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Preface

“Communication across the revolutionary divide
is inevitably partial.”

-Thomas S. Kuhn, The structure of scientific
revolutions

This thesis has been developed during the years in the research group on Nonlin-
ear Dynamics, Chaos Theory and Complex Systems of the URJC. Its main purpose
is the study of the unpredictability in chaotic dynamics. Despite the utilization of
specific dynamical systems, one of the ambitions of the present thesis has been to
find global results and techniques useful for a broad community of scientists. Af-
ter an introductory chapter preparing the general framework, my investigations are
collected in chapters that correspond to different research articles. This thesis is
eminently nonlinear, both in its content and in its structure. The different topics
are interwoven, connected by feedback loops in such a way that the contents does
not follow a straight path, but a dendritic growth conveys a more accurate picture
of its development. Here is a brief summary of each chapter:

Chapter 1. Introduction

The introductory chapter lays the foundations for the thesis. First, the limits
imposed by scientific knowledge are discussed and the history of unpredictability in
the Physics of the 20th century is revised. Afterwards, concepts like chaos, fractals,
delayed systems and dissipative structures are briefly introduced. These ideas are
constantly invoked and revisited along the whole thesis.

Chapter 2. Vibrational resonance in a time-delayed genetic toggle
switch

The second chapter is devoted to study the effects of external periodic pertur-
bations in a nonlinear system with applications to systems biology. In particular,
we investigate the vibrational resonance in a genetic network motif known as toggle
switch, considering also the possible delays. We show how a low-frequency external
signal can be enhanced by means of a high-frequency perturbation provoking the ef-
fect known as wvibrational resonance. The role of different parameters is analyzed, as
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well as their importance in the biological context. The delay, which arises naturally
as a consequence of the biochemical processes involved, plays a fundamental role in
the dynamics of the system. Some of the early results concerning delay and basins
of attraction paved the way for the investigations presented in subsequent chapters.

Chapter 3. Ultrasensitive vibrational resonance

In vibrational resonance, the enhancement of the low-frequency signal is possible
thanks to a high-frequency perturbation with a large amplitude, which in most of
the cases is even larger than the signal itself. We present a novel phenomenon
called wultrasensitive vibrational resonance, where a very small perturbation is able
to amplify the signal in a striking manner. We first found this resonance mechanism
in systems with delay, but the final cause of this behavior is related to fractal basins
of attraction. The fractal structures in phase space provoke a fractal pattern of
resonances and allow such small perturbations to increase the response exceptionally.

Chapter 4. Testing for Wada basins

Fractal objects allow inconceivable situations for Euclidean geometry. This is
the case of Wada boundaries, where three or more sets share the same boundary. At
first, this could seem a topological curiosity, but Wada boundaries are very common
in escape basins and basins of attraction of chaotic dynamical systems. Small per-
turbations near Wada boundaries can drive the system to any of the possible final
states, which implies a special case of unpredictability. In this chapter, we introduce
a new quantitative method to test the Wada property, that also enables the classifi-
cation of partial Wada basins. Examples of application and computational features
are detailed as well.

Chapter 5. Wada property in systems with delay

As announced in previous chapters, delay can induce fractal basins of attraction.
These basins are infinite dimensional because delay differential equations need his-
tory functions that account for the past states of the system. We show that, in
these infinite dimensional basins of attraction, delay can induce not only fractal
structures, but also the Wada property. At the same time, delayed systems provide
a great example of application of our method to test Wada basins, introduced in
Chapter 4.



Chapter 6. Basin entropy

Wada basins are often said to be more unpredictable than fractal basins which
do not have the Wada property, but how can we measure the unpredictability of
the basins? We try to answer this simple question by introducing the concept
of basin entropy, which is the result of the application of information entropy to
the basins. Making some simple assumptions we are able to dissect the different
factors that contribute to the unpredictability of dynamical systems, compare the
unpredictability for different parameter values and even detect fractal boundaries at
a given scale with the log 2 criterion.

Chapter 7. Chaotic dynamics of propagating matter waves

The theory developed in Chapter 6 is applied to a model used in the context of
propagating matter waves. We illustrate how we could prove both fractality and the
Wada property in real experiments using the basin entropy. Other techniques used
in nonlinear dynamics, like basin stability and survival probability, also give useful
information concerning the experimental setup.

Chapter 8. Conclusions.

The thesis ends with a schematic discussion of the main results in English and
then in Spanish. The different chapters are summarized and the methodology is
briefly explained.
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Chapter 1
Introduction

“It is wrong to think that the task of physics
is to find out how nature is. Physics concerns
what we can say about nature.”

-Niels Bohr

1.1 Edge of science

In the task of naming, humans have chosen to designate ourselves by the term homo
sapiens (man that knows), and sometimes also homo sapiens sapiens (man that
knows that knows). This is as much as to say that we define ourselves through
knowledge. We are proud of being self-conscious matter; knowledge is our best
advantage to survive and we consider it as our most distinctive feature. But as it
usually happens with most of the fundamental concepts, knowledge is hard to define.
Allow me to turn to the literature and use a classification scheme of knowledge
devised by the Spanish physicist Jorge Wagensberg.

Jorge Wagensberg defines knowledge as every mental representation of reality
that can be transmitted to others by non-genetic means. Attending to how it is
obtained, knowledge can be classified into three groups: revealed, artistic and sci-
entific. Revealed knowledge assumes the existence of someone or something that
possesses all knowledge, and also assumes that sometimes part of this knowledge is
somehow communicated to us. This is the kind of knowledge provided by religion or
superstition. Artistic knowledge is based on the belief that some infinite complexi-
ties can be transmitted through finite representations, as a painting or a sculpture.
Scientific knowledge, for its part, lays on the prosecution of three goals: objectivity,
intelligibility and dialectic experimentation. Each kind of knowledge is fundamen-
tal to understand the essence of humanity and its history. This thesis aims to be
considered itself as a contribution to scientific knowledge and, at the same time, it
is devoted to the exploration of some of the limits of the scientific knowledge itself.
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Figure 1.1. Solvay conference of 1911. Some of the scientists that revolutionized
our perception of nature, like Planck, Einstein and Poincaré, are photographed.

A differential characteristic of science with respect to art or religion is its ability
to provide models of behavior of nature. Those scientific models and their predic-
tions are successfully tested everyday. Thanks to scientific knowledge we are able
to forecast the weather, anticipate the position of celestial bodies or understand the
behavior of microscopic particles. A kind of knowledge completely inaccessible to
religion or art. Nevertheless, weather forecasts often fail, the information of celestial
bodies must be constantly updated and corrected and microscopic particles exhibit
erratic movements. This contradiction is only apparent: the failure of some predic-
tions do not mean the failure of the scientific method, but the practice of science
sets the boundary between what is known and the unknown.

Probably we often focus into the rigorous methods of science to put into relief
the different nature of scientific knowledge with respect to the artistic and revealed
means of acquiring knowledge. We praise the unique power of science to explain
reality, to predict it and to transform it using technology. Doubtlessly, some of the
greatest achievements of humanity have been reached thanks to scientific knowledge.
But science is wise enough to know that it cannot know everything, and brave enough
to explore its own limits. The best proof of that is the development of Physics in
the 20th century.

In the history of Physics, the last century will be remembered, among other
breakthroughs, for the birth of quantum mechanics, relativity and chaos theory.
Three huge revolutions for our comprehension of reality. But also three revolutions
in our conception of predictability. These theories allowed us to grasp the behavior
of nature at levels never seen before. However, every time that science sheds light
into nature revealing its hidden shapes, the shadow of our ignorance gets longer.

Quantum mechanics, along with nuclear, atomic and particle physics unveiled
the behavior of matter at tiny scales. Thanks to its advances we managed the
power of the atoms, changing the world forever. However, one of the pillars of
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quantum mechanics is the haphazard nature of matter in the microscopic world. The
description of the particles requires probability functions instead of state variables.
Another major aspect of the theory is the importance of the interaction between
observer and experiment, which finds its maximum expression in the uncertainty
principle of Heisenberg. We learned that we cannot measure with an arbitrarily
high precision two conjugate variables at the same time, like position and momentum.
Therefore, quantum mechanics augmented our knowledge of the surrounding reality
and, at the same time, it revealed new restrictions to this knowledge.

If the world of the minuscule suffered a revolution in the last century, a compara-
ble situation took place at the astronomic scale. Special relativity first, and general
relativity later, changed our vision of the universe and its geometry. Einstein showed
the intimate relation of space and time, and how both are shaped by gravity. The
development of cosmology allowed us to infer the history of the universe until its
very beginning (or almost). Nevertheless, a key idea of relativity is that the speed of
light is finite, imposing an upper limit to how fast information can be transmitted.
Once again, as science deepens into nature we find physical limitations.

The case of chaos theory is even more evident. It provided a new perspective
for a plethora of different phenomena, from meteorology to population dynamics,
showing how simple rules can give birth to extraordinary complex behaviors. One
of the key revelations of chaos is that even in classical mechanics, the evolution of
dynamical systems is often unpredictable. Further explanations on this topic are
postponed.

At the light of the previous exposition, we can conclude that scientific knowledge
is a double-edged sword. On the one hand, science opens new paths to master
the surrounding reality. On the other hand, every time that a new path is found,
others are closed. This thesis is devoted to the study of one of this limits, the
unpredictability in Nonlinear Dynamics. As we will see, there is much to learn
about this frontier of science and, surprisingly (or maybe not) we can also use it in
our own benefit.

1.2 Scientific context

Once the general framework has been set, we will continue introducing briefly some
of the concepts that will be used and developed along this thesis.

Chaos Theory

Among the three revolutions that happened in Physics in the previous century, chaos
theory is probably the most recent. The pioneer work on the three-body problem by
the French scientist Henri Poincaré dates back to 1890 [1], but it was not until the de-
velopment of the first computers that we started to devise the physical consequences
of this mathematical theory, namely thanks to the American meteorologist Edward
Lorenz and his investigations on the atmospheric dynamics of 1963 [2]. The name
of this emerging science was coined by two mathematicians, the Chinese-American



4 Chapter 1. Introduction

Tien-Yien Li and the American James A. Yorke, in their famous paper Period three
implies chaos of 1975 [3]. Despite its novelty in science, the idea of chaos has ancient
roots, as this text of Giordano Bruno of 1584 shows: “Now more than ever I real-
ize that the smallest error in the beginning causes a maximum difference and fatal
error at the end; one little drawback is countlessly multiplied branching infinitely,
as from a small root arise large bulks and innumerable branches”, (traslated from
[4]). When James A. Yorke received the Japan Prize for his contributions to Chaos
Theory with Benoit Mandelbrot in 2003, he also dedicated some words to remark
that scientists were probably the last community to recognize the role of chaos in
nature, since every single person knows that the world around us is chaotic and that
small changes can provoke huge effects.

Nowadays, chaos still admits several technical definitions with slight differences!.
However, a key underlying idea is common to them all: small uncertainties lead
to large uncertainties in chaotic dynamics. This idea can be manifested in many
different ways. For example, a common approach to chaotic dynamics is the use of
Lyapunov exponents [6]. This mathematical tool measures the divergence of two
nearby trajectories as time evolves. In chaotic dynamics, these divergences grow
exponentially with time, so small uncertainties in the determination of the initial
conditions lead to huge differences in the trajectories in a very short time.

Fractal Geometry

Another facet of chaos are fractal structures. The word fractal was first coined
by the mathematician Benoit Mandelbrot [7], and it was no coincidence that the
development of fractal geometry took place also in the 20th century. Technically,
fractals are defined as geometrical objects with a Hausdorff-Besicovitch dimension
larger than their topological dimension. Intuitively, the name fractal refers to broken
or fractured objects, in contrast with the smooth shapes of Euclidean geometry.

Fractals exhibit the property of self-similarity?, which implies that they show
a great complexity at every scale of magnification. This is one of the final causes
of uncertainty in nonlinear dynamics and it will be thoroughly studied along the
present thesis. It is also important to remark that since the beginning of fractal
geometry, its applications have pervaded all branches of science.

Dissipative Systems

Fractal structures are especially relevant in dissipative systems. From the per-
spective of Thermodynamics, dissipative systems are those which exchange matter-
energy with their environments. Strictly speaking, all systems are dissipative since
there are no perfectly isolated systems, with the possible exception of the whole
universe. In practical terms, we can consider some simple systems as isolated, but

!The most recent definition of chaos is based on the concept of expansion entropy [5].
2The concept of self-similarity needs to be carefully defined. For an exhaustive discussion on
this topic see Ref. [8].
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Figure 1.2. Mandelbrot set. This is a paradigmatic example of fractal geometry, with
deep connections to chaos theory too.

many others, like living organisms, must necessarily be considered as dissipative
systems in order to reflect their complexity. Therefore, dissipative systems are not
only ubiquitous in nature, but they are also especially appealing.

In the terminology of dynamical systems the adjective “dissipative” acquires a
broader sense, so the systems can exchange any generalized energy with their en-
vironment. A crucial feature of these systems is that they often present several
asymptotic states. Ilya Prigogine, Nobel Prize in Chemistry in 1977, wrote: “Far
from equilibrium, equations are no longer linear; there are many possible proper-
ties, many possible states, which are the different accessible dissipative structures”,
(translated from [9]).

Basins of Attraction or Escape Basins

In dissipative dynamical systems and open Hamiltonian systems, many final states
can be possible. A fundamental idea that will be used repeatedly along this thesis is
the concept of basins of attraction or escape basins. Dynamical systems are described
by a set of rules that determine the evolution of the system. The set of initial
conditions leading to some asymptotic final state is called basin of attraction in
dissipative systems or escape basin in the case of open Hamiltonian systems. A
crucial feature of these basins is that they often show fractal structures, hindering
the final state predictability [10]. The study of fractal basins and their consequences
will be one of the major goals of this thesis.
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Delay Differential Equations

Among the three revolutionary theories that changed modern physics, probably it
is in relativity where it is hardest to appreciate the appearance of restrictions to our
knowledge. The key idea governing relativity is that information has a finite limiting
speed, which is the speed of light. This inevitably introduces a new element that
should be considered in dynamical systems, the delay between causes and effects. In
words of Thomas Erneux [11]: “time delay arises because a finite time is required
to sense information and then react to it”. Oftentimes, these delays are so small
that it is unnecessary to include them explicitly in the equations. Nonetheless, there
are many situations where delay plays a fundamental role and must be included to
reflect the dynamics.

Delay differential equations are a useful mathematical tool to treat this kind of
problems. In these equations, the future of the system is described in terms of its
present and past states. The past states are called the system’s history, and they
play a similar role to initial conditions in ordinary differential equations. Delay
differential equations are irreversible, and present some specific features that will be
developed along the present work. They are widely used in the modeling of biological
systems because of the different time scales involved in biological processes. Delayed
feedbacks have also interesting applications in meteorology, engineering and many
other branches of science [11], [12].

Perturbations and Resonances

As mentioned before, real systems are not isolated, but they are inevitably subjected
to external perturbations. Nonlinear systems can respond surprisingly to these
external perturbations, exhibiting resonances [13]. The first two chapters of this
thesis are devoted to the study of wvibrational resonance, which can be defined as
the enhancement of a low frequency periodic signal by means of a high frequency
periodic perturbation. The effects of these perturbations can also be analyzed by
means of basins of attraction, which is especially interesting in the case of fractal
basins. Studying the coupling of periodic perturbations is particularly meaningful
in biological processes, because of the great variety of cyclic processes with different
frequencies that occur in life.

Nonlinear Dynamics and Multidisciplinarity

As argued before, the 20th century has been the century of quantum mechanics,
relativity and chaos theory. But it has also been the century of molecular biology,
neuroscience, genetics, and computer science among others. The keyword in the
science of the early twenty-first century is multidisciplinary.

Along the history of science, nature has been splitted into many parts for a better
understanding. Now, the different areas must interact to complete their descriptions
and better comprehend the surrounding reality. In this respect, Nonlinear Dynam-
ics must perform a fundamental role. Playing with the famous beginning of Léon
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Tolstéi’s Ana Karenina, it is often said that all linear systems are alike, but every
nonlinear system is nonlinear in its own way. This means that Nonlinear Dynamics
can cover a wide variety of phenomena in all branches of science [14], but with a
unique perspective and proper techniques suitable for each particular case.

Following this multidisciplinary spirit, the present thesis deals with apparently
distant topics. We start studying the effects of periodic perturbations in a model ap-
pearing in molecular biology, then we explore the effects of delay in a mathematical
model related to the phenomenon of El Nino, we study fractal structures in systems
with applications to galactic dynamics and engineering and the final chapter is de-
voted to the dynamics of cold atoms guided by two crossing laser beams. Despite the
diversity of topics treated, they all are studied under the unique light of nonlinear
dynamics, showing that concepts like fractality, delay, or nonlinear resonances are
ubiquitous in nature.

The purpose of my investigations has always been to find widely applicable results
and develop useful tools for the whole scientific community. I am not an expert in
genetics neither in climatology nor quantum mechanics, but hopefully my work can
contribute to reveal unexpected aspects of these and other areas. As James C.
Maxwell said: “There is nothing more practical than a good theory”.
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Chapter 2

Vibrational resonance in a
time-delayed genetic
toggle switch

“Cells are matter that dance.”

-Uri Alon, An introduction to systems biology

As stated in the introduction, the science of this century is eminently multidisci-
plinary. Nonlinear dynamics and biology are a prolific couple with a long tradition
and promising future. As a matter of fact, some of the milestones in dynamical sys-
tems like the logistic map, the Lotka-Volterra model or the Hodgkin-Huxley equa-
tions have biological roots. This is so, because even simple biological processes are
strongly nonlinear. Furthermore, biological systems are also nice examples of open
dissipative systems, since they are always subject to environmental changes and
drain the surrounding resources.

This chapter exemplifies that philosophy. We study a simple model called the
time-delayed genetic toggle switch, which is a synthetic gene-regulatory network.
This network motif can be tested in a laboratory under controlled conditions and
is also ubiquitous in nature. Besides its biological importance, the toggle-switch
presents the advantage of being a rather simple nonlinear model.

Our study is focused on the effects produced by periodic perturbations of very dif-
ferent frequencies, e.g., circadian and seasonal variations of temperature. Namely, we
study how a low-frequency signal can be enhanced or depressed by a high-frequency
perturbation. When the coupling induces optimal enhancement, the phenomenon is
known as wibrational resonance. As discussed previously, the modeling of biological
systems also requires the study of possible delays. From the dynamical point of
view, delays play a fundamental role introducing instabilities.

2.1 Introduction

The concept of resonance in physics generally refers to a large increase in the am-
plitude of the oscillations provoked by a particular external forcing or perturbation.
In nonlinear systems there are many types of resonance, depending on which are
the sources that cause them. When the resonance is induced by noise, it is called

11



12 Chapter 2. Vibrational resonance in a time-delayed genetic toggle switch

stochastic resonance [1]. In the case that the resonance is produced by a chaotic sig-
nal, we say that the system presents a chaotic resonance [2], and finally if the forcing
is a high-frequency periodic signal then the phenomenon is called vibrational reso-
nance (VR) [3]. The role of resonances in different biological processes is paramount.
For example, stochastic resonance, which has drawn much attention in the past few
years, has been found in neural systems [4], crayfish mechanoreceptor cells [5] or the
feeding behavior of paddle-fish [6]. However, though VR has been widely studied in
physical systems such as lasers [7] and electronic devices [8], only recent attention
has been paid to this phenomenon in biology [9]-[11].

In this chapter, we study VR in a time-delayed genetic network, which is a
recurrent control motif in nature [12]. It has been reported that delay is fundamental
in processes such as the creation of patterns via quorum sensing [13], the modulation
of immunologic pathways [14] or the enhancement of oscillations in circadian clocks
[15]. Additionally, nonlinear time-delayed systems have been reported to display a
wide variety of dynamical phenomena such as phase synchronization [16], excitation
regeneration [17], amplitude death [18], or multiresonances [19], [20], etc. Therefore,
the study of delayed systems is interesting both from the biological and dynamical
points of view.

Motivated by the preceding ideas, we present a theoretical and computational
study of VR in a time-delayed toggle switch. This chapter is organized as follows. In
Sec. 2.2 we explain the main features of the time-delayed toggle switch. First, the
original model of the toggle switch is presented. Then, we introduce the delays and
analyze its implications. Section 2.3 is a description of the usual treatment of VR
in dynamical systems and how we apply it to our model. In Sec. 2.4 we examine
the mechanism inducing the VR. Next, we vary the periodic forcings in Sec. 2.5
and show the effects of the delay on resonance in Sec. 2.6. Finally, in Sec. 2.7 we
summarize our findings and discuss the role of VR in biological systems.

2.2 Model description

The genetic toggle switch is a synthetic gene-regulatory network designed to have
two possible stable states [21], in other words, it is a bistable system. It is con-
structed from two repressible promoters in a mutually inhibitory network, that can
be modeled through the following dimensionless differential equations

du oy

—_— = ——Uu

dt 1+ ovh

do s (2.1)

dt 1+u52_v

The variables u and v represent the concentrations of the two transcription factors
involved, and their evolution is governed by a repressional nonlinear term and linear
degradation. For each protein, the repressional term is modeled by Hill functions
depending on the concentration of the other protein. The Hill coefficients [, #5 are
usually interpreted as the number of subunits composing the protein. For example,
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Figure 2.1. Phase diagram of the toggle switch. The picture corresponds to the
system without delay, that is to Eq. 2.1. The two red crosses (0.5, 2) and (2, 0.5) are for
the two stable equilibria. The dashed red line is the unstable separatrix u = v. The blue
curves are for the nullclines @ = 0 and ¥ = 0. Arrows show the vector field in each point.

homodimers have Hill coefficient equal to two. The linear degradation term implies
an exponential decay of the level of both proteins in the absence of repression or
production. We have assumed unit degradation rates for both proteins.

For the sake of simplicity, we will also assume equal promoter strengths a; =
as = « for both variables and equal repressional cooperativity coefficients 5, = 5 =
B. As it is shown in Ref. [21], it is needed that the cooperativity coefficient § > 2
to have a bistable system. There are some restrictions on the values of a too, so by
choosing @ = 2.5 and 8 = 2 we get a bistable toggle switch (see Appendix A for
further details). This election of the parameters will be kept throughout the study.
Therefore, the present system can flip between high and low levels of concentration
of the repressors: when one is high the other one is low, and vice versa. The phase
space is depicted in Fig. 2.1, where we can see the two symmetric fixed points in
(0.5, 2) and (2, 0.5) and the separatrix v = v dividing the phase space.

Nevertheless, the previous equations do not take into account that each of the
molecular processes involved in this genetic network require some time to be com-
pleted: the production of new protein requires transcription, translation and assem-
ble operations [22], the degradation machinery also needs several time-consuming
phosphorylation steps as reported in Ref. [15]. In order to reflect these molecu-
lar steps, we can modify the previous ordinary differenatial equations into delay
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differential equations:

de @ —m
dt  14o(t—m)? ¢

%—L—v(t—T)
At 1+ut—71,)? “

(2.2)

where we have supposed equal time delays for the production of both proteins 7,
and their degradation 7;. From a biological point of view, the production delay 7,
has the same or even greater importance than the degradation delay 7,. However,
concerning the dynamics, a linear stability analysis (see Appendix A) shows that
the delay in the repressional term 7, can induce only damped oscillations, whereas
the delay 74 can induce damped and sustained oscillations for values 7y > 7.4
via a subcritical Hopf bifurcation. Thus, studying the effects of 7, is sufficient to
understand the dynamics of the system. Moreover, the original work, where VR
was first reported [3], was carried out on a bistable damped oscillator. Thereby the
time-delayed toggle switch is an extraordinary candidate to make a first study of
VR in genetic networks.

2.3 Methods on VR

Vibrational resonance consists of the optimization of the response of the system to a
low-frequency (LF) signal of amplitude A and frequency w due to a high-frequency
(HF) perturbation of amplitude B and frequency €2 > w. For the time-delayed toggle
switch one can think the forcing as a thermal bath with oscillating temperature, or
an experimental setting with biharmonic variation of the concentration of chemical
inductor, for instance. Our present purpose is to search numerically the phenomenon
of VR, so we introduce these two forcings to one of the proteins and look at the
response of the other one. The system of delay differential equations that we have
to solve is:

d
d_QZ: 1f 5 —u(t—71)+ Asinwt + Bsin Qt,
v
& N (2.3)
T " Trw 0T

The response for the frequency w is usually defined as the amplitude of the sine and
cosine components of the output signal, yielding

nT
Cs=— [ v(t) sinwtdt (2.4)

C. = /v(t) cos wtdt, (2.5)

0
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Figure 2.2. VR for the time-delayed genetic toggle switch. The response of
the system @ is plotted vs the amplitude of the HF perturbation B. The parameters of
equations (2.3) are chosen to be a« = 2.5, =2, 7 =0.5, A =0.1, w = 0.1 and Q = 5.
These will be the standard parameters along this work if not specified.

where n is the number of complete oscillations of the LF signal and T' = (27 /w) is
its period. The numerical values of C's and C¢ are related to the Fourier spectrum
of the time series of the variable v computed at the frequency w. Then, the relation
between the output and the forcings provides an idea of how the LF signal is being
amplified by the HF perturbation. This is commonly defined by means of the @)
factor:

VC2% 4+ C?

Q= - (2.6)

The usual procedure to search for VR is to compute @) for different amplitudes
B of the HF periodic perturbation [3]. If there is a value of B that maximizes @,
then the VR occurs. This means that there is a particular value of the HF periodic
perturbation that optimizes the response of the system to the weak LF periodic
signal.

Our algorithm, developed in MATLAB, accomplish several computational tasks.
The different steps are:

e First, we solve the delayed differential equations of the system with the external
forcings (Eqs. 2.3) using dde23 [23]. The histories are chosen to be equal to one
of the two symmetric equilibrium states, and the external forcings are applied
to the protein at the higher level. This is completely equivalent to solve the
delayed differential equations in the absence of external forcings with some
random initial histories, and then apply the two periodic forcings after the
transient has vanished.

e After solving the Eqgs. (2.3) and discarding the transient, we compute the factor
@ for a range of different values of the HF intensity B.
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e Finally a graph of () vs B is plotted and, if the parameters are properly
chosen, a bell-shaped curve is found (Fig. 2.2). The maximum of this curve is
the optimal match between the LF and HF signals, that is the VR.

2.4 Explanation of the mechanism inducing VR

So far, we have seen that it is possible to find VR after having chosen the appropriate
parameters. However, it would be interesting to understand why the amplitude is
increased and to know what the levels of protein are actually doing. To answer
these two questions it is convenient to represent the phase diagram. In this kind
of diagram the coordinates give the concentrations of each protein, in such a way
that every point represents a state of the system at a given time. In Fig. 2.3 we
can see the trajectories of the system in three different cases. For small values of
B the concentration of the protein only oscillates around the low expression state
(B = 0.1, red line), for very large values of B the low state becomes unstable and
the concentration of the protein oscillates around the high expression state (B = 2.2,
green line). However, for intermediate values of B the concentration of the protein
oscillates between the high and the low states, reaching a maximum amplitude for
some optimal value of the amplitude B,,; = 1.5 (blue line). When the system
explores both states the amplitude is much larger, thus unveiling an appearance of
the VR. In other words, resonance occurs when the concentrations of both proteins
switch (oscillate) between the low and the high state. These examples are directly
connected to the Fig. 2.2, where the response amplitude @) of the oscillations is
represented as a function of B. The two plotted dots correspond to the simulations
for B=0.1and B = 1.5.

Of course we can also plot directly the concentration of the protein vs time
(Fig. 2.4). When the amplitude of the HF forcing is B,,; = 1.5, then the oscillations
increase their amplitude about four times keeping the same global period. This is
in agreement with Fig. 2.2 too.

2.5 Effects of LF/HF signals on VR

To study the dependence of the resonance with the LF signal we can vary its am-
plitude A and its frequency w. When we increase the amplitude A the resonance
increases as well and the bell-shaped curve gets wider (Fig. 2.5). There is an up-
per limit for A, above which the maximum of the response @ is lost, producing an
effect sometimes called resonance without tuning [24]. Changing the frequency w
of the LF signal changes the width of the peak too, but just in the opposite way:
for decreasing values of w the value of () grows and so does its width. In this case
there is a lower limit for w and below this limit resonance without tuning also occurs
(Fig. 2.6). From these results we can infer that, in general, resonance will be easily
achieved for signals with small frequencies and large amplitudes.

The variation of the HF perturbation changes resonance in a very different man-
ner. Increasing frequencies 2 lead to increasing values of B, too (Fig. 2.7). This
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Figure 2.3. Explanation of the VR mechanism. The dashed line represents the
separatrix (u = v) and the magenta crosses are the two equilibria states (e; = (0.5,2) , €2 =
(2,0.5)). Inred B = 0.1, only one region below the separatrix is explored; in blue B = 1.5,
both regions are explored making the amplitude higher (VR); in green B = 2.2, only the
region above the separatrix is explored.
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protein

Figure 2.4. Time series. The evolution of the protein levels before introducing any
external signal are plotted in green dotted line (A = 0, B = 0), after introducing the LF
signal in red dashed line (A = 0.1, B = 0), when both LF and HF signals are introduced
in blue solid line (A = 0.1, B = 1.5). The amplitude of the oscillations is highly increased
when B = B,,;. The concentrations are given in arbitrary units and the time is given in
hours.

is important since resonance can be achieved with smaller amplitudes B of the HF
force, if its frequency €2 is decreased.

Delving deeper into the effects of the HF perturbation, we have observed that
there is a linear relation between Q% and B,,; (Fig. 2.8). This result can be better
understood recalling that the solution of a driven linear oscillator is proportional
to Fy/Q?. This can be very useful since once we have fixed the parameters of the
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Figure 2.5. Effects of the LF signal’s amplitude. The resonance curves are plotted
for different amplitudes of the LF periodic signal A = 0.09, 0.1, 0.11, 0.12, 0.13, 0.14
(curves 1-6 respectively). Note that here we plot @ x A for clarity of the plot, to avoid
crossings of the curves. The shape of the curves remains unaltered, so we can appreciate
how the peaks are widened. Above some threshold (A 2 0.15) resonance without tuning
occurs.

Figure 2.6. Effect of the LF signal’s frequency. Response of the system ) when the
low frequency w is varied, w =0.02, 0.04, 0.06, 0.08, 0.10, 0.12 for curves 1-6 respectively.
Below the threshold (w < 0.02) there is resonance without tuning.

system, we can tune the amplitude B,,; at which VR takes place by tuning the high
frequency ().

2.6 Effects of the delay

So far, we have kept the delay 7 constant. However, the strong effect of the delay
in the oscillations of the system can also be exploited. When the delay is in a
range of values far from the autonomous regime (7 < 7..;), the variation of 7 has
qualitatively similar effects to the variation of the amplitude of the slow signal A:
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Figure 2.7. Effect of the HF signal’s frequency. In this plot Q is varied keeping
the other parameters constant. The VR curve presents a shift in the amplitude of the HF
perturbation B at which resonance occurs. However, the maximum value of @) is barely
changed.

10 20 30 40

Figure 2.8. Relation between B and Q. A relation of the type By X Q? appears
when (2 is varied, keeping the other parameters constant. In this plot 16 points from reso-
nance curves (blue crosses) are fitted to a straight-line (red solid line), with a correlation
coefficient r =0.9992.

over some value of 7 the maximum of the curve ) vs B disappears, and VR without
tuning is found (Fig. 2.9).

A more complicated situation appears for values of the delay close to the Hopf
bifurcation (7 ~ 7.). In Fig. 2.10, we study the basins of attraction of the delayed
toggle switch without forcings. We see that as the delay grows the basins of attrac-
tion start to mix increasing the sensitivity of the system: small perturbations can
drive the system into any of the two possible final states. These results deserve to
be carefully investigated. A thorough study on the effects of the periodic signals in
this situation is accomplished in Chapter 3, while Chapter 5 is dedicated to study
how the delay can dramatically enhance the sensitivity of a system.
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Figure 2.9. Effects of the delay. System response when the delay is far from the
Hopf bifurcation, that is 7 < 1. For the curves 1-7, 7 = 0.35, 0.45, 0.55, 0.65, 0.75, 0.85,
0.95. For 7 > 1 autonomous oscillations occur.

2.7 Discussion

In the present chapter of this thesis, it has been shown that under certain conditions
LF oscillations can be greatly amplified by a HF perturbation in a time-delayed
toggle switch. It has been reported that oscillations underlay in the heart of many
cell processes [25], and the timing involved can vary from minutes [26], [27] to days
[28], so it is of great importance to know how these low and fast oscillations may
couple among them.

Here we have also analyzed the different effects of the LF and HF signals on the
resonance. The variation of the high frequency 2 produces a shift of the intensity B
at which resonance occurs. This is very remarkable since tuning the high frequency
allows similar resonances with smaller variations in the concentrations of the proteins.
Furthermore, it has been demonstrated that there is a linear dependence between
Byt and Q2 making it possible to predict the value of the amplitude B,,; at which
VR will take place. On the other hand, we have seen that the variation of the
LF signal changes the width of the peak of resonance. Moreover, we have shown
that variations in the amplitude A and variations in the frequency w had opposite
effects on the resonance: for increasing values of A the resonance increases, but
for increasing w it decreases. This led to a higher (lower) limit for the values of
A and w respectively, and we have seen that above (below) these limits the VR
without tuning occurred. In this time-delayed toggle switch, the variation of the
delay 7 produces a variation in the damping of the system, inducing strong effects
on resonance.

When the system is far from the autonomous oscillations regime (7 < 7..;), the
effect of the delay on VR is similar to the effect produced by the variation of the
amplitude of the LF signal A, including the higher limit above which resonance
without tuning is found. However, when the system is close to the Hopf bifurcation,
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it becomes very sensitive to external perturbations. This situation is especially
interesting as we will see in subsequent chapters.

The most appealing characteristics of the VR are that it can be externally con-
trolled, and that it can induce collective behaviors [8], what makes it attractive for
both biologists and physicists.



22 Chapter 2. Vibrational resonance in a time-delayed genetic toggle switch

t=0.5

12
10

X
>
+4 24

1=1.025 12

10
>

Figure 2.10. Delay provokes sensitivity of the system. These are the basins
of attraction for the time-delayed toggle switch (Eqgs. 2.3) without the periodic forcings
A = B = 0. White pixels represent constant values of the histories leading to (0.5,
2), the equilibrium point represented by the upper red cross. Black pixels represent the
constant histories leading to (2, 0.5), the equilibrium point represented by the lower red
cross. For small delays (7 = 0.5) the basins are not affected by the delayed terms. As 7
is increased the basins get mixed, making the system more sensitive as we approach the
Hopf bifurcation.
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Chapter 3

Ultrasensitive vibrational
resonance

“One can confer motion upon even a heavy
pendulum which is at rest by simply blowing
against it; by repeating these blasts with
a frequency which is the same as that of
the pendulum one can impart considerable
motion.”

-Galileo Galilei, Discourses and mathematical
demonstrations relating to two new sciences

In the previous chapter, we have studied the effects of a nonlinear system per-
turbed by two harmonic forcings of different frequencies. The slow forcing drives the
system into an oscillatory regime, while the fast perturbation enhances the effect of
the slow periodic drive. The vibrational resonance occurs when the enhancement is
optimal, and this usually takes place when the fast perturbation has an amplitude
much larger than the slow periodic forcing. We have also seen that the delay can
drive the system into a sensitive regime where small perturbations can change the
final destination of trajectories. In the present chapter, we show that under these
circumstances the wvibrational resonance can happen for amplitudes of the fast per-
turbation far below the amplitude of the slow periodic forcing. Furthermore, this
resonance presents a fractal pattern, extremely susceptible to small variations of
the fast perturbation. We explore here this phenomenon that we call ultrasensitive
vibrational resonance.

3.1 Introduction

As we have explained in the previous chapter, vibrational resonance (VR) occurs
when the response of a nonlinear system with a low frequency oscillatory signal
is optimized by means of a high frequency perturbation [1]. The VR has been
thouroughly studied analytically, numerically and experimentally in a variety of
nonlinear systems [2]-[6]. Among these studies, the analysis of the effect of delay
on the VR is receiving increasing attention [7]-[12].
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In this context, and motivated by the results obtained for the time-delayed ge-
netic toggle switch, we have explored the VR in the vicinity of a Hopf bifurcation
induced by a delayed feedback. Delay differential equations, though very compli-
cated from an analytical point of view, are very easily simulated numerically and
display a variety of outstanding phenomena. It is well known that among other in-
teresting effects on the VR, time lags can induce multi resonance responses [9], [11].
However, we did not expect to find infinite resonances displaying a fractal pattern,
as it happened. Moreover, this resonance takes place for values of the amplitude
of the high frequency perturbation smaller than the amplitude of the low frequency
signal. This is a unique feature that previous studies on VR have been missing out.

According to this unusual pattern of the resonance curve, we call the phenomenon
ultrasensitive vibrational resonance (UVR). This resonance is extremely sensitive to
slight variations of the amplitude of the high frequency perturbation. Actually, the
resonance curves present very sharp and narrow peaks arranged in a fractal pattern,
in such a way that it might be possible to find two peaks of resonance arbitrarily
close. This is far different from the usual continuous bell shape curve observed in
the wibrational resonance where the amplitude of the second forcing spans a large
interval of values.

Investigating the origin of this extreme sensitivity, we found that the key under-
lying property which gives rise to the UVR is the appearance of fractal structures in
the phase space. We believe that this kind of structures and the presence of attrac-
tors of different amplitude are the basic ingredients of the UVR. Small perturbations
in a fractal phase space can lead the system from a small attractor to an attractor
of large amplitude, therefore the resonance is induced. To check this hypothesis we
analyze a nonlinear system without delay but with a highly fractalized phase space,
and we show that this system is also able to display the phenomenon of UVR.

3.2 Usual vibrational resonance

As a starting point, we reproduce the results of [11], where VR in a Duffing oscillator
with a linear delayed feedback is studied. The Duffing oscillator is a paradigmatic
model to search for VR as it was the model chosen in the original article of Landa
and McClintock [1]. Thus, the model for our study can be formulated as follows

i+7yi+ ar + Br’ + cx(t — 7) = Acoswt + B cos O, (3.1)

where all the coefficients v > 0, < 0,8 >0,¢<0,7>0,A>0,B>0,Q>0,w >
0, and §2 > w are real constants. This model is the usual Duffing oscillator, with two
periodic forcings of different frequencies 2 > w and a time-delayed feedback cz(t—7).
The method used to investigate VR is the same described in the previous chapter.
First, we integrate the delayed differential equations using a (5,6) pair of Runge-
Kutta formulas [13]. Like in the previous chapter, we choose constant histories set
onto a point of equilibrium, so for every t € [—7,0] we set x = +/(av — ) /c. After
getting rid off the transients, we calculate the amplitude response @ (the value of the
Fourier transform at the frequency w) for different intensities of the high-frequency
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Figure 3.1. Usual vibrational resonance. (a) The typical VR curve for a time-
delayed system, as it appears in Ref. [11]. The amplitude response of the system @ varies
smoothly when the amplitude of the high frequency perturbation B is varied and the two
maxima correspond to the wvibrational resonance. Equation (3.1) has been solved with
the following parameters # + 0.5% — x + 0.12% — 0.3x(t — 1) = 0.1cost + B cos 10t and
histories x = & = 0 for t € [—7,0]. Notice the wide range of values of the high frequency
amplitude B compared to the value of the low frequency amplitude. (b) The time series in
red corresponds to B = 0 and the time series in blue corresponds to the first maximum of
panel (a) marked with a dashed line, which is the usual vibrational resonance. (c¢) We can
see the same time series represented in phase space (z,#). The apparent thickness of the
trajectory is a consequence of the high period regime (actually several lines may appear
when we zoom in). The trajectory for the case B = 0 is plotted in the inset because it
is very small compared to the resonant trajectory. This does not mean that the system
presents a great resonance, in the sense of great amplification with a small external action,
but this is a consequence of such a large difference between the amplitudes of both periodic
signals.

perturbation B. The maxima of this curve, if any, correspond to the VR, that is an
optimal match between the low frequency and high frequency signals.

The Duffing oscillator with time-delayed feedback, Eq. (3.1), can present two
resonances corresponding to the two maxima of the @) vs B curve, (Fig. 3.1(a)), for
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certain parameters [11]. It is remarkable that in this case the range of values of
the amplitude of the high frequency perturbation B is several orders of magnitude
larger than the amplitude of the low frequency signal A. Indeed, the analysis of the
theoretical approach of @ includes the assumption A < 1 [11], i.e., B> A.

In these conditions, it is still fair to talk about resonance since the high frequency
perturbation enhances the response amplitude (), but probably one would not expect
the cause of the resonance to be much larger than the signal itself. Additionally, the
time series at the resonance resembles the high frequency perturbation acting as an
enhancer, and the low frequency signal is completely eclipsed (Figs. 3.1(b)-3.1(c)).
Therefore, it seems desirable to amplify the low frequency signal by means of smaller
amplitudes of the secondary high frequency perturbation. As we found out, this is
in fact happening for the Eq. (3.1) when the system is on the edge of stability giving
rise to the UVR.

3.3 Ultrasensitive vibrational resonance

The UVR consists in a series of sharp and narrow peaks of resonance that appear
for very small values of the amplitude of the high frequency signal, as shown in
Fig. 3.2(a). Moreover, and unlike the common VR presented in the previous section,
the UVR occurs for values of the high frequency amplitude B which are smaller
than the low frequency amplitude A. Furthermore, the final time series are not
completely disturbed by the high frequency perturbation as in the VR. In the UVR,
the resonant time series resembles the low frequency signal but with a much larger
amplitude as can be observed in Figs. 3.2(b)-3.2(c). According to this, the UVR fits
better the idea of resonance as a big oscillation amplitude driven by a sufficiently
small external action.

Another specific feature of this phenomenon is the fractal pattern displayed by
the peaks of resonance. This means that when the resolution in B is increased
the amplitude response () presents more and more maxima. Every peak is actually
composed of many peaks and valleys that form a fractal curve, making the resonance
extremely sensitive to small changes in the parameters. The height of the peaks of
@ is almost constant as it is intimately related to the size of the attractors, which do
not vary for such small perturbations. A computation of the box-counting dimension
is carried out in order to quantify the fractalization of the resonance curve, leading
to a non integer dimension of d = 0.94 (see Fig. 3.2(d)).

The Duffing oscillator with time-delayed feedback of Eq. (3.1) is able to present
the usual VR as shown earlier, but it can also display the UVR if the appropriate
parameters are chosen. Research in other models of similar characteristics show that
when the delay takes values just before the Hopf bifurcation, very small periodic
perturbations induce the UVR. Moreover, this phenomenon occurs when the low
frequency signal has a frequency similar to the natural oscillations of the system, as
it happens in the resonance of linear systems. Delving deeper into the causes, we
found that the key element for the appearance of UVR is the fractalization of the
phase space that occurs for this set of parameters.
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The phenomenon of UVR is better understood examining the phase space. One
procedure to examine the phase space in a delayed system consists in choosing the
history as a function with two parameters, and then compute the 2D basin of attrac-
tion varying these parameters. Among all the possible functions that can play the
role of history ! for the Duffing oscillator with delay, here we choose the histories as
constants values of z and @ for t € [—7,0]. For every pair of chosen constant histories
(x,2) we integrate the system and plot the basin of attraction, as shown in Fig. 3.3.
This subspace of the infinite phase space of the delayed system, is sufficient to show
that fractal structures appear for this particular choice of parameters. Fractal struc-
tures associated to transient chaos are an outstanding feature very common in time
delay systems [14]-[17]. In this case, we can see in Fig. 3.3 that the equilibrium
point chosen as constant history lies very close to the fractal boundary where three
different basins coexist. Because of the low frequency signal, the equilibrium point
turns into a stable periodic orbit, whose basin is very close to another basin that
can be reached using very small amplitudes of the high frequency perturbation. In
particular, the system can be driven to an attractor of large amplitude oscillations,
that is the ultimate cause of the ultrasensitive vibrational resonance.

To prove the validity of this interpretation, i.e., that actually the effect of the high
frequency perturbation is to drive the trajectory to a larger amplitude attractor, we
chose another set of parameters for the same model without delay, so we can extend
the results to other kind of systems. Here we consider the Duffing oscillator with
the following parameters:

i+ 0155 — x4+ 2° = 0.245 cos t. (3.2)

In this system there is no delay at all, but the phase space is highly fractalized * [18],
as shown in the basin of attraction of Fig. 3.4(a). In this case the system presents
three periodic attractors, two of them of period 1 with small amplitudes and one of
period 3 of larger amplitude. Now we introduce the second harmonic perturbation
and we have the equation

&+ 0154 — 2 + 2® = 0.245 cost + B cos 10t. (3.3)

If we choose the initial conditions to be in a fractal boundary and then compute
the response amplitude @ (see Fig. 3.4(b)), the UVR takes place with the same
characteristics described before. Once again, the high frequency perturbation is
able to drive the system to an attractor of large amplitude producing the resonance.
This confirms our conviction that the appearance of fractal structures in phase space
is the ultimate cause of the UVR. Furthermore, it explains why in both cases, with
and without delay, the amplitude response () takes almost constant values, since the
attractor remains almost unchanged for these small perturbations.

! Different kinds of history functions and their physical meaning are presented in Appendix C.
2A comprehensive discussion about the unique unpredictability of Wada basins is made in
Chapters 3, 4 and 5.
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3.4 Discussion

In this chapter we have presented a new phenomenon called ultrasensitive vibrational
resonance. UVR is a particular case of vibrational resonance with some specific
characteristics that make it especially interesting.

Originally, the vibrational resonance was considered as a kind of stochastic res-
onance [19] interchanging the role of the high frequency perturbation with noise.
Probably one would not expect the noise to be larger than the signal, and the same
reasoning would be applicable to the high frequency perturbation in VR. In fact
in many situations, stochastic resonance occurs on the edge of stability. However,
in the previous literature on vibrational resonance [7]-[12] the high frequency per-
turbation typically has a larger amplitude than the low frequency signal. This is
not the case in the ultrasensitive vibrational resonance, which can be achieved with
very small amplitudes of the high frequency perturbation, even smaller than the
amplitude of the low frequency signal.

Besides the small amplitude of the high frequency needed to achieve the reso-
nance, another striking feature of this phenomenon is the fractal pattern of sharp
and narrow peaks of resonance. As we zoom in the response amplitude (), more and
more peaks are found as in a fractal curve. We have also computed the box-counting
dimension showing that it is not an integer, which confirms its fractal nature.

As shown in the previous chapter, the delay could increase the sensitivity in a
genetic toggle switch. In this chapter, we have observed that a similar phenomenon
happens for the Duffing oscillator with a time-delayed feedback. A thorough exam-
ination on the mechanisms relating delay and fractal structures will be provided in
Chapter 5. This fractalization of the phase space is the ultimate cause for the partic-
ularities of UVR. When the initial condition lies on a fractal boundary or very close
to it, the high frequency perturbation can drive the trajectory to different attractors.
If one of these attractors is of similar frequency than the low frequency signal but
with a larger amplitude, then the UVR is possible. This explains the high sensitivity
to small variations and also the fractal pattern of the peaks of resonance, which is
due to the fractal nature of the phase space. Furthermore, to check this hypothesis,
we have studied the same system without delay for a choice of parameters where the
basin of attraction is highly fractalized. We have reproduced the same results for the
response amplitude @), proving that the fractal nature of the phase space is at the
heart of this phenomenon. This opens the range of dynamical systems susceptible
of presenting UVR.
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Figure 3.2. Ultrasensitive vibrational resonance. (a) The UVR curve for equation
#40.12 — 0.52 + 0.523 — 0.08z(t — 6.3) = 0.174 cos 0.7t + B cos 3t. The amplitude response
of the system () varies in a sharp manner when the amplitude of the high frequency pertur-
bation B is slightly modified. The inset is a zoom of the first apparent peak, revealing that
it is composed of more peaks in a fractal-like structure. The height of @) remains almost
constant, as it is very closely related to the amplitude of the attractor, which does not
vary appreciably for this short range of B. (b) Time series for B = 0.0012, marked with
a star in panel (a). Here the resonant series resembles the non resonant series, but with
a larger amplitude. (c) We can see the same time series represented in phase space (z, ).
Notice that we get a strong amplification of the signal, i.e., a high resonance for a very
small amplitude of the high frequency perturbation. (d) Computation of the box-counting
dimension for the curve of resonance shown in panel (a). The slope of the loglog plot
indicates a non integer box-counting dimension of d = 0.93965 + 0.00016, which confirms
that the curve is fractal.
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Figure 3.3. Fractal basin of the delayed Duffing oscillator. This basin of
attraction in the history function space is for the Duffing oscillator with time-delayed
feedback given by #+0.14 — 0.5z +0.523 —0.082(t —6.3) = 0.174 cos 0.7t. This corresponds
to Eq. (3.1) with B = 0, that is, before the high frequency perturbation is introduced.
Histories have been chosen as constants. We can see a fractalization of the projection of the
phase space (the actual phase space is infinite-dimensional due to the delay). Perturbations
of small amplitude, such as those produced by the high frequency forcing, may drive the
system to different attractors.
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Figure 3.4. Fractal structures are responsible for UVR. The Duffing oscillator
without delay is able to show UVR for this particular choice of parameters: &+ 0.154& —x+
23 = 0.245cost. (a) This figure shows the basin of attraction where we can observe that
the phase space is highly fractalized, indeed this basin has the Wada property [18]. (b)
Plot of the wltrasensitive vibrational resonance when we introduce the second harmonic
perturbation and then the equation becomes & + 0.15& — z 4+ 2% = 0.245cos t + B cos 10t.
The peaks of resonance follow a fractal-like structure due to the fractalization of the phase
space. As in the case with delay of Fig. 3.2, the height of @ remains almost constant. This
is related with the amplitude of the largest attractor of the system. (¢) Computation of
the box-counting dimension of the curve @ shown in panel (b). The slope of the loglog
plot is 0.93737 + 0.00024, thus the resonance curve has a non-integer dimension.
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Chapter 4
Testing for Wada basins

“Nature’s imagination far surpasses our own.”

-Richard P. Feynman, The character of phys-
1cal law

In our quest for a better understanding of the uncertainty in nonlinear dynamics,
the Wada property is an indispensable subject of study. We have seen that fractal
boundaries can give rise to striking effects. Now we focus on Wada basins, a special
kind of fractals, which exhibit the most entangled boundaries that one can imagine.
Basins of attraction are said to be Wada when a single boundary separates three
or more different basins, making initial conditions near that boundary even more
unpredictable. Many physical systems of interest with this topological property
appear in the literature. However, so far the only approach to study Wada basins
has been restricted to two-dimensional phase spaces. In the present chapter, we
develop a simple algorithm whose purpose is to look for the Wada property in any
given dynamical system, widening its scope of applicability. Another benefit of this
procedure is the possibility to classify and study intermediate situations known as
partially Wada boundaries.

4.1 Introduction

Sometimes a physical property can be labeled with different discrete values depend-
ing on parameters. Suppose a space has Ny > 3 disjoint regions S; where each
S; represents a different value or state. For example, the sets might be basins of
attraction in the phase space of a dynamical system. Numerical and experimental
investigations of the property in question can be intricate when the boundaries be-
tween the sets are fractal. It may be difficult to predict the state transition of the
system as the initial condition is disturbed. This unpredictability increases when
the boundaries of S; are not only fractal but also possess the Wada property; that
is, each point on the boundary of any of these regions is in fact on the boundary of
all of them. In other words, the sets share the same boundary.

This situation emerges for a variety of systems of high interest in physics such as
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i

(a) (b) (c)

Figure 4.1. Disconnected Wada set. Three different stages to build a Wada set
using three disconnected regions. The basins (colors) share the same boundary but each
colored set is disconnected.

the basins of the forced damped pendulum [1], escapes in tokamaks [2], dyes in
open hydrodynamical flows [3], the Duffing equation with a periodic forcing [4], the
Hénon-Heiles system [5], or Newton’s method to find complex roots [6].

The problem first arose as an investigation of regions in the plane: Can three
or more open, disjoint, connected regions S; in the plane have the same boundary?
This question was answered in the affirmative by L.E.J. Brouwer in Ref. [7]. In
Ref. [8], K. Yoneyama gave an example that he attributes to Mr. Wada, his Ph.D.
supervisor, Takeo Wada. Hocking and Young [9] used the term lakes of Wada,
a pun on water, so it was natural to extend the wordplay to dynamical systems
by introducing the term basins of Wada [10]. The papers [11], [12] applied this
concept to dynamical systems and devised a method to identify Wada basins. It
is remarkable how improbable the original topological examples appeared, seeming
unrelated to anything real, and yet surprisingly appear to be common in dynamical
systems including physical systems like the forced damped pendulum.

The Nusse-Yorke (NY) method [11] observes that when the unstable manifold of
a boundary saddle point ¢ crosses three or more different basins, then the point ¢ is
a Wada point, as is every point in the stable manifold of ¢ and in its closure. It can
be difficult to show that the closure of that stable manifold is the entire boundary.
The procedure for carrying that out is based on a concept called basin cells, which
requires detailed knowledge of stable and unstable manifolds. The NY method is
an adequate approach for basins in two dimensional phase spaces. However, the
method is not suitable in many cases.

The Wada property appears in diverse situations such as the parameter space
of the Hénon map [13] or the one-dimensional phase space of a competition model
in ecology [14]. We can also find experimental and theoretical examples where the
Wada property seems very likely to be present but the absence of a proper method
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of characterization prevents its study [15], [16]. We present a special case where
the basins of the dynamical system share their boundaries, but the different basins
are not connected. These disconnected Wada basins can be illustrated as follows.
Figure 4.1(a): divide a disk in six sectors and color three alternate sectors with
different colors; Fig. 4.1(b): divide each empty sector into three sectors and color
the central one with the color that is not at the left nor at the right; Fig. 4.1(c):
repeat the second step indefinitely until filling the whole disk. The boundary of the
different colors displays the Wada property by construction, but the basins are not
connected; indeed the set of Wada points on the boundaries possesses a Cantor set
structure. There is a rich literature documenting systems with disconnected Wada
sets: the experiment of light scattered by reflecting balls [17], the Newton method
to find complex roots [6], chaotic scattering in more than two dimensions [18], etc.

4.2 A grid approach

We propose a simple method, straightforward to implement, to test the Wada prop-
erty in all kind of systems. Furthermore, our method/terminology allows us to
classify intermediate situations where only some basins and some of the boundary
present the Wada property, which receives the name of partially Wada basins [19],
20].

We first need some assumptions. We will discuss the notation for the case of a
two dimensional space, though it is easily adapted to other cases.
1.- There is a bounded region 2 containing Ny > 3 disjoint regions S; where
j=1,---,Ny.
2.- There is a rectangular grid G covering 2. We typically use a 1000 x 1000 grid.
Hence Q is covered by a set P = {boxy, ...,boxk} of grid boxes (whose interiors do
not intersect each other). Here K would be 10°® for that usual grid.
3.- For each point z in €2, it is possible to determine to which set S; it belongs to.
In other words, there is a function C' with C(z) = jif z € S; and C(z) =0 if =
is in none of the sets S;. If the sets are basins, the trajectory for each = € €2 leads
to an atractor labelled by C(x). Notice that we do not impose different labels for
each attractor. It is possible to merge several attractors into the same category. For
any rectangular box denoted as box we define C'(box) = C(x) where x is the point
at the center of box. If it does not go to an attractor in our collection of numbered
attractors, then C'(box) = 0, such events are reported at the end of the run. For
convenience we will refer to this numerical value C as the color of the grid box. Of
course other points in the same box might lead to different attractors.
4.- We define b(boz;) to be the collection of grid boxes consisting of box; and all the
grid boxes that have at least one point in common with boz;, so in dimension two,
b(box;) is a 3 x 3 collection of boxes with box; being the central box.
5.- For each box;, we determine the number of different (non-zero) colors in b(box;)
and write M (boz;) for that number.
6.- In each box; with M(box;) # 1, N4, that is, which is not in the interior nor
in the Wada boundary, we accomplish the following procedure. We select the two
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Figure 4.2. Sketch of the method. We set up a grid of boxes boz; covering the
whole disk. The center point of each box defines its color. In the first step, we see that
box1 belongs to the interior because its surrounding 8 boxes have the same color. On the
other hand, bors and boxrs are in the boundary of two attractors, i.e., they are adjacent
to boxes whose color is different. In the next step the algorithm classifies boxs still in
Go (boundary of two), while boxs is now classified in G3 (boundary of three). Ideally
the process would keep on forever redefining the sets G1, G and G35 at each step, though
in practice we can impose some stopping condition. This plot constitutes an example of
partially Wada basins.

closest boxes in b(box;) with different colors and trace a line segment between them.
We compute the color of the middle point of the segment. In case that the color
newly computed completes all colors inside b(boz;), then M (box;) = N4 and the
algorithm stops. Otherwise, we compute two new points: one in the middle of the
leftmost and central point, and another in the middle of the rightmost and central
point. In the second step, four points interspersed with the previous five points
would be calculated. In the third step, we would compute eight points interspersed
with the previous nine. The procedure keeps on until M (box;) = N4 or the number
of calculated points in that segment reaches some maximum value previously set up.
A major computational advantage of this method is that the refinement is made
in a one dimensional subspace (the segment linking the two points), no matter the
dimension of €.
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Figure 4.3. Forced damped pendulum. (a) Basins of attraction for the damped
forced pendulum Z+0.22+sinx = 1.66 cos t. (b) All 1000 x 1000 boxes are labeled either in
the interior (white) or in the boundary of the three basins (black). (¢) Histogram showing
the number of points N that take g steps to be classified as boundary of three. (d) After a
maximum, there is an exponential decay of the computational effort related to the fractal
structure of the basins. The log-plot reflects this tendency.

7.- Next we define G,, to be the set of all the original grid boxes box; for which
M (box;) = m.

For m =1, all the boxes inside the ball b(box;) have the same color as they all
lead to the same attractor. In fact Gy represents points that are in the interior of a
basin. A grid box box; is in the set Gy (boundary of two) if there are two different
colors inside the ball b(box;), a grid box is in the set G5 (boundary of three) if there
are three different colors inside the ball and so forth. To account for the evolution

of these sets as the algorithm progresses, we call GZ the set G,, at step q.
N-1
Then, we will say that the system is Wada if lim #G9% = 0. This simply
q—00 m=2
means that the grid boxes are either in the interior G; or in the Wada boundary
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Figure 4.4. Forced damped pendulum with eight basins. (a) The damped forced
pendulum with parameters & + 0.2¢ + sinax = 1.73 cost shows eight basins of attraction
mixed intricately. (b) Some boxes are classified to be in the boundary of eight basins
(black dots), but not all of them (red dots), which is a clear example of partial Wada.
(¢) The computational effort presents the usual shape for the Wada boundary, but the
points which are not Wada keep refining indefinitely (bar at rightmost). Our algorithm
works best in systems with the Wada property. (d) Evolution of the proportion of boxes
in the Wada boundary (Ws in black) and proportion of boxes in a boundary which is not
Wada (Ws_7) as a function of the g-step. The convergence of Wy is used to determine the
stopping rule.

Gy, after a sufficient number of steps ¢.

The basic idea underlying the whole process is that if three basins are Wada,
then it is always possible to find a third color between the other two colors (similar
reasoning can be done for Wada basins with more than three colors). Notice also
that if a boundary separates two basins we will only see those two basins at all
resolutions.

To illustrate the iterative process we represent in Fig. 4.2 our example of a
partial Wada set and compute the boundary set for three grid boxes boxy, boxs, and



4.2. A grid approach 43

X

&
o012 m
B
&
s
£
z

(c)
Figure 4.5. Newton method to find complex roots. (a) The map z,y; =

2, — (27 — 1)/(rz"=1) with » = 7 has seven basins of attraction with the disconnected
Wada property. (b) All the boxes lie in the boundary of the seven basins or in the interior.
(¢) Computational effort as we vary r from 3 to 7. As the number of basins increases
the maximum of the histograms shift to the right, that is, the more basins the larger the

computational effort. The maximum number of steps ¢ needed for any of these basins to
be considered Wada is 21.

boxs on a regular rectangular grid forming a partition P° of the phase space. The
first iteration for bor; shows that it belongs to the interior region GY, as the eight
boxes surrounding it have the same color. At this point, we can consider bor; in
GY without refining the partition. The second, bows, lies in the boundary of two
sets because two different colors are found in its ball. The successive iterations of
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the algorithm classify boxs into Gy. A different situation arises for boxs. The first
iteration classifies bors € GY because only two colors are found in its ball. But as
we increase the resolution, bozrs turns out to be in a boundary of three basins G3.

In order to decide whether a system is Wada, not Wada, or presents an interme-
diate situation, we can count the number of boxes belonging to the boundary of m
different basins. For that purpose we can define a useful parameter

q
W, = lim G ,
q—00 Na q
>, #G]

Jj=2

(4.1)

where m € [2, N4]. This parameter W,,, € [0, 1] takes a value zero if the system has
no grid boxes that are in the boundary separating m basins and it takes a value one
it all the boxes in the boundary separate m basins. Thus, if Wy, = 1 the system is
said to be Wada. Partial Wada occurs when 0 < W,,, < 1 with m > 3. As we will
see, W, is also useful to test the global numerical convergence.

4.3 Application of the method

In all the examples presented in this chapter, we use as initial partition a uniform
grid of one million boxes, and the verification of the Wada property is made until
that resolution. In order to illustrate the features of the described method, we will
present an analysis of the results for the damped forced pendulum and the Newton
method to find complex roots. They could be considered as paradigmatic examples
of connected and disconnected Wada sets respectively. Nonetheless, we have also
tested our method for the Duffing oscillator [4], the Hénon-Heiles system [5] and the
magnetic pendulum [21]. In all of them, we have obtained values of W5 = 1 which
means they all posses the Wada property. For further details on these supplementary
examples see Appendix B.

The first system we will analyze is the forced damped pendulum defined by
Z+0.22+sinx = 1.66 cost, which constitutes a paradigmatic system with connected
Wada basins [4]. After applying our method to the basin of attraction of Fig. 4.3(a),
we find that all the boxes lie either in the boundary of the three basins or in the
interior within the resolution of the method (see Fig. 4.3(b)). The histogram of
Fig. 4.3(c) reflects the computational effort needed to test the Wada property in
this system. It shows that most of the points take less than five iterations to be
labeled into the set boundary of three. Most importantly, the fractal structure of
the boundary allows fast computation: as the number of steps ¢ grows the number
of remaining points N decreases exponentially (see Fig. 4.3(d)). At the end of the
process, we find that W5 = 1, which implies that the system is Wada.

A more challenging case arises when we increase the amplitude of the external
forcing: @ + 0.22 + sinxz = 1.73cost. For these parameters the damped forced
pendulum has at least eight attractors, and its basins are mixed complicatedly as
shown in Fig. 4.4(a). When we apply our algorithm, we see that not all the boxes
are classified as Wada (Fig. 4.4(b)). This is an example of partial Wada basins. The
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points in the boundary which are not Wada (points in G5 to G; in our example)
increase the computational effort of the algorithm (Fig. 4.4(c)). The reason is due
to nature of the process, the algorithm stops computing when M (box;) = Ny4 for
each box or the maximum of allowed steps is reached.

In order to establish a stopping rule we can use the parameter W,,: the algo-
rithm stops when |W,,(step + 1) — W,,,(step)| < €, being ¢ a small positive number
previously fixed (see Fig. 4.4(d)). Another option to deal with partial Wada is to
merge some basins of attraction, considering two colors as only one single color for
example. Making such a redefinition of the basins, we can say that the system is
Wada if all the new basins share the same boundary (assuming we have at least
three basins).

The second system under study is the Newton method to find complex roots,
which provides examples of disconnected Wada sets. To find the roots of 2" = 1,
z € C and r € N, the Newton method iterates the map z,,1 = 2, — (2" —1)/(rz""1).
This map has r different fractalized and disconnected Wada basins corresponding
to the complex roots of unity. In Fig. 4.5(a) we depict the basin for r = 7 and in
Fig. 4.5(b) we see that the algorithm yields to W7 = 1, that is, all the boxes belong
to the interior or to the boundary of the seven basins. Thus, our method can verify
the Wada property for an arbitrary number of basins and for disconnected Wada
sets too. An analysis of the computational effort for the Newton method varying
r from 3 to 7 reflects that it grows with the number of basins (the maxima of the
histograms in Fig. 4.5(c) shifts to the right as the number of basins increases).

4.4 Discussion

Fractal Wada boundaries seem common in nonlinear systems. However they can
be overlooked or misinterpreted with a simple fractal boundary. We can also have
an intermediate situation such as partial Wada. Our algorithm shows that in a
computationally affordable time, the Wada basins can be detected for a given grid
precision. Furthermore it is possible to apply the technique to disconnected Wada
sets, high-dimensional problems, experimental settings, partially Wada systems and
delayed systems, as it will be shown in the next chapter.

A simple key idea drives the search: on the line segment between two points of
different basins there is always a point belonging to another basin if the boundary
is Wada. The indicator W,, quantifies the Wada property and allows comparisons
between basins. We can imagine for example a study of the measurement W,, as a
function of a parameter of the system under study. Using this procedure, a Wada
parameter set could be defined, in the same way that Lyapunov exponents allow
the definition of the chaotic parameter set. We can also imagine an optimization
algorithm to implement a heuristic search for Wada basins. We believe that this
algorithm can constitute a powerful tool in the study of dynamical systems in general
and of the Wada property in particular.
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Chapter 5

Wada property in systems
with delay

“En général, on néglige la durée de la trans-
mission et on regarde les deux événements
comme simultanés. Mais, pour étre rigoureux,
il faudrait faire encore une petite correction
par un calcul compliqué... ”

-Henri Poincaré, La valeur de la science

In Chapter 2 and Chapter 3, we observed that the delay can induce instabilities in
a system, increasing its unpredictability. Now we further inquire about this relation
between delay and unpredictability, paying special attention to the appearance of
the Wada property in systems with delay. The particularities of delayed systems
prevented the application of the classical methods to study the Wada property, but
thanks to the algorithm introduced in Chapter 4 we can test the Wada property in
any kind of system, delayed systems included.

5.1 Introduction

The objective of this chapter is twofold: on the one hand, we study the effects of
the delay in nonlinear dynamical systems, focusing on their associated uncertainty;
on the other hand, we study the emergence of the Wada property when delays are
involved.

Delay differential equations (DDEs) take into account the time taken by systems
to sense and react to the information they receive, in other words, that the infor-
mation transmission cannot be instantaneous, but delayed. For practical purposes,
these lags can often be ignored when their timescales are very small compared to the
dynamics of the system. However, there are situations where large delays cannot be
overlooked: genetic oscillators [1], neuron networks [2], respiratory and hematopoi-
etic diseases [3], electronic circuits [4], optical devices [5], engineering applications
6], etc. Delay differential equations provide a very useful tool for the modelling of
the previous examples. Moreover, they are able to display such interesting kind of
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dynamics as deterministic Brownian motion [7], hyperchaos [8] and many coopera-
tive effects [9]-[11]. It is also important to mention that DDEs have the property
of time-irreversibility [12], which introduces further difficulties in the analysis, but
also gives a more realistic perspective of many processes.

As we have already mentioned in previous chapters, a crucial feature of DDEs is
that they need an infinite set of initial conditions to be integrated. This set is usually
called history and provides the state of the system before the action of the delayed
terms. Sometimes history is set randomly, although given the sensitivity of some
systems with delay and the difficulties arising when an infinite set of initial random
points is needed, the choice of random histories is a delicate issue. A better option is
to set the history as the solution of the system without the delayed terms. Another
possibility are history functions' described by some parameters and properly chosen
for each physical situation.

A convenient way to handle this infinite number of initial conditions is to define
history functions characterized by a finite number of parameters. This supposes a
huge difference with respect to nonlinear systems modelled with ordinary differential
equations (ODEs), since the space of the history functions and the real phase space
are not in correspondence. Therefore, basins of attraction, which are a very powerful
tool to study sensitivity in dissipative systems, have a different nature in DDEs.

In dissipative dynamical systems defined by ODEs, the basins of attraction regis-
ter in a plot the attractors reached by different initial conditions. In DDEs the same
idea can be exploited: we can plot basins of attraction varying the parameters of
the history functions. These basins are subspaces of the infinite dimensional space
of history functions, but still can provide much information about the sensitivity of
the system. Only a few authors have studied basins of attraction in DDEs [13]-[15].
In this chapter, we study how the delay can induce uncertainty in the system, and
we pay special attention to the appearance of the Wada property in these basins of
attraction made out of different history functions.

In Chapter 4, we saw that the Wada property is a topological property that
can be stated as follows: given more than two open sets, they all share the same
boundary. This situation is very counter-intuitive, since most boundaries are only
between two sets. In some cases there might be some points or regions that separate
more than two open sets, but the case where every point in the boundary is in the
boundary of all the sets is unique.

The interest in the Wada property lies on the fact that their boundaries are
the most entangled that we can imagine, since they separate all the basins at the
same time. Therefore, small perturbations near the boundaries can lead to any of
the different attractors of the system. This unique uncertainty of Wada basins is
revisited from a different perspective in Chapter 6.

The Wada property also appears in systems with more than two degrees of
freedom [16]-[18]. In these cases the basins have more than two dimensions and the
subspaces generally show the disconnected Wada property: the different basins share

'For more details about history functions see Appendix C.
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Figure 5.1. Comparison between the delayed action and Duffing oscillators.
(a) Basin of attraction of the delayed action oscillator & + z((1 + a)z? — 1) — az, =
0. with @« = —0.95 and 7 = 1.065. (b) Basin of attraction of the Duffing oscillator
# 42 + x(x? — 1) = 0. with v = 0.15. Both figures show a similar topology, but Fig. 5.1
(b) represents only a slice of the infinite dimensional space of history functions, given by
the family of history functions of Eq. 5.2.

the same boundary but they are disconnected. These disconnected Wada basins can
be analyzed by means of the techniques developed in Chapter 4.

The aim of the present chapter is to investigate the connection between delay
and unpredictability, looking also for the Wada property in systems with delay. We
organize this search as follows. In Sections 5.2 and 5.3 we introduce two delayed
systems that present different degrees of the Wada property. Finally, in Section 5.4
we briefly summarize and discuss our main results.

5.2 Forced delayed action oscillator

We start studying an apparently simple system sometimes called the delayed action
oscillator (DAO). It is a single variable system with a double-well potential and a
linear delayed feedback with constant time delay 7, that we will denote z,. It can
be stated as follows,

i+ z((1+a)r? —1) —az, =0. (5.1)

where a,7 € R. Boutle et al. [19] proposed this model in the context of the
ENSO (EI Nifo Southern Oscillation) phenomenon, where the variable z represents
the temperature anomaly of the ocean’s surface. in Ref. [20], the authors analyze
the stability and bifurcations of this system by a center manifold reduction. They
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demonstrate that as the delay increases beyond a critical value 7., the steady state
solution x = 0 can undergo a Hopf bifurcation giving rise to a limit cycle. Without
the delayed term, this system would be a one-dimensional ODE and could not oscil-
late, but the linear delayed feedback makes the system infinite-dimensional allowing
oscillatory dynamics. In the case that « > —1 and 7 > 7, the limit cycle coexists
with two stable fixed points, so the system can be multistable. To visualize the
situation in a plot, we choose the following family of history functions defined by
two parameters A and B,

x(t) = A+ Bt, Vt € [—1,t]. (5.2)

Unless specified, this linear equation will be the family of history functions chosen
by default along the present chapter. Now, we can compute a basin of attraction
varying A and B. Figure 5.1(a) represents the basin for o = —0.95 and 7 = 1.065,
below the critical value 7.. It is interesting to notice the analogy between the DAO
and the well-known Duffing oscillator

i+ i+ a(@?—1)=0. (5.3)

The structure of its basin of attraction is very similar to the DAO model as shown
in Fig. 5.1(b). However it is important to notice that the two basins have different
nature: we have the real phase space for the Duffing oscillator and a slice of the
infinite space of history functions in the case of the DAO.

At this point it is important to make a connection with Ref. [21]. In that work,
Aguirre and Sanjuén studied the Duffing oscillator driven by a periodic forcing
F'sinwt on the right hand side of Eq. (5.3). They showed that if the parameters
are carefully chosen (v = 0.15,w = 1, F' € (0.24,0.26)), the system can display the
Wada property. Making a naive analogy, it is plausible that we will encounter the
same effect by including the periodic forcing in the DAO such as

i+ z((1+a)r? - 1) — az, = Fsinwt. (5.4)

For a = —0.925, 7 = 1.065, FF = 0.525 and w = 1, this system presents three
attractors (see Fig. 5.2(a)). Given the periodic forcing, we can make a stroboscopic
map taking t = (27 /w)n,n € Z. In this map, two of these attractors are period-three
orbits, suggesting the possibility of chaotic dynamics in the system [22]. In fact, a
chaotic attractor exists for other parameters. For the chosen set of parameters, we
can tell that it is the delay that makes possible the appearance of chaotic dynamics
in the phase space. Otherwise for 7 = 0, the system would have a dimension equal
to two, forbidding any chaotic motion.

A few authors have studied the relation between delay and chaos [23], [24], but
the delay was always considered in a nonlinear term. We show here that a linear
delayed feedback can also induce chaos in a continuous system. Some systems dis-
playing chaos have been modified with a linear delayed feedback, preserving the
chaotic motion [13]. But in this model, the linear delayed feedback is providing the
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Figure 5.2. Transient chaos induced by linear delay. (a) Attractors of the forced
DAO defined by &4z ((1+a)z?—1)—ax, = Fsinwt for a = —0.925, 7 = 1.065, F = 0.525,
and w = 1. There is a period-1 orbit (in the stroboscopic map) and two symmetric period-
3 orbits. Trajectories intersect because this is a projection in (z, &), but the system lives in
infinite dimensions in principle. (b) The basins of attraction are highly mixed, increasing
the unpredictability of the system. However, as panels (c¢) and (d) show the system is not
completely Wada: some points separate only two basins, so the system is only partially
Wada.

extra dimensions that the system needs to display chaos, in the same way that the
delay allows sustained oscillations in a system of one variable.

The system of Eq. 5.4 presents transient chaos and possesses three attractors
(depicted in Fig. 5.2(a)). If we plot the basin of attraction (Fig. 5.2(b)) we can
see that the picture is highly fractalized and looks like Wada. As discussed before,
the Nusse-Yorke method to verify if the basin is actually Wada is not applicable
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here, since we do not have a correspondence between the phase space of the history
functions and the actual phase space. However, we can apply the test presented in
Chapter 4 in order to decide whether it is Wada or not.

In the previous chapter, we have explained how the algorithm sets a grid and
searches for the points lying on the boundary of two or three atractors. The test for
Wada is conclusive if all the points in the boundary belong to the boundary of three
atractors. Applying our grid method, the 3-boundary has box-counting dimension
equal to 1.602 (see Fig. 5.2(c)) and the 2-boundary 0.761 (see Fig. 5.2(d)). The
indicator W3 = 0.990 also reveals that the system is not fully Wada, but only
partially Wada. In fact, if we zoom in, we can see that the red and green basins do
not mix with the blue one, so there is a boundary between red and green that they
do not share with the blue basin.

It is clear from the plot of the basin in Fig. 5.2(b) that the system is highly
unpredictable, but it does not show the Wada property. We have scanned a wide
range of parameters and we have not been able to find the Wada property for the
forced DAO of Eq. 5.4. Perhaps there are small parameter ranges where the Wada
property arises, but since the requirements that a system must fulfill to exhibit the
Wada property are unclear, we cannot assure nor discard that the forced DAO can
display the Wada property. Nonetheless, the delay can induce not only chaos, but
also the Wada property, as we will see in the next section.

5.3 Forced DAO with nonlinear delayed feedback

After studying the forced DAO a question arises: what are the differences between
the forced DAO and the forced Duffing oscillator? In principle, both of them have
the same nonlinear potential, a periodic forcing and enough dimensions to show
chaos, and possibly Wada. However, there is an important feature that makes them
different.

In order to contrast the two systems, let us write on the one hand the forced
Duffing oscillator equation as the following first order autonomous system,

jf(] = W
i = azy + 21 — (1 + @)z} + Fsinag (5.5)
N

jfi = —(LIZ'Z‘_l — .CL’Z'), for 4 Z 2.
T

On the other hand, following a usual technique for delay differential equations (see
e.g. [7]), we can rewrite the forced DAO of Eq. (5.4) in form of an ODE with infinite
dimensions:

Lt'o =W
&y = —yxy + Ty + 75 + Fsinxg (5.6)
To = 11,

Comparing the expressions (5.6) and (5.5) we see that they are very similar, but there
is one important difference. In the case of the forced Duffing oscillator (Eq. 5.6),
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the evolution of x; depends on the nonlinear term of the variable x5. However,
in the forced DAO (Eq. 5.5) the evolution of z; depends linearly on xy, and the
nonlinearity is in x; (see table 5.1 for an easy visualization of the two systems side
by side).

Forced Duffing Forced DAO extended
jfo =w To=w 3
By = —yxy + 29 + x5 + Fsingg T =axy +x1 — (1 + @)z + Fsinag
. N
Ty = T1, ;= — (v — x;), fori> 2.
T

Table 5.1. Comparison between the forced Duffing and the forced DAO. The main
difference between them is that the evolution of 1 depends on the nonlinear term of zo
in the forced Duffing, while it depends linearly on xx for the forced DAO.

As we mentioned earlier, the conditions for the Wada property are unknown, but
in our exploration of delayed systems we find pertinent to study the system with
the delay in the nonlinear term, looking even more similar to the forced Duffing
oscillator. This system can be written in the usual manner as

@+ a(r® —x,) +2 = Fsinwt. (5.7)
In the extended version of this equation, we can see that the evolution of x; depends
on the nonlinear term x%,. A careful exploration of the parameter space reveals that
for « = 2.5, 7 = 1, F = 1.15, and w = 1.2 the system has three attractors:
one attractor at infinity (solutions that diverge) and the two period-2 attractors of
Fig. 5.3(a). Plotting the basin of attraction (Fig. 5.3(b)), we see that it looks like
a disconnected Wada set. The grid method to verify the Wada property, described
in the previous chapter, confirms our intuition after a few steps: every point in
the boundary separates three basins (see Fig. 5.3(c)) giving a Wada parameter of
W3 = 1. The basins are disconnected because we are only looking at one slice of
the infinite dimensional space of history functions, as it happens in the basins of
the 3D scattering of Ref. [17]. For every history function we have tested, no matter
how many parameters (dimensions) it had: the basin always shows the property
of Wada. For example, Fig. 5.3(c) is the plot of the basins of attraction for the
same system with another family of history functions, a different slice of the infinite
dimensional history function space, also showing the Wada property. These are
solid arguments to affirm that the delay induces chaos and gives rise to the Wada
property in the infinite dimensional space of history functions, turning the system
strongly unpredictable and very sensitive to small changes in the history function.

It is interesting to note that the rings that appear in the full Wada basin of
Fig. 5.3-(b) can be easily reproduced by means of an iterative process to construct
disconnected Wada sets, as the one we used in the previous chapter. The procedure
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to develop a set of disconnected Wada rings can be summarized in the three steps
sketched in Fig. 5.4: (a) draw a disk with two concentric rings around it, each one
with a different color leaving some space between them; (b) divide each white space
in three rings and color the central part with a different color from the closest colored
rings; (c) repeat the previous step infinitely until filling the whole disk. Figure 5.4(d)
is a zoom of the basin depicted in Fig. 5.3(b). The similarity between Fig. 5.4(c)
and Fig. 5.4(d) is clear.

5.4 Discussion

In our exploration of the interplay between uncertainty and delay, we have inves-
tigated some simple delayed systems and their basins of attraction in the space of
history functions. Given the apparent similarities between the delayed action and
the Duffing oscillators, we have decided to add a periodic forcing to the delayed
action oscillator and to look for the Wada property as it appeared in the basins of
the Duffing oscillator. We have found the first example, to the best of our knowl-
edge, where a linear delayed term induces transient chaos in a continuous system.
Nonlinear delayed terms were known to induce chaotic dynamics [3], [23], [24], but
in this case the linear delay provides the extra dimensions that the system needs to
show chaos. Although this constitutes an interesting result by itself, our objective is
also to study the properties of the basins of attraction. Despite our careful research,
we were unable to find the Wada property in the forced delayed action oscillator.
Perhaps it happens in a small region of the parameter space, or perhaps it does not
happen. Although the phase space is highly fractalized and the system is very close
to show the full Wada property, we must label it as partially Wada.

Finally, we introduced the delay in the cubic term. In this system we were
able to find not only transient chaos, but also the full Wada property. The basins
of attraction that we plot are subspaces of the infinite dimensional history function
space, and all of them have the same properties. This means that this is probably the
first report of the full Wada property in infinite dimensions. Infinite Wada basins
can be obtained varying the family of history functions, and we can also modify
the number of parameters obtaining Wada basins of arbitrary dimension. Without
delay, this system would only show oscillatory dynamics, but here the delay induces
both chaos and the Wada property. We expect that this study contributes to the
investigation of delayed systems, especially concerning its sensitivity.
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Figure 5.3. Wada property induced by delay in nonlinear feedback. (a)
Attractors of the system & + a(z3 — ;) + 2 = Fsinwt with a = 2.5, 7 =1, F = 1.15, and
w = 1.2. The system has two period-2 orbits and also diverging trajectories. Trajectories
intersect themselves because this is a projection in (z, &), but in principle, the system lives
in infinite dimensions. (b) Basin of attraction: history functions leading to infinity are
colored in blue, and the red and green colors are for history functions leading to the two
period-2 orbits. This is an example of disconnected Wada basin. (c) All the points in the
boundary separate three basins, thus the system possess the Wada property. (d) Basin of
attraction with an oscillating history function z(t) = Asin Bt, Vt € [—7,to]. The Wada
property is independent of the initial history function chosen (W3 = 1). Different initial
history functions are different subspaces of the same infinite dimensional space, they all
have the Wada property.
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() (d)

Figure 5.4. Disconnected Wada property in rings (a)-(b)-(c) Three different steps
of the iterative toy example to build a disconnected Wada set. The white space between
rings in panel (a) is filled in such a way that the basins (colors) share the same boundary,
but they are disconnected sets. (d) Zoom from Fig. 5.3-(b), where we can see a structure
topologically equivalent to our toy example.



Bibliography

J. Lewis, “Autoinhibition with transcriptional delay: a simple mechanism for
the zebrafish somitogenesis oscillator”, Curr. Biol. 13, 1398-1408 (2003).

A. Nordenfelt, J. Used, and M. A. F. Sanjudn, “Bursting frequency versus
phase synchronization in time-delayed neuron networks”, Phys. Rev. £ 87,
052903 (2013).

M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control
systems”, Science 197, 287-289 (1977).

X. F. Wang, G.-Q. Zhong, K.-S. Tang, K. Man, and Z.-F. Liu, “Generating
chaos in Chua’s circuit via time-delay feedback”, IEEE T. Circuits-1 48, 1151—
1156 (2001).

K. TIkeda and K. Matsumoto, “High-dimensional chaotic behavior in systems
with time-delayed feedback”, Physica D 29, 223-235 (1987).

Y. N. Kyrychko and S. J. Hogan, “On the use of delay equations in engineering
applications”, J. Vib. Control, (2010).

J. C. Sprott, “A simple chaotic delay differential equation”, Phys. Lett. A 366,
397-402 (2007).

K. Ikeda and K. Matsumoto, “Study of a high-dimensional chaotic attractor”,
J. Stat. Phys. 44, 955-983 (1986).

D. V. Ramana Reddy, A. Sen, and G. L. Johnston, “Experimental evidence of
time-delay-induced death in coupled limit-cycle oscillators”, Phys. Rev. Lett.
85, 3381-3384 (2000).

A. Nordenfelt, A. Wagemakers, and M. A. F. Sanjuan, “Frequency dispersion
in the time-delayed Kuramoto model”, Phys. Rev. E 89, 032905 (2014).

M. Lakshmanan and D. V. Senthilkumar, Dynamics of nonlinear time-delay
systems. Berlin: Springer, 2011.

M. C. Mackey, “The dynamic origin of increasing entropy”, Rev. Mod. Phys.
61, 981-1015 (1989).

J. M. Aguirregabiria and J. R. Etxebarria, “Fractal basin boundaries of a
delay-differential equation”, Phys. Lett. A 122, 241-244 (1987).

J. Losson, M. C. Mackey, and A. Longtin, “Solution multistability in first?order
nonlinear differential delay equations”, Chaos 3, 167176 (1993).

59



60

BIBLIOGRAPHY

[15]

S. R. Taylor and S. A. Campbell, “Approximating chaotic saddles for delay
differential equations”, Phys. Rev. E 75, 046215 (2007).

B. Epureanu and H. Greenside, “Fractal basins of attraction associated with
a damped Newton’s method”, STAM Rev. 40, 102-109 (1998).

7. Kovacs and L. Wiesenfeld, “Topological aspects of chaotic scattering in
higher dimensions”, Phys. Rev. E 63, 056207 (2001).

D. Sweet, E. Ott, and J. A. Yorke, “Topology in chaotic scattering”, Nature
399, 315-316 (1999).

. Boutle, R. H. S. Taylor, and R. A. Romer, “El Nino and the delayed action
oscillator”, Am. J. Phys. 75, 15-24 (2007).

B. F. Redmond, V. G. LeBlanc, and A. Longtin, “Bifurcation analysis of a
class of first-order nonlinear delay-differential equations with reflectional sym-
metry”, Physica D 166, 131-146 (2002).

J. Aguirre and M. A. F. Sanjuan, “Unpredictable behavior in the Duffing
oscillator: Wada basins”, Physica D 171, 41-51 (2002).

T.-Y. Li and J. A. Yorke, “Period three implies chaos”, Am. Math. Mon. 82,
985-992 (1975).

U. a. d. Heiden and M. C. Mackey, “The dynamics of production and destruc-
tion: analytic insight into complex behavior”, J. Math. Biology 16, 75-101
(1982).

J. K. Hale and N. Sternberg, “Onset of chaos in differential delay equations”,
J. Comput. Phys. T7, 221-239 (1988).



Chapter 6
Basin entropy

“It's abundantly obvious that one doesn’t know
the world around us in detail. [..]. When
you look at early stuff of Van Gogh there are
zillions of details that are put into it, there’s
always an immense amount of information in
his paintings. "

-Mitchell Feigenbaum in Chaos: making a
new science by James Gleick

The notion of unpredictability in dynamical systems is the central topic of this
thesis. In particular, we mostly focus in the difficulties that arise in the final state
prediction when fractal structures arise in phase space. But what do we mean when
we talk about unpredictability in this context? Is it something that we can measure?
For instance, Chapter 4 and Chapter 5 are dedicated to the Wada property, and
the interest of this topological property is commonly assumed to lie in its unique
unpredictability, but how can we account for it?

The present chapter aims to answer all these questions by introducing the notion
of basin entropy, a quantitative measure of unpredictability. In this respect, this
chapter is fundamental for this thesis since it confers a quantitative basis for the
interest of all the problems studied here. Additionally, some of the results derived
from the concept of basin entropy have interesting applications in experimental
settings, as we will see in the next chapter.

6.1 Introduction

This whole thesis deals with dynamical systems, that is, a set of deterministic rules
that describe magnitudes evolving in time. These magnitudes evolve in time towards
some asymptotic behavior depending on the initial conditions and on the specific
choice of parameters. If a given dynamical system possesses only one attractor in
a certain region of phase space, then for any initial condition its final destination
is clearly determined, so that we may say that we have a complete certainty about
its ultimate behavior: any orbit starting at any initial condition will tend to that
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(a) (b)

Figure 6.1. Comparison between basins. Escape basins for the Hénon-Heiles
system but different energies. They represent which exit will take each initial condition.
It is clear that determining the final destination of the trajectories in the case (a) is harder
than in the case (b).

attractor. However, as we have already seen in previous chapters, dynamical systems
often present several attractors: the genetic toggle switch or the delayed action
oscillator are examples of multistable dynamical systems. In these cases, elucidating
which orbits tend to which attractor becomes a fundamental question.

The concept of basin of attraction [1] has already been introduced in previous
chapters: it is defined as the set of points that, taken as initial conditions, lead the
system to a specific attractor. When there are two different attractors in a certain
region of phase space, two basins exist which are separated by a basin boundary. We
have showed examples where the basin boundary can be a smooth curve or can be
instead a fractal curve, and we have seen that the study of these basins can provide
much information about the system. For example, the topology of the basins is
deeply related to the dynamical nature of the system, so that systems with chaotic
dynamics usually display basins of attraction with fractal structures [2].

The previous discussion applies typically to dissipative dynamical systems. In-
deed, the concept of attractors or basins of attraction is meaningless for Hamiltonian
systems. However, for open systems, we can define escape basins in an analogous
way to the basins of attraction in a dissipative system. An escape basin, or exit basin,
is the set of initial conditions that escape through a certain exit. The Hénon-Heiles
Hamiltonian is a well-known model for an axisymmetrical galaxy and it has been
used as a paradigm in Hamiltonian nonlinear dynamics. It is a two-dimensional time-
independent dynamical system, where orbits having an energy above the critical one
can escape through one of the three different exits. It is widely known that when two
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() (d)

Figure 6.2. Comparison of the different techniques. The figure shows different
basins obtained from well-known dynamical systems with two attractors. In panels (a)
and (b), the uncertainty exponent is & = 1 since both boundaries are smooth, while in (c)
and (d) a = 0 since both of them are riddled basins. The basin stability is equal to 1/2
for the four basins. However, the basin entropy is able to distinguish the four cases and
provides a method to measure quantitatively the unpredictability in increasing order from
(a) to (d).

or more escapes are possible in Hamiltonian systems, fractal boundaries typically
appear [3]. Hence, the dynamics of the system is in some sense unpredictable, as
the boundary that separates one basin from another one is complex.

In order to give an intuitive picture of the problem under study in the present
chapter, we may look at Fig. 6.1(a) and Fig. 6.1(b). The figures show the escape
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basins of the Hénon-Heiles Hamiltonian for two different values of the energy F
above the critical energy that separates bounded motions from unbounded motions.
Most initial conditions leave the region through one of the three different exits to
infinity for any F above this critical energy. The colors represent points that taken
as initial conditions leave the region through a specific exit. With this in mind, we
may intuitively understand that it is harder to predict in advance which will be the
final destination of an orbit in Fig. 6.1(a) than in Fig. 6.1(b).

The problem is that, even though we can have an intuitive notion that Fig. 6.1(a)
is more uncertain than Fig. 6.1(b), there is no quantitative measure to affirm this.
Moreover, this is not easy to assess when we compare two figures of basins corre-
sponding to close values of the energy.

This is precisely the idea of uncertainty or unpredictability that we are consider-
ing here. This remark is important since we are aware that these terms are polysemic
and consequently their use in the literature might be confusing. In this chapter, we
refer to unpredictability or uncertainty as the difficulty in the determination of the
final state of a system, that is, to which attractor the initial conditions will tend
to. Note that we speak about attractors for simplicity, though the discussion is
identical for open Hamiltonian systems, where there are no attractors. This notion
of unpredictability strongly differs from others used in nonlinear dynamics, like the
Kolmogorov-Sinai entropy [4], [5], the topological entropy [6], or the expansion en-
tropy [7], which refer to the difficulty of predicting the evolution of the trajectories.
All these quantities are related to the topology of the trajectories, whereas our aim
here is to develop an entropy depending on the topology of the basins.

The question we are trying to solve here is not merely theoretical: the concept of
basin of attraction is broadly used in all branches of science. Beyond the examples
that we have already examined in previous chapters, the scientific literature is full of
interesting applications of the idea of basin of attraction. The flow of water close to
an obstacle can be described by means of basins of attraction, and their complicated
structure explains the heterogeneity of phytoplankton and the information integra-
tion of the early macromolecules evolution [8]. Ideas traveling in a neuronal network
can be expressed in terms of orbits moving among different basins of attraction [9].
The decisions of agents subjected to changes in the market information exhibit com-
plex dynamics, and this is reflected in their intricate basins of attraction [10]. The
prediction of the evolution of interacting populations can be difficult when fractal
boundaries separate the possible outcomes [11]. These are just a few examples, but
we want to highlight that the idea of basins of attraction appears in all sort of prob-
lems. Consequently, we can gain much insight in those questions by measuring and
understanding its associated uncertainty, which is our present purpose.

Many authors describe fractal basin boundaries associated to unpredictability
in either dissipative dynamical systems possessing basins of attraction or in open
Hamiltonian systems which possess escape basins, and when discussing the unpre-
dictability of the orbits many vague affirmations are found due to a lack of an
appropriate indicator. In particular, this has been the case with the Wada basins
which have received much attention in the past few years and also in the present
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thesis. It is commonly said that Wada basins are even more unpredictable than
fractal basins without the Wada property [3], [11]-[14], and though this affirmation
can be intuitively accepted, there is actually no quantitative basis for it.

Our present work constitutes an attempt to give a quantitative answer to the
question of the uncertainty of the basins and this is precisely the problem that we
discuss here. We propose a natural way to characterize the uncertainty of the basins
by defining a quantitative measure that we call basin entropy.

The main idea is to build a grid in a given region of phase space, so that through
this discretization a partition of the phase space is obtained where each element
can be considered as a random variable with the attractors as possible outcomes.
Applying the Gibbs entropy definition to that set results in a quantitative measure
of the unpredictability associated to the basins.

The discretization that we are considering arises naturally both in experiments
and in numerical simulations. First, the experimental determination of initial con-
ditions in phase space is physically impossible due to the intrinsic errors of the
measurements. In the case of numerical experiments, the limitations of the com-
puting resources constrain the resolution of the phase space under analysis. This
unavoidable scaling error can induce wrong predictions even in deterministic models.
Then, a natural question arises: how does the uncertainty in the initial conditions
affect the final state prediction?

A first approach to study the final state uncertainty has been investigated by
Grebogi et al. [15]. Given two attractors, they studied how the predictability of the
system depends on the topology of their basins of attraction. They found a quantity
« called uncertainty exponent, which is the dimension of the phase space D minus
the capacity dimension d of the boundary that separates both basins

a=D-—d. (6.1)

The uncertainty exponent takes the value o = 1 for basins with smooth boundaries,
and a < 1 for basins with fractal boundaries. The closer a gets to zero, the more
difficult it becomes to predict the system. If smooth and fractal basins are mixed,
the uncertainty exponent can still be calculated for each boundary, although the
procedure is cumbersome [16]. As we will discuss later on, while the concept of
uncertainty exponent is truly useful, its application has several limitations.
Another approach to measure the unpredictability consists of evaluating the
volume of each basin of attraction in a certain region of phase space. The ratio
of the volume occupied by a single basin to the total volume defines the basin
stability [17]. It aims at classifying the different basins according to their relative
sizes: larger basins are considered more stable. This notion has proved to be useful
for the study of large networks of coupled oscillators, nevertheless it does not take
into account how the basins are mixed. For different sets of parameters, a basin
with two attractors can show smooth or fractal boundaries while the volume of
each basin remains constant. The basin stability would be the same in both cases
but obviously fractal boundaries have a more complex structure. A clear example
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is shown in Fig. 6.2, where all the basins’ have the same basin stability. The
uncertainty exponent also fails to capture the uncertainty associated to these basins.
However, the basin entropy clearly distinguishes the four of them.

In the following we provide the mathematical foundation of the basin entropy
and a method for its computation. Numerical simulations carried out for several ex-
amples of dynamical systems help illustrate the different ingredients that need to be
taken into account to compute the basin entropy and the corresponding uncertainty
associated to the basins.

The first source of uncertainty is related to the size of the boundary. By this
we refer to the region of the phase space, in terms of the grid, occupied by the
boundary. The second source of uncertainty is the uncertainty exponent, which is
directly related to the dimension of the boundaries. The last source of uncertainty
is the number of attractors: the more attractors the more unpredictable.

Finally, we propose some applications of the basin entropy to chaotic systems,
such as the basin entropy parameter set and the log 2 criterion.

6.2 Concept and definition of basin entropy

Suppose we have a dynamical system with N4 attractors for a choice of parameters
in a certain region €2 of the phase space. We discretize 2 via a finite number of
boxes covering it. Here we study two-dimensional phase spaces, so that we cover
 with a grid of boxes of linear size €. Now we build an application C' : Q — N
that relates each initial condition to its attractor, so that we will refer to that
application as the color. Each box contains in principle infinitely many trajectories,
each one leading to a color labeled from 1 to N4. In practice we can only use a finite
number of trajectories per box. Indeed, it would correspond to the number of times
an experiment is repeated, or the number of trajectories computed in a numerical
simulation. In this work, we use square boxes with twenty-five trajectories per box
(if not otherwise stated) in our numerical simulations. We have seen that twenty-
five trajectories per box allows fast computation and provides accurate values of the
basin entropy in all the cases studied here.

Although ¢ is our limiting resolution, the information provided by the trajectories
inside a box can be used to make hypotheses on the uncertainty associated to the
box. We consider the colors into the box distributed at random according to some
proportions. We can associate a probability to each color j inside a box ¢ as p; ;
which will be evaluated by computing statistics over the trajectories inside the box.

Taking into account that the trajectories inside a box are independent in a sta-
tistical sense, the Gibbs entropy of every box ¢ is given by

m; 1
Si = Zpi’j lOg ( ) y (62)
7=1

pivj

'Panels (a) and (b) correspond to the toggle-switch analyzed in Chapter 2 and the Duffing
oscillator described in this chapter. Details concerning the systems of panels (c) and (d) can be
found in Ref. [18], [19] respectively.
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where m; € [1, N4] is the number of colors inside the box ¢, and the probability p; ;
of each color j is determined simply by the number of trajectories leading to that
color divided by the total number of trajectories in the box.

We choose non-overlapping boxes covering €2, so that the entropy of the whole
grid is computed by the addition of the entropy associated to each one of the N
boxes of the grid

N N m;
S = Z SZ = Z Zpi,j log (p;-l’j) . (63)

This entropy can be easily computed for any given basin of attraction. We note
here that the growth of the number of boxes N with the reduction of € provokes a
counterintuitive effect: as we reduce the scaling box size ¢ the entropy S grows. In
order to avoid this effect, we consider the entropy S relative to the total number of
boxes N and define the following variable

Sy = (6.4)

N
which we call basin entropy. An interpretation of this quantity is associated to
the degree of uncertainty of the basin, ranging from 0 (a sole attractor) to log N4
(completely randomized basins with N4 equiprobable attractors). This latter upper
value is in practice seldom realized even for extremely chaotic systems. While the
basin entropy does not depend on the precise shape of the boxes at a given resolution,
it decreases in general with the scaling box size ¢, as explained hereafter. We now
have a tool to quantitatively compare different basins of attraction.

At this point, we can delve deeper into the consequences of this definition by
considering a simple hypothesis, which is to assume that the colors inside a box are
equiprobable, thus p; ; = 1/m;,Vj. If we add the entropy of all the trajectories in a
box, then we recover the Boltzmann expression for the entropy S; = log(m;), where

m; are the different colors inside a box (the accessible microstates of the Boltzmann
N

N

entropy). Then the equiprobable total entropy becomes S = Y S5; = > log(m;).
i=1 i=1

Furthermore, if we have a grid on a given region of phase space, many boxes will

have an equal number of colors. That is, many boxes will be in the interior or lie near
the boundary between two or more basins. Then we can say that there are Nj equal
boxes (in the sense that they have the same number of colors), where k € [1, k0]
is the label for the different boundaries®. Boxes lying outside the basin boundaries
do not contribute to the entropy as they only have one color. In other words, what
matters is what happens at the basin boundaries. Then, the basin entropy reads

kmaz

Sp=>_ % log(my). (6.5)

k=1

2@Glossary of indices: i box, j color, k boundary.
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By following the method of the box-counting dimension Dy [20], by which we com-
pute fractal dimensions of basin boundaries, the number of boxes that contains a
boundary grows like N, = n,e~P* where ny, is a positive constant. In the case of
smooth boundaries, the equation D, = D — 1 holds, D being the dimension of the
phase space. For fractal boundaries Dy can be larger, but obviously we always have
Dy < D. On the other hand, the number of boxes in the whole region of phase space,
grows as N = fie P, where 71 is a positive constant. Substituting these expressions
for N and N in Eq. 6.5, and recalling that aj, = D — Dy, is the uncertainty exponent
[15] for each boundary, we get

kmafr

n
Sp=Y_ %’%ak log (my). (6.6)

k=1

This last expression reveals important information. The basin entropy has three com-
ponents: the term ny /7 is a normalization constant that accounts for the boundary
size which is independent of ¢; the term of the uncertainty exponent a4, is related
with the fractality of the boundaries and contains the variation of the basin entropy
with the box size; finally there is a term that depends on the number of different
colors my. All these terms depend on the dynamics of the system, while the scaling
box size € depends only on the geometry of the grid.

Equation 6.6 sheds light into some interesting questions. First, we can compare
smooth boundaries (ay = 1) and fractal boundaries (o, < 1). For both of them,
smooth and fractal basins, we get S, — 0 when € — 0, but it converges faster in
the smooth case. That is, it is more difficult for the basin entropy to decrease its
value in a system with fractal boundaries. Despite other important factors, fractal
boundaries introduce a larger uncertainty than the smooth ones. Furthermore, if
ar = 0 then S, > 0 no matter the scaling box size (this might happen in riddled
basins [19], [21], [22]).

These ideas can be successfully applied for Wada basins. As explained in pre-
vious chapters, basins exhibiting the Wada property have only one boundary that
separates all the basins [12], [23]. In our basin entropy framework, we can argue that
increasing the number of colors in the boundary boxes increases the uncertainty too.
In particular, having all possible colors in every boundary box is a unique situation
found only in Wada basins. Nevertheless, Eq. 6.6 also reveals that some non-Wada
basins can show larger basin entropy than others exhibiting the Wada property. This
can be the case when a system has the Wada property but there is one basin which
occupies most of the phase space. Other factors like the number of attractors and
the boundary size also play a role in the uncertainty according to the basin entropy
formulation. Therefore the Wada property increases the uncertainty under the basin
entropy perspective, but each case must be carefully studied.

The basin entropy formalism can also be used to develop new tools. In some
cases, we may be interested only in the uncertainty of the boundaries, instead of
the uncertainty of the whole picture of the basins. In particular, we often want to
know if a boundary is fractal. For that purpose we can restrict the calculation of
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the basin entropy to the boxes falling in the boundaries, that is, we can compute
the entropy only for those boxes N, which contain more than one color,

Sy = % (6.7)
where S is calculated in the same way described before (see Eq. 6.3). We refer to
this number Sy, as boundary basin entropy, because it quantifies the uncertainty
referring only to the boundaries.

The nature of this quantity Sy, is different from the basin entropy .5, defined in
Eq. 6.4. The S, is sensitive to the size of the basins, so it can distinguish between
different basins with smooth boundaries, whilst the Sy, cannot. However, it is worth-
while to introduce this new concept since it provides a sufficient condition to assess
easily that some boundaries are fractal. Let us develop the reasoning. Suppose
that we have several basins separated by smooth boundaries. Then, every box in
the boundary will have only two colors, except a few countable number of boxes
that may contain three colors or more. If we take a sufficient number of boxes in
the boundaries, the effect of those boxes containing more than two colors will be
negligible for the computation of the basin entropy in the boundaries Sy,®. Then,
the maximum possible value of Sy, that a smooth boundary can show is log 2, which
would imply a pathological case where every box in the boundary contains equal
proportions of two basins p; = 1/2,Vi € N. Therefore, considering a sufficient num-
ber of boxes in the boundaries, we can affirm that if the boundary basin entropy is
larger than log 2, then the boundary is fractal, which can be expressed as

Sy >1og2 = a < 1. (6.8)

This is a sufficient but not necessary condition: as we shall discuss in Section IV,
there may be fractal boundaries with Sy, < log 2. Nevertheless, this threshold can be
very useful to assess quickly the fractality of some boundaries, avoiding to compute
the boundaries for different scales (which is not always possible). In Section IV, we
will show on an example that the criterion (6.8) enables reliably to find parameter
regions exhibiting fractal boundaries.

6.3 What does the basin entropy measure?

Here we illustrate the main features of basin entropy with several examples of dynam-
ical systems, showing how its dependence on the boundary size ny /7, the uncertainty
exponent ay and the number of attractors N4.

The term ny/n corresponds to an estimate of the size of the boundary, since
it normalizes the number of boxes containing the boundaries divided by the total
number of boxes covering ()

& — %gak.

N n

3See Appendix D for an exhaustive proof of the log 2 criterion.

(6.9)
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To study the contribution of this term, we consider the damped Duffing oscillator

given by
40 —x+2°=0. (6.10)

This equation describes the motion of a unit mass particle in a double well
potential with dissipation. This system presents two attractive fixed points in (%1, 0)
of the (z, &) phase space, which correspond to the minima of the double well potential
function. The higher the damping coefficient o the faster the orbits tend to the
fixed points and, as a consequence, the basin of attraction appears more deformed
for smaller values of ¢ (Fig. 6.3(a)-(c)). The damped Duffing oscillator is bistable,
N4 = 2, and has a smooth boundary with uncertainty exponent a = 1.

Observing the basins of attraction corresponding to the three different values of
J, it is noticeable that the basin of Fig. 6.3(c) has a much simpler structure than
the basin in Fig. 6.3(a). The outcome of an initial condition within an e-box would
be more difficult to predict in the second case. Nevertheless, both basins have the
same uncertainty exponent o = 1 since in both cases the boundary is smooth. The
differences in the values of the basin entropy originates from the differences in the
region of discretized phase space occupied by the boundary, that is, the boundary
size, which is reflected by the term n/n (indices have been dropped since now there
is only one boundary).

In order to highlight this effect, we have computed the basin entropy .S, versus
the scaling box size* e for three different values of the damping coefficient 6. The
results are shown in the log-log plot of Fig. 6.3(d), where each fit corresponds to a
different value of . In order to interpret these results, we can take logarithms on
both sides of Eq. 6.6 yielding to

log(Sy) = arlog(e) + log (log(N@%) : (6.11)

Since in this case, we have « = 1 and Ny = 2 for all our simulations, it is
clear that the variation of the basin entropy with 0 is entirely due to the term
n/n. Most importantly, we have obtained values of the slope v = 1 within the
statistical error for all the fits. Therefore, although all these basins have the same
uncertainty exponent, they have a different basin entropy for a given value of . The
basin entropy is sensitive to their different structure and is able to quantify their
associated unpredictability.

The fractal dimension of the boundaries also plays a crucial role in the formula-
tion of the basin entropy. This is reflected in the uncertainty exponent ay [15] of
Eq. 6.6. In order to highlight the effects of the variations in the uncertainty expo-
nent, we have chosen a model that can display the Wada property [3]. This means
that there is only one fractal boundary separating all the basins. The model is the
Hénon-Heiles Hamiltonian [24],

L. . 1 1
H= §(x2 +9°) + §(x2 + %) + 2ty — gy?’, (6.12)
4In this work we have normalized the region of the phase space, so that the values of the scaling
box size € in the plots are the inverse of the number of pixels used as a grid.
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Figure 6.3. Basin entropy dependence on the boundary size. (a)-(c) Basins of
attraction of & + 64 — 2 + 2% = 0 for different values of the damping coefficient §. As the
damping increases the boundary occupies a smaller region of the phase space. Although
the boundary is always smooth (o = 1), the uncertainty in basin (a) is larger than in basin
(¢) no matter the scaling box size £. (d) A log-log plot of the basin entropy versus the
scaling box size for values of the damping coefficient § = 0.1 (triangles), 0 = 0.2 (circles)
and 6 = 0.3 (crosses). The three fits have the same slope o = 1 within statistical error.
However, the basin entropy is different for each value of the parameter §, reflecting the
different uncertainty associated to each basin.
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which describes the motion of a particle in an axisymmetrical potential well that for
energy values above a critical one, the trajectories may escape from the bounded
region inside the well and go on to infinity through three different exits. For this
Hamiltonian system, we define escape basins in a similar way to the basins of at-
traction in dissipative systems, i.e., an escape basin is the set of initial conditions
that lead to a certain exit. If we vary the energy from £ = 0.2 to £ = 0.22, the
fractal dimension of the boundaries is modified with E, though the Wada property
is preserved [25] (see Fig. 6.4(a)-(c)). The proportion of red, blue and green remains
as a constant for these three basins, leading to constant values of the basin stability.
However, the basin entropy accounts for their different structures.

As we compute the basin entropy for different scaling box sizes, we observe that
the main effect of varying the parameter E is a change of the slope in the log-log plot
of Fig. 6.4(d). Equation 6.11 relates these changes in the slope to the uncertainty
exponent « of the boundary. Smaller energies lead to smaller uncertainty exponents,
since the boundaries have a more complex structure and consequently the slopes in
the log-log plot decrease too. Obviously the offset also varies for the different values
of the energy. This is related to changes in the boundary size n/n which in this case
cannot be completely separated from the changes in . This example shows that
the scaling of the basin entropy with box size directly reflects the fractal dimension
of the basin boundaries. For small box sizes this effect dominates and the largest
fractal dimensions of the basins gives the largest basin entropies, even though the
offsets are different (see Fig. 6.4).

The last factor that contributes to the basin entropy, according to Eq. 6.6, is
the number of attractors N4. In general, as the number of attractors increases,
the uncertainty increases too, and so does the basin entropy. Furthermore, it is
impossible to isolate the effect of the number of attractors from the contribution
of the boundary size, since they are not independent: if a new attractor emerges
while tuning a parameter, a new boundary is also created. We illustrate these effects
using a simple map where the number of attractors can be tuned. This map comes
from the Newton method to find the complex roots of unity 2" = 1 [26], and can be
written as

Zm—1

ror—1 ’

(6.13)

Zn+l = Bn —

where z € C and r,n € N. The attractors of this map are the solutions of 2" = 1,
so the parameter r determines the number of attractors, r = Ny (see Fig. 6.5(a)-(c)
for r = 4,5,6). The basins of attraction of this system have disconnected Wada
boundaries, that is, all the basins share the same boundaries and are disconnected
[23].

From Eq. 6.11 we can predict that increasing the number of attractors increases
the offset in the log-log plot of the basin entropy versus the box size. This can
be observed in Fig. 6.5(d), where an increasing number of attractors leads to an
increasing value of the basin entropy for all the £ considered.



6.3. What does the basin entropy measure? 73

051
Y
05)
at
1L
0.5)
Y
sl A F=0.20 |
o F=0.21
a1t x F=0.22]]
395 -3 275 25 225 2

log ¢
(c) (d)

Figure 6.4. Basin entropy dependence on the uncertainty exponent. (a)-(c)
Escape basins of the Hénon-Heiles Hamiltonian H = %(:172 + %) + %(xz + %) + 22y — %y?’
for different values of the energy E. Inside the circles the proportion of red, blue and
green boxes is always equal to 1/3. However, as E increases the boundary becomes less
uncertain, so that we can intuitively see that basin (a) is more unpredictable than basin
(c). This intuition is confirmed quantitatively by the computation of the basin entropy in
the log-log plot of panel (d). The most remarkable effect observed in the fits is that the
slopes change because of the different dimensions of the boundaries, as expected. This
effect cannot be isolated since the offsets also vary. Finally, for coarse-grained basins the
basin entropy is almost equivalent.
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Figure 6.5. Basin entropy dependence on the number of attractors. (a)-(c)

The basins of attraction indicate the initial conditions that lead to the complex roots of
Zm =1

unity using the Newton method described by 241 = 2, — ——.
rz

r = 4,5,6. The log-log plot of panel (d) shows that the basin entropy increases when

the number of attractors increases, leading to larger values in the intercepts of the fits as

predicted. Nevertheless, the effect of the increasing number of attractors is impossible to

separate from the other contributions to the basin entropy, since the boundaries change

with the number of attractors.

Here we plot the cases
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6.4 Characterizing chaotic systems

In this section, we present some applications of the basin entropy and related method-
ology that can be useful for chaotic systems.

6.4.1 Basin Entropy Parameter Set

One of the most interesting applications of the basin entropy is to use it as a quantita-
tive measure to compare different basins of attraction. We propose an analogy with
the concept of chaotic parameter set [27], which is a plot that visually illustrates in a
parameter plane when a dynamical system is chaotic or periodic by simply plotting
the Lyapunov exponents for different pairs of parameters. Here, first we choose a
given scaling box size ¢, and then we evaluate the basin entropy associated to the
corresponding basins of attraction for different parameter settings. We call the plot
of the basin entropy in a two-dimensional parameter space basin entropy parameter
set. To illustrate the possibilities of this technique, we study the periodically driven
Duffing oscillator

&+ 01—+ 2° = Fsinwt, (6.14)

whose dynamics can be very different depending on the parameters. We vary the
forcing amplitude F' and the frequency w of the driving, and for each basin we
compute its corresponding basin entropy. We have used a resolution of 200 x 200
boxes (¢ = 0.005) with 25 trajectories per box (a million trajectories per basin)
to compute the basins of attraction and the same region of the phase space () =
[—2.5,2.5] x [—2.5,2.5] for all the pairs (F,w).

The result is presented in Fig. 6.6(a), which is a color-code representation of
the basin entropy in the parameter plane (F,w) for different values of the forcing
amplitude and frequency. The hot colors indicate higher values of the basin entropy,
while the white pixels are for zero basin entropy. The set of parameters with zero
basin entropy indicates that the basin of attraction has only one attractor. Although
there is no uncertainty about the final attractor of any initial condition, trajectories
may still be very complicated if the attractor is chaotic. This is actually the case
for Fig. 6.6(b), where there is only one chaotic attractor.

The hottest point of the basin entropy parameter set corresponds to the basin
of attraction shown in Fig. 6.6(c) with eight different attractors whose basins are
highly mixed. The reason for having this high value of the basin entropy lies at a
combination of a high number of attractors and the uncertainty exponent associated
to the boundaries that makes basins of attraction more unpredictable. In Fig. 6.6(d),
we can see a basin of attraction with extremely mixed basins, but it has only three
attractors so its basin entropy is lower than for Fig. 6.6(c). The converse situation
arises in Fig. 6.6(e), where there are sixteen different attractors but the boundaries
are not very intricate.

Remarkably, it is also possible to explore the parameter space using only a few
boxes instead of computing the high resolution basin for each parameter set. To
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VHO

(a) (d

Figure 6.6. Basin entropy parameter set. (a) Basin entropy parameter set for the
periodically driven Duffing oscillator given by & + 62 — x + 2° = Fsinwt. It is a color-
code map of the basin entropy for different values (F,w) of the forcing amplitude and
frequency, where we have fixed the scaling box size ¢ = 0.005 and the damping coefficient
6 = 0.15. We have used a color code where the hot colors represent larger values of the
basin entropy. (b) Example of a basin of attraction with zero basin entropy because there is
only one attractor, actually a chaotic attractor (whose Poincaré section is plotted in black),
for the parameters F' = 0.2575 and w = 1.075. (c) Basins of attraction corresponding
to the highest value of the basin entropy in this parameter plane, for F' = 0.2495 and
w = 1.2687. (d) Basins of attraction with three attractors and a very low uncertainty
exponent happening for F' = 0.2455 and w = 1.1758. (e) Basins of attraction with sixteen
different attractors for the parameters F' = 0.3384 and w = 0.2929.

infer a good approximation of the basin entropy, we applied a Monte Carlo sam-
pling method. We used 2000 boxes for each point in the parameter set, i.e., 50000
trajectories for each value of (F,w), instead of the million trajectories needed for the
usual procedure (we mean by usual procedure computing the whole basin of attrac-
tion and then calculate the basin entropy). Thus, we speed up the computation by a
factor 20. The resulting basin entropy parameter set obtained by random sampling
is visually indistinguishable from the one in Fig. 6.6(a). To show the discrepancies
between the usual procedure and the random sampling we calculated the relative

EITOI E,.0] = W x 100. The results are displayed in Fig. 6.7, where we can see

that on this example the differences are very small (less than 5%) for most choices
of the parameters. If higher precision is desired one can always increase the number
of boxes NV, since the error decreases as \/—% in the Monte Carlo method as shown in

Fig. 6.7(b). Therefore, one can calculate the basin entropy using a small number of



6.4. Characterizing chaotic systems 7

2.5 s AP e 15
£ e i
R L T e
o FE3L f-:.-:'ﬂl:!‘;;-!_,;iwﬂﬁ
[ Jl-.-..‘l.'!,l‘. 'L:l'i_-'ii; a'.?. S 10"
L e S
e
-'u:--!'r AT et Erel
1 {qﬂ"ﬂ_‘?' I‘I':I'_l' 5 10°
AT A
.-_'1' .;?-aiu ___'1- :': ..-\.EI- - '
0.5 "'-l:._-".' i -é;;._l.. N
= S, (e I I N
0.1 0.2 0.3 0.4 0.5 . .
F 10° 10*
N
(a) (b)

Figure 6.7. Random sampling error. (a) This plot presents the relative error of
the basin entropy estimation, that is w x 100, using 2000 boxes for the random
sampling. For most of the parameters the relative error is below 5%. (b) If a more precise

value is needed the error decreases as \/_1N’ as shown in the figure.

boxes and afterwards, one can compute with a finer grid the most interesting basins,
which are indicated by larger values of the basin entropy. It is also possible to define
gradients in the basin entropy parameter set. This allows to learn in which direc-
tions the variations of the parameters lead to larger values of the basin entropy, and
thus, to larger uncertainty in the final state determination. The random sampling
procedure is especially appealing to compute the basin entropy in high dimensional
systems or for high dimensional parameter sets.

6.4.2 Log 2 criterion

Using the same data, we can also study the boundary basin entropy Sy, in the
parameter plane. This quantity reflects the uncertainty associated to the boundaries,
and we have seen in Section 6.2 that if Sy, > log2 then the boundary is fractal. Of
course, for a given resolution, that is, a fixed scaling box size ¢, this process cannot
distinguish a true fractal boundary from a smooth boundary which at this scale
separates more than two basins inside one box. We have checked numerically that
this is the case, but for small resolution this requires pathological systems which
are not usually found in nature. The results for the periodically driven Duffing
oscillator are depicted in the colormap of Fig. 6.8(a), where white color is assigned
to the pairs (F, w) displaying only one attractor. By means of this plot we can detect
parameter regimes where boundaries are fractal, depicted with hot colors. We can
also detect the regimes where it is more likely that boundaries are smooth, that is,
those showing smaller values of Sy,. Fig. 6.8(b) shows in hot colors the parameters
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leading to fractal boundaries and in cold those with smooth boundaries. We can see
that not all the fractal boundaries pass the log2 criterion, but only some regions.
We depict in Fig. 6.8(c) the parameters leading to smooth boundaries colored in
blue, fractal boundaries with Sy, < log2 colored in orange, and fractal boundaries
with Sy, > log 2 colored in green. It is visible that only basins with more than three
attractors pass the log 2 criterion (see Fig. 6.8). These pictures confirm that the log 2
criterion is a sufficient but not necessary condition for fractal boundaries. Indeed,
when boundaries are fractal but there is a dominant basin that occupies a large
portion of the phase space, then the log 2 criterion is not fulfilled. Nevertheless the
log 2 criterion is a very good criterion of fractality for basins of comparable size, and
is much faster to compute than the direct determination of fractal dimension since
it does not require the use of different scales. This makes it especially appealing for
experimental settings where the resolution cannot be tuned at will.

6.5 Discussion

In nonlinear dynamics, different tools are commonly used to gain knowledge of a
system. For instance, Lyapunov exponents are used to characterize its dynamics.
On its behalf, basins of attraction contain much information about the asymptotic
behavior of the system. Some efforts had already been made in the past to character-
ize the complex structure of basins of attraction, such as the uncertainty exponent
[15] and the notion of basin stability [17]. The uncertainty exponent takes into
account the nature of the boundary between two basins, and the basin stability
informs about the percentage of phase space occupied by each basin. However, in
many situations these concepts are insufficient to describe the complex structure of
the basins of attraction [25].

The basin entropy integrates these concepts from the theoretical perspective of
information entropy. It provides a quantitative measure of the uncertainty associated
to the basins of attraction for a given scaling box size. This should become a very
useful tool with a wide range of applications, as exemplified by the different systems
that we have used to illustrate this concept. For instance, escape basins are widely
used in astronomy, as shown in recent studies on the Pluto-Charon system [28]. In
these investigations it is commonly argued that basins close to the escape energy
present a higher degree of fractalization [29], [30]. Here we have shown an example
of an open Hamiltonian system used in galactic dynamics, namely the Hénon-Heiles
potential, and we have been able to quantify its uncertainty for different values of
the energy.

Another kind of problems where basins of attraction are very common is in
iterative algorithms. Such algorithms abound in all sort of research fields, where
basins of attraction are used to visualize the sensitivity of different methods [31],
[32]. In this work we have applied the basin entropy idea to a prototypical iterative
algorithm: the Newton method to find complex roots. We have quantified the
uncertainty associated to this algorithm for different numbers of roots. The basin
entropy technique can be used to compare the performances of different algorithms
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Figure 6.8. Boundary basin entropy Sp, parameter set. (a) A color map
of the boundary basin entropy Sy, for different parameters (F,w) for the periodically
driven Duffing oscillator i + 6 — x + 2% = Fsinwt for § = 0.15 and & = 0.005. (b)
Uncertainty exponent in the parameter plane. (c¢) The white color indicates basins with
one attractor, blue is for smooth boundaries, orange for fractal boundaries and green for
fractal boundaries with Sy, > log 2.(d) Number of attractors in the parameter plane.

or to see how modifications in some parameters like the damping may alter the
uncertainty of the iterative processes.

Thanks to the framework given by the basin entropy, we have been able to specify
and quantify the uncertainty of the Wada property, a recurring issue in the literature
3], [11]-[14]. Moreover, using the idea of boundary basin entropy, we provide a
sufficient condition to demonstrate fractality. In contrast with other methods like
box-counting dimension that require computation at different resolutions, the log 2
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criterion can be used with a fixed resolution. We believe that this opens a new
window for experimental demonstrations of fractal boundaries, as we will show in
the next chapter.

We have also proposed a new technique called basin entropy parameter set, that
can flesh out the information given by bifurcation diagrams and chaotic parameter
sets. Combined with Monte Carlo sampling, the basin entropy parameter set can also
be used as a quick guide to find parameters leading to simple or more complicated
basins of attraction.

The basin entropy and the related methodology will be used in the next chapter
to investigate the dynamics of propagating matter waves.
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Chapter 7

Chaotic dynamics of
propagating matter waves

“Todas las teorias son legitimas y ninguna tiene
importancia. Lo que importa es lo que se hace
con ellas.”

-Jorge Luis Borges

We have seen that one of the major benefits of nonlinear dynamics is that it can
be used in a wide variety of scientifically relevant situations. In this last chapter,
we apply techniques from nonlinear dynamics to the study of propagating quantum
matter waves. To this aim, we extend and adapt the concept of basin entropy to
chaotic scattering situations and show how it enables to extract important infor-
mation from the experimental data. In particular, we specify how to implement
experimentally the equivalent of a Monte Carlo calculation of such quantities.

We show how these techniques can be used to characterize the chaotic dynamics
of the system and to demonstrate the presence of fractal structures in phase space.
We also discuss how other methods like the basin stability allow to predict the effi-
ciency of the switch and splitter regimes in a cross beam configuration. The escape
time distribution can also be obtained and gives access to the dynamical evolution
of the system. These proposals can be implemented with current experimental tech-
niques.

7.1 Introduction

In the early 2000’s, splitters for guided propagating matter-wave were thoroughly
investigated in the thermal regime [1]-[5]. In the following decade, the Bose-Einstein
condensate regime was explored using optical waveguides [6], [7], and the splitting
of the matter-waves was related with its underlying chaotic dynamics. Despite the
quantum nature of these systems, some results could be understood using classical
mechanics. For instance, a classical approximation was employed to unveil fractal
structures in phase space using numerical simulations. An estimation for positive
Lyapunov exponents was also found, highlighting the chaotic nature of the system.
The recent development of new techniques of nonlinear dynamics allows to extract
much more information from the same kind of experiments and, more importantly, to
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indicate how we can infer these signatures of chaos not only by numerical simulations,
but from direct measurements.

One of these powerful tools is the basin entropy introduced in the previous chap-
ter. The framework of the basin entropy theory allows to quantify the unpredictabil-
ity associated to the different outcomes in a dynamical system. Here, we extend the
basin entropy formalism to scattering problems, where we can get the maximal in-
formation using minimal data. By using only the data that could be measured in
real experiments such as the crossed guide setting of Ref. [7], we show that we can
detect reliably the presence of fractal structures in phase space, to a given resolution.
Furthermore, we are also able to test the Wada property [8], [9], a more restrictive
property than fractality.

In the crossed guide configuration, two different propagating behaviors were ob-
served: the switch and splitter regimes. In the first case, the beam is totally deflected
in a given guide. In the second one, the beam splits into the different available
guides, a feature that could be used to design a guided matter wave interferometer.
The efficiency and robustness of the switch and splitter regimes can be studied by
means of the so-called basin stability [10]. The survival probability of the atoms in
the waveguides can also be measured, leading to some information concerning the
chaotic saddle of the system.

The qualitative difference of the results presented here with respect to previous
works is that we do not simply use numerical simulations of the classical model to
show the presence of chaos, but we use the theoretical tools of nonlinear dynamics to
explain how we can directly measure quantities related to chaos in real experiments
with cold atoms at the expense of a slightly modified experimental protocol.

In Sec. 7.2, we introduce the experimental setup made of two crossing guides
and its modelization. Section 7.3 is devoted to the generalization of the concept
of basin entropy to scattering situations. The application of this technique to the
considered experimental cold atom system is detailed in Sec. 7.4. In Sec. 7.5, we
explain how this approach enables one to experimentally characterize the fractal
structure of the phase space. In Sec. 7.6, we investigate quantitatively the splitter
and switch regimes. We discuss the survival probability at the crossing in Sec. 7.7.

7.2 The crossed-beam system

In this section, we present the system studied along this chapter. It corresponds to
the motion of atoms in two crossed laser beams acting as wave-guides. This has been
experimentally implemented in Ref. [7]. The potential experienced by the atoms in
the presence of two Gaussian dipole beams crossing at an angle 6 is

2 2

w 24 52 /02 w 124 52 )2

Uz, y, 2) = U1 —20_=262+2)/ui@) _ g7, W2 _ =2/ P+D/we)®) (7.1)
wi(z) w3(a')

with 2/ = zcosf — ysinb, vy = xsinb + ycosb, U; = nP;/wi and w?(z) = wh(1 +

x?/x%,;) for i = 1,2. Subindexes 1 and 2 account for the two lasers, while @ is the
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Figure 7.1. Example of a trajectory in the crossed-beam configuration. The
color code accounts for the depth of the potential. The parameters of the potential are
ap = ag = 1 = B2 = 1,0 = 45°. The dashed circle represents the scattering region

Va2 +y? <30, with o = /%. (a) Classical trajectory. (b) Close up of (a).

angle between them. The parameter w;, refers to the waist of the Gaussian dipole
laser 7, A; to its wave length, and zp; = 7w?/)\; to its Rayleigh length. The n
parameter has a value that depends both on the atom and on the wave length of the
dipole laser (n = 1.3 x 10736J - W~ . m? for rubidium-87 with A\ = 1064 nm) [11].

For the sake of simplicity, we shall use a two-dimensional model that captures
the main features of the real system [7], [12]. For this purpose, we assume that the
propagation is performed on a distance small with respect to the Rayleigh length so
that w?(r) ~ w? and we consider one transverse direction y (x is the direction of
propagation). Thus, following a dimensionless procedure we can describe the motion
of the atoms by means of the following Hamiltonian:

H = % (3'72 + yz) — e P — e Pr(wsinftycosd)? (7.2)
The dimensionless procedure consists in introducing a length ¢ and a time 7 scales.
We get a; = mU;72/(* and B; = 20*/w?3,. For instance, for a; = 3; = 1, we have
wio = wo, U; = Uy and therefore ¢ = wyy/2 and 7 = wy(2/mU)"2. Then, the
features of each laser enter two characteristic parameters: « related to the depth of
the potential and ( to the laser waist width.
Figures 7.1(a)-(b) show an example of a classical trajectory of this Hamiltonian.
The coupling of the longitudinal and the transverse degrees of freedom that occurs
at the crossing region is responsible for the complex dynamics. In Ref. [7], it was
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Perturbative regime Splitter regime Switch regime

Figure 7.2. Qualitative presentation of the different experimental regimes.
Depending on the power ratio ay /1, we represent the three experimental regimes observed
in the X-shape configuration of atom lasers from Ref. [7]. The position of the boundaries
separating these different regimes also depends on the initial horizontal speed v,. In the
present work, we keep as/a; = 1 and modify v,, which is also feasible in real experiments.

shown that due to the relatively short time spent in the scattering region by the
wave packet and the 3D dynamics, interference effects were marginal in most cases
and the classical description could account for most of the experimental results. In
that work, the parameters governing the potential, i.e., the parameters of the wave
guides aq, aw, 1, o, were changed in order to produce different kind of dynamics. In
particular, for low values of the ratio as/c; the waves were only slightly perturbed,
whereas for similar intensities of both lasers the splitter regime was found and for
large values of as/ay the switch regime was dominant (see Fig. 7.2). In the present
chapter, we adopt a different perspective keeping the potential unchanged (a; =
ay = 1 = By = 1) and varying the initial horizontal speed v, (¢ = 0), which is more
in the spirit of the scattering problems. This is feasible in experiments by setting
different gradients to accelerate the atoms [13], [14]. The initial horizontal speed
vz(t = 0) > 0 can be considered as a parameter of the system: depending on its
value the dynamics can be largely different. Namely, when particles are shot with
a low speed v, trajectories have more time to explore the scattering region and to
display chaotic dynamics. For high speed v,, particles are barely affected by the
nonlinear potential.

Therefore, keeping v, and 6 as parameters and considering sufficiently long shoot-
ing distances x(t = 0) from the crossing region, we can analyze the dynamics in terms
of (y,v,). The set of initial conditions (y,v,) that yields an escape through a given
exit is referred to as an escape basin. Graphical representations of escape basins
are provided in Fig. 7.3(a)-(c), where each color represents an exit according to the
color code of Fig. 7.3-(d). Given the Gaussian profile of the potentials, we define
unbounded trajectories as those going further than 3o0; of each laser beam i = 1, 2,

with o; = 4 /%. White pixels are for such unbounded trajectories that provide atom
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losses and also for what we call sticky trajectories, i.e., that spend more than 2-10°
time steps without exiting (we have checked that they have a negligible influence).
These two kinds of trajectories will not be considered for the calculations of basin
entropy. The basin corresponding to them is however interwoven with the other
basins, as shown in Fig. 7.3-(b), but it is only important for extremely low values of
v, and large initial transverse position. In the following, we will restrict our study
for v, € [-1.5,1.5], y € [-1.5,1.5].

The presence of fractal structures is evident for low speed basins (see Fig. 7.3-(a)),
but harder to appreciate in the case of high speed e.g. Fig. 7.3-(¢). A quantification
of the different degrees of fractality can be accomplished with the help of the basin
entropy.

7.3 The concept of basin entropy for scattering experiments

In the previous chapter, we introduced the idea of basin entropy in order to answer
a simple question: how is it possible to affirm that one basin is more unpredictable
than another? We have already shown how the basin entropy quantifies this final
state unpredictability associating to each basin a number that ranges between 0 and
log N4, being N4 the number of possible outcomes of the system. In the system
under study here, the two guides give rise to four possible exits, that is Ny = 4.

The basin entropy computation in scattering problems presents some particulari-
ties that must be treated carefully. First, in the basin entropy calculation we usually
work with flat distributions, in the sense that initial conditions are uniformly dis-
tributed in (x, v,,y,v,). When particles advance through the horizontal wave guide,
before the scattering region, these distributions evolve in time. Indeed, the trans-
verse Hamiltonian is close to integrability and possesses invariant curves which do
not correspond to the original distribution. Trajectories follow these invariant lines
towards a quasi stationary regime where they are uniformly distributed on these
curves. This happens for sufficiently long times, i.e., for sufficiently long launching
distances. If the particles do not have enough time to evolve to these asymptotic
distributions the values of the basin entropy can be largely modified (see Fig. 7.4),
thus, we must take large enough values of x.

Another different issue is the number of trajectories per box ng. In order to
get a reliable value of the basin entropy, it is necessary to have reliable values of
the probabilities of each box. However, in numerical simulations we must reach
a compromise between computational cost and statistical convergence. Figure 7.5
reflects the basin entropy calculation for different angles and different number of
trajectories per box in the four-dimensional space. Results remain unaltered for
values of the trajectory per box larger than 5%, which will be the standard value
used along the present chapter.

Finally, another fundamental parameter for the basin entropy calculation is the
number of boxes N. Obviously, the larger the number of boxes N, the more precise
will be the description. However, both in experiments and in numerical simulations
we must take into account practical considerations concerning the number of exper-
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Figure 7.3. Escape basins. The parameters for these basins are § = 45°, 2o = —250.

(a) Escape basin for low shooting speed v, = 0.1. (b) Zoom of the basin depicted in (a).
(c) Escape basin for high shooting speed v, = 1. (d) Color code used in the previous
basins.

iments and the computational effort. In this respect, we have already demonstrated
in Chapter 6 that a Monte Carlo procedure for the choice of the boxes in phase
space leads to accurate values of the basin entropy minimizing the efforts.
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7.4 Basin entropy from experimental cold atom data

The procedure to calculate the basin entropy with Monte Carlo technique and the
scattering experiments with cold atoms share some important similarities. In both
cases we consider ensembles of trajectories instead of single trajectories. In these
experiments we have clouds of atoms with different values of velocity and position,
and for the basin entropy calculation we must compute many trajectories with dif-
ferent initial conditions inside every box. Scattering experiments essentially study
the output of the trajectories in order to gain knowledge about the system, just as
the basin entropy does. We propose to use as the equivalent of boxes in the basin
entropy scheme, wave packets of atoms which are launched in the scattering region.
Indeed, these wave packets correspond to a group of atoms distributed around a
mean value of velocity and position following a Gaussian distribution. The experi-
mental measurement through absorption pictures provides access to the population
of different branches, and thus to the probabilities inside every box.

In experiments, the problem of the stationarity of the distributions before ar-
riving to the scattering region can be solved by varying the launching distance
appropriately. The number of trajectories per box is related to the number of atoms
in a wave packet, which is in the thousands. In fact, it can be further increased by
repeating the experiment for a wave packet with same initial mean values.

Remarkably, the Monte Carlo sampling of phase space can be done experimen-
tally by selecting different sets of initial conditions with different mean velocity v,
and mean position y. In practice, small clouds of atoms shall be successively de-
livered from a trap that accommodates a reservoir of atoms such as Bose-Einstein
condensate placed upstream. The transverse position for outcoupling the atoms can
be tuned by modifying by optical means the reservoir trap geometry and the mean
transverse velocity can be transferred to the packet of atoms by applying a well-
calibrated transverse magnetic gradient pulse. By repeating successively such an
outcoupling procedures so to empty the reservoir, it is possible to reduce drastically
the number of experimental runs. As shown in Fig. 7.6, for an achievable number
of experiments (~ 50) the relative error in the basin entropy computation is below
10%.

An important point is therefore the minimal resolution that can be reached
in this experimental procedure. This corresponds to the size of the wave packet
compared to the size of the range of phase space that we want to explore. To access
the achievable resolution, we focus on the velocity space. A similar argument is
valid in position space. Typically, the range of variation of velocity is of the order of
Av = /Uy /m, associated to the depth Uy of the guide. For a quantum packet in the
transverse ground state, the velocity dispersion of the wave packet dvg = wyag, where
ag = (h/mwg)*/?, is the oscillator length and wy = (4Us/mw?)"/? is the transverse
angular frequency obtained by expansion of (7.1). The realization of monomode
atom laser has proved the experimental feasibility of the production of such packets
[15]-[20]. With the parameters of [7], we find Av/dvy = (Uymw?/4h*)V/* ~ 65
(wy = 100 pm and Uy/kp = 10 pK). In practice, a linear resolution of several tens
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Figure 7.4. Basin entropy for different launching distances. The horizontal
speed is v, (t = 0) = 0.1, the angle is § = 45°, v, € [-1.5,1.5] and y € [-1.5,1.5]. The
basin entropy S, saturates for long enough launching distances xy from the scattering
center.

can therefore be obtained up to a maximum of one hundred.

In short, to compute the basin entropy Sy in the crossed beam configuration, one
should make a sufficient number of experiments. Each of these experiments consists
in sending a wave packet with some mean transversal velocity and position. The
experiments must be carried out for sufficiently long launching distances. Then, the
population exiting through each channel should be measured (by absorption images
for instance). FEach experiment provides a value of the basin entropy in a box Sy;.
With an appropriate sampling of the region of phase space considered, the total
basin entropy can be computed adding the basin entropy associated to each box.

7.5 Chaos and fractal structures

In this section, we investigate transient chaos and fractal structures appearing for
low values of the horizontal speed v,. Low speed implies that particles spend more
time in the scattering region, i.e., the guide crossing region. Therefore, the exponen-
tial divergence of trajectories induced by the nonlinear potential makes the system
difficult to predict. The phase space is highly fractalized, and the basin entropy
accounts for that. As a first approach, we have sampled the basin entropy in the
2D space (y,v,) using a Monte Carlo procedure. The basin entropy S, for different
angles 0 and for different shooting speeds v, is represented in Fig. 7.7-(a). We can
see that the basin entropy is higher for lower speeds. Thus, the basin entropy quan-
tifies our intuition: it is more difficult to predict the final destination of particles
with low speed v,.

Using these data, we can prove the presence of fractal structures in phase space
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Figure 7.5. Basin entropy for different number of trajectories per box. As we
increase the number of trajectories per box np the values of Sy converge. The region of
the four dimensional space explored is v, € [0.09,0.11], « € [-250, —200], v, € [-1.5,1.5],
y € [-1.5,1.5].
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Figure 7.6. Convergence with the number of the Monte Carlo scheme. The
relative error £, = W x 100 as a function of the number of sampled boxes N
is represented. For achievable number of experiments (50-100) the relative error is below
10%. The computations were done in the four dimensional space (x,v,,y,vy) for 6 = 45°

and v, € [0.09,0.11], x € [-250, —200], v, € [-1.5,1.5], y € [-1.5,1.5].
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Figure 7.7. Random sampling computation in 2D using different values of the
launching speed. For fixed values of v, and 0 indicated in the figures, o = —250, we
choose boxes randomly in the (y,v,) space (v, € [-1.5,1.5], y € [-1.5,1.5]) and compute
the basin entropy Sp. (a) As we increase the horizontal speed v, (from top to bottom) the
lower the basin entropy. (b) The basin boundary entropy Sy, is above the log 2 threshold
(red dashed line) for low speeds v, and is below for high speeds. (c) The fraction of boxes
lying in the boundary decreases as we increase v, from top to bottom. This can be helpful
to determine experimentally the scale of the system with respect to simulations.

by means of the log2. As explained in the previous chapter, if we compute the
boundary basin entropy S, that is the basin entropy only in the boundary boxes,
we can affirm that a boundary is fractal if S, > log2. The log2 criterion is a
sufficient but not necessary condition for fractality: some fractal basins do not pass
this criterion, for instance those having only two outcomes. In our case, the system
presents four possible exits, and for low speeds the values of Sy, largely exceed the
log 2 threshold, as shown in Fig. 7.9. If such a curve was reproduced in experiments,
it would directly imply that the phase space is fractal.

Nevertheless, it is important to recall that the log 2 criterion detects fractals at a
given resolution. Indeed, given a finite resolution it is impossible to distinguish a real
fractal from something which is not a fractal, but that looks like it at that resolution.
The log 2 criterion presents a major advantage compared to other techniques like the
box-counting dimension: it avoids the use of different scales of speed and position,
which in the context of experiments with cold atoms is fundamental. The log2
criterion is a strong argument to test fractal structures using minimal requirements.
Of course, we will detect fractal structures at the resolution that could be achieved
with the experiments, which depend on the size of the wave packet compared to
the size of the region of phase space considered. To illustrate this point, we show
in Fig. 7.8 basins with different resolution, showing that experimentally achievable
resolutions are enough to display fractal basins.

Some escape basins are not only fractal, but also possess the more restrictive
property of Wada [8], [9]. This means that all the basins have a common boundary
separating them. The experimental evidence of the Wada property would be that
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Figure 7.8. Fractal resolution. Escape basins in the (y,v,) subspace for § =
45° 2o = —250,v, = 0.1. The resolution are (a) 1000 x 1000, (b) 200 x 200, (c¢) 100 x 100
and (d) 50 x 50. The experimental resolution is probably close to (d), but still fractal
structures are visible.

in this regime every time that more than one branch is populated, all the branches
are populated. If the experiment is in the Wada regime, it will be seen through the
impossibility to detect atoms only in two or three branches.
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Figure 7.9. Log 2 criterion. The basin entropy in the boundaries Sy, for different
angles 6. The region of initial conditions sampled is v, € [0.09,0.11], € [—250, —200],
vy € [-1.5,1.5], y € [-1.5,1.5]. The black line is for a computation made with 100 boxes
composed of 5 trajectories each one, and the shaded region is the absolute error with
respect to an asymptotic value taken at 800 boxes.

7.6 Splitter and switch regimes

Incident particles with high initial horizontal speed spend less time in the scattering
region and most of them tend to escape through exits in the positive x direction. As
a consequence, their asymptotic behavior is easier to predict, implying a decrease
of the basin entropy for high v,(¢t = 0) (see Fig. 7.7-(a)). Despite the fact that
the phase space is still fractal, the log 2 criterion is no longer fulfilled, as shown in
Fig. 7.7-(b). This happens because there are dominant basins occupying most of
the phase space, and the number of boxes lying in the boundaries decreases (see
Fig. 7.7-(c)).

Nevertheless, the appearance of a dominant basin is crucial for the efficiency
of the switch regime, since this regime is characterized by a large portion of the
incident particles escaping through exit 2. The basin entropy can give us a clue to
find the parameters for this switch regime: if most particles escape through an exit,
then the basin entropy must be low. Then, we can also apply the basin stability
[10] to fully characterize the efficiency of the switch. The basin stability is simply
the portion of phase space occupied by each basin, so Bg; € [0,1] for i = 1,....4

4
and >  Bg; = 1. Therefore, computing the basin stability for the exit basin 2 is
equi\;allent to calculate its efficiency. In cold atom experiments the basin stability
can be computed using the Monte Carlo sampling described above.

Some angles like § = 33° display a large switch efficiency for high speeds, as
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Figure 7.10. Efficiency of the switch and splitter regimes. (a) Color map
representing the fraction of trajectories escaping through exit 2, that is, the efficiency of
the switch regime. For these computations we have used initial conditions in the region

€ [-0.5,0.5], y € [-0.5,0.5] and xg = —250. (b) Color map for the correlation of the
basin stability of exits 1 and 2, defined as the normalized product of their basin stability
¢ = Bg1Bga/4. For values close to 1 the system is close to a perfect 50-50 splitter regime.
This takes place for larger angles as the speed increases.

shown in Fig. 7.10-(a). This prediction could be checked in real experiments. We
have also tested the robustness of these results against small perturbations of the
laser parameters (aq, ag, f1, B2). Sometimes in chaotic dynamics small perturbations
of the system parameters may lead to different dynamical behaviors [21]. However
this is not the case here, and the switch regime turns out to be robust against
perturbations of the wave guide parameters.

In the splitter regime approximately half of the atoms escape through exit 1 and
the other half through exit 2. Using the basin stability, we can define the efficiency
of the switch regime as the correlation between basin stability of exits 1 and 2, which
can be calculated as their normalized product ¢ = 4B, Bgo, where the factor 4 is to
normalize at the maximum correlation value of Bg; = Bgo = 0.5. This efficiency of
the splitter ¢ is calculated for different v, and 6 and represented in Fig. 7.10-(b). We
can see that as the horizontal speed v, is increased, the splitter regime happens for
larger angles. The splitter is more sensitive to perturbations of the parameters than
the switch regime, as can be inferred from the non-trivial structure of Fig. 7.10-(b).

7.7 Survival probability

The experimental setup described in Ref. [7] allows to measure not only the atom
population of the branches, but also the population that lies in the crossing region
for some time. Therefore, we can define the escape time as the time spent by atoms
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in a region of radius 3¢ centered in (0,0), which we call the scattering region. We
also define the survival probability as the probability P of finding an atom at a time
t in the scattering region, which exactly corresponds with the measurements made
in experiments.

Depending on the hyperbolic or non-hyperbolic nature of the system, the survival
probability is expected to present exponential or algebraic decay for long times. In
numerical simulations, we normalize time dividing by ¢ty = /v,0, which is the time
that a particle would take to cross the scattering region if there were only one laser,
and we find curves of probability versus time like the ones depicted in Fig. 7.11.
The first plateau of this curve reflects that all the particles take at least t = ¢y to
escape the scattering region. After the plateau, we can see an exponential decay
for short times (see insets of Fig. 7.11). For very long times the decay is algebraic,
a typical behavior of non-hyperbolic systems [22]. However, in real experiments
we expect to see only the exponential decay for two reasons. The first one is that
non-hyperbolic systems are structurally unstable [23], [24]. This means that the
slightest perturbation provokes the change from algebraic to exponential decay for
long times. The second reason is that in real experiments, the long time behavior
is hard to follow because small atom populations are difficult to detect. Moreover,
when a non-hyperbolic system is weakly perturbed the curve of probability versus
time behaves as the first part of the non-perturbed system, that is, it shows an
exponential decay characterized by the same mean-life 7 [25].

7.8 Discussion

In this final chapter of the thesis, we apply ideas developed along the thesis to the
hot research area of propagating matter waves. So far, nonlinear dynamics had only
been used as an approximation to explain a posteriori some results concerning the
chaotic dynamics of the atoms. But here we propose to go far beyond. We have
explained in detail how it is possible to use new techniques from nonlinear dynamics
to characterize the chaotic dynamics of the atoms directly from experiments.

We have focused on a double guide configuration, where the atoms can escape
through four different exits. In real experiments, we can measure the atom pop-
ulation in each branch, and the time spent by the atoms in the scattering region.
Using these data we can measure the basin entropy, the basin stability and the
mean escape time. The number of atoms escaping through each branch allows us to
determine the fractal nature of the phase space and the efficiency of the switch and
splitter regimes. The escape times provides information about the hyperbolicity of
the system. Moreover, an experimental approximation of the Lyapunov exponents
is proposed in Ref. [6], which could be used to get a lower bound of the dimension
of the chaotic saddle following a similar procedure to [26], [27]. Therefore, we can
characterize the chaotic properties of the system.

An interesting modification of the experimental setting would be the inclusion
of more guides. Indeed, with more exits, the log2 criterion would be more likely
fulfilled, and the testing of fractality of the system shall be easier. Similarly, the
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Figure 7.11. Survival probability as a function of time. The survival probability
P of the atoms in the scattering region as a function of time. After the initial plateau (in
blue), there is an exponential decay (see inset) and for very long times an algebraic decay
(in red). (a) vy = 0.3. (b) v, = 0.9. The rest of parameters are 6 = 45°, v, € [—0.5,0.5],
y € [-0.5,0.5] and 2o = —250.

direct observation of the intriguing Wada regime could be made possible for the first
time in an experiment with cold atoms.

This work lays the foundations for future research where experiments with cold
atoms will be enriched by their dynamics characterization. Our study motivated by
an experimental work provides a new approach to investigate nonlinear effects such
as fractal structures or the Wada property in a way perfectly accessible with state
of the art experimental techniques.
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Chapter 8
Conclusions

“Call it the satisfaction of curiosity. | under-
stand a little of it today, perhaps a little more
tomorrow. That's a victory in a way.”

-Isaac Asimov, Profession

Here we schematically summarize the main results of the present thesis:

1. Physics of the 20th century shows that every step forward in Science also
constitutes a new limit to scientific knowledge. This thesis is devoted to study
the unpredictability in nonlinear dynamics.

2. Vibrational resonance is found in a time-delayed genetic toggle switch. We
have shown the optimal enhancement of a low-frequency periodic signal by
means of a high-frequency periodic perturbation in a dynamical system of the
highest relevance in systems biology.

3. Vibrational resonance often happens for large perturbations. However, sys-
tems with fractal basins of attraction are able to show a new kind of vibra-
tional resonance that occurs for small periodic perturbations. We call this new
phenomenon ultrasensitive vibrational resonance.

4. Wada basins of attraction possess the most intricate boundaries that can be
conceived. So far, the only method to prove the existence of Wada basins was
restricted to two-dimensional phase spaces. We present a grid method able to
test quantitatively the Wada property in any situation.

5. Delay differential equations are a powerful tool in situations where the delay
in the transmission of the information cannot be overlooked. The inclusion of
delays in dynamical systems may turn the system unpredictable. In particular,
we show how the delay can induce transient chaos and the Wada property in
the space of history functions.
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6. Oftentimes, some basins of attraction are said to be more fractal or more
unpredictable than others. We propose a quantitative measure of the uncer-
tainty associated to the basins based in the Gibbs definition of entropy. This
quantity, that we call basin entropy, allows us to identify the main ingredients
that contribute to final state unpredictability and it also provides a sufficient
criterion to prove the presence of fractal boundaries.

7. We apply concepts from nonlinear dynamics like the basin entropy, the basin
stability and the survival probability to a crossed laser configuration used in
matter waves propagation. In particular, we detail how to prove the presence
of fractal and Wada boundaries using experimental data, we provide an es-
timation of the efficiency of the different regimes and we study the survival
probability of the atoms in the optical guides.
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Appendix A: Linear stability analysis of the time-delayed toggle
switch

Here we analyze the stability of the time-delayed toggle switch, given by the following
equations

du (t — 1)

dt  1to(t—r) VT

dv N (A.1)
_ Y -7

At~ 1+u(t—7)?

We will show that the delay in the degradation term 7, can induce sustained oscilla-
tions via a Hopf bifurcation, whereas the delay in the repressional term 7, cannot.

First, let us study the system without delay, that is, the previous equations with
7. = 74 = 0. Setting © = 0 and v = 0, we can see that the fixed points must obey
the following equations

«
Ug =
14 v}
ol (A.2)
Vo = 1+ug

Solving these equations we find three different equilibria ey, e, e3. The equilibria e;
and ey satisfy ugvg = 1 and ug + vg = a. This means that uyp = 1/2(a + va? — 4),
and therefore a@ > 2 sets the condition for bistability. On its behalf, e, satisfies
ug = vg. To analyze the stability of these equilibria, we must study the Jacobian
matrix of Al for . =7,=0

-1 1—204;)02
Jo= | saun T (A.3)

(1+u2)?

which leads to the following characteristic “polynomial”

Ao ugvy
A+ 1)2— =0. A4
( ) (14 ug)*(1 + vg)? (A-4)

Simplifying for e; and e3 we can see that the eigenvalues at the equilibrium are
A2 =—1%x2/a, soif o > 2 the system without delay is bistable. Thus we have e;
and ez as two symmetric equilibrium points and e, is the unstable separatrix ug = vy
dividing the phase space.

The usual procedure to analyze the stability in systems with delay is to perturb
the linearized system around its equilibria during a time equal to the maximum
delay of the system,

§i = Jodx + & = J.ox,, (A.5)
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where x = (u,v), Jy is the Jacobian matrix with respect to the non-delayed variables
evaluated at the equilibria and .J; is the Jacobian matrix with respect to the delayed
variables. If we assume the solutions of # to be exponential z = Ae*, being \ the
eigenvalues of the corresponding Jacobian and A a column vector, then we have that

M = (Jo+ eI A. (A.6)
This equation will have a solution for amplitudes different from zero when
((Jo+ e J.) — MN| =0, (A7)

where [ is the identity matrix. Now, let us analyze separately the effects of the
degradation delay 7; and the repressional delay 7,.

e Case 1: 7, = 0,74 >0
The Jacobian matrices with respect to the non-delayed and delayed variables are

0 G
JO == —2aug ( +6)O) ) (A8)
(

1+u?)?

and

J, = ( Y ) . (A.9)

The equilibria ey, ey verify ugvg = 1, so the characteristic “polynomial” derived from
Eq. A.7is
A+ e )2 —4/a* =0. (A.10)

The stability of the system is governed by the roots of this equation. Let us suppose
there is a value of the delay 7 > 7. where stability is lost and A = +jw, just at the
transition. Substituting this condition in Eq. A.10 and simplifying we have

cos(w.T.) = £2/«x (A.11)

we = sin(weTe). (A.12)

To verify that the eigenvalues cross to the right side of the complex plane, we
implicitly derive Eq. A.10, yielding

dA e Ad
dr — 1—re (4.13)
For 7y = 7. and w = w, we have
dA w?
Re { —— = < A14
¢ {dT} . 72 + 1 — 27, cos(w.Tc). ( )
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Since there are values of 7 that make the previous expression positive, we can assure
that the eigenvalues cross the imaginary axis, leading to a Hopf bifurcation and
therefore to sustained oscillations.

e Case 2: 1, > 0,74=0

Now we consider that the delay affects only the repressional terms. Linearization
around e, eg, leads to the following Jacobian matrices

Jo = < _01 _01 ) (A.15)

0 G
Jr = —2aup ( +60) : (A16)

(1+u2)?

and

Thus, the characteristic polynomial is

4ol ugvge
A+ 1)2 — =0. A.17
( ) (1+ud)2(1 + v3)? ( )

Introducing the conditions for e; and e3 we get

46—2>\n-
0=(A\+1)— " (A.18)
The solutions of this equation are given by
2 —ATr
Atl==+" (A.19)
o)

We are going to show that the solutions of this equations always are in the left
hand side of the complex plane. First, let us suppose that this equation admits a
pair of complex conjugate roots A = a £ jb, being a > 0. Substituting that solution
into Eq. A.19 we get

1+ a+jb=+(2/a)e e (A.20)
if we take absolute value at both sides we find that
46—2CLTT
2 2
Lta? +07 = —— (A.21)

This expression cannot hold for 7. > 0 and « > 2, so the solutions A = a + jb, being
a > 0 are forbidden. The same can be extended to real solutions. Therefore we have
shown that the delay in the repressional term 7, cannot turn the equilibria e, ez
unstable.

Finally, we have seen that the delay in the degradation term can induce sustained
oscillations via a subcritical Hopf bifurcation, whilst the delay in the repressional
term cannot. Thus, from the dynamical point of view, studying the delay in the
degradation term is enough to understand the dynamics of the system.
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Appendix B: Further examples on the testing for Wada basins

Here we provide further evidence of the performance of our method to verify the
Wada property. We use our algorithm in several models known to show the Wada

property.
e Forced Duffing oscillator

This beautiful example of Wada basins (Fig. B.1(a-b)) is found for the double-well
Duffing potential, with dissipation and periodic forcing, expressed as

¥+ 0% — v+ x = Fcost. (B.1)

The parameters chosen here are 6 = 0.15, F = 0.245 (see [1] for further details).
The computational performance of the algorithm is prototypical for systems with
the Wada property: a maximum for followed by an exponential decay (Fig. B.1(c-
d)). We needed to compute 1719902 new points to check the Wada property in this
system, that is the equivalent to less than the number of points in two basins of
attraction.

e Hénon-Heiles hamiltonian

The Hamiltonian of Hénon-Heiles, used in galactic dynamics, has three symmetric
exits in the x-y plane. It can be written as follows,

1 1 1
H =@+ ") + 5@ +y°) + 2%y — 2", (B.2)

In this case, escape basins are defined as the initial conditions leading to the three
different exits (Fig. B.2(a)). In Ref. [2], the authors make a slight modification
of the NY condition and it is the unstable manifold of the Lyapunov orbit that
crosses the three different basins. Here we simply use our algorithm with the basin
corresponding to the y — ¢ plane, for £ = 0.25 and z = 0 (Fig. B.2(b)). Once
again, the fractal structure of the Wada basins is responsible of the exponential
decay in the computational effort (Fig. B.2(c-d)). The total number of points that
we need to compute to check the Wada property is 1259510, that is approximately
like computing a new basin and a quarter.

o Magnetic pendulum

The problem of a pendulum with an iron bob, under the influence of gravity, air
friction, and three magnets forming an equilateral triangle with side equal to one,
can be approximated [3] for small-angles as,

. . Qi —
G+ Rij— Y e + Cq; =0, (B.3)
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Figure B.1. Forced Duffing oscillator (a) Basins of attraction for the Duffing
oscillator with dissipation and periodic forcing. (b) All the boxes in the boundary are
classified into the boundary of the three basins category. (c) Most of the boxes need
between one and five steps to test that they are in the boundary of three basins. After
a maximum, there is an exponential decay related to the fractal structure of the basins,
that allows fast computation. A fit of the exponential decay is shown in (d).

The parameters to obtain figures B.3 (a-b) are R = 0.1,d = 0.01,C' = 0.01. This
model is more delicate to analyze than the previous ones, since fractal basins get
diluted upon magnification. From a mathematical point of view, this system is not
Wada because fractality is lost at infinity. Nevertheless, from a physical point of
view, i.e., with finite resolution, this system is Wada. The result of our algorithm,
given its finite precision, is that the system is completely Wada. Our algorithm
needed to compute 11330172 points to classify the initial million grid boxes either
in the interior or in the boundary of three basins. The increase of computational
effort in relation with other cases is likely to be caused by this lost of Wada property
at infinity.
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Figure B.2. Hénon-Heiles hamiltonian. (a) Escape basins for the Hénon-Heiles
hamiltonian. (b) The initial million grid boxes are classified to be in the interior or in the
Wada boundary. (c) Prototypical computational performance: after the maximum there
is an exponential decay of the number of steps needed to check the Wada property. The
fit of the exponential decay shown in (d) reflects the fractal nature of the basins.

e Bisection method for Wada basins

In case that the Wada property is tested in a system with three basins, there is a
shortcut of the method that speeds up computation dramatically. Once the algo-
rithm has chosen two points in a box and is ready to look for the third color between
them, one can use an oriented version of the method making a small modification.
Imagine we have a blue point at left and a red point at right. We compute the
central point and we find it is red. Then, instead of computing two more points
in the next step, we only compute one more point, which is the middle point of
the blue and the most recent red (that is in the middle of our two leftmost points).
In the following step we would use the same procedure, computing only one point
at each step. Using this modification, the computational effort grows linearly with
the number of steps ¢ instead of exponentially. Although this method makes the
computation incredibly fast, a proper generalization for more than three basins is
still missing.
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Figure B.3. Magnetic pendulum. (a) Basins of attraction for a simplified model of
a magnetic pendulum with three magnets. (b) Our method classifies all the boxes either
in the interior or in the boundary of three basins. (c) In this case the computational effort
is larger due to the lost of fractality at infinity. (d) The last points do not follow the
tendency because of the lost of the Wada property upon infinite magnification.

[1] J. Aguirre and M. A. F. Sanjudn, “Unpredictable behavior in the Duffing
oscillator: Wada basins”, Physica D 171, 41-51 (2002).

2] J. Aguirre, J. C. Vallejo, and M. A. F. Sanjuidn, “Wada basins and chaotic
invariant sets in the Hénon-Heiles system”, Phys. Rev. E 64, 066208 (2001).

3] A. E. Motter, M. Gruiz, G. Kérolyi, and T. Tél, “Doubly transient chaos:
generic form of chaos in autonomous dissipative systems”, Phys. Rev. Lett.
111, 194101 (2013).
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Appendix C: On history functions

Delay differential equations need an infinite set of initial conditions to determine its
state before the action of the delayed terms. In other words, they need an initial
history function defined in the interval [—7,%;]. In most of the present literature,
little or even no attention at all is paid to these initial history functions. Most of
the times, the history is chosen to be constant or random for simplicity, but there is
no deeper discussion about this delicate issue. Nevertheless, systems with delay can
display multistability, transient chaos, chaos and hyperchaos. Therefore, the choice
of different history functions determines the fate of delayed systems, so they play a
central role in the dynamics of DDEs and must be examined carefully. To illustrate
our arguments along this appendix, we will use the delayed action oscillator for
simplicity

i+ (2 — 1) — ax, = 0. (C.1)

The first problem that one has to face to integrate a DDE is the choice of the
history. In principle, the general properties of a system do not depend on the
histories, in the same way that the properties of a usual system do not depend on
the initial conditions. Thus, a very common choice is to set histories randomly. This
choice presents practical and conceptual problems. The first one is that an infinite
number of random points is needed. If the integration scheme uses interpolation,
then a random value at the interpolated points must be provided, making the history
a pathological fractal function made out of random values, which is hard to assume
conceptually. The second problem is that in case that the system is sensitive to initial
conditions, the choice of the history must be made carefully: one could interpret as
a general result what actually happens only for some histories, and if these histories
are random the results would be impossible to reproduce.

Therefore, we find much easier from a practical and conceptual point of view to
choose deterministic history functions. The simplest option is to choose a constant
history function:

x(t) = A, Vt e [-1,to, (C.2)

where A € R. Fixing the initial history function to a constant value is equivalent to
suppose that the system has remained at some constant value for a time equal to
the delay 7. If the constant value is not a fixed point the situation described is most
of the times physically impossible (imagine a pendulum frozen for a while out of
its equilibrium state), and if the history has a constant value equal to a fixed point
then it will not evolve. Thus, other options should be considered.

A natural solution is to integrate the system without delay and consider that
the delayed term starts acting at some time t,. If we want the system to evolve
naturally in the interval [—7,to], we can integrate the equation without delay for
that interval and then include the delayed term. The simplicity of the delayed
action oscillator (Eq. C.1) allows us to make this integration analytically, although
the same procedure can be applied numerically for any other system.
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For instance, we can think that the term ax, is simply ax in the interval [—7, o).
In that case, the history function is given as the solution of the following ODE

i+ax(x*—1)—ar=0. (C.3)

After simple integration we get that our natural history function for every ¢ € [—7, to]
is

o T 1 + Q
2(t) = tage Tt )\/1 e T Y (C.4)
We can see in this equation that when t = —7 the system is in © = xg, that is, we
let the system evolve naturally from the initial condition x,. Also, we can make the
limit ¢ — oo and see that if there was no delayed term and a > —1, the system
would finally end in one of the equilibria z = ++/1 4 a.

Let us continue deepening into the physical interpretation of the history. For
instance, another physically reasonable situation would be to consider that the de-
layed term starts acting at ¢t = ¢y. This is simply a particular case of the preceding
case where o = 0 in the history function. A last attempt to include a natural his-
tory could be to get a piece of the solution of the DDE and use it as initial history
function. But the problem is how to get that first solution of the DDE, we enter
into a recursive problem that forces us to choose one history function the sooner or
the later, attending to the criteria we consider more appropriate in each case.

Another approach is to play with various history functions in order to contrast
the differences between DDEs and ODEs, sometimes leading to striking results. For
instance, it is possible to construct a history such that in ¢ = 0 the trajectory passes
through one equilibrium. For instance choosing for every t € [—, o]

z(t) = e M1+ a. (C.5)

implies an exponential decay to the positive fixed point as the system goes from
t = —7 tot = 0. Actually, with this history the system does not strictly pass
through one of the equilibria, since that would mean that all the derivatives were
equal to zero. However, if we only look at the time series, we see that v = ., at
t =ty = 0, and thereafter the system evolves differently depending on the history.
It can even end in the other equilibrium point or display autonomous oscillations, as
depicted in Fig. C.1(a). This happens because the system remembers a past state
away from the equilibrium, making possible a switch to a different attractor without
the action of any external forcing, but only its own memory.

Up to this point, we have restricted our analysis to history functions with only one
parameter. Nonetheless, we can choose history functions with as many parameters
as we want. We could even try to set an orthogonal basis for the history functions,
but we always have to restrict ourselves to finite representations [1]. The phase
space of a DDE is infinite dimensional, so the basins of attraction for different
parameters are simply different subspaces of the infinite dimensional space of history
functions. Therefore, choosing two parameters history functions is as fair as choosing
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Figure C.1. (a) Comparison of three time series for Eq. C.1 with &« = —0.95, 7 = 1.0767.
The history function is x(t) = e=4*\/T + a. The three time series have been integrated
with slightly different values for A: the blue line is for A = 0.185, A = 0.19 corresponds
to green and A = 0.2 is in red. In the inset we can see the three different histories and
how all of them ”pass through” the equilibrium x = /1 + « at t = 0, but the behavior in
each case is completely different. (b) Basin of attraction of the delayed action oscillator
(Eq. C.1) for o = —19/20 and histories of the form () = Asin(Bt) + /1 + «. This kind
of histories reflects oscillations around the fixed point.

one parameter history functions and can give more information. For instance, we
can choose histories of the form

(t) = A+ Bt (C.6)

for every t € [—,ty]. This the chosen option along Chapter 3, where we illustrate
the sensitivity of delayed systems.

Although the properties of the system do not depend on the choice of these
history functions®, they can have different physical meanings and produce rather
different basins of attraction. For instance, we can think in a history consisting of
oscillations around a fixed point,

z(t) = Asin(Bt) + V1 +« (C.7)

for every t € [—7,tp]. This kind of histories also passes through a fixed point,
as the histories given by Eq. C.5, but instead of decaying exponentially to the
fixed point, they represent oscillations around /1 + a. The basins produced by
these histories share the dynamical properties of the previous ones, but they look
completely different because we are looking to a different subspace (see. Fig. C.1(b)).
It is also important to notice that the only way to give an infinite set of initial
conditions is by means of a function, so these basins of attraction depending on
different parameters are the only basins of attraction that can be constructed.

'The only requirement for these history functions is to be continuous.
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[1] S. Leng, W. Lin, and J. Kurths, “Basin stability in delayed dynamics”, Sci.
Rep. 6, 21449 (2016).
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Appendix D: Proof of the log 2 criterion

The log 2 criterion is a sufficient condition to prove the fractality of the basin bound-
aries. It is based on the concept of boundary basin entropy, defined in Chapter 6 as

(D.1)

where N, is the number of boxes containing more than one color, that is, the number
of boxes in the boundaries, and

N N m;
S = Z S; = Z Zpi’j log <p3]) ) (D.2)

Let us now suppose that the boundaries separating the basins are smooth. In that
case, the number of boxes lying in the boundary separating two basins grows as

N2 = 7’L2€_(D_1), (D3)

being D the dimension of the phase space. For D = 2, the boundary would be a
line, for D = 3, it would be a surface and so forth. However, there might be some
boxes Nj lying in the boundaries of k£ > 2 different basins. These boxes are in the
intersection of at least two subspaces of dimension D — 1, that is, they are in the
intersection of two smooth boundaries. For instance, in D = 2 this simply means
that two or more smooth curves intersect in a point or collection of points, and in
D = 3 two or more smooth surfaces intersect forming smooth curves. Thus, the
dimension of the subspace separating more than two basins must be D — 2, and the
boxes N} belonging to this subspace must grow like

Nj, = npe~ (P72, (D.4)

Taking into account that the total number of boxes grows like N = e~ we can

express N, in terms of N as

D—-1
D
N2 = N2 <%) y (D5)

and for the boundary boxes separating more than two basins /Ny, we have

D—-2

s (V)7 o8

At this point, we recall that the maximum possible value of S in a box with m
different colors is S = logm, which is the Boltzmann expression for the entropy of
m equiprobable microstates. Then, we can find that all the boxes in the boundary
of two basins have S < log2, while for boxes in the boundary of £ > 2 different
basins, S < logk holds. Notice that the equality of the previous equations would
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be possible only in a pathological case where all the boxes in the boundaries have
equal proportions of the different colors.
Then, the basin entropy Sy, for this hypothetical system with smooth boundaries
is
Nylog2 + Nilogk
Ny + Ny, ‘

By substituting Ny, and Ny by Egs. D.5-D.6, we obtain the following expression

Spy <

(D.7)

D—-1

>}

—2

N N\ P
No (7) log 2 + ny, (T) log k
n n
Sty < D—1 D—2 ’ (D'8)
N\ P N\ P
n n
which can be simplified as
noN log 2 + nin log k
< D.
Sbb - ngN + nkﬁ ( 9)

where 1, ny, ny are constants. Finally, we can take the limit of the previous inequality
for a large number of boxes, that is N — oo, leading to

N—o0

Therefore, we have proven that if the boundaries are smooth, then Sy, < log 2, which
is the same as to say that if Sy, > log2, then the boundaries are not smooth, i.e.,
they are fractal. This is what we call the log 2 criterion.

As shown in Chapter 7, this criterion is especially useful for experimental situ-
ations where the resolution cannot be arbitrarily chosen. In these cases we have a
fixed value ¢ > 0. Nevertheless, if we take a sufficient large number of boxes N,
then the log 2 criterion holds. Moreover, the equality of Eq. D.10 never takes place,
so that there is some room for the possible deviations caused by the impossibility of
making an infinite number of simulations or experiments.
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Resumen

En esta seccion se resumen los objetivos y las principales conclusiones de la
presente tesis. Al final se incluye también una breve exposicién de la metodologia
utilizada.

Introduccion

Esta tesis constituye un estudio sobre distintos aspectos de la impredecibilidad en
sistemas caoticos. Tanto la forma como el fondo de la misma es eminentemente
no lineal, lo cual quiere decir que los temas tratados en los diferentes capitulos se
entremezclan los unos con los otros alimentdndose mutuamente. Es conveniente
entender el contexto en que se sitia la dindmica no lineal para comprender mejor el
espiritu y metodologia empleados en esta tesis.

Puede decirse que ha habido tres grandes revoluciones a lo largo de la Fisica
del siglo XX: la teoria de la relatividad, la mecénica cuantica y la teoria del caos.
Cada una de estas revoluciones ha traido consigo avances impresionantes en el
conocimiento del universo que nos rodea. No obstante, al mismo tiempo, han
impuesto restricciones insalvables -segiin la ciencia actual- a los limites de dicho
conocimiento. La relatividad impuso un limite a la velocidad de transmisién de la
informacion, la mecanica cudntica impuso un limite a la precisién en las medidas y
la teoria del caos puso de manifiesto las dificultades de la prediccién en sistemas no
lineales. Son precisamente estos limites al conocimiento los que se investigan en esta
tesis, especialmente los relativos a la prediccién del comportamiento a largo plazo
de los sistemas dinamicos no lineales.

El estudio de la llamada dindmica no lineal comporta diversos conceptos ligados
intimamente entre si, que son invocados y utilizados repetidamente en el transcurso
de la presente tesis. La teoria del caos comenzé a finales del siglo XIX con los
trabajos pioneros de Poincaré sobre los tres cuerpos. Sin embargo, hubo que es-
perar al desarrollo de los ordenadores para que la disciplina floreciese de la mano
de Edward Lorenz, Steven Smale, James A. Yorke y otros cientificos. Aunque la
definicion de caos sigue siendo tema de debate, hay una idea fundamental que todas
las definiciones comparten: la dependencia sensible a las condiciones iniciales. Esto
significa que una pequenisima incertidumbre en las condiciones iniciales crece expo-
nencialmente en el tiempo, provocando la imposibilidad de prediccion en el largo
plazo.

La ideas de caos y dinamica no lineal estan intimamente ligadas a la idea de ge-
ometria fractal. El término fractal fue acunado por Benoit Mandelbrot para referirse
a objetos geométricos que estaban de algin modo rotos y presentaban rugosidades,
en contraposicion a la geometria euclidiana donde las formas son suaves. Los frac-
tales son figuras que guardan algin grado de autosimilitud, esto es, que son com-
plejas en todas las escalas. La aparicion de estructuras fractales y su inevitable
complejidad son una de las causas de impredecibilidad que se estudian a fondo en
esta tesis.
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126 Resumen y conclusiones de la tesis en castellano

Las estructuras fractales son fundamentales para comprender los sistemas disipa-
tivos en la dindmica no lineal. Los sistemas disipativos intercambian energia/materia
con el entorno. Este tipo de sistemas suelen dar origen a estructuras estables cono-
cidas como atractores. El conjunto de condiciones iniciales que lleva a uno de estos
atractores se denomina cuenca de atraccion, y en sistemas cadticos suelen tener es-
tructura fractal. En los sistemas conservativos también se puede hablar de cuencas,
en este caso de escape, como el conjunto de condiciones iniciales cuyas trayecto-
rias atraviesan una cierta region del espacio de fases. El estudio de las cuencas
de atraccion y de escape proporciona mucha informacién sobre la dinamica de los
sistemas no lineales y su impredecibilidad. Gran parte de la presente tesis esta
dedicada al estudio y caracterizacion de dichas cuencas.

Si la mecdnica cuantica impone limites a la precision de las medidas, provocando
inevitables incertidumbres que se tornan catastroficas en los sistemas no lineales,
la relatividad también juega un papel crucial en lo referente a la impredecibilidad.
Concretamente, el hecho de que la informacién tarde un cierto tiempo en transmitirse
hace obligado el uso de ecuaciones diferenciales con retardo en algunas situaciones.
En estas ecuaciones, la evolucion de algunos términos no depende del estado presente
del sistema, sino de un estado anterior. Las inestabilidades que introduce el retardo
pueden provocar la aparicion de estructuras fractales que dificultan la prediccion del
estado asintético al que tiende el sistema.

Esta sensibilidad de los sistemas no lineales comporta que una pequena desviacion
de las condiciones iniciales puede provocar grandes cambios, por lo que es de suponer
que las perturbaciones externas puedan tener también efectos importantes sobre la
dinamica de dichos sistemas. En concreto, las resonancias no lineales son un tema
de gran interés tedrico y practico que se aborda en esta tesis.

Aunque el origen de la dindmica no lineal sea fisico-matematico, uno de sus
grandes valores es su capacidad para traspasar las barreras entre disciplinas cientificas.
Desde la biologia a la meteorologia, pasando por la ingenieria o la astrofisica, mu-
chos problemas de diferentes disciplinas cientificas pueden estudiarse bajo el prisma
unico que proporciona la dinamica no lineal. Esta tesis comienza con el estudio de
un interruptor genético y termina con la propagacion de ondas de materia. Aunque
el estudio de estos sistemas es interesante per se, el espiritu de mis investigaciones
es mas ambicioso. No sélo se pretenden estudiar sistemas dinamicos de interés, sino
que se intentan desarrollar técnicas ttiles en el contexto de la dinamica no lineal, y
por lo tanto tutiles en la resolucion de multitud de problemas en diversas areas del
conocimiento cientifico.

Resonancia vibracional en un interruptor genético con retardo

En este capitulo se investigan los efectos de dos perturbaciones periddicas de frecuen-
cias muy diferentes en un sistema de interés biolégico conocido como interruptor
genético. Los principales hitos desarrollados en este capitulo son los siguientes:

e Demostramos que una perturbacién peridédica de alta frecuencia puede opti-
mizar la respuesta de un interruptor genético con retardo a otra perturbacién
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externa de baja frecuencia. En otras palabras, demostramos que un interrup-
tor genético con retardo puede mostrar el fendmeno conocido como resonancia
vibracional.

e Mediante simulaciones numéricas, mostramos el efecto sobre la resonancia de
la variacion de diferentes parametros. Cabe destacar la aparicion de la denomi-
nada resonancia sin ajuste cuando se varian los parametros de la perturbacion
lenta, y sobre todo la posibilidad de modificar la amplitud de la perturbacién
rapida al modificar su frecuencia. Este resultado permite obtener resonancias
equivalentes empleando perturbaciones menores.

e Debido al tiempo empleado por los procesos biologicos de traduccion, ensam-
blaje de las proteinas y degradacion, aparecen retardos en el sistema dinamico.
Aunque los retados en la traducciéon y acoplamiento son relevantes desde un
punto de vista biolégico, desde el punto de vista de la dindmica el mas in-
teresante es retardo en la degradacion. Demostramos que el retardo en la
degradacién puede inducir inestabilidades en el sistema a través de una bifur-
cacion de Hopf, provocando un aumento de su sensibilidad ante las perturba-
ciones externas.

Resonancia vibracional ultrasensible

La resonancia vibracional tiene el inconveniente de que frecuentemente necesita per-
turbaciones muy grandes para producirse. Presentamos un nuevo tipo de resonancia
vibracional llamada resonancia vibracional ultrasensible, que aprovechando la sen-
sibilidad de los sistemas no lineales, provoca la resonancia vibracional mediante
perturbaciones minimas.

e Analizamos algunos de los problemas conceptuales de la resonancia vibracional.
Intentamos buscar un tipo de resonancia que esté en consonancia con el con-
cepto original de Galileo, en el que una pequena perturbacion de caracteristicas
particulares es capaz de inducir oscilaciones de gran amplitud.

e Demostramos como la sensibilidad que induce el retardo en un sistema dinamico
puede provocar que pequenas perturbaciones de la frecuencia adecuada hagan
entrar al sistema en resonancia.

e Las curvas de resonancia en presencia de estas inestabilidades son muy difer-
entes de las curvas de resonancia vibracional habituales. La resonancia ul-
trasensible muestra curvas de resonancia fractales, donde es posible encontrar
picos de resonancia arbitrariamente juntos.

e Indagamos la razén ultima de este tipo de resonancia y mostramos su relacién
con la aparicién de estructuras fractales en el espacio de fases. Esta situaciéon
no tiene que ser inducida necesariamente por un término de retardo, sino
que el fenémeno de la resonancia ultrasensible es mas general: basta con que
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el sistema presente varios atractores de diferente amplitud cuyas cuencas de
atraccién tengan fronteras fractales.

Test para cuencas de Wada

Los fractales presentan a menudo propiedades sorprendentes. Muestra de ello son
las cuencas de Wada, en las que tres o mds conjuntos comparten una misma fron-
tera. Esta topologia tan contraintuitiva provoca que los sistemas dinamicos con la
propiedad de Wada tengan una impredecibilidad tnica. A continuaciéon presenta-
mos una lista de los resultados y conclusiones de este capitulo sobre la propiedad de
Wada:

e Repasamos el origen matematico-topologico de la propiedad de Wada y su
conexion con los sistemas dindmicos. En particular, prestamos atencion a
lo que denominamos la propiedad de Wada disconexa, en la que tres o mas
conjuntos disconexos comparten una misma frontera. El método clasico para
probar que un sistema posee la propiedad de Wada no funciona en este tipo
de sistemas, ni en otros casos como el espacio de parametros o el espacio de
historias en los sistemas con retardo.

e Desarrollamos un método para comprobar la propiedad de Wada en cualquier
tipo de sistema. El algoritmo consta de varios pasos: se coloca una malla sobre
las cuencas, se identifican los puntos de la malla que son frontera de dos o mas
cuencas, y se procede mediante un método iterativo hasta que se demuestra
que todos los puntos en la frontera hacen frontera con todos los conjuntos, o
bien se supera el nimero de pasos permitido.

e El método es ilustrado mediante simulaciones numéricas con el oscilador de
Duffing forzado y con el método de Newton para encontrar raices complejas
de la unidad. Mostramos la eficiencia tanto en casos de Wada conexo como
disconexo, y para cualquier niimero de atractores (cuencas) del sistema.

e Proponemos un indicador numérico del grado de Wada del sistema. Este
indicador es especialmente 1til para los casos denominados parcialmente Wada,
en los que algunos puntos presentan la propiedad de Wada pero no todos.

Propiedad de Wada en sistemas con retardo

En los primeros capitulos se expone la importancia del retardo en la dinamica de
los sistemas no lineales. En éste, nos proponemos estudiar la propiedad de Wada en
sistemas con retardo, gracias a la técnica desarrollada en el capitulo anterior. Estos
son los hechos mas notables presentados a lo largo del capitulo:

e Estudiamos el sistema llamado oscilador de accion retardada, utilizado en la
modelizacién del fenomeno climatico de El Nino. Es un sistema de una tnica
variable en la que el retardo hace posible la apariciéon de oscilaciones. Es mas,
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demostramos que en el espacio de las historias de este sistema aparece lo que
denominamos una linea de Wada, es decir, una curva en la que todos sus
puntos separan tres cuencas de atraccion.

Debido a la similitud entre la topologia del oscilador de accion retardada y el
oscilador de Duffing, incluimos un forzamiento periédico en el sistema retar-
dado para estudiar la eventual aparicion de la propiedad de Wada.

Demostramos la aparicion de caos transitorio y estructuras fractales en el os-
cilador de accion retardada con forzamiento periédico. Hasta donde nuestro
conocimiento alcanza, es la primera vez que un retardo en un término lin-
eal es capaz de provocar dinamica cadtica. El retardo otorga al sistema las
dimensiones necesarias para poder desplegar caos.

El oscilador de accion retardada con forzamiento periédico muestra cuencas de
atraccién fractales que dan cuenta de una gran impredecibilidad. No obstante,
el test de Wada muestra que estas cuencas tienen tinicamente la propiedad de
Wada parcial.

Analizamos las diferencias entre el oscilador de accién retardada y el oscilador
de Duffing, y decidimos modificar el sistema retardado incluyendo el retardo
en el término cibico. Este sistema es capaz de mostrar la propiedad de Wada
en base a nuestro test.

Por vez primera comprobamos la propiedad de Wada en un sistema con retardo.
De esta forma, podemos afirmar que el retardo no solo es capaz de inducir
dindamica caotica, sino también la propiedad de Wada, que dota a los sistemas
de una impredecibilidad tnica.

Puesto que los sistemas con retardo poseen infinitas dimensiones, es la primera
vez que se encuentra la propiedad de Wada en infinitas dimensiones. Simple-
mente cambiando el niimero de parametros con los que se definen las funciones
historia, podemos conseguir cuencas de dimension arbitraria y siempre mues-
tran la propiedad de Wada.

Entropia de las cuencas

En el estudio de la impredecibilidad asociada a las cuencas de atraccion, a menudo
se realizan afirmaciones vagas cuando se compara la fractalidad de un sistema para
distintos pardmetros o determinadas situaciones particulares como la anteriormente
estudiada propiedad de Wada. En este capitulo, presentamos el concepto de entropia
de las cuencas, una forma natural de cuantificar dicha impredecibilidad. Estos
puntos resumen lo esencial de la investigacion:

e Dividimos las cuencas de atraccion en cajas y consideramos cada una de estas
cajas como una variable aleatoria, siendo sus posibles valores los atractores
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que contenga. Aplicamos la entropia de Gibbs para cada caja y definimos
la entropia de las cuencas promediando el valor de la entropia de todas las
cajas. Este procedimiento también es valido para cuencas de escape en sis-
temas conservativos. El algoritmo para calcular la entropia de las cuencas es
rapido y sencillo, y permite asociar a cada cuenca un ntimero que cuantifica
su impredecibilidad.

e Realizando algunas hipdtesis extra para facilitar los calculos, podemos identi-
ficar los distintos factores que contribuyen a la entropia de las cuencas. Estos
factores son: el tamafnio de la frontera, la dimensién de incertidumbre y el
numero de atractores. Ademas, analizamos la propiedad de Wada desde la
perspectiva que nos otorga esta nueva herramienta.

e Mediante diversos sistemas dindmicos paradigmaticos, comprobamos la depen-
dencia de la entropia de las cuencas con cada uno de los factores anteriormente
senalados. Aunque aislar el efecto de cada contribucién es practicamente im-
posible, los resultados computacionales avalan las predicciones teoricas.

e Aplicando la metodologia de la entropia de las cuencas unicamente a las cajas
que se encuentran en la frontera, encontramos una condicién suficiente para
determinar si una frontera es fractal. Si el valor de la entropia en la frontera es
mayor que log 2, entonces la frontera es fractal. Esta es una condicién suficiente
pero no necesaria, ya que de hecho sélo se puede cumplir en sistemas con tres
o mas atractores.

e Mostramos ejemplos de aplicacién utilizando el oscilador de Duffing forzado.
Variando la amplitud y la frecuencia del forzamiento realizamos un mapa de
la entropia del sistema. Este mapa nos muestra los valores de los parametros
para los cuales es mas dificil determinar el estado final del sistema.

e Proponemos un método tipo Monte Carlo para calcular la entropia de las
cuencas que proporciona valores bastante precisos de la entropia de las cuencas
con un costo computacional mucho menor. Este procedimiento puede utilizarse
para sondear las regiones de parametros donde un sistema dindamico presenta
cuencas de atracciéon mas interesantes.

e Aplicamos el criterio del log 2 en el oscilador de Duffing forzado y comprobamos
su validez. La gran ventaja de este método es que permite demostrar que un
sistema tiene fronteras fractales a una determinada resolucién, lo cual abre
nuevas puertas para encontrar estructuras fractales experimentalmente.

Dinamica caodtica en ondas de materia

En los dltimos anos, el scattering de atomos ultrafrios ha abierto nuevas posibilidades
en interferometria. A pesar de la naturaleza cuantica de este tipo de experimentos,
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algunas técnicas de la dinamica no lineal pueden emplearse para comprender y car-
acterizar mejor el sistema. Concretamente, el concepto de la entropia de las cuencas
tiene gran parecido con el procedimiento experimental en estos dispositivos. He aqui
los principales resultados y conclusiones presentados en este capitulo:

e Se presenta un sistema de dos ldseres cruzados empleado comtiinmente en este
tipo de experimentos y que permite obtener diferentes regimenes (interruptor,
separador). La mayor parte de los resultados experimentales pueden repro-
ducirse empleando una aproximacion clasica en dos dimensiones.

e El cémputo de la entropia de las cuencas presenta semejanzas con el proced-
imiento experimental. En ambos casos se consideran conjuntos de trayectorias
y se tiene acceso a su estado asintotico, es decir, se sabe la proporcién de
atomos/trayectorias que escapa por cada una de las ramas del doble haz.

e Proponemos un procedimiento por el cual se puede calcular la entropia de
las cuencas a partir de las medidas experimentales directamente. Las simula-
ciones numeéricas indican que si la velocidad con la que inciden las particulas
es suficientemente baja, se puede detectar la presencia de fronteras fractales
haciendo uso del criterio del log 2 expuesto en el capitulo anterior. Es decir,
se puede probar experimentalmente la presencia de estructuras fractales en el
espacio de fases de este sistema.

e Otras herramientas de la dinamica no lineal, como la estabilidad de las cuen-
cas y los tiempos de escapes se pueden utilizar para caracterizar la dinamica
cadtica del sistema. En concreto, la estabilidad de las cuencas sirve para cal-
cular la eficiencia de los regimenes de interruptor y separador del sistema, y
los tiempos de escape permiten acceder a informacion relativa a la dimension
de la silla cadtica.

Metodologia

La metodologia utilizada para elaborar esta tesis ha sido fundamentalmente de
caracter tedrico-computacional. Se han utilizado diversos modelos matematicos no
lineales de origenes dispares, que muchas veces han servido para desarrollar y probar
métodos generales, aplicables a otros sistemas dinamicos.

La formulacién matematica de estos modelos ha sido en forma de mapas discretos,
ecuaciones diferenciales ordinarias y ecuaciones diferenciales con retardo. Para su
resolucion se han empleado métodos tipo Runge-Kutta en la mayoria de las ocasiones,
ajustando las caracteristicas del integrador a cada caso, de tal modo que se obtuviera
el mejor compromiso posible entre fiabilidad de los resultados y tiempo de cémputo.
Ademas, para realizar los cdlculos més pesados se han utilizado los recursos del
Grupo de Dindmica No Lineal, Teoria del caos y Complejidad de la URJC: varios
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servidores de alto rendimiento® y un cluster® que permite paralelizar los procesos
obteniendo un poder de computacién superior. La programacion se ha realizado
fundamentalmente en Matlab, C, C++, Fortran y MPI para los procesos en paralelo.

2Dell PowerEdge 2900 (2 unidades), PowerEdge T710 (2 unidades) y PowerEdge T620 (1

unidad)
3El cluster estd basado en sistemas PowerEdge R410, R510 y R720 de Dell, posee cerca de 100

cores y 180 GB de memoria RAM.



