the secondary emotions are:

– based on more complex data structures than the primary ones,

– more dependent of the memory and reasoning process of the agent than from the

primary emotions,

– responsible of the expression and verbalization at embodied agents.

• Mood is modeled as a background state with a much simpler affective quality than

emotions. In contrast to the model of Gebhard [29], mood is not derived from PAD

space, but modeled as an agent’s overall feeling of well-being on a bipolar scale of

positive versus negative valence already before a mapping into PAD space is achieved.

Any non-neutral mood is slowly regulated back to a neutral state of mood much slower

than it is the case for emotional valence. Accordingly, a mood’s duration is in general

longer than that of any emotion.

Primary Emotions

The primary emotions are inborn affective states, which are triggered by reflexes

in case of potentially harmful stimuli. Each of the primary emotions is located in PAD

space according to the coordinates derived from some of the values given in Russell and

Mehrabian[52]. The WASABI architecture describes nine primary emotions, 5 from the six

emotions defined by Elkman, and another three, so WASABI has the primary emotions at

Table 2.5.

34 Chapter 2: State of the Art

Primary Emotion PAD value

1 Angry (80, 80, 100)

2 Annoyed (50, 0, 100)

3 Bored (0, 80, 100)

4 Concentrated (0, 0,±100)

5 Depressed (0, 80, 100)

6 Fearful (80, 80, 100)

7 Happy (80, 80,±100)

(50, 0,±100)

8 Sad (50, 0, 100)

9 Surprised (10, 80,±100)

Table 2.5: Primary emotions at WASABI

Secondary Emotions

According to Damasio [19], the elicitation of secondary emotions involves a “thought

process”, in which the actual stimulus is evaluated against previously acquired experiences

and online generated expectations.

The “prospect-based emotions” cluster of the OCC model of emotions is considered

here to belong to the class of secondary emotions, because their appraisal process includes

the evaluation of events against experiences and expectations.

This OCC cluster consists of six emotions (namely fear, hope, relief, disappoint-

ment, satisfaction, and fears-confirmed), of which hope, fears-confirmed, and relief are sim-

ulated in the WASABI architecture.

Emotional Dynamics

The implementation of emotion dynamics is based on the assumption that an

organism’s natural, homeostatic state is characterized by emotional balance, which accom-

panies an agent’s normal level of cognitive processing. Whenever an emotionally relevant

internal or external stimulus is detected, however, its valence component serves as an emo-

tional impulse, which disturbs the homeostasis causing certain levels of Pleasure and Arousal

in the emotion module. Furthermore, a dynamic process is started by which these values

are continuously driven back to the state of balance.

The two valences are mathematically mapped into PAD space and combined with

the actual level of Dominance, which is derived from the situational context in the cognition

of the architecture. This process results in a course of a reference point in PAD space repre-

senting the continuously changing bodily feeling state from which the awareness likelihoods

of primary and secondary emotions are incessantly derived.

Chapter 2: State of the Art 35

WASABI embodiment

There is a conceptual distinction of cognition and embodiment in the WASABI

architecture. Any perceived stimulus is appraised by conscious and non-conscious processes

in parallel leading to the elicitation of “emotional impulse”. These drive the “emotion

dynamics”, which is part of the agent’s virtual embodiment and from which mood, Pleasure,

and Arousal are continuously derived. PAD space is used (1) to directly elicit primary

emotions with a certain intensity and (2) to act as an “awareness filter”, which ensures

mood-congruency of both primary and secondary emotions. The resulting set of “aware

emotions” is finally reappraised in the cognition before giving rise to deliberative actions.

The conceptual distinction of an agent’s simulated embodiment and its cognition

is presented and the different modules and components of the WASABI architecture are

assigned to the corresponding layer are represented at the Figure 2.5.

Figure 2.5: WASABI Embodiment Architecture

The cognitive layer of the WASABI architecture is based on a BDI-Agent model

which enables the abilities to update his memory and generate expectations. These de-

liberative processes not only permits WASABI to derive his subjective level of Dominance

from the situational and social context, but also propose cognitively plausible secondary

emotions.

36 Chapter 2: State of the Art

2.3 Reinforcement Learning Techniques

Reinforcement Learning (RL) is the problem faced by an agent that must learn

behavior through trial-and-error interactions with a dynamic environment. Thus, RL is

a machine learning technique applied to model the behavior of an agent that has sensor

mechanisms to perceive the state of an environment and obtains rewards from the actions

it performs within this environment.

There are two main strategies for solving reinforcement-learning problems. The

first is to search in the space of behaviors in order to find one that performs well in the

environment. This approach has been taken by work in genetic algorithms and genetic

programming. The second is to use statistical techniques and dynamic programming meth-

ods to estimate the utility of taking actions in states of the world. These techniques take

advantage of the special structure of reinforcement-learning problems that is not available

in optimization problems in general.

In the standard RL model (see Figure 2.6) the agent is connected to its environment

Σ via a perception of its state ε and the actions α that it takes. On each step, the agent

receives an input η from the environment and a reward ρ (reinforcement signal) from the

actual state of the environment derived from the past actions. According to this information

the agent’s behavior selects an action α which maximizes a long-term measure of reward.

The action α changes certain parameters that represent the environment and produces the

new state that is passed as input to the agent with the resultant reward.

Figure 2.6: A standard reinforcement-learning model

Chapter 2: State of the Art 37

Formally, a RL model consists of:

• a discrete set of environment states Σ,

• a discrete set of action Λ, and,

• a set scalar reinforcement signals Γ , typically real numbers.

Reinforcement learning differs from the more widely studied problem of supervised

learning in several ways. The most important difference is that there is no presentation of

input/output pairs. Instead, after choosing an action the agent is told the immediate

reward and the subsequent state, but not which action would have been in its best long-

term interest, so it is necessary for the agent to gather useful experiences about the possible

system states, actions, transitions and rewards actively to act optimally. Another difference

from supervised learning is that on-line performance is important: the evaluation of the

system is often concurrent with learning.

Markov Decision Processes

RL is widely applied to solve a broad range of problems [35]. One of the typ-

ical problems that are solved by RL algorithms are Markov Decision Processes (MDPs).

MDPs model environments where actions performed by an agent make the state of the en-

vironment transition to some other state with a certain probability, making the transitions

non-deterministic. An MDP consists of

• a set of states S,

• a set of actions A,

• a reward function R : S × A −→ ℜ, and

• a state transition function T : S×A → Π(S), where a member of Π(S) is a probability
distribution over the set S (i.e. it maps states to probabilities). We write T (s, a, s′)
for the probability of making a transition from state s to state s′ using action a.

The state transition function probabilistically specifies the next state of the en-

vironment as a function of its current state and the agent’s action. The reward function

specifies expected instantaneous reward as a function of the current state and action. The

model is Markovian if the state transitions are independent of any previous environment

states or agent actions.

Although general MDPs may have infinite (even uncountable) states and action

spaces, the particular model of the video game scenarios could be represented as a finite

state environment with finite action set, so we focus our attention in solving these kind of

problems.

38 Chapter 2: State of the Art

Stochastic Games

Moreover, similar cases to the MDPs are the Stochastic Games (SGs) in which

multiple agents select actions and the next state and rewards depend on the joint action of

all the agents. Thus, the SGs are more natural models for many video games.

The SGs are formally defined by Shapley on early 1950’s [79] as:

In a stochastic game the play proceeds by steps from position to position, ac-
cording to transition probabilities controlled jointly by the two players.

Similarly to the MDPs, an n-person SGs can be decomposed as follows:

1. a finite set I of players,

2. a finite set S of states,

3. a finite set Ai(z) of actions available to player i ∈ I at state z ∈ S, and A =
⋃Ai

4. a joint action a(z) ∈ A, defined as the union of all the actions performed by the n

players at state z.

5. a reward function R : S ×A× I → ℜ; so ri(z, a) is the reward for the player i in the

state z given the joint action a,

6. a state transition function T : S×A → Π(S), where a member of Π(S) is a probability
distribution over the set S (i.e. it maps states to probabilities). We write T (s, a, s′)
for the probability of making a transition from state s to state s′ using a list of actions

a.

This model fits perfectly in the video game scenarios, where the joint actions

performed in the environment by the characters produce the transition between states. The

real-time simulations or some kind of parallel turn resolution mechanisms implemented in

many games propitiates these kind of problems, where the SGs are more suitable.

In the next section, we review some of the classical models used for solving the

MDPs and the SGs, as we show in the next chapters of this thesis, the problems that we

try to solve are more tractable by the SGs solvers, than from the classical strategies for

solving the MDPs. But, we realize how important it is to compare both mechanisms as

possible approaches for the resolution of the learning mechanism needed by the proposed

architecture.

2.3.1 SARSA and Q-Learning

In the Reinforcement Learning problems, as we defined previously, it is crucial

to know how the agent will take the future into account, the reward signals Γ. There are

basically three models that try to optimize the reward in different moments. The finite-

horizon model tries to optimize the reward in the following h steps. The infinite-horizon

Chapter 2: State of the Art 39

model considers the attenuated long-term rewards as if they were an interest rate. Finally,

the average-reward model takes into account the long-term average reward. This delayed

reward problems are captured perfectly by the MDPs and SGs, which try to obtain the

optimal policy that maximized the expected reward.

In these delayed reward problems, there are two alternatives for obtaining an

optimal policy. First, a controller can be learned without learning a model (Model-free

approach). Second, a model can be learned and, then, a controller can be derived from

it (Model-based approach). In this thesis more attention will be paid to the Model-free

approach, due to the complexity of the video game environments that makes difficult the

construction of a model of the game.

From the model-free approach, we select two very representative algorithms which

are extensively used in the RL problem solving: SARSA and Q-Learning

SARSA

The SARSA algorithm is an on-policy temporal difference learning algorithm for

MDPs [85]. It is based on the estimation of the expected reward of a given state s for a

given action a, denoted by Q(s, a) (also know as Q-value).

This estimation is continuously updated according to the following equation:

Q(s, a) ⇐ (1− α)Q(s, a) + α
[

r + γQ(s′, a′)
]

(2.2)

where 0 ≤ α ≤ 1 is a learning rate parameter (determining how fast the state-action pair is

updated) and 0 ≤ γ < 1 is the discount factor for future rewards (indicating the influence

of the reward from new state-action pair into the reward of the original state-action pair).

The update equation states that for a given state-action pair (s, a) ∈ S × A the

new state-action value is obtained by adding a small (depending on α) correction to the old

value. The correction is the difference between the immediate reward r increased by the

discounted future state-action value γQ(s′, a′) and the old state-action value Q(s, a).

Therefore, SARSA (s, a, r, s′, a′) is an on-policy learning algorithm in the sense

that it estimates the value of the same policy that it is using for control.

Q-Learning

Q-Learning [89] constitutes an off-policy alternative to SARSA, the learned action-

value function, Q, directly approximates, Q∗ , the optimal action-value function, indepen-

dent of the policy being followed. Thus, it replaces the term γQ(s′a′) by γ argmaxa′∈A(s′)Q(s′, a′)
in the above equation 2.2.

This provides a separation of the policy being evaluated from the policy used for

control. It leaves the update equation like this:

Q(s, a) ⇐ (1− α) Q(s, a) + α

[

r + γ arg max
a′∈A(s′)

Q(s′, a′)

]

(2.3)

40 Chapter 2: State of the Art

Action selection

In both algorithms, the process is similar, at each time step, the agent must select

an action to perform, to do so, the state in which the environment is, s, is used as entry

for the query of a table in which for each action a ∈ A and s ∈ S, we store the expected

discounted reward. Intuitively, we select as response the action that has a higher expected

reward argmaxa∈A.

This greedy strategy always exploits the current knowledge and does not explore

other possible solutions that can have more expected rewards. There are different strategies

to save this problem and they have different approaches for these action selections. From

the ǫ-greedy which reserves certain ǫ probability for the exploration of a random action,

to more sophisticated approaches of soft-max action selection supported on the Gibbs, or

Boltzmann probability distributions, to associate the ǫ probability thought the different ac-

tions according to a ranked-weighted order of the actions derived by their expected rewards.

SARSA and Q-Learning in video games

Many Machine Learning algorithms are been applied in the video games environ-

ments, as shown the survey of Galway, et al. [27]. Within the ML techniques, the most

commonly applied in commercial video games are the Neural Networks. These mechanism

have serious drawbacks that make them hard to use extensively, but are a promising ap-

proach for certain problems like racing games [86] or neuroevolution in team games [13].

Also, from the different studies about the reinforcement learning in video games, a number

of issues have been revealed, including the need for a suitable state-action space abstraction

and value function representation.

The application of RL in commercial video games is marginal, and unnoticed.

But some scientific researches in these techniques reveal the promising potential in the

creation of controllers derived from the automatic learning of strategies. For instance, the

RL in fighting video games was introduced by [30], as a possible approach for the automatic

creation of fighting strategies; or Madeira, et al. [42] research the application of RL in a

turn-based strategy game BattlegroundTM 1.

More recently, Amato and Shani [1] explore the high-level reinforcement learning

applied to the Firaxis video game Civilization IVTM.

These studies show that learning agents found interesting policies capturing the

behavior of the opponents, evaluating the strategy according to specific reward functions.

In this thesis we use the RL algorithms (SARSA and Q-Learning) as starting point for

the exploration of different techniques that can be more suitable for this kind of scenarios.

These two algorithms fit perfectly with the MDPs problems, but, as it has been said before,

the video games scenarios can also be seen and modeled as Stochastic Games. In the next

1Talon Soft: http://www.matrixgames.com/products/319/details/John.Tiller%27s.Battleground.Civil.War

 http://www.matrixgames.com/products/319/details/John.Tiller%27s.Battleground.Civil.War

Chapter 2: State of the Art 41

section we will introduce a base algorithm that is used for the SGs approach, the Win or

Learn Fast algortihm.

2.3.2 Win or Learn Fast. WoLF

Although SARSA and Q-Learning are suitable approaches to deal with MDPs,

video games do not fully match MDP characteristics, as mentioned previously.

It is important, in many cases, to represent the complete set of transitions that

may occur derived from the presence of two or more agents over the same environment.

Stochastic games (SGs) are a natural multi-agent extension of MDPs, and have also been

studied within RL [18, 32].

Despite RL algorithms (such as Q-Learning) being appropriate to deal with MDPs,

they are less appropriate, in theory, for SGs, due to the multi-agent aspects [10]. Thus,

some variants of these algorithms have been successfully applied in these SG scenarios.

“Policy Hill Climbing” (PHC) and “Win or Learn Fast” (WoLF) [11] are extensions to the

Q-Learning algorithm particularly designed to deal with stochastic scenarios with multiple

agents i.e. with SGs.

Both PHC and WoLF maintain a learning rate in the form of a selection prob-

ability for each state-action pair. The main difference is that, in PHC, this learning rate

is constant while WoLF changes this learning rate depending on whether it is winning or

losing. Intuitively, the algorithm tries to learn quickly when it is losing and more slowly

when it is winning. To determine whether the algorithm is winning or losing, the current

policy’s payoff is compared with that of the average policy over time.

In addition to Q-values, the algorithm also maintains the current mixed policy

(π(s, a)). This policy controls the probability of selecting a given action during the learning

phase. It is updated by increasing the probability of selecting the best performing action

according to a learning rate δl, that is applied when the algorithm is losing, and δw, that

is used when the algorithm is winning, with δl > δw. Algorithm 1 provides a detailed

description of this policy.

2.3.3 Evolutionary Techniques for Reinforcement Learning

The evolutionary techniques are used for the iterative refinement of solution which

explores a set of possible solutions trying to find those which are better (or more promising)

solution for the problem. Thus, as Stanley observes [82], it can be used as a complementary

technique that handles an underlying Machine Learning algorithm as the problem which we

try to optimize, whether it is used for parameter tuning or for structural exploration.

Indeed, the combination of evolutionary strategies and reinforcement learning has

mainly been addressed towards the use of optimization algorithms to adjust connection

weights in neural networks. There are only few references on the use of evolutionary tech-

niques to complement reinforcement learning algorithms based on Q-Learning or similar

42 Chapter 2: State of the Art

Algorithm 1: WoLF Algorithm

begin

Let α, δl > δw be learning rates, Initialize Q(s, a)← 0, π(s, a)← 1
|A|

, C(s)← 0

while Finalization state not reached do

From state s select action a with probability π(s, a)

Q-values are updated observing reward r and next state s′,

Q(s, a)← Q(s, a) + α(r + γ max
a′

Q(s′, a′)−Q(s, a))

Update estimate of average policy, π̄,

C(s)← C(s) + 1 ∀ a′ ∈ A, π̄(s, a′)← π̄(s, a′) + 1
C(s)

(π(s, a′)− π̄(s, a′))

Update π(s, a) and constrain it to a legal probability distribution

π(s, a) +

δ ifa =

argmax
a′

(Q(s, a′))

−δ
|A|−1

otherwise

where,

δ =

δw if
∑

a π(s, a)Q(s, a)

>
∑

a π̄(s, a)Q(s, a)

δl otherwise

end

end

approaches (usually named policy-space approaches). A first reference appeared in Mo-

riarty’s work [56]. In this work, a preliminary evolutionary algorithm for reinforcement

learning (named EARL) is put forward. EARL evolves a chromosome with the same size

as the number of states, and the value of each of the genes would be the action to perform

at this state. EARL focuses on deterministic policies.

More related with the video game scenarios, a representative approach was the

NeuroEvolution of Augmenting Topologies (NEAT) [83], that have attracted great interest

in the video game community. A practical example was the video game called Neuro-

Evolving Robotic Operatives (NERO) that extends NEAT to work in real-time.

Whiteson and Stone [90] evolved neural networks using NEAT combined with

Q-Learning algorithms to search function approximations. Using neural networks in this

way is rather different to the approach we adopt in this thesis, though it would be an

interesting future work to compare the two approaches. This approach, compared to the

one presented in this thesis, also used Lamarkian evolution to evolve individuals that learn,

but Q-Learning is only applied to implement an ǫ-greedy selection mechanism. With this

same objective, reinforcement learning had been used to guide evolutionary processes in

general optimization problems, for example in the participation selection for hybrid dynamic

evolutionary algorithms [38].

More recently, Yoshikawa et al. [92] introduce a reinforcement learning algorithm

with a hierarchical evolutionary mechanism to evolve adaptive action value tables. The

Chapter 2: State of the Art 43

algorithm evolves several Q-Learning parameters, such as state discretization data, learning

rate α, discount factor γ and searching rate (non deterministic action selection).

Another study of evolutionary algorithms applied to artificial intelligence in games

is treated by Yannakakis [91], presenting different GA algorithms in a set of testing environ-

ments, close related with well-known games. The human evaluation of the general interest

of the controllers created by these techniques is analyzed with interesting results. This anal-

ysis withstood the applications of GA to the building of interesting controllers for agents in

video games.

In the field of robot control, reinforcement learning and evolutionary algorithms

have been combined to speed-up the learning process. The combination deals with real-time

on-line constrains and high dimensional control problems, as reported by Maravall et al.

[43].

A usual combination of evolutionary techniques and learning algorithms are the

learning classifier systems (LCS) [87]. LCS model use evolutionary algorithm to evolve

if-then rules, called classifiers. LCS is a different approach not considered for this work.

In our approach we propose to combine evolutionary algorithms and reinforcement

learning according to the following techniques:

• Evolutionary Algorithms:

– Estimation Distribution Algorithms (introduced in Section 2.3.3).

– Differential Evolution (introduced in Section 2.3.3).

• Time Difference Algorithms:

– SARSA and Q-Learning (introduced in Section 2.3.1).

– Win or Learn Fast (introduced in Section 2.3.2).

Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) were introduced in the 90s [53].

In general terms, EDAs are similar to Genetic Algorithms, but their main characteristic is

the use of probabilistic models to extract information from the current population (instead

of using crossover or mutation operators) in order to create a new and presumably better

population.

As in the case of other evolutionary algorithms, EDAs create multiple solutions

or individuals in a population. This population evolves from one generation to the next by

estimating the probability distribution of a set of individuals (usually the best individual

from the past generation), then sampling the induced model (without using crossover or

mutation operators).

Based on the probabilistic model considered, three main groups of EDAs can be

distinguished: univariate models, which assume that variables are marginally independent;

44 Chapter 2: State of the Art

bivariate models, which accept dependencies between pairs of variables; and multivariate

models, in which there is no limitation on the number of dependencies.

The complexity of the different EDA approaches is usually related to the probabilis-

tic model used, and the ability of that model to identify and represent the (in)dependencies

among the variables. Detailed information about the main characteristics of EDAs, as well

as the different algorithms that belong to this family, can be found in the work of Larrañaga

and Lozano [37].

In this thesis, we use the Univariate Marginal Distribution Algorithm for Gaussian

Models (UMDAg) [36]. This algorithm considers no dependencies between the variables in-

volved in the problem. It is assumed that the joint density function follows an n-dimensional

normal distribution, which is factorized by a product of one-dimensional and independent

normal densities.

Differential Evolution Algorithms

Differential Evolution (DEs) algorithms were proposed by Rainer Storn and Ken-

neth Price in 1995 [84]. DEs are also a specific type of evolutionary algorithms that use an

alternative recombination operator. Given a population in the generation i, each individual

in this population xi;j is selected for recombination. The selected vector receives the name

of objective vector. Three other vectors, xr1 , xr2 , and xr3 are then randomly selected. They

are all different to the objective vector and different to one another. These four vectors are

then combined to obtain a new vector candidate to replace the objective vector:

vi+1;j = xr1 + F (xr2 − xr3) (2.4)

First, vectors xr2 and xr3 are subtracted and scaled according to a F factor.

Finally, the result vector from the previous step and vector xr1 are added. The final result

vector of the mutation phases is known as the donor vector.

Once the donor vector is obtained, it is combined with the original vector xi;j by

means of a crossover operation. A usual crossover method is the binomial crossover, which

randomly selects, component by component, either from the original vector or from the

donor vector, producing the new individual ui+1;j . Finally, xi;j is replaced by ui+1;j if and

only if the new individual has a better fitness value.

A more detailed survey of DE can be found at the work of Das and Suganthan

[20].

2.4 Discussion

The application of the technologies reviewed in this chapter to the video game

development is hard in the actual state. The reinforcement learning algorithms are hard

to include in the production process, and the emotional engines are not suitable for the

video game environment. Thus, we observe that the creation of a complete architecture

Chapter 2: State of the Art 45

that can deal with these two components is interesting for the final objective of this work.

The creation of this architecture must include the key features of these two fields, and the

characteristics involved in the video game environment itself.

We analyze the models presented in this chapter in order to obtain a global vision

of the common factors in all of them and, more important, the lack of the features that are

relevant for the development of the architecture and the models within it.

Emotional Model Components

The appraisal theory based models provide a complete mechanism for handling

emotional responses, the inclusion of any of these models in the architecture of the video

game characters is too complex. The video game scenario needs “coarse-grained” emotional

states and simple and efficient transitions. On top of that, the design of multiple characters

is an extra effort that requires to consider models somehow easier to calibrate and evaluate.

In this discussion we introduce the parameters or elements that are relevant for us

in the analysis of emotional models .

Perception / World Representation

The emotional models must represent the world in which the character is living

and perceiving, the elements of the environment that the character perceive may or may not

produce some emotions in him, but it is important to identify the sources or triggers of the

emotions and the parameters that have influence in the variables of the emotion perceived.

Appraisal / Automatic Emotion Analysis

Once an element, action or consequence is perceived by a character, it usually pro-

duces some emotional response in the character giving some internal or external procedure

that changes the relationship of the agent with his environment. This emotional analysis

of the perceived world usually goes apart of the cognitive procedure but must have some

influence in it, at least as an additional parameter for the cognitive deliberation of the state

of the world.

Emotions in the Cognitive Procedure

The cognitive procedure of any character should be focused in the production of

some action in order to achieve certain goal desirable for him, even in the case of secondary

characters in a scene, they must produce some actions that are perceived by the primary

characters (or human actors) as goal directed even roaming around. The inclusion of emo-

tion in the cognitive engine of a character must add the emotional component to the goals

of the character to produce some actions emotionally coherent altering the goal orientation

of the agent motivation.

46 Chapter 2: State of the Art

Basic Character Model for Emotions

Not all the characters must react in the same way to the same changes of the state

of the world, so we must have some a priori representation of the character, his goals, his

relations and his behaviors in the emotional context.

Emotion Dynamics / Timescale for Emotions

The emotional stimulus that a character feels in a given instant dissipates along the

time and this dynamic must be captured by an emotional model. The emotional dynamics

must take the emotion parameters for one point to another of the full spectrum of emotions

making believable those emotions and their non-static behavior.

Mood and Affect Representation

The Mood State and the affect must have an internal representation that has

to be maintained along the time enabling the addition of more emotions and the dynamic

attenuation of the previous emotions. The representation must be rich enough to distinguish

between positive and negative affect states. These values representing the current state must

also influence the analysis of the future events.

Soft Computing in Video Games

As some studies show and many interviews with the lead programmers of the

industry reveal, the soft computing techniques are not implanted in the actual work flow

of the video game development. The promising techniques, that are successfully applied in

the resolution of many theoretical and industrial problems, are not used by the video game

programmers. We think it is derived from the specific knowledge needed to implement them

and the lack of total control or flexibility of the solution that they produce, but, we also

think that with the correct tools and mechanisms it is possible to introduce these techniques

in the future development.

Evolutionary Algorithms in Video Games

Traditionally, Evolutionary Algorithms (EAs) and Evolutionary Computation (EC)

are defined as stochastic search methods that mimic the metaphor of natural biological evo-

lution. Evolutionary algorithms operate on a population of potential solutions applying

the principle of survival of the fittest to produce better and better approximations to a

solution. At each generation, a new set of approximations is created by the process of

selecting individuals according to their level of fitness in the problem domain and breeding

them together using operators borrowed from natural genetics. This process leads to the

evolution of populations of individuals that are better suited to their environment than the

Chapter 2: State of the Art 47

individuals that they were created from, just as in natural adaptation. EAs are particu-

larly useful on problems with little domain knowledge because they require do not a priori

analysis of the hypothesis space or of the problem domain.

As Lucas and Kendall describe [41]:

Evolutionary Computation is well identified as a game (the game of life)
in which their participants may try to propagate its genetic material across the
generations and the fitness value of an individual depends on the friends and foes
interaction as well as to the environment. This process is known as Co-Evolution
in the Evolutionary Computation literature and becomes of the evolution of a
game strategy without need of a human interaction or expertise.

The application of Evolutionary Algorithms in the commercial video games has

been relegated to some niche games that use the evolutionary background as part of the game

itself, like SporeTM2 or CreaturesTM3. These video games illustrate with the artificial life

paradigm the features underlying the EAs. On the other hand, the video game developers

are reluctant to applying these techniques to their projects but, from the academic research

there are promising works that must be taken into account for further developments like

the Yannakakis’ [91] work that uses the EAs for the objective measure of interestingness to

evolve more engaging ghost behaviors for a simplified version of Pac-Man and other prey

and predator games. Also, the works based on NEAT algorithm that produced new types

of games like the NEROGame4. These researches keep the door open for the application of

EA mechanisms in the future.

In this thesis, the EAs are used for the creation of a hybrid algorithm that makes

an improvement in the implementation of the RL techniques for the automatic creation of

controllers that should be an important point for the improvement of the playing experience

through the development of more creative, sophisticated and/or challenging AI controllers

for the characters of the next generation video games.

Machine Learning in Video Games

The are many techniques applied in research scenarios closely related with the

video games, like the simulators, and the serious games. In the last few years more research

groups are beginning to work in the video game scenarios as part of their applied develop-

ment. In the case of the machine learning many works derived from the neural networks or

hierarchical planners are being tested in frameworks that are basically video games. The

multi-agent technologies are also turning their focus to these environments that can be

easily modeled and handled.

2http://www.spore.com

3http://www.gamewaredevelopment.co.uk/creatures index

4http://nerogame.org

http://www.spore.com
http://www.gamewaredevelopment.co.uk/creatures_index
http://nerogame.org

48 Chapter 2: State of the Art

Moreover, there is still a gap between the necessities of the video game industry

and the research developments, that is why we think that an architecture that can be easily

implanted in existing video game engines can be helpful for the future projects, and can

approach the machine learning paradigm to the entertainment industry in a structured way.

In this thesis we try to make a practical approach to the mechanism, processes

and algorithms that are used in order to achieve the objective of creating an useful set of

technologies included in an architecture that can improve the AI applied in the creation of

the environment, characters or plots of this important industry.

Chapter 3

General Model Architecture

Architecture is basically a container of

something. I hope they will enjoy not

so much the teacup, but the tea.

Yoshio Taniguchi

As we discussed in the Section 2.4, there are different techniques that can be

applied to improve the development of the video games. Some of them are related to the

automation of the construction of controllers (for the growing amount of characters in the

upcoming games), while other methods or models address the design of more appealing

and entertaining worlds bringing more sense of realism (through behavior and environment

enrichment).

The creation of more sophisticated controllers for video game characters is the key

to the new generation of products that are likely to appear in the next years. The support

for the creation of these controllers can be conducted in many directions. In this thesis,

the improvement in the creation of the video game character controllers, is to be achieved

through the application of two different objectives:

• First, we focus our attention on emotion and affect simulation in the environ-

ments present in the video game scenarios. For the credibility of the behaviors, it

is of foremost importance the correct interpretation of the events produced in the

environment and the affective reaction, not only to a particular event, but also to a

sequence of events. Thus, the actions and effects perceived in the environment by a

character drive his emotional state to a certain point. Therefore, the behavior of this

character must show this mood throughout his actions.

• Second, the automatic creation of certain controllers for the video game char-

acters will be supported. The complexity of the manually created controllers, and

the believability of the behaviors generated by them, is constrained by the work force

dedicated to the development and debugging of the components of the intelligence

49

50 Chapter 3: General Model Architecture

in charge of the behavior of the characters. Hence, the automatic creation of these

components can produce a broader range of controllers that can be created by the

exploration and exploitation of the environment state.

The application of these two objectives to the construction and development of

the behaviors of characters can lead to the automatic creation of video game character

controllers. These automatically created controllers are not only economically competitive

compared with the hand-coded alternatives, but also richer (with more varieties in their

strategies) due to automatically-discovered behaviors based on their current emotional state.

This emotional state is produced by the perception of the changes and events prompted in

the environment, and the analysis of these events that the character does based on his own

personality.

In this chapter, we present the general architecture designed for the automatic

creation of emotional behaviors. The components that are part of this architecture are

abstractly presented in the following sections. We conceive the complete model as a mod-

ular structure that admits different implementations of its components as long as these

implementations fulfill certain requirements and interfaces.

The chapter is organized as follows: in Section 3.1 we present the proposed archi-

tecture that will enclose the two objectives aforementioned, in Section 3.2 we describe the

structural composition of the architecture. We explain the communication among the com-

ponents in the dynamic view of the architecture in Section 3.3, in Section 3.4 we introduce

some design and implementation guidelines to support the application of the architecture

to a eventual development. And finally, in Section 3.5, we discuss the architecture as con-

tribution in the context of video game development.

3.1 General Description of AGCBAR Architecture

The model presents an architecture for the creation of game controllers, called

AGCBAR (Automatic Game Controllers Behaviors with Affect Responses) Architecture.

This architecture encloses the necessary components to automatically create and exploit

character controllers. The characters under the control of the AGCBAR Architecture are

supposed to display enriched and interesting behaviors (in terms of believability and playa-

bility). These controllers take the environment changes not only as an observation of the

world that produces some reactive responses on the character according to his current

strategy, but also, they take these environment changes as events that can prompt some

emotional responses. These emotional responses can change or modify the general behavior

and/or objectives of the characters activating different strategies, which are selected based

on the emotional state rather than on pure logic.

Chapter 3: General Model Architecture 51

3.1.1 AGCBAR Architecture Concerns

The AGCBAR Architecture provides two key features that support the design of

the video game character controllers. These concerns are:

1. Mood Dynamics, which represent the interpretation and processing of the events

prompted in the environment to produce emotional values. The dynamic treatment

of the emotions (produced by the events announced by the game engine) creates a

certain “flow” of the character’s mood across different states. This flow can be used

to modify the behavior of the character according to these sequences of events. It

does not mean that the behavior will be 100% emotional, indeed there is a strategic

planning in the control mechanisms, but the emotional state dictates the objectives of

this strategy. It is an emotion-driven strategy planning (ranging from more elaborate

control plans to pure reactive responses).

2. Automatic Controller Creation involves the procedure of creating different strategies

according to the observed states of the environment variables produced by the game

engine. These strategies are different combinations of the actions available for the

characters to interact with the environment presented by the game engine. As men-

tioned before, the creation of these controllers pursues a given set of different goals,

which could be defined as a pure strategic goal (showing intelligent behavior) or any

other different goal driven by the emotional states (showing a broad range of flavors

of affective behaviors).

These features are mainly implemented by two components: (1) the Emotional

Engine that must capture and parse the events of the environment to produce the Mood

Dynamics and (2) the Learning Engine that must build the strategies and behaviors

according to the environment observations, in order to implement the Automatic Controller

Creation.

This architecture is designed to be applied to a broad spectrum of game engines

with a minimal interference with them, so it can be attached in a “clean way” to the

game engines. Furthermore, the two components that form this architecture are designed

so they can work in the absence of any of them. This makes the architecture able to be

tailored according to the necessities of any given video game scenario. Thus, we can use

the Automatic Controller Creation without the Mood Dynamics and vice versa.

3.2 AGCBAR Architecture. Structural View

The AGCBAR Architecture, as can be seen in Figure 3.1, comprises a set of main

components.

There are three different engines described in the architecture, which will be fully

detailed in Section 3.2.1:

52 Chapter 3: General Model Architecture

Figure 3.1: AGCBAR Architecture: Structural View. The relationship among the Goals, Moods and

Strategies enables the features addressed by the architecture.

• Game Engine: this is the base component that manages the game logic and rules.

It encloses the simulated environments and the character controller interfaces. The

Game Engine interacts also with the human player through the inputs that the player

provides to the system (actions steered by the human player user interface) and dis-

playing the state of the environment by the rendering of the scene in a display or

screen.

• Emotional Engine: this engine is the component in charge of the Mood Dynamics

concern, which will produce changes in the emotional state of the characters according

to the events produced by the environment.

• Learning Engine: the Automatic Controller Creation is handled by this compo-

nent. It produces different behaviors (Strategies) according to the changes in the

Chapter 3: General Model Architecture 53

environment and adapt them to the different goals that the character can have.

Aside of these components, there are two processes, which are secondary process-

ing units that drive the behaviors to use or explore. Although these processes could be

implemented as a very complex procedures, for the purpose of this thesis we have selected

a simple version of them, just to focus our attention on the aforementioned Engines.

• Strategy Selection: if the Mood Dynamics concern is applied in a development, the

current Mood, provided by the Emotional Engine, will be used as part of the Strategy

Selection process. This process will choose the strategy (among those created by the

Learning Engine during the Automatic Controller Creation Phase, for example) to be

used until the next change in the character’s mood.

• Goal Selection: during the phases enclosed in the Automatic Controller Creation

concern, the Learning Engine has to create a strategy that tries to maximize the

performance, when given a certain goal. In the AGCBAR Architecture, the goals are

related to the mood state that the character has in a precise instant, thus the Learning

Engine has to create as many strategies as the number of character’s moods.

The components’ functionality, interaction and description are based on a central

definition of concepts that all the architecture shares. These concepts are described in a

common component called Architectural Dictionaries

AGCBAR Architecture: Architectural Dictionaries

These Architectural Dictionaries store the different values and elements that the

different components are going to use or exchange. In the Figure 3.2, we present the different

dictionaries and repositories that the designer must complete, and the components related

to them (as producers or consumers of them).

In order to specify these dictionaries, the designer must identify the following

elements:

1. Event Classes [Events Dictionary]: The events, Ei ∈ E are emotionally relevant events

produced by the Game Engine which can cause some changes in the emotional state

of a character. They are described as a class with the relevant attributes to represent

these events parametrized. These emotional events are used by the Emotional Engine

during the Mood Dynamics application. For instance, some relevant events could be:

the death of a character in the scene, or the perception of certain effect (an explosion,

a suspicious sound, etc.), so they can produce a particular emotional response in the

characters that perceive them.

2. Mood Tags [Moods Dictionary]: The emotional states of the character, called Moods,

must be represented with a finite set of values, Ti ∈ T. The Emotional Engine will

54 Chapter 3: General Model Architecture

Figure 3.2: AGCBAR Architecture: Dictionaries. The different dictionaries are related to the engines

that compose the AGCBAR Architecture.

select which of them should be used at each instant during the Mood Dynamics stage.

This mood discriminates which of the strategies (behaviors) the character uses to

decide his actions. For example, a Mood could be tagged as Afraid to represent the

state where the character is worried and a bit scared about the situation.

3. Goals [Goals Dictionary]: In the AGCBAR Architecture, the goals, Gi ∈ G, are

preferences about the different states that the game scenario can have. These goals

are closely related to the scenario presented to the character in the video game. They

are usually described by a concept related to the game, such as “survive the maximum

time possible” or “minimize the damage received”.

4. Actions [Actions Dictionary]: The actions described in this dictionary, Ai ∈ A, are the

actions that the Learning Engine uses for strategy construction. They can be the same

actions that are implemented in the Game Engine as atomic actions for the characters,

but also, they can be more abstract actions that describe complex action sequences

or actions with some parameters that the Game Engine has to interpret when they

are selected as result of a certain strategy. For instance, the Action Dictionary can

include an action “Move Forward” which will represent a particular action in each

instant in the Game Engine according to the actual facing direction of the character,

Chapter 3: General Model Architecture 55

or “Get First Aid Kit” which can enclose actions to navigate to the nearest medical

kit and grab it.

5. States [States Dictionary]: The environment state, simulated on the Game Engine,

must be represented in some precise way in order to extract a strategy that is appro-

priate for a given state. These representation of the state can be described by the

designer in this dictionary. The states
−→
Si ∈ S are used by the Learning Engine to es-

tablish the current state in which the character must select and action or, the state we

want to evaluate according to a certain goal. Therefore, the state of the environment

in a specific instant is described by a set of variables that takes a particular value in

this instant. In the states dictionary we describe which are those variables and their

possible values.

Moreover, the common factors of the two processes of the AGCBAR Architecture

are the production (in the case of the Goal Selection Process) and selection (in the Strategy

Selection Process) of the Strategies, Bi ∈ B, which will be stored in the Strategies Reposi-

tory. A strategy, Bi, is defined as a probability distribution of actions Ai ∈ A for each state
~Si ∈ S. Therefore, in the AGCBAR Architecture, to fulfill the two concerns (Mood Dynam-

ics and Automatic Controller Creation), the correct alignment among the Moods,

Goals and Strategies (behaviors) is necessary, see Figure 3.3. Even in the absence of

one of the engines, it is mandatory that this alignment exists. This constraint is required

by the process of Select Strategy, which occurs in run time. A strategy to be applied to the

current mood at any instant must exist.

Figure 3.3: AGCBAR Architecture: Goal and Strategy Matching. Each of the goals, Gi, creates a

strategy, Bi, which provides the goal, Gi, to achieve by the Learning Engine.

3.2.1 AGCBAR Architecture: Engines

As we described previously, the AGCBAR Architecture is composed by three en-

gines: Game Engine, Emotional Engine and Learning Engine. These engines must meet

certain features and requirements when they are implemented in a design. In the Chap-

ters 4 and 5 we show one specific implementation for an Emotional Engine and a Learning

Engine, respectively, and in the Chapter 6 we describe a video game which is implemented

to present a complete integration of the AGCBAR Architecture with a Game Engine. Still,

56 Chapter 3: General Model Architecture

the proposed architecture is intended to be applicable to many implementations of these

components. In this section, we describe the functionality and the requirements that the

implementations of these engines must fulfill.

Game Engine

The game engine is in charge of the simulation of the core rules of a particular

game. It must create the environment of simulation and it has to populate this environment

with the characters of the scenario. This is the basic component of all video games. The

basic game loop is based on the perception-deliberation-reaction cycle, where each character

in the scene perceive the current state of the environment, his reflection about it and his

next action-decision-making. After the reception of the actions of all of the characters,

the game engine simulates the changes in the environment, derived by the set of actions,

throughout the physics and rules implemented in it.

Emotional Engine

The Emotional Engine is designed for the affect representation and synthesis ac-

cording to the environmental perception of the characters. The main goal of this component

is to enable a more realistic behavior of the character. Although there are cases in which

the video games have no necessity of using any emotional or affect simulation, some other

video game genres would greatly exploit the possibilities of this kind of engines. Thus, the

affect simulation can enrich the behavior of the characters and situations that can appear at

the environments created in this kind of video games (such as RolePlaying Games (RPGs)

or “Sim Kind” games).

The Emotional Engine component has the objective of providing the Mood Dy-

namics that are necessary for the affect representation and simulation. The Emotional

Engine component must receive the corresponding emotional events, Ei, with sufficient

parameters for the identification and evaluation of the emotions that the character must

experience, and produce a mood state, Ti.

The Emotional Engine, as part of the AGCBAR Architecture, must meet certain

requirements, as in the case of the Game Engine, but also, it must fulfill the requirements

of the Mood Dynamics. These requirements derive from the Cognitive Psychology 1, and

from the Video Game development environment2:

1In the context of applied psychology, the appraisal theories usually establish some key points for the
computational analysis and/or simulation of emotions, such as, the difference between the appraisal and
the inference about of the events that a character perceived [46], minimal necessity of certain inferences to
distinguish between emotions [81], believability and empathy with the user [21], and some others.

2The video game development is a very time-constrained environment. The development cycle, usually,
is constrained by hard release deadlines and/or by some bottlenecks in the work flow of the production
processes. Furthermore, at run-time, we have also some restrictions about the amount of time and resources
that we can use for certain tasks, such as the artificial intelligence techniques. Thus, we have to make

Chapter 3: General Model Architecture 57

• AGCBAR-EmoR1: The Emotional Engine must have a complete mapping of the

moods, Ti ∈ T. So there is no possibility that a mood state reachable by the characters

emotional, not to be specified in the Moods Dictionary. The mood is the output of

this engine, so the moods produced here are the ones that are going to be used in the

Strategy Selection process.

• AGCBAR-EmoR2: The current mood state, Ti, of the character must influence in

the Mood Dynamics. Thus, the Emotional Engine is intended as a function that takes

the emotional events and the current mood to produce the new one[3]:

EE : T×En → T

EE(Ti, {Ei, . . .}) = Ti+1

• AGCBAR-EmoR3: As a consequence of the AGCBAR-EmoR1 and AGCBAR-

EmoR2, the Emotional Engine must be initially configured with a starting mood

state T0. This mood must be the representation of the initial base tendencies of the

character. These tendencies are described in psychology as the “personality”.

• AGCBAR-EmoR4: Thus, the Emotional Engine must provide a model for defining

the initial tendencies of the character facing his environment [50]. The character, in

his profile, sets his own personality and, consequently, his initial and central mood

towards which, in absence of emotions, the character tends to be.

• AGCBAR-EmoR5: So, there is a necessity to recover the initial mood state as

part of the Mood Dynamics, this recovering represents the raising and lowering of

an emotion, providing the attenuation of the past emotional events and the natural

tendency to the neutral mood position [7].

• AGCBAR-EmoR6: The Emotional Engine must provide a mechanism to process

the Emotional Events produced, which are described at the Events Dictionary. The

way of treating these events is character-dependent, but all these events must be

accepted by any character, thus we ensure the robustness of the architecture.

• AGCBAR-EmoR7: The computational cost for the transitions and evaluations of

the moods and emotions must be moderated in order to be applied under soft real

time constrains. The Emotional Engine is the responsible of Mood Dynamics concern,

which is, by definition, a feature to be provided on-line while the game is running.

the Emotional Engine suitable for being applied as part of the development process and in the real-time
execution.

58 Chapter 3: General Model Architecture

Learning Engine

The Learning Engine, as opposed to the Emotional Engine, works during the

design and development phase of the video game. The Learning Engine is in charge of the

assisted creation of the behaviors so that they are adapted to the environment state and the

current goal of the character. This engine must produce different behaviors extracted from

the evaluation of the different strategies explored in a, possibly long, simulation process.

The Learning Engine can be implemented in many different ways but it is impor-

tant to identify the fact that the primary objective of these implementations must be the

creation of different strategies from different scenarios in which the environment changes

due to the interaction of a set of agents that can cooperate or not.

As in the case of the Emotional Engine, the implementation of the different Learn-

ing Engines is constrained by the fulfillment of certain requirements. These requirements

directly derive from the interfaces that the Learning Engine is connected to. Hence, the

actions Ai selected by the strategy Bi must be of the set A described in the Action Dic-

tionary, so the Game Engine can correctly interpret and implement them as actions in the

simulated environments. The environment parameters,
−→
Si, that the Game Engine provides,

are the only input of the environment state that the Learning Engine has. These parameters

must be used to evaluate the current state according to the objective and to select the next

action to be performed by the character.

3.3 AGCBAR Architecture. Dynamic View

The AGCBAR Architecture, as we presented before, is composed by different

components that exchange information in order to produce the desired features of Mood

Dynamics and Automatic Controller Creation.

The communication between the components is made by means of a set of in-

terfaces, as presented in the Figure 3.4. They provide the information produced by a

component and used by another. In order to support this communication, the interfaces

must use the information described in the Architectural Dictionaries. These interfaces are:

• Events Interface: this interface represents the data exchange between the Game

Engine and the Emotional Engine. The events, Ei, will be produced as instances of the

Event Classes described in the Event Dictionary. They will provide the parametrized

information taht is necessary for the processing of these “emotional events” in the

Emotional Engine.

• Mood Interface: the current behavior, to be applied in the decision-making process,

is selected according to the current mood, Tj , produced by the Emotional Engine.

This interface is used by the Strategy Selection process for choosing the strategy to

follow while the architecture is running the Mood Dynamics.

Chapter 3: General Model Architecture 59

Figure 3.4: AGCBAR Architecture: Dynamic View. Displays the relationships among components

through the interfaces.

• Environment State Interface: the simulated scenario and environment will change

their state variables, ~Sj, along the time driven by the characters’ actions as well as by

some internal events. This state is represented in a data structure shared between the

Game Engine and the Learning Engine. Thereby, the Automatic Controller Creation

feature can use it to produce the strategies suitable for each given scenario state. These

state variables represent different parameters that reflect the state of the environment

in a particular instant. The class and values of these variables are dependent of the

game environment. This interface is thus the way to summarize and characterize the

60 Chapter 3: General Model Architecture

environment state to make it usable by the Learning Engine and the Current Strategy

to decide which is the next action to execute.

• Action Interface: describes the representation of the actions available for the con-

troller to perform a particular strategy. The Actions, Ak, selected by the current

strategy which we are used in a specific instant are sent to the Game Engine to per-

form the atomic actions described in the simulation engine which represent the core

of the game. In some cases, the action produced by the Strategy is an abstract or

parameterizable representation of an action, therefore, the Action Interface enables

the communication between the Current Strategy, Bi, and the Game Engine.

• Goal Interface: this interface provides the mechanism to communicate the Goal Se-

lection process with the Learning Engine, the current objective to achieve throughout

the learning process. The goals reflected in the Goal Dictionary, are translated with

this interface in the format that the Learning Engine needs, for instance, given some

optimization learning engine, the Goal Interface can translate a particular goal, Gi,

in a function to be maximized by the Learning Engine, fGi
(x).

3.3.1 Concerns Application Phases

As we said before, the two concerns addressed by the AGCBAR Architecture are

complementary. They can be included in a development in order to semi-automatically

create the controllers for the characters, which will react (or strategically act) driven by

their current emotional state.

The AGCBAR Architecture features are based on the interaction of certain com-

ponents in a given instant of time. In the Figure 3.5 we represent the different components

that interact. This interaction is divided in two instants of the life cycle of the software.

First, we have the development time. During this stage, the Automatic Controller Creation

concern takes place. We address this stage as Off-Line Strategy Generation. Second, while

the game is running we describe two processes or stages: Run-Time Action Selection and

Run-Time Strategy Selection. In these two stages the strategies created during the devel-

opment are used to act according to the mood state produced by the Mood Dynamics and

the run-time simulation given by the Game Engine.

Off-Line Strategy Creation

This stage is part of the game development phase (design and implementation).

Video game designers are producing the contents for a new game and require some sup-

port tools to automatically produce or assist in the crafting of these contents. During the

development phase, the AGCBAR Architecture supports the creation of strategies with

the Automatic Controller Creation concern. The Learning Engine implements this feature

proving an automatic mechanism to produce character control routines, see Figure 3.6.

Chapter 3: General Model Architecture 61

Figure 3.5: AGCBAR Architecture Components. During the run-time the Emotional Engine will

produce the Mood Dynamics and at the development time the Automatic Controller Creation.

Figure 3.6: AGCBAR Architecture Components. The Learning Engine build the strategies according

to the goal to achieve.

We define the Strategies, Bi ∈ B, as the control routines used by the characters

to perform the actions during the run-time simulation. These strategies are a probability

distribution over the space of action, A, given a state of the game, Sk.

Bi : A× S −→ [0, 1]

(Aj , ~Sk) −→ P (Aj , ~Sk) = π

Therefore, as shown in the Figure 3.7, during the strategy creation process, the

Learning Engine must evaluate the state of the scenario provided by the Game Engine.

Then, after classifying this state, the Learning Engine selects an action, Ai, as the next

62 Chapter 3: General Model Architecture

one proposed by the character controller. The selection of the action is carried out by the

Learning Engine which evaluates the current state and selects the most suitable action to

accomplish the current Goal of the character, Gi.

Figure 3.7: AGCBAR Automatic Controller Creation: Learning Engine. The learning algorithms need

to evaluate the environment state ~Sk to adjust the strategy selecting the action Aj to achieve the

current selected goal, Gi.

All the above mentioned procedures should be carried out in an iterative way for

certain amount of episodes, during these episodes the Learning Engine adjusts the strategy

while evaluating the current objective. When this learning process ends, the resultant

strategy, Bi, is stored and associated with the goal, Gi, so it can be easily selected during

the execution of the game by the Strategy Selection process, see Figure 3.8.

Figure 3.8: AGCBAR Automatic Controller Creation: Goal and Strategy Matching. Each of the goals,

Gi, creates a strategy, Bi.

Run-Time Strategy Selection

When the game is running, the affect-driven behaviors are applied to enhance the

sense of realism of the characters and their reactions. It is during this phase when the Mood

Dynamics concern is accomplished, as shown in Figure 3.9.

Chapter 3: General Model Architecture 63

The player expects that the characters involved in the scene that he is playing,

show emotional reactions. The role of the Game Engine is to simulate the scenarios and

according to the actions produced by the characters and some internal dynamics, to change

the environment. These changes are sent to the Emotional Engine as Events, and they

must prompt some emotional responses in the characters that perceive them. These events

are evaluated and handled by the Emotional Engine, which will maintain the Mood of the

characters along the time. When it is necessary (when it changes, when given a certain

refresh rate or when explicitly asked), the Emotional Engine then returns the current Mood

of the characters in order to use it for deciding the new Strategy to follow. The Strategy

Selection process chooses the strategy according to the mood received.

Figure 3.9: AGCBAR Run-Time Strategy Selection. The Emotional Engine evaluates the events re-

ceived from the Game Engine to provide the Mood to Strategy Selection process

The Mood Dynamics concern produces the following sequence of actions in the

different components that are included in this Run-Time Strategy Selection stage, see Fig-

ure 3.10

1. The action of a character, Ak, must be processed by the Game Engine in order for it

to change the environment state,
−→
Sj →

−→
Sk.

2. The Game Engine instantiates the events, Ek, related to the potential change in the

environment state that are relevant for the mood analysis. They are communicated

to the Emotional Engine.

3. All these events include the parameters that are relevant for the analysis of the emo-

tions, such as source or target of the event, time-stamp, etc. The specific imple-

mentation of the game engine and/or Emotional Engine can force the inclusion of

more parameters which must be specified during the design of the Emotional Event

Interface, see Figure 3.11.

64 Chapter 3: General Model Architecture

4. The Emotional Engine applies the events {Ek, . . .} to the current mood state Tj ,

producing a new mood, Tj+1.

5. The new mood is used by the Strategy Selection process to update the current strategy,

according to the change of the mood.

Figure 3.10: AGCBAR Mood Dynamics: Game Engine. The simulation produces the emotional events

{Ek, . . .}

Figure 3.11: AGCBAR Mood Dynamics: Emotional Engine. Given an initial mood T0, which describe

the initial tendencies of the character. The Emotional Engine processes the emotional events, {Ek, . . .},

to modify the current mood, Tj .

Run-Time Action Selection

Regardless of whether the Mood Dynamics feature is implemented or not, during

the execution of the game, the current strategy that the character is using to manage his

behavior is repeatedly queried about the next action, Ak, to perform. The strategy provided

by the Strategy Selection process chooses the next action according to the probability

distribution associated to the current state sent by the Game Engine, see Figure 3.12.

The basic loop of a video game, see Figure 3.13 can be described as:

Chapter 3: General Model Architecture 65

Figure 3.12: AGCBAR Architecture Components: Action Selection. The Game Engine asks for the

next action to perform to the current Strategy.

Figure 3.13: AGCBAR Basic Game Loop. The general game loop is based on the action-

selection/simulation/state-feedback cycle. The character controllers must interpret the environment

state in order to select their next action, Ak, to do.

1. The game scenario in a particular state is described by a vector of environmental

variables,
−→
Sj = S1, S2, . . . , Sn.

2. This state is communicated to the characters in the scene. These characters decide

which the next action will be, according to their current strategy, Bi (this is the

66 Chapter 3: General Model Architecture

strategy driving the actions of the character i).

3. The game engine receives a set of actions of all of the characters in the scenario,

{Ai, ..., Ak},

4. These actions make the environment transit from one state to another,
−→
Sj −→ −→

Sk.

This is done by following the rules that describe the game mechanics.

5. This new state is again communicated to the characters.

In parallel, the Game Engine must send the scenario to the render of the scene to

display it to the human player, and also, it must included the actions selected by the player

in the simulation loop.

3.4 AGCBARArchitecture Design and Implementation Guide-

lines

The AGCBAR Architecture, as we described in the previous section, is a general

architecture that can be applied to a wide range of video game developments. In this sec-

tion, we propose a set of design and implementation guidelines which can help to deploy

the components of the architecture in a video game development.

First of all, the game designer must decide if he needs to include both concerns,

Mood Dynamics and Automatic Controller Creation, into his game. The AGCBAR Ar-

chitecture concerns are designed to be independently applied. Hence, these features can

be included into any development, but in some cases, the video game that is going to be

developed may not need one of them.

The selection of the features to be applied leads us to four possible implementation

scenarios for the AGCBAR Architecture, as shown in Figure 3.14. If the designer decides

to use the Mood Dynamic feature, the implementation of the Emotional Engine and all of

its features is mandatory, because the AGCBAR Architecture will need it when the game

is running. On the other hand, the selection of the Automatic Controller Creation requires

the implementation of the Learning Engine. Thus, off-line training of the strategies can be

accomplished. In the case that the design of the video game includes both concerns, the

complete architecture needs to be implemented. Therefore, both phases of the AGCBAR

Architecture, Run-Time Strategy Selection and Off-Line Strategy Generation phases, will

be applied. In any case, the phase of the Run-Time Action Selection is always present

because it is imposed by the Game Engine loop.

Once the designer selects the features to be applied in the new development, a

sequence of actions must be taken to implement them. As we show in the Figure 3.15,

Chapter 3: General Model Architecture 67

Figure 3.14: AGCBAR Architecture: Concern Composition. The presence of one or another of the

concern produce the appearance of certain phases of application of these concerns.

each of the concerns has certain tasks to develop. The description of these tasks and their

implementation guidelines are described later on the section. Basically, the Mood Dynamics

has to describe the dictionaries and interfaces related to the Events Classes and Mood Tags,

and the process of selection of the strategies to apply according to the current mood. The

Automatic Controller Creation, for its part, is related with the dictionaries of Environment

State, Actions and Goals (see the Figure 3.2 where the dictionaries and engines are as-

sociated). Also, the development of the Learning Engine needs of the Environment State

interface and the Goal Selection process to work.

The first step, previous to the implementation, is the definition of the Archi-

tectural Dictionaries (see the Section 3.2 for their description). After the specification

of the dictionaries, the interfaces of the architecture must be implemented according to the

features selected (see Figure 3.15). As we said in the previous section, there are five main

interfaces in the architecture: Emotional Event Interface, Current Mood Interface, Environ-

ment State Interface, Action Interface and Goal Interface. All of them must be implemented

to support the communication among the components included in the architecture design.

Finally, the implementation of the engines referred to by the AGCBAR Architec-

ture is closely related with the algorithms that we want to apply to resolve each of the

concerns of the architecture. In this section we show the elements of the architecture that

68 Chapter 3: General Model Architecture

must compose each implementation setup. This is also the interfaces and the requirements

necessary for the integration of the whole system. In the following chapters (Chapters 4

and 5), we present two specific implementations for the Emotional Engine and for the

Learning Engine, respectively, and in the Chapter 6 we present a complete Game Engine

implementation which integrates all the components of the architecture.

Figure 3.15: AGCBAR Architecture: Concern Implementation. The implementation of each of the

Concern has associated a set of elements to implement and configure.

In order to illustrate the implementation of a video game using

the AGCBAR Architecture, we will describe a simple video

game, based on a well–known game. The game that we pro-

pose is a “Emotional-Ghost Ms Pac-ManTM”. The main idea

of the game is a 2D maze, as in the figure (Screenshot of Ms

PacMan, a clone of PacMan). In this maze there are two

teams: one team of 4 Ghosts, which is controlled by the com-

puter, and another formed by MsPacMan, which is controlled

by the player.

Chapter 3: General Model Architecture 69

The game is divided in levels, each level having its own different maze. The mazes

are formed by walls that form corridors, one ghost’s spawning cell and two or more

crossing tunnels. The corridors are filled with pills. Each pill can be eaten by

MsPacMan, scoring a certain amount of points. When all the pills are eaten by

MsPacMan, the current level is clear, and the player proceeds to the next level.

The goal of MsPacMan is to make as many points as possible, clearing all the pills

that appear in the maze. The goal of the ghost is to try to chase MsPacMan and

to eat her as many times as possible.

There are 4 special pills on each maze, called PowerPills. If these pills are eaten,

the Ghosts became “edibles” (i.e. they can be eaten by MsPacMan) for a fixed

amount of time, or until the Ghosts are eaten. When a Ghost is eaten, it returns

to the spawning cell and his chase starts again.

In this Chapter we use this game to show the description of the elements that com-

pose the AGCBAR Architecture and how to describe them in this simple game. It

is clear that in such a basic game there is no necessity for the proposed architecture,

but we use it because is a well known and easy to understand game.

Our main objective is to apply the AGCBAR Architecture to the automatic con-

struction of the Ghosts’ controllers. Applying the emotional simulation to them to

recreate more “emotionally driven” Ghost which feels fear or anger due the events

of the game.

3.4.1 Events and Moods Dictionaries

The common implementation of the dictionaries is the textual enumeration of

tags that have semantic meaning for the Events and Moods. The Events will be related

to actions, consequences and/or objects that appear in the scene. They are described as

classes formed by a key identifier attribute. The key point for their description is to identify

the elements that can be relevant in the emotional state of the characters that we have in

the environment. For instance, the death of some of the characters or the achievement of a

certain task can be interesting for the emotional state of the characters, but the movement

of some secondary agent (like a bird or rabbit) in the scene may not be relevant (in any case

is the game itself the one that make something relevant for the emotional state simulation or

not). But also, as can be inferred from the examples, the event classes have also some other

attributes that are relevant for the parameterization of the events, such as the identifier of

the dead character, or the specific location of the achieved task.

This definition of the Event Classes induces the appearance of the Event Hierarchy

which will be included and extended in the implementation of the Emotional Engine in order

to ease the integration of this engine in the architecture.

The Moods of the characters are utterly derived from psychology terms, and the

70 Chapter 3: General Model Architecture

representation of the moods and their meaning is closely related with the Emotional Engine

implementation. Because of that, we can not describe moods in the dictionary that are

not going to be addressed by the engine. Therefore, the Emotional Engine provides a

representation of the moods, and we must select a set of the ones that are complete over

the possible space of moods, so there can not be a mood returned by the Emotional Engine

that we do not have represented in the Moods Dictionary.

For the game that we presented before, we describe the following elements for the

Events and Moods Dictionaries:

Events Dictionary -E- Moods Dictionary -M-

Eaten(GhostID) Angry

PowerPillTaken(PillID) Neutral

Move(GhostID,Pos) Afraid

Spawned(GhostID)

All of these moods need to be supported by the implementation of the Emotional

Engine.

3.4.2 Environment State Dictionary

The environment state is the set of variables that represent the actual scenario

configuration, the positions, states and values of the elements that conform the simulated

environment in a specific instant. In order to represent this configuration, a set of environ-

ment variables must be described. These variables summarize the state of the environment,

so they can provide enough information to the Learning Engine when the learning process

is going on.

The dictionary has the information about the variables to represent the environ-

ment, but it also provides a descriptive information about certain states that are relevant

for the characters’ controllers that we want to create. These descriptive states can be used

by the Learning Engine as a discrete representation of the environment state so it can be

easily used by the learning algorithm enclosed in the engine. This discretization of the

environment is not mandatory but it can be helpful when the environments are complex.

Chapter 3: General Model Architecture 71

In our proposed scenario, the game state is represented by a complete scenario

enumeration. We have a scenario composed, at each instant of time, by a map

where we have a set of cells. In each of the cells, we have an enumeration of

mutually exclusive values which represent the different states of the cell.

These states can be:

Possible states of a cell in the map

Empty Wall

Pill PowerPill

Ghost1,2,3,4 MsPacMan

EdibleGhost1,2,3,4 Spawn Cell

Additionally to this game board information, we include in the state representation:

• the current edible time,

• the scores of MsPacMan, and

• MsPacMan’s remaining lives.

This describes the Environment States as a vector of parameters
~Si = 〈S1

i , S
2
i , S

3
i , S

4
i 〉

Where,

S1 A matrix of n×m of enumerated values.

S2 Edible time in seconds as an integer in [0, 10]

S3 The score of the player as an integer in [0, 100000]

S4 The number of lives remaining [0, 3]

3.4.3 Emotional Event Interface

Emotional Events are sent by the Game Engine according to the changes in the

environment. These events must be treated by the Emotional Engine, so the implementation

of this interface must be guided by the needs that we have from the Emotional Engine.

The Event Classes, Ei, are instantiated with the corresponding parameters through this

interface. The Event Classes can be extended to be adapted to a particular Emotional

Engine implementation, in order to provide all the parameters needed by the Emotional

Engine. These instances are sent to the Emotional Engine which process them.

72 Chapter 3: General Model Architecture

In our example game, the events are treated as a string with the name of the event

specified in the Event Dictionary. These strings will be sent to the Emotional

Engine to process emotional events. Additionally, we include the source and target

(if they exist) of the event.

Eaten: Src ⇒ Ghost1 : Tgt ⇒ MsPacMan

PowerPillTaken: Src ⇒ MsPacMan

Moved: Src ⇒ MsPacMan

3.4.4 Mood Interface

Once the Emotional Engine processes the emotional events, the current mood of

the character may transit to another. Even if the mood does not change, the Emotional

Engine communicates this Mood of the characters in order to select the strategy to apply in

the decision–making process of the character. The current mood is provided as a tag that

describes the emotional state of the character. These tags, as in the case of the emotional

events, must cover all the moods described in the Mood Dictionary. It is also possible that

the mood state is represented some other way depending on the implementation of the

Emotional Engine, because it is used as part of the emotional evaluation of the events.

The Strategy Selection process receives the current mood to decide the strategy to

apply afterwards, the update of the mood state can be done by request, when we need to

update our strategy, or by event, when the mood change is notified to the Strategy Selection

process component, which will change the strategy accordingly.

In our case, the representation of the moods will be done as in the case of the

emotional events, with a tag, Ti ∈ T . For instance:

Angry Afraid

3.4.5 Environment State Interface

The Environment State Interface is the representation of the Environment State

variables that is communicated from the Game Engine to the Learning Engine during the

Automatic Controller Creation and to the Strategy during the game execution to decide

the actions to be taken in a specific behavior.

Chapter 3: General Model Architecture 73

This representation generated from the state variables as Environment State In-

terface must have a balance between information and specificity. Due to this trade-off, the

variables are usually summarized or discretized in ranges, or a mechanism of representation

of the information is used to make the learning process easier. The learning process of the

Learning Engine is closely related to the dimension and complexity of the state represen-

tation and the action set. Thus, this interface is critical in the design of the Automatic

Controller Creation facet.

The environment variables described in the Environment State Dictionary are sum-

marized as follows:

• the scenario is described as it is, with the matrix representation of the map with

an enumerated value on each cell according to the elements that has in.

• the ghost that are edible.

• the remaining number of lives of MsPacMan.

• the Edible Time is set in 3 slices: Last2sec, HalfTime and FullTime.

3.4.6 Goal Dictionary, Interface and Selection Process

As we said, in the Off-Line Strategy Creation Phase, the learning algorithm im-

plemented as Learning Engine will create a strategy combining different actions according

to the environment state. Each strategy is created to achieve a particular Goal Gi, which is

also associated to a specific Mood Tj. The most basic mechanism for selecting the goal to

achieve, taking into account that we must create a strategy for every goal, is to take each

mood state, to select the goal assigned to it, and to learn a strategy for this goal. Then we

can take another mood and so on.

Therefore, the Goal Interface provides the mechanism to adapt the Goals, Gi ∈ G,

described in the Goal Dictionary to the format or representation needed by the implemen-

tation of the Learning Engine used. For instance, the Goal Interface can associate the goal,

Gi, an utility function, fGi
, to evaluate performance of the strategies that are being created.

Learning Plans

It is difficult (with a reasonable computational power) to learn a whole strategy

without guidance. The application of the machine learning algorithm to a very complex

environments with a huge number of parameters, continuous actions, etc. is shown to be

hard in terms of computation. The inclusion of the scenarios in the cycle of the Automatic

74 Chapter 3: General Model Architecture

Controller Creation is oriented to help the planning of different environments in which we

want to explore a specific strategy given certain Goals represented by the environment.

For instance, we can create a scenario in order to learn how to escape from a

dangerous encounter. We set the environment up so it has a escape zone, some particular

enemies or threats and a specific set of actions. We maximize the reward when we escape,

encouraging the learning of the special strategies to resolve these situations. Then we save

these strategies to a library of different plans and strategies to be used in different situations.

3.4.7 Action Dictionary and Action Interface

The strategies, Bi, used by the characters under the AGCBAR Architecture, are

composed by the actions, Ai, described in the Action Dictionary. The Action Interface has

the responsibility to adapt this action space A into the action space supported by the Game

Engine. These two action spaces may be of different granularity or level of abstraction.

Indeed, strategy definition should be more abstract in order to deal with compound actions,

while the engine requires a set of actions closer to the actual engine semantics.

Hierarchy of Actions

The number of possible actions in a video game environment could be big. Usually,

the exploration of the different strategies becomes the exploration of the different actions

that could be used in different states of the environment. The larger the set of actions

the longer the time to explore them. In many cases, it could be helpful to implement a

hierarchy of actions, that can abstract some details of the strategies.

Furthermore, these high level actions can be shown as a particular training scenario

in which we want to learn how to best use the low level actions that compose the higher

action. For instance, we may also have a high level action called “Find Escape Path” and

then we have the different low level actions that are enclosed in it which represent where

to go on the next step, so we can tailor a new training scenario only to learn which is the

best way to “Find Escape Paths”.

The actions Ai described in the Action Dictionary for the AGCBAR Architecture

in the case of MsPacMan are translated into the actions supported by the Game

Engine.

Continue....

Chapter 3: General Model Architecture 75

...

The actions supported by the Game Engine are:

• Move Up,

• Move Down,

• Move Left and,

• Move Right.

Action Dictionary -A- Game Engine Actions

Move Away Direction opposite to MsPacMan

Move Toward Direction to MsPacMan

.

These actions prompted in the Game Engine are based on the absolute position of

the Ghosts and MsPacMan, but we choose to represent the actions Ai in a relative

position way.

3.4.8 Strategy Selection Process

During the Run-Time Strategy Selection Phase, while the Emotional Engine is

announcing the changes on the current mood state of each character, the selection of the

strategy to be used by the character must be done. The strategy selection is done according

to the Mood-Goal-Strategy mapping. As we said, for each mood, Ti, we must have a

strategy, Bi, that tries to achieve the goal, Gi, related to this mood. For instance, if we

have a mood called Broken, which represents a character that is so scared and worried that

he only tries to flee and survive, we must have a strategy that performs the actions to try

to achieve these abstract goal, for example running as fast as possible to the nearest exit.

As in the rest of the architecture design, there are different mechanisms of imple-

menting this element. A simple mechanism to implement this process is to select directly

the strategy related to the mood. This mechanism leads the character’s behavior to a com-

pletely emotionally-driven behavior, where the strategy is determined by the current mood

state. Thus, the decisions of the character only obey to his current mood goals.

76 Chapter 3: General Model Architecture

In our example, we decide to implement the basic processes that assign to each

Mood, Ti, a Goal, Gi and to associate them with a utility function, fGi
(x), through

the Goal Interface. Hence, for each of the moods described on the Mood Dictionary

we set the Goals and the Functions.

Mood Goal Goal Interface Function

Normal Roaming Chase =f(distancetoMsPacMan)

+ g(distancetopowerpill)

Angry Frenetic Chase. = min(distancetoMsPacMan)

Afraid Maximize MsPacMan Distance. = max(distancetoMsPacMan)

3.4.9 Game Engine

The Game Engine must be implemented according to the features that we want

to include in the game development. The existence of these features provides the inclusion

of the other engines of the architecture, so, the Game Engine must generate the necessary

information to fulfill the interfaces of communication with the respective engines.

Therefore, the Emotional Engine needs the emotional events to produce the Mood

Dynamics, in that case, the Game Engine must provide the events derived from the environ-

ments state transitions, sending these events to the Emotional Engine. Thus, the emotional

events produced by the Game Engine:

1. Must have the information to enable the process of the emotions that are prompted.

To implement this feature in the Game Engine, all the actions performed in the sce-

nario must be classified in order to locate those actions that can produce an emotional

event. It is important to remark that not all the actions and events produced in the

Game Engine are emotional events.

2. While the game is running, at each time that the state changes, a set of emotional

events must be sent to the Emotional Engine, the refresh rate of these events can

be variable, but it is recommended that each of the emotional events has attached a

time-stamp. This time-stamp will be used (probably, but depending of the Emotional

Engine implementation) during the Mood Dynamics to provide the attenuation and

flow of the emotions along the time (see the requirement AGCBAR-EmoR5 of the

Emotional Engine in Section 3.2.1).

On the other hand, when the Automatic Controller Creation feature is included in

the design of the video game, the Game Engine implementation must provide two things:

Chapter 3: General Model Architecture 77

1. The learning mechanism of the strategies for the creation of the controllers will require

(depending of the implementation of the Learning Engine) the massive simulations of

scenarios to perform this process. Thus, the Game Engine must have a mechanism

to produce these simulations, probably in a batch mode, unattended and without

rendering or input components.

2. The actions that we declare in the Actions Dictionary must be recognized by the

Game Engine. This is done by the Action Interface. These actions can be complex or

compound declarations of atomic actions. In this case, the engine must execute the

associated actions in the environment that compose these complex actions. Hence, an

action that describes a set of steps is reasonable for the construction of the strategies

but must be implemented by the Game Engine with the corresponding atomic actions.

3.4.10 Emotional Engine

We present a detailed implementation of an Emotional Engine in Chapter 4. The

implementation of this engine must meet all the requirements proposed in the Section 3.2.1.

These requirements can be extended depending on the particular emotional model included

in the engine. The requirements presented in this chapter are related with the mood state

which is the critical element for the strategy selection process.

Therefore, the implementation of this engine must include the mechanism to

provide the differentiated profiles for the different characters. Hence, the requirement

AGCBAR-EmoR4 demands that the Emotional Engine provides a mechanism for defin-

ing the initial tendencies of the characters, the implementation of these engines must enable

the easy definition of these tendencies of the characters. Moreover, the Emotional Engine

has to process the emotional events for all of the “sensitive” characters (those characters that

perceive the events and will have emotional responses to them), and all of these characters

have a current mood to use in the Strategy Selection Process.

3.4.11 Learning Engine

The Learning Engine implementation is closely related with the learning algorithm

that we want to use for the strategy creation. There are a lot of techniques suitable for

this purpose: neural networks, reinforcement learning, evolutionary algorithms, etc. In the

Chapter 5, we propose an implementation based on a hybrid algorithm which includes soft

computing and reinforcement learning.

In the implementation of the Learning Engine, it is important to remark the rele-

vance of the action and state spaces. Bigger spaces (many actions or possible environment

states) make more complex the strategy creation. Therefore, it is key to maintain a certain

balance between these sets. The representation of the environment can be summarized in

the Learning Engine to reduce the size of these state spaces, but it may incur in a losing of

information.

78 Chapter 3: General Model Architecture

Moreover, the Automatic Controller Creation feature is intended to produce a

set of strategies aligned with the mood through the goals described. When the Learning

Engine is implemented, the algorithm must have a mechanism to evaluate the current

strategy (the one we are adjusting at that particular time) with the function that defines

the current mood. This mechanism must guide the steps of the learning process. There are

algorithms that try to imitate an existing behavior that is representative of certain goals.

Other algorithms may only need to describe the desirable states and try to achieve those

states through the actions. In any case, it is important to have in mind that this feature

is designed to support the creation of complete strategies, but it is also possible to use

the strategies created as part of more complex controllers that include other techniques to

decide the actual behavior and action of the characters3. Even in this case, the strategies

must be aligned with the moods if we desire the Mood Dynamics feature.

3.5 Discussion

According to Garlan [28] and the Software Engineering Institute4, “a Software

Architecture consists of a component structure, the relations between components, and the

rules governing the design and evolution of software systems.”

Moreover, current software engineering trends point towards the use of design pat-

terns, COTS components (Components Off-The-Shelf), product line engineering, reference

and aspect-oriented architectures to further reduce production costs, to prevent project

risks and to help build products with better quality [55].

In this Chapter we present the AGCBAR Architecture, this architecture addresses

two different concerns. These concerns are not supported, in this moment, by any other

architecture. According to Garlan we provide a description of the structure, relationships

and rules used to solve our concerns. To solve them, we involve three different components

that are included in the development and execution of a video game. By following the trend

in the video game development, the architecture is designed to use any implementation, that

meets the requirements, in each of the components. Thus, we can reuse off-the-self solutions

to each of the components.

The Mood Dynamics concern can be addressed by some other emotional agent

designs, but we have the objective of using this architecture in the video game development.

This kind of development requires for the game designer to have a certain control of the

behavior of the characters that are in a scene. Thus, the AGCBAR Architecture keeps the

deliberation process of the action to be taken out of the emotional model. Hence, some

emotional models, such as WASABI [7], present the embodiment of the affective agent in

a BDI architecture. These models assume that the emotional agent has the deliberative

3We describe some of these possibilities in the Discussion (Section 3.5) of this chapter

4http://www.sei.cmu.edu/architecture

Chapter 3: General Model Architecture 79

ability to decide which action to take according to his emotions. In our approach, we use

a set of possible strategies (created by the game designer or, at least, supervised by him in

development time) to perform the actions, and we use the mood state (i.e. the aggregated

state of different emotions) as a parameter in the strategy selection process. So, the actions

are described in the strategies created and do not come from emotional reactive responses

that can be harder to handle by the designer. The lack of emotional reactive responses

prevent the production of actions derived from primary emotions5.

The events produced in the Game Engine, used by the Emotional Engine, are

described as information exchanged by the different engines. Thus, the FearNot! model [21]

needs the type, valence, target and cause (among others) parameters in order to be able to

analyze the events. So, in the AGCBAR Architecture, the events produced by the Game

Engine are produced with certain information that can be completed, adapted or extended

by the Event Interface, so they can be used by the Emotional Engine that we implement

in our development. Therefore, if we want to include in our emotional model “compound–

attribution emotions”6 we must produce the required information in the Event Interface to

adapt the events to the description needed by the emotional model.

The Automatic Controller Creation concern leaves the learning process open to

create strategies for different levels of abstraction. The AGCBAR Architecture provides a

mechanism that allows us to include the creation of emergent behaviors for the video game

characters. But these strategies are created off-line, in development time, so they can be

tested and supervised by the game designer, in order to adapt them to the desired final

behavior.

Additionally, alternative mechanisms for the strategy creation can be used aside of

the learning mechanisms. These mechanisms can be included in the architecture providing

different strategies like the Learning Engine does. This implementation of the AGCBAR

Architecture substitutes the Learning Engine by a different mechanism of strategy construc-

tion. The strategies created by these other mechanisms must also be attached to the mood

states described in the dictionaries, so we can ensure the Strategy Selection Process. So, we

must have a strategy for each of the possible moods of the character, no matter how these

strategies were created.

For instance, we can create a set of strategies, described by a Finite State Machine

or Rule-based System. Each of these strategies is to be associated to a certain Mood as in

the case of the learned strategies but discarding the Goals of the mapping (see Figure 3.3

in the Section 3.2).

Likewise, it is possible to include different implementations of the Strategy Selection

Process, to include some baseline strategy, modified by a combination of strategies derived

from the mood state. For example, if we take different moods and a basic strategy, we can

5Primary emotions as described in the Becker-Asano’s WASABI model.

6In the OCC model: “the emotions produced after reasoning about the consequences and actions
perceived”.

80 Chapter 3: General Model Architecture

use a strategy done by a weighted combination of the other strategies.

Chapter 4

Emotional Elicitation Process

(EEP). A Model for Synthetic

Emotions

There are good and bad times, but our

mood changes more often than our

fortune.

Thomas Carlyle

In this chapter we present the EEP Model. This model is designed as a component

that can be used as the Emotional Engine in the AGCBAR Architecture, as described in

the Section 3.2.1 in the previous chapter. Besides that, this model can also be used as a

general emotional engine that can be applied to different architectures of video games and

simulators.

In order to fulfill the requirements of the AGCBAR Architecture, the EEP Model

is designed as a set of internal components that makes possible the interaction with the rest

of the components of the architecture, implementing the interfaces specified by it. Although,

the internal design of the model is made with a top-down approach to meet the requirements

of the architecture, we take the bottom-up features that arise from the detailed study of

the general emotional model designs.

This chapter is organized as follows: First, in Section 4.1, we describe the EEP

Model as part of the AGCBAR Architecture, we also explain in detail how it fits in the

abstract architecture. In Section 4.2, we describe the usage of the psychology concepts,

introduced in Chapter 2, and developed by the EEP Model. In Section 4.2.4, we present

the specific requirements for the EEP Model. In Section 4.3, we show the EEP Model

internal architecture, we also describe the components that are part of the model. In

Sections 4.4 and 4.5, we present two stand-alone validation tests of the EEP Model in video

81

82 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

game scenarios. Finally, in Section 4.6, we discuss the EEP Model, and we compare it with

some other emotional models.

4.1 EEP Model as Emotional Engine in

AGCBAR Architecture

The EEP Model is an instance of the AGCBAR Architecture Emotional Engine.

As we describe in the Section 3.2.1, this is the component that implements the Mood Dy-

namics concern specified by the AGCBAR Architecture. This feature must produce the

adequate emotional simulation from the events perceived by the characters in a video game

scenario, so they can alter their internal “mid-term” Mood State. The alteration of their

mood state will produce a variation in the goals the characters pursuit, and as a logical

consequence, they also make en effective change in their strategy and behavior.

Therefore, taking the Figure 3.11 of the AGCBAR Architecture design, we de-

compose the Emotional Engine component in a set of elements that must be present in the

internal design of this engine. We describe, as stated in the AGCBAR-EmoR2 require-

ment, the Emotional Engine as a function EE(Ti, {Ei, . . .}) = Ti+1, that must produce an

updated mood (Mood Tag), Ti+1, after the reception of a set of emotional events {Ei, . . .}
given a previous mood Ti. We establish the following steps to accomplish this transforma-

tion process:

1. Emotional Event processing : the events produced in the Game Engine, and described

in the Event Dictionary of the AGCBAR Architecture, are received by the Emotional

Engine. They must be evaluated in order to produce the affective response in the

character. To do so, we must:

• Classify the events according to the aspects that each emotional event represents.

For that, each even must be decomposed in certain Emotions that the emotional

engine can process.

• Quantify the events because those emotional events produced in the environ-

ment and sent to the Emotional Engine have different intensities in terms of the

emotion they represent.

2. Mood Dynamics: given the current Mood of the character, Ti, the Emotional Engine

processes the emotions produced by the emotional events and changes the character’s

mood to a new one, Ti+1, accordingly.

By following these steps, we can produce the transition between different mood

states. But in order to Emotional Engine to do so, the EEP Model needs certain com-

ponents, see Figure 4.1, that will adapt the engine to the different characters and to the

architecture. Thus, we must extend and/or adapt the Architectural Dictionaries to enable

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 83

a coherent integration of the EEP Model in the architecture. Moreover, the AGCBAR

Architecture interfaces (Event and Mood Interfaces) must be implemented to keep a tight

coupling between the inputs and outputs of the Emotional Engine as well as with the rest

of the components of the AGCBAR Architecture.

If we want to adapt the EEP Engine to the different characters, as we said in

the requirements AGCBAR-EmoR4 and AGCBAR-EmoR6, the characters must have

their own profile, which includes their initial tendencies, T0, and their particular perception

of the events, Ei, that occur in the environment. This requires the inclusion of a Character

Profile and of the Conceptual Dictionaries (specific EEP Model dictionaries), because we

need to represent the character’s preferences in terms that are recognized by the EEPModel.

Figure 4.1: EEP Architecture Analysis. These components are necessary for the integration with the

architecture and the processing of the emotions.

4.2 Usage of Cognitive Psychology Concepts in EEP

The design of the EEP Model is founded on top of some well-known psychology

and cognitive theories, that were introduced in Chapter 2. In this section, we specify how

important they are for the development of EEP Model, and how they are applied to the

Event Classification and Quantification in order to produce the Mood Dynamics feature.

4.2.1 OCC Model

As in the case of the OCC model description made by Bartneck [5], we apply a

process of analysis of events based on:

1. Classification: we analyze which emotions are prompted by a particular event.

2. Quantification: we evaluate the intensity of the emotions produced according to the

standards (personality profile) of the character.

84 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

OCC Emotions Group of Emotions EEP Emotion Set

HappyFor

Fortune-of-others

Consequence Emotions C

Pity

Resentment

Gloating

Joy
Well-Being

Distress

Admiration

Attribution Action Emotions A
Reproach

Pride

Shame

Gratification

Attribution-Well-Being Compound Emotions T
Gratitude

Anger

Remorse

Hate
Attraction Object Emotions O

Love

Hope

Prospect-Based Not Used

Fear

Disappointment

FearsConfirmed

Relief

Satisfaction

Table 4.1: Emotions used in the EEP Model. The selected set of emotions, E = A ∪ C ∪ T ∪O,

3. Mapping and Expression: after the evaluation, the quantified emotions must be

mapped into a representation that summarizes them.

The EEP model uses the OCC model to analyze the events, Ei, that a character

perceives and to select a set of emotions prompted by each of these events. We use a sim-

plified representation of the original model, according to the characteristics of the objective

application domain. These characteristics are summarized in Table 4.1. Our approach seeks

a trade-off between the provision of flexible mechanisms in order to define emotions, and

the possibility to design and configure the model with a reasonable effort. Even more, the

use of all of the parameters and emotional concepts described by the original OCC model

is suitable to be incorporated to the EEP model. The mapping of the resulting emotions

will be produced in a formal mathematical space of representation where the emotions and

moods are integrated (see Section 4.3.3).

4.2.2 Big Five Personality Traits

The general psychological model of the Big Five Factors [48] (a.k.a. OCEAN)

introduces different factors useful for the computational representation and manipulation

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 85

of character personalities. The five factors used by this model are:

• Openness: Appreciation for Art, Emotion, Adventure, Unusual Ideas, Curiosity, and

Variety of Experience (inventive / curious vs. consistent / cautious)

• Conscientiousness: Tendency to show self-discipline, to act dutifully, and to aim for

achievement; planned rather than spontaneous behavior (efficient / organized vs. easy-

going / careless).

• Extraversion: Energy, positive emotions, and the tendency to seek stimulation from

the company of others (outgoing / energetic vs. shy / reserved).

• Agreeableness: Tendency to be compassionate and cooperative rather than suspicious

and antagonistic towards others (friendly / compassionate vs. cold / unkind).

• Neuroticism: Tendency to experience unpleasant emotions easily, such as anger or

anxiety, depression, or vulnerability. (sensitive / nervous vs. secure / confident).

The personality of a character sets the initial value of the character’s state in a

“neutral” mood, T0. The personality does not changed easily and, for virtual characters,

it may be considered constant. The EEP Model includes, in the profile of a character, a

parameterized version of his personality (as the temperament representative information)

described by the Big Five Factors representation1. This parameterization will be used as

the starting point for the mood of the character.

4.2.3 P leasure-Arousal-Dominance Emotional & Temperament Model

The EEP model manages the PAD Model in different aspects: (1) the projection of

the emotions of the OCC model into the PAD space (as shown at the Table 4.10). (2) To see

the translation of the personality to the default mood (using the Mehrabian transformation

[50], consult Table 4.4, which shows the reduced set of emotions used by EEP). and (3) the

representation of the mood in the Mood Vector Space (see section 4.3.3).

4.2.4 Emotional Engine Requirements

Apart from the general AGCBAR Architecture requirements for the Emotional

Engine described in Section 3.2.1, the implementation of the Emotional Engine compo-

nent done in the EEP Model requires the fulfillment of additional requirements. These

requirements arise from the different models and theories used to implement the EEP.

1. EEP-Emo1: The AGCBAR-Emo6 requirement, which addresses the processing

of the Emotional Events recorded at the Events Dictionary, makes the inclusion of a

mechanism to analyze these events necessary. Lazarus’ theory of cognitive psychology

1Described as real numbers between [−1, 1]

86 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

[39] describes an emotion as: “psychological response produced after the thought pro-

duced by the perception of certain events”, so we need a mechanism that allows the

Emotional Engine “think about events”. The OCC Model provides this mechanism

in the EEP Model, thus its structured analysis of the emotional events is used as

baseline for the process of evaluation of the Emotional Events produced in the Game

Engine environment.

2. EEP-Emo2: The use of moods, as described by theAGCBAR-Emo1, AGCBAR-

Emo2 and AGCBAR-Emo3 makes it necessary to find an appropriate way to repre-

sent them. Also, because the emotions produced by the events modify the characters’

current mood state, we need a mechanism to represent emotions and moods. We also

need to find an algebraic structure to operate with them so we can transit Ti → Ti+1.

Mehrabian’s PAD Models (Temperamental and Emotional) provide a homogeneous

representation for both, emotions and moods. With these underlying models, we are

able to create the Mood Vector Space, M, (Section 4.3.3), so the Emotional Engine

could handle those moods and emotions.

3. EEP-Emo3: The AGCBAR Architecture describes, through the AGCBAR-Emo4

requirement, the necessity of providing an initial mood. This initial state will be

used as the equilibrium point in absence of emotions. Thus, this base mood, T0, will

be considered as the long-lasting temperament2. In our model, this “temperament”

is intended to be the character’s personality and it will be handled using the PAD

Temperament model and its translation from the Big Five Personality model[50]. We

will explain later how the mood Ti translated to the PAD space will be projected to

µi ∈ M.

At the end of this chapter, we present two application examples of the EEP Model

in a video game.

• A combat scenario presenting the straightforward application of the selection of

different strategies based on the mood state. (Section 4.4)

• A storytelling support application of the EEP Model creating dynamic storylines

using the mood state of the characters as a guide. (Section 4.5)

Continue....

2“Temperament” is, thus, distinguished from mood, Ti, and it refers to the individual’s stable or long-
lasting emotional characteristics (i.e., emotional traits or emotional predispositions). More precisely, tem-
perament is the mean of a person’s emotional states across a representative variety of life situations. [51]

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 87

..

These two scenarios show the application of the EEP Model

inside (in the combat scenario) and outside (in the sto-

rytelling) of the AGCBAR Architecture. For these ex-

amples we used the commercial video game NeverWinter

NightsTM(Bioware)2 .

Neverwinter Nights (NWN) is a computer game set in a huge medieval
fantasy world of Dungeons and Dragons. This role-playing game (RPG)
will place you in the middle of an epic tale of faith, war, and betrayal.

Along this chapter we will use these scenarios to exemplify the implementations

and designs of the components of the EEP Model. And at the end of the chapter,

we will present the results and we will evaluate the believability and flexibility of

the scenarios.

The first example we present is a combat scenario. As in many other games,

here too there are some series of confrontations among different sets of characters.

These kind of scenarios are suitable for the appearance of emotions, prompted by

stressful situations that will make some of the characters lose their wish to fight or

will make them become enraged by the events of the battle. In our first example, we

will present an encounter between a party of human adventurers and a defending

band of orcs (in terms of the world represented by the NWN game we can say that

the orcs are very belligerent and brutal).

The second example is a storytelling scenario. In this scenario, we will apply

the EEP model to the plot design of the story. We will use the NWN as framework

only for the continuity purposes, but the real contribution of this example is the

application of the emotional models as part of the mechanisms that construct the

stories and quests in the video games. We will here present a character, controlled

by the human player, that will have to complete a scenario trying to enter into

a well-guarded castle. We will finally illustrate two different approaches that can

be used to build this kind of quests, the traditional milestone approach and the

emotion-driven mechanism.

3http://www.bioware.com/games/legacy and http://nwn.wikia.com/wiki/Main Page

88 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

4.3 Emotional Elicitation Process

The Emotional Elicitation Process (EEP) model is an independent architec-

ture for synthetic emotions simulation and can act as Emotional Engine in the AGCBAR

Architecture, but it can also be applied as a standalone emotional model for some other

simulation environments and architectures. In this section we will describe the inputs and

outputs that the EEP model requires. This model encloses all the procedures that are

necessary to evaluate the emotions and to manage the mood state and dynamics, according

to the environment and the character, see Figure 4.2. The main attributions of this model

are: (1) It has simple mechanisms that grant initial emotional characteristics to agents,

actions and events. (2) It provides a new structured analysis of the events, according to the

widely admitted OCC model [60], while based also on the PAD space [51]; all this allows it

to project, quantify and manipulate the emotions numerically (the EEP provides both, the

mechanism to compose the emotions prompted by each particular event, and the capability

to update the mood of the character). (3) It projects the character’s mood into a Mood

Vector Space, that is modeled as a formal mathematical tridimensional space, with enough

functions to grant the correct combination, measure and decay of the emotions that affect

the mood. (4) Last, it has a clear interface that makes possible the integration of the EEP

model as a video game component.

4.3.1 Architecture Overview

The EEP model is divided into four components, as shown in Figure 4.2:

• Conceptual Dictionaries (CD): they provide the definitions of the general ele-

ments, needed by the engine to evaluate the events. For example, the type of Actions

that the event could record. These dictionaries are different from the AGCBAR Dic-

tionaries and they are only related with the internal procedures of the EEP model.

• Character Profile (CP): it defines the numerical parameters that represent the the

general definition of the personality of the character and the identification of theMoods

State, µi, in the mood space, M. It also provides the quantification of the elements

recorded by the Conceptual Dictionaries. For example, the value of praiseworthiness

that a particular character associates to the Action of Give-Money recorded in the

dictionaries.

• Emotional Elicitation Process Engine (EEPE): it decomposes, analyzes and

evaluates an event. It also analyzes the emotions and their intensity levels as result

of the evaluation of an event Ei.

• Mood Vector Space (MVS): it represents the current Mood State of the character,

µi. The MVS is a 3-Dimensional space derived from the PAD model [51]. Here, the

emotions perceived by a character are transformed by the EEPE into vectors in this

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 89

Figure 4.2: EEP General Architecture. The EEP Model encloses the EEP Engine and the Mood Vector

Space for each of the characters to produce the Mood Dynamics according to their specific profiles. The

Event Builder adapts the emotional events produced in the Game Engine to the representation and

information of the events that the EEP Model needs.

90 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

space, and they translate the character’s mood state from one point to another within

the boundaries of the MVS. For example, a concrete point of this space can represent

a mood state for a particular character at a particular given time.

Therefore, outside of the model, we can implement the interfaces that synthesize the events

generated by the environment (Game Engine in the case of the AGCBAR Architecture) so

they can produce the moods prompted the Emotional Engine:

• Event Builder (EB): given the events generated by the environment, Ei, this com-

ponent adapts itself to the structure needed by the EEPE. This component can be

defined as a wrapper of incoming events. Each incoming event may produce 0 to N

internal EEP events, {εj} ∈ E , (because of the causal relationship among the events

and their components).

• Mood Tagger (MT): the Moods are a discrete set of finite values that have their

meaning in the context of the Game Engine. However, the EEP Model operates on a

continuous representation of the Mood State, which is based on the MVS representa-

tion. It is the responsibility of the MT to project the continuous mood state, µi ∈ M,

to one of the discrete values, Ti ∈ T. This state space is the basics representation

from which we extract the Mood State, so we can translate it later into the Mood

Tags Ti ∈ T through the Mood Interface in the AGCBAR Architecture.

Event Event Classes Mood Mood Tags

Ei ∈ E Tj ∈ T

y
EB

x

MT

{ε1, . . . , εn} ⊂ E −−−−→
EEPE

µj ∈ M

EEP Events EEP Event Classes Mood State MVS

This augmented structure of events is necessary for the balanced analysis of the

emotions. It also provides the parameters that are crucial for the classifying and quantifying

the emotions produced by the events. For example, the events are associated according to

their sources and targets, but also their causal consequences are translated as emotional

events.

In addition to that, a continuous representation of the Mood State allows the EEP

Engine to operate with fine grain transitions (prompted by the events). It also allows the

projection into the discrete number of mood tags defined by the AGCBAR Architecture.

4.3.2 Architecture Dynamic View

All these elements are part of a structured process that continuously updates the

mood states of the characters. This process takes into account the input from the events

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 91

happening in the environment and their temporal dimension to propagate and cause the

decay of each mood state. This procedure has the following general steps:

1. The events, Ei, produced by the changes in the environment are processed at the

EB and after that, they generate a set of augmented events, εk. Each event has the

following components: (1) the source of the event (animate or inanimate), (2) the

target of the event (animate, inanimate or none), (3) the consequences of this event,

(4) the actions that produce these consequences and (5) the objects related to this

event.

2. Using the configurations recorded in the CP, the EEPE generates a vector represen-

tation of the emotions produced by an event, −→νε . In order for this to happen, the

EEPE operates in two phases:

(a) First, it decomposes and analyzes the event. The engine then produces a set of

emotions, according to the structured analysis of the event.

(b) Second, these emotions, elicited in the EEPE, are translated (also by the EEPE)

into the scaled vectors of the MVS (described with the PAD components [51]).

3. These “vectorized” emotions (the representation of the emotions quantified and rep-

resented as vectors) are composed and added to the current mood state µi ∈ M
according to the MVS operators.

4. The MT provides the mechanisms to find the projected mood tag, Ti ∈ T according to

the parameters stored in the CP. This mechanism enables the communication with the

AGCBAR Architecture (or with any other component that needs the current mood

of a character to perform further actions).

This model is part of the individual control mechanism of a virtual character.

Thus, each character has an instance of the EEP Model associated in order to produce

the emotional and mood simulations in his behavior, (see Figure 4.3). Therefore, when an

event, Ei is produced in the environment, those characters that perceive it experience an

alteration in their mood state when their instance of the EEP Model processes the event.

4.3.3 Mood Vector Space

The Mood Vector Space (MVS) component of the architecture provides the math-

ematical representation that manages the initial mood states, the state transitions and the

emotion effects. The MVS ensures the robustness of the transitions and the mood represen-

tation, and it also supports the projection of mood states into the appropriate mood tags.

Relevant operations and structures of the MVS, and a sample mood space (the trigonometric

mood space) are explained in detail in the Appendix B.1.

Given the fact that the MVS is a three dimensional space for temperament and

mood representations, the space is built with the following different objectives:

92 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

Figure 4.3: EEP Instances per Character. Each character has his own instance of the EEP Model so

he can update his mood state according to the events perceived.

• to compose emotions with the current mood state. This could be seen as a translation

(composition) in the 3D bounded space,

• to apply the function that represents the decay of the emotions though a time period

that drives the character’s mood state toward the default state (derived from his

particular personality traits),

• to define the distance metric from and to the different reference points in order for it

to assign the closest Mood Tag for the current mood state to one of them.

Thus, Mood Vector Space is defined as a tuple MV S =< M,⊕, ·,⊖, ‖ · ‖,A >

where:

• M = [−1, 1]3 ⊂ R
3 is a bounded 3-Dimensional continuous space to represent either

moods or emotions,

• ⊕ is the operation that composes and translates the emotional vectors in the Mood

Vector Space,

• · is the scalar product that allows to scale emotional vectors according to the intensity

parameters,

• ⊖ and ‖ · ‖ are the operations that calculate the distances in the Mood Vector Space.

• A is a family of attenuation functions. Each of these functions drives the current

mood µi back along the time toward its initial state µ0

The space of representation of the mood is modeled by a bounded M ⊂ R
3 | M =

[−1, 1]3 space that corresponds to the 3-axed orthogonal space constructed by the use of

the three PAD components (Pleasure-Arousal-Dominance). This framework enables the

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 93

transition between moods using the emotions. It is possible, by treating the emotions as

vectors, to translate the current mood position into the MVS.

Figure 4.4: MVS example. µi transits to µi+1 according to the composition of emotions {εj}. After n

units of time, the mood is decaying toward µ0 applying the attenuation function A (personality baseline

mood) up to the µi+n position.

4.3.4 Conceptual Dictionaries

As we said, the Event Builder takes the emotional events, Ei, produced at the

Game Engine, and adapts them to the format and needs of the EEP Model. To be able to

do so, we need to align the events with the character’s profile. Therefore, it is necessary

a set of repositories (dictionaries) that store all the relevant elements that could appear in

the game environment in which we want to apply the EEP model. These dictionaries are,

in some cases, extensions of the AGCBAR Architecture Dictionaries. We will differentiate

here those five different dictionaries:

1. Consequences Dictionary (Dc = {γ1, γ2, . . . , γn}): the Consequences are the charac-

ter’s expectations about things that could happen independently of any belief about

their possible causes. In a combat situation it could be as simple as all the possible

(short term / long term) results (for the character himself and for his team and allies),

such as been attacked, hit or killed. In a storytelling application these consequences

basically related with story plot milestones (see Table 4.2-a).

2. Actions Dictionary (Da = {α1, α2, . . . , αn}): the Actions represent what the char-

acters can do within the environment. For instance, in a combat scenario these are

94 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

attacking, defending or any other relevant movement actions. The actions, when us-

ing EEP to support storytelling, could be specific dialogue options, certain events

performed in the environment, or actions that complete quests (see Table 4.2-b).

3. Objects Dictionary (Do = {ω1, ω2, . . . , ωn}): the Objects are physical or conceptual

elements that generate liking or disliking emotions by their mere presence on the

events. In a combat situation they could be very representative combatants, while, in

the case of the storytelling, they could be anything that is relevant for the storyline

(gifts, money, quest items, . . .) (see Table 4.2-c).

4. Characters Dictionary (Dr = {ρ1, ρ2, . . . , ρn}): this dictionary describes the charac-

ters that could be present in a particular event. Once a character is involved in an

event, his relationship with the perceiving character is evaluated. (see Table 4.2-d).

5. Groups Dictionary (Dg = {g1, g2, . . . , gn}): the characters of the Characters Dictio-

nary can belong to a set of groups that can be used to identify general relationships

with a specific set of characters. So, gi ⊆ Dr could appear in the scenario (see Ta-

ble 4.2-e) as a set of characters conceptually grouped. The perceiving character can

not have a specific relationship with the characters involved in the events, but can

have a general relationship with some of the groups they belong to. These group

relationships can affect in the same way that the character specific relationships do.

As in the case of the AGCBAR Architecture dictionaries, the Conceptual Dic-

tionaries, proposed in the EEP Model, will be used to ensure the alignment between the

characters’ profiles (configurations) and the rest of the components of this model. They

enclose the definitions of the different parameters representing the environment and the

emotional elements. With these parameters, the model recognizes the components of the

inputs (emotional events) and identifies their influence in the mood state dynamics of the

characters.

The combat scenario example involves the attack and defensive actions and the

consequences of these actions for the evaluation of characters’ emotional responses.

The relationships of the characters in the groups of combatants determine the

influence of the events perceived by the characters.

The storytelling scenario, addresses the actions produced by the player along

the game and the interaction that he has with the characters in the scene. The

objects and the actions are tightly related with the advance in the quest. These

elements will serve as triggers for the emotional responses from the NPCs.

Continue....

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 95

....

The following table presents the aforementioned dictionaries specified for each of

the proposed scenarios.

Combat Storytelling

Scenario Scenario

(a)

Consequences

Dictionary

Be-Attacked

Be-Hit

Be-Killed

Hit-Enemy

Talked-Rude

Talked-Polite

Talked-Neutral

Make-Deal

(b)

Actions

Dictionary

Attack

Defend

Talk-Rude

Talk-Polite

Talk-Neutral

Buy

(c)

Objects

Dictionary

OrcBoss

HumanKnight

Kitten

Beer

Happy-Song

Money

(d)

Characters

Dictionary

OrcArcher

HumanArcher

OrcWarrior

HumanWarrior

OrcBoss

HumanKnight

HumanPlayer

SadGirl

BeardedMerchant

SkinnyMerchant

Bard

Watchman

(e)

Groups

Dictionary

@Orcs

@Humans

@Foreigners

@FellowCitizens

Table 4.2: Examples of different EEP Conceptual Dictionaries. The dictionaries created for the

proposed examples can have, among others, these elements.

4.3.5 Character Profile

The Character Profile (CP) is the specification of the character’s preferences and

emotional behavior. The profile is composed of three different groups of information: (1) a

set of functions that projects for each element detailed in the Conceptual Dictionaries (which

will be referred by the events) a value real in the range [−1, 1], (2) the personality traits

that describe the general mood state of the character, and (3) the association of the mood

space points to mood tags, for those that are relevant for the character.

96 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

The CP is formally described as: CP =< D,P,A,R, {mk}, B >, where:

D :Dc −−−−→ [−1, 1] P :Da −−−−→ [−1, 1]

γ −−−−→ dγ α −−−−→ pα

A :Do −−−−→ [−1, 1] R :Dr −−−−→ [−1, 1]

ω −−−−→ dω ρ −−−−→ rρ

And:

mk ⊆ M are the set of reference points with their corresponding mood Tk, and B =<

o, c, e, a, n > is the Big Five personality description composed by the 5 parameters.

Emotional Parameters

The parameters describe the desirability of the consequences, dγ , the praisewor-

thiness of the actions, pα, the appeal associated to the objects, aω, and the relationship

with other characters in the scene, rρ. These values are selected from the point of view of

the character, for example, the Be-Hit consequence must be evaluated as the desirability

of being harmed. This will be applied even for the evaluation of the consequences, appeal-

ing and praise of perceived third-persons events, as suggested by [60], about the general

assumption of external alignment of our own scale of values applied to other persons. All of

the emotional parameters must be in one of the Conceptual Dictionaries since any of these

elements could appear in an event.

The relationship among characters is slightly different. These relationships can

be declared by groups (appending the “@” character) or by individuals, where individual

relationship qualification overrides any group value. The resultant relationship with a par-

ticular character is calculated by the average of the relationships with the groups in which

this character is included.

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 97

The different characters, presented in the examples described in this chapter, have

a specific set emotional parameters. These parameters are necessary for the EEP

Model to operate. For instance, the Human Warrior, appearing in the combat

scenario, has the following parameters. The values of these parameters are set

within the interval [−1,+1] and they are used for the intensity quantification of

the emotions (see Section 4.3.6).

Consequence

Desirability: dγ

γ1: Be-Attacked −0.3

γ2: Be-Hit −0.5

γ3: Be-Killed −0.9

γ4: Hit-Enemy 0.2

γ5: Kill-Enemy 0.6

γ6: Fled −0.1

Action Praiseworthy:

pα

α1: Attack 0.04

α2: Defend −0.1

α3: Power-Attack 0.1

α4: Move-Away −0.3

Object Appealing: aω
ω1: OrcBoss −0.2

ω2: HumanBoss 0.1

Relationships: rρ

ρ1: HumanArcher 0.5

ρ2: HumanKnight 0.8

ρ3: @Orcs −0.9

Table 4.3: Example of the EEP Emotional Parameters for one of the characters in the Combat

Scenario

Personality Traits

The personality description is based on the Big Five Factors, as shown in Sec-

tion 4.2.2. This representation of the personality is widely used in synthetic models for

virtual characters [88, 14]. The five parameters of this representation are associated with

different aspects of the personality of a person. To implement them correctly we describe

each of these parameters with a value in the range of [−1, 1]. The values of these parameters

must be projected into the MVS (as a PAD 3D representation) in order to be able to com-

pute the transitions and the default mood point derived by the character personality. The

transformation is taken from the equations proposed by Mehrabian [50]. These equations

are easy to compute as shown in Table 4.4.

These equations will be addressed in the EEP Engine Algorithm as B5toPAD

functions.

B5toPAD : [−1, 1]5 −→ M
< o, c, e, a, n > −→< p, a, d >

The value obtained by this function is the representation of the initial and central

mood state of the character, µ0 ∈ M (projection of Mood T0), which will be used as starting

and attracting point of the mood state that the character will have during the simulation.

98 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

Pleasure = 0.21 ·Extraversion+ 0.59 · Agreeableness
+0.19 ·Neuroticism

Arousal = 0.15 ·Openness+ 0.30 ·Agreeableness
+0.57 ·Neuroticism

Dominance = 0.25 ·Openness+ 0.17 · Conscientiousness

+0.60 · Extraversion− 0.32 · Agreeableness

Table 4.4: Mehrabian’s Big Five to PAD transformation rules [50]. These equations transform the Big

Five personality parameters into the PAD components.

In our combat scenario example, we designed the personality of the human archer

as cautious, extrovert and friendly. These traits represent his temperament, ap-

plying general personality models (according to the definition and semantic of the

parameters), as:

Openness: 0.4 Conscientiousness: −0.1 Extraversion: 0.4

Agreebleness: 0.5 Neuroticism: −0.1

These personality values produce the corresponding initial mood state value, µ0,

in terms of the PAD representation of:

Pleasure: 0.36 Arousal : 0.153 Dominance: 0.163

µ0 = (0.36, 0.153, 0.163)

Projecting Mood to Mood States in MVS

As we will see later, the combination of the emotions, prompted by the events,

will change the current Mood State of the character in the MVS giving a unique position

at a given timestamp.

It is the responsibility of the MT to project all µi ∈ M into the corresponding

Mood Tk ∈ T. Although there are multiple alternatives for doing this, we selected the

approach of assigning a subset mk = {µk
1 , . . . , µ

k
n} ⊆ M of reference points to each Tk. The

MT implements the projection function L(µi) that selects the Tk mood according to the

closest µk
j among all the reference points from the different moods.

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 99

L :M → T

µi → Tk

L(µk
i) = Tk

L(µ) = Tk| argmin
µj∈

⋃

i m
i

(||µj ⊖ µ||), µj ∈ mk

The MVS describes the mechanism that computes the distance between two points

in the MVS, || · ||, being its main objective to identify the closest reference point in the set.

The management of the set of Moods, T, and projection function, L, may exploit

the existence of a mood ontology as the one mentioned in Appendix B.2.

In our combat scenario, we use as guidelines the ontology presented in the Ap-

pendix B.2 and the values of Russell & Mehrabian’s work [74] in order to allocate

three different Mood Tags that represent different characters’ moods. These are in-

dicated by a set of reference points, which will be used to conduct different behavior

controllers:

Ta =NORMAL = {µ1 = (0.2,−0.1, 0.3)} Tb =AFRAID = {µ2 = (−0.2, 0.6,−0.7)}
Tc =ANGRY = {µ3 = (−0.2, 0.8, 0.4), µ4 = (−0.3, 0.5, 0.1)}

Table 4.5: Example of the identified Mood Tags applied in the Combat Scenario to the Human

Archer character

4.3.6 EEP Engine

The EEP Engine is divided in two stages that complete the analysis and projection

of an EEP Event, ε, in a vector representation of this event in terms of the emotions that

it provokes, νε. The evaluation process can be defined as:

ε −−−−−−−−−→
Event Analysis

{eα, eγ , eα−γ , eω}

y

MVS projection

−→νε

Where we obtain a set of emotions, {eα, eγ , eα−γ , eω}, produced by the Event Analysis. The

MVS Projection these emotions creates a set of MVS vectors that we compose to obtain −→νε .

100 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

Event Analysis

Once an event (ε =< α, {γ}, {ω}, src, tgt >) is received by the EEP Engine the

general sequence of evaluation begins.

Where an EEP event:

εi =< α, γ, ω, src, tgt >

is composed by, α, an action of those described in the Actions Conceptual Dictio-

nary Da, α ∈ Da, γ, the set of consequences γi ∈ Dc of the event, ω, the set of the objects

ωi ∈ Do involved in the event and, src and tgt, the identifiers of the involved characters

(source and target) of the event from Dr.

This evaluation is based on the valence analysis of emotions of Ortony, et al.[60].

Event Analysis

Consequences
Analysis Actions Analysis

Objects
Analysis

Target
Relationship

Self

Foe

Friend

Joy

Distress

Resentment

Gloating

Happy-for

Pity

Desiderable

Undesiderable

Source
Relationship

Admiration

Reproach
Pride

Shame

Gratification / Gratitude

Remorse / Anger

Love

Hate

Praiseworthy

Blamesworthy

Liking

Disliking

Figure 4.5: EEP Engine Event Evaluation. Based on the OCC model classification of emotions. The

emotions ei ∈ E are extracted according to the event, εi components (Consequences, Actions and/or

Objects).

For all the sequence of analysis we classify the relationship among the characters

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 101

as <Self, Friend, Foe>. According to the relationship of the character with the source

and/or target of the event, we describe Friend with the relationship quantified by values

“> 0” and Foe in the cases of relationships “< 0”. The value of the relationship, r ∈ [−1, 1],

is calculated through the Relationship and Group Dictionaries.

The evaluation sequence is as follows:

1. The evaluation of the emotion, eα ∈ A ⊂ E, produced by the Action, α ∈ Da, of the

event perceived, is done by the function: action(α, pα, rsrc) = eα ∈ A,

action : Da × [−1, 1] × [−1, 1] −−−−−−−→A

(α, pα, rsrc)
action−−−−→eα

where pα ∈ [−1, 1] is the praiseworthiness of the action α, and rsrc is the relationship

between the perceiving character and the source of the action. The evaluation is done

as explained in Table 4.6. This evaluation takes its value from the set of Attribution

Emotions A = {Pride, Shame, Admiration, Reproach}.

Source pα > 0 pα < 0

Self Pride Shame

Friend Admiration Reproach

Table 4.6: Attribution Emotions produced by the Action α, eα = action(α, pα, rsrc). Evaluated

according to the action praiseworthiness pα and the relationship with the source of the action rsrc

2. Evaluation of the set of emotions, {eγi} ⊂ C ⊂ E, produced by the Consequences

(γi ∈ Dc) of the event perceived: conseq(γi, dγi , rtgt) = eγi ∈ C

conseq : Dc × [−1, 1] × [−1, 1] −−−−→C

(γi, dγi , rtgt)
conseq−−−−→eγi

where dγi ∈ [−1, 1] is the desirability of the consequence γi ∈ Dc. The consequences

can generate the Well-Being and Fortune-of-Others emotions, C = {Joy, Dis-

tress, Happy-For, Pitty, Resentment, Gloating}, according to the analysis

described in Table 4.7.

3. When the Actions and Consequences of an event prompt certain emotions, the combi-

nation of these emotions produces another set of emotions, called Well-Being/Attribution

Compound emotions, {ealpha−γi} ∈ T ⊂ E: attr(eα, eγi) = ealpha−γi ∈ T, where

eα ∈ A, eγi ∈ C.

attr : A× C −−−−→T

(eα, eγi)
attr−−→eα−γi

102 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

Target dγ > 0 dγ < 0

Self Joy Distress

Friend Happy-For Pity

Foe Resentment Gloating

Table 4.7: Well-Being and Fortune-of-Others Emotions produced by the Consequences γi, eγi =

conseq(γi, dγi , rtgt). Evaluated according to the consequence desirability dγi and the relationship with

the target of the action rtgt values

The combination is explained in Table 4.8. The Attribution emotions are only pro-

duced by the self-consequences of the event, therefore, the only eγi that produce

Attribution are Joy and Distress[60].

eα eγi =Joy eγi =Distress

Pride Gratification

Shame Remorse

Admiration Gratitude

Reproach Anger

Table 4.8: Compound Emotions produced by the combination of the emotions eα and eγi , eα−γi =

attr(eα, eγi)

4. Evaluation of the emotions, {eωi
} ∈ O ⊂ E, produced by the Objects (ωi ∈ Do) of

the event: object(ωi, aωi
) = eωi

∈ O

object : Do × [−1, 1] −−−−→O

(ωi, aωi
)

object−−−→eωi

where aωi
∈ [−1, 1] is the appeal of the object ω ∈ Do. The evaluations are made

according to Table 4.9 producing the Attraction Emotions, O = {Love, Hate}.

aω > 0 aω < 0

Love Hate

Table 4.9: Attraction Emotions produced by the Object ωi,eωi
= object(ωi, aωi

). Evaluted according

to the appeal of the object aωi

MVS Projection

Given the set of emotions {ei} ∈ E, produced by the event ε =< α, {γ}, {ω}, src, tgt >,

we proceed to project those tagged emotions into the MVS. Therefore, we transform each

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 103

emotion, ei, into a vector representation in the MVS, −→νi ∈ M, through the function

pad(e) = −→ν .

pad : E −→M
(ei) −→~νi

This function is implemented with the equivalence shown in Table 4.10 given the

representation of an emotion that we interpret as a vector that will move the character’s

mood toward that point in the MVS.

Emotion P A D Mood Octant

Admiration 0.50 0.30 -0.20 +P+A-D Dependent

Anger -0.51 0.59 0.25 -P+A+D Hostile

Distress -0.40 -0.20 -0.50 -P-A-D Bored

Gloating 0.30 -0.30 -0.10 +P-A-D Docile

Gratification 0.60 0.50 0.40 +P+A+D Exuberant

Gratitude 0.40 0.20 -0.30 +P+A-D Dependent

HappyFor 0.40 0.20 0.20 +P+A+D Exuberant

Hate -0.60 0.60 0.30 -P+A+D Hostile

Joy 0.40 0.20 0.10 +P+A+D Exuberant

Love 0.30 0.10 0.20 +P+A+D Exuberant

Pity -0.40 -0.20 -0.50 -P-A-D Bored

Pride 0.40 0.30 0.30 +P+A+D Exuberant

Remorse -0.30 0.10 -0.60 -P+A-D Anxious

Reproach -0.30 -0.10 0.40 -P-A+D Disdainful

Resentment -0.20 -0.30 -0.20 -P-A-D Bored

Shame -0.30 0.10 -0.60 -P+A-D Anxious

Table 4.10: OCC to PAD Mapping. Values of the emotions in the PAD representation and of the octant

that includes them.

If we look at one particular instant of the combat scenario example, and take
the point of view of the Human Warrior, one possible event in the scenario could
be the successful attack of the Orc Boss to the Human Knight. Then the event
perceived by the Human Warrior would be:

ε =<Attack, {Be-Hit, Be-Attaked},∅,OrcBoss,HumanKnight>

Continue....

104 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

.... According to the parameters presented in the previous example for the Human

Warrior character we would get:

γ1: Be-Attacked −0.3

γ2: Be-Hit −0.5

α1: Attack 0.04

ρ2: HumanKnight 0.8

ρ3: @Orcs −0.9

~eγ1 = pad(Pitty) ·
|γ1|
︷︸︸︷

0.3 ·
|ρ2|
︷︸︸︷

0.8 = (−0.09,−0.05,−0.12)

~eγ2 = pad(Pitty) · 0.5 · 0.8 = (−0.16,−0.08,−0.2)

▽
~eε = ~eα ⊕ ~eγj ⊕ ~eα−γj ⊕ ~eωk

= (−0.24,−0.13,−0.30)

If we analyze the same event, but changing the source and the target:
ε =<Attack, {Be-Hit, Be-Attaked},∅,HumanKnight,OrcBoss>

The emotions produced in this case are different:

~eγ1 = pad(Gloating) · 0.3 · 0.9 = (0.08,−0.08,−0.03)

~eγ2 = pad(Gloating) · 0.5 · 0.9 = (0.14,−0.14,−0.05)

~eα = pad(Admiration) · 0.04 · 0.8 = (0, 01, 0, 01,−0.01)

▽
~eε = ~eα ⊕ ~eγj ⊕ ~eα−γj ⊕ ~eωk

= (0.22,−0.21,−0, 09)

4.3.7 EEP Event Evaluation Cycle

The EEP Model evaluates the events perceived by the character, according to his

Character Profile CP =< D,P,A,R, {mk}, B >. As we can see in the Algorithm 2, the

Emotional Elicitation Process (EEP) is decomposed as follows:

1. After receiving the initial configuration of the character, we initialize the current

mood to its basic state µ0 applying a translation function B5toPAD(B) = µ0, where

B ∈ [−1, 1]5 (Big Five Personality Traits) and µ0 ∈ M, where M is the bound

([−1, 1]3 ⊂ ℜ3) space of the MVS.

2. We then obtain the emotions ei ∈ E elicited by the event ε, see Figure 4.5, where

E represent all the possible emotions identified in the EEP Model. Being ε =<

α, {γ}, {ω}, src, tgt >, where α is one of the actions described in the Action Dictionary

Da, α ∈ Da, {γ} is the set of consequences γi ∈ Dc of the event, {ω} is the set of

the objects ωi ∈ Do involved in the event, and src, tgt ∈ Dr are the identifiers of the

source and the target characters of the event. This process is as follows:

(a) Evaluation of the Action α, that produces the Attribution emotions eα. We

apply the function eα = action(α, pα, rsrc) where pα is the praiseworthiness of

the action α and the relationship with the source of the action.

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 105

(b) Evaluation of the Consequences, {γ}, enclosing the Fortune-of-Others emotions

and theWell-Being emotions, {eiγ}. The function {eiγ} = conseq({γi}, {diγ}, {ritgt)
process the consequences γi, given their desirabilities, diγ , and the relationship,

ri with the targets of these consequences.

(c) Evaluation of the Compound Emotions (Attribution+Well-Being). With the

emotions derived from the consequences and the actions, we compose the emo-

tions {eiα−γ} = attr(eα, {eiγ}).
(d) Evaluation of the Objects, {ω}, that create the Attraction emotions, {eω}. We

obtain these emotions by means of the function {eiω} = object({ωi}, {aiω}), using
the appeal aiω of the objects ωi.

3. We quantify the emotions prompted by the event, according to the projection of the

produced emotions, ei, into the Mood Vector Space as we detail further in this section:

∀e ∈ E, pad(e) = ~ν ∈ M

4. After we get the vector representation of the emotions, ~ν, on the MVS, we apply the

scalar product of the contextual parameters, πi, (such, distance, relationship strength,

etc.) or the profile parameters dependent on the emotion type (pα, dγi , . . .). For

instance, for the emotions −→να we scale the vector with priceworthiness, pα related to

this action recorded in the character profile. So:

scale(π1, . . . , ~ν) = π1 · (. . . · (πn · ~ν)) =
∏

i∈[1,n]
πi · ~ν ∈ M

5. We compose the scaled emotional vectors, ~ν, produced by the event, ε:

−→νε = ~να ⊕
−→
νjγ ⊕

−−→
νjα−γ ⊕

−→
νkω

6. We update the current mood state µi, by applying the vector that represents the

composition of all of the emotions prompted by the event νε: µi+1 = µi ⊕ ~νε.

7. We obtain the current Mood Tag according to the projection function, L(µi+ 1) = Tk.

In case there is an absence of events, the current mood µi tends to move back to the

initial mood point derived by the personality µ0. This is achieved through the application

of the attenuation function µi+1 = A(µi).

4.4 EEP Applied to Character Controllers

As we said before, in this chapter we illustrate our explanation of the integration of

the EEP Model, by presenting two possible application objectives: First we show a combat

106 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

Algorithm 2: EEP Engine Algorithm
Initialization:

begin

Let CP =< D,P,A,R, {mk}, B > the Character’s Profile. Where:

D are the desirabilities, P are the praiseworthinesses

A are the appeals, R are the relationships

Each mk ⊆M is the set of reference points corresponding to mood tag Tk

B =< o, c, e, a, n > the Big Five personality description composed by the 5

parameters

µ0 = B5toPAD(B), initial mood state
end

begin

if We Receive Events then

foreach Event, εi, that the EEP receives do

Evaluation of εi =< α, {γ}, {ω}, src, tgt > where {γ} is the set consequences

of the event, α is the action that triggers the event, and {ω} is the set of

objects perceived during the event, and src and tgt are the source and target

of the event.
−→να = scale(pad(action(α, pα, rsrc)), pα, rsrc), scaled vector emotions of the

action α

foreach Consequence γj do
−→νγj = scale(pad(conseq({γj}, {dγj}, {rtgtj})), {dγj }, {rtgtj}), scaled vector

emotions of j consequences
−−−→να−γj = scale(pad(attr(να, νγj), ||

−→να||, ||
−→νγj ||), emotions of

well-being/attribution compound

end

foreach Object ωk do
−→νωk

= scale(pad(object({ωk}, {aωk
})), {aωk

}), emotions prompted by the

k objects
end
−→νε = −→να ⊕

−→νγj ⊕
−−−→να−γj ⊕

−→νωk

µi+1 = µi ⊕
−→νε

end

end

else

//In absence of events

Attenuation of the µi along the time

µi+1 = A(µi), apply the attenuation function of the MVS which tends to move the

current mood µi to µ0

end

return Tk = L(µi+1) as the projected Mood Tag
end

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 107

scenario, where the application of the EEP is oriented to the simulation of mood-state-

related strategies. And second, (Section 4.5), we exhibit an emotion-driven storytelling

example.

Thus, for the selected characters we have modeled their corresponding emotional

behaviors:

• Personality traits of the characters: We have designed a unique personality for each

character.

• Emotional parameters (for consequences, actions, objects and relationships): Most of

these parameters are the same for all the characters in the scenario, or at least for

those in the same group (e.g., orcs and humans).

• We have defined three emotional labels for the corresponding Mood Tags Normal,

Angry andAfraid states (see Table 4.5).

• For each of these emotional labels we have assigned a specific controller designed with

Behavior Trees [16]. So the strategies are fixed for each mood state and character.

Besides the design of those controllers, the rest of the parameters represent a

minimum configuration effort for all the characters designed for these experiments.

4.4.1 Mood Evolution

We are going to evaluate one of these scenarios in order to trace the emotional

evolution of the characters according to the events occurred during a combat in the game.

The scenario starts as follows: “a group of human characters (a fighter, an archer and

a knight) are exploring a forbidden temple, when they encounter a gang of raging orcs

defending one of the chambers in the temple. This gang is led by an orc boss. When the

human explorers enter that chamber, the orcs charge upon them, . . . , and the battle begins,

. . . ”.

As we indicated when we introduced the examples at the beginning of the chapter,

we are using the NeverWinter Nights video game to illustrate and guide the game. Through

our example, we assumed certain “social” trait that we use to develop the description of

the characters. These social attributes are quite common in this kind of fantasy worlds:

1. we assume that the orcs are savage warriors, with a predilection for the fight, so it is

perfectly understandable that they attack as soon as they see the human explorers,

2. the orcs are hot-tempered, so they’ll tend to become angry easily,

3. the relationship among the humans is closer (implies more affection feelings) than

among the orcs. Thus, the humans tend to worry more about the events in which

their acquaintances are involved.

108 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

We analyzed the evolution of the sample combat scenario. This scenario has the

following main events4:

➀ The two groups are engaged in a combat. One of the Orcs attacks the Knight, the

other Orc and the Orc Boss attack the Fighter.

➁ The Orc Boss suffers some damage because of the Fighter ’s counterattack.

➂ The Fighter kills one of the Orcs but, right after that, he is slayed by the Orc Boss.

➃ The Orc Boss joins the other Orc in his combat with the Knight.

➄ The Knight dies and the Orc and the Orc Boss advance to chase the Human Archer.

When analyzing some of the actions presented, we find two interesting emotional

responses:

• Orc Boss: Has a short-tempered personality, BigFive = (−0.5,−0.5, 0.1, 0.3,−0.4) ⇒
pad(µ0) = (−0.217,−0.039, 0.035)5 in the Disdainful octant according to Table 2.1.

1. The moment ➀, the Orc Boss attacks and damages the Fighter. Then the EB
produces the following events:

ε =< ATTACK,BE − ATTACKED,BE −HIT, ∅, OrcBoss,HumanWarrior >

2. This character (Orc Boss) has 0.5 praiseworthiness for the attacking action, that
brings out its Pride emotion as well as its 0.6 desirability of the consequence of
hitting the enemy that drives the emotion of Joy.

−→eα = scale(pad(PRIDE), 0.5)

= scale([0.4, 0.3, 0.3], 0.5) = [0.2, 0.15, 0.15]
−→eγ1 = scale(pad(JOY), 0.5)

= scale([0.4, 0.2, 0.1], 0.5) = [0.2, 0.1, 0.05]
−→eγ2 = scale(pad(JOY), 0.5)

= [0.2, 0.1, 0.05]

3. The action/consequence pair not only promptsPride and Joy, but also produces
a Gratification emotion.

4The video and the detailed log that traces this particular scenario can be downloaded from
http://www.ia.urjc.es/∼luispenya/research/eep/

5Applied the B5toPAD function described in the Section4.3.5.

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 109

−−−→eα−γ1 = scale(pad(GRATIFICATION), ||−→eα||, ||
−→eγ1 ||)

= scale([0.6, 0.5, 0.4], ||[0.2, 0.15, 0.15]||, ||[0.2, 0.1, 0.05]||), applying B.20

= scale([0.6, 0.5, 0.4], 0.45, 0.35)

= [0.094, 0.078, 0.063]
−−−→eα−γ2 = scale(pad(GRATIFICATION), ||−→eα||, ||

−→eγ2 ||)

= [0.094, 0.078, 0.063]

The combination of these emotions produces the aggregated emotion vector ~eε:

~eε = −→eα ⊕
−→eγ1 ⊕

−→eγ2 ⊕
−−−→eα−γ1 ⊕

−−−→eα−γ2

= [0.58, 0.43, 0.34], applying B.13

4. The combination of these emotions, (the ~eε calculated previously), together with
some other actions performed by the Orcs, sets the mood state of the Orc Boss
to µ1 = (0.562, 0.555, 0.507).

µ1 = µ0 ⊕ ~eε ⊕ . . .

5. The Orc Boss keeps attacking and damaging the Fighter, but it is also injured in

the instant ➁. Therefore, theOrc Boss reaches the mood µ2 = (0.764, 0.741, 0.667).

6. When reaching this mood state, the point in the PAD space is closer to the
Angry Mood Tag than to the Normal Mood Tag, thus the Orc Boss is enraged
(changing its behavior, see round 2 in the Figure 4.66).

L(µ0) = Normal⇐ argmin
µj∈

⋃
i µTi

(||µj ⊖ µ0||)

L(µ1) = Normal

L(µ2) = Angry

• Human Archer : He has a completely different personality,

BigFive = (0.5,−0.1, 0.4,−0.1, 0.4) ⇒ pad(µ0) = (0.360, 0.153, 0.163)

in the Exuberant octant according to Table 2.1. His mood evolution during the

scenario is shown in the Figure 4.7.

1. At instant ➁, and because of the events happening during the attack, the Human

Archer reaches a mood state µ1 = (0.342, 0.164, 0.088). This mood state is

similar to his initial mood state due to the fact that the Human Archer and the

Human Fighter ’s hits, directed to the Orc Archer and the Orc Warrior, produce

a small effect (missing the attacks), and also because the attacks received by the

human party are not too dangerous either (small damage or misses).

6The complete evolution of the values can be found in the Appendices, in the Table B.1

110 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

Figure 4.6: Combat Scenario: Orc Boss mood evolution along time. ➀ and ➁ are key in the mood

modification of the Orc Boss

2. When his fellow Human Fighter dies (instant ➂), the Human Archer has a desir-
ability dγ1 = −0.9 associated to the consequence of being killed. As the target of
this consequence is a character with a friendship relationship, ρ = 0.8, it produces
a high intensity Pity emotion. He also perceives the other attacks to his friends
and this provokes even more Pitty emotions in him. In addition to that, a con-
sequent counterattack reaction produces some JOY and GRATIFICATION
emotions.

−→eγ1 = scale(pad(Pitty), 0.9, 0.8)

= scale([−0.4,−0.2,−0.5])

= [−0.288,−0.144,−0.36]

µ2 = µ1 +
−→eε1 ⊕

−→eε2 ⊕ . . .

= [0.278, 0.147,−0.0624]

3. At the instant ➃, the Knight receives attacks from multiple enemies. This situ-

ation represents a combined set of emotions in the Human Archer of Pity for

his friend and Resentment against his enemies. Considering that the Human

Archer has a strong friendship relationship with the Knight, ρ3 = 1.0, all these

emotions drop its mood state to the point µ4 = (−0.385,−0.151,−0.670) in the

PAD space.

4. This point in the PAD space has the Mood Space Point with the Afraid Mood

Tag as the closest label. The Human Archer is afraid and tries to defend himself

desperately, he also considered the possibility of fleeing.

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 111

Figure 4.7: Combat Scenario: Human Archer ’s mood evolution along time. It is drastically marked by

the ➃ event

4.4.2 Evaluation of the Combat Scenario

As we presented in the introduction of this chapter, the ultimate objective of an

emotional model is to make the players believe that the actions of the characters in the

game are motivated by some kind of emotion. As we already stated in the discussion of the

Chapter 2, the evaluation of the emotion models is still an open issue. In our case, having

no available human data on the performance of our given scenarios, we had here to provide

the evaluation of the results of such scenarios done by external observers.

To carry out this evaluation we followed this method: (1) First, the tracing of

the actions had to be recorded together with the emotional state of the characters, as

we explained above. (2) Then, a group of external observers had to judge, according to

the behavior and the description of the mood transitions, whether the responses of the

characters were believable and whether they matched what it was expected to happen. The

questionnaire given to these observers can be found in Appendix B.

The evaluation carried out with this questionnaire is a qualitative one, in terms of

psychology research[24], using only theoretical sampling, where the limited sampling does

not represent a problem because the researcher is not attempting to generalize his findings.

We collected the information from a total of 16 expert, regular players. The questionnaire

was answered gradually by the experts. First, the experts has to answer the question number

1, then we revealed the next question, presenting more information about the scenario, and

so on.

Our questionnaire presents a quantification for the questions from 1 to 5, assuming

1 as a bad qualification in the related subject and 5 a excellent qualification. Therefore,

112 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

as overall result, the observers perceived and evaluated the general behavior as coherent

(average rate of 4.438±0.814, detailed on Table 4.11). Although, the observers perceive more

believability in the behavior of the characters when they were given the information included

in the simulation, the personalty of the characters and their emotional parameterization.

We think that the first part of the experiment (without giving any information about the

emotional engine) was more appropriate to merely evaluate the scenario in terms of the

tactical decisions made by the characters. But as we said, when the players knew that there

was more complex information behind each of the characters, they found more alignment

between the actions and the personalty and emotional profile of the characters.

Thus, the inclusion of the EEP model in the scene made some behaviors that the

players did not expect appear. The fact that these behaviors were unexpected was due to

the players’ previous experiences in this kind of games, where the strategies or behaviors of

the characters were not affected by any emotional related event. In the past, the players had

usually observed characters that only produced actions not clearly related with their mood,

but just based on rational decisions. Hence, the inclusion of an emotional model increases

the perception that the characters are not only controlled by fully rational decisions, but

also, by certain emotions and moods that could interfere in their good judgment.

Average Quantification

Information/Character Orc Boss Human Archer

No Information 4.125 ± 0.619 4.188 ± 0.911

Personality 4.316 ± 0.873 4.500 ± 0.730

Emotional Parameters 4.500 ± 0.730 4.750 ± 0.447

Overall rate of the scenario: 4.438 ± 0.814

Table 4.11: Combat Scenario: Evaluation results of the questionaire on the character behavior according

to the information provided to the evaluator. Questions rated from 1 to 5.

4.5 EEP for Storytelling Support

In this second scenario, the objective is using the EEP model to define storytelling

milestones in a more open and emotion-driven way. The traditional storytelling techniques

constrain the story progression to a given sequence of actions the player has to perform in

a rather restricted order. Moreover, the level designers should consider each quest to be a

given sequence of major actions to be achieved to fulfill the story objectives.

In general, the procedure to construct these standard scenarios is based on a series

of story plot scenes that contain the major milestones of the quest. Derived by the general

implementation design of the video game engines, these story plots are translated into a

sequence of paths implemented by a set of scripts or rules that contain the possible pairs

of question-answer or event-reaction patterns. These sequences of scripts may be quite

restrictive and, in some cases, not coherent because the user might want to interact with

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 113

some of the characters in an unexpected, but still reasonable, way to achieve the pursued

objective, which might not be considered within the scenario scripts. For instance, the player

wants to convince a Non-Playing Character (Non-Player Character (NPC)) to cooperate

with him. This can be accomplished by interacting with him in several different ways, and

it is only a matter of the NPC’s personality, mood state and emotional relationships, to

determine if the interactions with the player do or do not produce the desired behavior on

the NPC. More precisely, in our scenario the player can gain the collaboration of an NPC

bartender in the local inn by either intimidating her, or by helping her to solve a situation

with some annoying customers. If this particular scene is configured to be emotion-driven,

we have the benefits of: (1) not being a carbon-copy prefabricated pattern but an open

interaction-free scenario, (2) the set of actions influencing the target NPC bartender also

affects the nearby characters by different means, that produce dynamic and rich playing

environments.

4.5.1 Proposed Storyline

This scenario represents a possible quest inspired by many RPG video games,

where the player must fulfill certain steps in order to reach a desired goal. In our case, the

player (controlling an epic heroine named Lady Lemma) wants to get in a castle guarded

by a watchman that is not willing to allow her to enter. In the village near the castle gate

there are different characters (controlled by the AI) that will aid the player to advance in

her quest.

The first explorations of the village will present the following facts:

• The castle guard will not let to Lady Lemma enter through the castle doors.

• Near to the main door of the castle there is a hidden door. But this door is unreachable

for the player because it is on the other side of the moat of the castle.

• It seems that there is a pile of crates that can be pushed to build a bridge to cross

the moat.

• There is also a melancholic bard sitting on the crates singing a sad song. He is not

very cooperative because he wants a beer but the bartender is not willing to give him

one.

• In the village market place there are two merchants, a sleeping bartender and a sad

girl.

Village Non-Player Characters

In this scenario, there are 6 NPCs that inhabit the village. Each of these characters

have his own personality, goals, feelings and relations. The NPCs are shown on Table 4.12.

114 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

Sad Girl She has lost her kitty. She will grant a reward and help the

player if she gets her cat back.

Bearded Merchant He is greedy but willing to bargain.

Skinny Merchant He is really hard to bargain with. He is envious.

Wandering Bartender He is carrying his cart selling beer and cheering up the vil-

lage. Initially he is sleeping.

Melancholic Bard He is a penniless musician with a very low mood.

Castle Guard He will not allow to anyone to enter into the castle. He has

a very bad temper.

Table 4.12: Storytelling Scenario: List of Non-Playing Characters

For the EEP Model, we need to translate the conceptual design of the characters

into the characters’ profiles. In the traditional designs, the characters’ traits and concepts

are retained and discretionarily applied by the designer along the different scripts and

dialogues. We include the Sad Girl’s profile in Appendix B.

Player Interaction

In this scenario, the player is allowed to interact with the NPCs by means of

(1) dialogue options, or by (2) using objects. Furthermore, and in order to clearly represent

the different ways to talk with the other characters, the dialogue entries are tagged with

three different tags: Polite, Neutral and Rude. Also, when a character uses a certain

object, it is reported as an action that usually activates certain conditions on the scenario.

These tags, associated to the dialogue options, are used by part of the scripts to

select different branches of the story as representation of the resultant relationship change

across the conversational flow. For instance, the Rude talking can intimidate or, on the

other hand, enrage someone; these selections might make progress the quest in different

ways.

4.5.2 General Flow: The Traditional Way

A situation, such as the one explained before, has traditionally been handled by a

sequence of expected actions that the player must do. For example, the scenario designer

may force the player (controlling Lady Lemma, our heroine) to adhere to the following

sequence of steps (see Figure 4.8), in order to find the way to reach the hidden door of the

castle:

❶ Lady Lemma must talk with the Sad Girl, who will say she has lost her kitty. After

this, Lady Lemma must explore the village until she hears a kitty meowing on a house

rooftop. She also realizes that she will need a rope in order to climb and reach the

rooftop.

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 115

Figure 4.8: Storytelling Scenario: Abstract general plot of the story. The static scripted version

describes the sequence of actions that the player is expected to perform in order to fulfill the quest.

❷ Lady Lemma must negotiate with the Merchants till they lower the price of the rope,

so she can buy one. The bartenders are rivals, so each of them does not want the

player to bargain with the other. Lady Lemma must find out which are the best

combinations of conversational options to be used in order to obtain the best deal for

the rope.

❸ Lady Lemma must climb the roof and get the kitty.

❹ Lady Lemma must bring the kitty back to the Sad Girl. The girl then gives her an

egg as a gift

❺ Lady Lemma must (somehow) hatch the egg. A chicken comes out of the egg.

❻ Lady Lemma must wake up the Bartender (with the help of the chicken that crows).

❼ Lady Lemma must buy a beer from the Bartender.

❽ Lady Lemma must give the beer to the Bard. The bard becomes cheerful and starts

singing. The Castle Guard becomes enraged because of the singing and runs after the

bard, who flees.

❾ Lady Lemma must now push the empty crates to cross the moat and enters the castle

through the secret door.

116 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

4.5.3 Emotional Alternative Paths: EEP-based Design

The application of the EEP model aims to exploit the relationships and affects

of the characters in order to allow more flexible paths in the story. Based on the complex

reactions of the characters, and on the emotions prompted by the actions of the player, the

game designer can develop the scenario in a very different way.

In this sense, the design of the different scenes does not need to be defined as a

set of strict rules describing the transitions and paths in the story. Instead of that, some

of the traditional milestones in the story plot can be described as the necessity of one NPC

character to be in certain Mood in order to produce the desired transitions and paths. The

mechanisms and options chosen by the player to produce the adequate mood in a character

provides many ways to progress in the story. For instance, in Table 4.13, the corresponding

steps presented in the previous Section 4.5.2 are translated into a target Mood for a given

NPC character out of the possible Moods.

Mood Tags

Step NPC Character Target Alternatives

❶ Sad Girl Neutral {Happy, Sad}
❷ Bearded Merchant Happy {Angry, Neutral}
❷ Skinny Merchant Neutral {Jealous, Angry}
❹ Sad Girl Happy {Sad, Neutral}
❽ Melancholic Bard Happy {Sad, Afraid}
❽ Castle Guard Enraged {Suspicious, Angry}

Table 4.13: Storytelling Scenario: Target Mood Tags for the EEP-Based Design

The actions in the environment (produced by the player, by some NPC, or even

by the events of the environment) are perceived by the characters involved in them. These

actions produce, as we described in the previous sections, certain changes in the moods

of the characters across the scenario. For instance, the good actions (conversational or

not) done towards the Sad Girl are viewed positively by some characters in the scenario,

changing their reactions when they interact with the player. These reaction changes are

not only based on the one-on-one interaction with her, but also on the altered good mood

that they have produced through the perception of these positive events. This flow of mood

states of the characters derived from their relations, personalities and feelings, can produce

different paths in the story. Thus, the level designer can tailor a plot based only on the

specific moods that certain characters must reach in order for them to move on through

the story, leaving the player more freedom to interact with the environment, guided by the

emotional reactions of the characters.

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 117

Relationships in the Village

If we want to be able to exploit the emotional aspects in the storytelling, we must

first define several aspects, required by the EEP model, such as the initial mood and the

effect of some actions. The overall parameters have already been presented in Section 4.3.5,

as our model examples.

Nevertheless, in order for us to understand the characters’ emotions after perceiv-

ing events that affect their neighbors, it is important to highlight the proposed relationships

among all the different characters in the village. Figure 4.9 shows, in an abstract represen-

tation, what the scenario designer would want. This representation is based on a semantic

qualification of the relationships that the designer could imagine. The relevant aspect for

the EEP model is shown between brackets that represent friendship (positive) or enmity

(negative). Although there is a descriptive label in the pairwise relationships.It is important

to mention that it is not required to define all the possible combinations of relationships

among the characters, those not mentioned here are considered neutral. What is important

is to establish the relationship between each NPC character and the player character.

Figure 4.9: Storytelling Scenario: Representation of the Relationships among the Characters in the

Village

As an example, in Figure 4.9 there is a Friendship relationship between the Sad

Girl and the Bearded Merchant, thus any positive action cast upon one will have a positive

influence on the other. For instance, if Lady Lemma speaks gently to the girl (which, by

itself would help to change the girl’s mood from Sad to Neutral), this will influence in

the merchant’s mood positively (from being Neutral to being Happy).

Moods Evolution

For the analysis of the evolution of the moods, we are going to focus our attention

on one particular character, the Bearded Merchant and also on the direct relationship he

118 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

has with the other merchant and with the girl. Lady Lemma needs the merchant to become

Happy so she will be able to purchase from him the rope at a good price (the player

character has very limited economic resources). This is one of the possible alternatives to

solve one of the steps in the quest. But let’s consider two possible alternative sequences of

actions:

1. Lady Lemma promises the girl to help her find her cat. Additionally, the player

interacts with the girl, trying to comfort her from her sorrows, in a gentle and polite

way with the girl:

• The event that produces this action is:

ε =< Talk, Talk − Polite, ∅, P layer,SadGirl >

• The corresponding dialogue action casts an emotion of Joy on the girl.

• But it also produces a Happy-For emotion on the Bearded Merchant (because

of their mutual friendship).

2. Lady Lemma starts negotiating with the Skinny Merchant, but soon after the conver-

sation becomes rude as the merchant’s prices are extremely high:

• This action produces the following event:

ε =< Talk, Talk −Rude, ∅, P layer, SkinnyMerchant >

• The corresponding dialogue action casts an emotion of Distress on the Skinny

Merchant, because this action produces a not desirable consequence (Talk-Rude)

for him.

• But it also produces a Gloating emotion on the Bearded Merchant (because he

dislikes the other merchant). Due the animosity between the two merchants, the

undesirable consequences to a “Foe” character produce an “ill-will” emotion.

These two sequences may lead to the Happy mood on the Bearded Merchant. To

create these sequences, traditionally, we must implement the set of scripts that include the

rules of actions and events that might be taken by the player in both cases (and, in any

other cases that a creative player could make) to lead the story to the point in which the

Merchant is willing to sell the rope at a reasonable price. On the other hand, with the

inclusion of the EEP model, we only have to model the relationship and character at a

higher level, and set the target moods that trigger the events that make the story to move

on.

Likewise, the mood evolution can be controlled by the designer. Only the inter-

esting Mood Space Reference Points are considered as returning values from the EEP, and

the bounding of the Mood Vector Space is ensured by definition. Therefore, the possible

side effects (in terms of mood variations) of the player’s actions are always constrained to

the boundaries of the space and the Reference Points described in the profiles of the NPCs.

This is necessary in order for the designers to create robust storylines, where the characters

are not in any particular mood, but in a constrained set of them.

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 119

4.5.4 Evaluation of the Storytelling Scenario

We have selected here an evaluation procedure that is similar to the one presented

in the previous section. A group of experienced players interacted with the scenario and,

right after the session, they were given a short questionnaire (see Appendix B.4)7 .

In this case, the evaluation process aimed at two different targets: (1) we wanted

to retrieve the different story lines followed by the evaluation players, and (2) we wanted to

evaluate how believable the scenario was for the different experts.

In this experiment, the same 16 test players were proposed to play the scenario a

maximum of three times, and try to solve the quest right after (given a restricted amount

of time, to perform all the actions). From all 16 players, 14 of them successfully finished

the quest at least once. About the specific part of the quest of obtaining the rope, 15 of

them succeeded. From these successful cases 10 out of the 15 purchased the item from the

Bearded Merchant, and the rest (5 of them) from the Skinny Merchant. In Figure 4.10, we

can see that most of the cases in which they obtained the rope from the Bearded Merchant,

they did it interacting kindly (or at least neutrally) with both the Sad Girl and the Bearded

Merchant. Furthermore, buying the rope from the Skinny Merchant is only possible by

being extremely polite to him. This actually illustrates both possible paths to solve this

part of the quest.

Figure 4.10: Storytelling Scenario: Representation of action dependencies in the evaluation of the

scenario. The state numbers represent the different action numbers included in the questionnaire in

Appendix B.4.2.

From the second part of the questionnaire, we have obtained the believability

scores presented in Table 4.14, as in the case of the Combat Scenario, the believability of

the characters is rated from 1 to 5 (no believable to very believable). These figures show

that the behavior of the central character, the Sad Girl, was perceived as quite reasonable

7A video of a played scenario can be shown at http://www.ia.urjc.es/∼luispenya/research/eep/

120 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

Character Avg. Believability

Score

Std. Dev.

Sad Girl 4.063 ±0.9287

Bearded Merchant 3.500 ±1.155

Melancholic Bard 3.250 ±1.2383

Overall Score 4.438 ±0.8921

Table 4.14: Storytelling Scenario: Evaluation results of the questionnaire on the believability of char-

acter’s behavior according to the information provided to the evaluator. Questions rated from 1 to

5.

(average believability value of 4.063), although, the other two characters seem to be less

rational (indeed, the Melancholic Bard is sometimes misunderstood, 3.250 of believability

with high deviation).

Nevertheless, the overall experience from the scenario was satisfactory (overall

believability value of 4.438 ± 0.8921), where the player obtained a rich interaction with

the characters, much more colorful and interesting. Indeed, part of the unsuccessful cases

where the players had not fulfilled the quest were due to the ill effect caused by a previous

action, which directly biased the mood of some key characters against them. We learned

here that some of these players realized that emotion-driven scenarios required them to be

much more careful with their actions in order to avoid free rampage (as it used to happen

in some other scenarios, where the consequences from certain actions were linked neither

among them, nor with some other characters that also had a role in the plot).

4.6 Discussion

We are here presenting a new model for the simulation of synthetic emotions in

a video game framework. Considering previous models of emotional agents, we created a

lightweight model that can work in parallel with the planning model (in our case by selecting

different controllers designed with behavior trees, each of them associated with the Moods

defined on this scenario). Moreover, this model enriches the inputs of the controller with

the mood of the character derived from the emotions.

The requirements proposed in Section 3.2.1 for the Emotional Engine are satisfied

as follows:

• AGCBAR-EmoR1 is observed in the EEP Model in the inclusion of all the Mood

Tags, Ti, in the labeling function, L(µ), that establishes a unique tag for each mood

state.

• AGCBAR-EmoR2 and AGCBAR-EmoR5 are sustained by the MVS that keeps

the current mood state of the character along the time, and adds all the emotional

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 121

vectors and the decay function (attenuating the past emotions, carrying the mood

state toward its initial state) to the character’s mood.

• The EB derives the constructions of the consequences of events to a higher element

that could have more information about the causal relations of the elements on the

environment, leaving the appraisal of the events to the emotional model, thus, we

achieve the AGCBAR-EmoR6 by using the OCC model that presents a structured

analysis of events that have a coherent set of emotions.

• The Character Profile includes the information about the personal preferences of the

character, meeting the AGCBAR-EmoR4, in terms of emotional events, and pro-

viding a mechanism to represent the initial and central tendency of the character’s

mood, L(µ0) = T0, using the Big Five personality model translated to the MVS,

achieving the AGCBAR-EmoR3.

• In the AGCBAR-EmoR7 as we exemplify in the Sections 4.4 and 4.5, the imple-

mentation of the EEP model is carried out in a commercial video game engine, with

a minor overhead and with the real-time constrains reached; the EEP model is also

designed to be implemented in a high parallel architecture (as the GPUs) since it is

based on the MVS which is a 3D space of representation.

Finally, the evaluation of the scenario has been presented, according to the criteria

of some other researches [45], throughout the subjective quantification by a set of expert

gamers that judged that the behavior and reactions of the characters improved compared to

those in the original game. Of course, the statistical relevance of our findings is limited, but

they do indicate, in terms of emotional “believability”, a significant improvement based on

the expectation of these environments that the final user had. The two scenarios developed

in the evaluation also represent the set of possible applications, in terms of improvement

of the playabilty of the next generation of video games, not only with the simulation of

emotionally driven behaviors, but also with the inclusion of different ways to develop plots

and storylines, so they can achieve higher levels of freedom of action in virtual scenarios.

EEP Model Comparative Analysis

The proposed model can be easily integrated into the AGCBAR Architecture.

With this purpose in mind, we developed a stand-alone model of emotions that can interact

with the Game Engine: processing the events produced in this engine and using the current

mood state as basis for the strategy selection. In our perspective, the mood is the key feature

to choose the strategy. Therefore, the strategy is the set of actions chosen to maximize the

probabilities to achieve a certain goal. In our approach, the emotion appraisal has a strong

cognitive component, and it is the addition of a set of emotions what produces the change

in character’s general mood state. This change will utterly lead to a change in the strategy

of the character.

122 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

From this idea and after reviewing the models presented in Section 2.1, we can

compare the EEP Model with these models paying special attention to the desired features:

EMA Model

The EMA model presented in Section 2.2.1 has the following drawbacks, if it were

to be used in our architecture:

• It needs to infer the future implications of the event observed. This representation of

the possible outcomes could be difficult to obtain in terms of a video game because we

may need a very large causal chain. This would require much information and time

to compute the causal chain correctly. In the EEP Model, we not have to compute

a long-term causal chain, because we only want to use the direct causal attribution

of a given action and its specific consequence. Thus, the causal inference is processed

with the present information needing of no future information or estimation.

• The appraisal and re-appraisal cycle requires past events to be stored in order to

present them to the analysis engine. The EEP model only stores, in the MVS, the

evaluations of a set of emotions in the format of a transition over the current mood

state. Thus, the effects of these transitions are decayed with the attenuation function,

A, making the emotions last as long as they are not attenuated.

• The coping strategies (strategies used to manage the behavior according to the in-

ternal and/or external appraised emotions) are proposed to maintain the desirable

events and to overturn the undesirable ones. This approach leads to fully emotionally

driven characters. The characters controlled by the EMA model select the actions to

maximize good emotions. But in terms of a video game, the characters may attend

to certain set of strategies predefined (or checked) by the game designers oriented to

fulfill certain goals related with the scenario. Thus, the EEP Model delegates the

decision of the actions to the Strategies which are oriented to reach the general goals

of each scenario, and designed to fulfill them. And the strategy selection is done

according to a set of aggregated emotions that takes the character to a certain state.

The EMA model, as we said in the discussion of the previous chapter, is a general

agent architecture that is conceived to be used as decision/reaction mechanism for the

virtual characters according to the emotions elicited by the environmental events and states.

This makes this model difficult to use as part of the AGCBAR Architecture.

ALMA Model

This model is one of the closest to the EEP Model. The different layers of the

ALMA model represent the base mood state of a character (derived from his personality),

the mood state as a representation of the mid-term emotional state (described in terms

Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions 123

of PAD space) and the emotions produced by a certain action (analyzed with the OCC

Model). The main differences with the EEP Model resides are:

• The MVS is an algebraic space that withstands the emotions and the moods in it.

The inclusion of the emotions as vectors in this space substitutes the push-pull phase

of the mood in the ALMA model. This phase has the conception of emotions together

with the central mood state as gravitational points.

• The EEP Model is conceived as part of a virtual environment that has implicit re-

lationships among characters, and exploits them, so the emotions produced by the

events can be analyzed. The inclusion of the Conceptual Dictionaries facilitates the

general definition of appraisal rules (such BE-HIT consequence) that are shared by all

the characters in the scenario. So, the rules are easily applied to third-persons events

(such, “see a friend BE-HIT by an enemy”).

Different Model Features

Marsella, Gratch & Petta [44] compare the EMA and ALMA models, illustrating

how their component model framework can highlight conceptual similarities and differences

between emotion models. Using the same concepts, we compare, in Table 4.15, the EEP

Model with these two other models.

The Person-Environment relationship in the EEP Model is domain dependent

because of the necessity of the Conceptual Dictionaries to analyze the event perceived.

This modifies the events perceived adapting them to the Appraisal process. The OCC

model is used for analyzing the events and for producing a related emotion, but the EEP

Model, as the ALMAmodel, transforms the tagged emotions into their PAD representations.

Moreover, the EEP Model uses the MVS to centralize the mood transitions, the emotion

aggregation and the management of the decay of emotions.

The actions to be taken are decided out of the EEP Model, to make the strategy

creation more controllable by the designer. The cognitive analysis of the consequence of the

events is not handled by the EEP Model in order to maintain the computation cost con-

trolled, because the causal attribution and prediction could be computationally expensive.

124 Chapter 4: Emotional Elicitation Process (EEP). A Model for Synthetic Emotions

EMA ALMA EEP

Person- Envi-

ronment Rela-

tionship

Domain Independent

Decision- BDI + Theoretic

Plans

Out of the scope of the

model

Domain Dependent Per-

ception - Event Builder In-

terface

Appraisal-

Derivation

Inference over decision-

plans

User defined Events wrapped according

to CD

Appraisal-

Variables

Lazarus Inspired OCC Inspired OCC Inspired

Affect-

Derivation

Lazarus-based structural

model. It generates dis-

crete emotions and mood

states.

OCC-based structural

model. It gives “impulses”

into core affect.

OCC-based structural

model. It projects the

emotions into MVS as

intensity vectors.

Affect- Inten-

sity

Expected utility model,

with threshold model and

additive mood derivation.

User defined. User defined with additive

model over the MVS

Affect Set of appraisal frames,

mood with decay (discrete

emotion vector)

PAD space representing

mood and emotions

PAD space representing

mood and emotions with

decay

Behavioral-

Consequences

The most intense emotions

alter behavior display and

action selection. Actions

are close-loop via domain-

independent rules.

Open looped. Mood and

emotion alter behavior dis-

play and action selection.

Domain-specific actions

are handled outside of the

model. Mood feedback to

decision process.

Cognitive-

Consequences

Closed-loop via domain-

independent emotion-

focused coping strategies

that change the BDI items.

Open-looped. Emotions

modify intensities of other

elicited emotions.

Out of the scope of the

model. Consequences are

observed in the strategies.

Table 4.15: EEP Model compared with EMA and ALMA. Conceptual components of the models.

Chapter 5

WEREWoLF Model

I think we all have to fight the

werewolf within us somehow.

William Kempe

Traditionally, agent controllers were programmed using ad-hoc implementations,

mainly based on finite state machines (FSM). More recently approaches such as Behavior

Trees [16] are increasingly used because they are better equipped to deal with more complex

behaviors, and because they are relatively easy for human designers to use. Nonetheless,

this hard-coded development, when the number of agents and the number of actions per

agent are large, makes the design of these controllers time-consuming and error-prone. An

alternative mechanism for avoiding the hard-coding of agent controllers is the use of learning

mechanisms to develop these controllers. These learning mechanisms can be applied during

the development phase of the game, making agents learn the best sequence of actions

under different circumstances. Reinforcement learning (RL) is one of the most interesting

paradigms in this domain [71]. So far these learning methods have not been very widely

used within video games, but this is at least partly due to the unpredictable speed and

quality of the learning process. We believe that when learning can be done reliably and

quickly, it will be naturally and widely applied in video games development.

State-of-the-art artificial intelligence in video games is taking advantage of these

learning techniques that support the game design and its development. Nevertheless, among

the different alternatives to carry out this learning process, the most appropriate are those

that provide the best trade-off balance between the performance and the learning time.

In this chapter, we present the implementation of a Reinforcement Learning al-

gorithm that is suitable for the video game environment and that fulfills the requirements

proposed by the AGCBAR Architecture for the Learning Engine. The proposed algorithm

is based on the WoLF algorithm presented in Section 2.3.2. This algorithm is more adequate

for the Stochastic Games problems than some other reinforcement learning models. The

algorithm developed (called WEREWoLF) is a hybrid reinforcement learning algorithm.

125

126 Chapter 5: WEREWoLF Model

This WEREWoLF algorithm is empirically compared with some other learning algorithms

in a context of a one-on-one fighting game.

This chapter is structured as follows: in Section 5.1 we present the integration of

the WEREWoLF model in the AGCBAR Architecture as Learning Engine. In Section 5.2

we describe the new algorithm and its components. In Section 5.3, we present a case of

study and we evaluate the performance of the algorithm in a stochastic game scenario.

Finally, in Section 5.4, we discuss the WEREWoLF model.

5.1 WEREWoLF as Learning Engine in

AGCBAR Architecture

The Automatic Controller Creation concern of the AGCBAR Architecture is set-

tled in the Learning Engine. This must produce the strategies that are going to be used

by the Strategy Selection process to guide the behavior of the characters according to their

mood state. In this Chapter, we present the WEREWoLF algorithm as a suitable solution

to be implemented in our architecture.

If we observe the Figure 3.7 of the AGCBAR Architecture design, we decompose

the Learning Engine into three different elements that correspond to the interfaces inter-

acting with it, see Figure 5.1.

• Environment State Interface to adapt the environment state, so it can be handled by

the WEREWoLF algorithm.

• Action Interface to adapt the selected action to the Game Engine.

• Goal Interface to describe the reward and fitness functions that define the current

objective of the strategy to create.

Each of them must be implemented for the video game development and must be used in

the On-Line and Off-Line phases.

The WEREWoLF algorithm requires a discrete representation of the environment

state and a fixed set of actions to be taken. Therefore, the Environment State Interface, Σ,

is a discretizer of the environmental state variables.

Σ : S → S ⊂ N

Σ(~Si) → s

The actions produced by the WEREWoLF algorithm are also a discrete set of actions. These

actions are used by the learning process, and they must be translated from the domain used

by the WEREWoLF to the domain described in the Actions Dictionary of the AGCBAR

Architecture Architectural Dictionaries. This translation is made by the Action Interface,

Chapter 5: WEREWoLF Model 127

Figure 5.1: WEREWoLF Architecture Analysis. These components are necessary for the integration

with the AGCBAR Architecture.

Λ.

Λ : A ⊂ N → A

Λ(ai) → Aj

WEREWoLF exploits the Goals with two purposes: i) to determine the reward

function of the reinforcement learning algorithms, and ii) to compute the fitness functions of

the Evolutionary Algorithm that controls the population of learners. The reward function

evaluates the environment state during the learning of a policy, and the fitness functions

determine which of the learners are the best of the population. Thus, the Goal Interface,

128 Chapter 5: WEREWoLF Model

Γ, transforms the goal Gi into a pair of functions over the realm of ℜ.

Γ(Gi) → < r, f >

r :S → ℜ
f :W → ℜ

When the learning process of a given goal, Gi, is finished, the best learner indi-

vidual, wi, of the population of learners W, becomes the selected strategy, Bi, and it is

associated with this goal in the strategy repository. Thus, the Strategy Repository updates

the association between the strategy and its corresponding goal.

5.2 WEREWoLF Algorithm

WEREWoLF (WoLF Enhanced by Reinforcement and Evolution of the WoLF

algorithm) was first introduced in [66] as an hybrid learning mechanism that combines

multiple reinforcement learners (originally WoLF learners) using genetic algorithms.

The rationale behind this approach is that: “there is a performance improvement

by combining the learning process of a Q-learning algorithm with the evolutionary opera-

tors”. This benefit is due to the synergy derived from (i) the search performed by the

learning process, and (ii) the exchange of useful information learned independently by each

of the individual by means of genetic recombination.

From this idea, we propose a new hybrid unsupervised machine learning algorithm.

This new algorithm will use a population of reinforcement learning instances (e.g. WoLF

instances, see Section 2.3.2), learning independently, that are combined after a given number

of evaluations in order to obtain a new offspring based on the result of the recombination of

learned policies (in the WoLF case, they are both, the Q-values and the probability matrices

that represent the learned policy).

5.2.1 WEREWoLF Elements

Thus, in WEREWoLF, schematically represented in the Figure 5.2, we have an

Evolutionary Controller wrapping the RL Learner core. The Evolutionary Controller based

on an evolutionary algorithm schema.

The different elements of the controller are:

• A population, Pg, of S individuals, w1, . . . , ws. Each of them represents the training

information of an instance of a Reinforcement Learning Algorithm. This algorithm

(the RL Learner core) is, in our case, a variant of the Temporal-Difference learning

for the control problem [85] algorithm.

Chapter 5: WEREWoLF Model 129

Figure 5.2: WEREWoLF General Schema: The population of the Evolutionary Controller explores

the environment independently. The overall performance of the individual is represented by its fitness

value. After a number of episodes the population of learners is combined to generate a new one.

• Individuals are encoded by chromosomes which include, for each individual, the action-

state expected reward matrix (referred as Reward Matrix). This matrix is the afore-

mentioned training information of the learning algorithms.

• A selection operator. This operator selects the next individual wi to use its Reward

Matrix to train the RL Learner algorithm. This individual tries to achieve the opti-

mal policy that maximizes the outcome according to the reward function r(s). Any

changes in the Reward Matrix, resulting from the learning process, are updated in

the chromosome code of the individual.

• The learning process is repeated for a number of episodes. After these episodes,

each individual computes its fitness, f(wi), as the average reward obtained for those

episodes in which the individual has been selected as the Reward Matrix of the RL

Learner.

• When all the individual have updated their fitness values the generation is over.

• A set of genetic operators. These operators generate a new offspring population,

Pg+1 from the current population, Pg. The genetic operators depend on the specific

evolutionary algorithm used to construct the Evolutionary Controller.

Therefore, in the WEREWoLF, described in the Algorithm 3, each learner is

trained for a fixed number of episodes at each generation. After a complete generation

130 Chapter 5: WEREWoLF Model

is finished, the different learners are combined. The new population is obtained by the

combination of the individuals. This combination process merges the Reward Matrices to

produce a new offspring of individuals. The new individuals in the new population con-

tinue learning, using the base RL Learner based on the Reward Matrix provided by each

individual.

Algorithm 3: WEREWoLF Algorithm

Initialization: begin
Let P0 be an initial population of several Reward Matrices of fixed size S

∀iwi ∈ P0 initialize res(wi)← 0 and cnt(wi)← 0

Let g ← 0 be the generation counter

Let c← 0 be the episode counter
end

//The evaluation step is repeated every time this algorithm is selected for evaluation

Evaluation Step begin
c← c+ 1

Select wi from the population Pg and upload the Reward Matrix into the RL Learner

Train the RL Learner until it reaches a final state sfinal obtaining rew = r(sfinal)

Update for wi: res(wi)← res(wi) + rew and cnt(wi)← cnt(wi) + 1

Download and update wi with the final Reward Matrix from the RL Learner

if c mod CGEN = 0, the execution counter is multiple of the executions per generation

then

∀iwi ∈ Pg computes individual fitness f(wi)←
res(wi)
cnt(wi)

Apply genetic operators over Pg and produce the new offspring population of Pg+1

and g ← g + 1

∀iwi ∈ Pg initialize res(wi)← 0 and cnt(wi)← 0

end

end

Specific WEREWoLF Implementation

In order to implement the WEREWoLF algorithm, we selected:

• a specific type of reinforcement learning technique for the RL Learner,

• a specific evolutionary algorithm for the Evolutionary Controller.

We implement, as we will see in the Section 5.3, WoLF and SARSA algorithms as

alternatives (for the RL Learner) to include in WEREWoLF. The considered alternatives

for the Evolutionary Controller are based on the EDA and DE algorithms.

Therefore, the recombination operators of the Evolutionary Controller must work

with the Reward Matrices of the individuals so the new individuals obtained are expected to

retain and combine the learned strategies of the best individuals from the past population.

Hence, the reward function evaluates the states explored by the individual and the fitness

function evaluates the overall performance of the individual.

Chapter 5: WEREWoLF Model 131

Figure 5.3: WEREWoLF Individual Implementation. The individuals are encoded using their action-

state matrix. The genetic operators must combine these matrices to obtain new individuals.

5.3 Evaluating WEREWoLF Performance

The WEREWoLF, as we said previously, is originally based on the Q-Learning

variant algorithm WoLF. This algorithm was proved to be a good solution for the Stochas-

tic Game problems. Thus, we use it as one of the reinforcement learning algorithms in-

cluded in WEREWoLF algorithm, together with the more generalist SARSA approach. In

this chapter we validate this assumption and also provide a performance evaluation of the

WEREWoLF algorithm over other possible solutions (standalone reinforcement learning).

Moreover, we provide a possible implementation of the Evolutionary Controller trying to

find a good combination of a evolutionary algorithm and a reinforcement learning.

5.3.1 Experimental Framework

The framework used for the evaluation is based on the vBattle Framework [63],

which is a middle-scale-battle video game. In this chapter and for this experiment, we used

a simplified version restricted to the one-on-one melee combat engagement. The framework

is fully detailed in the Chapter 6.

The main elements of this simulator are the combatants, which are engaged in a

132 Chapter 5: WEREWoLF Model

melee combat. The combat finishes after the death of one of the combatants, or when there

is a draw because a certain amount of time passed and none of the combatants dies.

Each of the two combatants is managed by a specific controller, that must decide

which action it has to take at each step. The combatants have a set of actions and attributes.

An example combatant is included in the Appendix C. We also present here the

main components of a combatant:

• A combatant has two different counters that represent his health (called HP) and his

energy (called EP). The different actions that are carried out by each combatant can

produce changes at the counters of either or both combatants.

• Each of the combatants has a set of actions that he can execute. The actions are classi-

fied into the following categories: REST, ATTACK and DEFENSE actions. The combatant

has different detailed actions that belong to these categories, in order to produce inter-

esting asymmetric control strategies, which depend on the combatant being controlled

and also on the opponent combatant.

• Each action has two basic counters: The Action Points (AP) counter, which represents

the amount of time taken from the declaration of the action to the execution or

end of the action; and the Exhaustion Points (EP) counter, which is the amount of

energy consumed (restored in the case of the REST action) by the action. This energy

consumption/restoration is updated when the action concludes.

• All the ATTACK actions have a probability to hit the target, and the description of the

basic damage that they produce in the case of hitting such target. The damages are

computed with three counters: The Health Damage (HD) counter, the Exhaustion

Damage (ED) counter and the Stun Damage (SD) counter. The HD and ED are

subtracted from the respective counters of the target when the attack is successful.

The SD is the amount of time during which the target is inactive, it also produce the

loosing of the target’s declared action.

• All the DEFENSE actions also have a probability of blocking the attacks. The defenses

are active and ready to protect the combatant from the moment they are declared,

they also continue protecting the combatant as along as they are active (while the

defense action is not finished). If, while the defense is active, an attack is successfully

blocked, the amount of HD and ED damage produced by such attack is reduced by

a factor called Reduction (Red). There are some defenses (marked as UnStun) that

can also block the SD damage.

The general description of the game engine is explained in the Algorithm 4, in the

Appendix C. The main features of this game are: (1) the actions can be declared, in many

cases, simultaneously by the two combatants, (2) there is a probability of success/failure

in the actions, and (3) the order of execution of the actions can be altered, because there

Chapter 5: WEREWoLF Model 133

are certain attacks (those that can inflict stun damage) that can delay the execution of

the target’s actions. These features make this game an interesting one to study because it

captures many of the most important underlying features of fighting games.

5.3.2 Experimental Setup

The experimental setup is based on the contest between two combatants, the first

one using a hand-coded static strategy and, the second one using learning to adapt his own

strategy over time. For this experiment, the combatants’ characteristics are the same for

both them with the purpose of being fair and also of making the result dependent just on

the strategy and not on the combatant capabilities; the profile used is the one included in

Appendix C.

Twelve (12) different controllers, with different rules or mechanisms, are built for

the static strategies:

• A random controller, that randomly selects actions from the nine possible ones (E RAND).

• A rule-based engine, with mixed strategies that tries to exploit the time between the

declaration and the execution of an enemy action, and selects which fast counter ac-

tions should be performed before the opponent finishes his declared action (E SMART).

• Ten controllers based on the Behavior Trees [16, 61], shown in Figures 5.4, 5.5 and

5.6.

Meanwhile, in order to train the different “learning controllers” six proposed al-

ternatives have to be considered:

• A SARSA controller with parameters ǫ = 0.1, γ = 1.0.

• A WoLF controller with parameters ǫ = 0.1, α = 0.4, γ = 0.4, σl = 0.6 and σw = 0.2.

• A WEREWoLF controller with a DE evolutionary strategy and the same parameters

as the aforementioned WoLF’s.

• A WEREWoLF controller with an EDA evolutionary strategy and the same parame-

ters as the aforementioned WoLF’s.

• A WERESARSA controller with a DE evolutionary strategy and the same parameters

as the aforementioned SARSA’s.

• A WERESARSA controller with an EDA evolutionary strategy and the same param-

eters as the aforementioned SARSA’s.

All the “WERE controllers” (WEREWoLF and WERESARSA in their EDA and

DE combinations) use a fixed size population of 10 individuals. This individuals are com-

bined to produce the new populations using the two different schemes: DE and EDA.

134 Chapter 5: WEREWoLF Model

Figure 5.4: WEREWoLF Evaluation: Behavior Trees I. Top: E BT OFF Down: E BT DEF

Fitness evaluation is the average reward along 20 episodes. DE-specific parameters are:

DE/rand/1/bin model, CR=0.5, F=0.5. EDA-specific parameters are: UMDAg model

with elitism.

For all of the controllers, the environment is represented by the following state

variables:

• The declared enemy action (a value in the interval [0, 8]).

• The segment of the action when the enemy action will be executed. These values

are discretized into a set of bins depending on the APs required by the different

actions the learning controller can do. Thus, each of the bins represents one or more

possible actions a controller can perform before the opponent’s action is completed.

The values of this variable depend on the combatant’s profile, using the one depicted

in the Appendix the range is [0, 6] = {[0 − 6APs], [7 − 10APs], [11 − 12APs], [13 −
15APs], 16APs, [17 − 20APs], 21 +APs}

• The percentage of the remaining HPs of the learning combatant is discretized into

Chapter 5: WEREWoLF Model 135

Figure 5.5: WEREWoLF Evaluation: Behavior Trees II. Top to Down, Left to Right: E BT ALL,

E BT COMBO, E BT HARD and E BT COWARD

four quartiles. The values are in [0, 3]

• The relative difference of HPs between the two combatants. If the static combatant

has less HPs than the learning combatant the variable is set to 0, otherwise it is 1.

The possible states result from the cross product of these variables (504 possible states)

plus four additional states:

• One final state where the combatant controlled by the learner is dead.

• One final state where the combatant controlled by the static strategy is dead.

• One state for the case where learning combatant is so exhausted that he can not take

any other action.

• One state applicable in the case the combatant with the static strategy is so exhausted

that he can not perform any other action.

136 Chapter 5: WEREWoLF Model

Figure 5.6: WEREWoLF Evaluation: Behavior Trees III. Top to Down, Left to Right: E BT ENERGY,

E BT STUN, E BT FINAL and E BT TIMER

The complete representation of the environment produces a set of 508 different states. This

state space representation is used by all of the controllers. In addition to that, the action

space is fixed by the combatant’s profile having 9 different actions.

Each step of the simulation obtains a reward derived by the current environment

state. The reward function, r(s) → ℜ, is the same for all of the experiments:

r = α∆∆HP%+ (1− α)∆∆EP%+W (̇1− τ)

Where,

α = 0.95,

∆∆HP% = ∆MyHP%−∆EnemyHP%,

∆MyHP% = MyHP%t −MyHP%t−1, Same for EP%

Chapter 5: WEREWoLF Model 137

W =

200 if EnemyHP < 0,

−200 if MyHP < 0,

0 otherwise

τ =
APst

APsmax

The evaluation of the performance of an individual along a generation is done by

the fitness function, f(wi) → ℜ, in our experiment this function is the aggregated sum of

the, k, last rewards of each episode obtained by the combatant, wi, in the current generation.

f(wi) =
∑

k

r(sf)

Each experiment has been repeated 25 times (for each combination of one static

and one learning controller). Each evaluation is performed as follows: first, a learning phase

(out of 10000, 25000 and 50000 episodes), and finally, an evaluation phase (of 1000 episodes).

Each episode is carried out until one of the combatants looses (reaching 0 HPs) or until

a fixed time of 10000 APs is reached (resulting as a draw combat). The final comparison

among all the learning controllers is based on the percentage of victories in the evaluation

phase against each of the static controllers.

5.3.3 Experimental Results

In order for us to provide a proper statistic validation of the results, the distribution

of all of the results was first compared with the Friedman test. With that, we detect

significant differences among the algorithms. In the case of the 10000 episodes scenario, a

value of 28.95 was obtained for the chi-squared statistic, which corresponds to a p− value

of 2.37E − 05, a value of 33.57 (p− value of 2.90E − 06) and a value of 34.14 (p− value of

2.23E−06), for 25000 and 50000 episodes, respectively. In the three studied scenarios, these

results confirm the existence of significant differences between the algorithms. According

to this test, the algorithms are ranked as shown in Table 5.1, where, the WEREWoLF-DE

algorithm obtained the best results of all the three scenarios. In addition to that, the table

shows the averaged win ratio for each of the algorithms.

After that, two post-hoc methods (Holm and Hochberg) were used to obtain the

adjusted p-values for each comparison between the control algorithm (WEREWoLF-DE)

and the remaining algorithms. The Wilcoxon signed rank test was also used for comparing

the results, adjusting the obtained p − values to take into account the Family-Wise Error

Rate (FWER) when conducting multiple comparisons. The results of these tests are re-

ported in Table 5.2. These results prove that there are statistical evidences that allow us

to state that the WEREWoLF-DE is significantly better than the remaining algorithms (in

all cases, according to the Wilcox test and, in the vast majority of cases, according to Holm

and Hochberg procedures).

138 Chapter 5: WEREWoLF Model

Ranking Avg Win Ratio

10k 25k 50k 10k 25k 50k

WEREWoLF-DE 1.42 1.33 1.58 0.35 0.41 0.44

WERESARSA-DE 2.75 2.66 2.50 0.26 0.26 0.27

SARSA 3.42 3.08 2.75 0.23 0.24 0.24

WEREWoLF-EDA 3.83 4.17 4.33 0.15 0.16 0.12

WERESARSA-EDA 4.58 4.92 4.83 0.19 0.17 0.16

WoLF 5.00 4.83 5.00 0.19 0.22 0.21

Table 5.1: WEREWoLF Evaluation: Average Ranking and Average Win Ratio against all controllers

(10000, 25000, 50000 episodes)

To summarize the general performance of the controllers we can look at the Fig-

ures 5.7 and 5.8, that show the average win ratio against each of the controllers (in the

particular case of 50000 episodes). The first figure shows the evaluation of the learning

controllers against the less effective static controllers. While the second shows those corre-

sponding to the best performing static controllers.

Figure 5.7: WEREWoLF Evaluation: Average win ratio Vs ”easy” controllers

In a detailed study of the performance of the algorithms, a particular case behaves

differently from the rest of the experiments: The most defensive controller (E BT DEF)

prefers a draw rather than a loss, tending to consume the time. In this particular case,

the SARSA-based controllers reach more victories, but with an average reward lower than

Chapter 5: WEREWoLF Model 139

p-values of the different tests

WEREWoLF-DE vs. Holm Hochberg Wilcox

10000 episodes

SARSA 1.77E − 02
√

1.77E − 02
√

4.88E − 04
√

WoLF 1.35E − 05
√

1.35E − 05
√

7.32E − 04
√

WEREWoLF-EDA 4.67E − 03
√

4.67E − 03
√

4.88E − 04
√

WERESARSA-DE 8.09E − 02 8.09E − 02 1.71E − 02
√

WERESARSA-EDA 1.35E − 04
√

1.35E − 04
√

6.10E − 03
√

Wilcox p-value with FWER: WEREWoLF-DE vs. All 2.48E − 02
√

25000 episodes

SARSA 4.39E − 02
√

4.39E − 02
√

4.88E − 04
√

WoLF 1.84E − 05
√

1.84E − 05
√

2.44E − 04
√

WEREWoLF-EDA 6.23E − 04
√

6.23E − 04
√

4.88E − 04
√

WERESARSA-DE 8.09E − 02 8.09E − 02 1.05E − 02
√

WERESARSA-EDA 1.35E − 05
√

1.35E − 05
√

2.44E − 03
√

Wilcox p-value with FWER: WEREWoLF-DE vs. All 1.41E − 02
√

50000 episodes

SARSA 2.53E − 01 2.30E − 01 1.22E − 03
√

WoLF 3.85E − 05
√

3.85E − 05
√

1.71E − 03
√

WEREWoLF-EDA 9.52E − 04
√

9.52E − 04
√

4.88E − 04
√

WERESARSA-DE 2.53E − 01 2.30E − 01 1.34E − 02
√

WERESARSA-EDA 8.35E − 05
√

8.35E − 05
√

3.42E − 03
√

Wilcox p-value with FWER: WEREWoLF-DE vs. All 2.02E − 02
√

√
means that there are statistical differences with significance level

α = 0.05

Table 5.2: WEREWoLF Evaluation: Statistical validation 10000, 25000 and 50000

episodes (WEREWoLF-DE is the control algorithm)

140 Chapter 5: WEREWoLF Model

Figure 5.8: WEREWoLF Evaluation: Average win ratio Vs ”hard” controllers

the one obtained by the WoLF-based controllers (see Table 5.3). These results also show

that, in those problems where the reward function punishes the wrong steps, the WoLF

algorithm tends to carry out a more cautious exploration of the environment, becoming a

more conservative controller than the SARSA algorithm. In this case, and according to the

selected evaluation criteria, we can consider this particular behavior as positive.

Avg Rw StdDev Rw Win Ratio

WoLF -2.8 22.99 5E-05

WEREWoLF-DE -4.6 29.27 3E-04

SARSA -162.6 58.9 0.02

WEREWoLF-EDA -87.3 100.19 0.02

WERESARSA-EDA -59.76 153.89 0.26

WERESARSA-DE -12.19 151.46 0.34

Table 5.3: WEREWoLF Evaluation: Average Reward with 50000 episodes against E BT DEF

Another interesting study is the evolution of the fitness value. Individuals obtain

this fitness value as the average of their performance on each of the episodes they consume

during a given generation. Their performance is the sum of all the rewards granted by

all their actions in that episode. Although the evolution is not continuously incremental

due to the randomness of the problem (actions have only a random chance of success),

WEREWoLF-DE shows an incremental trend along the different generations (for instance,

Chapter 5: WEREWoLF Model 141

the results shown in Figures 5.9 and 5.10).

Figure 5.9: WEREWoLF Evaluation: Fitness evolution vs E SMART (50000 episodes)

Figure 5.10: WEREWoLF Evaluation: Fitness evolution vs E BT ALL (50000 episodes)

Finally, we can say that it is obvious that the DE search exploits much better the

mechanism for combining multiple learners in this evolutionary framework. The results are

consistent for both, the WoLF and the SARSA controller cores through multiple experiments

(10000 episodes to 50000 episodes). The poor performance of the EDA variants can be

explained by the reduced population (compared with the size of the chromosome). This

was also a reason why other state-of-the-art optimization techniques, such as the CMAES,

were not taken into account. The DE proves to be a powerful optimization alternative for

high-dimensionality problems.

142 Chapter 5: WEREWoLF Model

5.4 Discussion

We implemented and tested two hybrid learning algorithms that combine evolu-

tionary algorithms with reinforcement learning. We also compared the controllers produced

using these algorithms with several other controllers, and analyzed the results, using stan-

dard statistical tests. The results show the improved performance of the reinforcement

learning algorithms when combined with evolutionary techniques. This experimentation

was carried out in environments with large state spaces and with a set of complex ac-

tions where the “WERE-Hybrid” algorithms outperformed the exploration of the standard

reinforcement learning mechanisms.

Despite the improvement of the learning algorithm, this work highlights some

interesting facts. The representation of the state space and the construction of the reward

function is, like in any RL problem, complex and critical for the success of this experiment.

The results show that the application of the RL to this kind of video game scenario is highly

dependent on the environment variables used for the description of the state and the reward

function, that must provide enough information to guide the learning process.

Therefore, the AGCBAR Architecture provides a basic structure for the definition

of the actions and states, through the definition of the interfaces. This structure enables

the integration of the WEREWoLF algorithm with the Game Engines. In the Environment

State Interface, we must specify the information of the environment state, while trying to

maintain the number of different states controlled. We must also provide, in the Action

Interface, the actions to build the strategies. In this case, we can abstract the action

definitions, in order to keep the number of actions as small as possible. As we will see in

the next chapter, the inclusion of the WEREWoLF algorithm could be made thanks to the

leveled division strategy, that helped us keep the learning problems in tractable size.

Chapter 6

vBattle Experimentation

Framework

The general who wins the battle makes

many calculations in his temple before

the battle is fought. The general who

loses makes but few calculations

beforehand.

Sun Tzu

In this final chapter, we will illustrate the AGCBAR Architecture integration into

a simplified, but yet complete, video game. Our main objective is to present a complete

experimental setup, that applies the different AGCBAR Architecture features, as a proof-

of-concept of the benefits of the contributions derived from this thesis.

Because of the limitations (due to license or technical problems) for the use of

many commercial frameworks, we decided to create our own simulation framework, named

vBattle (described in Section 6.1). vBattle [63] is a tactical combat video game, similar

to some commercial titles, like Fallen EnchantressTM1 or XCom Enemy UnknownTM2.

The main features of our framework are:

• The game engine, the rules and the complexity of the environment are similar to the

ones of some commercial video games.

• The implementation is open for research purposes, leaving the optimal performance

aside, and enhancing the modularity of the different components.

• The interfaces among the modules are implemented according to the specifications

extracted from the AGCBAR Architecture.

1http://www.elementalgame.com/fallen-enchantress

2http://www.xcom.com/enemyunknown/

143

144 Chapter 6: vBattle Experimentation Framework

For our experimental scenario, the Engines specified in the AGCBAR Architecture

are implemented by the different models presented through the previous chapters. For

instance, the Emotional Engine used is the EEP Model described in Chapter 4, and the

WEREWoLF Algorithm presented in Chapter 5 implements the Learning Engine, along the

same line, the Game Engine is the set of Core Rules of the vBattle.

This chapter is organized as follows: First, in Section 6.1, we will present the gen-

eral design of the vBattle framework. In Section 6.1.6, we will describe the implementation

of the vBattle and how we adapted it to the AGCBAR Architecture. In Section 6.2, we

will show our experimental results. Finally, in Section 6.3, we will discuss the contribution

of this framework and the application of the AGCBAR Architecture to the development of

complex video game scenarios.

6.1 vBattle Game Design

The vBattle game core is designed following the specifications of the game design

described by Brathwaite & Schreiber [12]. We will explain here the set of elements, rules

and features that composes the complete game engine. After the formal definition of the

rules of the game, we will describe the different components that will be implemented and

the relationships among them. In order to clarify some of the concepts,we added in the

Appendix A.1 a compendium of commonly-used terms that are related to the depiction of

the game.

6.1.1 Game Concept

The vBattle is conceived as a tactical combat game, where two (or more) factions

composed by several sets of warriors fight on a battlefield. The objectives of the factions

(groups of warriors) in the game are related with the specific scenario goals. The goals of the

scenario go from killing all the enemies on the battlefield, to reach and keep a determined

position on the game map for a certain period of time. In order to achieve these goals, each

faction has to plan where to move its warriors, what is the appropriate action to perform,

and how to use the favorable characteristics of the terrain.

The factions are heterogeneous, composed by different types of warriors. Each of

these warriors has his own characteristic, actions and attributes. The scenario describes

the composition of the factions and the terrain that conforms the battlefield, as well as the

goals that each faction should achieve.

6.1.2 Game Elements: Players, Avatars and Game Bits

The vBattle game engine is divided into the following elements:

Chapter 6: vBattle Experimentation Framework 145

Element Definition

Battlefield It is made by an hexagonal grid board that shows a certain

terrain elements (with different shape, size and properties).

Two or more Factions They are groups of allied Combatants that are controlled by a

Faction Leader.

Faction Leader (FL) He is the commanding intelligence in charge of an entire Faction.

High-level orders are issued by the Faction Leader.

The Combatants They represent warriors that act in the game board to achieve

the objective of their Faction. They are the final actors that

interacts with the environment.

The Commanders They are the Combatants in charge of forwarding commanding

orders issued by the Faction Leader to the rest of the Com-

batants. Each Commander’s and scenario characteristics can

modify the transmission of the FL orders.

The Events They are the tokens that are distributed along the time sequence

of the game. They identify the precise moments when a previ-

ously declared action is executed.

The Event Sequence It is the ordered sequence of Events associated to the current

scenario.

The Current Instant

Counter

It identifies the current time step of the game. It is used to

manage the schedule of the events in the Event Sequence.

Table 6.1: vBattle Basic Elements

The Battlefield

The Battlefield is a representation of the terrain. It is divided by a regular hexag-

onal grid. Each hexagonal Cell of the board contains different elements, see Figure 6.1. The

cells have the following set of properties:

Element Definition

Identifier The cells are described by a unique identifier in the battlefield.

Movement Penalty It represents the relative difficulty to transit through this cell.

This property is derived directly from the type of terrain that it

represents. This penalty modifies the Base Movement Rate of

the Combatant. See the Movement Rules in Section 6.1.3.

Continued on next page

146 Chapter 6: vBattle Experimentation Framework

Table 6.2 – Continued from previous page

Element Definition

Fixed Objects This kind of Objects can not be moved from the cell where they

are set (i.e, a tree or rock). These objects have the physical

properties derived from their dimensions, offering a defensive

covering, according to their size and location. Some objects

forbid the movement in that hexagonal cell, and some others

makes the movement through the cell more difficult.

Mobile Objects These objects can be moved from one cell to another. They may

also provide defensive covering in the same way the fixed objects

do.

Logical Objects These objects represent the special elements that are associated

to each particular cell. For instance, the cells can include a

logical object of “Key Location”. Key Locations are special po-

sitions on the battlefield. They represent important conditions

in particular game scenarios.

Table 6.2: vBattle Battlefield Elements

There are two special type of regions (sets of cells) in the battlefield: the Escape

Zones and the Deploy Regions. The Escape Zones are cells, usually located right at the

border of the battlefield. When a Combatant reaches one of these cells he is removed from

the game and he is considered as “Fled”. The Deploy Regions are sets of cells (usually

arranged in clusters) where the Combatants start the game. There are different regions

associated to each Faction.

The Factions

The Factions are identified by different names and colors. Each Faction is com-

posed by a set of Combatants. The objectives of the scenario are described in terms of

Factions, i.e. each Faction has its own goals in a scenario. Each Faction also has the infor-

mation of how many Commanders it has and how many it could eventually end up with.

All the Factions are controlled by a Faction Leader (FL) that regulates all the Combatants

in the Faction.

The Faction Leaders

The Faction Leader(FL) is a high-level intelligence that commands an entire Fac-

tion. The FL can perform a set of different actions that are combined to obtain a variety

of plans or strategies, in order to achieve the current goal of the Faction. The FL actions

are listed in Section 6.1.3. These actions, issued by the FL, are intended to be assigned to

Chapter 6: vBattle Experimentation Framework 147

Figure 6.1: vBattle battlefield elements. The battlefield represents a terrain with certain objects,

some fixed objects (trees, rocks, . . .) and some logic objects (flee zones, . . .)

a specific Combatant that will execute the most appropriate action, according to his actual

objective, state and behavior.

The Combatants

The Combatants are the warriors that are involved on the battle. They are rep-

resented by an avatar on the battlefield. The Combatants’ characteristics are described in

Table 6.3, and their actions in Section 6.1.3.

Element Definition

Name/Identifier It is the unique identifier of each combatant on the battlefield.

Hit Points This represents how much life a combatant has left before dying.

Fatigue Points They are the vigor of the warrior to perform actions. These

points are consumed and recovered during the battle according

to the actions carried out by the Combatant.

Armor It represents the resistance to the enemies’ blows. It decreases

the amount of damage caused by the enemies’ hits.

Base Movement

Rate (BMR)

It is the default time needed by a Combatant to move from one

cell to another. This value is modified by the movement penalty

of the cell.

Continued on next page

148 Chapter 6: vBattle Experimentation Framework

Table 6.3 – Continued from previous page

Element Definition

Leadership It is the skill to forward the FL’s orders, when this Combatant

acts as a Commander.

Discipline It indicates the likelihood of accomplishing the orders com-

manded by the Faction Leader and forwarded by the closest

Commander.

Block Skill It is the Defensive Bonus that a Combatant has when he tries

to block an incoming attack.

Dodge Skill It is the Defensive Bonus that a Combatant has when he tries

to dodge an incoming attack.

Attack Skill It represents the Base Attack Bonus of a Combatant. It could

be modified by the type of attack selected.

Melee Attacks They are the attacks that a Combatant can carry out when he is

engaged in a hand to hand combat. Each of the Melee Attacks

has the following information:

• Identifier: Name of the attack.

• Execution Time: The amount of time spent from the

instant when the action is declared, to the instant when the

action is executed.

• Attack Modifier: It can be either a positive or a nega-

tive change of the Attack Skill.

• Fatigue: It refers to the amount of Fatigue Points that

this attack consumes during its execution.

• Base Damage: It is the range of damage that this attack

can produce.

• Extra Damage: It is the range of damage that it is added

to the Base Damage for every Damage Category of a hit.

Projectile Attacks They are the attacks that a Combatant can perform from the

distance. Each of the Projectile Attacks has the following infor-

mation:

• Identifier: Name of the attack.

• Execution Time: The amount of time spent from the

instant when the action is declared, to the instant when the

action is executed.

• Attack Modifier: It can be either a positive or a nega-

tive change of the Attack Skill.

• Fatigue: It refers to the amount of Fatigue Points that

this attack consumes during its execution.

Continued on next page

Chapter 6: vBattle Experimentation Framework 149

Table 6.3 – Continued from previous page

Element Definition

• Range: It is the effective range of this attack represented

in number of cells. This attack can not be used to hit enemies

farther than this number cells.

• Base Damage: It is the range of damage that this attack

can produce.

• Extra Damage:It is the range of damage that it is added

to the Base Damage for every Damage Category of a hit.
Table 6.3: vBattle Combatant’s Characteristics. Each Combatant has a set of Melee and Projectile

Attacks.

The Commanders

The Commanders are special Combatants that are in charge of a group of other

Combatants from a given Faction. The FL selects which Combatants will be the Com-

manders. Each scenario defines how many Commander every Faction can have at a given

time.

When the FL issues an order to a Combatant the nearest Commander is used as

a beacon to forward the order,

Commanders behave just as any regular Combatant. The only difference happens

when the FL issues a new command. The Leadership of the Commander is one of the

parameters for computing the commanding influence of the order.

Event Sequence

The events are stored in an ordered queue. As the game goes on, it processes these

events in order. At each instant, the game engine extracts and processes the next event

from this queue. This structure supports the Discrete Event Simulation which is part of

the game dynamics.

A specific instant in the Event Sequence can have more than one event. In this

case, the order of execution of the events is selected randomly.

Current Instant Counter

The scenarios begin in the instant zero (0). This value is stored in the Current

Instant Counter. As the game moves on, this counter increases. Each time that an action

is declared and scheduled, the value of this counter is used to calculate the instant when

the action is executed.

150 Chapter 6: vBattle Experimentation Framework

6.1.3 Game Mechanisms

We call mechanisms the internal procedures that rule the dynamics, effects and

results of the game actions and progression.

Set up Mechanism

First, the scenario is configured according to the selected terrain, victory condi-

tions, elements involved and their properties.

Initially, the different Factions are defined as sets of Combatants, each of these

Combatants embodies a warrior with different characteristics, actions and personality. The

Combatants of the different Factions are placed on the battlefield at specific initial locations

given by the scenario (Deploy Regions). The Escape Zones are also set, usually on the

borders of the battlefield. Finally, if the scenario requires some special zones, such as the

Key Places, they will be set at various specific cells.

Game Dynamics

The game is ruled by a Discrete Event Simulation process that consumes the Event

Sequence. This Event Sequence queues the pending actions when they are declared by the

Combatants, or when they are prompted by a random event, see Figure 6.2. The events

represent the instants when actions are expected to be executed.

The game dynamics also uses the Current Instant Counter, which represents the

time-step corresponding to the last event processed by the game engine.

The declaration-action sequence is structured as follows:

1. When a Combatant has no action declared: He declares the next action to do.

2. This action is queued in the Event Sequence with the future time stamp, obtained

by adding the Current Instant Counter to the Execution Time associated with the

declared action.

3. The Current Instant Counter moves the time stamp of the first event in the Event

Sequence forward.

4. An Event is executed and removed fomr the Event Sequence when the Current Instant

Counter reaches the time stamp referred by that particular Event.

The following are the different types of Events that are included in the Event

Sequence:

• Movement: Along the event sequence the movement of the units is done in paral-

lel to the action declaration and execution. Eventually, the Combatants can move

to any adjacent cell from their current position. The amount of time required for

Chapter 6: vBattle Experimentation Framework 151

time

C
o
m

b
a
ta

n
t

d
e
c
la

re
s
 A

c
ti
o
n
 x

t0 t1

A
c
ti
o
n
 X

 i
s
 e

x
e
c
u
te

d
.

T
h
e
n
 n

e
w

 a
c
ti
o
n

is
 d

e
c
la

re
d

Execution Time

of Action X

Figure 6.2: vBattle timeline of the event sequence. The actions require certain execution time. The

execution time is added to the current timestamp when the action is declared, in order for the game

engine to compute the time stamp when the event is executed and enqueued into the Event Sequence.

the Combatants to move from one cell to any of its neighbors depends on the BMR

(Base Movement Rate) of each Combatant and the Movement Penalties of the ter-

rain. Movement actions are then a series of independent events queued in the Event

Sequence, according to each Combatant’s Base Movement Rate. Therefore, each Com-

batant could have two queued events in the Event Sequence, one related to his next

Movement action and another related to his current declared action.

• Run Action: A Combatant can declare the Run Action as his regular action. Once

this action has been declared, the Combatant cannot perform any other action for a

certain amount of time (usually 10 time units). When the Run Action is active the

BMR of the Combatant is halved. Also, while a Combatant is running he is spending

a certain amount of Fatigue Points.

• Attack Resolution: The Melee Attacks and The Projectile Attacks are resolved as

follows:

1. The attacker declares the attack to prepare. The execution of this attack is

delayed, depending on the execution time required by the action.

2. When the action is executed, the attack takes place. The attacker declares the

enemy Combatant who is the target of his attack. If there is no target, the

attacker losses this action.

3. The attacker loses the amount of Fatigue Point that this attack consumes.

4. The defender decides which defense he performs, depending on his current de-

clared action, the defensive action could only be Dodge if the incoming attack is

a projectile attack.

5. The attacker calculates his AttackRoll for his attack adding a random value

152 Chapter 6: vBattle Experimentation Framework

from 1 to 20 (open ended3) to the Attack Bonus4 of the selected attack.

6. The defender calculates his DefenseRoll for his defense adding a random value

from 1 to 20 (open ended) to the Defensive Bonus5 of the selected defense.

7. The AttackResult is calculated as: AttackResult = AttackRoll − DefenseRoll

(a) If the AttackResult <= 0 then the attack misses its target.

(b) If the AttackResult > 0 then the attack hits its target

– The Damage Category DamCat = (AttackResult/10) round down.

– The Damage = BaseAttackDamage+
∑

DamCat

ExtraAttackDamage

– The Wounds = Damage− Armor

– The target receives Wounds counted as the damage on his HitPoints.

For every 10 points of Wounds over 10, the target loses 1 point of At-

tackBonus and DefenseBonus. The defender must spend from 1 to 10

more time steps to complete his current declared action (the target is

stunned).

• Assign Commander: When a Combatant that is currently selected as Commander

dies or flees, an uncoordinated time begins. During this time, the orders sent to the

Combatants no longer come from the dead Commander as a beacon. When this

uncoordinated time begins a new Assign Commander event is scheduled in order for

the Faction Leader to select a new Commander.

Possible Actions

There are two different controllers that decide which different levels of actions:

the Faction Leader and the Combatant. Each of these controllers has a different action

granularity.

• Faction Leader’s Actions: The actions available for the Faction Leader (FL) are

related to the high level plans. These actions are composed by: a command, a com-

batant and a target cell:

Element Definition

Area-Fire The FL orders a Combatant to fire his projectile weapon to the

units placed in a certain location of the map, the area of possible

fire attack has a radius of three (3) hexagons.

Continued on next page

3If the result is 20 then we add another value from 1 to 20, and so on.

4AttackBonus = AttackSkill + AttackModifier

5DefenseBonus = [BlockSkill|DodgeSkill] +DefenseModifier

Chapter 6: vBattle Experimentation Framework 153

Table 6.4 – Continued from previous page

Action Definition

Fire-At The FL orders a Combatant to fire to the Combatant placed

in the designed location and also to keep firing at him till the

target Combatant is dead. The location area is an hexagonal

cell that contains an enemy Combatant.

Defend-Position The Combatant must attack any unit that penetrates a selected

area. This area is identified by its central cell. The area is of

3hex/radius.

Take-Position The Combatant must move toward a selected cell and must at-

tack any unit that is on his way to the designed location. The

location has an area of 1hex.

Attack-To The FL orders to attack a certain Combatant and to keep at-

tacking and hunting him until that target Combatant is dead.

The attack can be done just with melee weapons. The location

area is an hexagonal cell containing an enemy Combatant.
Table 6.4: vBattle Faction Leader’s Actions

The idea behind the FL’s actions is to give specific tasks to each of his combatants.

The detailed movements or paths to accomplish such tasks are not given by the FL,

but decided by each Combatant. The orders commanded by the FL are forwarded by

the Commanders. Therefore, the Combatants receive the orders with certain influ-

ence based on the Commander’s Leadership Skill, and on the inversely proportional

distance between the Commander and the Combatant.

Therefore, when a Faction Leader issues orders to his Combatants. The issued Order

is received by each Combatant with an Order Strength (OS) equals Commander’s

Leadership (CL), but modified by the distance between the Commander and the

Combatant. The OS is calculated as follows:

OS = CL · σ

distance
, where σ is a scenario factor

When the Faction Leader commands a Combatant to perform an action, the following

condition must be accomplished:

D20 +OS + CD > 25

Where D20 is a random number between 1 and 20 and the CD is the Combatant’s

Discipline attribute.

• Combatant’s Actions: The Combatants can carry out three different types of ac-

tions:

154 Chapter 6: vBattle Experimentation Framework

Action Group Definition

Movement Actions These actions are performed in parallel with the regular combat

actions. The Event Sequence keeps the time stamps that indi-

cates when each one of the Combatants can move, depending on

the BMR and the cell Movement Penalties.

Combat Actions These actions are decided by the Combatant when he has no

declared action. The action is carried out after a set amount of

time, depending on how long the execution of the chosen action

takes.

Defense Actions These actions must be decided by an agent every time he is the

target of an attack. They refer to the type of defense the agent

chooses to protect himself against the incoming attack.
Table 6.5: vBattle Combatant’s Action Groups

The Movement Actions represent the selection of the next hexagonal cell the Com-

batant moves to. Every combatant has a BMR that indicates the time required to

move from one cell to the next.

The Combat Actions of the Combatants are the following:

Element Definition

Move-To It implies the selection of one of the six adjacent hexagonal cells,

a Combatant wants to move next.

Attack-{1-n} It identify the intention to hit an enemy with a melee attack.

Fire-{1-n} It is a projectile firing against the enemies.

Rest It refers to the Combatant’s waiting period during x amount of

time steps, so he can recover some of his FatiguePoints.
Table 6.6: vBattle Combatants’ Combat Actions

The Defensive Actions are those actions executed by a Combatant when he is the

target of an attack. These actions are declared and executed at the same instant

the incoming attack takes place. The effect of these actions can delay the execution

time of the current action, that was already declared by the attacked Combatant. For

example

... a Combatant A decides to Attack with the enemy with his sword and
his action is scheduled in the Event Sequence at t = 35. If he is attacked
at the instant t = 30 (by somebody) and A decides to dodge this incoming
attack, he will have to delay his attack until t = 38 (the action is delayed by
3 units later).

Chapter 6: vBattle Experimentation Framework 155

The possible defensive actions to be taken are:

Element Definition

No-Defense The Combatant will not try to defend himself, which is trans-

lated to a huge penalty given to the Dodge Ability. But, it

consumes neither Fatigue Points nor time steps.

Soft Block A less time-consuming defensive action. It applies a penalty to

the defender’s Block Skill, but does not consume Fatigue Points.

Block The default defense of the combatant when he is in melee com-

bat.

Full Block Very time-consuming action but with the bonus of an improved

defense.

Dodge This is a special type of defense that must be carried out after

the combatant has declared that he is going to run or fire a

projectile.
Table 6.7: vBattle Combatants’ Defensive Actions

6.1.4 Goals

The Faction Leaders have the goal of winning the battle according to these possible

scenarios:

1. Kill’em All : A simple scenario in which a faction wins if all the combatants of the

other faction are dead of have fled the battlefield.

2. Being the best killer : A scenario in which wins the faction that kills more enemies at

a given time.

3. Special Scenarios: These scenarios use the Key Places to define the victory conditions

of the game. Some special scenarios considered in this game are:

• Take that flag! : This scenario sets some specials items (Flags) at some particular

locations on the map. When a Combatant reaches a Flag he is entitled to hold

this flag. After this action, that Combatant must reach a predefined Key Place

to deploy the flag. When the Combatant succeeds at carrying the flag to this

Key Place, the flag is considered to be safe. If the Combatant that took the

Flag is killed, the Flag will lay on the cell where the Combatant died. The

game ends when every Flag is safe, or when there is only one Faction with active

Combatants.

• Hold on! : In this scenario one Combatant from a given Faction must stay at

the selected Key Places for a minimum amount of time, defending this position.

The game ends when the allotted time has passed and there is, at least, one

156 Chapter 6: vBattle Experimentation Framework

Combatant remaining at the Key Place. If all the Combatants are dead or fled

from the battle the Faction loses the battle.

The Combatants have their own goals:

1. Obey the Orders: It refers to the Combatant’s intention to fulfill the commanding

order issued by the FL, and forwarded by the Commander.

2. Stand and Fight : The Combatant has no will to obey any other command, but to

stand and fight.

3. Pursuit of Fleeing Enemies: The Combatant will run after the opponents that are

fleeing from the battlefield. If the fleeing unit reaches an Escape Zone this goal is

canceled.

4. Flee and Survive: The Combatant only wants to survive, and, to achieve that, he runs

to any Escape Zone on the map.

6.1.5 Game State and Visible Information

At any instant (see Figure 6.3), the Game State can be described by the following

information:

• The Current Instant Counter.

• The current Faction state:

– The current Commanders assigned.

– The remaining Combatants alive and their current states (HPs and FPs).

• The current Event Sequence: It refers to the events that are going to be executed in

this instant of the Even Sequence.

• The Key Places on the battlefield and their states.

Moreover, the following information is also available for the Faction Leaders and

for all the Combatants:

• The information related to any cell on the battlefield.

• The current level of health and fatigue of any Combatant.

• Whether a Combatant is a Commander or not.

• The current action declared by a Combatant.

• The location of any special item (as Flags) on the battlefield.

Chapter 6: vBattle Experimentation Framework 157

• The Escape/Flee Zones on the battlefield.

• The Key Places throughout the battlefield.

• The Field-of-View and the coverings of any Combatant.

Figure 6.3: vBattle game state. At a specific instant, the game is described by the information of the

battlefield, and all the states of the Combatants.

6.1.6 vBattle Implementation

The Core Rules of the vBattle are complex enough to represent the issues arising

in a typical commercial video game. The implementation of the vBattle is guided by

the final research purpose. The architecture of the vBattle game engine is based on

components, so it spares the performance in order to improve the modularity.

The vBattle Framework must meet different requirements to implement the Core

Rules.

Requirements from Core Rules

The requirements related to the game mechanics are:

158 Chapter 6: vBattle Experimentation Framework

1. Different Tournament Configurations: A Tournament refers here to a combination of

different battlefield maps, goals and scenario set ups.

2. Faction and Combatant Controllers: It includes different combatants teamed up in

factions. Both Combatants and Factions are managed by different controllers, and

equipped by different action sets.

3. Discrete Event Simulator : The core of the game dynamics is based on the Event

Sequence and the declaration-execution of actions. All the actions in the game are

first declared, then prepared during a period of time for their, and finally executed.

4. Different Action Rules: The execution of the actions results in the amount of energy

they consume and in the effects they produce on the environment (Combatants and

scenario). These rules must be modular, thus they can be easily changed without

producing variations in the main flow of the engine.

5. Battlefield Objects: The scenario is described in a 2D hexagonal grid, on each cell

of the grid there can be different objects that may have visual occlusion properties,

movement restrictions, or any other characteristic that could be relevant for the goals

of the scenario.

Non-Functional Requirements

Aside from the functional requirements that are produced by the different elements

that compose the Core Rules of the vBattle, there are also other restrictions that should

be included, these are:

1. Scalability : The requirements in computation resources should deal with the perfor-

mance issues that arise when the complexity of the environment increases (adding

more combatants or factions).

2. Monitoring Capabilities: The simulations must be logged and visualized, so they can

be analyzed for research purposes.

3. Modular Controllers: The vBattle framework is intended to be used as workbench

for computation intelligence techniques further from the scope of this thesis. Thus,

the purpose of this framework is also to provide an environment to test different al-

gorithms applied to video game AI controllers, from basic capabilities, like navigation

to complex interaction like group / coalition formation or coordinated planning.

Framework Analysis

Considering these requirements, we created the following analytic design. The

vBattle Framework has been divided into different, independent components. Each of

Chapter 6: vBattle Experimentation Framework 159

these components not only must deal with certain requirements, but also with the other

components in order to build a complete framework that fulfills all of the requirements.

The main features of the vBattle Framework are:

1. A distributed system. The communication is based on a message-oriented middleware,

that connects all the components.

2. Modular controllers for the behaviors. The two levels of reasoning are managed by

different components that can be attached, improved, or modified if necessary.

3. Detached user interface. It will have different interfaces to show the simulations and

the results. These interfaces can be detached completely and leave the engine running

without the burden of the graphical interface, skipping at the same time the refresh

latency problem that could slow down the simulations.

4. Configurable components. The battles, maps and combatants are configurable through

plain text files. This feature enables the configuration and modification of the simu-

lations.

5. Component Roles. Each of the components that builds the framework has its own

role, keeping the coupling of the components very low.

The general architecture created for the vBattle Framework can be described by

the use of four different types of components (see Figure 6.4): (1) core system components,

that enclose the scenario management, the game engine and the tournament creation fea-

tures; (2) AI control components, that deal with the factions and combatants’ behaviors;

(3) component configuration descriptions, that set up the components to certain simulation

profiles (tournament rules, scenario description, combatants profiles, . . .); and (4) the user’s

interfaces, that show to the user the scenario information for analysis and visualization pur-

poses.

Framework Design

The vBattle Framework is organized as a distributed architecture with different

components that exchange information. The communication among the components is

based on aMessage-oriented Middleware that dispatches messages according to the diffusion

and response needs of the components. The vBattle Core Rules components are connected

to this middleware. These main components (see Figure 6.5) are:

1. Tournament Manager (vBTM): This is the starting component that builds the

different scenarios according to the specific goals, factions and maps involved. It

notifies the Scenario Manager and the Combat Engine which map and combatants

are involved in the current encounter (called “battle”). This component is in charge of

the schedule and evaluation of a series of simulations. It runs from the first simulation

160 Chapter 6: vBattle Experimentation Framework

Figure 6.4: vBattle Framework Components: Analysis View. The Components of the framework are

decomposed in the Core Rule components, the User’s Interfaces, the Faction and Combatant Controller

and the Component Configuration Descriptions

Figure 6.5: vBattle Framework Components: Design View

to the end of the last, it also tells all the other components when the current simulation

begins and ends.

2. Combat Engine (vBCE): The application of the Core Rules is mostly implemented

by this component. It handles the Discrete Event Simulation by requesting the dif-

Chapter 6: vBattle Experimentation Framework 161

ferent components any information required to carry out the simulation. The vBCE

keeps the information about the Combatants and Factions and evaluates the combat

conclusion criteria. That information allows it to notify the vBTM at the end of the

simulation. The vBCE also announced the result of the battle.

3. Scenario Manager (vBSM): This component handles the battlefield. Here is where

the movement rules and restrictions are applied. The vBSM also keeps the information

about the tiles on the map, the conditions and characteristics of the key zones and the

special information related to the objects in the scenario. Moreover, the Line-of-Sight

and the Field-of-View of the Combatants are attached to the Scenario representation.

4. Faction Mind Manager (vBFMM): It assigns the different Faction Leader con-

trollers. The vBFMM also manages the composition of the Factions and the Combat-

ants that are in each of them. In addition to that, the vBFMM handles the orders

issued to the Combatants by their FL and applying the rules of command and propaga-

tion of these orders. The Faction Minds controlled by the vBFMM are asynchronous.

They can issue orders when they need to, but the application of these orders is made

synchronously in the Combatant Minds as part of their decision-making process.

5. Combatant Mind Manager (vBCMM): Every Combatant from each Faction has

its own controller. The Combatant Mind controllers establish the behavior and the

decision-making process of the Combatant that they control. All of these controllers

are handled by the vBCMM. This component is the interface between the Combatant

Minds and the rest of the components.The vBCMM asks for the actions to be done by

each Combatant Mind when the vBCE requests it. It also provides the information

about the battlefield, keeping the information about the scenario (their Field-of-View

and the events related to it, . . .) available to each Combatant.

6. User Interface (vBUI): The representation and visualization of the simulations

made on the vBCE can be logged and displayed in different components.There are

different kinds of User Interfaces that receive the similation information and display it,

from 3D graphical environments to text-based or even databases. The vBUI manages

the information provided to the different user interfaces and handles the requests that

these component produce, while it asks for more detailed information about some of

the elements of the game.

7. Other Components: The vBattle Framework is open to include more components

for further improvements and requirements.

All of these components are communicated through a Message-oriented Middle-

ware that is handled by the Message Broker. The architecture is distributed in such way

that each of the components can be executed in different nodes of computation.

The information is shared using a set of formatted messages that are created by

the different components. There are four types of messages that can be sent and received:

162 Chapter 6: vBattle Experimentation Framework

1. Ask : they are point-to-point bidirectional exchange messages of the asking-answering

type. These messages are used when the actions need to be verified by both compo-

nents, so they allow the presence of the necessary negotiation mechanism.

The vBCE asks to the vBCMM for the next action to be done for a certain

Combatant controlled by a particular CombatantMind.

2. Commit : They are point-to-point unidirectional messages that expect neither a proper

answer nor a confirmation from the message target. They are used to inform to some

of the components about the changes on the state of the message source component.

The vBCE informs (Commit) to the vBTM about the finalization of a

current battle after the successful closing of all of the controllers involved

in that current battle.

3. Request : They are one-to-many bidirectional messages, used for the initialization of

different components at the same time. When a component asks for the readiness of

another set of components, it must waits until the last confirmation is received, in

order to validate the request or not.

The vBTM requests the vBCMM and vBFMM to inform it about the

availability of the different controllers (for Combatants and Faction) in-

volved in the next battle before to start the configuration cycle for this

combat.

4. Advertise: This is a broadcast message used to distribute the progression of the

simulation among all (or a set) of the components. The component sending this type

of message do not expect any response, like in the case of the “commit” messages,

but they describe the changes in the state of the environment.

The vBCE advertises to the all of the components whether a certain attack

launched by Combatant was successful or not.

Chapter 6: vBattle Experimentation Framework 163

Thanks to these messages, the vBattle Framework composes all the information

exchanged among the different components during the execution of the different scenarios,

battles and tournaments. This message exchange schema has proven to be very effective

for the distribution of heterogeneous environments. Furthermore, it leaves the framework

open for the inclusion of additional components, programmed in different platforms.

6.2 Integration Proof-of-Concept

Although each of the components of the AGCBAR Architecture has been inde-

pendently validated (Chapter 4 evaluates the emotional model and Chapter 5 compares the

learning strategies), the objective of the architecture itself can only be achieved when all

these components work together in a close-to-real complex scenario.

The goal of this final chapter is to demonstrate, in an integrated system, the

implementation of the whole components of the architecture. The main objective is to

analyze the controller–development effort needed to implement a set of controllers, while

showing the benefits of the integrated architecture.

The implementation of the AGCBAR Architecture including the vBattle should:

1. Exploit the emotional features provided by the Emotional Engine.

2. Use off-line learned control strategies for the Combatants.

3. Coordinate all the components of the architecture on top of a game engine with a

realistic level of detail.

6.2.1 vBattle Scenario Implementation

For the proof-of-concept proposed in this thesis, we include a subset of the features

and rules of the vBattle in order to present the results of the analysis of the scenario in

a clear, well-organized manner.

One AI Layer Subset

The decision-making architecture of the vBattle is divided in two layers: a first

one for the high-level planning represented by the Faction Minds and a second layer of

actions oriented to directly control the Combatants’ behavior on the battlefield.

For our configuration of the scenarios in this experimentation, we decided to in-

clude only the low-level actions only. The reason behind this is that we want to study the

construction of the controllers of the Combatants and the adaptation of these controllers

to the Mood Dynamics concern of the AGCBAR Architecture.

Thus, we analyze the Combatant Minds and the resources needed to build and

adapt them using the AGCBAR Architecture. As result, the actions performed in the envi-

ronment are only decided by the Combatants. They will try then to achieve the objectives

164 Chapter 6: vBattle Experimentation Framework

of the scenario without the supervision of the Faction Leader (which would be controlled

by a Faction Mind).

Contrast Static Combatant Mind

We provided a baseline contrast controller implementation. This implementation

is used as the initial description of the development of the different static controllers across

the integration of the architecture. For this controller, we construct three different Behavior

Trees, one for each Combatant action type (i.e. level of decision): Combat, Defense and

Movement. These Behavior Trees, see Figure 6.6, represent the strategies needed by the

Combatants, so they can provide the corresponding action at the different instants of the

simulation. These strategies are:

• The Movement Strategy is designed to advance toward the enemies, looking for the

nearest enemy.

• The Combat Strategy is divided in three branches: When the Combatant is far from

his current target (nearest enemy) he runs, when he is exhausted (with few remaining

FPs) he rests. In any other case, he will attack an enemy within range, choosing

randomly the type of attack among the different available ones he has.

• The Defense Strategy is used when the Combatant managed by the contrast controller

is attacked. In this case, he will choose the type of defense to be used randomly, except

when he is exhausted, in which case he will always make a “Soft Block” (because this

is the defense that consumes less FPs).

Scenario Goals Implemented

From the set of possible scenarios that vBattle can present, we chose the most

general objective in order to leave the Combatants complete freedom of operation. Here, we

picked “Kill’em all” scenarios. The goal of these scenarios is trying to kill all the enemies

on the battlefield. This objective is easy to identify and to implement by the Combatants

because it may not need of too much coordination, and it also allows the Combatants to

choose their own strategy and behavior.

Scenario and Battlefield Configuration

For the experiment, we choose to create a simple scenario (see Figure 6.7) with

the following elements on the battlefield:

• One deploy zone on the left-hand side of the battlefield and another one on the right-

hand side.

Chapter 6: vBattle Experimentation Framework 165

Figure 6.6: vBattle Proof-of-Concept: Contrast Static Controllers. A Combatant decision-making

process is divided in three levels: Movement, Combat and Defense.

• A flee zone on the upper side of the battlefield.

• A sparse distribution of fixed objects (trees and rocks).

• A uniform terrain type (no swamp or rough terrains).

For the factions configuration, we set the same Combatants for the two teams (the

same combatant profiles). The Party1 (blue team) begins on the left-hand side and the

Party2 (red team) initially spawns its combatants on the right-hand side of the battlefield.

6.2.2 AGCBAR Architecture Integration Issues

According to the AGCBAR Architecture definition, we must implement a set of

elements in order to satisfy the integration of the model. As we described previously, both

concerns of the architecture are going to be implemented in this experiment. Therefore, we

must describe all the elements of the AGCBAR Architecture. In this section, we specify

the components of the architecture that we applied in the vBattle.

Architectural Dictionaries for vBattle Integration

Taking the elements described in the structural view of the architecture in Sec-

tion 3.2, the first elements to be defined are the Architectural Dictionaries. See the Ap-

pendix D.1 for their complete description.

166 Chapter 6: vBattle Experimentation Framework

Figure 6.7: vBattle Proof-of-Concept: Scenario Setup. It shows the initial distribution of the factions

on the battlefield.

In this experiment, we will identify five different event classes that are relevant for

the Mood Dynamics concern. These classes are related to the actions of the Combatants

and to their possible results. Thus, the Move event class identifies the actual change of

position of a Combatant that could be relevant for the sense of faction-support and that

it, consequentially, could influence the mood of certain characters. Also, the Dead or Fled

event classes are very important for the possible prompted emotions of the Combatants

(worrying the dead/fled Combatant’s allies and inspiring his foes).

Also related with the Mood Dynamics concern, we will describe here four differ-

ent moods for the characters of this scenario. They represent the four Combatants’ goals

described in Section 6.1.4. The Normal mood coincides with the Obey Orders of the Com-

batant, the Angry mood describes the Combatant’s tendency to Pursuit the Enemies, the

Afraid mood describes the Combatant’s goal of Stand and Fight and the Broken mood

identifies the Flee and Survive objective.

The Environment and the Actions Dictionaries are used to provide the game

state information and the set of actions for both, the static and the automatically created

controllers.

The Goals Dictionary, used in the Automatic Controller Creation concern, de-

scribes four goals for the learning process: Preserving Energy, Maximizing the Enemy’s

Damage, Minimizing the one’s Own Damage and Running Away. These conceptual goals

will be aligned with the four moods of the Moods Dictionary.

Chapter 6: vBattle Experimentation Framework 167

Engines for vBattle Integration

After presenting the dictionary description, we will define the Engines. In our

case, the vBattle is the Game Engine. It will provide the emotional events, Ei, described

in the Events Dictionary. It will also identify the current state of the environment, ~Si,

so that the Learning Engine, and lately the Current Strategy, can select the next action,

Ai, to be executed. The Emotional Engine is implemented by the EEP Model and the

Learning Engine by the WEREWoLF-DE (implementation of the WoLF learners with DE

evolutionary controllers).

Interfaces for vBattle Integration

The implementation of the Engines carries along the implementation of the inter-

faces. Thus, the EEP Model, implements the Event Interface (named Event Builder in the

EEP Model architecture) and the Mood Interface (Mood Tagger in the EEP Model).

In the case of the Event Builder, we have established a relationship between the

Event Classes from the Events Dictionary and the Extended Event Classes used in the

EEP Model obtained for the analysis of the events prompted in the game engine. The

Event Builder analyzes the events with a specific rate (each 10 time steps of the game). In

this analysis, we can obtain the consequences of the attacks included in the Wound events

prompted after the Attack events. We also analyze the proximity of allies and enemies

in order to produce consequences related with the Move events. And finally, the Dead and

Fled events are considered specially important to prompt the appropriate consequences.

The Actions, Consequences and Objects dictionaries used in the EEP Model are described

in Appendix D.2.

The WEREWoLF-DE implements the Actions, Environment States and Goals In-

terfaces. The Action Interface transforms the actions described in the Combatant Profile

into the abstract Actions specified in the Actions Dictionary (for instance, it associates the

specific “Fist” attack to the Soft Attack described in the dictionary). The Environment

States Interface adapts the vector of the environment state parameters to a discrete repre-

sentation of these parameters in order for it to adapt the environment state to the selected

Learning Engine. Thus, for instance, when we create the strategies for the Combat Action

level of decision of the Combatants, we use the following environment state parameters:

• Combatant Current HPs (cHP),

• Combatant Current FPs (cFP),

• Number of allies within 5 hex radius from the Combatant (AlliesIn5),

• Number of allies within 5 hex radius from the Combatant (EnemiesIn5),

• Distance To Nearest Enemy (DistanceToEnemies),

168 Chapter 6: vBattle Experimentation Framework

• Distance To Nearest Flee Zone (DistanceToFlee),

• Last Damage Rank (DamageRank).

Finally, the Goals Interface establishes the correspondence between a Goal de-

scribed in the Goals Dictionary and the reward and fitness functions provided to the Learn-

ing Engine for the optimization process.

Processes for vBattle Integration

When the processes of the AGCBAR Architecture are implemented. The Goal

Selection is done through an iterative process where we can select each of the Goals and

evaluate the environment, so we can build up a different strategy for each goal. The Strategy

Selection is made accordingly to the mapping between strategy and mood. As we created

one strategy for each Goal, we associated each of these goals to a Mood, so we can select

the associated strategy for each mood.

6.2.3 Evaluation Criteria Overview

There are several aspects to be considered as a measure for comparing the results

derived from the AGCBAR Architecture. Some comparative results has been presented in

the previous chapters where, as an isolated component, we have (1) tested the performance

of the learning methods against the hand-coded alternatives, and (2) evaluated the behavior

derived from the modeling of different mood states and emotional responses.

The final twofold aspects to demonstrate are:

1. The integration of the separate components: Verified as a complete system in execu-

tion.

2. The benefits in the game production by the reduction of programming costs: Eval-

uated by the software engineering metrics of the hand-coded alternatives and the

time and resources spent by the assisted mechanisms that are part of the AGCBAR

Architecture.

Mood Dynamics & Number of Controllers

The inclusion of the Mood Dynamics concern in the features provided in a real

video game scenario implies the development of several extra controllers. This is the price

to pay if we choose to show more realistic behaviors. Figure 6.8 presents, in a schematic

representation, the increase in the number of controllers when Mood Dynamics are con-

sidered, but also depicts the relative probability of reusing part of the code among these

different controllers.

In terms of code development, character controllers may share part of the im-

plementation. It is not easy to just measure the percentage of reusability of the code.

Chapter 6: vBattle Experimentation Framework 169

Figure 6.8: Mood Dynamics & Number of controllers ratio. When the Mood Dynamics concern is

included the number of controllers is proportional to the number of moods that we describe for each

character profile. The reusage of the code is significant when sharing implementation among profiles.

Nevertheless, when including extra controllers for the different moods of a given character,

the controllers among the different moods have a moderate reusability, because the Moods

are related to the Goals (as they are define in the AGCBAR Architecture), while controllers

for a particular mood are likely to be quite similar among different characters (at least for

some moods, for example, “Broken/Scared” moods).

6.2.4 Development Costs Evaluation

In order to evaluate the implementation effort of this experiment in the vBattle,

we analyzed the development cost of a game controller for a Combatant. This controller

(CombatantMind), as we said previously, has to provide the actions to the Game Engine in

the three different strategy levels:

1. Movement : when the vBCE asks for the next movement position for a given Com-

batant. This Combatant has to evaluate his neighborhood in the given scenario and

decide which is his best movement according to his actual goal.

2. Combat : as we describe in the vBattle design, the Combatants decide their next

action during the Discrete Event Sequence (DES), so they overlap their actions along

the time, breaking the turn-based sequence. Each time that a Combatant finishes one

action, the vBCE requests from him the next action to be performed, scheduling this

action in the event sequence. To be able to decide which action to perform next, the

Combatant has to analyze the environment state, ~Si, and send his action,Ai to the

vBCE.

3. Defense: every time that a Combatant is the target of an offensive action from an

enemy Combatant, he must decide which defense to apply against this attack.

170 Chapter 6: vBattle Experimentation Framework

In addition to this basic implementation, we included the desired feature of the

Mood Dynamics. In order to do so, we implemented a mechanism to create emotions. As we

said in Chapter 4, the creation of feasible emotional models is complex, so we adopted the

EEPModel (any other emotional model that provides a coherent reaction to the events could

be used as well). Therefore, we only had to provide the strategies for each of the Moods

described in the Moods Dictionary.In the previous section, we described four different Moods

(NORMAL, ANGRY, AFRAID and BROKEN). We also had to create four strategies with three levels

of decision. Thus, in this case, we have to implemented 12 different strategies per character

profile.

To analyze the code needed for the integration of the different Strategies with

the Moods we chose two baseline implementations: static controllers programmed with the

Behavior Trees, and learned strategies extracted from the WEREWoLF-DE engine. In each

of the cases, there is a portion of the code, that we called Structural Code, which is necessary

for each implementation regardless of the number of different strategies we want to create.

Over this structural code we built the Specific Code which represents the strategy in itself.

These pieces of code are the decision process (in the case of the static controllers) and

the goal description and action/environment codification (in the case of the reinforcement

learning controllers).

The Specific Code for the static controllers has been made by altering the baseline

implementation and by changing the strategies corresponding to the specific Goal repre-

sented by each Mood. The Movement strategy is adapted according to the Moods as

follows:

• Angry: the same strategy because the Combatant wants to reach his nearest enemy.

• Afraid: if the Combatant has more than two allies near his current position, he moves

toward his nearest enemy. If not the Combatant stands in his current position.

• Broken: the Combatant moves toward the nearest Flee Zone on the battlefield.

Depending on the Combatant’s Moods, we modify his Combat Strategy as follows:

• Angry: the Combatant makes the same actions as in the default (Normal) strategy,

but always taking the decision of launching the “Hard Attack”, so he try to inflict as

much damage as he can.

• Afraid: in this mood the Combatant changes his strategy a little, resting more often

(increasing the threshold that represents the exhaustion). His attack selection also

changes to a strategy that has more probability of launching a “Soft Attack” or “Quick

Attack” than any other attack options.

• Broken: the desire for surviving forces the Combatant to choosing the “Run” action

in any case.

Chapter 6: vBattle Experimentation Framework 171

Finally, in order to adapt the Defense Strategy to the Moods we altered the default

strategy:

• Angry: the Defense is chosen between “Soft-Block” or “No-Defense” because the

Combatant does not want to waste time parrying the incoming attacks.

• Afraid: the Combatant always decides (and as long as he is not exhausted) to use a

“Full Block” in order to maximize his probabilities of avoiding damage.

• Broken: in this case we apply the same strategy as in the Angry mood, but for the

opposite reason, the Combatant wants to run away.

The automatically created controllers are built with a Specific Code that describes

the goals in terms of a reward function and a fitness function. The fitness function is always

the same for all the Mood. It is calculated as the average final reward obtained by the

Combatant in each episode. The reward function assigned to each Goal is constructed for

representing the objectives described in Appendix D.1. For instance, in the reward function

used to build the Combat Strategy that represents the Maximize Enemy Damage goal, we

included the damage caused to the enemy with the last attack, the energy consumed, . . .

Development Cost Metric

In order for us to quantify the amount of work required for the development of

these two alternatives in our framework (where we need different strategies for the four

different Moods specified in the Architectural Dictionaries), we will use the Development

Effort specified by the COCOMO-II Methodology [9]6.

Also, for us to be able to provide the estimation of the effort and to extrapolate

the numbers for a large of set of potential controllers, we have recorded the lines of code of

the present vBattle implementation (Table 6.8).

In Table 6.9, we present the effort required to developing the controllers, measured

in Man-Month. We calculated its cost taking into account the fact that the Behavior Trees

can be easily reused, so we estimated the development cost by applying different re-usability

factors (from 0% to 75%). In Figure 6.9, we present the evolution of the development cost

as we increase the number of controllers.

6COCOMO stands for Constructive Cost Model, it is an estimation model that measures the cost of soft-
ware development. COCOMO was first published by Boehm in 1981, and later updated in 1995. COCOMO
takes the number of lines of code as input, as well as other software development characteristics, to estimate
both the required Man-Month and Development Time. COCOMO provides three different levels for the
model: Basic, Intermediate and Detailed. Basic COCOMO does not consider many project attributes (cost
drivers) that are incorporated in the other two levels.

172 Chapter 6: vBattle Experimentation Framework

Package LoC

vBTM 688

vBattle Game Engine.

Core Components

vBCE 1460

vBSM 289

vBFMM 503

vBCMM 1311

vBUI 1729

Utils 2649

BT (Structural) 656

vBattle Combatant

Minds

RL (Structural) 1565

BT (Average per Controller) 167

RL (Average per Controller) 24

Table 6.8: vBattle Proof-of-Concept: Lines of Code of the different vBattle packages. The table

also includes the Structural Code and the average Specific Code per Controller needed to build the

Combatant Minds for the Behavior Trees (BT) and the WEREWoLF-DE (RL) alternatives.

Behavior Tree 0% Behavior Tree 75% Automatic

Controller

Creation

Structural Code 1,54 1,54 3,84

3 Controllers 2,80 1,85 4,02

12 Controllers 6,71 2,79 4,59

24 Controllers 12,11 4,09 5,34

50 Controllers 24,17 6,94 6,98

100 Controllers 48,14 12,57 10,19

200 Controllers 97,70 24,17 16,76

Table 6.9: vBattle Proof-of-Concept: COCOMO Development Effort metric to develop different

number of controllers. The Behavior Trees can be easily reused,

Chapter 6: vBattle Experimentation Framework 173

Figure 6.9: vBattle Proof-of-Concept: COCOMO Development Effort Metric (in Man-Month). The

Behavior Trees are represented taking a code re-usability of 0% (BT0), 25% (BT25), 50% (BT50) and

75% (BT75) compared with the Reinforcement Learning (RL) alternative

6.3 Discussion

The present chapter illustrates the implementation of the AGCBAR Architecture

in a video game engine. We created the implementation of the video game vBattle [25]

that meets two objectives: 1) it is complex enough to represent the standard products of

this software industry: it has all the components of a video game, it is open and modular

to extend and to modify it; and, 2) it applies both of the AGCBAR Architecture concerns:

the Mood Dynamics and the Automatic Controller Creation, with all the elements needed

to implement these concerns.

Thereafter, we will evaluate the different behaviors, models and strategies resultant

from the application of the aspects present in the architecture. Hence, we analyzed the

range of possible behaviors that can be obtained from the application of the AGCBAR

Architecture.

The Mood Dynamics concern increases the believability, it provides the adequate

behavior consequent with the environment events. The counterpart of this feature is the

increase in the number of controllers, due to the need of providing a different behavior to

each of the characters’ moods.

On the other hand, the Automatic Controller Creation automatically produces

different strategies within the complex environment. This module adapts the strategies

through the exploration providing two interesting outcomes: 1) the different strategies, and

2) the game bug exploit discovery. The inclusion of this concern in the development of a

video game contributes to decrease the controllers development cost. This is interesting

174 Chapter 6: vBattle Experimentation Framework

from a cost-efficient point of view because, due to the Mood Dynamics inclusion, we can

face a significant increase in the number of controllers.

Moods and Emotions

One of the main objectives of this thesis is to provide richer and more believable

responses from the characters in the video games. The Emotional Engine included in the

AGCBAR Architecture contributes to this purpose by including the emotions, moods and

affects within the game scene. Thanks to that, the characters’ controllers are focused on

their actions in the environment, according to their theoretical mood. This component

of the architecture handles the emotional representation and the mood changing with a

minimal programming overhead.

• Pros: the controllers only have to resolve the actions and the emotional engine and

its configuration resolves the emotional interaction.

• Cons: the emotional engines probably need the specification of the relevant envi-

ronmental events, this need is a key factor when we are to develop the mechanism

that generates the emotional events. This problem can be solved by using models

that can exploit the knowledge within the Conceptual Dictionaries (as described in

Section 4.3.4), like taxonomies and inference.

Different Strategies

The presence of the Learning Engine enables the existence of mechanisms that

produce different types of basic controllers that can be used in the game scenarios. These

controllers can be selected according to different criteria: they can have different challenge

rate, allowing them to use more or less learn during time, or they can have different strategy

basis, giving different representations of the actions or state spaces so they can explore the

environment differently.

In our case, we used the WEREWoLF algorithm with a population of 10 indi-

viduals evolved after 100 episodes. We observed that the different individuals of different

generations prefer different actions in each state, such actions are selected according to the

acquired fitness.

• Pros: we can have different controllers that can be used in the same game with

enough variation for the same character to enrich his behavior and robust enough to

work reasonably well.

• Cons: the Learning Engine should ensure the robustness of the strategies created, and

of some of the controllers created, mainly throughout the early stages of the learning

process. During these stages, they could be not too smart, and could perform some

completely unreasonable actions. Hence, if we try to use this mechanism for the

Chapter 6: vBattle Experimentation Framework 175

creation of a broad spectrum of controllers, we must also have a mechanism that

validates and/or constrains the actions, so they are not completely incoherent.

Moreover, if we analyze the number of different characters that are present in

the last generation games, we can easily observe an increasing interest for the character

controllers development support. For instance, Assassins Creed IIITM7 has 10 different

types of enemies, but, Elders’ Scroll: SkyrimTM8 has more than 350. Other games, like

Fable 3TM9 have over 100 different characters. The amount of characters (especially if we

multiply the number of controllers adding the moods to the environment simulation) is

increasing. Figure 6.9 presents a possible evolution in the development effort needed to

achieving this number of controllers. Therefore, the Automatic Controller Creation is an

interesting alternative to support the development of new video games with a large amount

of controllers.

Bug Discovery

Also, we came upon the fact that the already created controllers exploit some of the

weaknesses that the static controllers have. Additionally, we discovered certain problems

with the targeting and movement systems of these contrast controllers. This finding enabled

us to debug and polish the behavior trees so they have less bugs.

Thereby, the Automatic Controller Creation contributes to the development of a

better system of new controllers speeding up the debugging process of the traditional ones.

Also, these new controllers can also be used for testing scenarios that have a large variety of

rules and features, since they explore the environment freely during their learning process.

7http://assassinscreed.ubi.com/ac3/en-GB/games/assassins-creed-3/index.aspx

8http://www.elderscrolls.com/skyrim

9http://lionhead.com/fable-3/

Chapter 7

Conclusion

It’s more fun to arrive a conclusion

than to justify it.

Malcom Forbes

In this thesis we introduced an architecture that addresses the issue of improving

the development of next generation video games, where the behavior of the characters can

be mood-driven and the number and diversity of the controllers can also be larger than

in previous developments. In this last chapter, we will summarize and discuss the main

contributions and the proposed future lines of work.

7.1 Contributions

The objectives presented in the Section 1.2 of this thesis are mainly focused on

the application of software models to video game developments.

7.1.1 Contributions Overview

To this end, we adopted different fields of study in order to carry out our re-

search, while trying to improve the players’ experience in video games beyond the graphical

elements:

1. We embraced the affective component of the characters as a potential major improve-

ment, with the intention of adding a deeper sense of realism into many video game

scenes. For that purpose, we drew upon work from the field of cognitive psychology

so as to construct a computational model that could be applied to this particular

software. The result of our research and the findings was the creation of the EEP

Model (described in Chapter 4).

176

Chapter 7: Conclusion 177

2. We found that the creation of controllers in many video games is very time-consuming,

and error-prone, and the resulting controllers are not fully challenging for experienced

player. Thus, we concluded that the static solutions for the characters’ behaviors

could be improved thanks to the use of different learning mechanisms that allows us

to build them up. The automatic creation of contents, and in our case character’

controllers, is a trending topic in the game industry. Thereby, we studied the soft

computing techniques suitable for this environment. And finally, we developed the

WEREWoLF Algorithm (detailed in Chapter 5).

3. The aforementioned models alone can be applied to some video game developments,

but their application became much easier if they are handled as part of an architecture.

This architecture defines the communication between the different models proposed in

this thesis and the video game engines. Thus, we designed the AGCBAR Architecture

as a global framework that supports our proposed solutions (presented in Chapter 3).

7.1.2 Contribution in the Emotional Modeling Context

Emotional modeling is a broad topic concerning different disciplines and potential

applications. In this thesis we focused our attention on the exploitation of this modeling

applied to video games. In order to achieve the purpose of this thesis, we have followed a

series of preliminary steps:

1. Identification of the requirements needed for the emotional simulation in the video

game context.

2. Analysis of the existing emotional models applied to virtual characters.

3. Study of the cognitive psychology theories of:

(a) Ortony, et al. OCC model for structure analysis of the emotions.

(b) McRae and Costa Big Five Factor for personality.

(c) Mehrabian and Russel PAD Temperament model for representing moods and

emotions.

This thesis contributes to the existing research on emotional modeling providing

a new model, named EEP. This model shows the following characteristics:

• EEP defines a series of Mood Tags to label different Mood states.

• EEP is based on a mathematical formalism, named Mood Vector Space (MVS), an

extension of a Hilbert Space with the corresponding operations that provide Emotion

combinations and Mood Dynamics.

• EEP includes a structured analysis of the emotions produced by the events perceived

by the characters.

178 Chapter 7: Conclusion

• EEP can describe the personality profiles of the characters and translate them into

the initial and central tendency of the characters’ mood.

Henceforth, the EEP Model has been evaluated as an integrated component in a

commercial video game engine. The evaluation has been carried out by testing the model

under two different scenarios:

1. A combat scenario in which moods influence the behavior of the different characters.

These behaviors are implemented as different controllers managing the characters

when they are in a corresponding mood.

2. A storytelling scenario in which the plot evolves according to the mood transitions

of a series of NPC characters populating the environment. The moods in this sce-

nario change as a result of the actions of the player and the relationship among the

characters.

Finally, we have conducted a comparative analysis, in terms of features and ex-

pressive capabilities between our EEP Model and the existing state of the art references, in

particular the EMA and the ALMA models.

7.1.3 Contribution in the Learning Controller Context

The design and coding of character controllers is a time-consuming and error-prone

activity, to which the game developers should devote a significant effort across the game

design and implementation. The mechanisms to produce reliable character control codes,

in an automatic way, are of great interest for the industry.

This thesis has proposed a new strategy to craft character controllers for combat

scenarios by means of the following outline:

1. A preliminary definition of a set of reference controllers. These controllers can be

either hand-coded versions or the result of a previous automatic character controller

creation process.

2. An iterative training procedure for the automatic creation of new controllers through

the competition against a set of reference controllers.

3. The extraction of the learned strategy as a new control package.

The core element in this training procedure involves a learning algorithm for char-

acter controllers. This thesis proposes an innovative algorithm, named WEREWoLF, based

on the hybridization of two different computational intelligence techniques:

1. Evolutionary Computation. Two different evolutionary techniques have been tested,

the Estimation of Distribution Algorithms (EDA) and the Differential Evolution (DE).

Chapter 7: Conclusion 179

2. Reinforcement Learning. Two different temporal-difference alternatives has been con-

sidered, the SARSA and the WoLF algorithms.

An exhaustive experimental testing has been conducted, comparing the perfor-

mance of the new proposed learning strategy (WEREWoLF) against the baseline rein-

forcement learning alternatives. The results obtained clearly show that the WEREWoLF

configuration using a Differential Evolution strategy together with the WoLF learning al-

gorithm, outperforms the rest of the configurations as well as the baseline algorithms. The

experimental testing was supported by a statistical analysis, which allows us to assert the

significance of each result with a robust confidence level.

7.1.4 Contribution in the Game Development Architectures Context

In order to integrate the two aforementioned contributions into a unified frame-

work, this thesis has proposed a new component architecture that covers two concerns:

1. Mood Dynamics, which encloses the affective simulation component desired for the

video game characters.

2. Automatic Controller Creation, that takes into account the creation process of the

different strategies for the characters in the video game environments.

The new component architecture presented in this thesis has been named the

AGCBAR Architecture, which stands for Automatic Game Controller Behaviors with Affect

Responses. The different configuration of the components of the AGCBAR Architecture

operates in two application phases:

1. Off-Line Strategy Generation. This phase supports the design and development stages

of the video game production. It also addresses the Automatic Controller Creation

concern.

2. Run-Time Action and Strategy Selection. This phase orchestrates theMood Dynamics

and the embodiment of the different automatically created controllers.

Finally, based on the AGCBAR Architecture, this thesis provides a complete envi-

ronment for the research of many other aspects of the video game computational intelligence.

The architecture allows for substituting any of its components in order to evaluate different

techniques and models.

7.1.5 Other Contributions

During our experimentation, we stumbled upon some additional results that ap-

peared throughout the development of the different models. They are not among primary

objectives of our research but we believe that they are worth to be mentioned.

180 Chapter 7: Conclusion

vBattle Framework

When we planned the experimentation of the whole architecture, we found major

limitations when we tried to use some commercial video game frameworks. Usually, these

were closed, not fully modular or, in the best cases, badly accessible. They lacked, in

many cases, of a proper programming interface, which made the creation of the complex

structures, algorithms and tests that we were going to need, impossible for us. Also, the

experimentation of the complete architecture required an interface, adequate for all levels

of the game engine. Hence, we created our own game engine. For that, we used the same

techniques applied to the video game design, creating rules, components and modules to

support the AGCBAR Architecture concerns. The vBattle framework is the result of this

development. As will be said later in this Chapter, is already being extended to support for

further experimentation. Nevertheless in the present state described here, it provides the

necessary infrastructure for study of the models that we developed during the thesis.

Emotional Storytelling

The research carried out with the EEP Model shows that the initial application of

reactive responses to the emotional events driven by the mood state can be used in some

other ways. For example, the interactive storytelling is an interesting field of application of

affective computing. Furthermore, the inclusion of emotional models consistent along the

evolution of a story line could be applied for the creation of more coherent, dynamic and

appealing plots. The first results shown in the experimentation of the EEP Model open

new possibilities for further researches.

Learning Designer Role

After the development of the WEREWoLF algorithm experiments, we discussed

the new role that is necessary for the correct application of the learning models in video

games. Particularly, in the level design field, and aside from the core AI development, it

seems that a Learning Designer could be needed. This role will need of specific knowledge

to be able to carry out the correct layout of the reinforcement learning parameters. The

state space representation and the reward function design are critical for the success of

these models in a real development environment. This role requires the understanding of

the rules of the game as well as of the machine learning techniques, so this special level

designer can figure out the correct way to represent and model the world, and through the

use of these techniques, to produce the correct controllers efficiently.

7.2 Future Work

This thesis leaves many lines of work open. We will define here a blueprint for

future lines of investigation and development that we envision as upgrading of the work

Chapter 7: Conclusion 181

presented here.

The AGCBAR Architecture presented in Chapter 3 bears the following open issues:

• The inclusion of the Learning Engine in the Run-Time phase is of particular interest

because it can adapt the characters’ behaviors during the game play. This feature

must be supported by fast learning algorithms that can extract new strategies in

real-time.

• The development of support tools that can help the design and implementation of

video games that use the AGCBAR Architecture.

• The research of more complex, challenging scenarios, that will improve the general-

ization of the implementation of this architecture, and therefore, the development of

different video games.

As we said previously, the introduction of the emotional models is a target for

many video game developments, these models could increase the realism of the environments

and behaviors, producing more engaging products. Our EEP Model has shown interesting

results but it could still be developed in many aspects.

• The Taxonomy representation of the Conceptual Dictionaries could produce more

flexible and structured representations of the character profiles. It could also increase

the applicability of this model.

• The inclusion of the emotional models, as a storytelling guidance, could create new

mechanisms to help designing the plots and the story lines of the quests and worlds

of future video games.

The work made in the WEREWoLF could be refined and augmented in many

ways,

• It could include some other core reinforcement learning algorithms, like Function

Approximation, as basis for the hybrid combination.

• There are different mechanisms that could create a new hybridization model of the

learning individuals.

• Preference learning could improve the learning process, providing an additional mech-

anism to tackle the complexity of the environment.

Finally, the vBattle framework still has a lot of work ahead. The research possi-

bilities of this platform could be used in many branches of the AI in games, from controller

creation to coordination scheduling. This kind of development could make the study of

different techniques easier for the academic community. Furthermore, this framework is

intended to be used in different teaching contexts, where the variety of techniques from the

field of computational intelligence applied to video games can be tested and shown in a

more appealing way.

182 Chapter 7: Conclusion

7.3 Key Publications Produced during this Thesis

In this final summary, we would like to mention the most relevant publications

produced throughout the development of this thesis.

• Peña L., Peña J.M., Ossowski S., Lucas S.M. Learning and Evolving Combat Game

Controllers. IEEE Conf. on Computational Intelligence and Games. Granada 2012.

[67]

• Peña L., Peña J.M., Ossowski S. Representing Emotion and Mood States for Virtual

Agents. Multi-Agent System Technologies Conference. MATES 2011. Berlin 2011.

[68]

• Peña L., Peña J.M., Ossowski S., Sanchez, J.A. EEP – A Lightweight Emotional

Model: Application to RPG Video Game Vharacters. EEE Conf. on Computational

Intelligence and Games. Seoul 2011. [65]

• Peña L., Peña J.M., Ossowski S., Herrero, P. WereWoLF: Evolving Q-Learning for

Stochastic Games. World Automation Congress. Kobe 2010. [66]

• Peña L., Ossowski S., Peña J.M. vBattle: A New Framework to Simulate Medium-

Scale Battles in Individual-Per-Individual Basis. IEEE Symp. on Computational

Intelligence and Games. Milan 2009. [62]

• Peña L., LaTorre A., Peña J.M., Ossowski S. Tentative Exploration on Reinforcement

Learning Algorithms for Stochastic Rewards. Hybrid Artificial Intelligent Systems

Conference. HAIS 2009. Salamanca 2009. [63]

Appendix A

Terminology and Acronyms

A.1 Glossary

AAA class games Blockbusters video games with a big superproduction budget and high

quality technical and detail aspects. 2, 3, 183

Architectural Dictionaries The dictionaries that describe the elements to use in the

components of the AGCBAR Architecture. 53, 82, 126, 183

Battlefield General representation of the physical terrain where the battle runs. In the

vBattle framework, it is decomposed in hexagonal cells. 145, 183, 205

Base Movement Rate Default time consumed by a Combatant when moving, in the

vBattle framework, from one cell to another adjacent one. 145, 147, 151, 183

CD Conceptual Dictionaries. 88, 124, 183

Cell Hexagonal portion of terrain. In the vBattle framework, it is characterized by

several parameters such as type of terrain, height, etc. Only one object can be in a

cell at a time. Some types of cells can be impassable. 145, 183

Combatant In the vBattle framework, he is an independent agent acting on the environ-

ment. He represents a warrior from a given Faction. The Combatants have different

characteristics and actions. He must obey the different orders that the Faction Leader

issues. 145, 147, 150, 183

Commander A Combatant that is playing the Commander role in the vBattle frame-

work, and acts as relay of the Faction Leader’s orders. The Combatants receive the

orders from the Faction Leader through the Commander. 145, 183

CP Character Profile. 88, 91, 95, 96, 183

183

184 Glossary

Current Instant Counter In vBattle, the simulated time of the game is divided in

Instants (time ticks). The current instant is referred by this counter. 145, 149, 150,

156, 183

Deploy Region A set of cells where a Faction can deploy its Combatants at the beginning

of the battle in the vBattle framework. 146, 150, 183

EB Event Builder. 90, 91, 108, 121, 183

EEP Emotional Elicitation Process. 88, 183

EEPE Emotional Elicitation Process Engine. 88, 90, 91, 183

Emotion Based on the Lazarus’s Theory of Emotion. The emotions are the psychological

response that it is the consequence of the thought produced about the perception of

certain events. Emotions are isolated affective responses which accumulate certain

tendencies in the affective state of a person. 82, 183

Emotional Event Event produced in an environment that is suitable for the production

of emotions. The character processes the perceived events producing the respective

emotions. 82, 183

Escape Zone A set of cells, usually on the edges of the Battlefield, that a Combatant

must reach so he can flee from the battle. 146, 150, 156, 183

Event vBattle tokens that represent the instant when an action is executed. 145, 183

Event Sequence The ordered sequence of events to simulated in vBattle. 145, 149–151,

156, 158, 183

Faction In the vBattle framework, it is a set of allied Combatants under the command

of a Faction Leader. 145, 146, 150, 183

Faction Leader In the vBattle framework, it represents the high level controller of a

faction. It can be an artificial intelligence controller or a human player. 145, 146, 183

Gamer A video game player with high involvement and expertise in video games. Usually

called “Hardcore-Player”. 2, 183

MMOG Massive Multiplayer On-line Game: A video game genre which represents the

games that are played usually by a large number of players connected through the

internet. 2, 183, 208

Glossary 185

Mood Long lasting affective state. With less intensity but with deeper influence on the

memory, strategy and assessment of the person that produces a specific emotion. 82,

98, 183

Mood Space Point A particular point in the Mood Vector Space. They are points in the

PAD 3D space, noted as µi ∈ M. 183, 195

Mood State Specific mood at a given instant. In the EEP model it is noted as µi ∈ M.

26, 46, 82, 88, 90, 98, 183

Mood Tag A label representing a particular mood of a character. It will identify a region

in the Mood Vector Space where we allocate a specific mood. This label can have a

semantic representation of the mood state. It is noted as Ti ∈ T . 82, 90, 105, 177,

183, 214

Mood Vector Space The EEP Model component that provides the numerical represen-

tation of the mood state of the character. It is modeled as an algebraic space with

the operations needed to aggregate the emotions produced, and to evaluate the mood

state transitions. 91, 105, 183

MT Mood Tagger. 90, 91, 98, 183

MVS Mood Vector Space. 88, 90, 91, 97, 99, 102, 103, 120–124, 177, 183, 186, 214

Non-Player Character A character present in a video game scene that is controlled by

a set of artificial intelligence techniques, so he can perform autonomous actions in the

given environment. 183

NPC Non-Player Character. 113, 116, 183

Strategy It is a probability distribution over the space of actions, Ai ∈ A, for each of the

states, ~Si ∈ A. 55, 183

186 Glossary

A.2 Symbols and Variables

AGCBAR Architecture

Symbol Description

Ai ∈ A Actions described in the Actions Dictionary

Bi ∈ B Strategies, described as Bi : A× S → [0, 1]

Ei ∈ E Event Classes described in the Events Dictionary

Gi ∈ G Goals described in the Goals Dictionary
−→
Si ∈ S Environment State description represented in the States Dictionary

Ti ∈ T Mood Tags described in the Moods Dictionary

EEP Model

Symbol Description

A Emotions elicited by the Actions associated to an Event

aω ∈ [−1, 1] Appeal of the Object ω

α ∈ Da An Action like those described in the Actions Dictionary of the EEP Model.

C Emotions elicited by the Consequences associated to an Event.

Dc, Da,

Do, Dr and

Dg

Conceptual Dictionaries, respectively Consequences, Actions, Objects, Charac-

ters and Groups Dictionary.

dγ ∈ [−1, 1] Desirability of the Consequence γ

E Set of emotions used in the EEP Engine. E = A ∪ C ∪ T ∪O

E Augmented Event Classes created from AGCBAR Events E.

e ∈ E An emotion like those supported by the EEP Engine

εi ∈ E Event instance.

γ ∈ Dc A Consequence like those described in the Consequences Dictionary of the EEP

Model.

mk ⊆ M The set of reference points µk
i that represent the mood Tk

M Mood Vector Space (MVS). Space where the emotions and moods are repre-

sented.

µi ∈ M A particular point in M that represents a Mood State.
−→ν ∈ M Vector representing an emotion (or a group of emotions) in the MVS.

O Emotions elicited by the Objects associated to an Event.

ω ∈ Do An Object like those described in the Objects Dictionary of the EEP Model.

pα ∈ [−1, 1] Praiseworthiness of the Action α

T Emotions elicited by the composition of Attribution and Well Being emotions.

rρ ∈ [−1, 1] Relationship with the Character ρ or any of the groups that this character be-

longs to.

ρ ∈ Dr A Character of those described in the Characters Dictionary of the EEP Model.

Glossary 187

WEREWoLF Algorithm

Symbol Description

f(wi) WEREWoLF fitness function for individual wi

Γ(Gi) WEREWoLF Goal Interface

Λ(ai) WEREWoLF Action Interface

Pg WEREWoLF Population of generation g

Σ(
−→
Si) WEREWoLF Environment State Interface

r(s) WEREWoLF reward function for the state s

wi WEREWoLF Individual representing a Reward Matrix

Appendix B

EEP Model Appendix

B.1 Mood Vector Space: Formal Representation

The Mood Vector Space (MVS) is conceived as a formal structure that can repre-

sent in the same space the two major items of the emotional behavior models: the emotions

and the emotional state (mood). This structure is conceived to accomplish the following

requirements that are important for the mood simulation:

• R1: Must represent different moods and emotions in the space. According to the

PAD representation, bounded in the range [−1, 1].

• R2: Support the addition of emotions with the current mood to represent the influence

of all of the perceived events over the mood.

• R3: The structure must provide the mechanism to classify the continuous value of

the mood into a discrete set of mood tags.

• R4: The decay of the current mood along the time, moving it to the default mood,

usually extracted by the personality of the agent.

This appendix presents the formalism, based on the PAD frameworks, and the

functions and operators that are necessary to implement the psychological precepts of dy-

namics of emotions, intensity of the stimulus and long term tendency of emotional state,

that are important for the emotional models. In addition, this appendix shows the functions

necessary for the attenuation, composition, etc. by an example of a particular Mood Vector

Space (the Trigonometric Mood Space). Still, other functions that match the constraints

of the Mood Vector Space formulation [64, 65] can be used.

First, we show the general elements of the MVS and, along the section, we add

different components to the formulation of the MVS to create the complete description of

the space and the elements that compose it.

188

Appendix B: EEP Model Appendix 189

B.1.1 Mood Space

A mood space M is define as an algebraic structure M = (M,⊕) where the first

element is a subset of 3D real number space R
3 bounded between −1 and 1, M = [−1, 1]3;

and the second element is a binary operation in M.

⊕ : M×M −−−−−−−→M

(−→u ,−→v)
⊕−−−−→−→u ⊕−→v

With the following properties:

∀−→u ,−→v ∈ M : −→u ⊕−→v ∈ M (B.1)

∃−→0 ∈ M/∀−→u ∈ M : −→u ⊕−→
0 = −→u (B.2)

∀−→u ,−→v ∈ M : −→u ⊕−→v = −→v ⊕−→u (B.3)

∀−→u ∈ M/∃−→−u ∈ M : −→u ⊕−→−u =
−→
0 (B.4)

∀−→u ,−→v ,−→w ∈ M : (−→u ⊕−→v)⊕−→w = −→u ⊕ (−→v ⊕−→w) (B.5)

The properties are:

• Closure property (eq. B.1): For all pair of elements in the space, the result of the

operation is also in the space.

• Additive identity property (eq. B.2): There exists an element in the space, such

that for all elements in the space keep unchanged after the operation. We name this

element as the identity value
−→
0 .

• Commutativity property (eq. B.3): For all pair of elements in the space the operation

can exchange the order of parameters.

• Additive inverse property (eq. B.4): For each element in the space, there exists

another element in the space, such that the operation returns the identity value
−→
0 .

• Associativity property (eq. B.5): For all three elements in the space the operation

allows any associativity aggregation of any pair of elements.

Considering all these properties, the mood space M = (M,⊕) is an abelian group.

B.1.2 Mood Vector Space

If we include the scalar multiplication by a real number with following properties:

∀−→u ∈ M ∀α ∈ R : α−→u ∈ M (B.6)

∀−→u ,−→v ∈ M ∀α ∈ R : α(−→u ⊕−→v) = α−→u ⊕ α−→v (B.7)

∀−→u ∈ M ∀α, β ∈ R : (α+ β)−→u = α−→u ⊕ β−→u (B.8)

∀−→u ∈ M ∀α, β ∈ R : (αβ)−→u = α(β−→u) (B.9)

∀−→u ∈ M : 1−→u = −→u (B.10)

190 Appendix B: EEP Model Appendix

The properties are:

• Closure property respect multiplication (eq. B.6): For any elements in the space and

any scalar value, the result of the multiplication is also in the space.

• Distributivity respect operation (eq. B.7): Scalar multiplication and the operation

show distributivity respect ⊕ operation.

• Distributivity respect the addition (eq. B.8): Scalar multiplication and the operation

show distributivity respect the addition of real numbers.

• Compatibility of scalar multiplication (eq. B.9): The multiplication of real numbers

maintains the compatibility.

• Identity element (eq. B.10): 1 denotes the multiplicative identity in R.

In order to be complete, two more operations are defined:

• Subtraction: Defined as the operation with the inverse element.

⊖ : M×M −−−−−−−→M

(−→u ,−→v)
⊖−−−−→−→u ⊖−→v = −→u ⊕−→−v (B.11)

• Division by a (non-zero) scalar: Defined as the multiplication by the multiplicative

inverse value:

/ : R×M −−−−−−−→M

(α,−→u)
/−−−−→

−→u
α

=
1

α
−→u (B.12)

With all these properties the set M with the operation ⊕ and the field of real

numbers R and the multiplication operator, represent a vector space. Thus, we have denoted

the elements of M as vectors.

Trigonometric Mood Space

An example of a possible mood space description is the trigonometric mood space

MT = (M,⊕T), in which the operation ⊕T is defined as:

∀−→u = (u1, u2, u3),
−→v = (v1, v2, v3) ∈ M :

−→u ⊕T
−→v = −→w = (w1, w2, w3)

∀i ∈ {1, 2, 3} : wi =

2arctan

(

tan
(

ui
π
2

)

+ tan
(

vi
π
2

)

)

π
(B.13)

The proofs for the Closure, Additive Identity, Commutative, Additive Inverse and

Associative properties are included in [64, 65].

Appendix B: EEP Model Appendix 191

B.1.3 Extended Mood Space

A extended mood space M is an algebraic structure M = (M,⊕,⊙, ‖ · ‖), where
(M,⊕) is a mood space, presenting also the properties for being a mood vector space

(respect ⊕ operator and real number multiplication).

The ⊙ operator is an inner product operator such as:

⊙ : M×M −−−−−−−→R

(−→u ,−→v)
⊙−−−−→−→u ⊙−→v

The ‖ · ‖ operator is a norm if satisfies the following properties:

∀−→u ∈ M :‖ −→u ‖> 0 if −→v 6= −→
0 (B.14)

∀−→u ∈ M∀α ∈ R :‖ α−→u ‖= |α| ‖ −→u ‖ (B.15)

∀−→u ,−→v ∈ M :‖ −→u ⊕−→v ‖≤‖ −→u ‖ + ‖ −→v ‖ (B.16)

The properties are:

• Positive length (eq. B.14): For any elements in the space (except the zero element)

the norm is always positive. For the zero element
−→
0 the value is zero.

• Positive homogeneity (eq. B.15): Scalar multiplication and the norm operator resizes

the value of the element.

• Triangle inequality (eq. B.16): That is, taking norms as distances, the distance from

point A through B to C is never shorter than going directly from A to C, or the

shortest distance between any two points is a straight line.

There is a relationship between the inner product ⊙ and the norm operator ‖ · ‖:

‖ −→u ‖=
√−→u ⊙−→u (B.17)

(B.18)

If M satisfies all these properties is considered a normed vector space.

Trigonometric Extended Mood Space

The trigonometric mood space MT = (M,⊕T) can become an extended mood

space by the definition of:

• ⊙T inner product operation:

∀−→u = (u1, u2, u3),
−→v = (v1, v2, v3) ∈ M :

−→u ⊙T
−→v =

∑

i∈{1,2,3}
tan

(

ui
π

2

)

tan
(

vi
π

2

)

(B.19)

192 Appendix B: EEP Model Appendix

• ‖ · ‖T norm operator:

∀−→u = (u1, u2, u3) ∈ M :

‖ −→u ‖T=
√−→u ⊙T

−→u (applying eq. B.17)

=

√

∑

i∈{1,2,3}
tan

(

ui
π

2

)

tan
(

ui
π

2

)

(applying eq. B.19)

=

√

√

√

√

∑

i∈{1,2,3}
tan

(

ui
π

2

)2
(B.20)

The corresponding proofs are also shown in [64, 65].

B.1.4 Topological Mood Space

The existence of a normed vector space M with the properties presented in Section

B.1.3, together with ⊙ operation and the ‖ · ‖ operator properties given by the eq.B.14,

eq. B.15, eq. B.16, and eq. B.17; provides the possibility to define a topological field K,

based on the element addition ⊕ and the scalar multiplication. If M is a vector space over

a topological field K, M is a topological vector space.

Indeed, all normed vector spaces are topological vector spaces.

Additionally, if the inner product ⊙ satisfies the following properties:

∀−→u ,−→v ∈ M : −→u ⊙−→v = −→v ⊙−→u (B.21)

∀−→u ,−→v ∈ M, α ∈ R : (α−→u)⊙−→v = α(−→u ⊙−→v) (B.22)

∀−→u ,−→v ,−→w ∈ M : (−→u ⊕−→v)⊙−→w =

(−→u ⊙−→w) + (−→v ⊙−→w) (B.23)

The properties are:

• Symmetry (eq. B.21): For any pair of elements in the space the inner product has a

conjugate symmetry. As the field on which the inner product is the real number R

and not the complex numbers C the conjugate symmetry becomes regular symmetry.

• Linearity in the first argument on both product (eq. B.22) and addition (eq. B.23):

Scalar multiplication and ⊕ operation show linearity respect the first argument con-

sidering the addition and the multiplication in R.

Together with the positive-definiteness according to eq. B.14, all these properties

make inner product to be complete over the filed R, thus the topological mood space define

with this operation is a Hibert space.

The Trigonometric Extended Mood Space satisfies both Symmetry and Linearity

of product (see [64, 65]).

Appendix B: EEP Model Appendix 193

B.1.5 Attenuated Mood Space

A attenuated mood space M is an algebraic structure M = (M,⊕,⊙, ‖ · ‖, A),
where (M,⊕,⊙, ‖ · ‖) is a extended mood space and A is a family of functions indexed by

M denoted as A = {a−→v : −→v ∈ M} = {a−→v }−→v ∈M, for which ∀−→v ∈ M is possible to define

an infinite sequence: 〈−→un : n ∈ N
−→un ∈ M〉−→v such as:

∀−→u ∈ M : the sequence〈−→u0,−→u1, · · · 〉−→v
starts with −→u0 = −→u (B.24)

generated by func. a−→v as −→ui = a−→v (
−−→ui−1) (B.25)

lim
n→∞

−→un = −→v (B.26)

The family of functions A represents a set of functions {a−→v }−→v that converge to

given values of −→v for all the possible initial elements −→u0 ∈ M.

In order to be completed, it is necessary to define how the limit of the sequence is

computed (eq. B.26). As M is a normed vector space according to the properties presented

in Section B.1.3.

lim
n→∞

−→un = −→v (B.27)

lim
n→∞

‖ −→un ⊖−→v ‖ = 0 (B.28)

Trigonometric Attenuated Mood Space

The trigonometric extended mood space MT = (M,⊕T ,⊙T , ‖ · ‖T), can become

an attenuated mood space by the definition of a family of function Aα
T indexed by M, such

as:

Aα
T = {aαT,−→v : −→v ∈ M} = {aαT,−→v }−→v ∈M

∀−→v there is a function aαT,−→v such as:

∀−→u : aαT,−→v (
−→u) = −→u ⊕T α(−→v ⊖T

−→u) (B.29)

For any α ∈ (0, 1) the structure MT = (M,⊕T ,⊙T , ‖ · ‖T , Aα
T) is an attenuated

mood space.

The Trigonometric Attenuated Mood Space satisfies these properties (see [64, 65]).

B.1.6 Emotional Agent System in a Mood Vector Space

It is possible to define an Emotional Agent System A as an algebraic struc-

ture A = (M,A,E,m0), where M is a Mood Vector Space, A a finite set of agents

A = {A0, A1, · · · , An}, and E is a set of elements defined as E = {(a, t, v, α)/a ∈ A, t ∈

194 Appendix B: EEP Model Appendix

N, v ∈ M, α ∈ R}, named as the emotion set, which represents all the emotions elicited by

all the agents, together with its intensity at a give time step. Finally, m0 is a function that

represents the default mood state for the agents (mood state in absence of any emotion,

thus the initial state):

m0 : A −−→ M : Ai
m0−−−−−→ −→u 0

i (B.30)

The state of an Emotional Agent System, can be represented as the mood state of

all its agents, and it is denoted as M(A, t) = {−→u t
0,
−→u t

1, · · · ,−→u t
n}, being t ∈ N. This state

can be defined as follows:

∀i ∈ [0, n] :if t = 0 −→u 0
i = m0(Ai) Initial mood state (B.31)

if t > 0 −→u t
i =

−→u t−1
i ⊕ E(Ai,t) (B.32)

where E(Ai,t) = α0
−→v0 ⊕ · · · ⊕ αm

−→vm
∀(Ai, t, vj , αj) ∈ E (B.33)

E(Ai,t) represents the aggregation of all the emotions elicited by the agent Ai at

time stamp t scaled according to the intensities αj and combined by means of the⊕ operator.

If we want to include a mechanism that ensures that the mood state of the agents

returns to their default initial state along time (and in absence of new emotions); we must

satisfy that M is an Attenuated Mood Space in order to redefine the equation B.32 as:

if t > 0 −→u t
i = a−→v (

−→u t−1
i ⊕ E(Ai,t)) (B.34)

where −→v = m0(Ai) is the default (initial) mood state and a−→v (·) is the function, from the

family of function A in the Attenuated Mood Space, that defines the infinite sequence that

converges to this default (initial) mood state m0(Ai).

Also, we can include a mechanism to discretize the MVS in order to obtain a

specific mood tag M τ
i ∈ M τ . To do it so we include a function of neighborhood fν(Ai) (for

instance a minimal norm distance function) that returns the mood tag from the current

mood for the specific agent Ai:

fν : M −−→ Mτ : −→u t
i

fν−−−−−→ M τ
i (B.35)

An Emotional Agent System supports the requirements proposed as objective for

this representation of emotions and moods.

B.2 Mood Ontology

In the EEP Model, we describe a possible mood state ontology, shown in the

Figure B.1, to represent the different mood states of the characters. This ontology is

based on the PAD quadrants, for each of the dimensions and sign (±P, ±A, ±D). This

Appendix B: EEP Model Appendix 195

representation is proposed for two usages: first, we use the tags that can describe the

different mood state tags (T ∈ T) to include them in the Architectural Dictionaries of the

AGCBAR Architecture and to use as output of the EEP Model, and, second we describe

the different Mood Space Points according to the representation of those points so they

were near of the desired tags. These two usages are based on the Russell & Mehrabian’s

works[49, 74] which summarize the values that are representative for a set of temperament

tags.

The root of the ontology is the “zero-informative” mood (in the figure it is tagged

as Mood). The first level of the ontology is the six different values of the axis of the PAD

space, each of the encloses four of the quadrants of the space (i.e. Pleasant≡ ±P describe

those mood states that has positive pleasure, like Relaxed or Exuberant). The second level

of the hierarchy represent a disjoint union of the eight quadrants that is proposed as basis

in the Mehrabian’s work. Thus, we have the eight different tags for the PAD Octants, one

for each of these subspaces (Disdainful, Relaxed, etc.).

Figure B.1: EEP Mood Ontology Example. Based on the PAD Temperament Model[49]. This ontology

presents a possible division of moods to ensure the coverage of all of the possible moods in order to

create the strategies.

The different levels of the hierarchy represent more specialization of the mood,

with more level of detail in the kind of mood that it represents. For instance, Afraid is a

kind of mood that is Unpleasant, Submissive and Aroused, and also more specific than

Anxious. See Figure B.2.

With this kind of representation we can determinate the moods that we want to use

in a specific scenario for the based on those mood state supported by the EEP Model. The

characters can identify the moods relevant for the desired behaviors from those proposed

and ensure the completeness of the mood states handled by the character.

196 Appendix B: EEP Model Appendix

Figure B.2: EEP Mood Ontology Example. Angry is a specific mood which is somehow Hostile which

is an Unpleasant, Aroused and Dominated mood state.

B.3 Combat Scenario Example

B.3.1 Orc Boss Profile

<?xml version="1.0" encoding="UTF-8"?>

<eep:profile xmlns:eep="http://www.ia.urjc.es/eep/ProfileSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ia.urjc.es/eep/ProfileSchema ../xsd/ProfileSchema.xsd ">

<eep:consequences>

<eep:consequence eep:desirability="0.6" eep:tag="HITENEMY" />

<eep:consequence eep:desirability="-0.2" eep:tag="BEHIT" />

<eep:consequence eep:desirability="0.7" eep:tag="KILLENEMY" />

<eep:consequence eep:desirability="-0.2" eep:tag="BEKILLED" />

<eep:consequence eep:desirability="-0.1" eep:tag="BEATTACKED" />

<eep:consequence eep:desirability="-0.3" eep:tag="MOVEDAWAY" />

</eep:consequences>

<eep:actions>

<eep:action eep:praiseworthiness="0.5" eep:tag="ATTACK" />

<eep:action eep:praiseworthiness="-0.3" eep:tag="DEFEND" />

<eep:action eep:praiseworthiness="-0.7" eep:tag="MOVEAWAY" />

</eep:actions>

<eep:objects>

<eep:object eep:appealing="0.0" eep:tag="HUMANBOSS" />

<eep:object eep:appealing="0.1" eep:tag="ORCBOSS" />

<eep:object eep:appealing="0.0" eep:tag="ORC" />

</eep:objects>

<eep:relations>

<!--eep:relation eep:friendship="0.2" eep:tag="OrcBoss" /-->

<eep:relation eep:friendship="0.2" eep:tag="OrcSoldier" />

<eep:relation eep:friendship="0.2" eep:tag="OrcArcher" />

<eep:relation eep:friendship="-0.5" eep:tag="HumanBoss" />

<eep:relation eep:friendship="-0.5" eep:tag="HumanSoldier" />

<eep:relation eep:friendship="-0.5" eep:tag="HumanArcher" />

</eep:relations>

<eep:personality eep:agreeableness="-0.5" eep:conscientiousness="-0.5"

eep:extraversion="0.1" eep:neuroticism="0.3" eep:openness="-0.4" />

<eep:moodMap>

<eep:mood eep:tag="NORMAL">

<eep:location eep:pleasure="0.1" eep:arousal="0.2" eep:dominance="0.3" />

</eep:mood>

<eep:mood eep:tag="AFRAID">

<eep:location eep:pleasure="-0.8" eep:arousal="0.8" eep:dominance="-0.8" />

Appendix B: EEP Model Appendix 197

</eep:mood>

<eep:mood eep:tag="ANGRY">

<eep:location eep:pleasure="-0.1" eep:arousal="0.6" eep:dominance="0.6" />

</eep:mood>

</eep:moodMap>

</eep:profile>

B.3.2 Orc Boss’s Mood Evolution Through Time Steps

Time State P A D d(µ,Normal) d(µ,Angry) d(µ,Afraid)

0 Normal -0,22 -0,04 0,04 0,48* 0,86 1,32

1 Normal 0,56 0,56 0,51 0,62* 0,67 1,90

2 Angry 0,76 0,74 0,67 0,93 0,88* 2,15

3 Angry 0,85 0,82 0,77 1,08 0,99* 2,27

4 Angry 0,88 0,86 0,80 1,14 1,03* 2,32

5 Angry 0,90 0,88 0,83 1,18 1,06* 2,36

6 Angry 0,91 0,90 0,86 1,21 1,08* 2,38

7 Angry 0,92 0,90 0,87 1,22 1,10* 2,40

8 Angry 0,93 0,92 0,89 1,25 1,12* 2,42

9 Angry 0,93 0,92 0,89 1,25 1,12* 2,42

Table B.1: Combat Scenario: Mood State Evolution of the Orc Boss.

B.3.3 Human Archer Profile

<?xml version="1.0" encoding="UTF-8"?>

<eep:profile xmlns:eep="http://www.ia.urjc.es/eep/ProfileSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ia.urjc.es/eep/ProfileSchema ../xsd/ProfileSchema.xsd ">

<eep:consequences>

<eep:consequence eep:desirability="0.1" eep:tag="HITENEMY" />

<eep:consequence eep:desirability="-0.6" eep:tag="BEHIT" />

<eep:consequence eep:desirability="0.4" eep:tag="KILLENEMY" />

<eep:consequence eep:desirability="-0.9" eep:tag="BEKILLED" />

<eep:consequence eep:desirability="-0.05" eep:tag="BEATTACKED" />

<eep:consequence eep:desirability="-0.2" eep:tag="MOVEDAWAY" />

</eep:consequences>

<eep:actions>

<eep:action eep:praiseworthiness="0.04" eep:tag="ATTACK" />

<eep:action eep:praiseworthiness="0.2" eep:tag="DEFEND" />

<eep:action eep:praiseworthiness="-0.4" eep:tag="MOVEAWAY" />

198 Appendix B: EEP Model Appendix

</eep:actions>

<eep:objects>

<eep:object eep:appealing="0.6" eep:tag="HUMANBOSS" />

<eep:object eep:appealing="-0.1" eep:tag="ORCBOSS" />

<eep:object eep:appealing="0.0" eep:tag="ORC" />

</eep:objects>

<eep:relations>

<eep:relation eep:friendship="1.0" eep:tag="HumanBoss" />

<eep:relation eep:friendship="0.8" eep:tag="HumanSoldier" />

<!--eep:relation eep:friendship="0.9" eep:tag="HumanArcher" /-->

<eep:relation eep:friendship="-0.3" eep:tag="OrcArcher" />

<eep:relation eep:friendship="-0.3" eep:tag="OrcBoss" />

<eep:relation eep:friendship="-0.3" eep:tag="OrcSoldier" />

</eep:relations>

<eep:personality eep:agreeableness="0.5" eep:conscientiousness="-0.1"

eep:extraversion="0.4" eep:neuroticism="-0.1" eep:openness="0.4" />

<eep:moodMap>

<eep:mood eep:tag="NORMAL">

<eep:location eep:pleasure="0.2" eep:arousal="-0.1" eep:dominance="0.3" />

</eep:mood>

<eep:mood eep:tag="AFRAID">

<eep:location eep:pleasure="-0.2" eep:arousal="0.6" eep:dominance="-0.7" />

</eep:mood>

<eep:mood eep:tag="ANGRY">

<eep:location eep:pleasure="-0.2" eep:arousal="0.8" eep:dominance="0.4" />

<eep:location eep:pleasure="-0.3" eep:arousal="0.5" eep:dominance="0.1" />

</eep:mood>

</eep:moodMap>

</eep:profile>

Appendix B: EEP Model Appendix 199

B.3.4 Combat Scenario Questionnaire

Question Rating1

(1) Without considering the underneath affections and liking/disliking

relationships among the characters:

(1.a) Do you consider the behavior of the Orc Boss as believable? 1 2 3 4 5

(1.b) Do you consider the behavior of the Human Archer as believable? 1 2 3 4 5

(2) Using the information about the character profile (Orc Boss is short-

tempered and Human Archer is fearful)

(2.a) Do you consider the behavior of the Orc Boss as believable? 1 2 3 4 5

(2.b) Do you consider the behavior of the Human Archer as believable? 1 2 3 4 5

(3) Using the information about the effect that some consequences have in

the characters’ mood (the Orc Boss is enraged when it is hit by a human

enemy and the Knight killed by the orcs is considered by the archer as

been doomed)

(3.a) Do you consider the behavior of the Orc Boss as believable? 1 2 3 4 5

(3.b) Do you consider the behavior of the Human Archer as believable? 1 2 3 4 5

(4) As a summary (and knowing all the information), does the overall

sequence shown in the example seem believable?

1 2 3 4 5

Table B.2: Combat Scenario: Evaluation Questionnaire.

B.4 Storytelling Scenario Example

B.4.1 Sad Girl Profile

<?xml version="1.0" encoding="UTF-8"?>

<eep:profile xmlns:eep="http://www.ia.urjc.es/eep/ProfileSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ia.urjc.es/eep/ProfileSchema ../xsd/ProfileSchema.xsd ">

<eep:consequences>

<eep:consequence eep:desirability="-0.5" eep:tag="Talk-RUD" />

<eep:consequence eep:desirability="0.6" eep:tag="Talk-POL" />

<eep:consequence eep:desirability="0.1" eep:tag="Talk-NEU" />

<eep:consequence eep:desirability="0.9" eep:tag="Quest-Cat-Done" />

</eep:consequences>

<eep:actions>

<eep:action eep:praiseworthiness="0.1" eep:tag="Talk" />

<eep:action eep:praiseworthiness="-0.5" eep:tag="Steal" />

</eep:actions>

<eep:objects>

<eep:object eep:appealing="0.4" eep:tag="Song-Happy" />

<eep:object eep:appealing="0.5" eep:tag="Cat" />

</eep:objects>

<eep:relations>

200 Appendix B: EEP Model Appendix

<eep:relation eep:friendship="0.5" eep:tag="Player" />

<eep:relation eep:friendship="0.7" eep:tag="BreardedMerchant" />

<eep:relation eep:friendship="0.3" eep:tag="MelancholicBard" />

</eep:relations>

<eep:personality eep:agreeableness="0.5" eep:conscientiousness="-0.1"

eep:extraversion="0.4" eep:neuroticism="-0.1" eep:openness="0.4" />

<eep:moodMap>

<eep:mood eep:tag="NORMAL">

<eep:location eep:pleasure="0.2" eep:arousal="-0.1" eep:dominance="0.3" />

</eep:mood>

<eep:mood eep:tag="HAPPY">

<eep:location eep:pleasure="-0.2" eep:arousal="0.6" eep:dominance="-0.7" />

</eep:mood>

<eep:mood eep:tag="SAD">

<eep:location eep:pleasure="-0.2" eep:arousal="0.8" eep:dominance="0.4" />

</eep:mood>

</eep:moodMap>

</eep:profile>

Appendix B: EEP Model Appendix 201

B.4.2 Storytelling Questionnaire

(1) Provide the sequence of actions followed to solve

the scenario:

() Speak Polite with the Sad Girl

() Speak Rude with the Sad Girl

() Speak Neutral with the Sad Girl

() Speak Polite with the Bearded Merchant

() Speak Rude with the Bearded Merchant

() Speak Neutral with the Bearded Merchant

() Buy something to the Bearded Merchant

() Speak Polite with the Skinny Merchant

() Speak Rude with the Skinny Merchant

() Speak Neutral with the Skinny Merchant

() Buy something to the Skinny Merchant

() Obtain a rope

Question Rating2

(2) After analyzing the actions performed and the corresponding results:

(2.a) Do you consider the behavior of the Sad Girl as believable? 1 2 3 4 5

(2.b) Do you consider the behavior of the Bearded Merchant as believ-

able?

1 2 3 4 5

(2.c) Do you consider the behavior of the Melancholic Bard as believ-

able?

1 2 3 4 5

(3) As a summary (and knowing all the information), does the overall

character interaction seem believable?

1 2 3 4 5

Table B.3: Storytelling Scenario: Evaluation Questionnaire

Appendix C

WereWoLF Algorithm Appendix

Combatant Example

Anacletus HPs 320 EP 150

Dam Dam %

Attack APs EPs HPs EPs Stun Hit

AnHard 15 50 75 45 0 0.55

AnQuick 5 15 10 0 0 0.70

AnStun 10 30 10 0 20 0.65

AnBalanced 10 30 20 0 0 0.50

AnDummy 20 80 5 0 0 0.20

Dam Stun %

Defense APs EPs Red Avoid Block

AnReduction 10 30 0.20 true 0.50

AnLong 30 30 0.60 false 0.50

AnEffective 10 15 0.70 true 0.90

Where HPs are the Hit Points (the health of a combatant), the EPs are the

Exhaustion Points of the combatant (the energy of a combatant), and the APs are the

Action Points associated to an action (the time consumed to perform an action).

202

Appendix C: WereWoLF Algorithm Appendix 203

Simplified vBattle Engine

Algorithm 4: Simplified vBattle Engine

begin

Let B,R be two combatants with AB = {AB1
, . . . , ABn}, AR = {AR1

, . . . , ARm} ∈ A

the sets of actions for B and R.

while Finalization state not reached do

Let segi = {Aj , . . .} next segment of Actions and ini ∈ N the next instant counter

RecoverEnergy(B,R, ini)

RecoverStun(B,R, ini)

for Aj do

if Aj is Attack then

Resolve(Aj , S, T) → Dj ∈ D̄

end

EnergyModification(Aj , S)

end

ApplyDamages(D̄)

if B or R has no action declared then

DeclareAction(c ∈ C̄)

end

end

end

Where the function RecoverEnergy(B,R, ini) adds an amount of energy to the

combatant; and RecoverStun(B,R, ini) updates the counter of time remaining to finish

the time while a combatant is stunned.

Resolve(Aj , S, T) → Dj

begin

if Aj hits then

HitGrade(Aj)→ Goff

if T has a defence declared then

DefenceGrade(ATi
)→ Gdef

end

DamageCalculus(Goff −Gdef , ATi
)→ Dj

end

else
0→ Dj

end

return Dj

end

Appendix D

vBattle Experimentation

Framework

D.1 AGCBAR Architectural Dictionaries

Event Dictionary

The following events can produce changes in the characters’ mood state in the

vBattle experiment:

• Move(Combatant,Position): Produced each time a combatant completes a move-

ment.

• Attack(CombatantSrc,CombatantTgt,Result): Every attack made can produce an

emotional response in the characters that perceive it.

• Wound(Combatant,Wound): The wounds produced by an attack.

• Dead(Combatant): A Combatant’s death is an important event to the mood state

evolution.

• Fled(Combatant): In many terms, this event is as important as the Dead event.

Moods Dictionary

The Mood Dynamics adopted in the vBattle relies on the following moods:

• Normal: The default mood for the combatants. The orders are followed and the

combatants behave according to the objectives of the scenario.

• Angry: It is an uneasy state where the combatant tends to act more offensively.

• Afraid: In this state, the combatants become more defensive because the adverse

events they perceived makes them be concerned about their own safety.

204

Appendix D: vBattle Experimentation Framework 205

• Broken: This state represents a total loss of courage. The Broken characters should

try to flee desperately.

Environment State Dictionary

The representation of the environment in the vBattle is made according to the

complete visual information within the range of the characters. The characters, in absence

of vision constrains such as “fog-of-war” (a vision range limitation), have a complete infor-

mation of the environment. This information includes: the Battlefield scenario elements,

i.e. the cell information, the combatants and their states; and is also includes the rest of

the game state information.

Actions Dictionary

The actions described in this dictionary are the combatant’s actions specified in the

Core Rules of the vBattle. We describe the actions of moving to each of the six possible

positions in the neighborhood of a combatant. The different attacks of the combatant are

described, from the low-level actions, as:

• Soft Attack: The default attack. Neither the fastest nor the most damaging.

• Quick Attack: The fastest attack launched by a combatant, in terms of the APs

consumed.

• Hard Attack: The most damaging attack of the combatant.

• Dummy Attack: An attack that is not associated to any of the previous ones.

The defenses are described as in the vBattle design:

• No-Defense: The Combatant will not try to defend himself from the incoming attack

• Soft Block : A less time-consuming defensive action.

• Block : The default defense of the combatant when he is in melee combat.

• Full Block : An improved but very time-consuming defensive action.

• Dodge: This is a special type of defense applicable while the combatant is running or

firing a projectile.

The combatant also has two additional actions:

• Run: Action to increase the movement rate,

• Rest: Action to recover the Fatigue Points.

206 Appendix D: vBattle Experimentation Framework

Goals Dictionary

Given the different rules of the vBattle, we describe the basic goals of:

• Preserve Energy: make efficient attacks and defenses and do not run.

• Maximize Enemy Damage: when we try to find the way to kill or damage as many

enemies as we can.

• Minimize Own Damage: the objective is to remain alive and keep fighting.

• Run Away: the combatant tries to reach the closest Escape Zone in the minimum time.

D.2 EEP Model Conceptual Dictionaries

Consequences

HitEnemy BeHit

KillEnemy BeKilled

BeAttacked Fled

WoundEnemy BeWounded

MissAttack BlockAttack

Inferiority Superiority

Actions

Attack Block

Flee

Objects

Inferiority Superiority

Appendix E

Resumen en español

–¿Y tu papá en qué trabaja?

– No sé, juega al ordenador.

Caludia Peña

E.1 Antecedentes

E.1.1 ¿Por qué hacer una tesis sobre videojuegos?

La principal razó para investigar en el campo de los videojuegos es la perspectiva

de negocio, debida a la constante expansión económica the este sector. 1

El último informe sobre las tendencias de mercado realizado por “Gaming Ecosys-

tems 2011” 2 constata que en EE.UU. la venta de hardware y juegos superó en 2010 los

67,000 millones de dólares y en 2011 los 74,000 millones de dólares. Estos datos indican que

la industria del videojuego se posiciona a la cabeza del consumo de entretenimiento y ocio,

superando al cine y la música desde los principios del siglo XXI, aśı se muestra en el análisis

de CBS: el consumo de videojuegos en EE.UU. con 23,000 millones de dólares es tres veces

mayor que el gasto en música, 6,900 millones, y el doble que el cine, 10,600 millones. En

cuanto al desarrollo de software, los números indican que el desarrollo de videojuegos no

sólo representa la rama más rentable de Ingenieŕıa y Telecomunicaciones, sino que es la que

mayores ingresos brutos genera.

El desarrollo de videojuegos, como cualquier otra industria dedicada al desarrollo

de software, tiene sus propias particularidades: se circunscribe a un ciclo de desarrollo muy

corto en el que las actividades de los distintos grupos, como diseñadores gráficos y músicos,

1http://www.theesa.com/facts/pdfs/VideoGames21stCentury 2010.pdf

2http://www.gartner.com/newsroom/id/1737414

207

208 Appendix E: Resumen en español

guionistas o editores, consumen un volumen significativo de tiempo y de recursos, com-

parado con los programadores [8]. Con este panorama, el desarrollo de software puro queda

restringido a determinadas áreas: inteligencia artificial, programación de efectos gráficos

y unificación de las diferentes partes del proyecto. Este tipo de proceso de desarrollo se

basa, fundamentalmente, en potentes entornos de trabajo capaces de soportar un desarrollo

rápido y eficaz [70] que incluyen: motores gráficos, mecanismos para el control de eventos,

plantillas para los mecanismos de control, algoritmos de búsqueda, planificación y toma de

decisiones, entre otros.

Hoy en d́ıa, la evolución de la industria de los videojuegos se encamina hacia la

consecución de productos cada vez más realistas, no sólo en términos de la calidad visual o

gráfica, sino también en el refinamiento de los patrones de conducta y comportamiento de

los diferentes protagonistas del juego.

En los últimos años, los juegos multijugador online (MMOG), como World of War-

craft, aparecen para satisfacer las necesidades de los usuarios más exigentes que buscan en

los personajes algo más que un perfil estereotipado, este plus lo aportan otros jugadores

humanos quienes se convierten en un enemigo o un aliado interesante y que proporcionan

realismo, reaccionando de manera verosimil y sorprendente antes los distintos acontecimien-

tos que se van sucediendo durante el transcurrir del juego; este tipo de conductas no se ha

logrado simular plenamente en los personajes de los jugadores virtuales cuyos patrones de

comportamiento se basan en controladores de inteligencia artificial. Los MMOG, por tanto,

suponen una revolución que aporta valor añadido enriqueciendo la experiencia de usuario

y produciendo el disfrute de un gran número de jugadores que interactúan en el mismo

espacio tiempo virtual.

Los MMOG son una realidad que ha conseguido, en los últimos años, impulsar la

industria de los videojuegos, aśı lo constata el informe de tendencias Newzoo 3, el impacto

de este tipo de juegos es cada vez mayor en número de jugadores, porcentaje de usuarios

dispuestos a pagar por jugar y el beneficio económico generado. Sin embargo, los jugadores

demandan juegos cada vez más sofisticados, no sólo en la consecución de entornos gráficos

más realistas, sino en otros muchos aspectos como: patrones de comportamiento humano,

estrategias de adaptación de los oponentes, fluidez y nivel de generación de escenarios o la

interacción con agentes externos y el medio ambiente.

Además, la industria del videojuego, en particular la industria europea, tiene que

competir con grandes compañ́ıas de EE.UU. o con empresas capaces de reclutar grandes

equipos para el diseño y desarrollo de sucesivas versiones de cualquiera de los “juegos de

clase AAA” (producciones de videojuego con gran presupuesto) que cada año ven la luz

en todo el mundo. Estos equipos pueden desarrollar no sólo el contenido para el nuevo

juego, sino también recursos adicionales para actualizar o volver a diseñar la plataforma de

software que utilizan.

El éxito del desarrollo de videojuegos, hoy por hoy, no sólo se debe a los avances

3http://www.newzoo.com/trend-reports/mmo-trend-report/

Appendix E: Resumen en español 209

tecnológicos que le acompañan, también tiene un papel important́ısimo la creatividad de

los diseñadores de juegos en la concepción o el enfoque de cada nuevo producto. 4 Un claro

ejemplo, lo encontramos en las tres principales consolas de uso doméstico: Sony PS3 ha sido

la más avanzada en cuanto a tecnoloǵıa base, seguida de Microsoft Xbox y la zaga de ambas

tendŕıamos Nintendo Wii. A pesar de la ventaja tecnológica de Sony, los desarrolladores Wii

han hecho sobresalir a Nintendo gracias al éxito alcanzado por el diseño de juegos altamente

participativos e interactivos que se han abierto a nuevos mercados, hecho que se ha visto

reflejado en el aumento de la cuota de mercado en las acciones de Nintendo consiguiendo

un 27 % más que las acciones de Sony. Este hecho no hubiera sido posible, si todo esto no

hubiera ido acompañado de la aparición de nuevos dispositivos capaces de hacer llegar al

usuario esas brillantes ideas de juegos interactivos.

Todo lo dicho anteriormente, y observando las cifras económicas que se mane-

jan entorno a la industria del videojuego, queda patente su importancia en términos de

inversiones, aśı como el interés de los distintos campos de investigación de las ciencias

computacionales que se pueden ver implicadas en este tipo de proyectos5.

¿Por qué escribir una tesis de IA de videojuegos?

En primer lugar, la necesidad de desarrollar tecnoloǵıas que se adapten a las necesi-

dades de la industria del videojuego, tal y como mencionaba Ralph Edwards en su art́ıculo

sobre la economı́a de juegos6:

. . . el tamaño de los equipos necesarios, para hacer juegos para las consolas
más modernas, duplica, en comparación con la generación anterior, el número
de modeladores, animadores y otros artistas necesarios, por lo qué el coste de
desarrollo aumenta significativamente para cada nueva generación de consolas.

Por otra parte, los “juegos de clase AAA” requieren modelos de personajes cada

vez más sofisticados. Sin embargo, mientras que en este tipo de juegos los aspectos visuales

de los personajes virtuales están, por lo general, bien logrados, recientemente su compor-

tamiento ha pasado a considerarse tan importante como los efectos visuales. En los últimos

años, el desarrollo de juegos ha aplicado soluciones genéricas estáticas que derivaron en

modelos de comportamiento nada flexibles y poco realistas; esto puede provocar que los

jugadores se sientan poco satisfechos con el juego ya que quieren es percibir la sensación

de que los personajes en el escenario se mueven impulsados por un propósito, una meta,

y no que parezca que sólo están deambulando por la escena. Con el fin de conseguir esto,

se han adaptado técnicas de razonamiento para producir en los personajes virtuales un

comportamiento “racional”, aśı como en las interacciones que el jugador tenga con ellos.

4http://www.vgchartz.com/tools/hw date.php?Reg=Global&=anual term

5http://www.polygon.com/2012/10/1/3439738/the-state-of-games-state-of-aaa

6http://www.ign.com/articles/2006/05/06/the-economics-of-game-publishing

210 Appendix E: Resumen en español

Para lograr credibilidad y realismo en los personajes virtuales, los juegos deben ser también

capaces de, a veces, sorprender y desafiar al jugador con la toma de decisiones no del todo

racionales, motivadas por una respuesta emocional ante el entorno y los acontecimientos

recientes. Esta tarea crece en complejidad, con el número de diferentes agentes de juego o

con el aumento del número de acciones posibles.

Aun cuando la calidad gráfica de un juego es uno de los principales atractivos

para la venta, la fidelidad de los usuarios, la compra de nuevas ediciones, año tras año, se

basa en otros aspectos como el guión o la historia. Un factor clave en esta experiencia de

juego es el comportamiento de los agentes en el juego [33]. Debemos tener en cuenta que el

comportamiento de los agentes, aśı como el resto de los aspectos del juego, debe responder

a las exigencias de esta industria. Teniendo en cuenta todos estos aspectos, el ajuste en

costes es un requisito del diseño de controladores de agente de los videojuegos modernos.

Como se ha indicado anteriormente, además del componente gráfico, el éxito de un

juego también depende, en gran medida, de otros aspectos como la trama o la experiencia

de juego. Un factor clave de la experiencia de juego es el comportamiento de los agentes,

que son controlados por las rutinas de inteligencia artificial (controladores de agente y

planificadores) [91]. La inteligencia artificial en los videojuegos ha evolucionado mucho en

los últimos años, técnicas de inteligencia más avanzadas han sustituido a los controladores

basados en reglas tradicionales. A pesar de que estos nuevos métodos han mejorado la

calidad de los nuevos controladores, requieren una gran cantidad de codificación manual y

ajuste lo que supone un gran esfuerzo de los desarrolladores. Por otra parte, el desarrollo

de comportamientos más créıbles y semejantes a los humanos sigue siendo una asignatura

pendiente en los videojuegos modernos.

La industria tiene que adoptar nuevas tecnoloǵıas para lograr estos resultados en

un marco limitado de tiempo, consecuencia de los tiempos y los flujos de trabajo implicados

en su desarrollo [17]. Por desgracia, la industria, empujada por los plazos del mercado,

invierte menos de lo que le gustaŕıa a la investigación para producir nuevos avances en

este campo. La razón es que es importante para acelerar el tiempo de desarrollo para

controladores de juego para alcanzar la mejor calidad de el controlador en una cantidad

limitada de tiempo. Tienden a aplicar esos procedimientos bien establecidos para desarrollar

controladores existentes.

La industria sigue toda la trayectoria anteriormente mencionada, en la que en-

cuentra cabida la investigación activa en mecanismos de Inteligencia Artificial adaptativa y

personalizada con dos objetivos fundamentales: (1) modelado de comportamiento de

personajes, para lograr conductas más créıbles y (2) colaborar en el de diseño

de juegos con la codificación de dispositivos de juego inteligentes.

Appendix E: Resumen en español 211

E.2 Objetivos

La motivación de esta tesis está fundamentada en la idea: “El éxito de un nuevo

videojuego no sólo se basan en la tecnoloǵıa, también está influenciado por el conjunto de

ideas que contribuyen a la creación de un entorno desafiante, adictivo y novedoso”.

Lo que conduce a la siguiente hipótesis:

Se puede mejorar el desarrollo de los controladores de los personajes virtuales
de los videojuegos aplicando técnicas de aprendizaje y rasgos de personalidad.

La creación automática, o asistida por ordenador, de los controladores, unida a

la aplicación de modelos emocionales en el desarrollo de caracteres de personajes, puede

contribuir mejorando el diseño de entornos simulados en los videojuegos. Se pueden incluir

en el ciclo de desarrollo de videojuegos herramientas de apoyo, que doten de mayor realidad

al entorno y a la experiencia del jugador, construyendo personajes virtuales más créıbles.

Partiendo de esta idea, este trabajo tiene dos objetivos principales:

1. Existen numerosas cuestiones que pueden mejorar la fase de desarrollo de software de

entretenimiento, muchas de ellas centradas en el comportamiento del personaje,

más allá del los aspectos visuales y la animación. La presente tesis pretende dar un

paso adelante en los métodos y mecanismos que contribuyen a mejorar este particular

desarrollo de software contribuyendo en la investigación de:

(a) La creación automática de controladores productores de estrategias,

que sirvan como punto de partida, para los personajes. La parte dedi-

cada a la programación de controladores de personajes consume mucho tiempo

y suele contener errores, por lo que cualquier mecanismo que pueda crear au-

tomáticamente comportamientos básicos en ciertos escenarios supondrá un ahorro

de recursos en la fase de desarrollo.

(b) Dotar de realismo al videojuego proporciona mayor capacidad de inmersión en

la historia y en la trama del mismo; este aspecto va adquiriendo cada vez más

importancia en la industria dedicada al desarrollo de nuevos videojuegos. La

parte gráfica, que ha mostrado un avance importante, debe ser fiel a la realidad

e ir acompañada de un comportamiento y conducta de los personajes créıble.

Por ello, identificamos la necesidad de dotar a los personajes de car-

acteŕısticas emocionales y de personalidad que se vean influidas por la

percepción del entorno y las circunstancias circundantes.

Para lograr este objetivo, proponemos la creación de un modelo para intro-

ducir un mecanismo formal y estandarizado capaz de crear automáticamente

controladores generadores de estrategias y dotar de caracteŕısticas emocionales a los

personajes.

212 Appendix E: Resumen en español

2. La arquitectura debe ser flexible, y estar abierta a la inclusión de implementaciones de

controladores y modelos emocionales, para que pueda ser utilizada por diferentes en-

foques compatibles con los requisitos de la arquitectura, lo que conduce a un modelo

más adaptable que pueda beneficiarse de los conocimientos de los diferentes equipos

de desarrollo, especializados en técnicas que se pueden aplicar al desarrollo a través

de esta arquitectura.

3. En cuanto a la experimentación y la aplicación, es indispensable crear un conjunto

de técnicas, modelos o algoritmos, que puedan aplicarse en la arquitectura que

proponemos y que cumplan con los requisitos del entorno de aplicación, no sólo en el as-

pectos computacionales, sino también en el objetivo final de construir personajes más

créıbles capaces de ser controlados por los comportamientos creados automáticamente.

Por lo tanto, se presenta el objetivo de crear un algoritmo capaz de generar estrategias

en entornos complejos (cualquier escenario de un videojuego comercial), en las cuales

el estado de ánimo del personaje fija las metas. El personaje debe experimentar la

emoción producida por los acontecimientos del entorno y alcanzar diferentes estados

de ánimo, por ello tenemos que crear un modelo emocional, lo suficientemente flexi-

ble, que pueda ser utilizado de modo general en cualquier entorno de videojuegos y lo

suficientemente potente como para representar fielmente los mecanismos emocionales.

4. Por último, es crucial demostrar la arquitectura y los modelos en un entorno

real de desarrollo de videojuegos, teniendo en cuenta las limitaciones del proceso

de desarrollo de este tipo de software: el tiempo y la complejidad. La arquitectura y los

modelos que proponemos deben ser probados en productos que validen su aplicación

en futuros desarrollos.

E.3 Metodoloǵıa

Esta tesis aborda los objetivos descritos anteriormente: crear una arquitectura que

incluya los componentes necesarios capaces de sostener la creación automática de contro-

ladores para personajes de videojuegos y dotar a estos personajes de un comportamiento

emocional créıble.

Por lo tanto, aplicamos un enfoque descendente en el diseño de la solución.

➀ Creamos una descripción general de los componentes que queremos incluir (detallada

en la sección 1.3.1).

➁ Analizamos los diferentes componentes con un enfoque ascendente extrayendo las

principales caracteŕısticas del entorno de la aplicación, porque queremos una arqui-

tectura aplicable al campo espećıfico del diseño y de producción de videojuegos. Esta

fase detalla los procesos a realizar por cada uno de los componentes de acuerdo a un

Appendix E: Resumen en español 213

conjunto de pre y post condiciones desarrollando una especificación abstracta de los

componentes procesales (Secciones 1.3.2 y 1.3.3).

➂ Establecemos las interfaces de intercambio de información necesarias, que otorgan la

intercomunicación entre los componentes de la arquitectura. Describimos los datos de

entrada requeridos por los componentes y los datos de salida por ellos producidos.

Con los tres pasos mencionados anteriormente, proponemos la arquitectura descrita en la

sección 1.3.4.

➃ Aplicamos la arquitectura dentro de un marco de videojuegos como ejemplo de apli-

cación de las técnicas para crear controladores automáticos y dotar de comportamiento

emocional a los personajes en el escenario de juego.

➄ Validamos cada uno de los componentes implementados de la arquitectura, teniendo

en cuenta sus requisitos, y probamos cada uno de ellos de forma independiente.

➅ Probamos la integración de los componentes para proporcionar una solución completa

en el contexto de un videojuego.

E.4 Conclusiones

E.4.1 Mejorar la experiencia del jugador

La presente tesis se centra en la aplicación dentro de los modelos de desarrollo de

software de videojuegos de los objetivos presentados en la sección 1.2. Con este fin, teniendo

en cuenta otros aspectos al margen de los elementos gráficos, enfocamos la investigación en

los siguientes puntos orientados a mejorar la experiencia del jugador:

1. Investigamos el campo de la psicoloǵıa cognitiva con el fin de encontrar modelos apli-

cables dentro del desarrollo de software de videojuegos y creamos el Modelo EEP

(descrito en el caṕıtulo 4). Tenemos en cuenta el componente afectivo de los per-

sonajes, consideramos que supone una mejora importante incluir este aspecto en las

escenas de los videojuegos para aportar mayor realismo.

2. Analizamos las técnicas de Soft Computing adecuadas a este tipo de entorno y de-

sarrollamos el algoritmo WEREWoLF (detallado en el caṕıtulo 5). La creación de

los controladores de los personajes en la mayoŕıa de los videojuegos consume mucho

tiempo, tiende a contener errores de programación y puede no suponer un reto atrac-

tivo para los jugadores. Las soluciones de comportamiento estático de los personajes se

puede mejorar aplicando mecanismos que las complementen. La creación automática

de contenidos, en nuestro caso los controladores de patrones de comportamiento, son

una tendencia a seguir por la industria del videojuego.

214 Appendix E: Resumen en español

3. Diseñamos la Arquitectura AGCBAR (caṕıtulo 3). Si bien Modelo EEP y el algoritmo

WEREWoLF pueden aplicarse de manera independiente en algunos desarrollos de

videojuegos, consideramos que es más fácil obtener todo su potencial si se utilizan de

manera conjunta controlados por una arquitectura. La Arquitectura AGCBAR, por lo

tanto, proporciona las caracteŕısticas necesarias para poder aplicar el modelo EPP y

el algoritmo WEREWoLF, tanto de manera aislada como conjunta, y, además, define

la comunicación que debe existir entre estos y los motores de videojuegos.

E.4.2 Contribuciones al modelado emocional

El Modelado Emocional es un tema ampliamente tratado por diversas disciplinas

y con variado potencial de aplicación. En esta tesis hemos centrado nuestra atención en

la explotación los modelos emocionales aplicados a videojuegos. Para poder hacer encajar

la modelización emocional dentro de la presente tesis, hemos seguido una serie de pasos

preliminares:

1. Indentificación de los requisitos necesarios para la simulación de emociones en el campo

de los videojuegos.

2. Análisis de los modelos emocionales existentes aplicados a los personajes virtuales.

3. Estudio de teoŕıas cognitivas:

(a) Ortony, et al. Modelo OCC para el análisis estructural de las emociones.

(b) McRae and Costa. Cinco grandes factores de la personalidad.

(c) Mehrabian and Russel. Modelo Temperamental PAD para la representación de

estados de ánimo y emociones.

En esta tesis, contribuimos al campo de la investigación emocional desarrollando

un nuevo modelo al que hemos llamado EEP con las siguientes caracteŕısticas:

• define una serie de Mood Tags para etiquetar distintos estados de ánimo.

• se basa en un formalismo matemático, llamado Mood Vector Space (MVS), una ex-

tensión de un Espacio de Hilbert con las correspondientes operaciones para propor-

cionar la combinación de emociones y dinámica de estados de ánimo.

• incluye una estructura de análisis de emociones producida por los eventos percibidos

por los personajes.

• es capaz de describir perfiles de personalidad de los personajes y traducirlos en una

tendencia de ánimo de los personajes inicial y central.

Además, el Modelos EEP ha sido evaludado como componente integral del motor

de un videojuego comercial en dos escenarios diferentes:

Appendix E: Resumen en español 215

1. Un escenario de combate en el cual el ánimo influye en el comportamiento de los

distintos personajes. Los comportamientos están implementados como distintos con-

troladores que manejan a los personajes dependiendo del estado de ánimo en el que

se encuentren.

2. Un escenario de cómo contar aventuras en el que el argumento evoluciona a través de

transiciones emocionales de una serie de peronajes no jugadores del entorno.

Por último, hemos llevado a cabo un análisis comparativo, en términos de carac-

teŕısticas y capacidades expresivas, entre nuestro Modelo EEP y los ya existentes EMA y

ALMA.

E.4.3 Contribuciones en el contexto de los controladores de aprendizaje

Como es sabido, el diseño de los controladores de personajes consume mucho

tiempo y es propenso a errores, por lo que las personas dedicadas al desarrollo de vid-

iojuegos tienen que dedicar mucho esfuerzo en el diseño y la implementación del juego. Por

este motivo, encontrar la manera de producir de manera automática código fiable de control

de personaje es muy interesante para la industria del videojuego.

La presente tesis propone una nueva estrategia para construir controladores de

personajes en escenarios de combate por medio de:

1. Una definición previa de un conjunto de controladores de referencia. Estos contro-

ladores pueden ser creados a mano o como resultado de un proceso automático previo

de controladores de personajes.

2. Un proceso iterativo de entrenamiento para crear de manera automática nuevos con-

troladores que compitan contra el controlador de referencia.

3. Extraer la nueva estrategia aprendida como un nuevo paquete de control.

El elemento clave de este proceso de entrenamiento involucra un algoritmo de

aprendizaje para los controladores de personaje. En esta tesis proponemos un innovador

algoritmo,WEREWoLF, que se basa en la combinación de dos técnicas de inteligencia com-

putacional:

1. Computación Evolutiva. Hemos probado dos técnicas evolutivas distintas, Estimation

of Distribution Algorithms (EDA) y Differential Evolution (DE).

2. Aprendizaje reforzado. Hemos considerado dos alternativas: SARSA y WoLF.

Las exhaustivas pruebas de experimentación han conducido a la creación de la

nueva estrategia de aprendizaje propuesta (WEREWoLF) frente a los componentes de

aprendizaje reforzado básicos. Los resultados obtenidos demuestran claramente que la con-

figuración del algoritmo WEREWoLF usando una estrategia de Evolución Diferencial junto

216 Appendix E: Resumen en español

con el algoritmo de aprendizaje WoLF tiene mejor rendimiento que el resto de configura-

ciones y algoritmos básicos. Las pruebas experimentales están respaldadas por análisis

estad́ıstico para confirmar los resultados con suficiente robustez.

E.4.4 Contribución en el contexto de desarrollo de arquitecturas de juego

Con el fin de integrar las contribuciones anteriormente mencionadas en un entorno

de trabajo unificado, esta tesis propone una nueva arquitectura de componentes nueva que

cubre:

1. Dinámicas de estados de ánimo, que engloba el componente de simulación afectiva

deseado para los personajes del videojuego.

2. Creación automática de controladores, que tiene en consideración el proceso de creación

de las diferentes estrategias de los personajes en los entornos del videojuego.

La nueva arquitectura de componentes presentada, AGCBAR, para proporcionar

la creación automática de controladores de comportamiento con respuestas afectivas tiene

dos fases de aplicación:

1. Generación Off-Line de estrategias. En esta fase radican los estados de diseño y desar-

rollo de la producción del videojuego y dirige la Creación Automática de Controlador.

2. Acción en tiempo de ejecución y selección de estrategias. Esta fase orquesta las

Dinámicas de estados de ánimo e incluye en el personaje los distintos controladores

creados automáticamente.

Por último, basándose en la Arquitectura AGCBAR, esta tesis proporciona un

entorno completo para investigar otros muchos aspectos de la Inteligencia Artificial en

videojuegos. La flexibilidad de la arquitectura le proporciona la posibilidad de sustituir

cualquier componente con el fin de evaluar otras técnicas y modelos.

References

[1] C. Amato and G. Shani. High-Level Reinforcement Learning in Strategy Games. In
9th Inter. Conf. on Autonomous Agents and Multiagent Systems, pages 75–82, 2010.

[2] G. Ball and J. Bresse. Embodied Conversational Agents, chapter Emotion and Person-
ality in a Conversational Agent, pages 189–219. MIT Press, 2000.

[3] A. Bartish and C. Thevathayan. BDI Agents for Game Development. In 1st Inter.
Conf. on Autonomous Agents and Multiagent Systems, pages 668–669, 2002.

[4] C. Bartneck. How Convincing is Mr. Data’s Smile: Affective Expressions of Machines.
User Modeling and User-Adapted Interaction, 11(4):279–295, 2001.

[5] C. Bartneck. Integrating the OCC Model of Emotions in Embodied Characters. In
Proc. of the Workshop on Virtual Conversational Characters: Applications, Methods,
and Research Challenges, 2002.

[6] C. Bartneck, M. J. Lyons, and M. Saerbeck. The Relationship Between Emotion Models
and Artificial Intelligence. In SAB2008 Workshop on The Role of Emotion in Adaptive
Behavior and Cognitive Robotics, Osaka, 2008.

[7] C. Becker-Asano. WASABI: Affect Simulation for Agents with Believable Interactivity.
PhD thesis, F. of Technology, Uni. of Bielefeld, https://www.becker-asano.de/Becker-
Asano WASABI Thesis.pdf, 2008.

[8] E. Bethke. Game Development and Production. Wordware Publishing Inc., 2003.

[9] B. Boehm, B. Clark, E. Horowitz, R. Madachy, R. Shelby, and C. Westland. Cost
Models for Future Software Life Cycle Processes: COCOMOTM2.0. Annals of Software
Engineering, 1:57–94, 1995.

[10] M. Bowling and M. Veloso. An Analysis of Stochastic Game Theory for Multiagent
Reinforcement Learning. School of Computer Science. Carnegie Mellon University.
Course Report, October 2000.

[11] M. Bowling and M. Veloso. Multiagent Learning Using a Variable Learning Rate.
Artificial Intelligence, 136:215–250, 2002.

[12] B. Brathwaite and I. Schreiber. Challenges for Game Designers. Charles River Media,
2009.

217

218 References

[13] B. D. Bryant and R. Miikkulainen. Neuroevolution for Adaptive Teams. In Proc.
of the 2003 Congress on Evolutionary Computation (CEC 2003), pages 2194–2201,
Piscataway, NJ, 2003. IEEE.

[14] S. Bura. High-Level Character Authoring & Utility AI in Storybricks.
http://www.storybricks.com/, June 2012.

[15] B. Carolis, C. Pelachaud, I.. Poggi, and M. Steedman. APML, a Markup Language for
Believable Behavior Generation. In Helmut Prendinger and Mitsuru Ishizuka, editors,
Life-Like Characters, Cognitive Technologies, pages 65–85. Springer Berlin Heidelberg,
2004.

[16] A. Champandard. Behavior Trees for Next-Gen Game AI. In Game Developers Con-
ference, 2007.

[17] H. Chandler. The Game Production Handbook (Game Development Series). Charles
River Media, Inc., Rockland, MA, USA, 2005.

[18] C. Claus and C. Boutilier. The Dynamics of Reinforcement Learning in Cooperative
Multiagent Systems. In AAAI ’98/IAAI ’98: Proc. of the 15th Nat./10th Conf. on
Artificial Intelligence/Innovative Applications of Artificial Intelligence, pages 746–752,
Menlo Park, CA, USA, 1998. American Association for Artificial Intelligence.

[19] A. R. Damasio. Descartes’ Error: Emotion, Reason, and the Human Brain. Harper
Perennial, 1 edition, November 1995.

[20] S. Das and P. N. Suganthan. Differential Evolution: A Survey of the State-of-the-Art.
IEEE Trans. Evolutionary Computation, 15(1):4–31, 2011.

[21] J. Dias and A. Paiva. Feeling and Reasoning: A Computational Model for Emotional
Characters. In Progress in Artificial Intelligence, volume 3808 of Lecture Notes in
Computer Science, pages 127–140. Springer Berlin Heidelberg, 2005.

[22] M. S. El-Nasr, J. Yen, and T. R. Ioerger. FLAME-Fuzzy Logic Adaptive Model of
Emotions. Autonomous Agents and Multi-Agent Systems, 3:219–257, September 2000.

[23] P. C. Ellsworth and K. R. Scherer. Handbook of the Affective Sciences, chapter Ap-
praisal Processes in Emotion. Oxford University Press, 2003.

[24] E. Fossey, C. Harvey, F. Mcdermott, and L. Davidson. Understanding and Evaluating
Qualitative Research. Australian and New Zealand Journal of Psychiatry, 36(6):717–
732, 2002.

[25] D. Fradejas. Visualizador 3D y Mejoras de Funcionalidad para el Framework vBattle.
Master’s thesis, Universidad Rey Juan Carlos, 2013.

[26] N. H. Frijda. The Laws of Emotions. American Phycologist, 43:349–358, 1988.

[27] L. Galway, D. Charles, and M. Black. Machine Learning in Digital Games: a Survey.
Artificial Intelligence Review, 29:123–161, 2008.

References 219

[28] D. Garlan. Software Architecture: a Roadmap. In ICSE 00: Proc. of the Conf. on The
Future of Software Engineering, pages 91–101. ACM Press, 2000.

[29] P. Gebhard. ALMA: a Layered Model of Affect. In AAMAS ’05: Proc. of the 4th Inter.
J. Conf. on Autonomous agents and MAS, pages 29–36, New York, NY, USA, 2005.
ACM.

[30] T. Graepel, R. Herbrich, and J. Gold. Learning to Fight. In Proc. of the Inter. Conf.
on Computer Games: Artificial Intelligence, Design and Education, 2004.

[31] J. Gratch. Émile: Marshalling Passions in Training and Education. In Proc. of Au-
tonomous Agents, 2000.

[32] J. Hu and M. P. Wellman. Multiagent Reinforcement Learning: Theoretical Framework
and an Algorithm. In Proc. of the 15th Inter. Conf. on Machine Learning, pages 242–
250, 1998.

[33] K. Isbister and N. Schaffer. Game Usability: Advancing the Player Experience. Morgan
Kaufmann, August 2008.

[34] J. Ito, D. Pynadath, and S. Marsella. Modeling Self–Deception within a Decision-
Theoretic framework. In 8th Inter. Conf. on Intelligent Virtual Agents, 2008.

[35] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement Learning: A Survey.
Journal of Artificial Intelligence Research, 4:235–285, 1996.

[36] P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña. Optimization in Continuous
Domains by Learning and Simulation of Gaussian Networks. In Proc. of the 2000
Genetic and Evolutionary Computation Conference, pages 201–204, Las Vegas, Nevada,
USA, 2000.

[37] P. Larrañaga and J. A. Lozano, editors. Estimation of Distribution Algorithms: A New
Tool for Evolutionary Computation. Kluwer, Boston, MA, 2002.

[38] A. LaTorre, J. M. Peña, S. Muelas, and A. Freitas. Learning Hybridization Strategies
in Evolutionary Algorithms. Intelligend Data Analysis, 14(3), 2010.

[39] R. Lazarus. Emotion and Adaptation. Oxford University Press, 1991.

[40] J. Lester, J. L. Voerman, S. G. Towns, and C. B. Callaway. COSMO: A Life-Like Ani-
mated Pedagogical Agent with Deictic Believability. In Proc. of the IJCAI97 Workshop
on Animated Interface Agents: Making them Intelligent, 1997.

[41] S. M. Lucas and G. Kendall. Evolutionary Computation and Games. IEEE Computa-
tional Intelligence Magazine, 1:10–18, February 2006.

[42] C. Madeira, V. Corruble, G. Ramalho, and B. Ratitch. Bootstrapping the Learning
Process for the Semi-Automated Design of a Challenging Game AI. In AAAI 2004
workshop on Challenges in Game AI, pages 72–76, 2004.

220 References

[43] D. Maravall, J. de Lope, and J. A. Martin. Hybridizing Evolutionary Computation and
Reinforcement Learning for the Design of Almost Universal Controllers for Autonomous
Robots. Neurocomputing, 72(4–6):887–894, 2009.

[44] S. Marsella, J. Gratch, and P. Petta. A Blueprint for Affective Computing: A Source-
book and Manual, chapter Computational Models of Emotions, pages 21–47. Oxford
University Press, 2010.

[45] S. Marsella, W. L. Johnson, and C. LaBore. Interactive Pedagogical Drama. In Int.
Conf. on Autonomous Agents, Agents, pages 301–308, 2000.

[46] S. C. Marsella and J. Gratch. EMA: A Process Model of Appraisal Dynamics. Journal
of Cognitive Systems Research, 10:70–90, 2009.

[47] C. Martinho. Emotions in Motion: Short-Time Development of Believable Pathematic
Agents in Intelligent Virtual Environments. Master’s thesis, Universidade Tecnica de
Lisboa, 1999.

[48] R. R. McCrae and P.T. Costa. The Five-Factor Model of Personality: Theoretical
Perspectives, chapter Toward a New Generation of Personality Theories: Theoretical
Contexts for the Five-Factor Model, pages 51–87. 1996.

[49] A. Mehrabian. Framework for a Comprehensive Description and Measurement of Emo-
tional States. Genetic, Social, and General Psychology Monographs, 121:339–361, 1995.

[50] A. Mehrabian. Analysis of the BigFive Personality Factors in Terms of the PAD
Temperament Model. Australian Journal of Psychology, 48(2):86–92, 1996.

[51] A. Mehrabian. Pleasure-Arousal-Dominance: A General Framework for Describing and
Measuring Individual Differences in Temperament. In Current Psychology, volume 14,
pages 261–292, 1996.

[52] A. Mehrabian and J. A. Russell. An Approach to Environmental Psychology. The MIT
Press, 1974.

[53] H. Mühlenbein and G. Paaß. From Recombination of Genes to the Estimation of
Distributions I. Binary Parameters. 4th Inter. Conf. on Parallel Problem Solving from
Nature, 1141:178–187, 1996.

[54] A. Moors, J. De Houwer, and P. Eelen. Unintentional Processing of Motivational
Valence. Quaterly Journal of Experimental Psychology. A, Human Experimental Psy-
chology, 58(6):1043–1063, 2005.

[55] L. B. Morelli and E. Y. Nakagawa. A Panorama of Software Architectures in Game
Development. In 23rd Inter. Conf. on Software Engineering & Knowledge Engineering,
pages 752–757, 2011.

[56] D. Moriarty, A. Schultz, and J. Grefenstette. Evolutionary Algorithms for Reinforce-
ment Learning. Journal of Artificial Intelligence Research, 11:241–276, 1999.

References 221

[57] W. N. Morris. Mood: the Frame of Mind. New York: Springer-Verlag, 1989.

[58] A. Newell. Unified Theories of Cognition. Harvard University Press, 1990.

[59] W. T. Norman and L. R. Goldberg. Raters, Ratees and Randomness in Personality
Structure. Journal of Personality and Social Psychology, 4:681–691, 1966.

[60] A. Ortony, G. L. Clore, and A. Collins. The Cognitive Structure of Emotions. Cam-
bridge University Press, 1988.

[61] R. J. Palma-Duran. Java Behaviour Trees, User Guide. Universidad Complutense de
Madrid, http://sourceforge.net/projects/jbt/, September 2010.

[62] L. Peña, A. LaTorre, J. M. Peña, and S. Ossowski. Tentative Exploration on Rein-
forcement Learning Algorithms for Stochastic Rewards. In 4th Inter. Conf. Hybrid
Artificial Intelligent Systems, pages 336–343, 2009.

[63] L. Peña, S. Ossowski, and J. M. Peña. vBattle: A New Framework to Simulate Medium-
Scale Battles in Individual-per-Individual Basis. In Computational Intelligence and
Games, 2009. CIG 2009. IEEE Symposium on, pages 61–68, Sept. 2009.

[64] L. Peña and J. M Peña. Mood Vectorial Space: Formalism. Technical report, Univertity
Rey Juan Carlos, 2010.

[65] L. Peña, J. M. Peña, and S. Ossowski. Representing Emotion and Mood States for
Virtual Agents. In German Conference on Multi-Agent System Technologies (MATES),
2011.

[66] L. Peña, J. M. Peña, S. Ossowski, and P. Herrero. Evolving Q-Learners for Stochastic
Games: Study on Video Game Agent Controllers. In World Automation Congress
(WAC), 2010.

[67] L. Peña, J. M. Peña, S. Ossowski, and S. M. Lucas. Learning and Evolving Com-
bat Game Controllers. In 2012 IEEE Conference on Computational Intelligence and
Games, number 2012, Granada Spain, 2012.

[68] L. Peña, J. M. Peña, S. Ossowski, and J. A. Sanchez. EEP – a Lightweight Emotional
Model: Application to RPG Video Game Characters. In 2011 IEEE Conference on
Computational Intelligence and Games, 2011.

[69] David Pereira, Eugénio Oliveira, and Nelma Moreira. Formal Modelling of Emo-
tions in BDI Agents. In Fariba Sadri and Ken Satoh, editors, Computational Logic
in Multi-Agent Systems, volume 5056 of Lecture Notes in Computer Science, pages
62–81. Springer Berlin Heidelberg, 2008.

[70] F. Petrillo, M. Pimenta, F. Trindade, and C. Dietrich. What Went Wrong? A Survey
of Problems in Game Development. Computers in Entertainment, 7(1):13:1–13:22,
February 2009.

222 References

[71] M. Pfeiffer. Machine Learning Applications in Computer Games. Master’s the-
sis, Institute for Theoretical Computer Science, Graz University of Technology,
http://www.igi.tugraz.at/cluster/pfeifferDA.pdf, 2003.

[72] R. Picard. Affective Computing. MIT Press, 1997.

[73] I. J. Roseman, A. A. Antoniou, and P. E. Jose. Appraisal Determinants of Emotions:
Constructing a More Accurate and Comprehensive Theory. In Cognition and Emotion,
volume 10, pages 241–277, 1996.

[74] J.A. Russell and A. Mehrabian. Evidence for a Three-Factor Theory of Emotions.
Journal of Research in Personality, 11:273–294, 1977.

[75] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
2003.

[76] D. Sander, D. Grandjean, and K. R. Scherer. A Systems Approach to Appraisal Mech-
anisms in Emotion. Neural Networks, 18:317–352, 2005.

[77] K. R. Scherer, T. Bnziger, and E. Roesch, editors. A Blueprint for Affective Computing:
A Sourcebook and Manual. Oxford University Press, 2010.

[78] K. R. Scherer and P. Ekman. Approaches to Emotion, chapter On the Nature and
Function of Emotion: a Component Process Approach., pages 293–318. Hillsdale,
1984.

[79] L. S. Shapley. Stochastic Games. Proc. of the National Academy of Sciences,
39(10):1095–1100, 1953.

[80] C. A. Smith and L. Kirby. Feeling and Thinking: The Role of Affect in Social Cogni-
tion, chapter Consequences Require Antecedents: Toward a Process Model of Emotion
Elicitation. Cambridge University Press, 2000.

[81] C. A. Smith and R. Lazarus. Handbook of Personality: Theory and Research, chapter
Emotion and Adaptation, pages 609–637. L. Pervin, 1990.

[82] K. O. Stanley. Efficient Evolution of Neural Networks Through Complexification. PhD
thesis, Department of Computer Sciences, The University of Texas at Austin, 2004.

[83] K. O. Stanley and R. Miikkulainen. Evolving Neural Networks through Augmenting
Topologies. Evolutionary Computation, 10(2):99–127, 2002.

[84] R. Storn and K. Price. Differential Evolution - a Simple and Ef-
ficient Adaptive Scheme for Global Optimization over Continuous Spaces.
ftp://ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-012.pdf, 1995.

[85] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction, volume 9.
MIT Press, http://webdocs.cs.ualberta.ca/ sutton/book/ebook/, 1998.

References 223

[86] J. Togelius, R. De Nardi, and S. M. Lucas. Towards Automatic Personalised Content
Creation for Racing Games. In Proc. of IEEE Symposium on Computational Intelli-
gence and Games, pages 252–259, 2007.

[87] R. J. Urbanowicz and J. H. Moore. Learning Classifier Systems: a Complete In-
troduction, Review, and Roadmap. Journal of Artificial Evolution and Applications,
2009:1:1–1:25, January 2009.

[88] G. van Lankveld, S. Schreurs, P. Spronck, and J. van den Herik. Extraversion in Games.
In Computers and Games, volume 6515 of Lecture Notes in Computer Science, pages
263–275. Springer Berlin - Heidelberg, 2011.

[89] C. J. C. H. Watkins and P. Dayan. Q-Learning. Machine Learning, 8(3):272–292, 1992.

[90] S. Whiteson and P. Stone. Evolutionary Function Approximation for Reinforcement
Learning. Journal of Machine Learning Research, 7:877–917, 2006.

[91] G. N. Yannakakis. AI in Computer Games: Generating Interesting Interactive Oppo-
nents by the use of Evolutionary Computation. PhD thesis, University of Edinburgh,
2005.

[92] M. Yoshikawa, T. Kihira, and H. Terai. Q-Learning Based on Hierarchical Evolutionary
Mechanism. WSEAS Transactions on Systems and Control, 3(3):219–228, 2008.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Why making a video-game related thesis?

	Objectives
	Methodology
	Architecture Design
	Emotional Model Implementation
	Learning Algorithm Implementation
	Integration of the Architecture Components

	Structure of the Thesis

	State of the Art
	Cognitive Psychology Models of Emotions
	Appraisal Theory
	OCC Appraisal Theory
	Dimensional Theory

	Emotional Models for Computational Agents
	EMA: A Process Model of Appraisal Dynamics
	FearNot!
	ALMA Model
	WASABI: Affect Simulation for Agents with Believable Interactivity

	Reinforcement Learning Techniques
	SARSA and Q-Learning
	Win or Learn Fast. WoLF
	Evolutionary Techniques for Reinforcement Learning

	Discussion

	General Model Architecture
	General Description of AGCBAR Architecture
	AGCBAR Architecture Concerns

	AGCBAR Architecture. Structural View
	AGCBAR Architecture: Engines

	AGCBAR Architecture. Dynamic View
	Concerns Application Phases

	AGCBAR Architecture Design and Implementation Guidelines
	Events and Moods Dictionaries
	Environment State Dictionary
	Emotional Event Interface
	Mood Interface
	Environment State Interface
	Goal Dictionary, Interface and Selection Process
	Action Dictionary and Action Interface
	Strategy Selection Process
	Game Engine
	Emotional Engine
	Learning Engine

	Discussion

	Emotional Elicitation Process (EEP). A Model for Synthetic Emotions
	EEP Model as Emotional Engine in AGCBAR Architecture
	Usage of Cognitive Psychology Concepts in EEP
	OCC Model
	Big Five Personality Traits
	Pleasure-Arousal-Dominance Emotional & Temperament Model
	Emotional Engine Requirements

	Emotional Elicitation Process
	Architecture Overview
	Architecture Dynamic View
	Mood Vector Space
	Conceptual Dictionaries
	Character Profile
	EEP Engine
	EEP Event Evaluation Cycle

	EEP Applied to Character Controllers
	Mood Evolution
	Evaluation of the Combat Scenario

	EEP for Storytelling Support
	Proposed Storyline
	General Flow: The Traditional Way
	Emotional Alternative Paths: EEP-based Design
	Evaluation of the Storytelling Scenario

	Discussion

	WEREWoLF Model
	WEREWoLF as Learning Engine in AGCBAR Architecture
	WEREWoLF Algorithm
	WEREWoLF Elements

	Evaluating WEREWoLF Performance
	Experimental Framework
	Experimental Setup
	Experimental Results

	Discussion

	vBattle Experimentation Framework
	vBattle Game Design
	Game Concept
	Game Elements: Players, Avatars and Game Bits
	Game Mechanisms
	Goals
	Game State and Visible Information
	vBattle Implementation

	Integration Proof-of-Concept
	vBattle Scenario Implementation
	AGCBAR Architecture Integration Issues
	Evaluation Criteria Overview
	Development Costs Evaluation

	Discussion

	Conclusion
	Contributions
	Contributions Overview
	Contribution in the Emotional Modeling Context
	Contribution in the Learning Controller Context
	Contribution in the Game Development Architectures Context
	Other Contributions

	Future Work
	Key Publications Produced during this Thesis

	Terminology and Acronyms
	Glossary
	Symbols and Variables

	EEP Model Appendix
	Mood Vector Space: Formal Representation
	Mood Space
	Mood Vector Space
	Extended Mood Space
	Topological Mood Space
	Attenuated Mood Space
	Emotional Agent System in a Mood Vector Space

	Mood Ontology
	Combat Scenario Example
	Orc Boss Profile
	Orc Boss's Mood Evolution Through Time Steps
	Human Archer Profile
	Combat Scenario Questionnaire

	Storytelling Scenario Example
	Sad Girl Profile
	Storytelling Questionnaire

	WereWoLF Algorithm Appendix
	vBattle Experimentation Framework
	AGCBAR Architectural Dictionaries
	EEP Model Conceptual Dictionaries

	Resumen en español
	Antecedentes
	¿Por qué hacer una tesis sobre videojuegos?

	Objetivos
	Metodología
	Conclusiones
	Mejorar la experiencia del jugador
	Contribuciones al modelado emocional
	Contribuciones en el contexto de los controladores de aprendizaje
	Contribución en el contexto de desarrollo de arquitecturas de juego

	References

