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Preface

The present volume offers to the reader, in English translations, Frege’s Begriffsschrift
and Godel’s incompleteness paper. These two works make the respective years of
their publication, 1879 and 1931, great years for logic. Frege’s booklet brought to the
world the theory of quantification and thus opened up a new epoch in the history of
logic. Godel's paper revealed intrinsic limitations of formal systems; by its results as
well as its methods, by its direct impact and its indirect influence, the paper deeply
marked the development of logic and foundations of mathematics. The reader thus
has in his hands the two most important works in logic in modern times.

The contents of the present volume were originally published in From Frege to
Godel: A source book in mathematical logic, 1879-1931, edited by myself and pub-
lished by Harvard University Press in 1967. In the present edition several misprints
and minor errors have been corrected. The introductory notes that I wrote for the two
papers are reproduced here. In these notes the reader will find, in particular, the
credits for the translations.

JEAN vAN HELJENOORT
Cambridge, Massachusetts
20 November 1969
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Begriffsschrift, a formula language, modeled wpon
that of arithmetic, Sfor pure thought

GOTTLOB FREGE
(1879)

This is the first work that Frege wrote
in the field of logic, and, although a mere
booklet of eighty-eight pages, it is per-
haps the most important single work ever
written in logic. Its fundamental contri-
butions, among lesser points, are the
truth-functional propositional caleulus,
the analysis of the proposition into func-
tion and argument(s) instead of subject
and predicate, the theory of quanti-
fication, a system of logic in which
derivations are carried out exclusively
according to the form of the expressions,
and a logical definition of the notion of
mathematical sequence. Any single one
of these achievements would suffice to
secure the book a permanent place in the
logician’s library.

Frege was a mathematician by train-
ing;* the point of departure of his
investigations in logic was a mathemati-
cal question, and mathematics left its
mark upon his logical accomplishments.
In studying the concept of number,
Frege was confronted with difficulties
when he attempted to give a logical
analysis of the notion of sequence. The
imprecision and ambiguity of ordinary
language led him to look for a more appro-
priate tool; he devised a new mode of
expression, a language that deals with
the “conceptual content” and that he
came to call ‘‘Begriffsschrift”.® This
ideography is a ‘“formula language”’,
that is, a lingua characterica, a language

written with special symbols, “for pure
thought”, that is, free from rhetorical
embellishments, “modeled upon that of
arithmetic”, that is, constructed from
specific symbols that are manipulated
according to definite rules. The last
phrase does not mean that logic mimics
arithmetic, and the analogies, uncovered
by Boole and others, between logic and
arithmetic are useless for Frege, precisely
because he wants to employ logic in

s See his Inaugural-Dissertation (1873) and
his thesis for venia docendi (1874).

® In the translation below this term is ren-
dered by ‘ideography”, a word used by
Jourdain in a paper (1912) read and annotated
by Frege; that Frege acquiesced in its use was
the reason why ultimately it was adopted here.
Another acceptable rendition is ** concept writ-
ing”, used by Austin (Frege 1950, p. 92e).

Professor Giinther Patzig was so kind as to
report in a private communication that a
student of his, Miss Carmen Diaz, found an
occurrence of the word **Begriffsschrift’™ in
Trendelenburg (1867, p. 4, line 1), a work that
Frege quotes in his preface to Begriffsschrift
(see below, p. 6). Frege used the word in
other writings, and in particular in his major
work (1893, 1903), but subsequently he seems
to have become dissatisfied with it. In an
unpublished fragment dated 26 July 1919 he
writes : ** I do not start from concepts in order to
build up thoughts or propositions out of them;
rather, I obtain the components of a thought
by decomposition [[Zerfillung]| of the thought,
In this respect my Begriffsschrift differs from
the similar creations of Leibniz and his suc-
cessors—in spite of its name, which perhaps I
did not choose very aptly”.
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order to provide a foundation for arith-
metic. He carefully keeps the logical
symbols distinct from the arithmetic
ones. Schroder (1880) criticized him for
doing just that and thus wrecking a
tradition established in the previous
thirty years. Frege (1882, pp. 1-2)
answered that his purpose had been quite
different from that of Boole: “* My inten-
tion was not to represent an abstract
logic in formulas, but to express a content
through written signs in a more precise
and clear way than it is possible to do
through words. In fact, what 1 wanted to
create was not a mere calculus ratio-
cinator but a lingua characterica in
Leibniz's sense”.

Mathematics led Frege to an innova-
tion that was to have a profound in-
fluence upon modern logic. He observes
that we would do violence to mathemati-
cal statements if we were to impose upon
them the distinetion between subject and
predicate. After a short but pertinent
critique of that distinction, he replaces
it by another, borrowed from mathe-
matics but adapted to the needs of logic,
that of function and argument. Frege
begins his analysis by considering an
ordinary sentence and remarks that the
expression remains meaningful when
certain words are replaced by others. A
word for which we can make such succes-
sive substitutions occupies an argument
place, and the stable component of the
sentence is the function. This, of course,
is not a definition, because in his system
Frege deals not with ordinary sentences
but with formulas; it is merely an ex-
planation, after which he introduces
functional letters and gives instructions
for handling them and their arguments.
Nowhere in the present text does Frege
state what a function is or speak of the
value of a function. He simply says that a
judgment is obtained when the argument
places between the parentheses attached
to a functional letter have been properly
filled (and, should the case so require,
quantifiers have been properly used).

It is only in his subsequent writings (1891
and thereafter) that Frege will devote a
great deal of attention to the nature of a
function.

Frege’s booklet presents the proposi-
tional caleulus in a version that uses the
conditional and negation as primitive
connectives. Other connectives are exa-
mined for a moment, and their inter-
translatability with the conditional and
negation is shown. Mostly to preserve
the simple formulation of the rule of
detachment, Frege decides to use these
last two. The notation that he introduces
for the conditional has often been criti-
cized, and it has not survived. It presents
difficulties in printing and takes up a
large amount of space. But, as Frege
himself (1896, p. 364) says, “* the comfort
of the typesetter is certainly not the
summum bonum”, and the notation
undoubtedly allows one to perceive the
structure of a formula at a glance and to
perform substitutions with ease. Frege's
definition of the conditional is purely
truth-functional, and it leads him to the
rule of detachment, stated in §6. He
notes the discrepancy between this truth-
functional definition and ordinary uses of
the word “if”. Frege dismisses modal
considerations from his logic with the
remark that they concern the grounds for
accepting a judgment, not the content of
the judgment itself. Frege's use of the
words “affirmed” and ‘““denied”, with
his listing of all possible cases in the
assignment of these terms to proposi-
tions, in fact amounts to the use of the
truth-table method. His axioms for the
propositional calculus (they are not
independent) are formulas (1), (2), (8),
(28), (31), and (41). His rules of inference
are the rule of detachment and an un-
stated rule of substitution. A number of
theorems of the propositional calculus
are proved, but no question of complete-
ness, consistency, or independence is
raised.

Quantification theory is introduced in
§11. Frege's instructions how to use
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italic and German letters contain, in
effect, the rule of generalization and the
rule that allows us to infer A o (x)F(x)
from 4 > F(x) when = does not ocecur
free in A. There are three new axioms:
(58) for instantiation, (52) and (54) for
identity. No rule of substitution is
explicitly stated, and one has to examine
Frege's practice in his derivations to see
what he allows. The substitutions are
indicated by tables on the left of the
derivations. These substitutions are simul-
taneous substitutions. When a substitu-
tion is specified with the help of “I'”,
which plays the role of what we would
today call a syntactic variable, particular
care should be exercised, and it proves
convenient to perform the substitutions
that do not involve “I"”’ before that in-
volving “ I is carried out. The point will
become clear to the reader if he compares,
for example, the derivation of (51) with
that of (98). Frege’s derivations are quite
detailed and, even in the absence of an
explicit rule of substitution, can be unam-
biguously reconstructed.

Frege allows a functional letter to
oceur in a quantifier (p. 24 below). This
license is not a necessary feature of
quantification theory, but Frege has to
admit it in his system for the definitions
and derivations of the third part of the
book. The result is that the difference
between function and argument is blur-
red. In fact, even before coming to
quantification over functions, Frege
states (p. 24 below) that we can con-
sider ®(4) to be a function of the
argument @ as well as of the argument
A. (This is precisely the point that Russell
will seize upon to make it bear the brunt
of his paradox—see Russell 1902). It is
true that Frege writes (p. 24 below) that,
if a functional letter occurs in a quanti-
fier, ‘“this circumstance must be taken
into account”. But the phrase remains
vague. The most generous interpretation
would be that, in the scope of the quanti-
fier in which it occurs, a functional letter
has to be treated as such, that is, must

be provided with a pair of parentheses
and one or more arguments. Frege,
however, does not say as much, and in the
derivation of formula (77) he substitutes
& for ain f(a), at least as an intermediate
step. If we also observe that in the deri-
vation of formula (91) he substitutes § for
f, we see that he is on the brink of a
paradox. He will fall into the abyss when
(1891) he introduces the course-of-values
of a function as something ““complete in
itself”, which “may be taken as an
argument”’. For the rest of the story see
van Heijenoort 1967, pp. 124-128.

This flaw in Frege's system should not
make us lose sight of the greatness of his
achievement. The analysis of the propo-
sition into function and argument, rather
than subject and predicate, and quanti-
fication theory, which became possible
only after such an analysis, are the very
foundations of modern logic. The prob-
lems connected with quantification over
functions could be approached only
after a quantification theory had already
been established. When the slowness and
the wavering that marked the develop-
ment of the propositional calculus are
remembered, one cannot but marvel at
seeing quantification theory suddenly
coming full-grown into the world. Many
years later (1894, p. 21) Peano still
finds quantification theory ‘‘abstruse”
and prefers to deal with it by means of
just a few examples. Frege can proudly
answer (1896, p. 376) that in 1879 he had
already given all the laws of quanti-
fication theory; ‘‘these laws are few in
number, and I do not know why they
should be said to be abstruse™.

In distinguishing his work from that of
his predecessors and contemporaries,
Frege repeatedly opposes a lingua charac-
terica to a caleulus ratiocinator. He uses
these terms, suggested by Leibniz, to
bring out an important feature of his
system, in fact, one of the greatest
achievements of his Begriffsschrift. In the
pre-Fregean calculus of propositions and
classes, logic, translated into formulas,
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is studied by means of arguments resting
upon an intuitive logic. What Frege
does is to construct logic as a language
that need not be supplemented by any
intuitive reasoning. Thus he is very care-
ful to describe his system in purely
formal terms (he even speaks of letters—
Latin, German, and so on—rather than
of variables, because of the imprecision
of the latter term). He is fully aware
that any system requires rules that can-
not be expressed in the system ; but these
rules are void of any intuitive logic;
they are “rules for the use of our signs”
(p. 28 below): the rule of detachment,
the rules for dealing with quantifiers.
This is one of the great lessons of Frege’s
book. Tt was a new one in 1879, and it
did not at once pervade the world of
logie.

The third part of the book introduces a
theory of mathematical sequences. Frege
is moving toward his goal, the logical
reconstruction of arithmetic. He defines
the relation that Whitehead and Russell
(1910, part 11, sec. E) came to call the
ancestral relation and that later (1940)
Quine called the ancestral. The proper
ancestral appears in § 26 and the ances-
tral proper in § 29. Subsequently Frege
will use the notion for the justification of
mathematical induction (1884, p. 93).
Dedekind (van Heijenoort 1967, p. 101,
and 1893, XVII) recognized that the
ancestral agrees in essence with his own
notion of chain, which was publicly intro-
duced nine years after Frege’s notion.

At times Begriffsschrift begs for a
clarification of linguistic usage, for a
distinction between expressions and what
these expressions refer to. In his sub-
sequent writings Frege will devote a
great deal of attention to this problem.
On one point, however, the book touches
upon them, and not too happily. In § 8
identity of content is introduced as &
relation between names, not their con-
tents. “|——4 = B” means that the
signs “4” and “B" have the same
conceptual content and, according to
Frege, is a statement about signs.
There are strong arguments against such

a conception, and Frege will soon recog-
nize them. This will lead him to split the
notion of conceptual content into sense
(“Sinn™) and reference (*‘Bedeutung”)
(1892a, but see also 1891, p. 14; these
two papers can be viewed as long emenda-
tions to Begriffsschrift).

In 1910 Jourdain sent to Frege the
manuseript of a long paper that he had
written on the history of logic and that
contained a summary of Begriffsschrift.
Frege answered with comments on a
number of points, and Jourdain incor-
porated Frege’s remarks in footnotes to
his paper (1912). Some of these footnotes
are reproduced below, at their appro-
priate places, with slight revisions in
Jourdain’s translation of Frege's com-
ments (moreover, the German text used
here is Frege’s copy, and there are in-
dications that the text that he sent to
Jourdain and the copy that he preserved
are not identical).

A few words should be said about
Frege’s use of the term ““Verneinung”.
In a first use, ““Verneinung” is opposed
to “Bejahung”, “verneinen” to “beja-
hen”, and what these words express is, in
fact, the ascription of truth values to
contents of judgments; they are trans-
lated, respectively, by “denial”’ and
“affirmation”, “to deny” and “to
affirm . The second use of * Verneinung
is for the connective, and when so used it
is translated by “negation”.

A number of misprints in the original
were discovered during the translation.
Most of them are included in the errata
list that the reader will find in the reprint
of Frege’s booklet (1964, pp. 122-123).°
Those that are not in that list are the
following :

(1) On page XV, lines 6u, 5u, and 3u
of the German text, “4” and *“B”
(which are alpha and beta) are not of the
same font as “®” and “¥", while
they should be;

¢ On misprints in Frege 1964 see Angelelli and
Bynum 1966.
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(2) On page 29 of the German text, in
§ 15, the letters to the left of the long
vertical line under (1) should be “a” and
“p”, not “a” and “b”;

(3) The misprint indicated in footnote
18, p. 57 below;

(4) The misprint indicated in footnote
21, p. 65 below.
Moreover, Misprint 3 in the reprint’s list
does not occur in the German text used
for the present translation; apparently,
it is not a misprint at all but is simply
due to the poor printing of some copies.
The reprint also introduces misprints of

its own: on page 1, line 4u, we find

“—" where there should be “|—";
on page 62, near the top of the page,

(‘y” (ly!!
should be “%".;
B B

should be a vertical negation stroke
attached to the stroke preceding the first
occurrence of “h(y)”; on page 39 an un-
readable broken “c’’ has been left un-
corrected.

The translation is by Stefan Bauer-
Mengelberg, and it is published here by
arrangement with Georg Olms Verlags-
buchhandlung.

on page 65 there

PREFACE

In apprehending a scientific truth we pass, as a rule, through various degrees of
certitude. Perhaps first conjectured on the basis of an insufficient number of particular
cases, a general proposition comes to be more and more securely established by being
connected with other truths through chains of inferences, whether consequences are
derived from it that are confirmed in some other way or whether, conversely, it is seen
to be a consequence of propositions already established. Hence we can inquire, on the
one hand, how we have gradually arrived at a given proposition and, on the other,
how we can finally provide it with the most secure foundation. The first question
may have to be answered differently for different persons ; the second is more definite,
and the answer to it is connected with the inner nature of the proposition considered.
The most reliable way of carrying out a proof, obviously, is to follow pure logic, a
way that, disregarding the particular characteristics of objects, depends solely on those
laws upon which all knowledge rests. Accordingly, we divide all truths that require
justification into two kinds, those for which the proof can be carried out purely by
means of logic and those for which it must be supported by facts of experience. But
that a proposition is of the first kind is surely compatible with the fact that it could
nevertheless not have come to consciousness in a human mind without any activity of
the senses.! Hence it is not the psychological genesis but the best method of proof that
is at the basis of the classification. Now, when I came to consider the question to
which of these two kinds the judgments of arithmetic belong, I first had to ascertain
how far one could proceed in arithmetic by means of inferences alone, with the sole
support of those laws of thought that transcend all particulars. My initial step was
to attempt to reduce the concept of ordering in a sequence to that of logical conse-
quence, so as to proceed from there to the concept of number. To prevent anything
intuitive [Anschauliches] from penetrating here unnoticed, I had to bend every effort
to keep the chain of inferences free of gaps. In attempting to comply with this require-
ment in the strictest possible way I found the inadequacy of language to be an

1 Since without sensory experience no mental development is possible in the beings known to
us, that holds of all judgments.
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obstacle ; no matter how unwieldy the expressions I was ready to accept, I was less
and less able, as the relations became more and more complex, to attain the precision
that my purpose required. This deficiency led me to the idea of the present ideography.
Its first purpose, therefore, is to provide us with the most reliable test of the validity
of a chain of inferences and to point out every presupposition that tries to sneak in
unnoticed, so that its origin can be investigated. That is why I decided to forgo ex-
pressing anything that is without significance for the inferential sequence. In § 3 1
called what alone mattered to me the conceptual content [[begrifflichen Inhalt]). Hence
this definition must always be kept in mind if one wishes to gain a proper understand-
ing of what my formula language is. That, too, is what led me to the name “ Begriffs-
schrift”. Since I confined myself for the time being to expressing relations that are
independent of the particular characteristics of objects, I was also able to use the
expression * formula language for pure thought . That it is modeled upon the formula
language of arithmetic, as I indicated in the title, has to do with fundamental ideas
rather than with details of execution. Any effort to create an artificial similarity by
regarding a concept as the sum of its marks [Merkmale]] was entirely alien to my
thought. The most immediate point of contact between my formula language and that
of arithmetic is the way in which letters are employed.

I believe that I can best make the relation of my ideography to ordinary language
[Sprache des Lebens]| clear if I compare it to that which the microscope has to the
eye. Because of the range of its possible uses and the versatility with which it can
adapt to the most diverse circumstances, the eye is far superior to the microscope.
Considered as an optical instrument, to be sure, it exhibits many imperfections, which
ordinarily remain unnoticed only on account of its intimate connection with our mental
life. But, as soon as scientific goals demand great sharpness of resolution, the eye
proves to be insufficient. The microscope, on the other hand, is perfectly suited to
precisely such goals, but that is just why it is useless for all others.

This ideography, likewise, is a device invented for certain scientific purposes, and
one must not condemn it because it is not suited to others. If it answers to these
purposes in some degree, one should not mind the fact that there are no new truths in
my work. I would console myself on this point with the realization that a development
of method, too, furthers science. Bacon, after all, thought it better to invent a means
by which everything could easily be discovered than to discover particular truths, and
all great steps of scientific progress in recent times have had their origin in an improve-
ment of method.

Leibniz, too, recognized—and perhaps overrated—the advantages of an adequate
system of notation. His idea of a universal characteristic, of a calculus philosophicus
or ratiocinator,® was so gigantic that the attempt to realize it could not go beyond the
bare preliminaries. The enthusiasm that seized its originator when he contemplated
the immense increase in the intellectual power of mankind that a system of notation
directly appropriate to objects themselves would bring about led him to underestimate
the difficulties that stand in the way of such an enterprise. But, even if this worthy
goal cannot be reached in one leap, we need not despair of a slow, step-by-step approxi-
mation. When a problem appears to be unsolvable in its full generality, one should

2 On that point see Trendelenburg 1867 [pp. 1-47, Ueber Leibnizens Entwurf einer allgemeinen
Charakteristik]).
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temporarily restrict it ; perhaps it can then be conquered by a gradual advance. It is
possible to view the signs of arithmetic, geometry, and chemistry as realizations, for
specific fields, of Leibniz’s idea. The ideography proposed here adds a new one to these
fields, indeed the central one, which borders on all the others. If we take our departure
from there, we can with the greatest expectation of success proceed to fill the gaps in
the existing formula languages, connect their hitherto separated fields into a single
domain, and extend this domain to include fields that up to now have lacked such a
language.®

T am confident that my ideography can be successfully used wherever special value
must be placed on the validity of proofs, as for example when the foundations of the
differential and integral calculus are established.

Tt seems to me to be easier still to extend the domain of this formula language to
include geometry. We would only have to add a few signs for the intuitive relations
that occur there. In this way we would obtain a kind of analysis situs.

The transition to the pure theory of motion and then to mechanics and physics
could follow at this point. The latter two fields, in which besides rational necessity
[Denknothwendigkeit]] empirical necessity [Naturnothwendigkeit] asserts itself, are
the first for which we can predict a further development of the notation as knowledge
progresses. That is no reason, however, for waiting until such progress appears to
have become impossible.

If it is one of the tasks of philosophy to break the domination of the word over the
human spirit by laying bare the misconceptions that through the use of language often
almost unavoidably arise concerning the relations between concepts and by freeing
thought from that with which only the means of expression of ordinary language,
constituted as they are, saddle it, then my ideography, further developed for these
purposes, can become a useful tool for the philosopher. To be sure, it too will fail to
reproduce ideas in a pure form, and this is probably inevitable when ideas are
represented by concrete means ; but, on the one hand, we can restrict the diserepancies
to those that are unavoidable and harmless, and, on the other, the fact that they are
of a completely different kind from those peculiar to ordinary language already affords
protection against the specific influence that a particular means of expression might
exercise.

The mere invention of this ideography has, it seems to me, advanced logic. I hope
that logicians, if they do not allow themselves to be frightened off by an initial im-
pression of strangeness, will not withhold their assent from the innovations that, by a
necessity inherent in the subject matter itself, I was driven to make. These deviations
from what is traditional find their justification in the fact that logic has hitherto always
followed ordinary language and grammar too closely. In particular, I believe that the
replacement of the concepts subject and predicate by argument and function, respec-
tively, will stand the test of time. It is easy to see how regarding a content as a function
of an argument leads to the formation of concepts. Furthermore, the demonstration
of the connection between the meanings of the words if, and, not, or, there is, some, all,
and so forth, deserves attention.

Only the following point still requires special mention. The restriction, in § 6, to a

3 [On that point see Frege 1879%a.]]
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single mode of inference is justified by the fact that, when the foundations for such an
ideography are laid, the primitive components must be taken as simple as possible, if
perspicuity and order are to be created. This does not preclude the possibility that
later certain transitions from several judgments to a new one, transitions that this
one mode of inference would not allow us to carry out except mediately, will be
abbreviated into immediate ones. In fact this would be advisable in case of eventual
application. In this way, then, further modes of inference would be created.

I noticed afterward that formulas (31) and (41) can be combined into a single one,

—(TTa = a),

which makes some further simplifications possible.

As I remarked at the beginning, arithmetic was the point of departure for the train
of thought that led me to my ideography. And that is why I intend to apply it first of
all to that science, attempting to provide a more detailed analysis of the concepts of
arithmetic and a deeper foundation for its theorems. For the present I have reported
in the third chapter some of the developments in this direction. To proceed farther
along the path indicated, to elucidate the concepts of number, magnitude, and so
forth—all this will be the object of further investigations, which I shall publish
immediately after this booklet.

Jena, 18 December 1878.
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1. DEFINITION OF THE SYMBOLS

§ 1. The signs customarily employed in the general theory of magnitudes are of
two kinds. The first consists of letters, of which each represents either a number left
indeterminate or a function left indeterminate. This indeterminacy makes it possible
to use letters to express the universal validity of propositions, as in

(@ + b)e = ac + be.

The other kind consists of signs such as +, —, 4/, 0, 1, and 2, of which each has its
particular meaning.*

I adopt this basic idea of distinguishing two kinds of signs, which unfortunately is
not strictly observed in the theory of magnitudes,® in order to apply it in the more

i [Footnote by Jourdain (1912, p. 238):

Russell (1908) has expressed it : *“A variable is a symbol which is to have one of a certain set
of values, without its being decided which one. It does not have first one value of a set and then
another; it has at all times some value of the set, where, so long as we do not replace the variable
by a constant, the ‘some’ remains unspecified.”

On the word “variable” Frege has supplied the note: *Would it not be well to omit this
expression entirely, since it is hardly possible to define it properly ? Russell's definition immedi-
ately raises the question what it means to say that ‘a symbol has a value’. Is the relation of a
sign to its significatum meant by this? In that case, however, we must insist that the sign be
univoeal, and the meaning (value) that the sign is to have must be determinate ; then the variable
would be a sign. But for him who does not subscribe to a formal theory a variable will not be a
sign, any more than a number is. If, now, you write *A variable is represented by a symbol that
is to represent one of a certain set of values’, the last defect is thereby removed ; but what is the
case then? The symbol represents, first, the variable and, second, a value taken from a certain
supply without its being determined which. Accordingly, it seems better to leave the word ‘sym-
bol® out of the definition. The question as to what a variable is has to be answered independently
of the question as to which symbol is to represent the variable. So we come to the definition: ‘A
variable is one of a certain set of values, without its being decided which one’. But the last
addition does not yield any closer determination, and to belong to a certain set of values means,
properly, to fall under a certain concept ; for, after all, we can determine this set only by giving
the properties that an object must have in order to belong to the set; that is, the set of values will
be the extension of a concept. But, now, we can for every object specify a set of values to which
it belongs, so that even the requirement that something is to be a value taken from a certain set
does not determine anything. It is probably best to hold to the convention that Latin letters serve
to confer generality of content on a theorem. And it is best not to use the expression ‘variable’ at
all, since ultimately we cannot say either of a sign, or of what it expresses or denotes, that it is
variable or that it is a variable, at least not in a sense that can be used in mathematics or logic.
On the other hand, perhaps someone may insist that in (2 + z)(3 + =)’ the letter ‘2" does not
serve to confer generality of content on a proposition. But in the context of a proof such a formula
will always occur as a part of a proposition, whether this proposition consists partly of words or
exclusively of mathematical signs, and in such a context x will always serve to confer generality
of content on a proposition. Now, it seems to me unfortunate to restrict to a particular set the
values that are admissible for this letter. For we can always add the condition that a belong to
this set, and then drop that condition. If an object 4 does not belong to the set, the condition is
simply not satisfied and, if we replace ‘a’ by ‘4’ in the entire proposition, we obtain a true pro-
position. T would not say of a letter that it has a signification, a sense, a meaning, if it serves to
confer generality of content on a proposition. We can replace the letter by the proper name ¥
of an object 4 ; but this 4 cannot anyhow be regarded as the meaning of the letter; for it is not
more closely allied with the letter than is any other object. Also, generality cannot be regarded as
the meaning of the Latin letter ; for it cannot be regarded as something independent, something
that would be added to a content already complete in other respects. I would not, then, say
‘terms whose meaning is indeterminate’ or ‘signs have variable meanings’. In this case signs have
no denotations at all.”” [Frege, 1910.]]

5 Consider 1, log, sin, lim,
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comprehensive domain of pure thought in general. 1 therefore divide all signs that 1 use
into those by which we may understand different objects and those that have a completely
determinate meaning. The former are letters and they will serve chiefly to express
generality. But, no matter how indeterminate the meaning of a letter, we must insist
that throughout a given context the letter refain the meaning once given to it.

Judgment

§2. A judgment will always be expressed by means of the sign

—.

which stands to the left of the sign, or the combination of signs, indicating the content
of the judgment. If we omit the small vertical stroke at the left end of the horizontal
one, the judgment will be transformed into a mere combination of ideas [ Vorstellungs-
verbindung),® of which the writer does not state whether he acknowledges it to be true
or not. For example, let

—4

stand for [[bedeute] the judgment “* Opposite magnetic poles attract each other™
then

—A

will not express [Jausdriicken] this judgment ;® it is to produce in the reader merely
the idea of the mutual attraction of opposite magnetic poles, say in order to derive
consequences from it and to test by means of these whether the thought is correct.
When the vertical stroke is omitted, we express ourselves paraphrastically, using the
words “the circumstance that’ or **the proposition that™.°

Not every content becomes a judgment when | is written before its sign; for

S [Footnote by Jourdain (1912, p. 242):

“For this word I now simply say ‘Gedanke’. The word “Vorstellungsinhalt ' is used now in a
psychological, now in a logical sense. Since this creates obscurities, I think it best not to use this
word at all in logic. We must be able to express a thought without affirming that it is true. If we
want to characterize a thought as false, we must first express it without affirming it, then negate
it. and affirm as true the thought thus obtained. We cannot correctly express a hypothetical
connection between thoughts at all if we cannot express thoughts without affirming them, for in
the hypothetical connection neither the thought appearing as antecedent nor that appearing as
consequent is affirmed." [Frege, 1910.]]

7 T use Greek letters as abbreviations, and to each of these letters the reader should attach an
appropriate meaning when I do not expressly give them a definition. [The * A" that Frege is now
using is a capital alpha.]]

8 [Jourdain had originally translated “bedeuten” by “signify "', and Frege wrote (see Jourdain
1912, p. 242):

‘ Here we must notice the words ‘signify' and ‘express’. The former seems to correspond to
‘bezeichnen' or ‘ bedeuten ', the latter to *ausdriicken ', According to the way of speaking T adopted
I say ‘A proposition expresses a thought and signifies its truth value’. Of a judgment we cannot
properly say either that it signifies or that it is expressed. We do, to be sure, have a thought in the
judgment, and that can be expressed ; but we have more, namely, the recognition of the fruth of
this thought."]]

9 [Footnote by Jourdain (1 912, p. 243):

“Instead of ‘circumstance' and ‘proposition’ I would simply say ‘thought’. Instead of
' beurtheilbarer Inhalt’ we can also say ‘Gedanke'." [Frege, 1910.7])
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example, the idea “house” does not. We therefore distinguish contents that can be-
come a judgment from those that cannot.’®

The horizontal stroke that is part of the sign |—— combines the signs that follow it
into a totality, and the affirmation expressed by the vertical stroke at the left end of the
horizontal one refers to this totality. Let us call the horizontal stroke the content stroke
and the vertical stroke the judgment stroke. The content stroke will in general serve
to relate any sign to the totality of the signs that follow the stroke. Whatever follows
the content stroke must have a content that can become a judgment.

§ 3. A distinction between subject and predicate does not occur in my way of repre-
senting a judgment. In order to justify this I remark that the contents of two judg-
ments may differ in two ways : either the consequences derivable from the first, when
it is combined with certain other judgments, always follow also from the second, when
it is combined with these same judgments, [and conversely,] or this is not the case.
The two propositions “The Greeks defeated the Persians at Plataea’ and “The
Persians were defeated by the Greeks at Plataea” differ in the first way. Even if one
can detect a slight difference in meaning, the agreement outweighs it. Now I call that
part of the content that is the same in both the conceptual content. Since it alone is of
significance for our ideography, we need not introduce any distinction between pro-
positions having the same conceptual content. If one says of the subject that it “is
the concept with which the judgment is concerned ", this is equally true of the object.
We can therefore only say that the subject “is the concept with which the judgment
is chiefly concerned”. In ordinary language, the place of the subject in the sequence
of words has the significance of a distinguished place, where we put that to which we
wish especially to direct the attention of the listener (see also §9). This may, for
example, have the purpose of pointing out a certain relation of the given judgment
to others and thereby making it easier for the listener to grasp the entire context.
Now, all those peculiarities of ordinary language that result only from the interaction
of speaker and listener—as when, for example, the speaker takes the expectations of
the listener into account and seeks to put them on the right track even before the
complete sentence is enunciated—have nothing that answers to them in my formula
language, since in a judgment I consider only that which influences its possible con-
sequences. Everything necessary for a correct inference is expressed in full, but what
is not necessary is generally not indicated ; nothing is left to guesswork. In this I faith-
fully follow the example of the formula language of mathematics, a language to
which one would do violence if he were to distinguish between subject and predicate
in it. We can imagine a language in which the proposition ** Archimedes perished at
the capture of Syracuse” would be expressed thus: **The violent death of Archimedes
at the capture of Syracuse is a fact”’. To be sure, one can distinguish between subject
and predicate here, too, if one wishes to do so, but the subject contains the whole
content, and the predicate serves only to turn the content into a judgment. Such a

10 On the other hand, the circumstance that there are houses, or that there is a house (see § 12
[[footnote 15])), is & content that can become a judgment. But the idea “house' is only a part of
it. In the proposition * The house of Priam was made of wood" we could not put * circumstance
that there is a house' in place of ‘“house’. For a different kind of example of a content that
ecannot become a judgment see the passage following formula (81).

[In German Frege's distinction is between *‘beurtheilbare™ and *“unbeurtheilbare” contents.
Jourdain uses the words ** judicable’ and *‘nonjudicable™.]|
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language would have only a single predicate for all judgments, namely, “‘is a fact™.
We see that there cannot be any question here of subject and predicate in the ordinary
sense. Our ideography is a language of this sort, and in it the sign |— is the common
predicate for all judgments.

In the first draft of my formula language I allowed myself to be misled by the
example of ordinary language into constructing judgments out of subject and predi-
cate. But I soon became convinced that this was an obstacle to my specific goal and
led only to useless prolixity.

§4. The remarks that follow are intended to explain the significance for our
purposes of the distinctions that we introduce among judgments.

We distinguish between universal and particular judgments; this is really not a
distinetion between judgments but between contents. We ought to say *‘a judgment
with @ universal content”, * a judgment with a particular content”. For these properties
hold of the content even when it is not advanced as a judgment but as a [[mere]|
proposition (see § 2).

The same holds of negation. In an indirect proof we say, for example, “Suppose
that the line segments A B and OD are not equal’. Here the content, that the line
segments A4 B and C'D are not equal, contains a negation ; but this content, though it
can become a judgment, is nevertheless not advanced as a judgment. Hence the
negation attaches to the content, whether this content becomes a judgment or not. I
therefore regard it as more appropriate to consider negation as an adjunct of a content
that can become a judgment.

The distinction between categoric, hypothetic, and disjunctive judgments seems
to me to have only grammatical significance.'*

The apodictic judgment differs from the assertory in that it suggests the existence
of universal judgments from which the proposition can be inferred, while in the case
of the assertory one such a suggestion is lacking. By saying that a proposition is
necessary I give a hint about the grounds for my judgment. But, since this does not
affect the conceptual content of the judgment, the form of the apodictic judgment has no
significance for us.

If a proposition is advanced as possible, either the speaker is suspending judgment
by suggesting that he knows no laws from which the negation of the proposition
would follow or he says that the generalization of this negation is false. In the latter
case we have what is usually called a particular affirmative judgment (see § 12). “It is
possible that the earth will at some time collide with another heavenly body " is an
instance of the first kind, and “A cold can result in death” of the second.

Conditionality
§5. If A and B stand for contents that can become judgments (§ 2), there are the
following four possibilities :

(1) A is affirmed and B is affirmed;
(2) A is affirmed and B is denied;
(3) A is denied and B is affirmed ;
(4) A is denied and B is denied.

11 The reason for this will be apparent from the entire book.
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B

stands for the judgment that the third of these possibilities does not take place, but one
of the three others does. Accordingly, if

T
B
is denied, this means that the third possibility takes place, hence that A4 is denied

and B affirmed.
Of the cases in which

T x
B
is affirmed we single out for comment the following three :

(1) 4 must be affirmed. Then the content of B is completely immaterial. For
example, let | —A stand for 3 x 7 = 21 and B for the circumstance that the sun is
shining. Then only the first two of the four cases mentioned are possible. There need
not exist a causal connection between the two contents.

(2) B has to be denied. Then the content of A is immaterial. For example, let B
stand for the circumstance that perpetual motion is possible and A for the circum-
stance that the world is infinite. Then only the second and fourth of the four cases are
possible. There need not exist a causal connection between 4 and B.

(3) We can make the judgment
I—EA
B

without knowing whether 4 and B are to be affirmed or denied. For example, let B
stand for the circumstance that the moon is in quadrature with the sun and 4 for the
circumstance that the moon appears as a semicircle. In that case we can translate

|—|:A

B

by means of the conjunction “if”: “If the moon is in quadrature with the sun, the

moon appears as a semicircle’”. The causal connection inherent in the word “if”,

however, is not expressed by our signs, even though only such a connection can pro-

vide the ground for a judgment of the kind under consideration. For causal connec-

tion is something general, and we have not yet come to express generality (see § 12).
Let us call the vertical stroke connecting the two horizontal ones the condition

stroke. The part of the upper horizontal stroke to the left of the condition stroke is the

content stroke for the meaning, just explained, of the combination of signs

A
=]
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to it is affixed any sign that is intended to relate to the total content of the expression.
The part of the horizontal stroke between A and the condition stroke is the content
stroke of A. The horizontal stroke to the left of B is the content stroke of B.
Accordingly, it is easy to see that

-

B

—1r

denies the case in which 4 is denied and B and I are affirmed. We must think of this
as having been constructed from

e,
B
and I' in the same way as
T4
B
was constructed from 4 and B. We therefore first have the denial of the case in which
T2
B
is denied and I'is affirmed. But the denial of
g
B
means that A4 is denied and B is affirmed. From this we obtain what was given above.

If a causal connection is present, we can also say “ 4 is the necessary consequence of
Band I', or “If the circumstances B and I' occur, then 4 also oceurs’’.

It is no less easy to see that
r
A
B

denies the case in which B is affirmed but A and I are denied.}? If we assume that
there exists a causal connection between A and B, we can translate the formula as
“If A is a necessary consequence of B, one can infer that I takes place”.

§ 6. The definition givenin § 5 makes it apparent that from the two judgments

I—[:é and ——2B

the new judgment
—4

12 [[There is an oversight here, already pointed out by Schrader (1 880, p. 88).]
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follows. Of the four cases enumerated above, the third is excluded by
b4
B

5.

and the second and fourth by

so that only the first remains.
We could write this inference perhaps as follows :

4
F—=a
—a.

This would become awkward if long expressions were to take the places of 4 and B,
since each of them would have to be written twice. That is why I use the following
abbreviation. To every judgment occurring in the context of a proof I assign a
number, which I write to the right of the judgment at its first occurrence. Now
assume, for example, that the judgment

L
-B|
or one containing it as a special case, has been assigned the number X. Then I write
the inference as follows:

—=B
—a.

Here it is left to the reader to put the judgment

s
B
together for himself from |—B and |——4 and to see whether he obtains the

judgment X that has been invoked or a special case thereof.
If, for example, the judgment ]—B has been assigned the number XX, I also

write the same inference as follows :
I—l: 4
B

F—a.
Here the double colon indicates that |——B, which was only referred to by XX,

would have to be formed, from the two judgments written down, in a way different
from that above.

(X):

(XX)::
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Furthermore if, say, the judgment |—1I" had been assigned the number XXX, I
would abbreviate the two judgments

H—[g

i

(XXX)::
4
B
(XX)::
—4
still more thus:
A
T
L—r
(XX, XXX)::

—A4.

Following Aristotle, we can enumerate quite a few modes of inference in logic; I
employ only this one, at least in all cases in which a new judgment is derived from
more than a single one. For, the truth contained in some other kind of inference can
be stated in one judgment, of the form: if M holds and if N holds, then A holds also,
or, in signs,

4
—N.

From this judgment, together with |—~ and |—M, there follows, as above,

A. In this way an inference in accordance with any mode of inference can be
reduced to our case. Since it is therefore possible to manage with a single mode of
inference, it is a commandment of perspicuity to do so. Otherwise there would be no
reason to stop at the Aristotelian modes of inference ; instead, one could continue to
add new ones indefinitely: from each of the judgments expressed in a formula in
§§ 13-22 we could make a particular mode of inference. With this restriction to a single
mode of inference, however, we do not intend in any way to state a psychological proposi-
tion ; we wish only to decide a question of form in the most expedient way. Some of the
judgments that take the place of Aristotelian kinds of inference will be listed in § 22
(formulas (59), (62), and (65)).

Negation

§ 7. If a short vertical stroke is attached below the content stroke, this will express
the circumstance that the content does not take place. So, for example,

F—4

means ““ 4 does not take place”. T call this short vertical stroke the negation stroke.
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The part of the horizontal stroke to the right of the negation stroke is the content
stroke of A; the part to the left of the negation stroke is the content stroke of the
negation of 4. If there is no judgment stroke, then here—as in any other place where
the ideography is used—no judgment is made.

—A4

merely calls upon us to form the idea that A does not take place, without expressing
whether this idea is true.
We now consider some cases in which the signs of conditionality and negation are

combined.
l—[ 4
B

means ““ The case in which B is to be affirmed and the negation of 4 to be denied does
not take place” ; in other words, “ The possibility of affirming both A and B does not
exist”, or *“ 4 and B exclude each other”’. Thus only the following three cases remain :

A is affirmed and B is denied ;

A is denied and B is affirmed ;
A is denied and B is denied.

In view of the preceding it is easy to state what the significance of each of the three
parts of the horizontal stroke to the left of 4 is.

|—|:_A

B

means ““The case in which 4 is denied and the negation of B is affirmed does not

obtain”, or “ 4 and B cannot both be denied . Only the following possibilities remain :
4 is affirmed and B is affirmed ;

4 is affirmed and B is denied;
A is denied and B is affirmed;

A and B together exhaust all possibilities. Now the words “or” and “either—or™
are used in two ways: ‘4 or B” means, in the first place, just the same as

A
—EBI
hence it means that no possibility other than 4 and B is thinkable. For example, if

a mass of gas is heated, its volume or its pressure increases. In the second place, the
expression ‘4 or B’ combines the meanings of both

-[g and —Eg'

so that no third is possible besides 4 and B, and, moreover, that 4 and B exclude
each other. Of the four possibilities, then, only the following two remain :

A is affirmed and B is denied ;

A is denied and B is affirmed.
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Of the two ways in which the expression “ 4 or B " is used, the first, which does not
exclude the coexistence of 4 and B, is the more important, and we shall use the word
“or* in this sense. Perhaps it is appropriate to distinguish between “or” and ‘“‘either
—or” by stipulating that only the latter shall have the secondary meaning of mutual
exclusion. We can then translate

4
s

Ths
—=

by “4 or B”. Similarly,

has the meaning of “4 or B or I'”.
by
B
means
3 —[ri is denied”’,
B

or “The case in which both 4 and B are affirmed occurs™. The three possibilities that
remained open for

-
B
are, however, excluded. Accordingly, we can translate
b
B
by “Both A and B are facts”. It is also easy to see that
T 4
fgfae
—]

can be rendered by “ 4 and B and I'’. If we want to represent in signs *“ Either 4 or
B with the secondary meaning of mutual exclusion, we must express

# —[g and —I:,:B_”

This yields
T A oralso T A
i s
A A
_Ll——B —-IIB.
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Instead of expressing the “and”, as we did here, by means of the signs of condi-
tionality and negation, we could on the other hand also represent conditionality by
means of a sign for “and’ and the sign of negation. We could introduce, say,

T4
4
as a sign for the total content of I" and 4, and then render
-
B
by

T—A
B.

I chose the other way because I felt that it enables us to express inferences more
simply. The distinetion between “and™ and “ but” is of the kind that is not expressed
in the present ideography. The speaker uses “but’ when he wants to hint that what
follows is different from what one might at first expect.

-

means ‘' Of the four possibilities the third, namely, that A is denied and Bis affirmed,
occurs . We can therefore translate it as *“ B takes place and (but) 4 does not”.
We can translate the combination of signs

i
s

means ‘‘ The case in which both 4 and B are denied occurs’. Hence we can translate
it as “Neither 4 nor B is a fact”. What has been said here about the words “or”,
“and”, and “neither —nor™ applies, of course, only when they connect contents that
can become judgments.

by the same words.

Identity of content

§ 8. Identity of content differs from conditionality and negation in that it applies
to names and not to contents. Whereas in other contexts signs are merely representa-
tives of their content, so that every combination into which they enter expresses only
a relation between their respective contents, they suddenly display their own selves
when they are combined by means of the sign for identity of content ; for it expresses
the circumstance that two names have the same content. Hence the introduction of a
sign for identity of content necessarily produces a bifurcation in the meaning of all
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signs : they stand at times for their content, at times for themselves. At first we have
the impression that what we are dealing with pertains merely to the expression and
not to the thought, that we do not need different signs at all for the same content and
hence no sign whatsoever for identity of content. To show that this is an empty
illusion I take the following example from geometry. Assume that on the circumfer-
ence of a circle there is a fixed point 4 about which a ray revolves. When this ray
passes through the center of the circle, we call the other point at which it intersects
the circle the point B associated with this position of the ray. The point of inter-
section, other than A4, of the ray and the circumference will then be called the point
B associated with the position of the ray at any time; this point is such that con-
tinuous variations in its position must always correspond to continuous variations in
the position of the ray. Hence the name B denotes something indeterminate so long
as the corresponding position of the ray has not been specified. We can now ask:
what point is associated with the position of the ray when it is perpendicular to the
diameter? The answer will be : the point A. In this case, therefore, the name B has the
same content as has the name 4 ; and yet we could not have used only one name from
the beginning, since the justification for that is given only by the answer. One point is
determined in two ways: (1) immediately through intuition and (2) as a point B
associated with the ray perpendicular to the diameter.

To each of these ways of determining the point there corresponds a particular
name. Hence the need for a sign for identity of content rests upon the following
consideration : the same content can be completely determined in different ways; but
that in a particular case two ways of determining it really yield the same result is the
content of a judgment. Before this judgment can be made, two distinet names,
corresponding to the two ways of determining the content, must be assigned to what
these ways determine. The judgment, however, requires for its expression a sign for
identity of content, a sign that connects these two names. From this it follows that
the existence of different names for the same content is not always merely an irrele-
vant question of form ; rather, that there are such names is the very heart of the matter
if each is associated with a different way of determining the content. In that case the
judgment that has the identity of content as its object is synthetic, in the Kantian
sense. A more extrinsic reason for the introduction of a sign for identity of content
is that it is at times expedient to introduce an abbreviation for a lengthy expression.
Then we must express the identity of content that obtains between the abbreviation
and the original form.

Now let

—4 =5

mean that the sign A and the sign B have the same conceptual content, so that we can
everywhere put B for A and conversely.

Functions

§9. Let us assume that the circumstance that hydrogen is lighter than carbon
dioxide is expressed in our formula language; we can then replace the sign for hydro-
gen by the sign for oxygen or that for nitrogen. This changes the meaning in such a
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way that “oxygen” or “nitrogen” enters into the relations in which ‘“hydrogen”
stood before. If we imagine that an expression can thus be altered, it decomposes
into a stable component, representing the totality of relations, and the sign, regarded
as replaceable by others, that denotes the object standing in these relations. The
former component I call a function, the latter its argument. The distinction has
nothing to do with the conceptual content ; it comes about only because we view the
expression in a particular way. According to the conception sketched above, *“hydro-
gen” is the argument and * being lighter than carbon dioxide’’ the function ; but we
can also conceive of the same conceptual content in such a way that “ carbon dioxide™
becomes the argument and ‘‘being heavier than hydrogen™ the function. We then
need only regard ““carbon dioxide” as replaceable by other ideas, such as “hydro-
chloric acid” or “"ammonia™.

“The circumstance that carbon dioxide is heavier than hydrogen” and “The
circumstance that carbon dioxide is heavier than oxygen” are the same function with
different arguments if we regard “hydrogen” and “oxygen” as arguments; on the
other hand, they are different functions of the same argument if we regard *‘ carbon
dioxide’ as the argument.

To consider another example, take “The circumstance that the center of mass of
the solar system has no acceleration if internal forces alone act on the solar system”.
Here “solar system” occurs in two places. Hence we can consider this as a function
of the argument ‘‘solar system” in various ways, according as we think of *‘solar
system” as replaceable by something else at its first occurrence, at its second, or at
both (but then in both places by the same thing). These three functions are all differ-
ent. The situation is the same for the proposition that Cato killed Cato. If we here
think of “Cato” as replaceable at its first occurrence, “to kill Cato™ is the function;
if we think of “Cato” as replaceable at its second occurrence, **to be killed by Cato™
is the function ; if, finally, we think of “Cato™ as replaceable at both occurrences,
“t0 kill oneself” is the function.

We now express the matter generally.

If in an expression, whose content need not be capable of becoming a judgment, a simple
or a compound sign has one or more occurrences and if we regard that sign as replaceable
in all or some of these occurrences by something else (but everywhere by the same thing),
then we call the part that remains invariant in the expression a function, and the replace-
able part the argument of the function.

Since, accordingly, something can be an argument and also occur in the function
at places where it is not considered replaceable, we distinguish in the function
between the argument places and the others.

Let us warn here against a false impression that is very easily occasioned by
linguistic usage. If we compare the two propositions “The number 20 can be repre-
sented as the sum of four squares” and * Every positive integer can be represented
as the sum of four squares”, it seems to be possible to regard “ being representable
as the sum of four squares” as a function that in one case has the argument “the
number 20" and in the other “every positive integer”. We see that this view is
mistaken if we observe that ‘the number 20> and “every positive integer” are not
concepts of the same rank [[gleichen Ranges]. What is asserted of the number 20 can-
not be asserted in the same sense of “‘every positive integer”, though under certain
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circumstances it can be asserted of every positive integer. The expression “‘every
positive integer’’ does not, as does “the number 20", by itself yield an independent
idea but acquires a meaning only from the context of the sentence.

For us the fact that there are various ways in which the same conceptual content
can be regarded as a function of this or that argument has no importance so long as
function and argument are completely determinate. But, if the argument becomes
indeterminate, as in the judgment “* You can take as argument of ‘being representable
as the sum of four squares’ an arbitrary positive integer, and the proposition will
always be true”, then the distinction between function and argument takes on a
substantive [[inhaltliche]| significance. On the other hand, it may also be that the
argument is determinate and the function indeterminate. In both cases, through the
opposition between the determinate and the indeterminate or that between the more
and the less determinate, the whole is decomposed into function and argument
according to its content and not merely according to the point of view adopted.

If, given a function, we think of a sign*® that was hitherto regarded as not replaceable
as being replaceable at some or all of its occurrences, then by adopting this conception we
obtain a function that has a new argument in addition to those it had before. This pro-
cedure yields functions of two or more arguments. So, for example, “The circumstance
that hydrogen is lighter than carbon dioxide™ can be regarded as function of the two
arguments ‘ hydrogen” and ““carbon dioxide”.

In the mind of the speaker the subject is ordinarily the main argument ; the next
in importance often appears as object. Through the choice between [grammatical]]
forms, such as active—passive, or between words, such as ‘‘heavier ’—*lighter” and
“ give”—“receive”, ordinary language is free to allow this or that component of the
sentence to appear as main argument at will, a freedom that, however, is restricted by
the scarcity of words.

§ 10. In order to express an indeterminate function of the argument A, we write 4,
enclosed in parentheses, to the right of a letter, for example

D(4).

Likewise,

¥(4, B)
means a function of the two arguments A and B that is not determined any further. Here
the occurrences of A and B in the parentheses represent the occurrences of A and B in the
function, irrespective of whether these are single or multiple for 4 or for B. Hence m
general

Y(4, B)
differs from

Y(B, A).

Indeterminate functions of more arguments are expressed in a corresponding way.
We can read

F—o4)

13 We can now regard a sign that previously was considered replaceable [[in some places]| as
replaceable also in those places in which up to this point it was considered fixed.
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as ‘A has the property @,
|—¥, B)

can be translated by “ B stands in the relation ¥ to A” or “ B is a result of an
application of the procedure ¥ to the object A",

Since the sign @ occurs in the expression @(4) and since we can imagine that it is
replaced by other signs, ¥ or X, which would then express other functions of the
argument A, we can also regard ®(A4) as a function of the argument ®. This shows quite
clearly that the concept of function in analysis, which in general I used as a guide, is
far more restricted than the one developed here.

Generality

§ 11. In the expression of a judgment we can always regard the combination of
signs to the right of |— as a function of one of the signs occurring in it. If we replace
this argument by a German letter and if in the content stroke we introduce a concavity
with this German letter in it, as in

e—ao(a),

this stands for the judgment that, whatever we may take for its argument, the function is a
fact. Since a letter used as a sign for a function, such as @ in @(4), can itself be
regarded as the argument of a function, its place can be taken, in the manner just
specified, by a German letter. The meaning of a German letter is subject only to the
obvious restrictions that, if a combination of signs following a content stroke can
become a judgment (§ 2), this possibility remain unaffected by such a replacement
and that, if the German letter occurs as a function sign, this circumstance be taken
into account. All other conditions to be imposed on what may be put in place of a German
letter are to be encorporated into the judgment. From such a judgment, therefore, we can
always derive an arbitrary number of judgments of less general content by substituting
each time something else for the German letter and then removing the concavity in
the content stroke. The horizontal stroke to the left of the concavity in

~e—a@(a)

is the content stroke for the circumstance that, whatever we may put in place of q,
&(a) holds; the horizontal stroke to the right of the concavity is the content stroke of
®(a), and here we must imagine that something definite has been substituted for a.

According to what we said above about the significance of the judgment stroke, it
is easy to see what an expression like

—&— X(a)

means. It can occur as a part of a judgment, like

b~e—X(@) or 4

o—~X(a).
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It is clear that from these judgments we cannot derive less general judgments by
substituting something definite for a, as we could from

F—o(a).

l"r\a/_X (a) denies that, whatever we may put in place of a, X(a) is always a fact.

This does not by any means deny that we could specify some meaning 4 for a such
that X(4) would be a fact.

4
&~ X(a)

means that the case in which —&—X(a) is affirmed and 4 is denied does not
occur. But this does not by any means deny that the case in which X(4) is affirmed
and A is denied does occur ; for, as we just saw, X (4) can be affirmed and  —&— X(a)

can still be denied. Hence we cannot put something arbitrary in place of a here either
without endangering the truth of the judgment. This explains why the concavity
with the German letter written into it is necessary : it delimits the scope [[Gebiet]) that
the generality indicated by the letter covers. The German letter retains a fixed meaning
only within its own scope; within one judgment the same German letter can oceur in
different scopes, without the meaning attributed to it in one scope extending to any

other. The scope of a German letter can include that of another, as is shown by the

example
H/—E;ﬁ(ﬂ)
¢~ B(a,e).

In that case they must be chosen different; we could not put a for e. Replacing a
German letter everywhere in its scope by some other one is, of course, permitted, so
Jong as in places where different letters initially stood different ones also stand after-
ward. This has no effect on the content. Other substitutions are permitted only if the
concavity immediately follows the judgment stroke, that is, if the content of the entire
judgment constitutes the scope of the German letter. Since, accordingly, that case is
a distinguished one, I shall introduce the following abbreviation for it. An [[italic]
Latin letter always is to have as its scope the content of the entire judgment, and this fact
need not be indicated by a concavity in the content stroke. If a Latin letter occurs
in an expression that is not preceded by a judgment stroke, the expression is meaning-
less. A Latin letter may always be replaced by a German one that does not yet occur in the
judgment ; then the concavity must be introduced immediately following the judg-
ment stroke. For example, instead of

F—X)

we can write

X

if @ occurs only in the argument places of X(a).
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It is clear also that from

o
|—|": P(a)
A

if A is an expression in which a does not occur and if a stands only in the argument places

we can derive

of ®(a).* f —L—(a) is denied, we must be able to specify a meaning for a
such that ®@(a) will be denied. If, therefore, —%— (a) were to be denied and

A to be affirmed, we would have to be able to specify a meaning for a such that 4
would be affirmed and @(a) would be denied. But on account of

}—E j"“’

we cannot do that : for this means that, whatever @ may be, the case in which ®(a) is

denied and A4 is affirmed is excluded. Therefore we cannot deny —I—®(a) and
B
4

|- ®(a)

A
——B

affirm A4 ; that is,

Likewise, from

we can deduce

F—re— o)

y: |
————
if @ does not occur in A or B and ®(a) contains a only in the argument places. This
case can be reduced to the preceding one, since

l——‘: j(a)

can be written

14 [Footnote by Jourdain (1912, p. 248):
Frege remarked [Frege, 1910] that it is correct that one can give up the distinguishing use of
Latin, German, and perhaps also of Greek letters, but at the cost of perspicuity of formulas™.]]
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& @(a)
A
B

Fr—T— )
Ty
B.

Similar considerations apply when still more condition strokes are present.
§ 12. We now consider certain combinations of signs.

b~e—x(0)

means that we could find some object, say 4, such that X(4) would be denied. We can
therefore translate it as ““There are some objects that do not have property X"

The meaning of
e X

differs from this. The formula means “ Whatever a may be, X(a) must always be
denied”’, or *“There does not exist anything having property X7, or, if we call some-
thing that has property X an X, *“There is no X i

and since we can transform

back into

—& Ala)

is denied by

"F\E/'I_ A(a).

We can therefore translate the last formula as “There are AR
HE P(a)
X(a)
means * Whatever we may put in place of a, the case in which P(a) would have to
be denied and X(a) to be affirmed does not occur”. Thus it is possible here that, for
some meanings that can be given to a, P(a) would have to be affirmed and X(a) to
be affirmed, for others P(a) would have to be affirmed and X(a) to be denied, and for
others still P(a) would have to be denied and X(a) to be denied. We could therefore
translate it as * If something has property X, it also has property P”, “Every X is a

P”,or “All X are P”.
This is the way in which causal connections are expressed.

g i

15 This must be understood in such a way as to include the case ‘““There exists one A" as well.
If, for example, A(x) means the circumstance that z is a house, then

& 4(a)

reads ** There are houses or there is at least one house''. See footnote 10.
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means ‘‘No meaning can be given to a such that both P(a) and ¥(a) could be af-
firmed”. We can therefore translate it as ‘‘What has property ¥ does not have

property P” or “No ¥isa P".
RS A
A(a)

ﬂa/‘EP{G)
Aa)
and can therefore be rendered by “Some 4 are not P”.
I-r\?/-l—_y— P(a)
M(a)
denies that no M is a P and therefore means “Some!® M are P", or “It is possible

that a M be a P”.
Thus we obtain the square of logical opposition:

W‘E" P(a) WT_I-“ P(a)
X(a) contrary X(a)

denies

& 4 £ 8

a P a P
| XEE; [[subJjcontrary ! | XEE))

II. REPRESENTATION AND DERIVATION OF SOME JUDGMENTS
OF PURE THOUGHT

§ 13. We have already introduced a number of fundamental principles of thought
in the first chapter in order to transform them into rules for the use of our signs.
These rules and the laws whose transforms they are cannot be expressed in the ideo-
graphy because they form its basis. Now in the present chapter a number of judg-
ments of pure thought for which this is possible will be represented in signs. It seems
natural to derive the more complex of these judgments from simpler ones, not in
order to make them more certain, which would be unnecessary in most cases, but in
order to make manifest the relations of the judgments to one another. Merely to know
the laws is obviously not the same as to know them together with the connections that

1% The word “'some '’ must always be understood here in such a way as to include the case “one”’
as well. More explicitly we would say ‘“‘some or at least one™’.
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some have to others. In this way we arrive at a small number of laws in which, if we
add those contained in the rules, the content of all the laws is included, albeit in an
undeveloped state. And that the deductive mode of presentation makes us acquainted
with that core is another of its advantages. Since in view of the boundless multi-
tude of laws that can be enunciated we cannot list them all, we cannot achieve com-
pleteness except by searching out those that, by their power, contain all of them.
Now it must be admitted, certainly, that the way followed here is not the only one in
which the reduction can be done. That is why not all relations between the laws of
thought are elucidated by means of the present mode of presentation. There is per-
haps another set of judgments from which, when those contained in the rules are
added, all laws of thought could likewise be deduced. Still, with the method of reduc-
tion presented here such a multitude of relations is exhibited that any other derivation
will be much facilitated thereby.

The propositions forming the core of the presentation below are nine in number.
To express three of these, formulas (1), (2), and (8), we require besides letters only
the sign of conditionality ; formulas (28), (31), and (41) contain in addition the sign
of negation ; two, formulas (52) and (54), contain that of identity of content; and in
one, formula (58), the concavity in the content stroke is used.

The derivations that follow would tire the reader if he were to retrace them in
every detail ; they serve merely to insure that the answer to any question concerning
the derivation of a law is at hand.

§14. |__]:a,
b
a

(1)
says ‘‘The case in which a is denied, b is affirmed, and a is affirmed is excluded”. This
is evident, since a cannot at the same time be denied and affirmed. We can also express
the judgment in words thus, “If a proposition a holds, then it also holds in case an
arbitrary proposition b holds”. Let a, for example, stand for the proposition that the
sum of the angles of the triangle 4 BC is two right angles, and b for the proposition
that the angle 4 BC is a right angle. Then we obtain the judgment “If the sum of the
angles of the triangle 4 BC is two right angles, this also holds in case the angle ABC
is a right angle”.
The (1) to the right of

I_—EE

is the number of this formula.

c (2)
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means “‘The case in which

is denied and

is affirmed does not take place”.
But

c
means the circumstance that the case in which a is denied, b is affirmed, and ¢ is
affirmed is excluded. The denial of

L b
c
says that a is denied and p is affirmed. But the denial of
L, =
—Ea means that a is denied and ¢ is affirmed. Thus the denial of
¢

T s
i

means that a is denied, ¢ is affirmed, and —[: b 1is affirmed. But the affirmation
¢

of p and that of ¢ entails the affirmation of b. That is why the denial of
L.
T,
c
T
¢

has as a consequence the denial of @ and the affirmation of b and c. Precisely this case
is excluded by the affirmation of
— a
(L,
—c.

Thus the case in which

L,
L,
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is denied and oy
— a L 2
c WS
is affirmed cannot take place, and that is what the judgment % ol ;v [
1 &£ \ Il {1{-\ e
LI a A%
L ¢ ii""r :

b i LL “ ) .
E ¢ Ga LiaLioTEC?

:H{ i I:ﬁ‘ol /
a S DE MOP
Cy
c

asserts. For the case in which causal connections are present, we can also express this
as follows: “If a proposition a is a necessary consequence of two propositions b and

¢, that is, if
—Ea
b

c'
and if one of these, b, is in turn a necessary consequence of the other, ¢, then the
proposition a is a necessary consequence of this latter one, ¢, alone™.

For example, let ¢ mean that in a sequence Z of numbers every successor term is
greater than its predecessor, let b mean that a term M is greater than L, and let a
mean that the term N is greater than L. Then we obtain the following judgment:
“If from the propositions that in the number sequence Z every successor term is
greater than its predecessor and that the term M is greater than L it can be
inferred that the term N is greater than L, and if from the proposition that in the
number sequence Z every successor term is greater than its predecessor it follows that
M is greater than L, then the proposition that NN is greater than L can be inferred from
the proposition that every successor term in the number sequence Z is greater than
its predecessor ™.

§ 15. I o
2 3 Y (g
5
—Ec
C,
[
(1):

[
a a
‘—b l—b
¢ ¢
b a

b L_—b (3).
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The 2 on the left indicates that formula (2) stands to its right. The inference that
(1) to (3) is expressed by an abbreviation in
accordance with § 6. In full it would be written as follows:

brings about the transition from (2) and

I
g
C,

a
b
c

—

The small table under the (1) serves to make proposition (1) more easily recogniz-
able in the more complicated form it takes here. It states that in

I_

T,
a
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we are to put
a
]
i
¢
a
b
¢
in place of @ and
a
] e
in place of b.
| a
3 o I
g
c
a
g
c
e
b
(2):
a | — a ! a
e .
b b
- g
b | — a a
b b
c a
c a |— b
b ¢
a
b

The table under the (2) means that in

33

(4).
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we are to put in place of @, b, and c, respectively, the expressions standing to the right

of them ; as a result we obtain

-

La
b
! ¢
—
b.

We readily see how (4) follows from this and (3).
I
I

(1)::

T ¢

ble

The significance of the double colon is explained in § 6.

(5).
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Example for (5). Let a be the circumstance that the piece of iron E becomes
magnetized, b the circumstance that a galvanic current flows through the wire D, and
¢ the circumstance that the key 7' is depressed. We then obtain the judgment: “If
the proposition holds that E becomes magnetized as soon as a galvanic current flows
through D and if the proposition holds that a galvanic current flows through D as
soon as T is depressed, then E becomes magnetized if 7' is depressed ™.

If causal connections are assumed, (5) can be expressed thus: “If b is a sufficient
condition for a and if ¢ is a sufficient condition for b, then ¢ is a sufficient condition for

1]

@

5 1 -
|

cld L:
|

@

b

(6):

a|— a I a
d L—d

b b

d d

¢
a

b a Lb

_I:b c (6).

i a
5 : L‘G
b
_Ec
a
b
(6):

a a I_ @
i L.
[,
b ) b
_Ec I—;

p a @ (7).
i b
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This proposition differs from (5) only in that instead of one condition, ¢, we now have
two, ¢ and d.

Example for (7). Let d mean the circumstance that the piston K of an air pump is
moved from its leftmost position to its rightmost position, ¢ the circumstance that
the valve H is in position I, b the circumstance that the density D of the air in the
eylinder of the air pump is reduced by half, and a the circumstance that the height H
of a barometer connected to the inside of the cylinder decreases by half. Then we
obtain the judgment: ‘' If the proposition holds that the height H of the barometer
decreases by half as soon as the density D of the air is reduced by half, and if the
proposition holds that the density D of the air is reduced by half if the piston K is
moved from the leftmost to the rightmost position and if the valve is in position I,
then it follows that the height H of the barometer decreases by half if the piston K is
moved from the leftmost to the rightmost position while the valve H is in position
i

§ 16.

=
d

L _.d (8).

means that the case in which a is denied but b and d are affirmed does not take place;

— a
=
! b

means the same, and (8) says that the case in which

TLC,
h——
T
d

is affirmed is excluded. This can also be expressed thus: “If two conditions have a
proposition as a consequence, their order is immaterial .
1

5 I L:
T
s

is denied and

(8):
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a

| BNy
. T
ol =L!

This proposition differs from (5) only in an unessential way.

8 } b
]

alb l__d

b e e

b

==

L d

e =,

—d b

ble I
(9):

b b I—‘——Eﬂ‘r

i 5

a

c

37

(9)-

p "l\‘/’:
\?{ r \‘;“
V= = |
G
TS xj_,
-‘.....l. el
=~y e -
‘\;h':h_;?
(ﬁA,;:(W;'! HOTE N
S DE MC
(10).
(11).

We can translate this formula thus: “If the proposition that b takes place or ¢ does
not is a sufficient condition for @, then b is by itself a sufficient condition for a™.

8 o a
L

d|ec

—b

a

b
c




a
(15
——b
b | — a
b

c

L—b

L —4d

a
L
c

d

(12).

Propositions (12)-(17) and (22) show how, when there are several conditions, their

order can be changed.

12

-

(12)
a —Ea
c
cld
a
s
c
d
(5):
a La
¢
——d
L —————b
b \_a
b
¢
d
cle

(13).

(14).
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(16) :

[

¢
d

—c
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.

-

L e

b

a
L
¢
d

==

39

(15).

(16).



L (19).
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This proposition differs from (7) only in an unessential way.

1

19 I a

L e

L ——d

-

b

b

| e

———d

(18):
al| — a I a
—[c l—c
d L——d
b a L—e ‘_
b a
e | — b b
¢ b
—d L—c
dle L—d
- e (20).

9 L

b ! I_b
@ d
- b
¢ s
ol —T
d

(19):

o
a8, o

=T
o o R

d @
b
Ed (21).




23).
S
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1 } e e
a a Cc
—Ec __b
——Ea
[+]
(12):
ble 1 a
; ] : l—b
a —_—
T ¢
l:c (24)
(5):
1
al| — @ l__:
b ¢
b a ’ d
e s
cld d (25).
1 l.._ a
b
a
(8):
dla F_ | *
a
L——b (28).
2 a
& 25 T
e s
a b
a
(L)

l_l:: (7).
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We cannot (at the same time) affirm ¢ and deny a.

§17. |——[,': b
@
L a

L b (28)

means: ‘' The case in which b is denied and a is affirmed does not take
% b

place”. The denial of tb means that —— a is affirmed and —— b is denied,
a

that is, that a is denied and b is affirmed. This case is excluded by —E a. This

b
judgment justifies the transition from modus ponens to modus tollens. For example,
let b mean the proposition that the man M is alive, and a the proposition that M
breathes. Then we have the judgment: “If from the circumstance that M is alive his
breathing can be inferred, then from the circumstance that he does not breathe his
death can be inferred”.

28 I——[::z
Tz

(5):

“Irr L

b ¢
g

L,

c

(29).

If b and ¢ together form a sufficient condition for a, then from the affirmation of one
condition, ¢, and that of the negation of a[[that of ]| the negation of the other condition

can be inferred.
29 i_ —b
Ly

(10):

c

® R, o
ool
o

——ih (30).
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§18. .
}—;a

T @ means the denial of the denial, hence the affirmation of a. Thus a cannot be

(31).

denied and (at the same time) -ra affirmed. Duplex negatio affirmat. The denial

of the denial is affirmation.
31 I._l; b
al|b b

(7);

al|b i L,— b
b|-rbd a
c|Ta (;
d a
a
; @
l; b (32).
(28)::
b| b b
a
a
4 (33).
If @ or b takes place, then b or a takes place.
33 = b
_L‘__a
a
b
(5):
|
a b b
_E a Lr-a
b a el
b a
b
, c (34).

If as a consequence of the occurrence of the circumstance c, when the obstacle b is



46 FREGE

removed, a takes place, then from the circumstance that @ does not take place while ¢
oceurs the occurrence of the obstacle b can be inferred.

34 | b

-

c

s
c

(12):
alb Er b
b —|—G |—G
d ——['—:a r—&
b a
LT, L3
c (35).
1 |— a
bl —b b
a@
(34) :
I
cla I Ll_b
a
a (36).

The case in which b is denied, ——a is affirmed, and a is affirmed does not occur.
We can express this as follows: “If a occurs, then one of the two, a or b, takes place”.

36
s 2

c

o g T

T

If a is a necessary consequence of the occurrence of b or ¢, then a is a necessary
consequence of ¢ alone. For example, let b mean the circumstance that the first factor
of a product P is 0, ¢ the circumstance that the second factor of P is 0, and a the
circumstance that the product P is 0. Then we have the judgment: “If the product
P is 0 in case the first or the second factor is 0, then from the vanishing of the second
factor the vanishing of the product can be inferred”.

oK O R

(37).
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(35) :
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I,_

=

a

e,

=]

The affirmation of @ denies the denial of a.

27

(41):

%

g

(40) :

b
| T2

e
s
=

47

(38).

(39).

(40).

(41).

(42).

(43).

If there is a choice only between a and a, then a takes place. For example, we have

to distinguish two cases that betwe

the second. Then the proposition a holds.

a
a
a

43

(21):

en them exhaust all possibilities. In following the

first, we arrive at the result that a takes place ; the same result holds when we follow
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bla I— a
d -T—a _%a
¢
¢
Eﬂ (44).
(5):
a a } a
- i
c c
b ¢ a
—Ea CC
¢ a ¢
Ec L!‘“
a
—L—I":" (45).
(33)::
ble l— a
a
Ec
a
Eﬁ (48).

If a holds when ¢ occurs as well as when ¢ does not occur, then a holds. Another way
of expressing it is: “If @ or ¢ occurs and if the occurrence of ¢ has a as a necessary
consequence, then a takes place”.

46 |_

]

o o P O R R

LE
L —T
l: 7).

We can express this proposition thus: “If ¢, as well as b, is a sufficient condition for a
and if b or ¢ takes place, then the proposition @ holds”. This judgment is used when
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two cases are to be distinguished in a proof. When more cases occur, we can always
reduce them to two by taking one of the cases as the first and the totality of the others
as the second. The latter can in turn be broken down into two cases, and this can be

continued so long as further decomposition is possible.

47 I | a
a
c
'—EG
b
b
l:c
(23):

b
=t
ol
d b
T

el|ld

Ca
T
C,
I
—d

(48).

If d is a sufficient condition for the occurrence of b or ¢ and if b, as well as ¢, is a
sufficient condition for @, then d is a sufficient condition for a. An example of an

application is furnished by the derivation of formula (101).

T

oo R O R R

47
(12):
b a
gy
c a

——

-
T
=
=
—T

LT~ L T ~ T~ L ~ N~

(17) :

(49).



b a | a
b ' Ll: b
¢ a 4
L, —="
b
d b | a
—I: c = ¢ (50).
(18):
a a } a
% b L‘: b
¢ ¢
b a d
: b
¢ a
—|: @ |_ :‘
L3 (51).
§20. R
[ Lo
(c =d) (52).

The case in which the content of ¢ is identical with the content of d and in which f(c)
is affirmed and f(d) is denied does not take place. This proposition means that, if
¢ = d, we could everywhere put d for c. In f(c), ¢ can also occur in other than the
argument places. Hence ¢ may still be contained in f(d).

52 7@
[ L e
——(c=d)
(8):
a | f(d) f@)
| 7o A
d|(c=d) fle) (53).
§ 21. | ) (54).
The content of ¢ is identical with the content of c.
o F—e=9

(53):
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flA)| (A =¢) (d=c¢)
(c=4d) (55).
(9):
b (d = c) i f(c)
c| (c= d} ' L f(d)
@ (c) (c = d)
- f(d) - fle)
f(d)
L——(d = ¢) (56).
(52) s
d|e 17
: =
- (c =d) (57).
22;
’ f(e)
&~ fla) (58).

~%~ f(a) means that f(a) takes place, whatever we may understand by a. If therefore

~&~ f(a) is affirmed, f(c) cannot be denied. This is what our proposition expresses.

Here a can occur only in the argument places of f, since in the judgment this function

also occurs outside the scope of a.

58 Py f(?,}
A ) g(b)
1@ Lg(a) o f(a)
g(a)

(30):
a| f(b) t r— f(a)
Z g(b) VEQ(aJ
—v—E" fla) —— f(b)

g(a) g(b) (59).

an an ostrich, that is, an individual animal belonging to the

“ 4 is a bird”, and let f(A) mean “4 can fly”. Then we have
then it can be inferred from

Example. Let b me

species, let g(4) mean
the judgment “If this ostrich is & bird and cannot fly,

this that some!” birds cannot fly”.

17 See footnote 16.
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We see how this judgment replaces one mode of inference, namely, Felapton or
Fesapo, between which we do not distinguish here since no subject has been singled

out,

58
f4) | — f(4)
_E g(4)

(12):

f(®)
g(b)
h(b)

R o o R

58

(9):
b| ()

¢ [ ——fla)

d | e f(a)
-

f(b)
=

& f(a)

(60).

(61).

(62).

This judgment replaces the mode of inference Barbara when the minor premiss, g(x),

has a particular content.



62
(24) :
a f(z)
r— f(a)
g(a)
¢ | 9(=)
b|lm
62
(18):
a| fz)
b \/—E“ f(a)
g(a)
¢ | g()
d | h(y)
64
y x
(61):

A (4)
f(4) '—1:!;‘(14)

BEGRIFFSSCHRIFT

| f@)
f(a)
g(a)
g(z)

4

f(=z)
Iﬂ/—‘: f(a)
g(a)

g9(z)

z f(a)

_._
fﬂ

b N 38 e

2288

jn
2=
2888

53

(63).

(64).

(65).
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Here a occurs in two scopes, but this does not indicate any particular relation between
them. In one of these scopes we could also write, say, e instead of a. This judgment
replaces the mode of inference Barbara when the minor premiss

has a general content. The reader who has familiarized himself with the way deriva-
tions are carried out in the ideography will be in a position to derive also the judg-
ments that answer to the other modes of inference. These should suffice as examples

here.
65 | flz)
: I— h(z)
. fla)
gla)
% g(a)
h(a)

(8):

| T T T
bl fla) - g(a)
V—ESF(Q) h(a)

d| e g(a) ——v—E“ f(a)
V_]: h(a) (a)

(66).
58 fle)
%
(7):
al f() '.'— fe)
b | —%—f(a) Ls
c L——[(—&—f(a)) = b]
d | [(—2—f(a)) = b] O fla)
3
(67)::

f4)] 4 I———Ef(c)
¢ | —E—fla) b
b — [(——f(a)) = b]

(68).
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III. SOME TOPICS FROM A GENERAL THEORY OF SEQUENCES

§ 23. The derivations that follow are intended to give a general idea of the way in
which our ideography is handled, even if they are perhaps not sufficient to demon-
strate its full utility. This utility would become clear only when more involved
propositions are considered. Through the present example, moreover, we see how
pure thought, irrespective of any content given by the senses or even by an intuition
a priori, can, solely from the content that results from its own constitution, bring
forth judgments that at first sight appear to be possible only on the basis of some
intuition. This can be compared with condensation, through which it is possible to
transform the air that to a child’s consciousness appears as nothing into a visible fluid
that forms drops. The propositions about sequences developed in what follows far
surpass in generality all those that can be derived from any intuition of sequences.
If, therefore, one were to consider it more appropriate to use an intuitive idea of
sequence as a basis, he should not forget that the propositions thus obtained, which
might perhaps have the same wording as those given here, would still state far less
than these, since they would hold only in the domain of precisely that intuition upon
which they were based.

§24. Up e F(a) 8§ F(o)
| ‘ Eﬂb,u) =|(
F(b) a f(8,a)

This proposition differs from the judgments considered up to now in that it contains
signs that have not been defined before ; it itself gives the definition. It does not say
“The right side of the equation has the same content as the left”, but “It is to have
the same content”. Hence this proposition is not a judgment, and consequently not
a synthetic judgment either, to use the Kantian expression. I point this out because
Kant considers all judgments of mathematics to be synthetic. If now (69) were a
synthetic judgment, so would be the propositions derived from it. But we can do
without the notation introduced by this proposition and hence without the proposi-
tion itself as its definition ; nothing follows from the proposition that could not also
be inferred without it. Our sole purpose in introducing such definitions is to bring
about an extrinsic simplification by stipulating an abbreviation. They serve besides
to emphasize a particular combination of signs in the multitude of possible ones, so
that our faculty of representation can get a firmer grasp of it. Now, even though
the simplification mentioned is hardly noticeable in the case of the small number
of judgments cited here, I nevertheless included this formula for the sake of the
example.

Although originally (69) is not a judgment, it is immediately transformed into one;
for, once the meaning of the new signs is specified, it must remain fixed, and therefore
formula (69) also holds as a judgment, but as an analytic one, since it only makes
apparent again what was put into the new signs. This dual character of the formula
is indicated by the use of a double judgment stroke. So far as the derivations that
follow are concerned, (69) can therefore be treated like an ordinary judgment.

(69).
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Lower-case Greek letters, which occur here for the first time, do not represent an inde-
pendent content, as do German and Latin ones. The only thing we have to observe is
whether they are identical or different ; hence we can put arbitrary lower-case Greek
letters for « and §, provided only that places previously occupied by identical letters
are again occupied by identical ones and that different letters are not replaced by
identical ones. Whether Greek letters are identical or different, however, is of significance
only within, the formula for which they were especially introduced, as they were here for

3 Fla)

K

o« J(8, ).

Their purpose is to enable us to reconstruct unambiguously at any time from the abbrevi-
ated form

o
o f(8= “)
the full one,
b a F(ﬂ}
‘ Ef (b, a)
F(b).
For example,
(o
) f(ss )
means the expression
b a F(G)
‘ E f(a,b)
F(b),
whereas
| G
) £(3, a)

has no meaning. We see that the complete expression, no matter how involved the
functions F and f may be, can always be retrieved with certainty, except for the
arbitrary choice of German letters.

(T, 4)
can be rendered by “4 is a result of an application of the procedure f to I'”’, by “I"
is the object of an application of the procedure f, with the result 4", by “4 bears the
relation f to I'”", or by “I" bears the converse relation of f to 4" ; these expressions
are to be taken as equivalent.

)

K

o f(8, «)
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can be translated by ““the circumstance that property F is hereditary in the f-sequence
Tsich in der f-Reihe vererbt]”. Perhaps the following example can make this expres-
sion acceptable. Let A(M, N) mean the circumstance that N is a child of M, and
Z(P) the circumstance that P is a human being. Then

§ Z(a) ] g Z(a)

| ( or \ E A, a)

a A8, a) Z(d)
is the circumstance that every child of a human being is in turn a human being, or
that the property of being human is hereditary.'® We see, incidentally, that it can
become difficult and even impossible to give a rendering in words if very involved
functions take the places of ¥ and f. Proposition (69) could be expressed in words as
follows :

If from the proposition that b has property F it can be inferred generally, whatever d

may be, that every result of an application of the procedure f to b has property F, then I
say: *“ Property F is hereditary in the f-sequence”.

§ 25. x"r’—v—'l:" F(a) 3 Fla
[ f{b,ﬂllsl( el

68 Fo) | o f(5.a)
(68) :
albd a
ry| ——o—F( H [ | vl
f(r) W—Eﬂ?}’ . f(z, a)
L D) F(x)
T(F{a) 3 Fla)
5 . -
a f(5, a) a f(8, «) (70).
clx
(19) :
b| F(a) 3 F(y)
Lt Lty
¢ | F(z) F(z)
8 Fla) 8 F(a)
i L
olc(f (8, «) l(f (8, )
a F(y) F(y)
—Ef(x, Y) f(=,9)
&r— Fl(a)
£ L
(58)::

18 [In the German text the formulas contain two misprints: at the extreme left *§" and the
“ o' below it are interchanged, and, instead of ** A(b,a)", the second formula contains ** A(d,a)".]]
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f(r) —l:f({:c,)r')

c|\y
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HT1T

F(y)
flx, y)
F(z)
8 Fla)

@ f(3, a)

(72).

If property F is hereditary in the f-sequence, if x has property F, and if y is a result

of an application of the procedure f to x, then y has property F.

72

(2):
a F(y)
L flz, y)
b| F(x)
c| 8, Fla)

u(f(s, «)

72

(8):

T

F(y)
f(xs y)
F(z)

8 Fl(a)

@' f(3,«)

F(y)
Lf(z‘ )

8, Fa)
(f(& «)

[+4

L F(x)
8 Fl(a)
[

a ' f(8, )

L

F(y)
flz, y)
F(z)
5 Fla)

o:(f(S, o)

1—

F(y)
LJ’ (@, ¥)

& Fle)

ﬂ(fls. )
F(z)

(73).

(74).
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If x has a property F that is hereditary in the f-sequence, then every result of an
application of the procedure f to x has property F.

69 b a Fl(a) 3 Fl(a)
‘ Ef(b. a)|=|(
Fo) | o f(8«)
(52):
¢| &r&r— Fla) ? Fe)
J(b,) o f(8,@)
F(b) b () : &
3 T( F(a) f(b, Cl) (.;Mﬂf::;.‘llll..III‘II_'(H\,%‘
o' f(8, a) F(b)
s\ r (75).

If from the proposition that d has property F, whatever b may be, it can be inferred
that every result of an application of the procedure [ to b has property B, then property F
is hereditary in the f-sequence.

§26. = =
3 Fy
S F(a)
f(z! ﬂ.} Y
I § Fle | = B‘f (2, Yg)
L tL(f (8, «)
i 2 ) (16),

This is the definition of the combination of signs on the right, % f(z,, ys). I refer the

reader to § 24 for the use of the double judgment stroke and Greek letters. It would
not do to write merely

gﬂx. 9)

instead of the expression above since, when a function of z and y is fully written out,
these letters could still appear outside of the argument places ; in that case we should
not be able to tell which places were to be regarded as argument places, Hence these
must be characterized as such. This is done here by means of the subscripts y and g,
These must be chosen different since it is possible that the two arguments may be
identical with each other. We use Greek letters for this, so that we have & certain
freedom of choice and thus can choose the symbols for the argument places of the
enclosed expression different from those [used for the argument places] of the
enclosing expression in ease

%f(zw yﬁ’
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should enclose within itself a similarly constructed expression. Whether Greek letters
are identical or different is of significance here only within the expression

%f(xv' ys);

outside, the same letters could be used, and this would not indicate any connection
with the oceurrences inside.
We translate

%ﬂ%mﬂ

by “‘y follows z in the f-sequence”, a way of speaking that, to be sure, is possible
only when the function f is determined. Accordingly, (76) can be rendered in words
somewhat as follows:

If from the two propositions that every result of an application of the procedure f to x
has property F and that property F is hereditary in the f-sequence, it can be inferred,
whatever F may be, that y has property F, then I say: **y follows x in the f-sequence™, or
“x precedes y in the f-sequence”.'®

§ 27. A _ -
& F(y)
= & — B(a)
= e |=5lew
L ¢|t(f[8, a) J
(68) :
a|® I F(y)
S| — I'(y) L\“/—EF(R)
—% I'(a) J(z, a)
f(z,q) 8 Fla)
8 I'(a) —]
P o
o JA% = f(@y,
b %f(xvs yg} ﬂ yﬂ)
c|F (77).

Here F(y), F(a), and F(«) must be regarded, in accordance with § 10, as different
functions of the argument F. (77) means:
If y follows x in the f-sequence, if property F is hereditary in the f-sequence, and if
every result of an application of the procedure f to x has property F, then y has property F.
10 Ty make clearer the generality of the coneept, given hereby, of succession in a sequence, I
remind the reader of a number of possibilities, Not only juxtaposition, such as pearls on a string

exhibit, is subsumed here, but also branching like that of a family tree, merging of several branches,
and ringlike self-linking.




77

¢ o[:(fw.a)
d g".ﬁxwyﬂ)

a F(y)
—|: :g’f{zw yﬁ)

¢
£ (f(si «)
(5):
al| — F(y)
= 5 I s

e f(8, )

b|nd F(a)
18’ (2, a)

Fl(a)

alz(f(ﬁ, )

c| F(x)

(74) ::

BEGRIFFSSCHRIFT 61

F(y)
l\“/—EF[a)

f(z, a)

3, Flx)

fL(f[S, «)
% f(xr: y.ﬂ)

F(y)
I_Zf(xh yﬂ)
\ B
> F(a)
f(z, a)
8  F(a)

F(y)

L 'E’f(xp y.ﬂ)

(F{&)
a\f(8, a)

o f(3, @) (79).

F(y)

L2 st 90

e\ 16, a)
F(z)

) F(a)

V—Ef(-'r. a)
o' f(38, «)

F(x)

(80).
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F(y)
[_ “E"f(zr- Yp)

3  F(a)

a ( f(8, a)
L F(z) (81).

yla

Since in (74) y occurs only in

the concavity can, according to § 11, immediately precede this expression, provided
y is replaced by the German letter a. We can translate (81) thus:

If « has a property F that is hereditary in the f-sequence, and if y follows x in the
[f-sequence, then y has property F.2°

For example, let F' be the property of being a heap of beans; let f be the procedure
of removing one bean from a heap of beans; so that f(a, b) means the circumstance
that b contains all beans of the heap a except one and does not contain anything else.
Then by means of our proposition we would arrive at the result that a single bean,
or even none at all, is a heap of beans if the property of being a heap of beans is
hereditary in the f-sequence. This is not the case in general, however, since there are
certain z for which F(z) cannot become a judgment on account of the indeterminate-
ness of the notion “heap”.

81 } F(y)
2 fa
8 (F(a)
' f(8,a)
L F(z)
(18):
a F(y) I— F(y)
L2t L2 2,0 )
B B
8, Fla) a
b
a( f(8, «) 3 F(a)
c| Fz) t=t(.f(3. a)

dla F
| a(x) (82).

20 Bernoulli’s induction rests upon this. [Jakob Bernoulli is considered one of the originators
of mathematical induction, which he used from 1686 on (see Bernoulli 1686).])
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82 9(y)
F(I) g(I') h(y)
D) 2 e 0

h(x)

a | h(z)

gle)
h(a)
@ f (8, “)
g(x)
h(z)
h(z)

(36) ::
10 [t

—_— ‘E‘f(xw Ys)

h(z)

B |

a| f(8,a) (83).

-+

81 t F(y)
%f(x'r! yﬂ)
8, F(x)

—_

a f(8,a)
F(x)

(8):

F F
.B y ya) B f(xr’ yﬂ)

) T ( F(a) F(z)
2 15, ) __—3(.5'(«)

d|Fz) @' f(8,a) S

F(y)
Iﬂ“/—]: F(a)

flz, a)

& Fl(a)

o (f (8, a)
E’ f{mr' yﬂ)

ﬁ-

71

(12):



a| F(y)

b 2 F(a)

- [f(z, a)
8 Flx)
¢ I(

o f(8, )
d %f{xr-%)

(19):
b —[F(y)
8 Fla)
I
a f(8,«)
° % _EFEG)
f(z, q)

d *Ef(:c,, ¥s)

a| — F(z)
_Ef (¥,2)
8 Fla)

— I

@ f(3, «)

(73)::

Y|z
o B

FREGE

F(y)
8 Fla)

e f(8, a)
& F(a)

flz, a)

Z

———F ) ).

il i

F(z)
L [y, 2)
8, Fla)
o f(a: “}

S F(a)
flz, a)

Y fa,y,
ﬂf(yy)

F(z)
]—f(y. z)
5, Fla)
— |(
' f(8, a)
—I:F(yl
8 Fla)
(

«\ f(8, a) (86).

F(z)
Lf{y, z)
8 Fla)
—|(
o f(8,a)

2 F(a)

f(=, )
¥
B f(=z,, Ys) (87).

In words, the derivation of this proposition will be somewhat as follows. Assume that

(«) y follows z in the f-sequence,

(B) Every result of an application of the procedure f to z has property F, and
(y) Property F is hereditary in the f-sequence.
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From these assumptions it follows according to (85) that

(8) y has property F.
Now,

(¢) Let z be a result of an application of the procedure f to y.

Then by (72) it follows from (y), (), and (¢) that 2 has property F. Therefore,

65

If z is @ result of an application of the procedure f to an object y that follows x in the
f-sequence and if every result of an application of the procedure f to x has a property F
that is hereditary in the f-sequence, then z has this property F2

87

(15):

a| F(z)

b| fly.2)
8 F(e)

¢ a:( f(8,a)

€ ‘g“ f(2y,Yp)

§ 28. -

76 I._

(52):

21 [At the place that corresponds to the last occurrence of ** "'

mistakenly has “ F".]|

F(z)
L f(y,2)

8 F(a)

a' f(8, «)
F(a)
f(z, a)

%f(zw Ys)

—_

F(2)

L ?(F(a)

a' f(8,a)
F(a)
f(=z, q)

g—f{xw s)

f(y,2)

Sy |

F(a)
f(z,q)
8 Fla)

t!f.( S8, ul

f(xr’ yﬂ)

W=

(88).

in this sentence the German text
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fn|r | X £y )
¢ | & Ty I | B
a 8‘(0) 5 ‘_‘“_J-E 3( y}
5 F(a)
f(z, a) f, a)

3 &le)
13, 4) E) (3('1}
@ , @ .
d g"f{xr- Y5) o' f(8, o) (89).
(5):
Y L ¥
a | 1@y y5) § % [y, ¥p)
B | 4

b ¥ -
L 3 (9)
o(a) .
f(@, ) iy
5 () Jiea)
S Tle)
a'f(8, ) a(f(ﬁ, «)
c (90).
33 I_ 3 3(3‘.)22
£18 VTTQ;EEW@
i .4 f(z, a)
g(l) | f(=, I 8 Tla)
& Tle) | (
m | |( o f(8,@)
=7 —— f@)
(90) :
¢ | f(z v 5 1@nys)
J(z y) (91).

Let us give here the derivation of proposition (91) in words. From the proposition
(), “Every result of an application of the procedure f to x has property & ", it can
be inferred, whatever §§ may be, that every result of an application of the procedure
f to x has property ¥. Hence it can also be inferred from proposition («) and the
proposition that property & is hereditary in the f-sequence, whatever § may be, that
every result of an application of the procedure f to x has property .

Therefore, according to (90) the following proposition holds:

Every result of an application of a procedure f to an object x follows that x in the
[f-sequence.

22 Concerning the concavity with § see § 11. [In fact, Frege has already used the concavity
with ¥ several times, the first occurrence being in (76).])
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(53):
f(4) —E-},’m » Us)
Sz, )

c
d
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gﬂxrl Ys)
fx )

l'__[g' flzy, Ys)
flz, y)
==

(x = 2)

f(r) | L(y)

gD |

ML) | &—T
() VEf({:,)a)

o f(S, a)

)
‘ 5 (e
I

a' f(8, @)

g F(a)
f(z, a)

%f(:c,, ¥s)

()
5, Fla)

L(f(s, «)

&— §(a)
f(z, a)
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%’-fl-’cp 25)

F(z)

8  Tla)

(

a' f(8, «)
8 &(a)

[z, a)
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(92).
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[z, 25)

&(z)
8 Fla)

r!l f(8, )
a Fla)
flz, a)

o o=

L %f(xrv Ys)

d | fly.2)

(88)::

2
B

b ';"'f(xr’ yﬂ)

fl=,, z5)

d| fly,2)
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I— 'g’ﬂxn 25)
g S(®@y, yp)

U Lmz)
5 Fie
alz( (8, &)

&r— &la)
flz, a)

—————%fwwyﬂ

f(y,2) (94).

I_T[ %f(x,, 2,)
%f{z,. ¥s)

— fly, 2) (95).

I_—[ 'E‘f‘xw 24)
[y, 2)

———%prw)

(96).

Every result of an application of the procedure f to an object that follows x in the f-
sequence follows x in the f-sequence.

96
z|a

y|d

(75) :

FUUIEf@wa

: d ‘E‘ﬂxr! ag)
f(d, a)
%fuwba
8 X f(@, ap)
(&
a' f(3, a) (97).
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The property of following x in the f-sequence is hereditary in the f-sequence.
97 T(gf (@ ) 5
@ f(3, ) P )
g _ \I‘T‘-\‘.{‘é‘
(84) : o f E,‘;
. 2
F(T) ﬁf(x,. Iy) I—~[ ;,;f{x,, z) ~=-; g
”’u Sho MSH‘O\?’
ol B E‘f{yr: 2g) fis
y|z
14
B (@, ys) (98).

If y follows x in the f-sequence and if z follows y in the f-sequence, then z follows x in

the f-sequence.

§29. (z = x)
[ -
"_[ [ %f(x,, zs):\ - 'ﬂ"ﬂxrr zn)] (99).

Here 1 refer the reader to what was said about the introduction of new signs in
connection with formulas (69) and (76). Let

Y
Ef (I,, zﬂ}
be translated by ‘‘z belongs to the f-sequence beginning with «”” or by “z belongs to
the f-sequence ending with z”. Then in words (99) reads:

If z is identical with x or follows x in the f-sequence, then I say: “‘z belongs to the
f-sequence beginning with x” or “x belongs to the f-sequence ending with z”.

(z = =)
99 =L T, 2
' |[t§f(% sl =gl ’)]

(57)
L) | T H (z = z)
c (z=1x) Zf(z,, zg)
I a :
= f(zy, 2g) Y
B L Ef(x,, z4)
d %f(z,, 2) (100).

(48) :
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bl termi) = “E’f(zr- vg)
c |5/ 2 L f(z0)
Y
4|3z, 2) 3 f@y 2)
Y
L %:f(xn V) L Ff{xr’ %)
[z, v)
f(z, v) ¥
— ‘Ef(zys )
L *';“f(’-'r- vg)
f(z,v)
(z=2) (101).
(96, 92) ::
3: ot l——E g“f(xr: v)*
v z|2
ylv f(zl U)

- “Z’f (xw Z)
B (102).

Let us here give the derivation of (102) in words.

If z is the same as z, then by (92) every result of an application of the procedure
S to z follows 2 in the f-sequence. If z follows « in the f-sequence, then by (96) every
result of an application of f to z follows x in the f-sequence.

From these two propositions it follows, according to (101), that:

If z belongs to the f-sequence beginning with x, then every result of an application of
the procedure f to z follows x in the f-sequence.

100 - (z = z)
—[ %f(x'h Zs)

Y
i ?f(xr! zﬂ)
(19) :
b|(z=x) {— — (z = 2)
2 T%f{:‘r- zp) |‘" g‘f{xw Z5)
d %f(x,- 2s) = % (2, 2)
a|(x =2 '_E{("-'Ez;
E=2

(103).

23 Concerning the last inference see § 6.
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d|z
clz

§ 30.

(52) :
fin)y|r

c (z_.z)

f(zrs 24)

d ...f(z 33)

a %f{xr! %)
bl(z=2)

c %f(x-,. z5)

Whatever follows x in the f-sequence belongs to the f-sequence beginning with .

106
x|z
z|v

(7):
Y
a | =f(z,, v)
B 8
b %f(z,,vg)

c| fly,v)
d ;f(zwya)
B

(102) ::
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‘T (x = 2)
t 7@ 2)

I %f{xrl z3)

(z = z)
[_[: 3@, z,)] F

F‘___ %f(x'ﬂ zp)

—E(z = 7)
gftz,, %)
%f(xr! zﬂ)
¥

Ef(zr' 24)

l_[ %.ﬂzw Vg)
g‘f(zr! ”ﬂ}
L --f(z V)
f{y v)
- Ef(zr» 3’3}
L %f[zy» vy)
Sy, v)

= %‘-.ﬂzw yﬂ)

71

(104).

(105).

(106).

(107).
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s o F“I:%ﬂ%wJ
Sy, v)

14 z
——-;';f{ » Ys)

(108).

Let us here give the derivation of (108) in words.

If y belongs to the f-sequence beginning with z, then by (102) every result of an
application of the procedure f to y follows z in the f-sequence. Then by (106) every
result of an application of the procedure f to y belongs to the f-sequence beginning
with z. Therefore,

If y belongs to the f-sequence beginning with z, then every result of an application of the
procedure f to y belongs to the f-sequence beginning with z.

108 b,_a ¥ ’
i@ Ef(zv “.s}
z|z f(b, a)
b
¥ %ﬂ%%}
(75) :
y l_ T %f(x'n aﬁ]
)| 5f(z, T
G Rt a(f{éi. o) (109).

The property of belonging to the f-sequence beginning with x is hereditary in the
[-sequence.
8 Lf(x, o)
109 I (E 78
l f(3, @)

(78) :
F(I)

—

f(@y Ty) %ﬂ%mn

™=

— "Ef{yw mg)

: %ﬂmmﬁ

— fly, a) (110).

108 FT%f(z,- vg)
fly, v)

— %f(zr, Ys)

@ R
3w

(25) :



a %ﬂzwva}

c| fly, v)
¥

d gf(zr'yﬂ)

b ‘r“gﬂvp 25)

BEGRIFFSSCHRIFT

B

L %f(zr’ '-’a)
“Ef{”rt z;)
IS f(y’ U)

2 (2 vs)

In words the derivation of (111) is as follows:

If y belongs to the f-sequence beginning with z, then by (108) every result of an
application of the procedure f to y belongs to the f-sequence beginning with z. Hence
every result of an application of the procedure f to y belongs to the f-sequence

beginning with z or precedes z in the f-sequence. Therefore,

73

(111).

If y belongs to the f-sequence beginning with z, then every result of an application of
the procedure f to y belongs to the f-sequence beginning with z or precedes z in the f-sequence.

105

(11):

e %f(x:nzs]
bl(z=2x)

| T %f{xw z5)

Y
a “Eﬂxra )

b|(z=2a)

d %‘f{z,, )

(104) ::

|_

N

.8 f(xr' ZB)

(z = 2)
—E Zf(xr: za)

B

c 1—§f&vxﬂ

I—[ %f{xw zs)
(z = x)

L %f(z'p zﬂ)
gfuﬂxn

———~§fh”mﬂ

(z = =)
L\_ ,'gf[zrr zg)

—=—— %f(zv’ xﬂ)

(112).

(113).
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L I_ %f[xv zﬂ)
zZ|x | ¥
"ﬁ‘f(zrr xﬂ)

— %f (24, %5) (114).

In words the derivation of this formula is as follows:

Assume that x belongs to the f-sequence beginning with z. Then by (104) z is the
same as z or z follows z in the f-sequence. If z is the same as z, then by (112) z belongs
to the f-sequence beginning with x. From the last two propositions it follows that 2
belongs to the f-sequence beginning with  or z follows z in the f-sequence. Therefore,

If = belongs to the f-sequence beginning with z, then z belongs to the f-sequence beginning
with x or a follows z in the f-sequence.

§31.

(a =e) ] *
| Ef(b aq |S1/G.e
f(b,e) (115).

8
Lf(3, )

e

I translate

by ‘““the circumstance that the procedure f is single-valued”. Then (115) can be
rendered thus:

If from the circumstance that e is a result of an application of the procedure f io b,
whatever b may be, it can be inferred that every result of an application of the procedure f
to d 18 the same as e, then I say: *“ The procedure f is single-valued’.

e b a (a=ce) )
115 _W—Ef(b, a) |= Eﬂs’ e)
J(b, e)

(68) :
J(r) | &8 (a=T) I—J_’, Y— (a = z)
f(b, a) tf[b, a)
f(d, I) — f(b, %)
8 5
b| 1738 11(3,¢) (116).
cl|x
e

(9):
2 See § 24.
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f(b, a)
f(b, z)
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Sy, a)
fly, z)
(58) ::
al b
f(I) br— (a = 2)
J(T', a)
J(T, z)
cly
(19) :

(58) ::

r I' = z)
a —E.(f(y,;J

cla

(20) :
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5 (a = x)

f(y, a)
— f(y, 2)

8
18, ¢)

a (a =x)

VEf(y,aJ

_"_f(y’z)
b \E,E(u = z)

f(b, a)
== f(b: :6)

——

(@ = 2)
L 7y, a)
_'_f(y: z)

é
_L___Ef(a, )

75

(117).

(118).

(119).
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b (a=2) I L f(a, ay)
¢ | f(v, @) g | B
d| fly, x) fly, a)
5 — f(y, )
"t .
=J\x,,, a
| grEme
(@ = 2) (121).
(112) ::
= | 2 = L %‘f(zn Ga)
f(y, a)
—1f(y, %)
)
173, ) (122).
122 1 b4
| & :f(l'y, aa)
B
a
¢ v[f(y, a)
—f(y, )
F)
Ef(sm 5)
(19) :
b eE % f&, a,) | L %f @y mg)
.o 2 fty mo)
o| s L Jins
¢ Eﬂs' e} a{f(fi )
a —[ %f(xy: mﬁ) %f(x?’ mﬂ)
4
%f(yr’ mﬁ) B f(yw mﬂ)

a %f(a:,, a)

[y, a) (123).
(110) : :
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= I— %f{zr' my)

gf( Yy m!)
— f(y: I)

5
1@ (124).

Let us give the derivation of formulas (122) and (124) in words.

Assume that z is a result of an application of the single-valued procedure f to y.
Then by (120) every result of an application of the procedure f to y is the same as z.
Hence by (112) every result of an application of the procedure f to y belongs to the
f-sequence beginning with x. Therefore,

If z is a result of an application of the single-valued procedure f to y, then every result
of an application of the procedure f to y belongs to the f-sequence beginning with x.
(Formula (122).)

Assume that m follows y in the f-sequence. Then (110) yields : If every result of an
application of the procedure f to y belongs to the f-sequence beginning with z, then
m belongs to the f-sequence beginning with x. This, combined with (122), shows that,
if z is a result of an application of the single-valued procedure f to y, then m belongs
to the f-sequence beginning with z. Therefore,

If z is a result of an application of the single-valued procedure f to y and if m follows
y in the f-sequence, then m belongs to the f-sequence beginning with x. (Formula (124).)

124 I L % (2, mp)
g’f{y” mﬂ)
_f{y’ I]
&
I f(as 5)
[-4
(20) :
b %f(zr' m,) = L %f(mv' Zg)
Y
o | 31w m) glenm)
d| fy.2) L ;},’-ﬂy,. my)
é
e| 15, [y, z)
£ 8
a ‘]: %f(mr. ) 1/(3,¢)
I'By"f(z?‘ mﬂ) L %f(mw x,ﬂ,
5/ (@ my)

S
;é'f(zﬂ mﬂ) (125).
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(114) ::
i I — £ f(m,, z,)
z|z L B
%f[zy) mg)
—— %.ﬂyw ms)
fly, =)
8
£f{8, ) (126).

The derivation of this formula follows here in words.

Assume that z is a result of an application of the single-valued procedure f to y.
Assume that m follows y in the f-sequence. Then by (124) m belongs to the f-sequence
beginning with z. Consequently, by (114)  belongs to the f-sequence beginning with
m or m follows 2 in the f-sequence. This can also be expressed as follows : 2 belongs to
the f-sequence beginning with m or precedes m in the f-sequence. Therefore,

If m follows y in the f-sequence and if the procedure f is single-valued, then every result
of an application of the procedure f to y belongs to the f-sequence beginning with m or
precedes m in the f-sequence.

126 3 % f(m,, z5)
gf{x,. my)
X f(y, mp)
Sy, =)
é
1: f(s: 8)
(12):
a —E 2imyz) ) 4
ﬁ ’ ] Bf(mr’ xﬂ)
gf(zw mﬂ') L %f{x” m’)
Y
b ;é .f(yw ‘ma} | S f(y, 3)
? i(y’ %) ,'gf(yn mp)
) )
4 £ﬂ8' ) Ef{a, €) (127).

(51):
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Y
a ——E E Jmy, 2) | %f(mn z5)
%fwwmﬁ Lrgf@pmn
— f(y, 2) Sy, x)
Y
¢ Ef{ Yy mB] %f{mh yﬂ)
o | Y
d if{s,a) Ef(ywmn)
y é
b Ef(mw Ys) —— lf(s- €)
L %f{mﬂ xﬂ)
%f(zv' my)
e f(y» I)
L Z(m,, yy)
B I8 (128).
(111) ::
: :‘" I— %f{mr- Iﬂ)
L gf[:cr’ myg)
— fly, 2)
%f(mﬂ yﬂ}
gﬂywmﬂ
)
1f(3.e) (129).

Tn words (129) reads:

If the procedure f is single-valued and y belongs to the f-sequence beginning with m or
precedes m in the f-sequence, then every result of an application of the procedure f to y
belongs to the f-sequence beginning with m or precedes m in the f-sequence.

129

rja a Z.
15 h&ﬁ\?—[ Ef(mr! ag)

gfmwmn

—— f(b,a)
T %f(mw bﬂ}
gprmn

3
11(3,¢)




80 FREGE

(9):
bl b0 _[ %‘f(mr' ﬂﬁ) 5 '-'f(m'ﬂ )
H l
2oy | ! *ﬂ“v-ms)
— J(b,0) J(3, o)
¥
B-f(mrs bs) If[s €)
¥
""f(b ¥ mﬂ)
B
*sz(mr- ap)
; ] 2
o| 17(5,0) | l ﬁzf (5, )
’ = ! %;-f(mw ap) 18,)
a | % f{“r’ mB) b8 %vf[mw CIB)
f(s: ) —ng{aw mg)
——f(b,a)
%f(mw b&)
Y
Ef(b ¥ mﬂ) (130)_
(75) ::
F(r) —E' %f‘mr- ) 5 "‘f{m?' %)
21T, m, l 31 (@ m)
(8, a)
&
/) (131).

In words (131) reads:
If the procedure f is single-valued, then the property of belonging to the f-sequence
beginning with m or of preceding m in the f-sequence is hereditary in the f-sequence.

131
. ~|: FELNEN
| 5y mg
18, )

)
1/(3,¢)
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(9):

. % fm, e | L %f (M5, Ys)
b L —[ 2 flanmy 51w m)
f(8,a) L gf{x,. ¥s)
- if(ﬁ, ) - é i
4 5 ms, 0 Ef e
%f (Y5, my) E —
L g i) gf(y?, my)
(I %ﬂx”m’) b %J‘txp Ys)
L Xf(z, m,)
s Zlm,
| —E Lftenmy
/8, 2) (132).
(83)::
g(I) %f(m,, ry) I %f{m,. Y
K(I) Ef(l‘y. my) L 5/ (4 m)

- g‘f(xr' yﬂ)

- %f{xr! mg)

5
I_ﬂa’ ) (133).

In words this proposition reads:
If the procedure f is single-valued and if m and y follow x in the f-sequence, then y

belongs to the f-sequence beginning with m or precedes m in the f-sequence.

St L i
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Below I give a table that shows where use has been made of one formula in the
derivation of another. The table can be used to look up the ways in which a formula
has been employed. From it we can also see how frequently a formula has been used.

The right column always contains the number of the formula in whose derivation
the one listed in the left column was used.
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Some metamathematical results on completeness and

consistency,
On formally undecidable propositions of
Principia mathematica and related systems 1,
and

On completeness and consistency

KURT GODEL
(1930b, 1981, and 1931a)

The main paper below (1931), which
was to have such an impact on modern
logic, was received for publication on
17 November 1930 and published early
in 1931. An abstract (1930b) had been
presented on 23 October 1930 to the
Vienna Academy of Sciences by Hans
Hahn.

Godel’s results are now accessible in
many publications, but his original paper
has not lost any of its value as a guide.
It is clearly written and does not assume
any previous result for its main line of
argument. It is, moreover, rich in inter-
esting details. We now give some indi-
cations of its contents and structure.

Section 1 is an informal presentation
of the main argument and can be read by
the nonmathematician ; it shows how the
argument, by dealing with the proposi-
tion that states of itself “I am not
provable”, instead of the proposition that
states of itself “I am not true”, skirts
the Liar paradox, without falling into it.
Godel also brings to light the relation
that his argument bears to Cantor’s
diagonal procedure and to Richard’s

paradox (Herbrand (1931b, pp. 7-8) and
Weyl (1949, pp. 219-235) lay par-
ticular stress on this aspect of Godel's
argument).

Section 2, the longest, is the proof of
Theorem VI. The theorem states that in
a formal system satisfying certain pre-
cise conditions there is an undecidable
proposition, that is, a proposition such
that neither the proposition itself nor its
negation is provable in the system.
Before coming to the core of the argu-
ment, Godel takes a number of prepar-
atory steps:

(1) A precise description of the system
P with which he is going to work. The
variables are distinguished as to their
types and they range over the natural
numbers (type 1), classes of natural
numbers (type 2), classes of classes of
natural numbers (type 3), and so forth.
The logical axioms are equivalent to the
logic of Principia mathematica without
the ramified theory of types. The arith-
metic axioms are Peano's, properly
transcribed. The identification of the
individuals with the natural numbers and
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the adjunction of Peano’s axioms (in-
stead of their derivation, as in Principia)
have the effect that every formula has an
interpretation in classical mathematics
and, if closed, is either true or false in
that interpretation; moreover, proofs
are considerably shortened.

(2) An assignment of natural numbers
to sequences of signs of P and a similar
assignment to sequences of sequences of
signs of P. The first assignment is such
that, given a sequence, the number
assigned to it can be effectively calcu-
lated, and, given a number, we can
effectively decide whether the number is
assigned to a sequence and, if it is,
actually write down the sequence; simi-
larly for the second assignment. By
means of these assignments we can cor-
relate number-theoretic predicates with
metamathematical notions used in the
description of the system; for example,
to the notion “axiom” corresponds the
predicate Az(x), which holds precisely of
the numbers x that are assigned to
axioms (the “ Godel numbers” of axioms,
we would say today).

(3) A definition of primitive recursive
functions (Godel calls them recursive
functions) and the derivation of a few
theorems about them. These functions
had already been used in foundational
research (for example, by Dedekind
(1888), Skolem (1923), Hilbert (1925,
1927), and Ackermann (1928)); Godel
gives a precise definition of them, which
has become standard.

(4) The proof that forty-five number-
theoretic predicates, forty of them
associated with metamathematical no-
tions, are primitive recursive.

(5) The proof that every primitive re-
cursive number-theoretic predicate is
numeralwise representable in P. That is,
the predicate holds of some given num-
bers if and only if a definite formula of P
is provable whenever its free variables
are replaced by the symbols that repre-
sent these numbers in P.

(6) The definition of w-consistency.

Godel can then undertake to prove
Theorem VI. The scope of the theorem is
enlarged by the addition of any w-consis-
tent primitive recursive class « of for-
mulas to the axioms of P. For each such
i« a different system is thus obtained (in
the present note, “P.”, a notation not
used by Godel, will denote the system
corresponding to a given k). After the
proof Gédel makes a number of important
remarks :

(a) He points out the constructive con-
tent of Theorem VI.

(b) He introduces predicates that are
entscheidungsdefinit (in the translation
below these are called decidable predi-
cates, at the author’s suggestion). If we
take into account the few lines added in
proof at the end of a later note of
Godel’s (1934a), these predicates are in
fact those that today we call recursive
(that is, general recursive) predicates.
Godel somewhat extends the result of
Theorem VI by assuming only that « is
decidable, and not that it is primitive
recursive.

(¢) If « is assumed to be merely consis-
tent, instead of w-consistent, the proof
yields the existence of a predicate whose
universalization is not provable but for
which no counterexample can be given;
P, is w-incomplete, as we would say
today.

(d) The adjunction of the undecidable
formula Neg(17 Gen r) to « yields a con-
sistent but w-inconsistent system.

(¢) Even with the adjunction of the
axiom of choice or the continuum hy-
pothesis the system contains undecidable
propositions,

The section ends with a review of the
properties of P that are actually used in
the proof and the remark that all known
axiom systems of mathematics, or of any
substantial part of it, have these prop-
erties.

Section 3 presents two supplementary
undecidability results. Gédel establishes
(Theorem VII) that a primitive recursive
number-theoretic predicate is arithmetic,
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that is, can be expressed as a formula of
first-order number theory (this yields a
stronger result than the numeralwise
representability of such predicates, as it
was introduced and used in Section 2).
Hence every formula of the form (x) F(z),
with F(z) primitive recursive, is equiv-
alent to an arithmetic formula ; moreover,
this equivalence is provable in P,: one
can review the informal proof presented
by Goédel and check that P, is strong
enough to express and justify each of its
steps. Since the proposition that was
proved to be undecidable in Theorem VI
is of the form (z)F(x), with F(x) prim-
itive recursive, P, contains undecidable
arithmetic propositions (Theorem VIII).
For all its strength, the system P, cannot
decide every first-order number-theoretic
proposition. Theorem X states that,
given a formula (z)F(x), with F(z)
primitive recursive, one can exhibit a
formula of the pure first-order predicate
caleulus, say A, that is satisfiable if and
only if (x)F(z) holds. Moreover, since P,
contains a set theory, the equivalence

(x)F(z) = (A is satisfiable)

is expressible in P, and, as one can verify
by reviewing Godel’s informal argument,
provable in P,. Therefore (Theorem IX)
there are formulas of the pure first-order
predicate calculus whose validity is
undecidable in P,.

In Section 4 an important consequence
of Theorem VI is derived. The statement
““there exists in P, an unprovable for-
mula”, which expresses the consistency
of P,, can be written as a formula of P,;
but this formula is not provable in P,
(Theorem XI). The main step in the
demonstration of this result consists in
reviewing the proof of the first half of
Theorem VI and checking that all the
statements made in that proof can be
expressed and proved in P,. It is clear
that this is the case, and Godel does not
go through the details of the demon-
stration. The section ends with various
remarks on Theorem XI (its constructive

character, its applicability to set theory
and ordinary analysis, its effect upon
Hilbert’s conception of mathematics).

Godel's paper immediately attracted
the interest of logicians and, although it
caused some momentary surprise, its
results were soon widely accepted. A
number of studies were directly inspired
by it. By using a somewhat more com-
plicated predicate than “is provable in
P, Rosser (1936) was able to weaken
the assumption of w-consistency in
Theorem VI to that of ordinary consis-
tency. Hilbert and Bernays (1939, pp.
283-340) carried out in all details the
proof of the analogue of Theorem XI for
two standard systems of number theory,
Z, and Z, and this proof can be trans-
ferred almost literally to any system
containing Z. As Godel indicates in a
note appended to the present translation
of his paper, Turing’s work (/937) gave
to the notion of formal system its full
generality. The notes of Gédel’s Princeton
lectures (1934) contain the most impor-
tant results of the present paper, in a
more suceinet form ; they also make pre-
cise the notion of (general) recursive
function, already suggested by Herbrand
(see 19316, p. 5). In developing the
theory of these functions, Kleene (1936)
obtained undecidability results of a
somewhat different character from those
presented here. Godel’s work led to
Church’s negative solution (1936) of the
decision problem for the predicate calcu-
lus of first order. Tarski (1953) developed
a general theory of undecidability. The
device of the “ arithmetization’ of meta-
mathematics became an everyday tool of
the research worker in foundations.
Godel’s results, finally, led to a profound
revision of Hilbert's program (on that
point see, among other texts, Bernays
1938, 1954 and Gidel 1958).

These indications are far from giving a
full account of the deep influence exerted
in the field of foundations of mathe-
matics by the results presented in the
paper below and the methods used to
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obtain them. There is not one branch of
research, except perhaps intuitionism,
that has not been pervaded by this
influence.

The translation of the paper is by the
editor, and it is printed here with the
kind permission of Professor Godel and
Springer Verlag. Professor Godel ap-
proved the translation, which in many
places was accommodated to his wishes.
He suggested, in particular, the various
phrases used to render the word “inhalt-
lich”. He also proposed a number of
short interpolations to help the reader,
and these have been introduced in the
text below between square brackets.

Below, on page 92, the author shows
how a number-theoretic predicate can be
associated with a given metamathemati-
cal notion and then used to represent the
notion. In the German text such a pred-
icate is denoted by the same word as the
original notion, except that the word is
printed in italies. Since in English italics
are used for emphasis (while the German
text uses letter spacing for that purpose),
the translation below uses SMALL CAP-
1raLs for the names of these predicates.
This scheme of italicization (or small-

capitalization), however, is used for only
some of the number-theoretic predicates
in question. According to Professor
Godel, “the idea was to use the notation
only for those metamathematical notions
that had been defined in their usual sense
before, namely, those defined on pp. 90-
92. From p. 98 up to the general con-
siderations at the end of Section 2, and
again in Section 4, every metamathe-
matical term referring to the system P
is supposed to denote the corresponding
arithmetic one. But, of course, because of
the complete isomorphism the distinction
in many cases is entirely irrelevant”.

Before the main text the reader will
find a translation, by Stefan Bauer-
Mengelberg, of its abstract (1930b);
in that translation, at the author’s
suggestion, “entscheidungsdefinit™, when
referring to an axiom system, has
been translated by “complete”, and
“Entscheidungsdefinitheit” by ‘‘com-
pleteness”. A translation, by the editor,
of 1931a, a note dated 22 January 1931
and closely connected with 1931, follows
the main text. Both translations are
printed here with the kind permission
of Professor Godel.

SOME METAMATHEMATICAL RESULTS ON COMPLETENESS AND
CONSISTENCY

(1930b)

If to the Peano axioms we add the logic of Principia mathematica® (with the
natural numbers as the individuals) together with the axiom of choice (for all types),
we obtain a formal system S, for which the following theorems hold :

I. The system S is not complete [[entscheidungsdefinit]}; that is, it contains prop-
ositions 4 (and we can in fact exhibit such propositions) for which neither 4 nor 4
is provable and, in particular, it contains (even for decidable properties F of natural
numbers) undecidable problems of the simple structure (Exz)F(z), where x ranges
over the natural numbers.?

II. Even if we admit all the logical devices of Principia mathematica (hence in
particular the extended functional calculus® and the axiom of choice) in metamathe-
matics, there does not exist a consistency proof for the system S (still less so if we

1 With the axiom of reducibility or without ramified theory of types.
2 Furthermore, S contains formulas of the restricted functional caleulus such that neither
universal validity nor existence of a counterexample is provable for any of them.
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restrict the means of proof in any way). Hence a consistency proof for the system S
can be carried out only by means of modes of inference that are not formalized in the
system S itself, and analogous results hold for other formal systems as well, such as
the Zermelo-Fraenkel axiom system of set theory.®

III. Theorem I can be sharpened to the effect that, even if we add finitely many
axioms to the system S (or infinitely many that result from a finite number of them
by “type elevation”’), we do not obtain a complete system, provided the extended
system is w-consistent. Here a system is said to be w-consistent if, for no property
F(x) of natural numbers,

FQ), F(2),..., F(n),... ad infinitum
as well as

(Ex)F(z)

are provable. (There are extensions of the system S that, while consistent, are not
w-consistent.)

1V. Theorem I still holds for all w-consistent extensions of the system S that are
obtained by the addition of infinitely many axioms, provided the added class of
axioms is decidable [entscheidungsdefinit]], that is, provided it is metamathematically
decidable [entscheidbar] for every formula whether it is an axiom or not (here again
we suppose that the logic used in metamathematics is that of Principia mathematica).

Theorems I, ITI, and IV can be extended also to other formal systems, for example,
to the Zermelo-Fraenkel axiom system of set theory, provided the systems in question
are w-consistent.

The proofs of these theorems will appear in Monatshefte fiir Mathematik und Physik.

8 This result, in particular, holds also for the axiom system of classical mathematics, as it has
been constructed, for example, by von Neumann (1927).

ON FORMALLY UNDECIDABLE PROPOSITIONS OF PRINCIPIA
MATHEMATICA AND RELATED SYSTEMS I*

(1931)
1

The development of mathematics toward greater precision has led, as is well known,
to the formalization of large tracts of it, so that one can prove any theorem using
nothing but a few mechanical rules. The most comprehensive formal systems that
have been set up hitherto are the system of Principia mathematica (PM)* on the one
hand and the Zermelo-Fraenkel axiom system of set theory (further developed by
J. von Neumann)® on the other. These two systems are so comprehensive that in

1 See a summary of the results of the present paper in Gédel 1930b.

2 Whitehead and Russell 1925. Among the axioms of the system PM we include also the axiom
of infinity (in this version: there are exactly denumerably many individuals), the axiom of
reducibility, and the axiom of choice (for all types).

3 See Fraenkel 1927 and von Neumann 1925, 1928, and 1929. We note that in order to complete
the formalization we must add the axioms and rules of inference of the calculus of logic to the
set-theoretic axioms given in the literature cited. The considerations that follow apply also to the
formal systems (so far as they are available at present) constructed in recent years by Hilbert
and his collaborators., See Hilbert 1922, 1922a, 1927, Bernays 1923, von Neumann 1927, and
Ackermann 1924.
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them all methods of proof today used in mathematics are formalized, that is, reduced
to a few axioms and rules of inference. One might therefore conjecture that these
axioms and rules of inference are sufficient to decide any mathematical question that
can at all be formally expressed in these systems. It will be shown below that this is
not the case, that on the contrary there are in the two systems mentioned relatively
simple problems in the theory of integers* that cannot be decided on the basis of the
axioms. This situation is not in any way due to the special nature of the systems that
have been set up but holds for a wide class of formal systems; among these, in
particular, are all systems that result from the two just mentioned through the
addition of a finite number of axioms,® provided no false propositions of the kind
specified in footnote 4 become provable owing to the added axioms.

Before going into details, we shall first sketch the main idea of the proof, of course
without any claim to complete precision. The formulas of a formal system (we restrict
ourselves here to the system PM) in outward appearance are finite sequences of
primitive signs (variables, logical constants, and parentheses or punctuation dots), and
it is easy to state with complete precision which sequences of primitive signs are
meaningful formulas and which are not.® Similarly, proofs, from a formal point of
view, are nothing but finite sequences of formulas (with certain specifiable properties.)
Of course, for metamathematical considerations it does not matter what objects are
chosen as primitive signs, and we shall assign natural numbers to this use.” Conse-
quently, a formula will be a finite sequence of natural numbers,? and a proof array a
finite sequence of finite sequences of natural numbers. The metamathematical notions
(propositions) thus become notions (propositions) about natural numbers or sequences
of them ;? therefore they can (at least in part) be expressed by the symbols of the
system PM itself. In particular, it can be shown that the notions “formula™, *“proof
array”, and “provable formula” can be defined in the system PJ ; that is, we can,
for example, find a formula F(v) of PM with one free variable v (of the type of a
number sequence)!® such that F(v), interpreted according to the meaning of the terms
of PM, says: v is a provable formula. We now construct an undecidable proposition
of the system PM, that is, a proposition 4 for which neither 4 nor not-4 is provable,
in the following manner.

4 That is, more precisely, there are undecidable propositions in which, besides the logical
constants — (not), Vv (or), (z) (for all), and = (identical with), no other notions occur but +
(addition) and . (multiplication), both for natural numbers, and in which the prefixes (), too,
apply to natural numbers only.

5 In PM only axioms that do not result from one another by mere change of type are counted
as distinet.

8 Here and in what follows we always understand by ‘‘formula of PM" a formula written
without abbreviations (that is, without the use of definitions). It is well known that [in PM]
definitions 'serve only to abbreviate notations and therefore are dispensable in principle.

7 That is, we map the primitive signs one-to-one onto some natural numbers. (See how this is
done on page 601.)

8 That is, a number-theoretic function defined on an initial segment of the natural numbers.
(Numbers, of course, cannot be arranged in a spatial order.)

© In other words, the procedure described above yields an isomorphic image of the system PM

in the domain of arithmetic, and all metamathematical arguments can just as well be carried out
in this isomorphic image. This is what we do below when we sketch the proof; that is, by * for-

mula”’, * proposition”’, “variable”, and so on, we must always understand the corresponding objects
of the isomorphic image.

10 It would be very easy (although somewhat cumbersome) to actually write down this formula.
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A formula of PM with exactly one free variable, that variable being of the type of
the natural numbers (class of classes), will be called a class sign. We assume that the
class signs have been arranged in a sequence in some way,'! we denote the nth one
by R(n), and we observe that the notion “ class sign”, as well as the ordering relation
R, can be defined in the system PM. Let « be any class sign ; by [«; n] we denote the
formula that results from the class sign « when the free variable is replaced by the
sign denoting the natural number n. The ternary relation x = [y; z], too, is seen to
be definable in PM. We now define a class K of natural numbers in the following way :

ne K = Bew[R(n);n) (1)

(where Bew x means: z is a provable formula).}** Since the notions that occur in the
definiens can all be defined in PM, so can the notion K formed from them ; that is,
there is a class sign S such that the formula [S; #], interpreted according to the
meaning of the terms of PM, states that the natural number n belongs to K .*2 Since
S is a class sign, it is identical with some R(g); that is, we have

S = R(q)

for a certain natural number g. We now show that the proposition [R(g); ¢] is un-
decidable in P.M .12 For let us suppose that the proposition [R(q); ¢] were provable;
then it would also be true. But in that case, according to the definitions given above,

¢ would belong to K, that is, by (1), Bew [R(q); ¢] would hold, which contradicts the
assumption. If, on the other hand, the negation of [R(g); ¢] were provable, then

q & K, that is, Bew [R(q); g], would hold. But then [R(g); ¢], as well as its negation,
would be provable, which again is impossible.

The analogy of this argument with the Richard antinomy leaps to the eye. It is
closely related to the ““Liar” too;!* for the undecidable proposition [R(q); q] states
that ¢ belongs to K, that is, by (1), that [R(g); ¢] is not provable. We therefore have
before us a proposition that says about itself that it is not provable [in PM 1.15 The
method of proof just explained can clearly be applied to any formal system that,
first, when interpreted as representing a system of notions and propositions, has at

11 For example, by increasing sum of the finite sequence of integers that is the ‘‘class sign'',
and lexicographically for equal sums.

11a The bar denotes negation.

12 Again, there is not the slightest difficulty in actually writing down the formula S.

13 Note that “[R(q); ¢]"" (or, which means the same, “[S; ¢]") is merely a metamathematical
description of the undecidable proposition. But, as soon as the formula S has been obtained, we
can, of course, also determine the number g and, therewith, actually write down the undecidable
proposition itself. [This makes no difficulty in principle. However, in order not to run into formu-
las of entirely unmanageable lengths and to avoid practical difficulties in the computation of the
number ¢, the construction of the undecidable proposition would have to be slightly modified,
unless the technique of abbreviation by definition used throughout in PM is adopted.]

132 [The German text reads n e K, which is a misprint.]]

14 Any epistemological antinomy could be used for a similar proof of the existence of un-
decidable propositions.

15 Contrary to appearances, such a proposition involves no faulty circularity, for initially it
[only] asserts that a certain well-defined formula (namely, the one obtained from the gth formula
in the lexicographic order by a certain substitution) is unprovable. Only subsequently (and so to
speak by chance) does it turn out that this formula is precisely the one by which the proposition
itself was expressed.
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its disposal sufficient means of expression to define the notions occurring in the
argument above (in particular, the notion “provable formula”) and in which, second,
every provable formula is true in the interpretation considered. The purpose of
carrying out the above proof with full precision in what follows is, among other
things, to replace the second of the assumptions just mentioned by a purely formal
and much weaker one.

From the remark that [R(q); ¢] says about itself that it is not provable it follows
at once that [R(q); ¢] is true, for [R(g); ¢] is indeed unprovable (being undecidable).
Thus, the proposition that is undecidable in the system PM still was decided by meta-
mathematical considerations. The precise analysis of this curious situation leads to
surprising results concerning consistency proofs for formal systems, results that will
be discussed in more detail in Section 4 (Theorem XI).

2

We now proceed to carry out with full precision the proof sketched above. First
we give a precise description of the formal system P for which we intend to prove
the existence of undecidable propositions. P is essentially the system obtained when
the logic of PM is superposed upon the Peano axioms'® (with the numbers as indi-
viduals and the successor relation as primitive notion).

The primitive signs of the system P are the following :

1. Constants: “ ~ " (not), “ v " (or), “II" (for all), “0” (zero), “f” (the successor
of), “(”, *)” (parentheses);

II. Variables of type 1 (for individuals, that is, natural numbers including 0):
oy, Cn e

Variables of type 2 (for classes of individuals): “a,”, “y,", “25", ...

L
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Variables of type 3 (for classes of classes of individuals): “a37, “y5”, “257, ...

And so on, for every natural number as a type.!”

Remark : Variables for functions of two or more argument places (relations) need
not be included among the primitive signs since we can define relations to be classes
of ordered pairs, and ordered pairs to be classes of classes; for example, the ordered
pair a, b can be defined to be ((a), (@, b)), where (z, y) denotes the class whose sole
elements are x and y, and () the class whose sole element is z.1®

By a sign of type 1 we understand a combination of signs that has [any one of] the
forms

?

a, fa, ffa, fffa, ..., and so on,

where « is either 0 or a variable of type 1. In the first case, we call such a sign a
numeral. For n > 1 we understand by a sign of type n the same thing as by a variable
of type n. A combination of signs that has the form a(b), where b is a sign of type n

16 The addition of the Peano axioms, as well as all other modifications introduced in the system
PM, merely serves to simplify the proof and is dispensable in principle.

7 It is assumed that we have denumerably many signs at our disposal for each type of
variables.

18 Nonhomogeneous relations, too, can be defined in this manner; for example, a relation
between individuals and classes can be defined to be a class of elements of the form ((), ((z,), 22))-
Every proposition about relations that is provable in PM is provable also when treated in this
manner, as is readily seen.
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and a a sign of type n + 1, will be called an elementary formula. We define the class
of formulas to be the smallest class'® containing all elementary formulas and con-
taining ~ (@), (@) v (b), zII(a) (Where 2 may be any variable)®® whenever it contains
a and b. We call (a) v (b) the disjunction of a and b, ~ (a) the negation and zlI(a) &
generalization of a. A formula in which no free variable occurs ( free variable being
defined in the well-known manner) is called a senfential formula [[Satzformel]l. A
formula with exactly n free individual variables (and no other free variables) will be
called an n-place relation sign ; for n = 1 it will also be called a class sign.

By Subst a(y) (where a stands for a formula, v for a variable, and b for a sign of
the same type as v) we understand the formula that results from a if in @ we replace
», wherever it is free, by b.2° We say that a formula a is a type elevation of another
formula b if @ results from b when the type of each variable occurring in b is increased
by the same number.

The following formulas (I-V) are called azioms (we write them using these abbrevi-
ations, defined in the well-known manner: ., 2, =, (Ex), =, and observing the
usual conventions about omitting parentheses) :**

L 1. ~(fz, = 0),

2. fx; = fy1 2% = Y1,
3. z5(0). 2, 1(z(2,) D 2o f2y)) O @y I (xo(y)).

II. All formulas that result from the following schemata by substitution of any
formulas whatsoever for p, ¢, 7:

1.p Vv pop, 3.pVvagdqV D
2. pop Vg, 4. (pog)>(r v pIT V Q).

III. Any formula that results from either one of the two schemata

1. »I1(a) o Subst a(}),
2. oII(b v a)2b v vil(a)

when the following substitutions are made for @, v, b, and ¢ (and the operation
indicated by ““Subst” is performed in 1):

For a any formula, for » any variable, for b any formula in which » ‘does not occur
free, and for ¢ any sign of the same type as v, provided ¢ does not contain any variable
that is bound in @ at a place where v is free.*®

19 Concerning this definition (and similar definitions oceurring below) see Lukasiewicz and
Tarski 1930.

188 Hence x[1(a) is a formula even if 2 does not oceur in a or is not free in a. In this case, of
course, zI1(a) means the same thing as a.

20 Tp, case v does not oceur in a as a free variable we put Subst a(}) = a. Note that ‘*Subst™
is & metamathematical sign.

2 g = y, is to be regarded as defined by zoII(x,(x1) 2 x5(y3)), as in PM (I, 13) similarly for
higher types).

22 Ty, order to obtain the axioms from the schemata listed we must therefore

(1) Eliminate the abbreviations and

(2) Add the omitted parentheses
(in IT, ITI, and IV after carrying out the substitutions allowed).

Note that all expressions thus obtained are “‘formulas’ in the sense specified above. (See also
the exact definitions of the metamathematical notions on pp. 603-606.)

23 Therefore ¢ ig a variable or 0 or a sign of the form f. . .fu, where u is either 0 or & variable of
type 1. Concerning the notion *free (bound) at & place ina', see TAD in von Neumann 1927.
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IV. Every formula that results from the schema
L. (Bu)(vII(u(v) = a))

when for » we substitute any variable of type =, for u one of type n + 1, and for a
any formula that does not contain u free. This axiom plays the role of the axiom of
reducibility (the comprehension axiom of set theory).

V. Every formula that results from

L @ 0I(xg(x,) = ya(21)) 223 = Y

by type elevation (as well as this formula itself). This axiom states that a class is
completely determined by its elements.

A formula ¢ is called an immediate consequence of @ and b if a is the formula
(~ (b)) v (c), and it is called an immediate consequence of a if it, is the formula vI7(a),
where » denotes any variable. The class of provable formulas is defined to be the
smallest class of formulas that contains the axioms and is closed under the relation
“immediate consequence .2

We now assign natural numbers to the primitive signs of the system P by the
following one-to-one correspondence :

itO!! . l I&N}! L. 5 liH” . 9
ufn . 3 uvn . 7 u{” - 11
‘())' S 13;

to the variables of type n we assign the numbers of the form p" (where p is a prime
number >13). Thus we have a one-to-one correspondence by which a finite sequence
of natural numbers is associated with every finite sequence of primitive signs (hence
also with every formula). We now map the finite sequences of natural numbers on
natural numbers (again by a one-to-one correspondence), associating the number
2%.3%. ... .pix, where p, denotes the kth prime number (in order of increasing
magnitude), with the sequence n,, 7, ..., n.. A natural number [Jout of a certain
subset]| is thus assigned one-to-one not only to every primitive sign but also to every
finite sequence of such signs. We denote by @(a) the number assigned to the primitive
sign (or to the sequence of primitive signs) . Now let some relation (or class) R(a,,
dg, . . ., @) between [or of] primitive signs or sequences of primitive signs be given.
With it we associate the relation (or class) R'(zy, #,, ..., z,) between [or of] natural
numbers that obtains between #,, z,, .. ., z, if and only if there are some a,, a,, . . .,
a, such that 2, = ®(a;) (1 = 1,2,...,n) and R(ay. ay, ..., a,) hold. The relations
between (or classes of) natural numbers that in this manner are associated with the
metamathematical notions defined so far, for example, *“variable”, “formula”, “sen-

¥
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tential formula™, “axiom”, “provable formula”, and so on, will be denoted by the
same words in SMALL CAPITALS. The proposition that there are undecidable problems
in the system P, for example, reads thus: There are SENTENTIAL FORMULAS @ such
that neither a nor the NEGATION of @ is & PROVABLE FORMULA.

We now insert a parenthetic consideration that for the present has nothing to do

4 The rule of substitution is rendered superfluous by the fact that all possible substitutions
have already been carried out in the axioms themselves. (This procedure was used also in von
Neumann 1927.)
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with the formal system P. First we give the following definition: A number-theoretic
function?® @(xy, ¥, . .., 2,) is said to be recursively defined in terms of the number-
theoretic functions (xy, @5, ..., 2,_,) and p(x,, Ty, ..., Ty 4y) if

'P(O: xm"‘sxn) = 9')(32,- "!xn)!
Q’U‘ + 1,1’2,.. ‘!xn) = P(k! ‘P(k! xm---;“’u);xm---szn)

hold for all ,, ..., x,, k.26

A number-theoretic function g is said to be recursive if there is a finite sequence of
number-theoretic functions ¢, @s, . . ., @, that ends with ¢ and has the property that
every function ¢, of the sequence is recursively defined in terms of two of the pre-
ceding functions, or results from any of the preceding functions by substitution,?” or,
finally, is a constant or the successor function x + 1. The length of the shortest
sequence of ¢, corresponding to a recursive function ¢ is called its degree. A relation
R(xy, ..., x,) between natural numbers is said to be recursive®® if there is a recursive
function (2, . . ., @,) such that, for all 2, z,, ..., z,,

(2)

R(zy, ..., z,) ~[p(zy, .. ., %) = 0].2°

The following theorems hold :

1. Every function (relation) obtained from recursive functions (relations) by substitution
of recursive functions for the variables is recursive; so is every funclion obtained from
recursive functions by recursive definition according to schema (2);

IL. If R and S are recursive relations, so are R and R v S (hence also R & S);

II1. If the functions p(x) and (n) are recursive, so is the relation @(x) = ¥(vy);*°

1V. If the function @(x) and the relation R(x,Y) are recursive, so are the relations S
and T defined by

S(z,y) ~ (B2)x = ¢x) & R(z, v)]
and

Tz, 9) ~ (@)=
as well as the function 4 defined by

¥(r, v) = exfz = ¢(x) & R(z, v)],

where ez F(x) means the least number z for which F(z) holds and 0 in case there is no
such number.

A

o(xr) = R(z, )],

25 That is, its domain of definition is the class of nonnegative integers (or of n-tuples of non-
negative integers) and its values are nonnegative integers.

26 Tn what follows, lower-case italic letters (with or without subscripts) are always variables
for nonnegative integers (unless the contrary is expressly noted).

27 More precisely, by substitution of some of the preceding functions at the argument places of
one of the preceding functions, for example, gy(z;, 22) = @lgq(2s, T2 @e(z2)] (P, ¢, < k). Not
all variables on the left side need occur on the right side (the same applies to the recursion schema
(2)).

28 We include classes among relations (as one-place relations). Recursive relations R, of course,
have the property that for every given n-tuple of numbers it can be decided whether R(zy, ...,
x,) holds or not.

20 Whenever formulas are used to express a meaning (in particular, in all formulas expressing
metamathematical propositions or notions), Hilbert's symbolism is employed. See Hilbert and
Ackermann 1928.

30 We use German letters, I, 1, as abbreviations for arbitrary n-tuples of variables, for example,
Ly Tgy v o vy Tye
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Theorem 1 follows at once from the definition of “recursive’. Theorems IT and III
are consequences of the fact that the number-theoretic functions

o), B@y). ¥z )
corresponding to the logical notions —, v, and =, namely,
a(0) =1, a(z) =0 forx # 0,
B0, z) = B(z,0) =0, Blx,y) =1 when xand y are both 0,
yx,y) =0 whenz =y, y(z,y) =1 whenz # vy,

are recursive, as we can readily see. The proof of Theorem IV is briefly as follows.
By assumption there is a recursive p(z, y) such that

R(z, ) ~ [plz, 1) = O].
We now define a function y(x, ) by the recursion schema (2) in the following way :
x(0,p) = 0,
x(n + 1,9) = (n + 1).a + x(n, ).a(a),*

where a = ofa(p(0, 1))].a[p(n + 1,9)].a[x(n, h)]. Therefore y(n + 1,1) is equal
either ton + 1 (if @ = 1) or to y(n, v) (if @ = 0).%2 The first case clearly occurs if and
only if all factors of @ are 1, that is, if

R(0,9) & R(n + 1,9) & [x(n, 1) = 0]

holds. From this it follows that the function y(n, 1)) (considered as a function of =)
remains 0 up to [but not including]] the least value of n for which E(n,y) holds and,
from there on, is equal to that value. (Hence, in case R(0, 1)) holds, y(rn, v) is constant
and equal to 0.) We have, therefore,

Y5, 0) = x(e(x), ),

S(Is t)) £ R[‘!’(E: ), 1‘!]

The relation 7' can, by negation, be reduced to a case analogous to that of S. Theorem
IV is thus proved.

The functions z + y, «.y, and ¥, as well as the relations « < y and z = y, are
recursive, as we can readily see. Starting from these notions, we now define a number
of functions (relations) 1-45, each of which is defined in terms of preceding ones by
the procedures given in Theorems I-IV. In most of these definitions several of the
steps allowed by Theorems I-IV are condensed into one. Each of the functions
(velations) 1-45, among which occur, for example, the notions “ForMULA ", ““ AXTOM ",
and “IMMEDIATE CONSEQUENCE ", is therefore recursive.

l.aly= (Bz)z S 2 &a=y.2)%

x is divisible by #.?*

31 We assume familiarity with the fact that the functions z + y (addition) and z . y (multi-
plication) are recursive.

32 g cannot take values other than 0 and 1, as can be seen from the definition of a.

33 The sign = is used in the sense of **equality by definition” ; hence in definitions it stands for
either = or ~ (otherwise, the symbolism is Hilbert's).

3% Wherever one of the signs (z), (Ex), or ex occurs in the definitions below, it is followed by a
bound on x. This bound merely serves to ensure that the notion defined is recursive (see Theorem

IV). But in most cases the extension of the notion defined would not change if this bound were
omitted.
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2. Primz) = (B2)z S v &kz#1&z#2&afz) &z > 1,
z is a prime number.
3.0Pra=0,
(n+1)Prxz=eyly £ 2 &Prim(y) &xfy &y > n Pra,
n Pr z is the nth prime number (in order of increasing magnitude) contained in z.%**
4. 0! = 1,
(n+ Dl = (n+ 1).nl.
5. Pr(0) = 0,
Prin + 1) = eyly < {Pr(n)}! + 1 & Prim(y) & y > Pr(n)],
Pr(n) is the nth prime number (in order of increasing magnitude).
6. nGlzx = eyly £ 2 &a(n Pra)y & z/(n Prax)V*1],
n Gl z is the nth term of the number sequence assigned to the number x (for n > 0
and » not greater than the length of this sequence).
T W e)=eyly 2z &yPra>0&(y+ 1) Prz=0],
I(x) is the length of the number sequence assigned to z.
8. zky = ez{z S [Pr(l{x) + Uy & (n)n £ l(z) >nGlz=nGla] &
@0 <n =W y)—=(n + Uzx) Glz = nGlyl},
xxy corresponds to the operation of ““concatenating™ two finite number sequences.
9. R(z) = 27,
R(z) corresponds to the number sequence consisting of a alone (for 2 > 0).
10. E(z) = R(11)xaxR(13),
E(z) corresponds to the operation of “enclosing within parentheses™ (11 and 13 are
assigned to the primitive signs “(”” and ““)”, respectively).
11. n Varz = (E2)[13 < z < 2 & Prim(z) & = 2"] & n # 0,
2 is a VARIABLE OF TYPE 7.
12. Var(z) = (En)[n < 2 & n Var 2],
@ is & VARTIABLE.
13. Neg(z) = R(5)+E(x),
Neg(z) is the NEGATION of .
14. 2 Disy = E(x)*R(7)xE(y),
a Dis y is the p1ssuNcTION Of 2 and y.
15. z Geny = R(z)xR(9)*E(y),
2 Gen y is the GENERALIZATION of y with respect to the VARIABLE z (provided a is a
VARIABLE).
16. 0Nz = =,
(n+ 1) Na= R(3)sn N z,
n N z corresponds to the operation of *‘putting the sign ‘f* n times in front of =”.
17. Z(n) = n N [R(1)],
Z(n) is the NUMERAL denoting the number n.
18. Typi(x) = (Em, n){m,n < 2 &[m =1 v 1 Varm] & x = n N [R(m)]},**"
« is a SIGN OF TYPE 1.

348 For 0 < n = z, where z is the number of distinct prime factors of 2. Note that n Prz = 0
forn =z + 1.
340 g n < x stands for m £ z & n < z (similarly for more than two variables).
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19. Typple)=[n=1& Typi(e)l vn >1&
(Ev){v £ 2 & n Varv & 2 = R(v)}],
2 is a SIGN OF TYPE 7.
20. Elf(x) = (Ey,z, n)y,z,n = 2 & Typ,(y) &
Typasa(2) &z = 24E(y)],
2 is an ELEMENTARY FORMULA.
21. Op(x,y,2) = x = Neg(y) vV z = yDisz v (Ev)[v £ « & Var(v) &
x = v Gen y].
22, FR(x) = (n){0 < n 2 (@)= Blf(nGlx) v (Ep,g)[0 < p,g<n&
Op(n Glz, p Gle, g Gla)]} & l(z) > 0,
 is a4 SEQUENCE OF FORMULAS, each of which either is an ELEMENTARY FORMULA or
results from the preceding ForMuLAS through the operations of NEGATION, DIs-
JUNCTION, Or GENERALIZATION.

23. Form(x) = (En){n £ (Pr{l(z)?))* V=" & FR(n) & z = [I(n)] GI n},*®
x is a FORMULA (that is, the last term of a FORMULA SEQUENCE 7).

24, v Geb n, x = Var(v) & Form(z) & (Fa, b, c)[a,b,c £ 2 &

xz = ax(v Gen b)sc & Form(b) & l(a) + 1 = n =< le) + l(v Gen b)],
the VARIABLE v is BOUND in « at the nth place.

25. v Frn,z = Var(v) & Form(z) &v = 2 Gla &n < l(z) & v Gebn, 2,
the VARIABLE v is FREE in z at the nth place.

26. v Frz = (En)[n £ l(z) & v Fru, 2],
¥ oceurs as a FREE VARIABLE in z.

27. Sua(l) = ezfz £ [Pr(l(z) + Uy) )+ & [(Bu,v)u,v S v &

x = uxR(n Gla)sw & z = uwyxv &n = Yu) + 1]},
Su (}) results from « when we substitute y for the nth term of x (provided that
0 <n = Il(z)).
28. 0Stv,z = en{n = l(z) & v Fra,x & (Ep)n < p £ Uz) & v Frp, x]},
(k+ 1)Stv,z=en{n < kStv,z &v Frn, x & (Bp)n < p < kStv, x
& v Fr p, zl},
kSt v, x is the (k + 1)th place in z (counted from the right end of the ForMULA 2)
at which » is FREE in 2 (and 0 in case there is no such place).

29. A(v, 2) = enin < lz) & nStv, x = 0},

A(v, 2) is the number of places at which v is FREE in .

30. Sby(zh) = 2,

Sy 1 () = Su [Sby(ay)](* 5 *).
31. Sb(zp) = Sbygy, (),
Sb(x}) is the notion suBST a(}) defined above.?”
32. z Imp y = [Neg(x)] Dis y,
z Con y = Neg{[Neg(x)] Dis [Neg(y)]},

35 That n = (Pr([l(x)]?))="="* provides a bound can be seen thus: The length of the shortest
sequence of formulas that corresponds to x can at most be equal to the number of subformulas
of z. But there are at most [(z) subformulas of length 1, at most I(x) — 1 of length 2, and so on,
hence altogether at most l(z)(l(x) + 1)/2 = [I{(2)]*. Therefore all prime factors of n can be assumed
to be less than Pr([l{x)]?), their number =[(lz)]? and their exponents (which are subformulas of
) =,

36 Tn case v is not 8 VARTABLE or z is not & FORMULA, Sh(z}) = =.
97 Instead of SH[Sh(x})] we write Sb(z}}%) (and similarly for more than two VARIABLES).
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2 Aeq y = (¢ Imp %) Con (y Imp =),
v Ex y = Neg{v Gen [Neg(y)]}.
B.nThe=eyly <2 & k)k = l(2) > (kQlz = 13&EkGly =kGla) vV
(kGlz > 13 &kGly = kGlz.[1 Pr(kGlz)")]},
n Th x is the nth TYPE ELEVATION of 2 (in case 2 and n T'h x are FORMULAS).

Three specific numbers, which we denote by z,;, z,, and z;, correspond to the
Axioms I, 1-3, and we define

3. Z-Ax(z) = (x =2, Vo =2, VT =2z).

35. 4,-Ax(z) = (Ey)ly £ « & Form(y) & x = (y Dis ) Imp y],

a is a FORMULA resulting from Axiom schema II, 1 by substitution. Analogously,
Ag-Azx, As-Az, and A,-Az are defined for Axioms [rather, Axiom Schemata] 11, 2-4.
36. 4-Ax(z) = A,-Az(x) v Ay-Az(x) v Ag-Ax(z) v As-Ax(z),
@ is a FORMULA resulting from a propositional axiom by substitution.
3. Qe yv) = Brmuwn < Uy &m S U) w2z &
w=mGlz&wGebn,y &v Frn,y]
z does not contain any VARIABLE BOUND in y at a place at which » is FREE.
38. L-Ax(z) = (Ev,y,z,n){v, y,2,n < 2 &n Var v & Typ,(z) & Form(y) &
@z, y,v) & ¥ = (v Gen y) Imp [Sb(y3)]},
@ is a FORMULA resulting from Axiom schema ITI, 1 by substitution.
39. L,-Ax(z) = (Ev, ¢, p){v, ¢, p < « & Var(v) & Form(p) & v Fr p & Form(g) &
2 = [v Gen (p Dis g)] Imp [p Dis (v Gen ¢)]},
x is a FORMULA resulting from Axiom schema III, 2 by substitution.
40. R-Ax(x) = (Bu,v,y,n)u,v,yyn S x&naVarv& (n + ) Varu & u Fry &
Form(y) & z = « Ex {v Gen [[R(u)*E(R(v))] Aeq y1}],
x is a FORMULA resulting from Axiom schema IV, 1 by substitution.

A specific number z, corresponds to Axiom V, 1, and we define:

41. M-Az(z) = (En)ln Sz &2 = n Thz,).

42, Az(x) = Z-Az(x) v A-Ax(z) v Ly-Azx(x) v Ly-Az(x) v R-Ax(x) v M-Ax(x),
Z is an AXIOM.

43. Fl(z,y,z) =y =zImpa v (Ev)lv £ x & Var(v) & v = v Gen y],

2 is an IMMEDIATE CONSEQUENCE of y and z.
44. Bu(z) = (n){0 < n = l(z) - Aa(n Gla) v (Ep, q)0 < p,g <n &
Filn Gla, p Gla, q Gla)]} & l(z) > 0,
x is a PROOF ARRAY (a finite sequence of FORMULAS, each of which is either an AxToM
or an IMMEDIATE CONSEQUENCE of two of the preceding FORMULAS.
45. * By = Buw(z) & [l(z)] Glx = y,
z is a PROOF of the FORMULA y.

46. Bew(z) = (By)y B «,

x is a PROVABLE FORMULA. (Bew(x) is the only one of the notions 1-46 of which we
cannot assert that it is recursive.)

The fact that can be formulated vaguely by saying: every recursive relation is
definable in the system P (if the usual meaning is given to the formulas of this
system), is expressed in precise language, without reference to any interpretation of
the formulas of P, by the following theorem :

Theorem V. For every recursive relation R(z,,...,z,) there exists an n-place
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RELATION SIGN 7 (with the FREE VARIABLES®® uy, s, . . ., u,) such that for all n-tuples
of numbers (x,, . . ., x,) we have
R(@y, .. ., 2p) = Bew[Sb(rzte 5., Zrny)]s (3)
R(xy, . . ., &,) — Bew[Neg(Sb(rgts. 7)) (4)

We shall give only an outline of the proof of this theorem because the proof does
not present any difficulty in principle and is rather long.?® We prove the theorem
for all relations R(z,, ..., x,) of the form z; = @(a,, ..., 2,)*° (where ¢ is a recursive
function) and we use induction on the degree of . For functions of degree 1 (that is,
constants and the function x + 1) the theorem is trivial. Assume now that ¢ is of
degree m. It results from functions of lower degrees, @, ..., @, through the opera-
tions of substitution or recursive definition. Since by the induection hypothesis every-
thing has already been proved for ¢,,..., @, there are corresponding RELATION
SIGNS, 7y, ..., 7, such that (3) and (4) hold. The processes of definition by which ¢
results from g, ..., @, (substitution and recursive definition) can both be formally
reproduced in the system P. If this is done, a new RELATION SIGN r is obtained from
7y, ..., 1t and, using the induetion hypothesis, we can prove without difficulty that
(3) and (4) hold for it. A RELATION SIGN r assigned to a recursive relation*? by this
procedure will be said to be recursive.

We now come to the goal of our discussions. Let « be any class of FormuLas. We
denote by Flg(x) (the set of consequences of «) the smallest set of ForRmULAS that
contains all FORMULAS of « and all Ax1oMs and is closed under the relation “1MMEDI-
ATE CONSEQUENCE ", x is said to be w-consistent if there is no cLASS SIGN @ such that

(n)[Sb(az() & Flg(x)] & [Neg(v Gen a)] & Flg(x),

where v is the FREE VARIABLE of the crLass sieN a.

Every w-consistent system, of course, is consistent. As will be shown later,
however, the converse does not hold.

The general result about the existence of undecidable propositions reads as follows :

Theorem VI. For every w-consistent recursive class k of FORMULAS there are recursive
CLASS SIGNS r such that neither v Gen r nor Neg(v Gen r) belongs to Flg(«) (where v is
the FREE VARIABLE of 7).

Proof. Let x be any recursive w-consistent class of ForMuLAS. We define

Bw,(z) = (n)[n £ () > Azn Glz) v (nGla) ek v

(Bp, )0 < p,g<n& FlinGla,pGla,qGla)}] &lz) > 0 (5)
3% The VARIABLES u4, . . ., i, can be chosen arbitrarily. For example, there always is an r with the
FREE VARIABLES 17, 19, 23, ..., and so on, for which (3) and (4) hold.

3% Theorem V, of course, is a consequence of the fact that in the case of a recursive relation R
it ean, for every n-tuple of numbers, be decided on the basis of the axioms of the system P whether
the relation K obtains or not.

0 From this it follows at once that the theorem holds for every recursive relation, since any such
relation is equivalent to 0 = g(ay, ..., x,), where @ is recursive.

! When this proof is carried out in detail, r, of course, is not defined indirectly with the help of
its meaning but in terms of its purely formal structure.

42 Which, therefore, in the usual interpretation expresses the fact that this relation holds,



ON FORMALLY UNDECIDABLE PROPOSITIONS 99

(see the analogous notion 44),

% By = Bw(z) &[l(x)] Glz =y (6)
Bew,(z) = (By)y B, x (6.1)
(see the analogous notions 45 and 46).
We obviously have
(2)[Bew,(x) ~ x & Flg(x)] (7)
and
(z)[Bew(z) — Bew,(x)]. (8)
We now define the relation
Qz, y) = « B, [Sb(yziy)]- (8.1)

Since = B, y (by (6) and (5)) and Sb(y},,) (by Definitions 17 and 31) are recur-
sive, so is Q(z, y). Therefore, by Theorem V and (8) there is a RELATION SIGN ¢ (with
the FREE VARIABLES 17 and 19) such that

x B, [Sb(yz{y)] — Bew,[Sb(q%(x) }"I?v)}]! (9)
and
x By [Sb(y33,))] — Bew,[Neg(Sb(gk{x) 5tw))]- (10)
We put
p =17 Gengq (11)
(p is a CLASS SIGN with the FREE VARIABLE 19) and
r = Shigit,) (12)
(r is a recursive CLASS SIGN*® with the FREE VARIABLE 17).
Then we have
Sb(p2,) = Sb([17 Gen ql3;,) = 17 Gen Sb(g}f,) = 17 Genr (13)
(by (11) and (12));** furthermore
Sb{gﬂr) E'Z?m) = Sb(féfx:) (14)

(by (12)). If we now substitute p for y in (9) and (10) and take (13) and (14) into
account, we obtain

x B, (17 Gen r) — Bew,[Sb(ril,,)], (15)
x B, (17 Gen r) — Bew,[Neg(Sb(r3{))]. (16)

This yields:
1. 17 Gen r is not k-PROVABLE.*® For, if it were, there would (by (6.1)) be an n such

43 Since r is obtained from the recursive RELATION SIGN ¢ through the replacement of a VARIABLE
by a definite number, p.[Precisely stated the final part of this footnote (which refers to a side remark
unnecessary for the proof) would read thus: ‘“ REPLACEMENT of a8 VARIABLE by the NUMERAL for
»-"]

4 The operations Gen and Sb, of course, can always be interchanged in case they refer to
different VARIABLES.

45 By “z is k-provable’’ we mean x & Flg(x), which, by (7), means the same thing as Bew,(x).
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that n B, (17 Gen »). Hence by (16) we would have Bew,[Neg(Sb(rl,,))], while, on
the other hand, from the x-PrOVABILITY of 17 Gen r that of Sh(r37,,) follows. Hence,
« would be inconsistent (and a fortiori w-inconsistent).

2. Neg(17 Gen r) is not «-pPROVABLE. Proof: As has just been proved, 17 Gen r

is not x-PROVABLE; that is (by (6.1)), (n)n B, (17 Genr) holds. From this,
(n)Bew,[Sb(ril,,)] follows by (15), and that, in conjunction with Bew,[Neg(17 Gen )],
is incompatible with the w-consistency of «.

17 Gen r is therefore undecidable on the basis of «, which proves Theorem VL.

We can readily see that the proof just given is constructive ;*5¢ that is, the following
has been proved in an intuitionistically unobjectionable manner: Let an arbitrary
recursively defined class x of ForMULAS be given. Then, if a formal decision (on the
basis of «) of the SENTENTIAL FORMULA 17 Gen r (which [for each «] can actually be
exhibited) is presented to us, we can actually give

1. A proo¥ of Neg(17 Gen r);

2. For any given n, a PROOF of Sb(r},,).

That is, a formal decision of 17 Gen » would have the consequence that we could
actually exhibit an w-inconsistency.

We shall say that a relation between (or a class of) natural numbers R(z,, ..., @)
is decidable [[entscheidungsdefinit]] if there exists an n-place RELATION SIGN r such that
(3) and (4) (see Theorem V) hold. In particular, therefore, by Theorem V every
recursive relation is decidable. Similarly, a RELATION s16N will be said to be decidable
if it corresponds in this way to a decidable relation. Now it suffices for the existence
of undecidable propositions that the class « be w-consistent and decidable. For the
decidability carries over from « to x B, y (see (5) and (6)) and to @(x, ¥) (see (8.1)),
and only this was used in the proof given above. In this case the undecidable prop-
osition has the form » Gen r, where r is a decidable crass siaN. (Note that it even
suffices that « be decidable in the system enlarged by «.)

If, instead of assuming that « is w-consistent, we assume only that it is consistent,
then, although the existence of an undecidable proposition does not follow [by the
argument given above), it does follow that there exists a property (r) for which it is
possible neither to give a counterexample nor to prove that it holds of all numbers.
For in the proof that 17 Gen r is not «-PROVABLE only the consistency of « was used
(see p. 608). Moreover from Bew, (17 Gen r) it follows by (15) that, for every number
@, Sb(r}i,,) is k-PROVABLE and consequently that Neg(Sb(ri,,)) is not k-PROVABLE for
any number.

If we adjoin Neg(17 Gen r) to x, we obtain a class of ForRMULAS &’ that is con-
sistent but not w-consistent. «’ is consistent, since otherwise 17 Gen r would be
x-PROVABLE. However, «' is not w-consistent, because, by Bew,(17 Gen r) and (15),
(w)Bew,Sb(r}f,,) and, a fortiori, (x)Bew,.Sb(r}l,.,) hold, while on the other hand, of
course, Bew,.[Neg(17 Gen r)] holds.4¢

We have a special case of Theorem VI when the class « consists of a finite number
of ForRMULAS (and, if we so desire, of those resulting from them by TYPE ELEVATION).

158 Since all existential statements oceurring in the proof are based upon Theorem V, which, as
is easily seen, is unobjectionable from the intuitionistic point of view.

% Of course, the existence of classes x that are consistent but not w-consistent is thus proved
only on the assumption that there exists some consistent « (that is, that P is consistent).
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Every finite class « is, of course, recursive.*5* Let a be the greatest number contained
in k. Then we have for «

rex~Emn)m = ax&n=a&nex &ax =mThnl

Hence « is recursive. This allows us to conclude, for example, that, even with the
help of the axiom of choice (for all types) or the generalized continuum hypothesis,
not all propositions are decidable, provided these hypotheses are w-consistent.

In the proof of Theorem VI no properties of the system P were used besides the
following :

1. The class of axioms and the rules of inference (that is, the relation “‘immediate
consequence”’) are recursively definable (as soon as we replace the primitive signs in
some way by natural numbers);

2. Every recursive relation is definable (in the sense of Theorem V) in the system P.

Therefore, in every formal system that satisfies the assumptions 1 and 2 and is
w-consistent there are undecidable propositions of the form (z)F(z), where F is a
recursively defined property of natural numbers, and likewise in every extension of
such a system by a recursively definable w-consistent class of axioms. As can easily
be verified, included among the systems satisfying the assumptions 1 and 2 are the
Zermelo-Fraenkel and the von Neumann axiom systems of set theory,*” as well as
the axiom system of number theory consisting of the Peano axioms, recursive def-
inition (by schema (2)), and the rules of logic.*® Assumption 1 is satisfied by any system
that has the usual rules of inference and whose axioms (like those of P) result from a
finite number of schemata by substitution.*®*

3

We shall now deduce some consequences from Theorem VI, and to this end we give
the following definition :

A relation (class) is said to be arithmetic if it can be defined in terms of the notions
+ and . (addition and multiplication for natural numbers)*® and the logical con-
stants v, ~ , (z), and =, where (z) and = apply to natural numbers only.5° The
notion “arithmetic proposition’ is defined accordingly. The relations “greater than”
and ‘‘congruent modulo ", for example, are arithmetic because we have

2>y~ By = 2 + 2,
z=y(modn)~ (Ez)lzx =y + 2.0V y=x+z.n0]

48s TOn page 190, lines 21, 22, and 23, of the German text the three occurrences of « are mis-
prints and should be replaced by occurrences of «.]|

47 The proof of assumption 1 turns out to be even simpler here than for the system P, since there
is just one kind of primitive variables (or two in von Neumann's system).

48 See Problem III in Hilbert 1928a.

482 As will be shown in Part II of this paper, the true reason for the incompleteness inherent in
all formal systems of mathematics is that the formation of ever higher types can be continued
into the transfinite (see Hilbert 1925, p. 184 [[above, p. 387])), while in any formal system at most
denumerably many of them are available. For it can be shown that the undecidable propositions
constructed here become decidable whenever appropriate higher types are added (for example,
the type w to the system P). An analogous situation prevails for the axiom system of set theory.

48 Here and in what follows, zero is always included among the natural numbers.

50 The definiens of such a notion, therefore, must consist exclusively of the signs listed, variables
for natural numbers, z, ¥, ..., and the signs 0 and 1 (variables for functions and sets are not
permitted to occur). Instead of z any other number variable, of course, may oceur in the prefixes.
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We now have
Theorem VII. Every recursive relation is arithmetic.
We shall prove the following version of this theorem : every relation of the form

%o = @(Zy, . . ., ,), Where @ is recursive, is arithmetic, and we shall use induction on
the degree of @. Let ¢ be of degree s (s > 1). Then we have either
1. ‘P(x:l) LA In) = P{XI.{EII e wy. 2?“], XQ(I:]_, bl xn): L8y Xrn(xh o8y xn}}Sl

(where p and all x, are of degrees less than s) or
2. (0, 2, . . ., Tp) = Y@y« - -5 Tp),

ok + 1, 2g, . o, @) = plk, @k, 2g, . . ., 2,), Zay o - o5 %)

(where ¢ and p are of degrees less than s).
In the first case we have

o = QT -+ Tn) ~ (BY1, « < o, Yn)[ B0, Y1, - - Ym) &
Sl(yh £ IO xn) &... & Srn(ym’ Tyyeeny mn)]:

where R and S, are the arithmetic relations, existing by the induction hypothesis,
that are equivalent to 2o = p(¥y, - - -, ¥n) and ¥ = xy(2y, - . ., %,), respectively. Hence
in this case x, = @(z,, . . ., %,) is arithmetic.

In the second case we use the following method. We can express the relation
@y = @(@y, - . ., x,) with the help of the notion “sequence of numbers™ (f )¥% in the

following way :
o = @@y, - - s Tp) ~ (Bff{fo = (@2, . - ., %) & (K)[k < 2, —
Jevr = plk, fio Tas - - 5 2,)] & 29 = i

If S(y, xa, . - ., ,) and T'(z, 2y, . . ., Z541) are the arithmetic relations, existing by
the induction hypothesis, that are equivalent to y = (z,, ..., 2,) and z = p(zy, .. .,
@,.1), respectively, then

Xy = 'P(xls L RCT ) .'B“) o~ (Ef){‘s(fl]! Loy o ey xﬂ) & (k)[k = o
T(fk-!—la k:fm Loy v vy xn)] & Ty = fa:l} (17}

We now replace the notion **sequence of numbers” by “ pair of numbers”, assigning
to the number pair n, d the number sequence f™® (fi™ ® = [n]; + g+1a)> Where [n],
denotes the least nonnegative remainder of » modulo p.

We then have

Lemma 1. If f is any sequence of natural numbers and k any natural number,
there exists a pair of natural numbers, », d such that ™ @ and f agree in the first k
terms.

Proof. Let I be the maximum of the numbers k, fo, f1, . . ., fi—1. Let us determine
an n such that

n = fi[mod(l + (i + 1)I)] fori=0,1,..., k-1,
which is possible, since any two of the numbers 1 + (i + 1)l! ({ =0,1,...,k — 1)

51 Of course, not all x, . . ., ¥, need occur in the x, (see the example in footnote 27).
52 f here is a variable with the [infinite] sequences of natural numbers as its domain of values.
fi denotes the (k + 1)th term of a sequence f (f, denoting the first).



oy
BIBLioTEC S
%PUS D\E r-f.oﬂ- )

ON FORMALLY UNDECIDABLE PROPOSITIONS 103

are relatively prime. For a prime number contained in two of these numbers would
also be contained in the difference (i, — #,)!! and therefore, since |ty — dg] < L inll;
but this is impossible. The number pair », I! then has the desired property.

Since the relation x = [n], is defined by

r=n(modp) &z <p
and is therefore arithmetic, the relation P(zo, 2y, - .., z,), defined as follows:
P(xo, . - -, %) = (En, d){S([n]g+1, %25 - -5 z,) & (k) [k < 2y —
T([0); 4 ack+ 2» s ()14 ack+ 105 s+« o> Ta)] & Zo = [R]i 40, +nh

is also arithmetic. But by (17) and Lemma 1 it is equivalent to 2, = @(xy, - - ., %)
(the sequence f enters in (17) only through its first z, + 1 terms). Theorem VII is
thus proved.

By Theorem VII, for every problem of the form (x) F(z) (with recursive F) there is
an equivalent arithmetic problem. Moreover, since the entire proof of Theorem VII
(for every particular F) can be formalized in the system P, this equivalence is
provable in P. Hence we have

Theorem VIIL. In any of the formal systems mentioned in Theorem VI3 there are
undecidable arithmetic propositions.

By the remark on page 610, the same holds for the axiom system of set theory and
its extensions by w-consistent recursive classes of axioms.

Finally, we derive the following result :

Theorem IX. In any of the formal systems mentioned in Theorem VI®® there are
undecidable problems of the restricted functional calculus®* (that is, formulas of the
restricted functional calculus for which neither validity nor the existence of a
counterexample is provable).5®

This is a consequence of

Theorem X. Every problem of the form (x)F(x) (with recursive F) can be reduced to
the question whether a certain formula of the restricted functional-calculus is satisfiable
(that is, for every recursive F we can find a formula of the restricted functional cal-
culus that is satisfiable if and only if (z)F(z) is true.

By formulas of the restricted functional caleulus (r. f. c.) we understand expres-
sions formed from the primitive signs —, V, (2), =, %, ¥, ... (individual variables),
F(z), G(z,y), H(x, y,2),. .. (predicate and relation variables), where (z) and = apply
to individuals only.5¢ To these signs we add a third kind of variables, ¢(z), ¥(z, ¥),

53 Thege are the w-consistent systems that result from P when recursively definable classes of
axioms are added.

54 See Hilbert and Ackermann 1928.

In the system P we must understand by formulas of the restricted functional calculus those that
result from the formulas of the restricted functional caleulus of PM when relations are replaced
by classes of higher types as indicated on page 599.

85 In 1930a 1 showed that every formula of the restricted functional caleulus either can be
proved to be valid or has a counterexample. However, by Theorem IX the existence of this
counterexample is not always provable (in the formal systems we have been considering).

56 Hilbert and Ackermann (1928) do not include the sign = in the restricted functional caleulus.
But for every formula in which the sign = occurs there exists a formula that does not contain this
sign and is satisfiable if and only if the original formula is (see Godel 1930a).
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«(2, y, 2), and so on, which stand for object-functions]Gegenstandsfunktionen] (that
is, @(x), (x, y), and so on denote single-valued functions whose arguments and values
are individuals).®” A formula that contains variables of the third kind in addition to
the signs of the r. f. c. first mentioned will be called a formula in the extended sense
(i. e. 5.).°® The notions “satisfiable” and ““valid” carry over immediately to formulas
i. e. s., and we have the theorem that, for any formula 4 i. e. s., we can find a formula
B of the . f. c. proper such that 4 is satisfiable if and only if B is. We obtain B from
A by replacing the variables of the third kind, (), yi(z, ), . . ., that occur in 4 with
expressions of the form (12) F(z, x), (12)G(z, x, y), . . ., by eliminating the “descriptive ”’
functions by the method used in PM (I, ¥14), and by logically multiplying®® the
formula thus obtained by an expression stating about each F, @, . . . put in place of
some g, i, ... that it holds for a unique value of the first argument [for any choice
of values for the other arguments].

We now show that, for every problem of the form (x)F() (with recursive F), there
is an equivalent problem concerning the satisfiability of a formula i. e. s., so that, on
account of the remark just made, Theorem X follows.

Since F is recursive, there is a recursive function D(x) such that F(z) ~ [D(z) = 0],
and for @ there is sequence of functions, @,, @,, ..., @,, such that D, = O, Dy(2)
=z + 1, and for every @, (1 < k £ n) we have either

L. (Em ST xm)[cpk(o’ Tas v ey xm} = ¢p(‘r2’ L xrﬂ)]l
(xl Loy vy IM){CDk[‘Dl(a“J), Loy v ony xm] = ¢Q£x: r;pk(x: Eoyvnny xm)! 3’.’2, eSaley :Cm]}, (18)
with p, ¢ < k,59%

or
2' {371, L ) xm}[cpk(xll T I xm) = ¢r(¢i;(£1}: LELMLE Q{'(xs))],ﬁo (19)
withr < k, i, < k(forv=1,2,...,5),
or
3. (@15 s ) B@rs - - 1 Z) = Dy(By, ..., By (0))]. (20)

We then form the propositions
(@)P1(2) = 0 & (z, Y)[D1(2) = Py(y) == = y], (21)
(@)[Py(x) = 0]. (22)

In all of the formulas (18), (19), (20) (for k = 2,3,..., n) and in (21) and (22) we
now replace the functions @; by function variables ¢, and the number 0 by an

57 Moreover, the domain of definition is always supposed to be the entire domain of individuals,

#8 Variables of the third kind may occur at all argument places occupied by individual variables,
for exalnple' ¥ = ?tx)r Pz, ply)), Gz, @(¥)), ), and the like.

5% That is, by forming the conjunction,

59 [The last clause of footnote 27 was not taken into account in the formulas (18). But an
explicit formulation of the cases with fewer variables on the right side is actually necessary here
for the formal correctness of the proof, unless the identity function, I{x) = x, is added to the
initial functions.]

% The 5, (i = 1,..., s) stand for finite sequences of the variables x,, z,, ..., 2,; for example,
Ty, Tay, g
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individual variable z, not used so far, and we form the conjunction C of all the
formulas thus obtained.

The formula (Ez,)C then has the required property, that is,

1. If (2)[P(x) = 0] holds, (Eux,)C is satisfiable. For the functions Dy, Dy, ..., D,
obviously yield a true proposition when substituted for Prs Pay «+ oy @p in (B2)0;

2. If (Bx,)C is satisfiable, (z)[®(x) = 0] holds.

Proof. Let by, s, . .., ¢, be the functions (which exist by assumption) that vield a
true proposition when substituted for ¢y, @,, . . ., @, in (E2,)C. Let & be their domain
of individuals, Since (Ex,)C holds for the functions i, there is an individual a (in
9) such that all of the formulas (18)~(22) go over into true propositions, (18")-(22"),
when the @, are replaced by the i, and 0 by a. We now form the smallest subclass
of & that contains a and is closed under the operation i, (z). This subclass (') has the
property that every function ;, when applied to elements of I, again yields elements
of J’. For this holds of ¢, by the definition of &', and by (18'), (19'), and (207 it
carries over from ¢, with smaller subscripts to ¢, with larger ones. The functions that
result from the , when these are restricted to the domain ¥ of individuals will be
denoted by ;. All of the formulas (18)-(22) hold for these functions also (when we
replace 0 by @ and @, by ).

Because (21) holds for ] and a, we can map the individuals of §’ one-to-one onto
the natural numbers in such a manner that a goes over into 0 and the function i
into the successor function @,. But by this mapping the functions Y go over into the
functions @,, and, since (22) holds for ¢ and a, (z)[®,(x) = 0], that is, (x)[DP(x) = 0],
holds, which was to be proved.5!

Since (for each particular F) the argument leading to Theorem X can be carried
out in the system P, it follows that any proposition of the form (z)F(z) (with recur-
sive F) can in P be proved equivalent to the proposition that states about the corre-
sponding formula of the r. f. c. that it is satisfiable. Hence the undecidability of one
implies that of the other, which proves Theorem I1X.62

4

The results of Section 2 have a surprising consequence concerning a consistency
proof for the system P (and its extensions), which can be stated as follows :

Theorem XI. Let k be any recursive consistent®® class of FORMULAS ; then the SENTEN-
TIAL FORMULA stating that « is consistent is not k-PROVABLE; in particular, the consis-
tency of P is not provable in P,%* provided P is consistent (in the opposite case, of
course, every proposition is provable [in P]).

The proof (briefly outlined) is as follows. Let « be some recursive class of FORMULAS
chosen once and for all for the following discussion (in the simplest case it is the

°! Theorem X implies, for example, that Fermat’s problem and Goldbach’s problem could be
solved if the decision problem for the r. f. ¢. were solved.

82 Theorem IX, of course, also holds for the axiom system of set theory and for its extensions
by recursively definable w-consistent classes of axioms, since there are undecidable propositions
of the form () F(z) (with recursive F) in these systems too,

83 "k is consistent” (abbreviated by “Wid(x)") is defined thus: Wid(x) = (Ex)(Form(z) &
Bew,(x)).

8% This follows if we substitute the empty class of ForMULAS for «.
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empty class). As appears from 1, page 608, only the consistency of « was used in
proving that 17 Gen r is not x-PROVABLE ;%5 that is, we have

Wid(x) — Bewy(17 Gen r), (28)
that is, by (6.1),
Wid(x) — (z) @ B, (17 Gen r).
By (13), we have
17 Gen r = Sb(p}s,)),
hence

Wid(x) — (z) B, Sb(pL?,).
that is, by (8.1),
Wid(x) > (@)Q(z, p). (24)

We now observe the following : all notions defined (or statements proved) in Section
2,%¢ and in Section 4 up to this point, are also expressible (or provable) in P. For
throughout we have used only the methods of definition and proof that are customary
in classical mathematics, as they are formalized in the system P. In particular, « (like
every recursive class) is definable in P. Let w be the SENTENTIAL FORMULA by which
Wid(x) is expressed in P. According to (8.1), (9), and (10), the relation Q(z, y) is
expressed by the RELATION siGN ¢, hence Q(x, p) by » (since, by (12), r = Sb(q3%)),
and the proposition (2)@(z, p) by 17 Gen r.

Therefore, by (24), w Imp (17 Gen r) is provable in P®7 (and a fortiori k-PROVABLE).
If now w were k-PROVABLE, then 17 Gen » would also be k-PROVABLE, and from this
it would follow, by (23), that « is not consistent.

Let us observe that this proof, too, is constructive ; that is, it allows us to actually
derive a contradiction from «, once a PROOF of w from « is given. The entire proof of
Theorem XI carries over word for word to the axiom system of set theory, M, and to
that of classical mathematics,®® 4, and here, too, it yields the result: There is no
consistency proof for M, or for 4, that could be formalized in M, or 4, respectively,
provided M, or 4, is consistent. I wish to note expressly that Theorem XI (and the
corresponding results for M and 4) do not contradict Hilbert’s formalistic viewpoint.
For this viewpoint presupposes only the existence of a consistency proof in which
nothing but finitary means of proof is used, and it is conceivable that there exist
finitary proofs that cannot be expressed in the formalism of P (or of M or A).

Since, for any consistent class «, w is not x-PROVABLE, there always are prop-
ositions (namely w) that are undecidable (on the basis of ) as soon as Neg(w) is not
k-PROVABLE; in other words, we can, in Theorem VI, replace the assumption of
w-consistency by the following: The proposition ““« is inconsistent” is not x-PROV-
ABLE. (Note that there are consistent « for which this proposition is K-PROVABLE.)

98 Of course, r (like p) depends on k.

% From the definition of “‘recursive’ on page 602 to the proof of Theorem VI inclusive.

87 That the truth of w Imp (17 Gen 7) can be inferred from (23) is simply due to the fact that
the undecidable proposition 17 Gen » asserts its own unprovability, as was noted at the very
beginning.

98 See von Neumann 1927.



qﬂggﬁuo'. ECE

S DE MOS'

ON FORMALLY UNDECIDABLE PROPOSITIONS 107

In the present paper we have on the whole restricted ourselves to the system P,
and we have only indicated the applications to other systems. The results will be
stated and proved in full generality in a sequel to be published soon.®® In that paper,
also, the proof of Theorem XI, only sketched here, will be given in detail.

Note added 28 August 1963. In consequence of later advances, in particular of the
fact that due to A. M. Turing’s work®® a precise and unquestionably adequate
definition of the general notion of formal system™ can now be given, a completely
general version of Theorems VI and XI is now possible. That is, it can be proved
rigorously that in every consistent formal system that contains a certain amount of
finitary number theory there exist undecidable arithmetic propositions and that,
moreover, the consistency of any such system cannot be proved in the system.

88 [This explains the “I" in the title of the paper. The author’s intention was to publish this
sequel in the next volume of the Monatshefte. The prompt acceptance of his results was one of the
reasons that made him change his plan.]]

89 See Turing 1937, p. 249.

"® In my opinion the term *formal system™ or ““formalism" should never be used for anything
but this notion. In a lecture at Princeton (mentioned in Princeton University 1946, p. 11 [see
Davis 1965, pp. 84-88])) I suggested certain transfinite generalizations of formalisms, but these
are something radically different from formal systems in the proper sense of the term, whose
characteristic property is that reasoning in them, in principle, can be completely replaced by
mechanical devices.

ON COMPLETENESS AND CONSISTENCY
(1931a)

Let Z be the formal system that we obtain by supplementing the Peano axioms
with the schema of definition by recursion (on one variable) and the logical rules of
the restricted functional calculus. Hence Z is to contain no variables other than
variables for individuals (that is, natural numbers), and the principle of mathematical

induction must therefore be formulated as a rule of inference. Then the following
hold :

1. Given any formal system S in which there are finitely many axioms and in
which the sole principles of inference are the rule of substitution and the rule of
implication, if S contains® Z, S is incomplete, that is, there are in S propositions (in

! That a formal system S contains another formal system T' means that every proposition
expressible (provable) in T is expressible (provable) also in S,

[Remark by the author, 18 May 1966 :]

[This definition is not precise, and, if made precise in the straightforward manner, it does not
yield a sufficient condition for the nondemonstrability in S of the consistency of S. A sufficient
condition is obtained if one uses the following definition: “S contains 7' if and only if every
meaningful formula (or axiom or rule (of inference, of definition, or of construction of axioms))
of T is @ meaningful formula (or axiom, and so forth) of S, that is, if S is an extension of 7'".

Under the weaker hypothesis that Z is recursively one-to-one translatable into S, with demon-
strability preserved in this direction, the consistency, even of very strong systems .S, may be
provable in § and even in primitive recursive number theory. However, what can be shown to be
unprovable in S is the fact that the rules of the equational caleulus applied to equations, between
primitive recursive terms, demonstrable in S yield only correct numerical equations (provided
that S possesses the property that is asserted to be unprovable). Note that it is necessary to
prove this “outer’ consistency of S (which for the usual systems is trivially equivalent with
consistency) in order to “*justify’’, in the sense of Hilbert’s program, the transfinite axioms of a
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particular, propositions of Z) that are undecidable on the basis of the axioms of S,
provided that S is w-consistent. Here a system is said to be w-consistent if, for no

property F of natural numbers, (Ex)Fz as well as all the formulas F(i),i = 1,2, ...,
are provable.

2. In particular, in every system S of the kind just mentioned the proposition that
S is consistent (more precisely, the equivalent arithmetic proposition that we obtain
by mapping the formulas one-to-one on natural numbers) is unprovable.

Theorems 1 and 2 hold also for systems in which there are infinitely many axioms
and in which there are other principles of inference than those mentioned above,
provided that when we enumerate the formulas (in order of increasing length and, for
equal length, in lexicographical order) the class of numbers assigned to the axioms
is definable and decidable [entscheidungsdefinit]] in the system Z, and that the same
holds of the following relation R(z,, x,, ..., z,) between natural numbers: ‘““the for-
mula with number @, follows from the formulas with numbers z,, .. ., z, by a single
application of one of the rules of inference”. Here a relation (class) R(x,, z,, . . ., ,)
is said to be decidable in Z if for every n-tuple (ky, ks, . .., k,) of natural numbers
either R(ky, ks, . .., k,) or R(ky, ko, . . ., k,) is provable in Z. (At present no decidable
number-theoretic relation is known that is not definable and decidable already in Z.)

If we imagine that the system Z is successively enlarged by the introduction of
variables for classes of numbers, classes of classes of numbers, and so forth, together
with the corresponding comprehension axioms, we obtain a sequence (continuable
into the transfinite) of formal systems that satisfy the assumptions mentioned above,
and it turns out that the consistency (w-consistency) of any of those systems is
provable in all subsequent systems. Also, the undecidable propositions constructed
for the proof of Theorem 1 become decidable by the adjunction of higher types and
the corresponding axioms; however, in the higher systems we can construct other
undecidable propositions by the same procedure, and so forth. To be sure, all the
propositions thus constructed are expressible in Z (hence are number-theoretic prop-
ositions) ; they are, however, not decidable in Z, but only in higher systems, for
example, in that of analysis. In case we adopt a type-free construction of mathematics,
as is done in the axiom system of set theory, axioms of cardinality (that is, axioms
postulating the existence of sets of ever higher cardinality) take the place of the type
extensions, and it follows that certain arithmetic propositions that are undecidable
in Z become decidable by axioms of cardinality, for example, by the axiom that there
exist sets whose cardinality is greater than every «,, where ¢y = Ry, ¢, ; = 2%.

system S. (** Rules of the equational caleulus™ in the foregoing means the two rules of substituting
primitive recursive terms for variables and substituting one such term for another to which it
has been proved equal.)

The last-mentioned theorem and Theorem 1 of the paper remain valid for much weaker systems
than Z, in particular for primitive recursive number theory, that is, what remains of Z if quanti-
fiers are omitted. With insignificant changes in the wording of the conclusions of the two theorems
they even hold for any recursive translation into S of the equations between primitive recursive
terms, under the sole hypothesis of w-consistency (or outer consistency) of S in this translation.]
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