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Cocorín en la quimera

perdió el sombrero,

y lo tienen los niños

de los herreros;

Bocanegra le dice

Cocorín toma el sombrero

y Cocorín le contesta

tómalo, no lo quiero

porque tengo cinco duros

para comprarme otro nuevo.

This is my fear

as if I am nothing

who pretends all the time

to be somebody,

and has to be hyperactive all the time,

just to fascinate people enough

so that they don’t notice

that there is nothing.

Slavoj Žižek





Abstract

Computer Vision is a field that aims to simulate the human visual system. In the last decade, with

the continuous emergence of multimedia data and applications, there has been an increasing interest to

exploit all this available information, which mainly consists in images and videos. Classic approaches

to Computer Vision problems constitute a Bag of Tricks that have been useful for many years. With the

irruption of Deep Learning, most of these techniques, all of a sudden, became old. The reasons are the

impressive outperforming results of Deep Learning techniques that, taking advantage of the available data,

provide an end-to-end solution that is nowadays easy to use, even for non experts users. Surprisingly, some

Variational Methods, which can be considered as classical methods in Computer Vision, survived and

maintained the state of the art leading in some specific tasks: Medical Imaging Registration for instance.

The impact of Deep Learning applications in society is undeniable. Moreover, the profit of automatiz-

ing many processes and tedious tasks that are still nowadays realized by humans, should be taken as good

news, since it would provide more free time for people... and thus, more time to live. The dark side of

such automatization will rely on how this new techniques, framed in the Artificial Intelligence field, are

democratized across society. This is, how useful in practice are those new emerging tools and who has

access to them.

Autonomous driving, Medical Imaging, earthquakes and pollution predictions are few examples of

critical application fields where being inaccurate implies disastrous consequences. In such scenarios,

classic approaches in Computer Vision, provides less uncertainty in outcomes. In this sense, classical

methods are more robust, in particular Variational Methods which have a deep and strong mathematical

foundations. Moreover, recently, adversarial attacks on Neural Networks have shown how easy is to fool

Deep Learning systems, increasing skepticism for potential Deep Learning users as Medical experts.

In this thesis we address Computer Vision problems in real scenarios from two perspectives with

the usage of: (1) Variational Methods and (2) Deep Learning techniques. The former is a powerful tool

that gives an extraordinary control over the expected outcomes with very accurate results if some hyper-

parameterization is carried out properly. However, this required (usually manual) hyper-parameterization

constitutes a huge shortcoming in practice, and a limitation for a wide use by non experts. The later

relies mainly on data and solves, until a certain point, an high-dimensional interpolation problem with

astonishing results that, however, are sometimes unpredictable (and thus dangerous) when unseen data

from different distribution is tested (extrapolation).
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To this end:

1. We start using Variational Methods to solve a Saliency detection problem that leads to a nearly

binary image (segmentation) through a novel non local non convex variational model. Such method

is applied to Magnetic Resonance images, where the goal is to detect and segment tumoral tissues.

Then, the hyper-parameterization of such a model is addressed using Deep Learning. To this end,

the numerical resolution is re-interpreted as extra layers embedded in a global Neural Network

architecture. This constitute a first attempt to combine Variational Methods with Deep Learning.

Consequently, drawbacks of a technique can be circumvent by the goods of the other.

2. Then, a Deep Learning method is considered to face an image classification task for automatically

recognize public dumpsters. The difficulty of such a task, out from a theoretical viewpoint and/or

laboratory, is the lack of data. Deep Learning is data hungry. Acquiring all these data is often an

expensive investment out of reach for many companies or public entities, even more when data

must be structured and labeled for supervised learning. We propose a semi-automatic method for

selecting appropriate images candidates to leverage the manual labelling procedure and reach top

performance results. We also show that the predictions uncertainty may be address in order to

improve the robustness of such Deep Neural Networks.

3. With the acquired experience of Variational and Deep Learning methods, we derive both techniques

from a more general framework known as Bayesian Inference, showing that the majority of novel

techniques that succeed in one domain can be explained trough this perspective. In fact, Variational

Methods and, Deep Learning or Machine Learning, are two sides of the same coin. To test the

power of such generalist methodology, we consider a very ill-posed problem: 3D Human Pose

Estimation from 2D Images. Using recent Deep Learning architectures as Capsule Networks and

novel approaches as Bayesian Deep Learning, we propose a simple end-to-end Bayesian Capsule

Network. This proposal makes use of Deep Learning techniques and Variational Inference to reach

state of the art results while keeping a general purpose approach.

Variational and Deep Learning methods are shown to be very powerful and performing tools. However,

both have several drawbacks that limit their usage. In the case of Variational methods, despite the very

accurate results they provide, the need of an optimal hyper-parameterization to achieve those performances

makes them impracticable. On the other hand, Deep Learning methods manage to avoid this inconvenient

relying on data but sacrifices robustness. The general results show that, by combining both methods, it

is possible to keep accurate predictions and robustness. Finally, as a consequence of our research and

results, we conclude that in the future, Variational and Deep Learning Methods in Computer Vision are

condemned to get along. The same applies for experts in both fields.



Resumen

Antecedentes La Visión Artificial tiene como objetivo simular el sistema de visión humano. En la

última década, el contínuo crecimiento del mundo multimedia ha despertado mucho interés por hacer

uso de tan ingente cantidad de datos, en gran parte, imagenes y vídeos. Las herramientas y técnicas

clásicas usadas en Visión Artificial constituyen un Bag of Tricks con el que muchos de los problemas de

visión han sido resueltos con éxito hasta cierto punto. Con la irrupción del Aprendizaje Profundo (Deep

Learning), la mayoría de las técnicas hasta entonces punteras, de repente envejecieron. La razón estriba en

los impresionantes resultados obtenidos por estas nuevas técnicas que hacen uso de muchos de esos datos

ahora disponibles. Además, gracias al desarrollo de herramientas software con soporte computacional,

se hace fácil y accesible su uso incluso para usuarios no expertos. Sorprendentemente, algunas técnicas

clásicas, como los Métodos Variacionales, sobrevivieron manteniendo el liderazgo en el estado del arte de

algunos campos específicos, por ejemplo, en el Registro de Imagen Médica.

Los Métodos Variacionales están presentes en muchos ámbitos de la ciencia e ingeniería como la

mecánica de fluidos, electromagnetismo, o la física cuántica. Además, consituye la base teórica de muchos

de los métodos de resolución numérica usados hoy en día. En el ámbito de la Visión Artificial, estos

métodos permiten resolver problemas tales como la eliminación de ruido (denoising), segmentación de

imágenes, restauración (inpainting) y muchos más.

El Aprendizaje Profundo en cambio, es una técnica particular dentro del campo del Aprendizaje

Automático (Machine Learning) que consiste en la extracción y jerarquización de características de

imágenes o datos en general. Esta técnica ha permitido recientemente dar solución a problemas de Visión

Artificial que hasta entonces eran inabordables o muy difíciles. A pesar de que dichas técnicas fueron

descubiertas décadas atrás, fue gracias al desarrollo de procesadores gráficos y el aumento de la potencia

computacional que empezaron a usarse ampliamente.

El impacto del Aprendizaje Profundo en la sociedad es innegable. La posibilidad de automatización

de tediosos procesos que hasta ahora han sido realizados por personas debería constituir un avance

social, pues se traduciría en más tiempo libre para, simplemente, vivir. Estos avances están sujetos a la

democratización de dichas técnicas, y por lo tanto al acceso a ellas.
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Hipótesis y Objetivos La conducción automática, el análisis de imagen médica, la predicción de

terremotos o de contaminación son algunos ejemplos de aplicaciones críticas donde resultados imprecisos

pueden acarrear consecuencias desastrosas. En muchos escenarios, los enfoques clásicos de Visión

Artificial proporcionan menos incertidumbre en estos resultados. En este sentido, los métodos clásicos son

más robustos, en particular los Métodos Variacionales que tienen profundas y sólidas bases matemáticas.

Además, recientemente se ha mostrado cómo crear simples ataques adversarios a Redes Neuronales y

sistemas de Deep Learning, lo que incrementa el escepticismo en usuarios potenciales como profesionales

de la medicina.

En resumen, el Aprendizaje Profundo ha conseguido desbancar a una gran cantidad de métodos

clásicos aplicados a la Visión Artificial. Sin embargo, en algunas tareas particulares, los Métodos

Variacionales, siguen dando resultados mejores y más fiables. La hipótesis central de esta tesis se traduce

en dar respuesta a las siguientes preguntas:

1. ¿Es posible combinar ambas técnicas y mejorar así los resultados del estado del arte en Visión

Artificial?

2. ¿Podemos formular una metodología general que explique y modele ambas técnicas?

En esta tesis nos enfrentamos a problemas de Visión Artificial en escenarios reales desde dos perspec-

tivas: el uso de (1) Métodos Variacionales y (2) técnicas de Aprendizaje Profundo. Los primeros, permiten

un control extraordinario sobre las soluciones que provee con resultados muy precisos siempre y cuando

se lleve a cabo una correcta hiper-parametrización. De hecho, este requisito de hiper-parametrización (ha-

bitualmente manual) es la principal limitación para externder su uso a usuarios no expertos. Los segundos,

dependen de la disponibilidad de una gran cantidad de datos para el aprendizaje de los parámetros de la

red y resuelven, hasta cierto punto, un problema de interpolación en alta dimensión con resultados sin

precedentes que, sin embargo, son impredecibles (por tanto peligrosos) cuando se evalúan nuevos datos

que no pertenecen a la distribución de datos de entrenamiento, es decir, en la resolución de problemas que

requieran extrapolación.

Los principales objetivos fijados en este trabajo son:

1. Analizar los Métodos Variacionales y de Aprendizaje Profundo para identificar los elementos

comunes y diferenciales.

2. Combinar estas dos técnicas de manera sinérgica dando lugar a métodos híbridos que mejores el

rendimiento en problemas de Visión Artificial.

3. Proponer una metodología general que integre ambos métodos.

Metodología En primer lugar, hemos aplicado Métodos Variacionales para resolver un problema de

detección de Saliencia que resulta en imágenes casi binarias (segmentación). En concreto, mediante

un modelo variacional no local y no convexo que se ha aplicado la segmentación de tejidos tumorales

en imágenes de Resonancia Magnética. A continuación, el problema de la hiper-parametrización del

modelo se aborda con el uso de Aprendizaje Profundo. Para ello, la resolución numérica del modelo se

re-interpreta como ’capas’ extra embebidas en una Red Neuronal. Con ello, tenemos un primer intento de

combinar ambas técnicas de forma que las debilidades de una se soslayen con los virtudes de la otra.
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En segundo lugar, desde un enfoque clásico de Aprendizaje Profundo, nos enfrentamos a un problema

de clasificación de imágenes, en particular, de contenedores de basura. La dificultad de esta tarea fuera

de un entorno teórico reside en la falta de datos. Las técnincas de Aprendizaje Profundo requieren

muchos datos que no siempre son fáciles de obtener. Además, en la mayoría de los casos necesitamos que

esos datos esten estructurados y etiquetados para un aprendizaje supervisado. Proponemos un método

semi-automático para seleccionar imágenes adecuadas, reduciendo así el coste del etiquetado manual y

alcanzando altos niveles de precisión. También mostramos que paliar la incertidumbre en las predicciones

que caracterizan a las Redes Neuronales se traduce en una mayor robustez del sistema.

Por último, con la experiencia adquirida en Métodos Variacionales y de Aprendizaje Profundo,

derivamos ambas técnicas desde un marco más general conocido como Inferencia Bayesiana, mostrando

que la mayoría de técnicas novedosas que tienen éxito en Aprendizaje Profundo se pueden explicar de

forma fundamentada desde esta perspectiva. De hecho, los Métodos Variacionales y, el Aprendizaje

Profundo y Aprendizaje Automático, son dos caras de una misma moneda. A tal fin, consideramos

resolver un problema muy mal planteado: Estimación de Pose Humana 3D a partir de Imágenes 2D.

Haciendo uso de arquitecturas recientes en Aprendizaje Profundo como son las Redes de Cápsulas, y

nuevas propuestas de Aprendizaje Profundo Bayesiano, proponemos una Red de Cápsulas Bayesiana

(BCN) extremo a extremo. Dicha arquitectura hace uso de técnicas de Aprendizaje Profundo e Inferencia

Variacional alcanzando resultados del estado del arte mientras mantiene un enfoque de propósito general.

Resultados Los Métodos Variacionales y de Aprendizaje Profundo han desmostrado ser unas poderosas

herramientas. Sin embargo, ambas presentan limitaciones en su uso. Por un lado, los Métodos Varia-

cionales, a pesar de los precisos resultados que proveen, requieren de una hiper-parametrización que

los hace a veces impracticables. Por otro lado, los Métodos de Aprendizaje Profundo son capaces de

soslayar este problema haciendo uso de multitud de datos y ejemplos disponibles. En contrapartida, estos

métodos aumentan la incertidumbre de los resultados reduciendo la robustez del sistema. Los resultados

generales muestran que, con la combinación de ambos métodos, es posible mantener tanto la precisión en

las predicciones como la robustez del sistema. En concreto:

En el problema de deteción de saliencia, los resultados mejoran un 30,8% en términos de Dice cuando

se combinan ambos métodos. Es decir, de un valor Dice de 0,655 en el modelo variacional (TVS), a un

0,857 en el modelo combinado propuesto (TVS+CNN).

Los dos métodos semi-automáticos para el entrenamiento de una Red Neuronal Convolucional (CNN)

de classificacion de imágenes permiten reducir el número de ejemplos necesarios y seleccionar los mejores

para incrementar el rendimiento y reducir a la vez la incertidumbre en las predicciones. En concreto, el

número de imágenes de entrenamiento se reduce a un 2,28% del total. Los métodos propuestos mejoran

un 25% y 37,5% la precisión con respecto al margen de mejora dado por el baseline y una CNN entrenada

con el 80% de los datos.

La arquitectura propuesta para la detección de pose 3D, Bayesian Capsule Network (BCN), alcanza

resultados del estado del arte, 87,22 mm de error promedio por articulación, con una desviación típica,

sin embargo, de 17,15 mm que constituyen una reducción de un 52,83% con respecto al segundo mejor

candidato.
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Conclusiones Finalmente, como consecuencia de esta investigación y de sus resultados concluímos

que:

1. Ambos métodos considerados en esta tesis (Variacional y Aprendizaje Profundo) pueden ser

combinados obteniendo mejoras en los resultados de los problemas resueltos.

2. Ambas técnicas forman parte de una metodología más general (Inferencia Bayesiana) de la cual

pueden derivarse individualmente.

3. El uso de dicha metodología permite mejorar los resultados aprovechando las propiedades de ambos

métodos.

Por último, con vistas al futuro, observamos que los Métodos Variacionales y de Aprendizaje Profundo

están condenados a entenderse en el campo de la Visión Artificial. Lo mismo se aplica a expertos de dicho

campo.
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CHAPTER 1

Introduction

Mare, llévame al colegio

a educarme la memoria,

mira que no quiero soñar

con el burro de la noria [...]

Cante flamenco

Image Processing (IP) is a sub-field of a wider one referred to as Signal Processing (SP), which

in turn belongs to the Mathematics, Information and Electrical Engineering domain. In SP, a signal is

understood as a function that carries information. Besides, Information processing is the task of changing

or modify (process) information with a particular objective. The common factor throughout these fields

and sub-fields is the concept of information, which plays the role of the main object at each discipline.

The definition of information has evolved and may differ a lot from a context to another, and yet there is

not a consensus that satisfies the wide range of uses for such a word.

It is also the case for a relatively new field embedded in the so-called domain of Artificial Intelligence,

known as Machine Learning (ML). Learning is defined as the process of acquiring knowledge or infor-

mation. Thus, Machine Learning is the task of acquiring (process) knowledge (information) performed

by a machine. Comparing to SP or Information Processing, the main difference with respect to Machine

Learning in a first approach is concerned to who or what is carrying out the task. To be more precise,

since in each case the solutions come out from an algorithm, we can add that the difference is if the rules

that govern the algorithm are pre-defined by human or, on the contrary, are inferred/learned automatically.

In any case, again, the key-point is what is meant by information. In words of Pearl and Mackenzie:

My emphasis on language also comes from a deep conviction that language shapes our

thoughts. You cannot answer a question that you cannot ask, and you cannot ask a question

that you have no words for. [Pearl and Mackenzie, 2018]

1
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Human
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Figure 1.1: From left to right: a subject process information. In the case of traditional Information
Processing, is a human that program through prior methods how the object (information) shall be
processed. On the other hand, in Machine Learning, the specific processing that is carried out by a
Machine is to learn a particular task.

1.1 What is Information?

In [Capurro and Hjørland, 2003], the authors provide a review of the use of the term, and how it has been

interpreted from the ancient Greeks to the present days and show the importance of going back to the

roots to have a better understanding of what ideas hide behind the concept of information:

[A] word never–well, hardly ever–shakes off its etymology and its formation. In spite of all

changes in and extensions of and additions to its meanings, and indeed rather pervading

and governing these, there will still persist the old idea. [...] Going back into the history of

a word, very often into Latin, we come back pretty commonly to pictures or models of how

things happen or are done. [Austin, 1961]

Following this recommendation, and looking in the etymology of the work, information may be

composed by the prefix in from Latin, meaning to generate something inward (from outside); and formatio

(Latin noun, f, genitive formationis), in the sense of give form to, instruct, educate. If we take a look in

the Asian culture however, we will notice that Chinese is a language that has maintained a strong dialectic

component, which lead us to a sighly different interpretation. In fact, as many other words in traditional

Chinese, the word information is written with two characters: 信息. The first separately means "letter"

while the second means "interest". This contrast of ideas advances us the distinction between content and

container that we will have to make later.

From a mathematical point of view, however, there is a lack of consensus on the meaning and

definition of information which also vary substantially depending on the considered grade of abstraction

[Floridi, 2017]. Some efforts have been done from different fields related with Information processing

to converge to a Generalized Definition of Information (GDI) 1. GDI nevertheless relies in turn on the
1according to [Floridi, 2017], σ is an instance of information, understood as semantic content, if and only if:

(GDI.1) σ consists of one or more data;
(GDI.2) the data in are well-formed;
(GDI.3) the well-formed data in are meaningful
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definition of data, that can also be an ambiguous and polyhedral concept, leading to scientist to use an

ad-hoc designation of what is understood by information in each particular task that they carry out.

Consequently, to avoid this tangle of definitions, in Image Processing, we shall assume that an image

is itself the information (content) or, alternatively, the container of such information. In that sense, the

Image Processing consists of acquiring images or extracting features of interest from those images, which

are signals with specific structure and properties that come from a concrete source of information, usually,

a camera. Of course, this distinction can also be applied to Machine Learning generalizing for any sort of

signal. Machine Learning with respect to Image Processing is more often used to extract information and

thus considering the signal as a container.

In other words, sometimes we will focus on separating mixed signals that come from different sources

and selecting those of interest. An example of that is denoising, which is an Image Processing (or Machine

Learning) task that consists of removing the noise added unwittingly to a signal intended to be acquired.

Other times, the considered Machine Learning (or Image Processing) task shall aim to obtain high-level

semantic features, as in semantic segmentation, e.g., cropping a person in a given picture. The former, an

instance of a so-called Restoration Problems family, aim at recovering an original image (or signal) that

has been corrupted, while the latter relates to transform a signal (maybe an image) into another space of

features where the relevant information is present.

1.2 Variational Methods

Calculus of Variations can trace its history back to the XVII century, precisely with Newton’s minimal

resistance problem in Philosophiæ naturalis principia mathematica in 1687 [Newton, 1987], and is

concerned with the extrema of a functional (maxima or minima), understood as a function that associates

a scalar to another function (function of functions). The field has attracted the attention of brilliant

mathematicians to the point the history of Mathematics has been intertwined with that of the Calculus

of Variations for over 2 centuries. From Leibniz and Bernoulli bothers to Dirichlet, Hamilton, Hilbert

and Jacobi, passing through Euler, Lagrange and Laplace, this field has acquired such prominence with

ground-breaking theoretical results that have impacted a wide range of applications in other fields such

as Physics and Engineering. Sometimes it is maybe not easy to find, hidden behind emerging fields that

seem to be purely genuine, the remains and links to the foundations of the Calculus of Variations, but they

are present and drive solutions for quite different problems like in fluid mechanics, electromagnetism,

gravitation, quantum mechanics and many others.

As is often the case, we are continuously reinventing the wheel. Nonetheless each time a new problem

is re-written in a different way being able to be cast as a particular or a more general case of a previous

well-known problem, we are indeed increasing cumulatively the knowledge and the understanding of the

matter. On the one hand, from the perspective of what was at the beginning though as something new, it is

a step back, in the sense we realize that it was not new, but on the other hand, it is a step forward in an

abstract sense, which is an overriding objective in the field of Mathematics.

Image Processing by variational methods is an established field in applied mathematics and computer

vision [Morel and Solimini, 1995], [Aubert and Kornprobst, 2006], [Vese and Guyader, 2015] which aims

to model typical low and mid level image reconstruction tasks and restoration processes such as denoising,

deconvolution, inpainting, segmentation, registration and super-resolution of digital degraded images.

Since the mathematical approach of Tikhonov and Arsenin on ill-posed inverse problems [Bell, 1978] and
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the applied work of Rudin, Osher and Fatemi [Rudin et al., 1992] through their celebrated ROF model, a

standing effort to deal with new Image Processing tasks through variational methods has arose.

1.3 Machine Learning

First termed by Arthur Lee Samuel in 1959 at IBM, Machine Learning arises in the context of Computing

Gaming and Artificial Intelligence (AI) with the idea of, as we stated before, equipping machines with

methods to acquire information (or the required knowledge) to perform specific tasks. This learning

procedure is supposed to be achieved using data. Nowadays, the increasing interest of Machine Learning

is in large measure due to the huge amount of available data that is stored and generated every day. Despite

the undeniable importance of Machine Learning from two decades to the present, it has not always been

the case. The first neural network machine Stochastic Neural Analog Reinforcement Calculator (SNARC),

with learning capabilities, was created by Marvin Minsky and Dean Edmonds in 1951. In the 1960s

Bayesian methods were used in Machine Learning to perform probabilistic inference [Solomonoff, 1964].

A decade after, in the 70s, in the wake of a book published by Minsky and Seymour Papert, Perceptrons

(1969) [Minsky and Papert, 2017], in where the authors shown the limitations of neural networks, the

AI community started to perceive those neural networks as a blind alley for AI research, leading to a

so-called AI Winter. Curiously, it was a that time that the precursor of the nowadays well-established

back-propagation algorithm, the general method for Automatic Differentiation (AD) appeared, proposed

by Seppo Linnainmaa [Linnainmaa, 1976]. Connectionism, how the field of modern neural networks

was called at that time, was about to nearly disappear although important achievements in applying

back-propagation to neural networks was reached in 1974 by Paul Werbos [Werbos, 1994]. It is in the

middle of the 80s that the back-propagation algorithm was proved to be an efficient an practical way to

successfully train neural networks, with the works of David Rumelhart, Geoffrey Hinton and Ronald J.

Williams [Rumelhart et al., 1988]. After that, some discovers came up, among others: Random Forest

algorithm and Support Vector Machines (SVM) in 1995, Long Short Term Memory (LSTM) in 1997

from Recurrent Neural Networks (RNN) in 1982, followed by the creation, in 2009, of one of the largest

image dataset, the ImageNet, at Stanford University. The rise of the field can be considered to have

started in 2012, with novel CNN and DL methods, when the state of the art in image classification was

greatly improved. From that achievement on, there has been a hype around Machine Learning an Artificial

Intelligence, where an important part of the applications focused on the field of Computer Vision (CV)

and IP.

1.4 Motivation

Computer Vision is a field that aims to simulate the human visual system. In the last decade, with

the continuous emergence of multimedia data and applications, there has been an increasing interest to

exploit all this available information, which mainly consists in images and videos. Classic approaches

to Computer Vision problems constitute a Bag of Tricks that have been useful for many years. With the

irruption of Deep Learning, most of these techniques, all of a sudden, became old. The reasons are the

impressive outperforming results of Deep Learning techniques that, taking advantage of the available data,

provide an end-to-end solution that is nowadays easy to use, even for non experts users. Surprisingly, some
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Variational Methods, which can be considered as classical methods in Computer Vision, survived and

maintained the state-of-the-art leading in some specific tasks: Medical Imaging Registration for instance.

The impact of Deep Learning applications in society is undeniable. Moreover, the profit of automatiz-

ing many processes and tedious tasks that are still nowadays realized by humans, should be taken as good

news, since it would provide more free time for people... and thus, more time to live. The dark side of

such automatization will rely on how this new techniques, framed in the Artificial Intelligence field, are

democratized across society. This is, how useful in practice are those new emerging tools and who has

access to them.

Frequently, wide used Deep Learning applications are in some way disappointing. For example, many

Deep Learning architectures are built to create facial filters that puts a hat on you or change the color of

your eyes. Others, learn to recommend adds, which does not help to get rid of adds, at all.

Leaving aside some personal opinions, there is at least one technical reason (among non technical

others) that can explain the success of Deep Learning on non transcendental applications that are not

likely to improve our lives. Deep Learning and Neural Networks are still non-reliable tools. In fact,

the main drawback of Deep Learning and its supported architectures (Neural Networks) is they act as

uninterpretable Black Boxes from which very little knowledge and comprehension can be retrieved. From

an engineering point of view, this is not a huge problem as long as everything continues to work. But then,

of course, Murphy appears.

Autonomous driving, Medical Imaging, earthquakes and pollution predictions are few examples of

critical application fields where being inaccurate implies disastrous consequences. In such scenarios,

classic approaches in Computer Vision, provides less uncertainty in outcomes. In this sense, classical

methods are more robust, in particular Variational Methods which have a deep and strong mathematical

foundations. Moreover, recently, adversarial attacks on Neural Networks have shown how easy is to fool

Deep Learning systems, increasing skepticism for potential Deep Learning users as Medical experts.

1.5 Hypothesis

When a ground-breaking method or model is discovered and appears to explain many things that were

unanswerable until then, it is a matter of science to find where this model or method fails. Keeping this in

mind, the hypothesis of this thesis can be formulated through the following questions:

If Variational and Deep Learning Methods provide the state of the art results in different applications

that in turn belong to the same field, i.e., CV, then:

1. Is it possible to combine both methods to outperform the current state of the art?

2. Can we find a general methodology that explains or contents both approaches?

Along this dissertation we will answer these questions and find examples of applications in order to

shed light on them, as well as their limitations.
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1.6 Objectives

In this thesis we address CV problems in real scenarios from two perspectives with the usage of: (1)

Variational Methods and (2) Deep Learning techniques. The former is a powerful tool that gives an

extraordinary control over the expected outcomes with very accurate results if some hyper-parameterization

is carried out properly. However, this required (usually manual) hyper-parameterization constitutes a huge

shortcoming in practice, and a limitation for a wide use by non experts. The later relies mainly on data

and solves, until a certain point, an high-dimensional interpolation problem with astonishing results that,

however, are sometimes unpredictable (and thus dangerous) when unseen data from different distribution

is tested (extrapolation).

With the aim of overcoming these issues, the following objectives are stated:

1. Analyze both methods to determine their common elements and differences.

2. Combine these two methods.

3. Propose or find a general methodology such that each methods are integrated in a principled way.

To this end, different problems in CV shall be considered. First, separately, with the aim of identifying

particular issues of both approaches. And second, based on a more general methodology, to face a difficult

CV problem, and thus, prove and validate such methodology.

1.7 Manuscript

This manuscript is organized as follows:

In Chapter 2, we briefly revise the basis and some technical background from the state of the art of

Variational and Deep Learning methods. Both approaches are derived from the same bayesian framework

to provide a common perspective. Variational methods are presented in the context of inverse problems

while Deep Learning techniques, in the field of Machine Learning, are formulated, without loss of

generality, as direct problems.

In Chapter 3, we present a more general interpretation of the aforementioned approaches, this is, a

Bayesian Inference framework. We then show how to derive the Variatonal and Deep Learning methods

from it, and relate some of the new and successful techniques in Neural Networks (NNs), such as dropout.

Both approaches are also presented as instances of an Approximation Inference, in particular: a Variational

Inference method.

In Chapter 4, we propose two variational models for Saliency detection applied to Magnetic Reso-

nance (MR) images. The first, a non local model, is solved trough a gradient descent based algorithm.

The second, a local model, is solved using duality arguments. This local version is then embedded in

a CNN to create a Deep Variational Framework that allows to an automatic hyper-parameterization of

the model. Both methods are tested on BRATS215 dataset [Menze et al., 2014]. This constitutes a first

attempt to combine the two main techniques of this thesis.

In Chapter 5, we aim to solve a classification problem based on CNNs. State of the art techniques

and novel architectures are used. Along with this, the problem is faced in a real context where data are

limited. We propose two methods for a semi-automatic training procedure that deals with the central
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drawback of NNs, the uncertainty that is not generally taken into account. The positives results motivates

the use of Bayesian Inference in Deep Learning from a principled way.

In Chapter 6, we address an ill-posed problem consisting on the recognition of 3D human pose from

2D images. To this end, we make use of the Variational Inference scheme presented in Chapter 3. We

propose a Bayesian Capsule Network (BCN) that, despite its simplicity, achieves state of the art results

in the 3D pose estimation. This is done using techniques from Deep Learning and Variational methods,

which constitutes the second attempt to combined both methods, this time in a principled way.

In Chapter 7, conclusions are drawn from the particular problems addressed in this dissertation, relat-

ing concepts from Variational and Deep Learning techniques. Then, general conclusions and discussions

are given to summarize the whole presented work and point out new research directions and future work.





CHAPTER 2

Preliminaries - State of The Art

En los mismos ríos entramos y no entramos, somos y no somos.

Heráclito

This chapter is devoted to present the main needed concepts and the state of the art in the research

field. Firstly, in Section 2.1 Variational Methods for IP based on degradation models are introduced.

Bayesian modeling and other interpretations of a Restoration problem are given and motivated. In Section

2.2, basis of ML are revised as well as we introduce NNs and the DL technique.

2.1 Variational Methods

In the last 30 years there has been a great effort in IP based on Partial Differential Equation (PDE) and

Variational Methods. Filtering techniques can be used to palliate the effect of noise in images. In such

techniques, physical process than are found in nature are applied to images, e.g., the heat equation. In

Variational Methods, the problem is prompted in such a way it allows to control the variations of the

solutions, which are the considered images.

We first start showing a general framework based on bayesian modeling. Such approach can be

particularized to lead to the Tikhonov regularization method, introduced to give a meaning to ill-posed

Inverse problems. When non linear operators are considered, Generalized Tikonov is invoked. Bayesian

modeling is an alternative, statistical approach which can converge to the same model but allowing a

different interpretation which highlights the rationale behind the Tikhonov method. It was in the seminal

Rudin-Osher-Fatemi paper [Rudin et al., 1992] that non linear non smooth operators were introduced.

This paved to way to the development and establishment of variational methods and PDE in image

processing and Computer Vision. We give a brief review of it in order to give the basis of the development

of our models in Chapter 4. Our introduction is by no means exhaustive and should be complemented

with relevant literature in the topics. Fundamental references shall be presented all along this manuscript.

We consider a degradation model characterizing the transformations that the original image has

suffered, in order to invert them and recover a restored version of it. It is well established as basic

degradation model, the following:

f = Ru+ η, (2.1)

9
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where u : Ω ⊂ R2 → R is the ideal image or signal that we want to obtain, R is usually a linear operator

that acts on u, f is the degraded image that is acquired and η is an added noise that must be characterized.

In Image Processing, this noise is often assumed as Additive White Gaussian Noise (AWGN). However,

other kind of noise as Rician noise in MR images, impulse noise (audio signals), speckle noise Synthetic

Aperture Radar (SAR) among others. Since u is the target and we are given f , the main goal in a

Restoration problem is to invert the transformation, or at least, to find an approximation of such process.

In fact, Image Processing problems can be reformulated as:

1. Direct problems: to identify effects from causes. This implies to analyze the considered system and

to model it in order to determine an output f , given an input u 2.1a.

2. Inverse problems: to identify causes from effects. Given a model (or making assumptions about it)

and an output f , the objective is to determine the input u 2.1b.

u

Cause

R +

η

f

EffectModel

(a) Direct Problem. Given u, the targets are: Model
and f .

u

Cause

R +

η

f

EffectModel

(b) Inverse Problem. Given Model and f , the target
is u.

Figure 2.1: Direct and Inverse problems schemes.

A Restoration problem is therefore an Inverse problem since the information that we seek is the image

itself (cause), and we are given a degraded version by means of a transformation (effect).

2.1.1 Ill-posed inverse problems

A vast majority of Restoration Problems are ill-posed in the sense of Jacques Hadamard [Hadamard, 1902],

according to whom a problem is well-posed if the following conditions over the solution are met, namely:

(1) existence, (2) uniqueness and (3) stability. Roughly speaking, we are asking if the inverse transforma-

tion (solution) exists and is unique, and if the output of such transformation depends continuously on the

input.

To illustrate and give a light intuition of why those problems are ill-posed, let us set R = I, where

I is the identity function. Then, the model is simplified to f = u + η, where η ∼ N (0, ση), i.e., a

noise addition model (denoising). Moreover, f ∼ N (u, ση) is an random variable that follows a normal

distribution centered in u. In fact, if for a fixed u we could draw as many samples as we wish from

N (u, ση), then recovering u would be as simple as computing the mean of u.

However, in denoising there is only one sample f given, which means in turn there is only one sample

of noise η, and therefore for an unknown η there exists infinity of image candidates u that provides the

same f . This is illustrated in Figure 2.2.
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Adding noise is not the only way of falling in a non invertible problem. The operator can also be

non injective. This may be the case for some Restoration Problems such as deblurring, deconvolution,

dehazing, compressed sensing, inpainting among others. This lack of injectivity also makes ill-posed the

restoration problem. In addition, even though the problem is well-posed, it may occur that is ill-conditioned

in that a small change in the input produces big changes in the output.

Formally, the ill-posed Inverse problem for denoising reads as follows:

u∗ = arg min
u

∫
Ω

(u− f)2dx (2.2)

where ση is the standard deviation of η. Notice that it is necessary to include a constraint related to the

noise power to avoid a trivial solution u∗ = f , which is to assume that the noisy image f , is indeed, free

of noise. Thus, the expected value for the energy of (u− f) is the noise power of η, namely σ2
η .

2.1.2 Regularization

Introduced firstly by Andrey Tikhonov in [Tikhonov and Arsenin, 1977], regularization is a technique

that tackles ill-posed and ill-conditioned problems, introducing constraints that lead to a sort of injectivity

and stability. In Figure 2.2, we see that infinity of different paths connect the set of solutions U to the

output (given datum) f . The idea of the regularization is to select a unique solution from this infinite set U ,

allowing to recover the ideal image u, or at least, find some u∗ that is close to u. Therefore, regularization

is to impose a constrain over the space of solutions U such that these space is reduced to only 1 candidate

following a chosen criteria. In such a way, the 1st Hadamard condition is met, and the problem becomes

well-posed.

f

U
u1

u2

u3

...

N
η1

η2

η3

...
+

+

+

...

Figure 2.2: There exists infinity of combinations of u and η that are mapped to the same fixed f , i.e., there

is not injectivity. The dashed line in N depicts that only a sample η ∼ N (0, ση) is drawn, but it remains

unknown.

Regularization also arises in different fields as in Machine Learning where there are plenty of data

available and the goal is to learn a model that generalizes well on new data. To avoid problems like

over-fitting, regularization is one of the most common used techniques. This will be extended in particular

regarding CNNs in Section 2.2.5.



12 Preliminaries - State of The Art

2.1.3 Bayesian modeling

Image Processing problems can be faced relying on a Bayesian framework since stochastic process arise

and are, in many cases, the main source of signal degradation [Kornprobst, 2006]. It is also possible

to model deterministic elements that are unknown in practice as random variables with an associated

probabilistic distribution, like patterns, blurring kernels, etc. Bayesian modelling allows to do inference

not only based on the available data but also adding prior knowledge to improve predictions. Using Bayes’
Rule we have:

p(u|f) =
p(f |u)p(u)

p(f)
(2.3)

where p(u|f) is the posterior probability density of the hypothesis u given the data f , p(f |u) is the

so-called likelihood that represent what is expected in data f for a given hypothesis u, p(u) is the prior

probability density that tells us prior knowledge about the hypothesis u and p(f) is the probability density

of the data, referred to as evidence. Thus, we aim at maximize the posterior probability density, i.e., using

a Maximun a Posteriori (MAP) scheme:

max
{

p(u|f) =
p(f |u)p(u)

p(f)

}
(2.4)

or equivalently,

max {log(p(u|f)) = log(p(f |u)) + log(p(u))− log(p(f))} . (2.5)

Since p(f) is the probability density of a given f , it remains constant and can be dropped in the

maximization problem that consists of finding a optimal u∗ that maximize equation (2.5),

u∗ = arg max
u
{log(p(f |u)) + log(p(u))} . (2.6)

Based on the degradation model presented in Section (2.1), we now define each term before taking logs

making the assumption that both follow a Gaussian distribution,

p(f |u) =
1

σ1

√
2π

exp

(
−||f −Ru||

2

2σ2
1

)
, (2.7)

p(u) =
1

σ2

√
2π

exp

(
−||u||

2

2σ2
2

)
. (2.8)

Notice that u and f are functions in Ω so that for the sake of notation we use u = u(x) and f = f(x)

where x ∈ Ω. Analogously, σ1 = σ1(x) and σ2 = σ2(x). However, since a digital image is a discretization

of a continuous function and we shall assume each sample ui,j = u(x = (i, j)) to be Independent and

Indentically Distribuited (i.i.d.), the standard deviations σ1(x) = σ1 and σ2(x) = σ2 will be therefore

considered as constants. Replacing (2.7) and (2.8) in (2.6), and changing the sign of the equation so that

the optimization problem turns into a minimization problem, we have:

u∗ = arg min
u

{
1

2(σ1)2
||f −Ru||2 + log

(
σ1

√
2π
)

+
1

2(σ2)2
||u||2 + log

(
σ2

√
2π
)}

.

Here, || · || denotes the `2-norm. Dropping constant terms that does not depend on u, multiplying the

whole functional by σ2

√
2π and defining the change variable λ = (σ2/σ1)2, we are lead to:

u∗ = arg min
u

λ
∫

Ω
(f −Ru)2dx︸ ︷︷ ︸
Fidelity: F (u)

+

∫
Ω
u2dx︸ ︷︷ ︸

Prior: P (u)

 . (2.9)
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The first term is usually known as the Fidelity F (u) that gives us a measure of how far is the solution

u from f through the operator R, while the second is the Prior P (u), also refereed to as the Tikhonov

regularizing term. In (2.9), the prior imposes a condition over the energy of the solution, promoting the

unique minimal energy solution.

2.1.4 Tikhonov Regularization in Image Processing

As in (2.9), the regularizing term that comes naturally when the prior distribution p(u) is modeled as

Gaussian, penalizes the energy of the solution. This is widely used in SP for the reason that this energy

is often related with a power consumption that always implies a cost desirable to be reduced. In Image

Processing however, this regularizing term does not perform very well. It is more suitable to use an L2. A

good introduction to functional spaces can be found in [Demengel and Demengel, 2012]. penalization

over the gradient of the solution instead of over the solution itself. The prior P (u) = ||u||2 is then

replaced by P (u) = ||∇u||2. Consequently, the prior distribution considering 2D images becomes

p(u) =
1

σ2

√
2π

exp

(
−||∇u||

2

2σ2
2

)
. (2.10)

The improved results obtained by this prior term have their foundations in the way it introduces relevant

prior knowledge to the problem, by penalizing the oscillations of the solution. In fact (2.8) is a Gaussian

distribution centered in 0, which means that the solution that has more probability density is a constant

image u = 0. It is easy to see that such assumption is totally wrong since an image is often whatever but a

constant. On the contrary, (2.10) describes a probability distribution that can be read as: the most likely

image u is the one which has very low gradient energy. The gradient of an image is indeed a measure of its

variation of the images on the domain Ω. In Figure 2.3 we see how considering the prior in (2.10) is more

suitable for images since most of the pixels in image |∇u| are 0, which fits the zeros-mean distribution.

The gradient, that is the precursor of image’s edges, ∇u = (∂u/∂x, ∂u/∂y) 1, is a vector of changes

along vertical and horizontal axes x, y.

The problem (2.9) with gradient-based priors reads as follows:

u∗ = arg min
u

{
λ

∫
Ω

(f −Ru)2dx +

∫
Ω
|∇u|2dx

}
(2.11)

where the functional of energy E(u) = λF (u) + P (u) has control over u and its variations∇u. That is

how Variational Methods arise in Image Processing and why they constitute an important and powerful tool

to tackle such problems. Furthermore, to solve the minimization problem above, it is necessary to define

the first order optimality conditions of E(u). To this end, we shall consider the concept Fréchet-derivative

and its weak variants. Formal definitions can be found in many book of Functional Analysis such as

[Brézis et al., 2003].

2.1.5 Well-posed regularized inverse problems

We have seen in the previous Section the importance of well-posedness in order to solve Inverse problems

and how regularization give us a way to overcome ill-posed and ill-conditioned problems. We have also

shown how imposing constraints that leads to a regularized optimization problem can also be derived

1Note that x = (x, y) ∈ Ω. In literature it is often used x ∈ Ω where x = (x1, x2) indistinctly.
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(a) u (b) |∇u|

(c) Histogram of u (d) Histogram of |∇u|

Figure 2.3: u versus∇u based priors

from a Bayesian Framework, where the regularization term is identified with the prior knowledge, and it

is combined with the likelihood term to obtain a good estimation of the posterior distribution. Tikhonov

regularization with gradient-based priors exhibit better performances, but they can be widely improved if

we change the way the variations of the solution are measured. This is known as the Generalized Tikhonov

regularization.

This is the case for the celebrated Total Variation (TV) operator, introduced to solve a denoising

problem through the ROF model in [Rudin et al., 1992], which has been extensively used with success in

the Image Processing field. Here, the prior term P (u) is defined (formally) by:

P (u) = TV(u) =

∫
Ω
|∇u|dx (2.12)

that gives a L1-norm measure of the gradient ∇u. For a detailed introduction to the TV operator and

its properties see [Chambolle et al., 2010]. The benefits of this operator mainly consists of the edge-

preserving property, which is a key-tool in general in Image Processing since an image and its content

are highly determined by the shapes and structures of the objects. This tell us about the nature of the

solution u that, in the Tikhonov denoising model (2.11), is confined to the Sobolev space W 1,2(Ω)

(see [Dautray and Lions, 2012]) since its derivative is square-integrable. This implies that the solution

of the model is continuous generating blurring effect in the image. On the contrary, when the Total
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Figure 2.4: Hyper-Laplacian potential functions

Variation operator is considered it can be shown that the solution belongs to the space of Bounded

Variations, i.e. u ∈ BV (Ω). Relevant results and details can be found in [Ambrosio et al., 2000]. This

framework allows discontinuities in the solution and the visual results are sharp and clear images. As

mentioned in [Rudin et al., 1992], such effect may be partially psychological, but the improvement is

also reflected in terms of evaluation metrics as the Peak Signal Noise Ratio (PSNR) or the Structural

Similarity (SSIM). The solution of the related minimization problem (the Gaussian Denoising model

[Chambolle and Lions, 1997] or even others one that take into account different noise models, such as the

Rician Denoising model [Martín et al., 2017]), belongs to the space of functions of Bounded Variation,

BV (Ω), among which the piece-wise constant functions play an important role in Image Processing tasks

as we will further detail in chapter 5.

Further works have been carried out in order to find appropriated prior regularizing terms. It turns

out that, based on approximating results in practice, to get those prior improved we have to consider

non-convex regularization terms that, of course, complicate the analysis of the problem and therefore its

resolution. This is the case, among others, for the Hyper-Laplacian potential functions family:

φp(s) = |s|p (2.13)

that defines in turn Hyper-Laplacian prior distributions p(u) ∝ e−k|s|
p
. In Figure 2.4 some instances

of the Hyper-Laplacian family are plotted for different values of p. The curves show how the selected

potential function penalizes the functional of energy depending on the magnitude of the gradient. The

behaviour of the model when the different values of p are considered, is that greater values of p penalize

strong gradients which cause blurring effect while small values of p penalize lower preserving sparse

gradients images. When 0 < p ≤ 1 the functional is not differentiable. This can be avoid by introducing a

regularization family of potential functions. In the case of TV operator we make use of duality arguments

which do not hold when 0 < p < 1.

2.1.6 The Euler-Lagrange equations

Returning to the minimization problem (2.11), replacing the prior term by the Hyper-Laplacian family

φp(s) and settingR = I, p = 1 to recover the above mentioned denoising ROF model [Rudin et al., 1992],
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we have:

E(u) =
λ

2

∫
Ω

(f − u)2dx + TV(u). (2.14)

Notice that, for convenience, the Fidelity term is multiplied by 1/2 for the sake of notation in

further equations (Euler-Lagrange). The notation
∫

Ω |∇u|dx for the TV operator is widely used in the

Image Processing community but constitutes an abuse of notation since it requires the solution u to be

differentiable and thus continuous: u ∈W 1,1, which therefore contravenes the preserving edge property

desired in images. Instead of this and following [Chambolle and Lions, 1997], we replace the previous

term by the differential distribution |Du| that is a finite Radon measure in Ω of u.

E(u) =
λ

2

∫
Ω

(f − u)2dx +

∫
Ω
|Du|dx. (2.15)

Then, we proceed to compute the first order optimality conditions. In the case of equation (2.11),

since the functional is Fréchet differentiable, we have

E
′
(u) = 0,

E
′
(u) = −∆u+ λ(u− f)

that is the so-called Euler-Lagrange Equation. The problem is to solve the elliptic problem for which it

is necessary to include the boundary condition. It is common in Image Processing to set homogeneous

Neumann boundary conditions as a mean to preserve the mass of the given data f , i.e.,
∫

Ω udx =
∫

Ω fdx.

We have

Plinear

−∆u+ λ(u− f) = 0

∇u · ~n = 0
(2.16)

where ~n is the unitary normal vector to the boundaries and

div (∇u) = ∆u.

If we now consider the Euler-Lagrange equation of (2.15) which is not Fréchet differentiable due to

the TV term, the concept of subdifferential must be introduced.

Definition 2.1.1. (Subgradient) Let E : X → R a convex proper functional. The subgradient of E at u

is defined as:

∂E(u) := {u∗ ∈ X∗|E(v) ≥ E(u)+ < u∗, v − u >,∀u∗ ∈ X∗}

A functional E is said to be subdifferentiable in u if E(u) is finite, and the set ∂E(u) is not empty.

Thus, the Euler-Lagrange of equation (2.15) also accompanied by the boundary conditions, reads

PTV

−∆1u+ λ(u− f) ∈ ∂E

Du · ~n = 0
(2.17)

where

div
(
Du

|Du|

)
= ∆1u ∈ ∂P.
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Finally, the problems above can be generalized introducing the aforementioned hyper-laplacian potential

functions (2.1.5):

Pp

−∆pu+ λ(u− f) ∈ ∂E

Du · ~n = 0
(2.18)

and the divergence term in this equation, termed as p-Laplacian diffusion operator, is

div
(
Du|Du|p−2

)
= ∆pu ∈ ∂P.

2.1.7 Gradient Descent

In order to solve the proposed problems Plinear (2.16) PTV (2.17) and Pp (2.18), the first classical approach

commonly used is the gradient descent method, which is easy to implement but perform poorly in terms

time computing and efficiency. Gradient descent consists of introducing an auxiliar time t variable, so that

when t→∞, an iterative evolution of the solution converges to the minimizer of the PDE. In fact, the

gradient descent scheme is to solve the parabolic problem

∂u

∂t
= −∂E(u) (2.19)

which tends to the elliptic problem ∂E(u) = 0. Based on these approach, we introduce the discretization

problem that leds to the numerical resolution.

Discrete Framework

To obtain a numerical resolution it is necessary to provide a discrete version of the input images ui,j =

u(i∆x, j∆y) : Z2 → R, the required differential operators and the gradient descent method as well.

The divergence operator relies on the gradient which in turn is defined as ∇ =
(
∂
∂x ,

∂
∂y

)
= (∇x,∇y)

we define ∇x+,∇x−,∇y+,∇y− as the forward (+) and backward (-) finite difference operators in

each directions, x and y. Derivatives can be computed by discretizing in several ways, among others :

• One-sided difference ∇xu = ∇+
x u =

ui+1,j − ui,j
h

• Central difference ∇xu = (∇+
x u+∇−x u) /2

Central differences are more accurate (error of the order O(h2)) than One-sided ones (O(h)), however,

they miss the dependency on the central sample ui,j , which is not suitable for detecting thin structures.

There exist different ways to avoid this problem using One-sided differences, and palliate the lack of

symmetry. For instance, to compute the divergence, it is possible to use a forward one-side difference

for the gradient computation, and a backward version for the second derivatives: div(·) = ∇−x (∇+
x (·)) +

∇−y (∇+
y (·)). The discrete version of the gradient descent step (2.19) is obtained discretizing the fictional

time introduced in the parabolic problem as follows:

uk+1 − uk
∆t

= −∂E(ui,j)

so the step iteration

uk+1 = uk −∆t · ∂E(ui,j).



18 Preliminaries - State of The Art

2.1.8 Advanced numerical method

In this Section we will focus on an advanced method that allows for powerful numerical resolutions of

the aforementioned problems. As we stated, the TV operator is central in Image Processing Restoration

Problems based on Variational methods due to its properties, among which the preservation of edges stands

out. They main difficulty lies on the lack of differentiability of such operator, thus a different definition

or formulation of the deemed TV must be found. In the already mentioned paper [Rudin et al., 1992],

the authors provides a new and ground-breaking definition of the TV operator through a seminorm. The

formal definition reads as follows:

Definition 2.1.2. (Total Variation). Let Ω ⊂ Rd be a domain for u ∈ L1
loc(Ω) we define the Total

Variation as the value of the functional

TV(u) = sup

{∫
Ω
udivv dx | v ∈ C∞c (Ω,Rd), ||v||∞ ≤ 1

}
,

which is a seminorm. Thus, the space BV(Ω) = {u ∈ L1
loc(Ω) | TV(u) <∞}, endowed with the norm

||u||BV = ||u||1 + TV(u) is called the space of functions of bounded variations.

Based on such a definition, [Chambolle and Pock, 2011] introduced the Primal-Dual algorithm for

convex problem where the main objective is to speed-up the computation time (with a rate of O(1/N))

avoiding any relaxation or regularization of non-differentiable operators, in this context, the TV. The

general problem presented by the authors is in the form of a saddle point problem.

Let X,Y be finite-dimensional real vector spaces, and K : X → Y a continuous linear mapping

operator with induced norm:

||K|| = max {||Kx|| : x ∈ X with ||x|| ≤ 1}

The general problem is then:

min
x

max
y
〈Kx, y〉 − J∗(y) +G(x), (2.20)

which is solved iteratively through

• yn+1 = (I + τd∂J
∗)−1 (yn + τdKx̄

n)

• xn+1 = (I + τp∂G)−1
(
xn − τpK∗yn+1

)
• x̄n+1 = xn+1θ(xn+1 − xn),

where τd, τp are the step sizes corresponding to the dual and the primal step respectively, G and F ∗ are

proper, convex, lower-semicontinuous functionns and F ∗ denotes the convex-conjugate of F . When

setting θ = 0, we recover the Arrow-Hurwicz method [Hartley, 1960] which proposed to solve the ROF

models. This approach as well as the gradient-based approach shall be considered to solve the numerical

problems in this dissertation.

2.2 Machine Learning

In the Introduction Chapter 1 we have shown that most of the problems addressed in Machine Learning

aim at extracting features from given signals which in turn are used to be a direct problem in the sense of
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causality as defined in Section 2.1. The Machine Learning problem is then to find a function or model

that correctly transform from a given cause to its effect. Without entering, yet, in the details of how these

functions are defined, we will consider a family of functions f(ω, x) that depend on some parameters ω to

define the ML problem from a Bayesian point of view.

2.2.1 Problem Statement - Bayesian Approach

To find the function f that transforms the data X into labels Y, we must first define a cost function

that evaluates how correct the predictions are made by f. That is, a measure of the error or cost that

is committed by f. Therefore, the objective will be to minimize this cost. We can intuitively decide to

minimize a distance d(y, ŷ) among the predictions ŷ = f(ω, x) and the true labels y, or on the contrary, to

deduce in a well-founded way, from Bayes, which are the distances to be minimized. In the following, we

will show how these cost functions arise naturally if a MAP scheme is used.

Let X =
{

x(1), x(2), ...x(N)
}

a set of elements (input) corresponding each of them to a single element

(label) content in the set Y =
{

y(1), y(2), ...y(N)
}

, where i = 1, .., N . Each element of X or Y is, in

general, a vector: x(i) ∈ Rm, y(i) ∈ Rn. Applying Bayes’ Rule, the conditional posterior distribution is

defined as follows:

p(ω | X,Y) =
p(Y | ω,X)p(ω)

p(Y | X)
(2.21)

where p(ω | X,Y) is the likelihood and p(ω) the prior distribution placed over the parameters’ model

ω. Depending on how we define each term of the previous equation, we will be considering a specific

problem. In Machine Learning, there exists mainly two different type of problems depending on the

nature of the target data.

• Regression: the objective is to predict a continuous variable.

• Classification: the objective is to predict a discrete variable.

2.2.2 Regression Problems

We start with equation (2.21) where both, the likelihood term and the prior will be considered as gaussians,

the same way it is done in Section 2.1.3.

p(Y | ω,X) =
1

(2πσ2
1)

N
2

exp

(
−||Y− f(ω,X)||22

2σ2
1

)
(2.22)

p(ω) =
1

(2πσ2
2)

K
2

exp

(
−||ω||

2
2

2σ2
2

)
(2.23)

where ω = {ω1, ω2, ..., ωk} are the K parameters by which the f function is composed. ω is in general a

set of parametric objects such as scalars, vectors, tensors or even mixture of them. It is common to think

of them as a vector constructed as a concatenation of all the objects in ω, i.e., a vectorization of ω, and it

will also be refereed to as ω indistinctly as long as there is no confusion. Moreover, it is also assumed that

all the pair of elements (x, y) ∈ (X,Y) are i.i.d. as well as the parametric objects ωk ∈ ω. This allows us

to re-write equations (2.22) and (2.23) as
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p(Y | ω,X) =
N∏
i

1√
2πσ1

exp

(
−||y

(i) − f(ω, x(i))||22
2σ2

1

)
(2.24)

=
1

(2πσ2
1)

N
2

exp

(
− 1

2σ2
1

N∑
i

||y(i) − f(ω, x(i))||22

)
(2.25)

p(ω) =

K∏
i

1√
2πσ2

exp

(
||ω||22
2σ2

2

)
(2.26)

=
1

(2πσ2
1)

K
2

exp

(
− 1

2σ2
1

K∑
i

||ωi||22

)
(2.27)

Since we want to maximize the posterior distribution and the probability distribution of the evidence

(data) p(Y | X) remains constant w.r.t. the parameters ω,

p(Y | ω,X) ∝ p(Y | ω,X)p(ω), (2.28)

we have a maximization problem

ω∗ = arg max
ω

p(Y,ω,X). (2.29)

that, in turn, is re-written by taking− log(·) in both sides of the equation (2.28) as a minimization problem:

ω∗ω∈R = arg min
ω
C(ω) (2.30)

where C(ω) is the so-called cost function:

C(ω) =
1

2πσ2
1

||Y− f(ω,X)||22 + log((2πσ2
1)

N
2 )

+
1

2πσ2
2

||ω||22 + log((2πσ2
2)

K
2 ).

Simplifying,

C(ω) =
1

2πσ2
1

||Y− f(ω,X)||22 +N log(σ1) +
1

2πσ2
2

||ω||22 +K log(σ2)

(2.31)

and getting rid of the terms that do not depends on ω, we end up with a variational minimization problem:

ω∗ = arg min
ω

{
1

2πσ2
1

||Y− f(ω,X)||22 +
1

2πσ2
2

||ω||22
}

(2.32)

Unlike in the previous subsection 2.1.3, here we multiply the whole functional by 2πσ2
1 , and set λ

′
=

2πσ2
1/2πσ

2
2

ω∗ = arg min
ω

{
||Y− f(ω,X)||22 + λ1||ω||22

}
(2.33)

so the hyper-parameter controls the regularizer prior term instead of the fidelity. It is easy to see how the

Tikhonov regularization arises again and the minimization problem can be read as selecting, from the set

of predictions f(ω, ·) generated by the solutions ω∗ (if there exists more than one), the one with lowest
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energy in ω. This regularization term promotes each weight (parameter) ωk to be near to 0 and penalizes

quadratically high values for them (see Figure 2.4). Finally, multiplying the whole functional by 1/N and

setting λ = λ1/N

ω∗ = arg min
ω

{
1

N

N∑
i

||y(i) − f(ω, x(i))||22 +
λ1

N

K∑
i

||ωi||22

}
,

i.e.

ω∗ = arg min
ω

{
MSE(Y, f(X)) + λ||ω||22

}
. (2.34)

The first term is the Mean Squared Error (MSE) for the training set and the second is the already mentioned

L2 or Tikohnov regularization term with the hyper-parameter λ commonly referred to as weight decay due

to the effect it promotes over the weights ω in the optimization step based on gradient descent algorithms.

Equation (2.34) has been derived considering to solve a regression problem, this is, assuming a

gaussian error between the real values Y and the predictions f(X,ω). This placed gaussian distribution,

however, must be changed to address classification problems.

2.2.3 Classification Problems

Classification is the task of assigning, to an input, a probability of belonging to a class. The output f is

therefore a vector of probabilities that sum up to 1, indeed, a probability distribution function. The most

used distribution in classification problems in Machine Learning is the softmax:

Softmax(f) =
ef∑
j e

fj
,

a function with inputs called logits, Softmax : Rn → [0, 1]n. The posterior distribution is proportional to

the softmax likelihood and the gaussian prior

p(ω | X,Y) ∝ Softmax(f(ω,X))p(ω).

One requirement or assumption over this likelihood election is the fact that classes are mutually

exclusive. This often translates to a One-hot encoding of the given labels Y. Applying the MAP

scheme to maximize the posterior, it is easy to realize that, as a consequence of selecting the softmax

distribution function, maximizing the probability of a given example x(i) implies minimizing the remaining

probabilities. For that reason, the maximization step is performed on the correct output component ŷc, i.e.

Taking − log(·) we have:

− log(p(yc | ω, x)) = −
n∑
j=1

1 {y = c} log(ŷj)

= −
n∑
j=1

1 {y = c} log

(
efj(ω,x)∑n
k=1 e

fk(ω,x)

)

where 1 {·} is the characteristic function:

1 {x} =

1, if x is true

0, if x is false.
(2.35)
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Finally, the resulting functional of energy that we aim at minimize is:

L(ω) = − 1

N

N∑
i

 n∑
j=1

1 {y = c} log

(
efj(ω,x)∑n
k=1 e

fk(ω,x)

)
+

1

2σ2
2

||ω||22 + log((2πσ2
2)

K
2 ). (2.36)

Logistic function as a particular case

The logistic function is wide used in Machine Learning when solving binary classification problems.

Nonetheless, it is a particular instance of the softmax distribution function where there are only 2 classes

(f ∈ R2) and thus, their probabilities are complementary:

ŷ = Softmax(f) =

(
ef1(ω,x)

ef1(ω,x) + ef2(ω,x)
,

ef2(ω,x)

ef1(ω,x) + ef2(ω,x)

)T
.

In effect, we have an output for each class ŷ = (ŷ1, ŷ2). However, since both outputs are complementary

probabilities: ŷ2 = 1 − ŷ1, we can do without the second output and its parameters in f (it is said f is

over-parametrized). The probability vector is:

ŷ = (ŷ1, 1− ŷ2).

Taking − log(·) as usual obtaining

− log(p(yc | ω, x)) = −
N∑
i

y1 log(ŷ1) + y2 log(y2)

= −
N∑
i

y1 log(ŷ1) + (1− y1) log(1− ŷ1) (2.37)



2.2. Machine Learning 23

2.2.4 Deep Learning

Deep Learning, as a particular applied tool that belongs to the Machine Learning paradigm, has revolved

many fields of applied Mathematics and Engineering in the last decade. The term was first used by Rina

Dechter [Dechter, ] in 1986 in the context of efficiency in searching algorithms. However, the first working

architecture that can be considered the precursor of the DL was presented in [Ivakhnenko, ] by Alexey

Ivakhnenko and Lapa. Ivakhenko is considered to be the "Father of Deep Learning" for its contribution

developing Group Method of Data Handling (GMDH), an inductive statistical learning method.

The distinction between Machine Learning and Deep Learning lies in the structure of the parametric

functions used to map input data X into labels Y. Those properties have enabled to achieve new and

performing algorithms that have improved the state of the art in many related fields. In Machine Learning,

any parametric and flexible function is susceptible to be used. When we move to the Deep Learning field,

these functions are NN. It is said that they are inspired by the neurological network of the brain, and it

worth to remark "inspired by" in the sense brain connections are significantly more complex. A good

analogy given by Yann Lecun, one of the founding fathers of Convolutional Neural Networks, is that,

the same way we have found the principles of aeronautics, helped or inspired by birds (biology) and not

exactly mimicking them, we should aim at finding the principles of Learning rather than replicating human

or animal brains. The basic NN employed in Deep Learning are the so-called Feedforward Networks,

Figure 2.5: Neural Network with 3 hidden layers that are composed as: f3(f2(f1(x))).

where there is an implicit notion of direction. In fact, in such networks the information flows forward

through the whole neural structure. Besides, this structure is a composition of functions such that a Neural

Network is mathematically expressed as f = f3(f2(f1(x))) (see Figure 2.5). All the intermediate functions

have, in addition, the same structure, and are commonly identified as layers.

Neural Networks

In the following, we will give a formal definition of a Neural Network and its elements, namely: nodes,

layers, activation functions, etc. A node acts as a neuron in the brain limited by the fact it has several inputs
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but an unique output. Each node aims at firing (activate the output) depending on the given combination of

entries. The criteria used by a node to decide whether or not to activate the output is shaped by a so-called

activation function. This activation is then sent forward as an input for the nodes or neurons of the next

layers. This is, firstly a linear combination of the inputs:

f1 = wT x + b =
[
w1 w2 · · · wm

]

x1

x2

...

xm

+ b. (2.38)

where x ∈ Rm and w ∈ Rm, b ∈ R are the input vector and a node parameters, respectively. And secondly,

the activation function σ(·). A typical activation function is the hyperbolic tangent tanh (·) : R→ [−1, 1]

among many others, so the linear activation (2.38) ranging in R, is now bounded to [−1, 1]

f1 = σ
(
wT x + b

)
(2.39)

x1

x2

...

xm

b
w1

w2

wm

f

Figure 2.6: A single neuron

In Figure 2.6 there are m inputs and 1 output. Generalizing to n outputs we obtain a layer: x ∈ Rm,

W ∈ Rn×m, b ∈ Rn y f ∈ Rn, we have

f = σ



w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w1,m

...
. . .

...

wn,1 wn,2 · · · wn,m



x1

x2

...

xm

+


b1

b2
...

bn




whose graphical representation is depicted in Figure 2.7. The composition of several layers lead to the

construction of the neural network in which each layer can have a different number of neurons and

therefore different number of parameters (weights). Those layers that take as inputs the outputs of a

previous layers and sent forward their outputs to a following layer, are called hidden layers.

f = σ



w

(2)
1,1 · · · w

(2)
1,m

...
. . .

...

w
(2)
n,1 · · · w

(2)
n,m

σ


w

(1)
1,1 · · · w

(1)
1,m

...
. . .

...

w
(1)
n,1 · · · w

(1)
n,m



x1

...

xn

+


b
(1)
1
...

b
(1)
n


+


b
(2)
1
...

b
(2)
n



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x1

x2

...
...

xm

b1

b2

bn

w1,1

w1,2

w1,m

f1

w2,1

w2,2

w2,m

f2

wn,1

wn,2

wn,m
fn

Figure 2.7: First layer in a Neural Network

i.e.,

f = σ(W (2)(σ(W (1)x + b(1))) + b(2)) = f2(f1(x)) = f2 ◦ f1(x).

As has already been said, the relevant feature of Feedforward Network is related to its factorization:

each layers has the same function so that fn = σ(W (n)fn−1 + b(n)), giving us an recursive rule to built

increasingly deeper networks Deep Neural Network (DNN). After these Feedforward Networks, others

have appeared enabling feedback connections and thus allowing the information to flow backward RNN.

These feedback loops introduce memory blocks in Neural Networks which in turn can be used to define

states. An example of this are the LSTM.

But, probably the most important property of a Feedforward Neural Network is its capacity and

flexibility to map (approximate) input data X into labels Y. It is said NN are Universal Approximation

functions. Proof of this is the following theorem [Cybenko, 1989]:

Theorem 1. Let σ be a non constant, bounded, and continuous function. Let In denote the n-dimensional

unit hyper-cube, [0, 1]n. The space of real-valued continuous functions on In is C(In). Then, given any

ε > 0 and any function f ∈ C(In), there exist an integer N such that we can define:

F (x) =
N∑
i=1

αiσ(wT x + b)

as an approximation of f ; i.e.

|F (x)− f(x)| < ε

for all x ∈ In. This is, functions F (x) are dense in C(In).
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Roughly speaking, George Cybenko demonstrated that those functions can approximate any continu-

ous functions in a compact set. It is however interesting to see that, in such theorem, the condition over

the activation function is that it must be sigmoidal (non constant, continuous and bounded),

Definition 2.2.1. A function σ is said to be sigmoidal if:

σ(x) =

1, as x→ +∞

0, as x→ −∞,
(2.40)

condition that is theoretically violated in most of the applied NN nowadays. For example, one of the most

common and successful activation function is the Rectified Linear Unit ReLU(x) = max(0, x) among

other variants (Figure 2.8). Such activation function is clearly not bounded, however, in practice, since all

the experiments are numerically solved, this bound exist and it is reached by the bit depth of the machine.

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

1.5

x

ReLU(x)

Tanh(x)

Sigmoid(x)

Figure 2.8: Activation functions

Convolutional Neural Networks

Convolutional Neural Networks constitute an essential element in Machine Learning applied to the

Computer Vision and Image Processing fields. One of the first and successful CNN was proposed

by Yann LeCun et al. [LeCun et al., 1998] applied to characters and documents recognition (LeNet).

However, the first properly named Convolutional Network is known as Neocognitron proposed by

[Fukushima and Miyake, 1982] in 1982 that was able to detect patterns in images. Such Neural Networks

and even the Deep Learning field are deeply inspired and related to some experiments carried out in

1959 by [Hubel and Wiesel, 1959] analyzing the visual receptive field of cats: "Receptive fields of single

neurones in the cat’s striate cortex". In these works, Hubel and Wiesel showed a hierarchy in the visual

system that was composed of a group of neurons specialized in the recognition (firing) of basic patterns.

The success of CNNs lies on their structure and the replacement of the linear classifiers Wx + b by a

convolution operation. I.e., we replace equation (2.39) by:

f = σ(K ∗X +B), (2.41)

where K ∈ Rk×k is the considered kernel, X ∈ Rn×n represents the 2-dimensional input and B ∈
R(n+k−1)×(n+k−1) matrix of biases.
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CNNs are one of the best NN architecture used in Image Processing or Machine Learning when the

information is an image or contains it. The ability of CNNs to learn meaningful image hierarchies by

finding convolutional kernels that extract at each layer more and more high level features, lead us to ask

why those linear operations (convolutions) are so powerful. In fact, both, a Neural Network layer and a

convolution node, are linear operations, but performs differently when a network is trained to classify

images, for example. To figure out the reason of such difference, we have to analyze the convolution as a

matrix operation.

Convolution as Matrix Operation In general, a convolution can be cast to a matrix multiplication by

simply transforming one of the inputs into a Toeplitz matrix [Gray et al., 2006]. To this end, both entries

must be properly vectorized, and then reshaped to fit the data structure (images). We have,

(K ∗X)(:) = Wx (2.42)

where x is the vectorized input matrix X (image), W is the associated kernel matrix K and (:) denotes

a row-vectorization of a matrix. See a detailed example in Appendix Section 8.1. It turns out that, the

conversion of the kernel K into a matrix W , generates a Toeplitz matrix which turns to be very sparse. In

fact, for a laplacian kernel:

K =

 0 1 0

1 −4 1

0 1 0

 (2.43)

and an input image X ∈ R50×50 (down-sampled from image in Figure 2.9b), the associated matrix is

W ∈ R2704×2704 in where only a 0.1813% of the coefficients are non-zero 2.9. It is easy to see that

a convolution product is indeed a Neural Network with most of its weights set to 0. This is similar to

impose a prior over those weights or a constrain in the energy functional to minimize, introducing a

Lagrange multiplier, for example: λi,jw2
i,j and then, make λi,j → ∞. For such reason it is said that a

convolution operation imposes an infinitely strong prior. Moreover, not only a majority of weights are

forced to be 0, those that are non-zero have also strong priors in the sense that all of them are the same

along the diagonals (see Figure 2.9) which translates the fact that the filter (or the image) remains the same

throughout the image. In other words, the generated Toeplitz matrix is built to exploit local properties of

the input. This makes sense, reason why it works so well. As mentioned in Section 2.1.4, a property of

the images is that nearby pixels are likely to be similar and those that are significantly different define the

structure of an object or part of it, and they must be preserved. Note that, the properties of the input data

drive the election of the correct prior: TV and hyper-laplacian priors in Image Processing and CNNs in

Machine Learning (when dealing with images). From the computational side, convolutions are prone to

be parallelised in hardware like Graphical Processor Units (GPUs) and the memory requirement can also

be reduced while keeping similar or better performance and capacities; number of weights with matrix

application vs kernel convolution: (m× n×m× n) >> (k × k).

A CNN uses to be a DNN, where each layer is composed by several convolution nodes. The features

extracted along these layers are shown hierarchical. The first layers detect basic features in images

as corners or edges, middle layers extract basic structures and shapes composed by the previous basic

features and the deepest layers detect high level features. The ability to detect such features is related to

the so-called receptive field, which is a neighborhood region around each pixel that allows to relate all the
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(a) Original image (b) Laplacian down-sampled filtered image

considered pixel and thus, find different shapes or structures. Contrarily to non-local methods that we will

further analyze in chapter 4, in a CNN the non-locality property is built throughout the layers, modifying

the resolution of the input features and maintaining the kernels’ size, increasing the receptive field. This

technique is known in literature as pooling. However, pooling refers to a selection rule to decimate an

input image. This is widely known as sub-sampling a signal, and it can be formally expressed through

different `p norms, among others:

Pooling(x) = ||N (x)||p, p = {1, 2,∞} (2.44)

where `1 norm acts as an average pooling (for non-negative inputs), `∞ as max-pooling and N (·)
is the considered neighborhood around a pixel. It is also possible to use a stochastic pooling rule

[Zeiler and Fergus, 2013], which is closely related to Dropout that shall be discussed in Chapter 3.

2.2.5 Regularization

Regularization in NN can be introduced by placing a prior distribution function over the solution (ω∗)

of the optimization problem, also known as weak prior, or, impose by construction an infinitely strong

prior, as we have shown in previous Section with CNNs. We have also seen that NN are Universal

Approximation functions, which means that, with enough nodes and/or layers, any possible mapping

problem can be solve with an arbitrary error. Then, why do we care about placing priors over the weights?

Theorem 1 tells us nothing about how to find parameters {αi,w,b}. Moreover, it is assumed that, if a

data based algorithm is used to find such optimal parameters, the required data is available. Obviously,

this is not always the case. Regularization in NN in particular and in ML in general, is used to reduce

the uncertainty of the optimal solution derived from the problem itself (ill-posedness) and/or because

of the lack of data. Such lack of data usually implies a poor sample of data distribution, which in turn,

provokes a bad generalization of the solution. When the available data does not represent the whole space

of data, training a Neural Network can over-fit the training data and thus perform badly in new samples.

Performing well in new samples that may differ a lot from the given data (training set), is the same as
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Figure 2.9: Toeplitz matrix generated from laplacian kernel

extrapolating over a partial distribution. Regularization is the prior knowledge or the hypothesis we make

over the undiscovered distribution.

Gradient Based Numerical Resolution - Backpropagation

Let us consider problem (2.34), and more precisely and without loss of generality, the negative log-

likelihood term:

ω∗ = arg min
ω
C(ω) = arg min

ω

1

N

N∑
i

||y(i) − f(ω, x(i))||22. (2.45)

As for the variational methods described in Section 2.1, a gradient-based approach is commonly used

to solve the Euler-Lagrange equation. In other words, the first order optimally conditions are:

∂C(ω)

∂ω
= 0.

Recall that, the weights or parameters that we are looking for are, in principle, unbounded, this is ω ∈ Rk.

Consequently, the only constrain deemed will be introduced by a regularization term that comes from the

prior distribution as it is done in subsection 2.2.1. This term must also be included in the Euler-Lagrange

equation, but we avoid it for the sake of notation.

To illustrate the back-propagation algorithm is an efficient implementation of the old and well-known

chain rule, we set a shallow and tiny neural network and deduce the gradient necessary to update the

weights. Moreover, for simplicity, the output vector y ∈ R2 will only have two components.
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Figure 2.10: Shallow Feedforward Neural Network

Figure 2.10 represents a Feedforward Neural Network in the most usual way, where each output a(L)
i

in layer L depicts the non-linear activation (2.39). However, to easy and better understand the back-

propagation algorithm it worth to separate theses outputs in two different nodes, i.e., the linear outputs

z
(L)
i and the activations a(L)

i = σ(z
(L)
i ) like in Figure 2.11. For this setting, the vector of parameters for

the neural network 2.11, is

ω = (ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8, ω9, ω10, ω11, ω12, ω13, ω14, ω15, ω16, ω17)T

= (w
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1,1, w
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2 , b
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(2)
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(2)
2,3, b

(2)
1 , b

(2)
2 )T ,

that can also be seen as nodes and included in the graph. We then call the derivatives of the cost function

w.r.t. the weights: gradient and denote it by

∇ωL(ω) =

(
∂L(ω)

∂ω1
,
∂L(ω)

∂ω2
, · · · , ∂L(ω)

∂ω17

)T
=

(
∂L(ω)

∂w
(1)
1,1

,
∂L(ω)

∂w
(1)
1,2

, · · · , ∂L(ω)

∂b
(2)
2

)T
where the derivatives w.r.t. each parameter are:

∂C(ω)

∂ωk
=

∂

∂ωk

1

N

N∑
i

||y(i) − f(ω, x(i))||22

=
∂

∂ωk

1

N

N∑
i

n∑
j

(
y

(i)
j − fj(ω, x

(i))
)2
.

Besides, we will consider the gradient for a single sample as if N = 1 since the gradient with respect

to the whole dataset is just the sum of each of them. For this reason we use the loss function L(·) rather

than the cost function C(·),
∂L(ω)

∂ω
= ∇ωL(ω)
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Figure 2.11: Unwrapped Feedforward Neural Network

this is, for each parameter ωk we have

∇ωL(ω)k =
∂L(ω)

∂ωk
.

As we set, the output has two components, so for each sample the loss function is

L(ω) = (y1 − f1(ω, x))2 + (y2 − f2(ω, x))2

or equivalently,

L(ω) =
(
y1 − a(2)

1

)2
+
(
y2 − a(2)

2

)2
.

We now use the chain rule to compute the derivative of the loss function w.r.t. a parameter, for instance,

ω10 = w
(2)
1,1; this is

∂L(ω)
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where
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Each requited partial derivative, in fact, describes the path from the output to the weight in the graph 2.12.

Because of the quadratic loss function term, the derivative corresponds to the error between the real label

y and the predicted output a(2) = f(ω, x). Thus, each partial derivative is commonly seen in Machine

Learning as the error between nodes or layers. For such a reason it is said that back-propagation algorithm

consists of propagating the error from the output to the inputs (backward).
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Figure 2.12: Path from the output to a last layer weight.

In the same way, we derive with respect to the weight ω1 = w
(1)
1,1 from the first layer, and notice that

there exists 2 different paths 2.13. The partial derivatives that are shared in both paths can be factorized

to avoid redundancy in their computations. But, even more important is the fact that several partial
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derivatives have already been computed in the previous layers.
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It is easy to see that the systematic way of computing each derivative in the gradient vector is throughout the

paths from the output to the input. If we compute each component of the gradient ∇ωL(ω) independently,

many terms will be computed several times increasing the redundancy. For such a reason, back-propagation

computes all the derivatives once, in two different steps: forward step and backward step. Furthermore,

each step can be rearranged and computed using matrix products.

Jacobian Matrix

The key-point for an efficient computation of the back-propagation algorithm is to compute the Jacobian

matrix for each node, only once. Indeed, the Jacobian matrix is defined by the first order partial derivatives
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Figure 2.13: Paths from the output to a first layer weight

of a function such that f : Rm → Rn. This is, the Jacobian matrix of a function f(x) with x ∈ Rm, is:

Jf(x) =
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,

which in turn corresponds to a generic layer. Computing the Jacobian matrix for each layer until the

weights are reached led us to the gradient of the functional. Taking the previous example of a feedforward

neural network, we have:
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[
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Notice that, in the activation steps, there exist no dependencies between cross outputs, this is, we can a

priori set zeros in those matrix coefficient (derivatives):
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Finally, the gradient of the whole neural network w.r.t. the weights can be obtained as follows:

∇ωL(ω) =

[
JL(ω(1))T

JL(ω(2))T

]
=

[ (
JL(a(2))Ja(2)(z(2))Jz(2)(ω

(2))
)T(

JL(a(2))Ja(2)(z(2))Jz(2)(ω
(2))Jz(2)(a(1))Ja(1)(z(1))Jz(1)(ω

(1))
)T
]

The gradient descent step is then defined as usual, updating the weights iteratively:

ωt+1 = ωt − lr · ∇ωtL(ωt). (2.46)
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Optimizers

We have seen how to obtain through the back-propagation algorithm the gradient of the cost functional.

The traditional scheme (2.46) has, however, different modifications that are wide used by the Deep

Learning community. Those optimizers, an abstracted concept that allows us to find critical points

(solutions) for an optimization problem, can be classified first based on the number of samples considered

at each update iteration. In that sense we have:

1. Batch (Gradient Descent): the gradient computed considers the whole dataset (all samples).

∂C(ω)

∂ω
=

∂

∂ω

1

N

N∑
i

||y(i) − f(ω, x(i))||22

2. Mini-Batch (Gradient Descent): the train set is randomly split in several subsets.

∂C(ω)

∂ω
=

∂

∂ω

1

B

B∑
i

||y(i) − f(ω, x(i))||22

where B ⊂ N .

3. Stochastic (Gradient Descent) - SGD: the computed gradient is obtained for each sample individu-

ally, i.e., B = 1
∂C(ω)

∂ω
=

∂

∂ω
||y(i) − f(ω, x(i))||22

Figure 2.14: Comparison: Batch, Mini-batch and Stochastic Gradient Descent

The main difference among these classification options is the number of samples used to compute the

gradient needed to update the parameters. The effect, as depicted in Figure 2.14 is a trade-off (Mini-batch)

between a smooth and stable trajectory (Gradient Descent) to the critical point, and a more exploratory

behaviour (Stochastic Gradient Descent (SGD)). However, has difficulties when the critical point is

a saddle point due to the fact it is surrounded by a flat region, an thus, each direction seem to have 0

slope. Such saddle points are a common issue in DL optimization problems [Dauphin et al., 2014]. The

main good of the Gradient Descent is its convergence property although in practice it does not seem
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to be very significant (all the local critical points are quite similar in terms of energy). Moreover, it is

an expensive approach in terms of memory since all the marginal gradient w.r.t. the samples must be

stored. On the contrary, with Mini-batch and SGD, the required memory is significantly reduced (by the

number of samples in the mini-batch) allowing a faster update weight iteration, improving the results

if combined with some momentum terms (by escaping from plateau regions) and reducing over-fitting

effects. Contrary to the Gradient Descent algorithm, SGD allows for online optimization training since

they take one sample at a time.

A second classification focus on modifying the gradient. Some of these changes consist of tweaking

the learning rate or time step lr from equation (2.46). Once the gradient has been computed, different

terms can be added to modify its direction according to previous values by creating inertial components

that may improved the results (accuracy) or accelerate the convergence of the algorithm. Among others,

we can highlight:

1. AdaGrad [Duchi et al., 2011]: this algorithm adjusts the learning rate inversely proportional to the

past gradient energy. A pseudocode is depicted in Algorithm 2.1.

Algorithm 2.1: AdaGrad

1 Set: lr, δ = 1e− 7

2 Initialize: r = 0

3 while not converged do
4 g← ∂C(ω)

∂ω

5 r← r + g� g
6 ω = ω − lr 1

δ+
√

r � g

It has good convergence properties when the considered error surface is convex, however, in practice

it suffers from an excessive vanishing learning rate.

2. RMSProp [Hinton et al., ]: this algorithm modifies the previous AdaGrad to improve the behaviour

when dealing with non-convex functionals. To this end, it introduces a moving average factor for

the accumulated gradient. A pseudocode is depicted in Algorithm 2.2.

Algorithm 2.2: RMSProp

1 Set: lr, δ = 1e− 6, ρ

2 Initialize: r = 0

3 while not converged do
4 g← ∂C(ω)

∂ω

5 r← ρr + (1− ρ)g� g
6 ω = ω − lr 1√

δ+r � g

3. Adam [Kingma and Ba, 2014]: this algorithm in turn extend the RMSProp by considering two

momentum terms. While RMSProp only takes into account the second order moment of the gradient

with an exponential decay, Adam adds a first order term over the gradient. A pseudocode is depicted

in Algorithm 2.3.
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Algorithm 2.3: Adam

1 Set: lr, δ = 1e− 8, β1 = 0.9, β2 = 0.999

2 Initialize: r = 0, s = 0

3 while not converged do
4 g← ∂C(ω)

∂ω

5 t← t+ 1

6 s← β1s + (1− β1)g
7 r← β2r + (1− β2)g� g
8 ŝ← s

1−βt1
9 r̂ = r

1−βt2
10 ω = ω − lr ŝ

δ+
√
r̂
� g

Another interesting modification based on momentum is the so-called Nesterov Accelerated Gradient

(NAG) proposed by Yurii Nesterov in [Nesterov, 1983]. The basic idea comes to solve the problem of

accumulating too much inertia (a ball rolling down a hill) that when the solution gets to the minimum,

such inertia forces it to move away. NAG helps to overcome this problem by anticipating the next step

using the momentum term and thus adapt the next gradient step according to it.

All these modifications aim to improve the finding of optimal solutions and the time of convergence

to them, however, they are all based on the computation of first order optimal conditions (gradient).

The natural next step is then to consider second order derivatives using methods like Newton, Broy-

den–Fletcher–Goldfarb–Shanno (BFGS) or the limited memory L-BFGS that require computing Hessian

matrices. In DL, all these powerful methods could theoretically be used but the computational burden

make them nowadays unfeasible since a neural network can easily have hundreds of thousands of param-

eters. An alternative to a more advanced optimizer that has not yet been exploited to a large extent is

primal-dual schemes or primal-dual neural networks. Some speculative reasons point to the fact that the

improvement in neural networks relies in the architecture rather than obtaining better critical points.



CHAPTER 3

Modeling - Bayesian Inference

. . . I am a good Hegelian. If you have a good theory, forget about the reality.

Slavoj Žižek

In this chapter we show how both Variational Methods and Deep Learning problems for Image

Processing can be addressed from a more general and thus abstract perspective, based on Bayesian

Inference. In the following we will describe what is understood by Bayesian Inference and how each

problem can be derived as a particular instance.

The methodology described in this chapter can be used to address the proposed problems in this

dissertation. In chapter 4 we propose two pure variational models for saliency detection and their

numerical resolutions. One of them is embedded in a CNN and end-to-end trained, overcoming the

manual hyper-parameterization tunning. In chapter 5 we aim to solve a classification problem based on DL

techniques and propose two methods for a semi-supervised training procedure allowing to train with very

little data (real case scenarios). We also show the typical problems that arises in such architectures and

link them to the lack of Bayesian modeling. Finally, in chapter 6 a very ill-posed problem is faced from a

Bayesian perspective that justifies and provides hints to correctly get advantage of all new techniques and

tricks that can be found in recent literature.

Variational methods and Deep Learning techniques are commonly seen as different approaches to

possibly similar problems, mainly if the field of interest is, as deemed in this thesis, Computer Vision. To

motivate why a Bayesian Inference approach is useful to address any problem in CV and other fields, we

first focus on the main drawbacks of both Variational and Deep Learning tools.

On the one hand, Variational models require priors and a hypothesis model to describe and analyze

the theoretical properties and provide numerical resolutions. The performance of the resulting models

relies on two decisions: (1) a correct selection of adequate priors and (2) a correct balance between

them. As we have seen in Section 2.1, the success of prior operators, which are ubiquitous in Restoration

Problems and Image Processing tasks, is explained through the nature of data (images). In that sense,

the correct selection of priors (as the celebrated TV operator in [Rudin et al., 1992]) is driven by the

inner properties of the target images (smooth regions and sharp edges). This is the main contribution

of many Variational models for Image Processing, however, since they are parametric models, it is

often the case that finding a correct hyper-parameterization is unfeasible for a non-expert user and thus
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the model becomes impracticable. Here is where data take importance. In fact, if data are available,

the hyper-parameters can be found via optimization or meta-algorithms that provide a static setting of

such parameters. Nonetheless, this is clearly sub-optimal when this setting of parameters depends on

the concrete example. We propose in chapter 4 a Deep Variational Framework to boost our proposed

variational model and get rid of the manual tuning and finding the optimal hyper-parameters based on data.

Interestingly, data does not only allow for automatically tuning parameters but also open the possibility to

learn the required priors [Chen et al., 2014]. These methods are often solved through bi-level algorithms

[Colson et al., 2007], which have a great resemblance with the DL formulation when some regularizing

priors are included.

On the other hand, DL and NNs suffer from the so-called black box effect, when they are treated as

black boxes. In fact, uninterpretability of neural networks is a shortcoming that reduces the control of

these systems and increase the uncertainty of their outcomes. Somehow, NNs circumvents this fact by

relying on a huge amount of data, that is supposed to cover and be representative of the whole expected

distribution of examples. We are thus lead to focus on data. We have already seen in chapter 2 that NNs

are Universal Approximation Functions, and therefore they can "mimic" almost every reasonable function,

see Theorem 1. However, this theorem does not provides a way to obtain such function and, even more

important, assumes infinite examples are available. In this framework, over-fitting and extrapolation

problems arise. The lack of information, either for unavailable data or a non-representative sub-sampled

set of examples, must be addressed in terms of regularization, i.e., imposing priors. That reveals a pure

Maximum Likelihood (ML) approach is not enough even if a big amount of data has been collected.

3.1 Bayesian Inference

Bayesian Inference is a Statistical Inference method that rests on Bayes’ Rule, used to update a prior

model probability with evidence [Casella and Berger, 2002]. The hypothesis or model about the world

is constantly evolving as new experiments are performed and thus data are coming. This is, in a more

general framework as those presented in chapter 2:

p(M |D) =
p(M,D)

p(D)
(3.1)

where M represents the model and D the data evidence, usually D = (X,Y), being X and Y random

variables of inputs and outputs. In this sense we are interpreting M and D as random variables, and

therefore, the outcomes represent a set of models and data points respectively. Narrowing the models as

functions that transforms some input domain into a co-domain M = F : x ∼ p(X)→ y ∼ p(Y), where

depending on whether x and y are causes or effects, we will be facing a direct or inverse problems, as

explained in Section 2.1. More interesting in that scheme is that the model or function used to obtain the

prediction y given the data point x is randomly selected, i.e., we draw samples from f ∼ p(F). Re-writing

(3.1) we have:

p(F | X,Y) =
p(F,X,Y)

p(X,Y)
=

p(Y | F,X)p(F,X)

p(X,Y)
=

p(Y | F,X)���
�p(X | F)p(F)

p(Y | X)��
�p(X)

(3.2)

where p(X | F) = p(X) due to the fact X does not depend on F, resulting in:

p(F | X,Y) =
p(Y | F,X)p(F)

p(Y | X)
. (3.3)
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In general, computing the joint probability p(F,X,Y) is expensive. Alternatively, to facilitate such joint

probability term to be computed, the whole system can be seen as a DAG. Those models, also known

as or , harness of their representations exploiting dependencies between nodes to reduce greatly the

number of term that require to be computed. For a comprehensive introduction and further details see

[Jensen et al., 1996], [Jordan, 1998, Jordan et al., 1999] and [Nielsen and Jensen, 2009]. For variational

methods and graphical models for modern machine learning approaches, see [Bishop, 1998].

X F

Y

Figure 3.1: DAG Model

In this case, p(F,X,Y) is obtained as the product of the probability of each node conditioned to its

parents:

• Node X: has not parent nodes→ p(X)

• Node F: has not parent nodes→ p(F)

• Node Y: has two parent nodes→ p(Y | F,X)

which results in:

p(F,X,Y) = p(Y | F,X)p(X)p(F).

Moreover, the denominator in equation (3.2) p(X,Y) associated to the probability of the evidence, using

Bayes’ rule, can be write as:

p(X,Y) =


p(Y | X)p(X)

or

p(X | Y)p(Y)

where it is easy to see that the correct election is the first by simply looking at the graph of figure (3.1).

Equation (3.3) can be seen as finding a distribution of functions F that are likely to generate the output

distribution of labels Y given a input distribution of points X. Once those distributions are obtained we

can use Bayesian Inference to make estimates in a possible new test dataset Dtest = (Xtest,Ytest):

xtest ∼ p(Xtest),

ytest ∼ p(Ytest).

Then, doing Inference is equivalent to use posterior probability (3.1) and the prediction equation defined

as follows:

p(ytest | xtest,X,Y) =

∫
p(ytest | xtest,F)p(F | X,Y)dF. (3.4)

Notice that for such purpose, it is necessary to sample from the posterior distribution of the model (3.3):

f ∼ p(F | X,Y).
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For all these models F, we will integrate each prediction to infer a density distribution function of

observing a single data point y∗ given x∗. The prior prediction is however computed as a marginalisation,

i.e., computing the integral over the prior models:

p(Y | X) =

∫
p(Y | X,F)p(F)dF (3.5)

constitutes the normalizing term in equation (3.3). Further, all models shall be characterized as parametric

functions, which means that all the set of functions in F relies on some parameters W which in turn are

also drawn from a distribution function:

f(W) ∼ p(F)

w ∼ p(W).

tranforming equation ((3.4)) in:

p(ytest | xtest,X,Y) =

∫
p(ytest | F)p(F | xtest,W)p(W | X,Y)dFdW. (3.6)

To give a simple intuition of what the set of functions F and the set of parametrizations W depicts,

one can think of it as NN with different architectures and each of them with plenty of different weights

configurations. In ML and DL, the deemed functions are NN that, as we have seen in Section 2.2,

are Universal Approximation Functions and therefore, roughly speaking, each of this instance of NN

(assuming enough capacity, i.e., nodes) is able to approximate "any" function. For such a reason we can

integrate (3.6) over F or, alternatively, consider that the set of functions F is composed by only 1 element

s.t. F = f:
p(ytest | xtest,X,Y) =

∫
p(ytest | xtest,W)p(W | X,Y)dW (3.7)

where the required posterior distribution is now p(W | X,Y) and its associated DAG is depicted in Figure

3.2.

X W

Y

Figure 3.2: DAG (f-parametric)

Despite of this assumption over F, the posterior distribution p(W|X,Y) is still intractable analytically.

An alternate way or approximation to evaluate this term is then necessary. One of these Approximate

Inference methods among other is known as Variational Inference that connect us with Variational

methods.

3.2 Variational Inference

We have briefly reviewed the Bayesian Inference idea from which we can derive Deep Learning and

Machine Learning problems. To make it feasible in practice, we must resort to an approximate inference

that translates in a efficient way to compute the integral equation (3.7), and concretely, and easy way

to draw samples from the posterior distribution p(W|X,Y). Variational Inference is then to assume and
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replace such distribution by an easy to sample approximate parametric one qθ(W) ≈ p(W | X,Y).

Note that the approximating distribution qθ(W) does not longer depend on data evidence! The problem

is then to select a suitable parametric function that fits the real posterior distribution by finding its

optimal parameters refereed to as variational parameters. At this point it is important to understand

that the parameters W on which f depends are the parameters of the model (distributions) while θ are

the variational parameters with which we want to approximate p(W | X,Y). That is, they are different

parameters that we will relate later. Once qθ(W), from which we can easily sample wt ∼ qθ(W) (where

t denotes time), has been obtained, the equation (3.6) approximates as

p(ytest | xtest,X,Y) ≈
∫

p(ytest | xtest,W)qθ(W)dW. (3.8)

We now define a measure between both, the real and the approximate distribution in order state an opti-

mization problem that lead us to find a good approximating posterior. A common election in Approximate

Inference is the well-known Kullback-Leibler Divergence (KL) [Kullback and Leibler, 1951], which

is a particular case of a greater family called Rènyi’s α-divergences [Li and Turner, 2016]. A broader

approach has been recently presented in [Hernández-Lobato et al., 2016]. The minimization problems

reads as follows:

θ∗ = arg min
θ

KL(qθ(W)||p(W | X,Y)). (3.9)

It is well stated that the problem above is equivalent to the maximization of the Evidence Lower Bound

(ELBO). Using Jensen’s inequality, we argue as follows:

log(p(X,Y)) = log

(∫
W

p(X,Y,W)dW
)

= log

(∫
W

p(X,Y,W)
q(W)

q(W)
dW
)

= log

(
Eq

[
p(X,Y,W)

q(W)

])
≥ Eq

[
log

(
p(X,Y,W)

q(W)

)]
in such a way, the lower bound for − log(p(X,Y)) is

ELBO =

∫
W

q(W) log

(
p(X,Y,W)

q(W)

)
dW. (3.10)

On the other hand, by the definition of the KL we have:

KL(qθ(W)||p(W|Y,X)) =

∫
W

qθ(W) log

(
qθ(W)

p(W|X,Y)

)
dW

= −
∫

W
qθ(W) log

(
p(W|X,Y)

qθ(W)

)
dW

= −
∫

W
qθ(W) log

(
p(X,Y,W)

qθ(W)
∫

W p(X,Y,W)dW

)
dW

= −
∫

W
qθ(W) log

(
p(X,Y,W)

qθ(W)

)
dW +

∫
W

qθ(W) log
(
p(X,Y)

)
dW

= −
∫

W
qθ(W) log

(
p(X,Y,W)

qθ(W)

)
dW + log

(
p(X,Y)

)
where we identify the (3.10) term and therefore obtain:

KL(qθ(W)||p(W|Y,X)) = −ELBO + log
(
p(X,Y)

)
. (3.11)
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Dropping the log-evidence term log(p(X,Y)) from the minimization problem (3.9) since it does not

depend on θ, the optimization problem turns into:

arg min
θ
J(θ,W)

where

J(θ,W) = −
∫

W
qθ(W) log

(
p(X,Y,W)

qθ(W)

)
dW

= −
∫

W
qθ(W) log

(
p(Y|X,W)p(X|W)p(W)

qθ(W)

)
dW

= −
∫

W
qθ(W) log

(
p(Y|X,W)

)
dW +

∫
W

qθ(W) log

(
qθ(W)

p(W)

)
dW

= −
∫

W
qθ(W) log

(
p(Y|X,W)

)
dW + KL

(
qθ(W)||p(W)

)
i.e.,

arg min
θ
−
∫

W
qθ(W) log

(
p(Y|X,W)

)
dW + KL

(
qθ(W)||p(W)

)
. (3.12)

First term in equation (3.12) is known as the expected negative log-likelihood while the second one is

refereed to as prior KL. The prior KL, modeled by selecting prior functions p(W), is often deemed as a

regulariser term in Variational Inference literature. See [Hron et al., 2018] for further details on selecting

improper prior functions and its implications.

3.3 Variational and Machine Learning Problems as instances of
Bayesian Inference

Here the connection to Deep Learning or Machine Learning is established when the approximating distri-

bution qθ(W) provides only 1 configuration for the model parameters W, so the variational parameters

are no longer the hyper-parameters of the distribution but those of the model itself. In other words,

qθ(W) = δ(W− θ).

A common gaussian prior assumption over the parameters lead us to:

KL(qθ(W)||p(W)) = λ||θ||2

obtaining similar Tikhonov regularizing term as it has been done in sections 2.1 and 2.2. For further details

we refer the reader to [Gal and Ghahramani, 2016a], Appendix A. In this particular case, following the

equation (3.12), we have

arg min
θ
− log

(
p(Y|X,W)

)
+ λ||θ||2 (3.13)

and recover exactly the same DL problem stated in Section 2.2.

Finally, we can re-think as well the variational denoising presented in Section 2.1, without loss of

generality, identifying the variational parameters as the parameters of our model which is exactly the

image that we aim at recovering, that is,

qu(U) = δ(U− u).
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Moreover, the given datum f is a single sample of the whole dataset F, so that the optimization problem

derived from the Variational Inference scheme is

arg min
u
− log

(
p(F|u)

)
+ λ||φ(u)||2

arg min
u

N∑
i=1

||u− fi||2 + λ||φ(u)||2 (3.14)

where N is the number of samples from the set of noisy images F. Nonetheless, we must recall that, in

such problems, we only have access to 1 sample of noisy image (N = 1), so that

arg min
u
||u− f ||2 + λ||φ(u)||2 (3.15)

recovers the original denoising problem and thus, the regulariser term becomes mandatory, otherwise, a

simple average would suffice.

3.3.1 Dropout

The arrival of DNN has introduced the technique of dropout [Hinton et al., 2012, Srivastava et al., 2014]

as an element to avoid over-fitting, which nowadays is being incorporated in all kinds of NNs. Different

interpretations arise from this technique that drops connections between nodes of a Fully Connected

Neural Network (FCNN) at random. A common one, is to think that at each training step of a SGD, the

considered NN is a sub-model of the principal NN (see Figure 3.3). By construction, all these sub-models

have less parameters to train since their connections are set to 0, and thus, the sub-model is less prone to

over-fit.

Figure 3.3: Dropout example

Dropout, according to the authors, breaks up complex co-adaptations between neurons that, rather

than learning a good firing criteria, may learn to compensate errors made by other neurons. They motivate

dropout through the theory of the role of sex in evolution [Livnat et al., 2010], where sexual reproduction,
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as opposed to asexual reproduction, combines half genes of both parents to produce an offspring (a

reason for setting the keep-probability of a connection to p = 0.5). Analogously, one can think that,

in NN, removing such complex co-adaptations is intuitively bad, precisely due to the same reason: it

removes complex structures of neurons that have learned to "work" together. On the other hand, asexual

reproduction is prone to replicate those complex neuron’s relationships and thus, translating to NN, the

neurons can over-fit the train set of examples that leads to badly generalize. Those contradictions are

solved showing that in evolution, sexual reproduction is the way most of the advanced organism have

evolved. Authors also add other interpretation based on conspiracies.

Interestingly, straying from those sexual reproduction and conspiracy interpretations, dropout has

recently been revisited as a bayesian approximation for representing and estimating the model uncertainty

[Gal and Ghahramani, 2016b]; whereas SGD has been investigated as an approximation of bayesian

inference in [Mandt et al., 2017]. In fact, seeing a NN as a non-static structure allows us to find a

principled explanation of dropout. This is, each time we measure its parameters or weights we obtain

different values that are drawn from a distribution. Dropout can be seen as using a discrete distribution

with two modes where one of them is located in 0. In other words, a Bernoulli(p) distribution is placed

over each weight. Of course, again, this constitute an a priori that models the weights in a way that it

directly affects the structure of the NN. Recall that, as aforementioned in 2.2.4, the success of CNN in CV

problems is due to the structure of the convolution operation and the infinitely strong prior it impose.



CHAPTER 4

P1. Proposed Variational Models for
Saliency detection

Ça ne rapproche pas, le téléphone, ça confirme les distances.

Simone de Beauvoir

This chapter is organized as follows. We start introducing the Saliency concept and the adressed

problem. In section 4.1, we introduce the variational mathematical framework of our models. Starting

with the local equations as guide for the modelling exercise, we focus on the non-local diffusive terms,

explicited in the form of p-Laplacian operators, for p > 1 and extend it to the range 0 < p ≤ 1 through

a differentiable family of fluxes to cover the resulting non-local non-convex hyper-Laplacian operators.

Then, we introduce a multi-valued concave saliency detection term which defines an obstacle problem

for the non-local diffusion models. In Section 4.2 we describe and solve two versions of the proposed

model: local and non local. We deduce the corresponding Euler-Lagrange equations. A gradient descent

approximation is used to solve the elliptic non-local problems until stabilization of the associated evolution

problems, and a Primal-Dual based algorithm for the associated local. Moreover, the local version is

embedded in a DL architecture. Such setting allows us to take advance of the goods of both CNN

and the proposed variational model while avoiding their major drawbacks: uncertainty and manual

hyper-parameterization, respectively. Section 4.3 contains the numerical experiments on the proposed

models and present the simulations performed on FLAIR sequences of MR images obtained from the

BRATS2015 dataset [Menze et al., 2015] which consists of 220 subjects for High Grade Glioblastomas

(HGG) detection.

4.1 Introduction: Saliency Detection

Currently there is a growing interest in Image Processing and computer vision applications for visual

saliency driven models, able to focus on perceptually relevant information within digital images. Despite

of the lack of a general consensus on a proper mathematical definition of saliency, it has a clear biologically

perceptive meaning: it models the mechanism of human attention, that is, of finding relevant objects within
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an image. Saliency-based models are then grouped into different families depending on if they predict ei-

ther human gaze [Cerf et al., 2008], [Wang and Shen, 2018] or salient objects [Riche and Mancas, 2016],

[Wang et al., 2015a], [Zhu et al., 2018]. In the last case, termed as computational saliency, the final step

of the saliency detection algorithm is a segmentation of the salient object. Recently, there has been a burst

of research on saliency due to its wide application. Semantic segmentation [Bergbauer et al., 2013], ob-

ject detection [Li et al., 2018], image clustering [TANG Li-Ming, 2014], retrieval and cognitive saliency

applications [Wu et al., 2018], are just few examples of saliency driven based models which in turn

favour image captioning [Bernardi et al., 2016] and high-level image understanding [Singh et al., 2017].

Saliency is also of interest for improving computational efficiency and for increasing robustness in cluster-

ing and thresholding in the sense it allows to discard regions that are unlike to be relevant. For instance,

if a Saliency method select the regions in an image that must be processed by a different and expensive

method avoiding irrelevant parts of it, the computational burden is greatly reduced.

At this point, one can ask what is the difference between Saliency detection and Segmentation. The

question is pertinent and in fact collides again with the concept of information discussed in the Introduction

Chapter 1. Recall that, due to the lack of formal definition of what is understood by information, we shall

precise the objective of our method which, as aforementioned, can be cast as: (1) recovering a given

image (Restoration) or (2) extracting features from it. This classification can be found in almost every

book of CV, which displays how terminology sometimes makes difficult rather than easier the ultimate

understanding of the problem. Nevertheless, the reason of the use of Saliency is is two-fold. First, the

deemed application in the following sections was inspired in similar variational models casted as saliency

detection models. Second, those methods do not provides a direct segmentation since the outcome is a

continuous images ranging in [0, 1] and thus can be interpreted as a heat or probability point-wise map.

In this chapter we shall focus on variational saliency detection and accurate object segmentation

[Donoser et al., 2009], [Li et al., 2013], [Li et al., 2017] as a first step for successful image understanding.

The role of saliency in models is application dependent, and thus several different techniques and ap-

proaches have been introduced to construct saliency maps. They vary from low dimensional manifold fea-

tures minimization [Zhan, 2011] to non-local sparse minimization [Wang et al., 2014], graphs techniques

[Harel et al., 2007], partial differential equations (PDE) [Li et al., 2013], superpixels [Liu et al., 2013],

learning methods [Liu et al., 2014], or neural networks based approaches [Bylinskii et al., ]. State of the

art methods are currently based on DL techniques using NNs [Zhang et al., 2018] which provide high

level features and semantic information which are not considered in a pure variational approach. Therefore

we aim at exploring the applications and algorithms of non-smooth, non-local, non-convex optimization

of saliency models and also the possibility of combining both variational and state of the art DL methods,

[Pereira et al., 2016, Havaei et al., 2017, Zhao et al., 2018].

Leading medical disciplines such as neuroscience [Yang et al., 2017] and cardiology have also incor-

porated this concept. Considering medical images modalities such as Magnetic Resonance Imaging (MRI)

or Positron Emission Tomography (PET), the automatic obtention of saliency maps is used for pathology

detection, disease classification [Rueda et al., 2013], location and segmentation of brain strokes, gliomas,

myocardium detection for PET images, tumors quantification in FLAIR MRI [Thota et al., 2016] and

so forth. Inspired by the variety of models ranging from non-local properties to hyper-laplacian priors,

we present two variational models for saliency segmentation, their numerical resolutions and the results

obtained by its application to MR images for accurate location of tumor and edema. The underlying
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hypothesis, fulfilled by such images, is that the salient region is brighter than the rest. A example of

FLAIR input image and the expected output is depicted below in Figure 4.1.

(a) FLAIR input image (b) Segmentation of the expected Saliency output

Figure 4.1: Saliency example

Indeed, brain tumor segmentation is one of the most important and difficult tasks in medical imaging.

A proper segmentation provides quantitative and qualitative information of the cancer that helps clinicians

to find the most effective treatments for each patient or in case of need to better plan a chirurgical

intervention. Nevertheless, this work is usually done manually by experts resulting in a slow, difficult and

tedious task that is subject to errors and differences between expert’s criteria. In order to overcome these

problems many methods have been proposed to automatically perform this task specially when using MRI

of the brain [Gordillo et al., 2013].

The variational models for saliency detection we propose are based on a TV restoration functional

(local and analogous non-local version) plus a concave saliency term which provokes a sort of binarization

of the solution. The resulting functional is non-smooth because of the non-differentiability of the TV and

non-convex because of the new saliency term. While the non-local version is further solved with a gradient

descent based algorithm, the local version takes advantaged of the fact that the global energy functional

has a special structure called Difference of Convex (DC) functionals allowing the use of a proximal

point algorithm to find a critical point of the minimization problem [Sun et al., 2003]. Furthermore, the

Chambolle and Pock primal-dual algorithm [Chambolle and Pock, 2011] is used to deal with the TV’s

non-smoothness in a resulting subproblem.

Finally, this local but fast resolution of the model allows us to go a step further by embedding the

proposed model into a DL framework, following recent ideas as [Kobler et al., 2017]. The main motivation

for such a purpose can be argued as follows: a fine tuning of the parameters balancing the variational

model is unavoidable in order to optimize the results and it is one of the most difficult tasks for real

applications. Using a NN and unwrapping the numerical resolution of our model as extra layers allows us

to train and find the optimal parameters of our saliency detection model using knowledge from experts
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in brain tumor segmentation. Moreover, the neural network can learn spatially adaptive parameter maps

based on the input image optimizing the performance of our model, which is completely out of range for

a manual tuning. On the other hand, despite the fact DL techniques hold the state of the art results in this

field, reliability is sometimes put in doubt due to the variability of the outcomes. This effect is often known

as black box effects. Recently, some works have been carried out in order to show how neural networks

are sometimes easy to fool. In [Athalye et al., 2017], authors create adversarial examples introducing tiny

perturbations on the input image. In [Su et al., 2019], they achieve to fool a deep learning trained neural

network by just re-placing 1 pixel. DL is indeed, an interpolation problem (see [Mallat, 2016]) where the

given points are images, audios, i.e, any high-dimensional data. This translates into the need of tones of

examples that cover and capture the entire distribution of the data.

Using an embedded variational model in a deep learning scheme prevent the whole system from these

detrimental effects since the final outcome is provided by the variational model over which we keep a full

control.

Models for saliency detection try to transform a given image, f , defined in the pixel domain, Ω, into a

constant-wise image, u, whose level sets correspond to salient regions of the original image. They are

usually formulated through the inter-relation among three energies: fidelity, regularization, and saliency,

being the latter the mechanism promoting the classification of pixels into two or more classes. There

is a general agreement in considering the fidelity term as determined by the L2 norm, that can also be

explained from Bayesian modeling placing a gaussian distribution over the likelihood term (see 2.1.3),

that is

F (u) =
1

2

∫
Ω
|u− f |2,

so that departure from the original state is penalized in the minimization procedure. For regularization, an

edge preserving energy should be preferred. The use of the TV energy as described in 2.1.2, or commonly

expressed with abuse of notation:

TV (u) =

∫
Ω
|∇u|,

is defined on the space of Bounded Variation. Recall that the TV energy allows discontinuous functions

to be solutions of the corresponding minimization problem, with discontinuities representing edges, in

contrast to Sobolev norms, which enforce continuity across level lines and thus introduce image blurring,

as seen in chapter 2.

Only recently, the non-local version of the TV energy and, in general, of the energy associated to

the p-Laplacian, for p > 1, has been considered in restoration modeling. In saliency modeling, just the

range p ≥ 2 seems to have been treated [Li et al., 2013]. One of the main advantages of introducing

these non-local energies is the lack of the hard regularizing effect influencing their local counterparts,

[Pérez-LLanos and Rossi, 2011]. Such effect erases the boundary conditions needed in the local versions,

such as (2.16), (2.17) and (2.18). A general discrete framework for non-local p-Laplacian regularization

on graphs covering the case p > 0 can be found in [Elmoataz et al., 2008]. For p = 0 a saliency discrete

model based on superpixels is given in [Wang et al., 2015b].

For the remaining saliency term, a phase-transition model can be considered. Developed by Ginzburg-

Landau [Ginzburg, 1955], CahnHilliard [Cahn and Hilliard, 1958] and Van der Walls [Van der Waals, 1979]

in the field of mechanics and materials, this model consist of a double-well absorption-reaction term.
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Those phase-transition models are often applied in Image Processing for segmentation or binarization prob-

lems (see [Kornprobst, 2006, Aubert et al., 2005] for further details). The resulting energy is a functional

of the type

W (u) =

∫
Ω
w(u) =

∫
Ω

(
1− |u|2

)2
,

whose minimization drives the solution towards the discrete set of values {−1, 1}, facilitating in this way

the labeling process. However, due to the vanishing slope of g(u) = (1− |u|2)2 at u = ±1, the resulting

algorithm has a slow convergence to the minimizer (Figure 4.2a). Notice that setting the minimizer in

{−1, 1} requires to re-scale the input image to such range. Similar non-convex variants are proposed in

[Li et al., 2013] and [Li et al., 2017].

Local p-Laplacian To introduce the modelling assumptions we briefly consider the minimization of the

energy functional

Ep(u) = λF (u) + Pp(u), (4.1)

where λ > 0 is a constant, Pp(u) and F (u) are the regularization and the fidelity terms, respectively,

given by

Pp(u) =
1

p

∫
Ω
φp(Du)dx, F (u) =

1

2

∫
Ω
|u− f |2dx,

where Ω ⊂ R2 is a bounded domain (the set of pixels in the discrete case), f : Ω→ [0, 1] is the image to

be processed, u : Ω→ R belongs to a space of functions for which the minimization problem admits a

solution and φp(·) is the potential function covering the range of different values of p (Figure 2.4). The

idea behind this minimization problem is, as a denoising problem: given a non-smooth (e.g. noisy) image,

f , to obtain another image which is close to the original (fidelity term) but regular (bounded gradient in

Lp(Ω)). The parameter λ is a ratio between the associated standard deviations (λ = (σ1/σ2)2, see 2.1),

indeed a weight balancing the respective importance of the two terms in the functional. When first order

necessary optimality conditions are imposed on the energy functional, the PDE problem presented in

(2.18) arises. The Eulear-Lagrange is then:

−
(
|∇u|p−2∇u

)
+ λ(u− f) = 0. (4.2)

Properties of the so-called p-Laplacian term have been extensively studied in the last decades for

the range of exponents p ≥ 1. For p > 1, the energy Pp(u) is convex and differentiable, and the

solution to the minimization problem belongs to the Sobolev space W 1,p(Ω), implying that u can not

have discontinuities across level lines. Therefore, the solution, u, is smooth even if the original image, f ,

has steep discontinuities (edges). This effect is known as blurring as already explained in chapter 2 which

translates into diffused edges of the resulting image.

In the case p = 1, the energy term P1(u) is convex but not differentiable. Thus, in this case, the edges

of f are preserved in the solution, u, because a function of bounded variation may have discontinuities

across surface levels. We are specially interested in the range 0 < p < 1, for which the energy Pp(u) is

neither convex nor differentiable, and it only generates a quasi-norm on the corresponding Lp(Ω) space.

In this parameter range the problem lacks of a sound mathematical theory, although some progress is being

carried on [Hintermüller and Wu, 2014]. Despite the difficulties for the mathematical analysis, there is

numerical evidence on interesting properties arising from this model, among others, by adapting the prior
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to the real estimated negative log-likelihood direct or indirectly based on data, huge improvements can

be achieved. In particular, the non-convexity forces the gradient to be sparse in so far it minimizes the

number of jumps in the image domain, which is consistent with the idea of seeing the gradient of an image

as the precursor of its edges. Actually, if only sharp jumps are preserved, the resulting image tends to look

like a cartoon piecewise constant image. For this reason a hyper-laplacian operator is suitable to be used

in a Saliency variational model.

Nonlocal p-Laplacian While the use of the local p-Laplacian energy is not specially relevant in Image

Processing for p > 1 due to its regularizing effect on solutions which produces over-smoothing of the

spatial structures, for its non-local version the initial data and the final solution belong to the same

functional space, i.e., no global regularization takes place. See [Andreu-Vaillo et al., 2010], where a

thorough study on non-local diffusion evolution problems, including existence and uniqueness theory,

may be found. Non-local operators were introduced in Image Processing in [Kindermann et al., 2005]

and developed in [Gilboa and Osher, 2008]. An easy interpretation of these Non-local hyper-laplacian

operators for the sake of understanding and motivation of their use in Saliency detection models is the

following: as the local analogous promotes sparse gradients and thus sharp edges, the non local hyper-

laplacian operator promotes sparse non-local gradients which can be seen as a measure of the number of

range levels. Minimizing such a term in thus equivalent to reduce the number of different classes within

the image. This property fits well with the aim at obtaining a nearly binary outcome.

The non-local analogous of the energy Pp(u), for p > 1, is

Pnlp (u) =
1

2p

∫
Ω×Ω

w(x− y)|u(y)− u(x)|pdydx, (4.3)

where w is a continuous non-negative radial function with w(0) > 0 and
∫
R2 w = 1. The Fréchet

differential of Pnlp (u) is

DPnlp (u) =

∫
Ω
w(x− y)|u(y)− u(x)|p−2(u(y)− u(x))dy.

Thus, the Euler-Lagrange equation for the minimization problem (4.1) when Pp(u) is replaced by Pnlp (u)

is ∫
Ω
w(x− y)|u(y)− u( x)|p−2(u(y)− u(x))dy + λ(f − u) = 0. (4.4)

For p ≤ 1, the Euler-Lagrange equation (4.4) does not have a precise meaning due to the singularities

that may arise when the denominator vanishes. To overcome this situation, we approximate the non-

differentiable energy functional Pnlp (u) by

Pnlε,p(u) =
1

4

∫
Ω×Ω

w(x− y)φε,p(u(y)− u(x))dxdy,

for ε > 0, where

φε,p(s) =
2

p

(
s2 + ε2

)p/2 − 2

p
εp

is regularized edge preserving functions family (presented in chapter 2) when 0 < p ≤ 1.

Observe that the corresponding minimization problem is now well-posed due to the differentiability

of Pnlε,p(u). Therefore, a solution may be calculated solving the associated Euler-Lagrange equations.

However, for p < 1, the solution is in general just a local minimum, due to the lack of convexity. Of

course, the same reasoning may be followed for the local diffusion equation (4.2).
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4.1.1 Saliency modeling

Finally we introduce a new saliency term that enhances the convergence of the classification algorithm

(salient vs background) while keeping a good quality compromise. The general idea is pushing the values

of u towards the discrete set of extremal image values {0, 1}, determining the labels we impose for

saliency detection: u = 1 for foreground, and u = 0 for background. To model this behavior we propose

a two-terms based energy, where the first causes a reaction extremizing the values of the solution and the

second accounts for the problem constraints (0 ≤ u ≤ 1). The former is captured by the concave energy

(depicted in Figure 4.2b):

H(u) =

∫
Ω
h(u) = −1

2

∫
Ω

(1− δu)2, (4.5)

with δ > 0 constant, which fastly drives the minimization procedure so that H(u) → −∞. This is a

concave quadratic energy term that differs with the more common use of convex 4-th order polynomial

terms to model double-well potentials for image classification. Our term (4.5) is always negative except

when u = 1/δ, therefore its minimization pushes the solution away from this value. The latter, to

counteract this tendency and remain in the meaningful interval u ∈ I = [0, 1], is introduced as an obstacle

which penalizes the minimization when the solution lies outside I and a (global) minimum is obtained in

agreement with basic calculus. The modeling of such obstacle is given in terms of the indicator function

II(u) =

 0 if u ∈ I,

∞ if u /∈ I,

and the resulting saliency term is then defined as a weighted sum of the operators H(u) and II(u).

Observe that since I is convex and closed, the functional II(u) is convex and lower semi-continuous, and
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Figure 4.2: Saliency terms
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that its sub-differential is the maximal monotone graph of R× R, given by

∂II(u) =



(−∞, 0] if u = 0,

0 if 0 < u < 1,

[0,+∞) if u = 1,

∅ otherwise.

The saliency term we propose is the sum of the fast saliency promotion, H(u), and of the range

limiting mechanism, II(u), i.e.

S(u) = H(u) + II(u).

4.2 Proposed Methods: NLTVS and TVS+CNN

In the following we propose two different models and their resolutions for Saliency detection. The first,

a non local model solved through a gradient descent algorithm with different simplifications that boost

its numerical resolution. The second consists of a local version however solved through a Primal-Dual

algorithm and avoiding any type of operator’s regularization. Moreover, this numerical resolution is

combined, indeed embedded, into a CNN to create a Deep Variational Framework.

4.2.1 Non Local Total Variation Saliency model(NLTVS)

Gathering the fidelity, the regularizing and the saliency energies, we define a bilateral constrained obstacle

problem associated to the following energy

Enlε,p(u) = αPnlε,p(u) + λF (u) +
1

α
S(u), (4.6)

where α > 0 is a parameter modulating the relationship between regularization and saliency promotion.

Observe that there is no use in multiplying II(u) by the constant 1/α, so we omit it for clarity. The

Euler-Lagrange equation corresponding to (4.6) together with the use of a gradient descent method leads

to the consideration of non-local multi-valued evolution problems. In particular we have:

arg min
u
αPnlε,p(u) + λF (u) +

1

α
S(u). (4.7)

Multi-valued Problems Pε(u)

Set QT = (0, T )× Ω and let α, δ, λ and ε be real fixed positive parameters. Let moreover f ∈ L∞(Ω).

For some given T > 0, find u : [0, T ]× Ω→ R solving the approximating smooth (in fact differentiable)

multivalued problem

Pε(u)


∂tu− αKε,p(u) + ∂II(u) 3 au− b in QT ,

u(0, ·) = f on Ω,

(4.8)

which model non-linear non-local non-convex reactive flows that we shall consider in the range 0 < p ≤ 1.
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For the sake of presentation, we have introduced the following notation in (4.8): we rewrote the

Fréchet differential of H(u)/α+ λF (u) as au(x)− b(x), with

a =
δ2

α
− λ, b(x) =

δ

α
− λf(x), for x ∈ Ω, (4.9)

and defined the non-local hyper-Laplacian (0 < p < 1) and 1-Laplacian (p = 1) diffusion operators

Kε,p(u)(t, x) =

∫
Ω
w(x− y)kε,p(u(t, y)− u(t, x))dy,

with differentiable kernels

kε,p(s) =
1

2
φ′ε,p(s) = s

(
s2 + ε2

) p−2
2 . (4.10)

Notice that, while for the local diffusion problem we must explicitly impose the homogeneous

Neumann boundary conditions, which are the most common boundary conditions for Image Processing

tasks, for the non-local diffusion problem this is no longer necessary since these conditions are implicitly

imposed by the non-local diffusion operator [Andreu-Vaillo et al., 2010].

Yosida’s approximants

We now show that the solutions of the multivalued problem (4.8) may be approximated by the introduction

of Yosida’s approximants, leading to the single-valued problems Pε,r(u) in (4.12) that depend on the

Yosida’s approximation parameter r. We also prove that in the limit r → 0 the corresponding solutions lie

in the relevant range of values for Image Processing tasks, this is, in the interval [0, 1]. Introducing the

maximal monotone graphs β, γ ⊂ R× R given by

β(u) =


∅ if u < 0,

(−∞, 0] if u = 0,

0 if u > 0,

γ(u) =


0 if u < 0,

[0,∞) if u = 0,

∅ if u > 0,

we may express the subdifferential of II(u) as ∂II(u) = β(u) + γ(u− 1). The Yosida’s approximants

of β and γ are then

βr(u) =

u/r if u ≤ 0,

0 if u > 0,
γr(u) =

0 if u < 0,

u/r if u ≥ 0,

for r > 0, allowing us to approximate the multi-valued formulation (4.8) by single-valued equations in

which β and γ are replaced by βr and γr. This is, by the evolution integro-differential equation

∂tu− αKε,p(u) + βr(u) + γr(u− 1) = au− b. (4.11)

Assume that a solution, u, of (4.11) with initial data u(0, ·) = f does exist, and consider the characteristic

function of a set C, defined as χC(x) = 1 if x ∈ C and χC(x) = 0 otherwise. Introducing the sets

Ω0(t) = {x ∈ Ω |u(t, x) > 0 }, Ω1(t) = {x ∈ Ω |u(t, x) < 1 },

for t ∈ [0, T ), we may express the Yosida’s approximants appearing in (4.11) in terms of characteristics

functions in form

βr(u(t, x)) =
1

r
u(t, x)χ0(t, x), γr(u(t, x)) =

1

r
(u(t, x)− 1)χ1(t, x),

with, for i = 0, 1, χi(t, x) = χΩ\Ωi(t)(x).
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Approximating Single-Valued Problems Pε,r(u)

We rewrite (4.11) as a family of approximating problems Pε,r(u) using the characteristic functions

introduced before. Set QT = (0, T )×Ω. Given a > 0, f ∈ L∞(Ω), f(x) ≥ 0 a.e. in Ω, define b(x) ≥ 0

using (4.9) and solve

Pε,r(u)


∂tu− αKε,p(u) + 1

r

(
uχ0 + (u− 1)χ1

)
= au− b in QT ,

u(0, ·) = f on Ω,

(4.12)

Notice that uχ0 = −u− and (u − 1)χ1 = (u − 1)+, where we used the notation u+ = max(u, 0),

u− = −min(u, 0), so that u = u+ − u−. The following result generalizes to the non-local framework

the results of [Murea and Tiba, 2013], establishing that the solution of (4.12) is such that the subset of

(0, T )× Ω where u(t, x) /∈ [0, 1] may be done arbitrarily small by decreasing r. Thus, in the limit r → 0

the solution does not overpass the obstacles u = 0 and u = 1 and fulfills the bilateral constraints.

Theorem 2. Let b ∈ L2(Ω) and assume that the parametersα, ε, p, r, a are positive. If u ∈ H1(0, T ;L2(Ω))

is the corresponding solution of (4.12), then∫ T

0

∫
Ω

(
|u−|2 + |(u− 1)+|2

)
≤ C(T )r,

for some constant C(T ) independent of r.

Proof. Multiplying (4.12) by −u− and integrating in Ω, we obtain

d

dt

∫
Ω
|u−|2 + α

∫
Ω
Kε,p(u)u− +

1

r

∫
Ω
|u−|2 = a

∫
Ω
|u−|2 +

∫
Ω
bu−, (4.13)

where we used χ1u
− = 0. Since kε,p is an odd function, the following integration by parts formula holds∫

Ω
Kε,p(u)(t, x)u−(t, x)dx =
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=

∫
Ω

(∫
Ω
w(x− y)kε,p(u(t, y)− u(t, x))dy

)
u−(t, x)dx =

= −1

2

∫
Ω

∫
Ω
w(x− y)kε,p(u(t, y)− u(t, x))(u−(t, y)− u−(t, x))dydx.

Thus, noting that u− is non-increasing as a function of u, we deduce

(u(t, y)− u(t, x))(u−(t, y)− u−(t, x)) ≤ 0,

and therefore, see (4.10), ∫
Ω
Kε,p(u)(t, x)u−(t, x)dx ≥ 0. (4.14)

Using (4.14) and the Schwarz’s inequality in (4.13) we get,

d

dt

∫
Ω
|u−|2 +

1

r

∫
Ω
|u−|2 ≤ (a+

1

2

) ∫
Ω
|u−|2 +

1

2

∫
Ω
b2. (4.15)

Getting rid of the term r−1
∫

Ω |u
−|2 ≥ 0, we apply Gronwall’s inequality to the resulting inequality to

obtain ∫
Ω
|u−(t, ·)|2 ≤ C1(t)

∫
Ω
b2,

with C1(t) = t exp((a+ 1/2)t). Using this estimate in (4.15) yields

d

dt

∫
Ω
|u−|2 +

1

r

∫
Ω
|u−|2 ≤ C2(t)

∫
Ω
b2,

with C2(t) = (a + 1/2)C1(t) + 1/2. Finally, integrating in (0, T ) and using that u(0, ·) = f ≥ 0, we

obtain ∫ T

0

∫
Ω
|u−|2 ≤ C(T )r

∫
Ω
b2, (4.16)

for some constant C(T ) independent of r. To finish the proof we must show that also∫ T

0

∫
Ω
|(u− 1)+|2 ≤ C(T )r.

Since, once we multiply (4.12) by (u−1)+ and integrate in Ω, the arguments are similar to those employed

to get estimate (4.16), we omit the proof.

Discretization of the problem Pε,r(u)

In this Section we provide a fully discrete algorithm to numerically approximate the limit solution of

(4.12) when r → 0. First, we introduce a time semi-implicit Euler discretization of the evolution equation

in (4.12), that we show to retain the stability property of its continuous counterpart, stated in Theorem 2.

The resulting space dependent non-local PDE is discretized by finite differences. Since the problem is

nonlinear and, in addition, we want to pass to the limit r → 0, we introduce an iterative algorithm which

renders the problem to a linear form and, at the same time, replaces the fixed parameter r by a decreasing

sequence rj → 0.
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Time discretization For the time discretization, let N ∈ N, τ = T/N , and consider the decomposition

(0, T ] = ∪N−1
n=0 (tn, tn+1], with tn = nτ . We denote by un(x) to u(tn, x) and by χni (x) to χi(tn, x), for

i = 0, 1. Then, we consider a time discretization of (4.12) in which all the terms are implicit but the

diffusion term, which is semi-implicit. The resulting time discretization iterative scheme is:

Iterative Problems Pε,r(un) Given positive parameters ε, p, a time discretization step τ , a constant

a > 0 and a function b ∈ L∞(Ω), b(x) ≥ 0 a.e. x ∈ Ω set u0 = f and for n = 0, . . . , N − 1 find

un+1 : Ω→ R such that

Pε,r(u
n)


un(x)− τb(x) = (1− τa)un+1(x)− ταK̃ε,p(u

n, un+1)(x)

+
τ

r

(
un+1(x)χn+1

0 (x) + (un+1(x)− 1)χn+1
1 (x)

)
,

(4.17)

where, for k̃ε,p(s, σ) = σ
(
s2 + ε2

)(p−2)/2, we define

K̃ε,p(u
n, un+1)(x) =

∫
Ω
w(x− y)k̃ε,p(u

n(y)− un(x), un+1(y)− un+1(x))dy. (4.18)

That is, only the modulus part of the diffusion term is evaluated in the previous time step. Equation

(4.17) is still nonlinear (in fact piece-wise linear) due to the Yosida’s approximants of the penalty term.

In addition, its solution depends on the fixed parameter r that, in view of Theorem 2, we wish to make

arbitrarily small, so that the corresponding solution values are effectively constrained to the set [0, 1]. To

do this, we consider the following iterative algorithm to approximate the r-dependent solution, un+1, of

(4.17) when r → 0.

Remark 1. The stability result for the time continuous problem (4.12) stated in Theorem 2 may be

adapted with minor changes to the semi-implicit time discrete problem Pε,r(u
n) in (4.17).

Iterative Approximating Problems Pj(un) Let ε, p, τ , a, b and f be as assumed in problem (4.17).

Let u0 = f and r0 > 0 be given. For n = 0, . . . , N−1, set un+1
0 = un. Then, for j = 0, 1 . . ., define

rj = 2−jr0 and, until convergence, solve the following problem: find un+1
j+1 : Ω→ R such that

Pj(u
n)


un(x)− τb(x) = (1− τa)un+1

j+1 (x)− ταK̃ε,p(u
n, un+1

j+1 )(x)

+
τ

rj

(
un+1
j+1 (x)χn+1

0,j (x) + (un+1
j+1 (x)− 1)χn+1

1,j (x)
)
,

(4.19)

where χn+1
i,j (x) = χΩ\Ωn+1

i,j
(x) for i = 0, 1, being

Ωn+1
0,j = {x ∈ Ω |un+1

j (x) > 0 }, Ωn+1
1,j = {x ∈ Ω |un+1

j (x) < 1 }.

We use the stopping criteria

‖un+1
j+1 − u

n+1
j ‖L∞(Ω) < tol, (4.20)

for values of tol chosen empirically and, when satisfied, we set un+1 = un+1
j+1 .
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Space discretization For the space discretization, we consider the usual uniform mesh associated to

image pixels contained in a rectangular domain, Ω = [0, L − 1] × [0,M − 1], with mesh step size

normalized to one. We denote by xk a generic node of the mesh, with k = 0, . . . , LM − 1, and by u[k] a

generic function u evaluated at xk. To discretize the non-local diffusion term in space, we assume that

un is a constant-wise interpolator, and to fix ideas, we use the common choice of spatial kernel used in

bilateral theory filtering [Tomasi and Manduchi, 1998], that is, the Gaussian kernel

w(x) =
1

C
exp

(
− |x|

2

ρ2

)
,

being C a normalizing constant such that
∫
R2 w = 1. Assuming that the discretized version of w is

compactly supported in Ω, with the support contained in the box B = B2ρ(x), we use the zero order

approximation (4.18)

K̃ε,p(u
n, un+1)(xk) ≈

∑
m∈IkB

w[k,m]k̃ε,p(u
n[m]− un[k], un+1[m]− un+1[k]),

where w[k,m] = w(xk − xm) and IkB = {m = 0, . . . , LM − 1 : |xk − xm| < 2ρ}.
The values of the characteristic functions χn+1

i,j (xk) of the set Ω \ Ωn+1
i,j are the last terms of (4.19) that

we must spatially discretize. This is done by simply examining whether un+1
j [k] > 0 or not, for χn+1

0,j [k],

and similarly for χn+1
1,j [k].

The full discretization of (4.19) takes the form of the following linear algebraic problem: For k =

0, . . . , LM − 1, let u0[k] = f(xk). For n = 0, . . . , N − 1, set un+1
0 [k] = un[k]. Then, for j = 0, 1 . . .

until convergence, solve the following problem: find un+1
j+1 [k] ∈ R such that

(1−τa)un+1
j+1 [k]− τα

∑
m∈IkB

w[k,m]k̃ε,p(u
n[m]− un[k], un+1

j+1 [m]− un+1
j+1 [k])

+
τ

rj

(
un+1
j+1 [k]χn+1

0,j [k] + (un+1
j+1 [k]− 1)χn+1

1,j [k]
)

= un[k]− τb[k]. (4.21)

The convergence of the algorithm is checked at each j-step according to the spatial discretization of the

stopping criterium (4.20), that is

max
0≤k≤LM−1

‖un+1
j+1 [k]− un+1

j [k]‖ < tol.

When the stopping criterium is satisfied, we set un+1[k] = un+1
j+1 [k] and advance a new time step, until

n = N − 1 is reached.

A simplified computational approach

In previous sections we have deduced, through a series of approximations, a discrete algorithm to compute

approximated solutions of the obstacle problem Pε(u) in (4.8). We have shown that our scheme is stable

with respect to the approximating parameter r, producing solutions of problems Pε,r(u) that, in the limit

r → 0, lie effectively in the image value range [0, 1], apart from producing the required edge preserving

saliency detection on images. In this section, by introducing some hard nonlinearities (truncations) to

replace one of the iterative loops of (4.21), we provide a simplified algorithm for solving a problem closely

related to (4.8). In addition, we use an approximation technique, based on the discretization of the image
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range, to compute the non-local diffusion term. These modifications allow for a fast computation of what

we demonstrate to be fair approximations to the solutions of the original problem, (4.8). Considering the

time discrete problem (4.17), we introduce two changes which greatly alleviate the computational burden:

1. Compute the non-local diffusion term fully explicitly, and

2. Replace the obstacle term by a hard truncation.

Thus, we replace problem Pε,r(u
n) in (4.17) by the following which can be deduced from problem Pε(u)

in (4.8) using the two above strategies.

Truncated Problems Pε,0(un) Given u0 = f , and for n = 0, . . . , N − 1, find un+1 : Ω→ R such that

Pε,0(un)
{

(1− τa)un+1(x) = ταKε,p(u
n)(x) + un(x)− τb(x) (4.22)

followed by a truncation of un+1 within the range [0, 1]. Observe that the explicit Euler scheme, as

remarked in [Pérez-LLanos and Rossi, 2011], is well suited for non-local diffusion since it does not

need a restrictive stability constraint for the time step, as it occurs when considering the corresponding

local diffusion operator. This is related to the lack of regularizing effect in non-local problems. Spatial

discretization of (4.22) leads to the following algorithm which we shall refer as the patch based scheme:

Set u0 = f . For n = 0, . . . , N − 1, and for k = 0, . . . , LM − 1, compute

un+1[k] =

(
τα

1− τa

) ∑
m∈IkB

w[k,m]kε,p(u
n[m]− un[k]) + un[k]− τb[k] (4.23)

and truncate un+1[k]

ũn+1[k] = min(1,max(0, ũn+1[k])),

We shall show that there are very small differences between the solutions of the explicit truncated

problem Pε,0(un) and the solutions of the Pε,r(un) problems for r sufficiently small. Nevertheless,

the numerical scheme is greatly improved and much more efficient because costly iteration in r-loop

is avoided, see Section ??. We finally describe the efficient approach of [Yang et al., 2009] (see also

[Galiano and Velasco, 2015] and [Galiano et al., 2016] for a related approach) that we use for computing

the sum in (4.23), corresponding to the non-local diffusion term, by discretizing also the range of image

values. Let q = {q1, . . . , qQ} be a quantization partition, with 0 = q1 < q2 < . . . < qQ−1 < qQ = 1,

where Q is the number of quantization levels. Let v : Ω→ [0, 1] be a quantized function, that is, taking

values on q. For each i = 1, . . . , Q, we introduce the discrete convolution operator

Ki
ε,p(v)[k] =

∑
m∈IkB

w[k,m]kε,p(v[m]− qi), (4.24)

where we recall that w[k,m] = w(xk − xm). We then have

Kε,p(v)[k] = Ki
ε,p(v)[k] if v[k] = qi, for some i = 1, . . . , Q.

Notice that, for any v taking values in q, the computation of each Ki
ε,p(v) may be carried out in parallel

by means of fast convolution algorithms, e.g. the fast Fourier transform. It is possible that, after a
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time iteration, a quantized iterand un leads to values of un+1 not contained in the quantized partition

q, implying that the new operators Ki
ε,p(u

n+1) should be computed in a new quantization partition, say

qn+1. Since, for small time step, we expect qn and qn+1 to be close to each other, we overcome this

inconvenient by rounding un+1 to the closest value of the initial quantization vector, q, so that this vector

remains fixed.

The final simplified algorithm, which we call the kernel based scheme, is then:

Set u0 = f . For n = 0, . . . , N − 1, and for each k = 0, . . . , LM − 1, perform the following steps:

• Step 1. If un[k] = qi then using (4.24)

ũn+1[k] =
1

1− τa

(
ταKi

ε,p(u
n)[k] + qi − τb[k]

)
. (4.25)

• Step 2. un+1[k] = qj , where j = argmin
1≤i≤Q

|qi − ũn+1[k]|.

4.2.2 Local Total Variation Saliency model (LSTV) embedded in a CNN

We first detail the general local variational model for salency detection, which is to substitute the non

local diffusion term by the TV as defined in 2.1.2. Let us consider the problem:

arg min
u∈BV(Ω)∩[0,1]

P (u) +
λ

α
F (u) +

1

α2
H(u), (4.26)

where Ω ⊂ Rd, d = 2, 3 is the image domain that we extend to also consider 3D images, P (u), H(u) and

F (u) are as usual, a regularizing functional, the saliency term and the restoration data fidelity term. The

positive real parameters λ and α indicate, respectively, the relative importance of F (u) and H(u) with

respect to the regularization term P (u). Conversely to the non local model (4.7), in equation (4.26) we

multiply the whole energy functional by α. The reason relies on the solving strategy we will use in the

next section. In particular, the problem reads as follows:

arg min
u∈BV(Ω)∩[0,1]

TV(u) +
λ

2α

∫
Ω

(u− f)2 − 1

2α2

∫
Ω

(1− δu)2 (4.27)

where we recall TV(u) denotes the BV -semi norm |Du|(Ω). Following the results presented in the

previous Section (Truncated Problems 4.22), we replace the obstacle term introduced through the indicator

function II(u) by the truncation step such that the admissible set for the problem solution is (Ω) ∩ [0, 1].

It is crucial to observe that depending on the parametric values this functional can be not convex but it is

always a difference of convex functions. If we denote

F1(u) = P (u) +
λ

2α
F (u) = |Du|(Ω) +

λ

2α

∫
Ω

(u− f)2 dx

and

F2(u) = − 1

α2
H(u) =

1

2α2

∫
Ω

(1− δu)2 dx

we can write (4.27) as:

arg min
u∈K

E(u) = arg min
u∈K

F1(u)− F2(u),

with F1 and F2 convex functions. This special structure, known as Difference of Convex (DC) functionals

shall be exploited in the numerical resolution of the model. The structure and performance of the model
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can be again highlighted considering the Euler-Lagrange equation associated to the minimization problem

(4.27):

−∆1u+
δ

α2
(1− δu) +

λ

α
(u− f) = 0 (4.28)

a =
δ2

α2
− λ

α
, b(x) =

δ

α2
− λ

α
f(x)

then (4.28) can be re-written as

−∆1u+ b(x) = au

Recall that the constant a and the function b(x) are computed from the parameters values and the data of

the problem. We shall consider data f ∈ Y and positive parametric values (α, δ, λ) such that a > 0 and

b(x) > a.e in Ω. For feasible values of a and b we have that when u is small, say u ≈ 0, absorption takes

place but when u is large, say u ≈ 1, reaction dominates. This mechanism acts as a contrast-enhancing

filter during the iterations and promotes nearly binary solutions. When Ω ⊂ R2, the quasilinear elliptic

equation in (4.28) can be seen as the critical Sobolev exponent case given by the continuous inyection

BV (Ω)→ L2(Ω). When Ω ⊂ R3 we are in the supercritical case. It is also an eigenvalue type problem

for the 1−laplacian operator (see [Demengel, 1999] for a related problem). Nothing is known about the

existence of solutions when (4.28) is complemented with homogeneous Neumann boundary conditions.

Mathematically we can have a preliminary insight of the behavior of the model solutions observing that,

when the non-linear non-smooth diffusion caused by the prior P (u) takes place, the (linear) differential

of the (quadratic) concave term H(u) acts as a reaction term in the Euler-Lagrange equations of the

minimization problem (4.26). As a consequence, nodal (i.e changing sign) solutions of the model can

appear overflowing the range of [0, 1]. This phenomenon has been observed also numerically, depending

on the parameter values choice.

Numerical Implementation - Difference of Convex Functionals

The numerical resolution exploit the DC functionals structure of (4.27), which can be written in form

arg min
u∈BV(Ω)

F1(u)− F2(u),

for F1(u) = TV(u) + λ
2αF (u) + II(u) and F2(u) = − 1

α2H(u), in where we have removed the box

constraint 0 ≤ u ≤ 1 by introducing the indicator function II(u), where u ∈ I = [0, 1], that enforces the

solution u to be in the feasible set that it turn will later translates into a truncation step. Now, following

Sampaio et al. [Sun et al., 2003] we find a critical point by iterating until convergence an explicit gradient

ascent step on F2(u) with an implicit descent step on F1(u). This can be summarized in the general

iteration

uk+1/2 = uk + σF ′2(uk),

uk+1 = (I + σ∂F1)−1 (uk+1/2

)
.

Here σ is a positive step parameter which is set to 1 in our case for the sake of simplicity. Since F2(u) is

differentiable, the ascent step is the following explicit update:

uk+1/2 = uk + F ′2(uk) = uk −
δ

α2
(1− δuk) .
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However, the case of the implicit descent step on F1 requires calculating a proximal map that results in

the following ROF-type [Rudin et al., 1992] minimization problem:

arg min
u∈BV(Ω)

TV(u) +
λ

2α
‖u− f‖22 +

1

2σ
‖u− uk+1/2‖22 + II(u). (4.29)

This non-smooth problem is strictly convex and therefore the proximal map is unique, but there is no

closed form solution. We overcome this non-smoothness using the Chambolle and Pock primal-dual

algorithm [Chambolle and Pock, 2011] to solve the its equivalent discrete saddle point problem. To that

end, we make use of the Fenchel-Legendre transform of the TV term P (u), in fact P (∇u), and write:

min
u∈R

max
p∈R2

〈∇u, p〉 − IP (p) +
λ

2α
‖u− f‖22 +

1

2σ
‖x− uk+1/2‖22 + II(u), (4.30)

where IP (y) is the indicator function of the convex set P =
{
p ∈ R2 : ||p||∞ ≤ 1

}
.

Primal-Dual Algorithm Following [Chambolle and Pock, 2011], a general saddle point problem in

the form

min
x

max
y
〈Kx, y〉 − J∗(y) +G(x),

can be solved by iterating

• yn+1 = (I + τd∂J
∗)−1 (yn + τdKx̄

n)

• xn+1 = (I + τp∂G)−1
(
xn − τpK∗yn+1

)
• x̄n+1 = 2xn+1 − xn,

with τd, τp the step sizes corresponding to the dual and the primal step respectively. The final step is x̄n+1

has a similar effect as the Nesterov momentum commented in previous Section 2.2.5 in the sense it is an

extrapolation step.

We can identify in our problem (4.30) K operator as ∇ and J∗(y) as IP (p) such that

G(u) =
λ

2α
‖u− f‖22 +

1

2σ
‖u− uk+1/2‖22 + II(u)

and thus

min
u∈R

max
p∈R2

〈∇u, p〉 − IP (p) +G(u) (4.31)

that leads to the iterating problem

• pn+1 = (I + τd∂IP )−1 (pn + τd∇ūn)

• un+1 = (I + τp∂G)−1
(
un + τpdivpn+1

)
• ūn+1 = 2un+1 − un.

Here, the calculation of the proximal map from IP is straightforward. Since IP (·) is the indica-

tor function of a convex set, its proximal map is simply a projection into this set (see for instance
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[Parikh and Boyd, 2014] for more details). In the case of G, the calculation of (I + τp∂G)−1(ũ) results

in solving the problem

min
u

λ

2α
‖u− f‖22 +

1

2σ
‖u− uk+1/2‖22 +

1

2τp
‖u− ũ‖22 + II(u), (4.32)

whose optimality condition reads as

−
(
λ

α
(x− f) +

1

σ
(x− uk+1/2) +

1

τp
(x− x̃)

)
∈ ∂II(x).

The solution to the proximal map is hence obtained by projecting into the interval [0, 1] the minimizer of

the differentiable part of problem (4.32).

(I + τp∂G)−1(x̃) = proj[0,1]


λ

α
f +

1

σ
uk+1/2 +

1

τp
x̃

λ/α+ 1/σ + 1/τp


which is to apply a truncation as we already mentioned. Finally, we are in the position of summarizing the

complete algorithm in 4.1.

Algorithm 4.1: DC Primal-Dual algorithm

1 Given f (input data) and λ, δ, α (hyper-parameters) and fixed τd, τp and εtol .
2 Set u0 = f
3 while ‖uk+1 − uk‖2 ≤ εtol do

4 uk+1/2 = uk −
δ

α2
(1− δuk)

5 x0 = uk+1/2, x̄0 = x0

6 while ‖xn+1 − xn‖2 ≤ εtol do
7 yn+1 = projP (yn + τd∇x̄n)

8 xn+1 = projI


λ

α
f +

1

σ
uk+1/2 +

1

τp

(
xn + τpdiv yn+1

)
λ/α+ 1/σ + 1/τp


9 x̄n+1 = 2xn+1 − xn

10 end
11 uk+1 = xn

12 end

To illustrate the qualitative performance of this model solved with algorithm 4.1 we show some

results on different applications. In medical image we can also find situations in where such a method is

useful. Considering our main application, i.e. MRI FLAIR images where a glioblastoma detection and

segmentation is required. Figure 4.3 depicts two instances of Flair images in where tumor and edema are

detected by our algorithm. As a second instance, we test it with natural (gray-scale) images. Depending

on the contrast of the relevant region from the rest (which must be brighter according to the saliency term),

these natural images will be labeled correctly, namely 0 or 1 for background and foreground regions

respectively. A third application we consider here is background-subtraction 4.5. Background-subtraction

(or foreground detection) aims to detect objects in a scene having a given model of the background. Such

technique is widely used for tracking detection and other tasks in the field of dynamic vision. The basic

subtraction between a frame and the background results in a suitable image to be processed with our

method.
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Figure 4.3: Left column: original image. Right column: Output of the algorithm. Parameters: λ = 1,
α = 1, δ ≈ 2.

LTVS embedded in a CNN

With the local version of our saliency model and its DC-based primal-dual numerical resolution we now

aim at overcoming the standard parameter tuning problem by training a CNN with the presented model

end-to-end. Recall that, finding optimal parameters of a variational model to perform saliency detection

providing accurate nearly binary images (segmentation) of the region of interest (glioblastoma) is an

expensive and difficult task that is often carried out by the ultimate user of the method, in this case, possibly

a medic. Such a task requires however a deep understanding of the nature of those hyper-parameters

and how they interact to each others. In other words, we are asking to the medicine expert to learn the

functioning of the model to adjust for each input image (and according to it) the correct and optimal

parameters. The motivation of the following proposed framework is to replace the expert by a NN that

only will learn, based on data, this optimal hyper-parameterization.

NNs are conceived to learn, so there is not a great innovation training such a structure. However,

in our case, we do not have or want to get the ground-truth of hyper-parameters. In fact, the goal is to

train the CNN to provide the optimal parameters for our model indirectly, this is, without an explicit

known target. The only ground-truth are the final segmentation that are compared with the output of our

variational model.

Deep Learning Framework model formulation We detail the formulation of the Deep Learning

model constrained to our Variational Saliency model. This formulation can be seen as a bi-level problem.
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Figure 4.4: Example for natural images. Left column: original image. Right column: Output of the
algorithm. Parameters: λ = 1, α = 2, δ = 2.

Figure 4.5: Left: original image. Middle: background subtraction (input image). Right: Output of the
algorithm. Parameters: λ = 20, α = 4, δ = 10. The background subtraction is performed with RGB
images. The given input (middle) is converted to a gray-scale image.
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The upper problem is derived from a Maximum Likelihood or Maximum a Posteriori scheme. The lower

problem acts as a constrain and consists of solving an optimization problem, in our case, our proposed

variational problem. The former requires a whole data set since it aims at finding optimal parameters

of a NN while the latter transform the input into a nearly binary segmentation output. Given a dataset

F = {f (1), f (2), ..., f (N)}, Y = {y(1), y(2), ..., y(N)}, we define the following target cost function to

minimize:

arg min
θ

1

N

∑
i

∫
Ω
u∗(i)(θ, f (i), x)− y(i)(x)2dx (4.33)

s.t. u∗(i)(θ, f (i), x) = arg min
u(i)

λ(θ, f (i), x)

α(θ, f (i), x)

∫
Ω

(u(i)(x)− f (i)(x))2dx +

+TV(u(i)(x))− 1

α2(θ, f (i), x)

∫
Ω

(1− δ(i)(θ, f (i), x)u(i)(x))2dx

where f are the given data s.t. u0 = f (in the numerical resolution scheme), θ are the Neural Network

parameters to be optimized. Note λ, α and δ(x) depends on Neural Network parameters and the input f .

Providing adaptive parameters gives also quite control over them. For instance, λ and α that are scalar

parameters can be bounded to a ’save’ range, and parameters that are suitable to be adaptive as δ(x) can

be easily regularized with some priors.

We have already shown that the δ parameter must be set in an adequate range (δ ≥ 1) such that the

concave Saliency term is able separate in two class the input. Moreover, the effect of δ is to drive the

variational model increasing or decreasing the reference threshold along the image. One can think that

such parameter may be smooth and, consequently, use a smooth prior potential function, for example

ψ(s) = |s|2, recovering the well-known Tikhonov regularization. The upper problem then is

arg min
θ

1

N

∑
i

∫
Ω
u∗(i)(θ, f (i), x)− y(i)(x)2dx + ψ(δ(i)(θ, f (i), x)). (4.34)

In order to be able to train the model we need to fix the number of iterations of our model (resulting

in only 2 for the outer loop and 10 for the inner). Then, each step is unrolled as an added layer to the

whole network as it is done in [Riegler et al., 2016]. The resulting scheme including the whole model is

depicted in Figure 4.6.

The proposed CNN is inspired in a U-Net architecture [Ronneberger et al., 2015]. The number of

features in each layer is fixed to 64 with filters kernel size 3× 3. Moreover, we use a MLP to estimate

the remaining parameters λ and α. Since we randomly initialize all weights of filters, the estimated

parameters at the beginning are random too, consequently, the training procedure takes long time. We

aim at alleviate this problem using a so-called Transfer-Learning technique [Pan and Yang, 2010] which

consists in re-training a pre-trained network, as it is done in next chapter 5. We thus drop the last

convolutional layer of the CNN, adding 2 more convolutional layers and re-train the full architecture.

We show in Figure 4.7 some qualitative results of the Deep Variational Framework. It is of particular

interest the predicted adaptive δ(x) map. Each of them seems to compensate those regions of the input

that, although they are tumoral according to the ground-truth, are also darker than the rest. This is done

by decreasing the threshold reference (increasing δ) in those regions. A rough way to interpret those δ

maps is as they are a guidance for the variational model. Likewise, the scalar hyper-parameters that we

have also considered, λ and α are depicted in Figure 4.8 during training, where each of them converge to
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Figure 4.6: Scheme of the proposed Deep Variational Framework. The CNN provides an adaptive
parametrization of the variational model through the δ(x) function. A MLP allows the estimation of the
remaining parameters which are fed to the variational model in a top layer of the global Deep Variational
Framework.

some DC component while they vary depending on the inputs. As expected, λ takes a little value since the

fidelity term is measuring a distance from the given datum f , and the outcome u is a nearly binary image,

and thus, quite different.

4.3 Experimental results and discussions

In this Section we describe the numerical experiments we have carried out. Images from the BRATS2015

dataset [Menze et al., 2015] are considered and processed.

In the non local setting, the first experiment is to solve the discrete problem (4.19) using the hard

truncation technique proposed in (4.22) and compare the results with those obtained with the iterative

scheme (4.17) where the Yosida’s Approximants are used. The numerical experiment shows a great

improvement in terms of time consumption and minor difrefences in the final segmentation when the hard

truncation scheme is considered. We then choose (4.22) as a base for subsequent analysis. In a second

test the proposed quantized kernel based approach in 4.25 is compared on some sample images with the

patch based scheme in 4.23. It turns out that the kernel approach, based on the Fast Fourier Transform,

allows an ulterior speed-up of the computation when large size kernels are implemented, contrary to the

patch based approach which demands a prohibitive increasing amount of time computation. As a result

of the above analysis we choose the kernel based approach 4.25 for solving the truncated problems in

(4.22). As an application we test our numerical methods over the whole dataset. Different values of p

are considered to show that the non-local non-convexities, associated to small values of p, attain the best

scores in classical metrics for image segmentation. This highlight also the edge-preserving property of

the non-local reactive flows we propose. Third, we show that our model can be generalized to a fully 3D

model presenting some preliminary results which extend our variational non-local saliency approach.

In the local setting, finally, we train and test using the BRATS2015 dataset or Deep Variational

Framework and compare with: 1) baseline (a U-net CNN), 2) our local variational model (TVS) and

the proposed architecture, TVS+CNN. The results show a huge improvement when combining both,
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Input Ground-truth δ(x) Output

Figure 4.7: Outputs and adaptive δ(x) computed by the CNN.

Figure 4.8: Scalar estimated hyper-parameters: λ, α during training.
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Variational and DL tools. While our model, with fixed and manual hyper-parameterization performs

poorly compared with the CNN, the automatic adaptive parameters provided by the Deep Variational

architecture boosts our variational model outperforming the single CNN and approaching the state of the

art results.

4.3.1 Non local TVS model

Experiment 1: Comparison between limit approximation and truncation In this experiment we

show the differences between the limit approximation r → 0 described in Section 4.2.1 and the proposed

truncation alternative given in (4.22). We recall that the purpose of such hard truncation is to get rid of the

r-loop in the numerical resolution, boosting the computation efficiency. In practice, instead of using the

stopping criteria 4.20, it is sufficient (and more efficient) to fix a small number of iterations which results

into 5 in the r-loop starting with r1 = 0.5 and setting rj+1 = 2−jrj , j = 1, . . . , J , J = 5. We found in

our experiments that this is enough in order to ensure that the final output of the approximating scheme

(4.19) is very close to the solution of 4.23.

Each j-step consists of solving the equation (4.19) which is carried out through a conjugate gradient

descent algorithm. This is an inner loop for each j-step which increases substantially the global time

execution of the algorithm. In order to show that the hard truncation is a good strategy to get rid of the

r-loop we compute the relative differences ||uJ − uT ||2/||uT ||2 between each j-step image (uJ ) and the

truncated version (uT ) of the n-step solution. At each step of the r-loop, the relative difference from the

final truncated version is reduced (see Figure 4.10). Figure 4.9 depicts the qualitative difference of using

truncation. For all the subjects we tested the results clearly show that the same saliency (tumor) region is

detected in both images. The differences, barely visibles, are colored in red. Indeed only few pixels differ

from the assumed correct solution calculated through the r-convergence scheme. This justifies the use of

the hard truncation.

Experiment 2: Kernel based approach In this experiment we compare the time execution between

patch based numerical resolution and the proposed kernel approach based on [Yang et al., 2009]. Taking

advantage of the fact that convolutions can be fast computed in Fourier domain, we use a GPU imple-

mentation to carry out these experiments. In both cases we fix the same hyper-parameters and perform a

sweep where ρ = 2, 3, . . . , 30 is the kernel radio and q = 23, 24, . . . , 211 are the quantization levels. The

tests are performed over 4 brains (2 slices per brain) and results are averaged.

Notice that in a classical patch based approach no quantization is required and the time execution

will grow up with the size of the considered region (B2ρ(x)). On the contrary, a kernel based resolution

remains robust to different kernel sizes while the time execution depends mainly on the number of

quantization levels as it can be seen in Figure 4.11. This justifies the use of the kernel based method

whereas it allows to use bigger kernels properly modelling the non-local diffusion term.

Experiment 3: 3D versus 2D model Focusing in the particular application of brain tumor segmentation,

it is reasonable to argue that processing each image (slice) independently will result in a sub-optimal

saliency segmentation since no axial information is taken into account. Our model can be easily extended to

process 3D brains volumes so that the non-local regularization will prevent from false positive classification

using 3D spatial information. The results are greatly improved as it is reported in Table 4.1 and shown in
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Figure 4.9: A comparison between the Yosida’s approximating solutions and the hard truncated solutions.
In first row: input images, second row are the respective outputs for the r-convergence approximation
method and the last row, the hard truncation approximation. Differences in the final solution are colored
in red.

Figure 4.12. It is easy to see that some artifacts arise when processing the volume slice by slice (2D, first

image), which disappear if a fully 3D scheme is considered (second image). False positives can also be

avoided in this 3D approach obtaining a cleaner image that results in a very high accuracy in common

metrics (see Table 4.1).

Even though the results obtained with the fully 3D scheme show promising performance with an

improved final segmentation w.r.t. 2D slice by slice processing a question remains about the existence of

a proper and robust δ-parameter feasible for the whole 3D volume. This is due to the non-homogeneous

contrast and illumination (bias) in different regions of the MRI image which depends on the acquisition

step. We aim at overcoming this issue in the local experiment Section 4.3.2.

Accuracy Specificity Precision Recall Dice

2D 0.96285 0.98403 0.86578 0.79856 0.83082
3D 0.98108 0.99595 0.96488 0.86557 0.91253

Table 4.1: Results of a 3D and 2D resolution with the same parametrization and p = 0.5
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Figure 4.10: Relative differences: r−convergence vs hard truncation. Stabilization of the r → 0 limit.
The outer time n-loop, n = 1 ... N is considered together with the inner j-loop, j = 1 ... J. The jumps
from u5 to u6, u10 to u11 etc are caused by the truncation with J fixed to 5 for each n. We see in Figure
4.9 that the (binary) output solution is practically indistinguishable from the almost binary approximations
in r. The final outputs only differ a 4,2%, which in practice turns out to be few single pixels.

Figure 4.11: Time comparison between patch based and kernel based resolution. The surface which
remains constant with the quantization levels corresponds to the patch based resolution while the other
one corresponds to the kernel based resolution. Using a kernel based approach allows a nearly invariant
dependency w.r.t. the size of ρ (radius of the kernel), which in turn promotes the non-locality effect.



4.3. Experimental results and discussions 73

Figure 4.12: From left to right: 2D reconstruction (our proposed model applied slice by slice), 3D
reconstruction (our proposed model applied to the whole volume), Ground-truth. A significant number of
false-positives is reduced when the fully 3D finite difference schemes are applied.

Results: MRI Dataset

As a result of the previous experiments we reduce the computational time by using the hard truncation

scheme and model the non locality with the kernel based approach. We then apply our above findings

testing the whole BRATS2015 dataset, a set of 16114 images after removing those slices where there

is no brain. Each image is re-scaled to the range [0, 1]. In order to study the effect of the proposed

non-local non-convex hyper-Laplacian operators we shall consider the behavior of the model fixing all

the parameters p, ε, α, λ, ρ, τ of the model and letting the p-parameter to vary. We introduce a simple

automated rule for the δ-parameter estimation which avoids a manual tuning of the model for each image

of the dataset. This results in a sub-optimal performance of the model in terms of accuracy but it will

provide us with an estimation of the reach of our proposed model. Observing that 1/δ acts as a threshold

between classes (background and foreground), we seek a rule to determine such a threshold for each

image leading to an approximately correct estimation of δ. We observe that the reaction flows generate

nearly binary solutions and this simplifies our task. By averaging the whole given brain (values of pixels

where there is brain), and comparing with the average of the tumor intensities, it turns out (see Figure

4.13) that the relationship is nearly linear, and a simple linear regression gives a prediction of the mean of

the tumor in the considered image:

µtumor ≈ αµbrain + β = 1.176µbrain + 0.101

We then select a reference threshold. A simple choice is to compute the average between µbrain and

µtumor in form (1/δ) = (µbrain + µtumor)/2. Finally, since it is always possible to compute the average

of the whole brain (µbrain), we end up with the following rule for the δ-parameter estimation which

depends on the given image:

δ(µbrain) =
2

(1 + α)µbrain + β

Our proposed model includes hyper-Laplacian non-local diffusion terms by setting 0 < p < 1. We also
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Figure 4.13: Distribution of the mean of the tumor intensities obtained from the ground-truth provided
in the BRATS2015 dataset. The linear regression mapping the brain intensity mean µbrain to the tumor
intensity mean µtumor.

compare different values of p (p = 2, 1, 0.5) with the same parametrization. The results, in terms of

typical reference metrics, [Powers, 2011], are shown in Table 4.2 and they indicate that the Dice measure

is monotonically increased as p is decreased.

p Accuracy Specificity Precision Recall Dice
tp+tn

tp+fp+tn+fn
tn

tn+fp
tp

tp+fp
tp

tp+fn
2tp

2tp+fp+fn

2 0.99089 0.99337 0.59594 0.79039 0.64844
1 0.99303 0.99562 0.67992 0.77977 0.70128
0.5 0.99425 0.99735 0.76575 0.73214 0.72755

Table 4.2: Results obtained for different p values using the whole BRATS2015 data-set. Metrics are
defined in the first row where: tp-true positives, tn-true negatives, fp-false positives, fn-false negatives.
The Dice measure which accounts for a compromise betweeen Precision and Recall is improving a 5.28%
and a 2.62% when p takes values p = 1 and p = 0.5, respectively.

4.3.2 Local TVS - Deep Variational Framework

Results: MRI Dataset

In order to evaluate the performance of our proposed local model we compare three different settings.

The first, referred in the following as ’TVS’(Total Variation Saliency), is our baseline: the variational

model (4.27) with fixed manually optimized parameters (λ = 0.1, α = 0.75, τp = τd = 0.3, σ = 1), and
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a single δ for the whole image which is heuristically estimated from the available data as we have done

with the Non local Saliency model. The second, referred as ’CNN’, is the stand-alone U-Net type CNN

trained to directly segment high grade gioblastomas. The third, referred as ’CNN+TVS’, is our proposed

Deep Variational Framework combining the CNN and the variational model. The numerical resolution is

carried out in a Tensorflow based framework [Abadi et al., 2015] using a GeForce GTX 1080Ti GPU.

We test these three methods again on the BRATS2015 dataset using only slices images with glioblas-

toma strokes. Moreover, the considered dataset is split in training and test sets (80% for training, 20% for

test). The results are briefly summarized in table 4.3 were the commonly used Precision, Recall and Dice

metrics of each method are reported over the whole dataset. In all of them the ’CNN+TVS’ proposed

framework achieves the best results showing that the optimization of the parameters of the variational

model given by the CNN framework in an improved and more robust performance.

Precision Recall Dice

TVS 0,739 0,632 0,655
CNN 0,740 0,875 0,791

CNN+TVS 0,845 0,882 0,857

Table 4.3: Summary of results of the considered methods for brain tumor segmentation.

Figure 4.14: From left to right columns: input FLAIR-glsmri images, TVS, CNN, CNN+TVS and Ground-
truth segmentation. Notice the output of the tree settings are nearly binary, thus a simple thresholding (0.5
in the range [0,1]) is applied in order to get binary segmentations.

In Figure 4.14 we can see the segmentation of the tumors achieved for the methods considered in two

different cases. From left to right in the image we can see the input images, the segmentation performed

by TVS, CNN, CNN + TVS and the provided ground truth. On the one hand, it is clear that the results

from the TVS model depend too strongly from the global intensity differences in the image and miss

to detect as parts of the tumor areas that have a lower local intensity. On the other hand, in the case of

the stand-alone CNN, we observe some false positives and a stranger delineation of the tumors when

comparing to the ground truth. Finally, the proposed CNN + TVS model is able to achieve a better

localization and segmentation of the whole tumors by using the power of the CNN to correct for the
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problems observed in the TVS related with the global intensity changes while also outperforming the

stand-alone CNN by adding the spatial information given by the TV regularizer.



CHAPTER 5

P2. Deep Learning for Dumpster
recognition and classification

If a machine is expected to be infallible, it cannot also be intelligent.

Alan Turing

This chapter is organised as follows. In Section 5.1 we introduce the problem of dumpster recognition

using DL and its motivation. Then, in Section 5.1.1 the selected NN architecture and the image dataset

used are depicted. In Sections 5.1.2 and 5.2, we detail the modeling and methodology proposed to achieve

high performance using very little number of samples in training step. In the last Section 5.3 we present

our results.

5.1 Introduction: Recognition and classification of Dumpsters

In the last years computer vision is witnessing an outstanding revolution, mainly due to three fac-

tors. Firstly, there are inexpensive parallel computing platforms such as GPUs and other hardware

accelerators (locally), and clusters of computers and cloud computing (on-line). Secondly, there are

fast and inexpensive devices that can store huge volumes of labeled data. Thirdly, there are several

open source libraries, developed by prestigious corporations, that implement those methods under the

umbrella of DL. Recall that, as described in Section 2.2, Deep Learning is nothing but a tool from

a wider ML field, where "deep" reefers to the number of layers in a NN. Supported on these triad,

classification tasks have improved their performance in many competitive challenges such as CIFAR,

[Krizhevsky et al., 2012]. This improvement has a positive impact on applications such as object detec-

tion and tracking [Sermanet et al., 2014, Li et al., 2014], segmentation [Kolesnikov and Lampert, 2016],

human pose estimation [Cao et al., 2017], or visual attention and saliency [Ba et al., 2014]; but it has also

made possible and successful others that were unreachable a decade ago, namely image and video caption-

ing and description [Fang et al., 2015, Lebret et al., 2015], or question answering [Fukui et al., 2016].

Despite of these excellent results, a computer vision practitioner attempting to solve a particular

problem with any of the available DL libraries usually finds a number of difficulties. First of all, it is

77
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necessary a large training data set; otherwise the model will tend to over-fit, even if dropout is used,

[Zheng et al., 2014]. Data augmentation is a solution when images keep their meaning under rotations

and deformations. For instance a pedestrian upside down makes no sense when trying to detect it on a

street, but numbers in an envelope can take any angle if it is in a conveyor belt with a camera on the top.

In addition, since most of the applications involve a classification task at some point, the data set must

be labeled. So even if the acquisition of images for each class is fast, the labeling process may require

a considerable time and human effort. Another shortcoming is that DL presents much more degrees of

freedom when it comes to decisions on the architecture of the net. One has to decide not only the number

of hidden layers in a FCNN, but also (at least) the number of convolutional layers, the size of convolution

kernels in them, and the number of pooling layers. In other words, the hyper-parameterization of a DL

solution is often a barrier to a successful usage of such techniques (we will address this issue in chapter 6).

Moreover, currently there are many different architectures different from a CNN followed by a FCNN,

usually known as AlexNet, [Krizhevsky et al., 2012], or LeNet, [LeCun and Bengio, 1995] depending on

the number of layers. Others are, for example VGG-Net, [Simonyan and Zisserman, 2014], GoogleNet,

[Szegedy et al., 2015], ResNet, [He et al., 2015] and Single-Shot Detectors, [Liu et al., 2016]. Trying

many combinations is also a problem because training time usually takes hours, and even days, depending

on both the size of the data set, the architecture of the net and the computing resources. Nowadays

a common DL neural network architecture can easily have hundred of thousands of parameters and

sometimes even hundred of millions! LeNet-5: 60.000 parameters, AlexNet: 60 millions, Inception v3:

23 millions, VGG: 138 millions and so forth.

Due to the reasons above, there is a growing interest both in transfer learning and semi-supervised

learning, not only in the scope of DL but also, more broadly, in the ML community. In transfer learning

the target class, i.e. the one we actually want to distinguish, is learned not only with data but also

with knowledge extracted from source tasks; which are also classification tasks but in other domains,

with other data sets, or with different classes. Thus, in Bayesian Transfer the source tasks provide

a prior to the data and the target task is the posterior, see for instance [Dai et al., 2007]; whereas in

hierarchical transfer the source tasks learn simpler problems, and solutions are combined upwards the

target task, as in [Taylor et al., 2007]. On the other hand, semi-supervised learning has the same goal than

supervised learning, i.e. to accurately classify instances, but only with a small subset of labeled examples,

while the rest remains unlabeled. As the name suggests, these kind of tasks require, to some extent,

unsupervised techniques, either for clustering or for dimension reduction. [Zhang and Rudnicky, 2006]

proposed a method for retraing based on performance-drive selection of labeled examples. Generative

models such as GMMs are also popular and efficient approaches, [Gao et al., 2017, Paul and Pal, 2016];

but discriminative models are also used, for instance in [Li and Zhou, 2015].

In this chapter we face a classification problem from a purely ML perspective, and combine both

transfer and semi-supervised learning with CV and DL for classifying a large data set containing images

of dumpsters with the purpose of having a correct census of their number and type. Such a task has the

following difficulties. First of all, although dumpsters usually exhibit uniform colors and simple geometric

shapes, there are many sources of variability in their appearance. Shapes range from igloos to large bins

or a small pipe in the sidewalk if the dumpster is under-grounded. Since they are a disposal facility, in

permanent contact with garbage, together with the lack of care by cleaning service operators, vandalism,

open-air exposure, sometimes 24×7, they all provoke a fast degradation. Secondly, to be efficient in the
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acquisition of images, the camera may be mounted on a car driven through the area of interest taking

georeferenced pictures or even recording in video. Therefore occlusions by pedestrians and vehicles,

back-light, reflections and shades over the dumpsters are sources of unpredictable visual noise.

Waste collection, separation and management is generally carried out in two distinct but non-exclusive

ways. In the first one every citizen keeps the garbage at home for a period that depends on the municipal

regulations. In the other, a large number of dumpsters is deployed throughout the city, and people

throw the garbage in them at some restricted hours. The latter is usually more broadly implemented in

communities with policies that favor social spending and public investment. Thus, dumpsters become

a public asset that requires inventory control and maintenance. For this reason, this topic is a relevant

issue to the city hall and impacts on different areas and budgets, including health or city care, and may

create a perception of insecurity and mis-attention to the neighborhood by local rulers and, in the long

run, dissatisfaction of taxpayers. Despite of its economic interest, whereas there are a number of papers

about waste classification by means of computer vision, such as [Brinez et al., 2015, Sudha et al., 2016,

Wang et al., 2016], there are only few a focused on detecting and assessing their conservation state.

For instance, [Mujumdar et al., 2013] does so with computer vision techniques prior to deep learning;

but usually some extra aid with wireless sensors networks is proposed, as in [Hong et al., 2014] or

[Idwan et al., 2016].

Our proposal uses the Google Inception-v3, a CNN pretrained with 1,500,000 images and 1000

different classes, [Szegedy et al., 2016]. Thus, a rich set of many different visual features, along with their

spatial relationship, is encoded in the parameters of the net. Then, we do transfer learning by removing the

output layer and substituting it with an extra hidden layer plus a last layer with as many output neurons as

types of dumpsters we want to classify. For training the resulting convolutional network we use only 2.5%

labeled images of a fully labeled data set of images provided by Ecoembes1, a non-profit organization

whose self-proclaimed mission consist on promoting the sustainable development trough recycling and

the eco-design of packaging in Spain. We then propose a semi-supervised method for classifying the full

data set based on retraining and intelligent selection of samples.

5.1.1 CNN based approach for dumpsters classification

The goal of this work is to obtain a high-level accuracy in a CNN trained for dumpster classification with

a very small set of labeled samples. To this end, Ecoembes provided the EcoDID-2017 data set with a

total 27,624 images of dumpsters, showing different conservation states, shapes and colors along with

different lighting conditions and point of view of the camera. The resolution of the images is 299× 299

pixels, and are given in seven folders according to the following features:

(a) C1: For light recyclable packs, 2400 liters; with 1,730 images.

(b) C2: For light recyclable packs, 3200 liters and circular hole of � 30 cm.; with 2,986 images.

(c) C3: For light recyclable packs, 3200 liters and rectangular hole of 40×25 cm.; with 1,393 images.

(d) C4: For the rest of light recyclable packs; with 3,576 images.

(e) C5: For non-recyclable waste, on the street; with 10,965 images.

1www.ecoembes.com

www.ecoembes.com
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Figure 5.1: (a)-(g) A sample of each dumpster class, and (h) the distribution of the whole data set provided.

Figure 5.2: Sample of the diversity of dumpsters in Class C4.

(f) C6: For non-recyclable waste, undergrounded; with 1,147 images.

(g) C7: For glass; with 5,827 images.

Figure 5.1(a)-(g) shows a sample from each folder together with the distribution of the whole data set

according to each one of them, in panel (h). As a result, each folder can be considered as the label for all

the images that are contained in it, so the given data set serves as ground-truth to validate the proposed

methods.

Thus, we begin assuming that the whole data set is unlabeled, and we aim at correctly classifing it with

a minimal manual labeling effort. We remark that this is a challenging problem because the difference

between classes is hard to asses in an image. Specifically, between classes C1 to C3 the difference in

volume is a matter of a few of centimeters in every dimension, (134cm)3 vs. (147cm)3, which is hardly

noticeable in a picture; whereas class C4 is assumed to contain dumpsters with features different from

classes C1 to C3, which accounts for a large diversity of images. A little sample of 14 thumbnails is given

in Figure 5.2.
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Since there is a ground-truth available, we first use transfer learning for estimating the best performance

that can be attained with a state of the art CNN. Then, only a minimal subset of labeled images is used, so

the problem requires a semi-supervised solution. We present three approaches of it, one of them serves as

baseline to be outranked by the other two.

Convolutional Networks

We have explained in a previous chapter 2.2.4 that CNNs are a special type of neural networks specially

well suited for 2 dimensional inputs, i.e., images. We recall that CNNs can be seen as FCNNs with

infinitely strong priors that fit very well the nature and patterns found in images, which are, smooth regions

with sharp edges that are "locally" (non-local but in a close neighborhood) dependent. While the basic

pattern that are found in natural images are likely to be similar among of the types of images one can think

of, the high level features are obtained as a combination of the previous ones. This motivates the use of

the so-called Transfer Learning technique that we briefly described in next section.

5.1.2 Transfer Learning

Transfer learning consist of re-training a network that was previously trained for a similar task to the one

we are interested in. Such a network is then slightly modified, substituting the output layer with a new

hidden layer and a new output layer. By doing so, the resulting network is adapted to the new classes, i.e.,

the output is a vector whose length fits the number of classes that our problem imposes. The final FCNN

placed on top of the CNN, is trained then with a reduced amount of images from the given data set.

Google Inception-v3 is a pretrained CNN obtained by learning from scratch the whole ImageNet data

set, a more than one million images database [Deng et al., 2012], and 1000 different categories. Thus, the

extracted features (mainly the basics) are discriminant enough to perform a good generalization. Taking

advantage of this fact, we leave all the weights of the CNN untouched and retrain only the last layer

which now has 7 neurons, one for each of the new 7 classes, and train with our own data set of images.

The framework used for such work is based on TensorFlow, [Abadi et al., 2015], an open source library

developed by Google for DL and ML purposes, that provides AD (back-propagation algorithm).

We use this approach with 80% of the Ecomembes data set for training and validation, and the

remaining 20% for testing. The resulting classifier is taken as the top-performance method under the

assumption that when using much less images for training the accuracy will be, at most, as high as in this

case.

5.2 Proposed Methods: Semi-Supervised Learning

We present two methods for classifying large image data sets only with a tiny subset of labeled images.

Hence, it is a semi-supervised problem that we tackle with a three-round retraining. Specifically, in the

first round 30 images from each folder are chosen. Thus we end up with a first data set of 210 labeled

images, the label being the folder. We then train the modified Inception-v3 CNN only with those 210

images and, with the resulting classifier, compute the probability of each label for every single image in

the whole data set.

At this point, second and third rounds have three variations: (i) Baseline method, (ii) Half-Worst

method and (iii) Gaussian Mixture Model (GMM) method.
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Figure 5.3: The three panels show the distribution of the confidence on the labeling after the first round,
i.e. training with a manual selection 30 images × 7 folders. The left and central panels also show the
search region SHW (left) and SGM (central). The right panel depicts the two gaussians of the GMM that
models the distribution.

5.2.1 Baseline method

It simply consists of increasing the number of labeled images taken from each folder, 30 more each round,

and retrain. Thus we end up with a CNN classifier trained only with 630 images, a 2.28% of the given data

set. Thus, the proposed methods below should get an accuracy that outranks the one attained by this one.

5.2.2 Half-Worst method

The CNN returns a probability distribution function across the 7 classes for each image of the data set.

Hence, the label assigned to an image is the one with higher probability, as a measure of the confidence in

the labeling, but it is not granted that all the images will be labeled with a high confidence. For instance, it

could happen that one label got probability 0.16, and the remaining six got probability 0.14. Thus, once

the first round is over, we can make the distribution of the confidence in the labels, that is the CNN output

taken for labeling each image.

In our first approach we propose to split the dataset using as a criterion the median of the confidence

distribution. The images with the worst CNN outcome constitute the 50% of the dataset from where we

extract 210 new images. In other words, the confidence given for the current CNN over an image will

determines if that image is a good candidate to be manually labeled and added to the training data set.

Let p(x) be the confidence distribution, where 0 < x < 1 is the confidence of the label assigned by the

trained CNN. We define the search region SR = SHW as the subset of images with x < median(p(x)).

In other words, the search region contains the ‘half-worst’ confident images. The left panel on Figure 5.3

shows an example. Out of them, we randomly select 30 images from each folder and append them to the

training set. Thus, the new training set contains 50% of highly confident labeled images, and 50% with

some features that are not captured yet by the CNN. At this point we run the second retrain using 420

images. We repeat the whole process one round more, or until the maximum of allowed labeled images

has been covered. The procedure is summarized in Algorithm (5.1).

5.2.3 GMM method

The second method that we propose consists of modelling the confidence distribution as a two Gaussian

Mixture model (2-GMM). The assumption is that one of the gaussians models the images with low

confidence, whereas the other models those with high confidence. For instance, Figure 5.3-right shows
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Algorithm 5.1: HW-Method

1 * 7 unbalanced categories of images
2 * 30 randomly sampled images from each category ;
3 * x is the confidence in the label assigned to an image
4 * p(x) is the distribution of the confidence
5 Initialization: Create initial training and validation dataset

1: Retrain CNN with current training set
2: Classify the whole dataset with the CNN
3: Create a subset SHW of the whole dataset with those images meeting the following condition:

x ≤ median(p(x))

4: Randomly select 30 images for each category from SHW subset
5: Increase training set merging the new labeled images with the previous ones
6: Dropout the current CNN
7: Repeat until the maximum number of manually labeled image is reached

the 2-GMM over the distribution of confidence once the first round is finished. Let NL(µL, σL) be the

and NH(µH , σH) be both Gaussian distributions. Then the search region SR = SGM for this method is

defined as the set of all the images such that their confidence is in the interval [µL − 3σL, µL + 3σL]. As

shown in Figure 5.3, compared with SHW , which is 50% of the whole data set, SGM is much smaller,

usually no more than 10%. The reason is that appending images with high confidence to the training set

may produce over-fitting, whereas appending images with low confidence may entail the risk of learning

out-layers or even misclassified images.

Finally, as in the Half-Worst method, we randomly select 30 new images from SGM that are appended

to the training set and we repeat the learning process, which completes the second round. The third round

is a whole new iteration of the process. The procedure is summarized in Algorithm (5.2).

Algorithm 5.2: GMM-Method

1 * 7 unbalanced categories of images
2 * 30 randomly sampled images from each category ;
3 * x is the confidence in the label assigned to an image
4 * p(x) is the distribution of the confidence
5 Initialization: Create initial training and validation dataset

1: Retrain CNN with current training set
2: Classify the whole dataset with the CNN
3: Estimate the 2-GMM model of the confidence for every image in the data set
4: Select the component with lowest mean: NL(µL, σL)
5: Create search region SGM with those images meeting the following condition:

x ∈ [µL − 3σL, µL + 3σL]

6: Randomly select 30 images for each category from SGM
7: Increase training set merging new labeled images with the previous ones
8: Dropout the current CNN
9: Repeat until the maximum number of manually labeled image is reached
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5.3 Experimental results and discussions

As we have explained above, there are four experiments to be carried out, namely: to estimate both a

lower and an upper bound of the accuracy that we should expect from the methods proposed, along with

these two methods. Besides, in order to measure the dispersion of the outcomes, we have repeated every

experiment 10 times.

We begin estimating the lower bound, by running three rounds of the baseline method, and keeping

the outcome of each one. As presented above, we take 30 images from each folder in the first round,

summing up to a training set of 210 labeled images for the first round. In each coming round we increase

the training set in 30 images per folder and retrain the CNN again. Notice that the baseline method would

only require one round with 630 images if we are going to execute three rounds of the Half-Worst and

GMM methods. The only purpose of the first two rounds here, i.e. training with 210 and 420 labeled

images, it is to compare the evolution of accuracy as the training set increases.

Thus, after the third round, baseline shows up a 85.28% of accuracy with a standard deviation of

1.25%. Hence, despite there is already 15% accuracy to improve, it is unrealistic to expect a 100% of

accuracy in a dataset so challenging.

Testing all the possible combinations requires to train and test
(

26,994
630

)
combinations, which is clearly

unfeasible. To avoid that problem, we will use as upper bound the accuracy of a CNN trained with 80% of

the whole dataset, keeping 10% for validation, and 10% for test. It turns out this maximum performance

is about 93%. In other words, the feasible range for improving is [85%, 93%], leaving a width of 8%.

Having both the lower and the upper bounds of the accuracy we can achieve, we are ready to test our

both proposed methods. Results for Half-Worst and GMM method are shown in Figure 5.4. Compared

to the baseline, at the end of the 10 executions the averaged accuracy of the Half-Worst method is 2%

greater whereas the improvement with the 2-GMM method is a 3%. However, in relative terms, i.e.

compared with the 8% that we have estimated would be possible if we had 80% of the data set labeled,

the Half-Worst method attains a 25% of it, whereas the 2-GMM rises up to 37.5%.

As a secondary outcome, it is also remarkable that the dispersion on the accuracy of the CNN decreases

when using both methods compared with the baseline, which accounts for a more stable performance

independently from the initial dataset set. Figure 5.4 shows the individual outcome of each one of the 10

executions in the left panel. It is clear that the band around the Half-Worst method is thinner than the one

around the base line and a little wider than the one around the 2-GMM method. On the other hand, the

right panel on Figure 5.4 shows how the dispersion of the accuracy evolves in the second and third rounds.

For the sake of completeness, we also show other performance measures in the four panels on Figure

5.5. In this case we consider our multi-classification problem as a binary classification of a each given

class against the six others. We firstly represent the variation of the True Positive Ratio (TPR) and the

False Positive Ratio (FPR) in terms of the decision threshold; i.e. the minimum value required to label

the image positively. Panels (a) and (b) on Figure 5.5 depict the curves for every class and every method.

Since, for TPR the better the higher, and for FPR the better the lower, results show that 2-GMM is, in

most of the cases, the best of them. We also show the ROC curve for every class in Figure 5.5c. Notice

that the FPR axis is not scaled to [0, 1] but to [0, 0.05] in order to make the ROC curves visible. Hence all

the binary classifiers have a very good performance, but the binary classifier for class 6 excels. The reason

is that it corresponds to the undergrounded dumpsters, which are arguably the most different with respect

to all the rest. On the other hand, the classifier for class 4, that collects all images of light recyclable pack
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that don’t belong to class 1, 2 or 3, shows the worst performance due to its large variability. Figure 5.5d

shows the averaged ROC curves for every method. All those common metrics definitions are summarized

in Appendix 8.2.

Finally, we discuss the convenience of the proposed methods. Notice that, in every round, we append

30 images from each folder to the training set. Since the folders are the labels, these 630 images are

necessarily considered to be part of a supervised process and therefore the whole problem is a semi-

supervised task. However only the first selection is due to a human. There is neither a query function nor

human-in-the-loop, so none Active Learning approach has been considered. If the data set was completely

unlabeled, for instance images downloaded after a workday, the methods should either query a human at

the end of each round to select 30 images of each class, or to randomly sample 210 new images, both

obviously from the region search. When dealing with images, such as in this problem, the first one requires

little effort, just a visual inspection of many thumbnails at the same time. Indeed, for this particular

problem, the separation given in folders can be seen as a bias towards the human-in-the-loop solution. On

the other hand, the second solution is more appropriate when the labeling effort can not be parallelized.

For instance if, instead of images, there were audio files, it is not possible to hear more than one at the

same time.
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Figure 5.4: Experiment results. (Left) Accuracy at the end of the three rounds of every method (baseline,
Half-Worst and 2-GMM) repeated 10 times. (Right) Mean and standard deviation of the accuracy as the
number of training images increases at each round.
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Figure 5.5: Other performance measures, split in the 7 different classes for panels (a) to (c). Specifically,
(a) True Positive Ratio per Class (b) False Positive Ratio per Class (c) ROC per Class. In addition panel
(d) shows the averaged ROC curve of every method.
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This chapter is organized as follows. First, in Section 6.1, we revise common problems in Modern DL

tools and issues that a deep learning practitioner may face, as well as the basic theoretical background on

Bayesian Neural Network (BNN) and Capsnets. We also present the network architecture for the case

study of human 3D pose estimation. In Section 6.2 we introduce the bayesian formulation of Capsule

Networks: BCN which results in using dropout and a regularization term imposed in the capsule matrices.

Finally, experiments, results and comparisons with the state of the art methods are shown in Section 6.3.

6.1 Introduction: BCNs for 3D Pose Estimation and Advanced DL

DNN have been the subject of a fast growing research effort mainly related to AI and CV applications.

In less than a decade there are readily available numerous large datasets, computational power, open

source libraries and a multitude of tutorials for and from the ML community of researchers, practitioners

and academia. Many of the state of the art DNN architectures are off-the-shelf, pretrained with huge

datasets, during many hours and with powerful computers, so that with minimal changes and much less

computational effort can be adapted to a specific task and go on production quickly [Hao, 2019].

DNN as presented above are an archetype of discriminative, black-box model: lacking in transparency

and poor at representing uncertainty, with the additional shortcoming of being impossible to interpret. For

instance, consider the simple task of single-label classification with a DNN. Given a new instance, the

DNN will return a probability over all the possible classes (if using Softmax as likelihood distribution, see

2.2), but we do not have a measure of how much uncertainty there is in every probability mass. In order to

assess the quality of the estimators one can proceed in a frequentist way as in the Bag of little Bootstraps

(BLB) [Kleiner et al., 2014]. But again, the quality of the estimator does not provide a reliable way to tell

the confidence in their estimations.

87
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On the other hand, in the bayesian formulation of NNs (chapter 3), weights, biases, number of

neurons and number of hidden layers are all considered sources of uncertainty, and therefore modeled

by probability distributions that can be assumed a priori and updated with data a posteriori. Classifi-

cation and regression tasks are casted as the problem of estimating the distribution over the network

outputs given the dataset and a model. Additionally, it also makes possible to estimate the distribution

over the network outputs given the dataset but not necessarily conditioned on a particular model, and

even over a set of models, given the data. BNNs were early introduced in [Denker and LeCun, 1990]

within a proposal to compute the posterior of the parameters algorithmically via the Laplace approxi-

mation, and more broadly in [MacKay, 1992], with a quantitative and practical approach that tackles

with architecture selection, choice of weight decay terms and uncertainty in network parameters and

outputs. After some years of decreasing interest in NN, the arrival of DL has brought new results in

BNN [Blundell et al., 2015, Hernández-Lobato and Adams, 2015], and has sparked the Deep Bayesian

Network (DBN), [Wang and Yeung, 2016, Chien and Ku, 2016, Zhu and Zabaras, 2018].

Dealing with the interpretability of DNN models is much harder. CNNs attain excellent results in CV

because images have strong local correlations which are exploited by the convolutional neurons. Within

this scope it is possible to explain the contribution of each convolutional neuron as a kernel that enhances

some visual features. But this good properties are not transferable to the general problem in which instances

are described by an array of attributes arbitrarily ordered. A novel neural network architecture known

as Capsule Networks (Capsnets), introduced in [Sabour et al., 2017, Hinton et al., 2018], transforms the

feature space into a higher dimensional space in which each instance is represented by a set of vectors

bounded to norm one. Each vector encodes the input, but having many of them makes also possible

to encode the variability of the abstract concept or general entity. This variability may include pose,

illumination, texture, etc. depending on the data set. Besides, the norm of every vector is interpreted as

the probability of such a vector representing a given concept. The intuition is that having one of these

vectors close to norm one may be enough to classify the instance because it is very distinctive, so the

representation obtained with Capsnets hierarchizes the features in a some way.

6.1.1 Capsnet architecture for 3D Human Pose

We attempt to infer the 3D human pose from a single 2D RGB image; where the pose is given by the

3D coordinates of 17 joints in a human skeleton. It is easy to get 3D to 2D projections of a skeleton.

Moreover, much development have been carried out to equip computer with real time methods for such

a purpose, which constitutes the base of Video Games. However, the 3D pose reconstruction using 2D

data is an ill-posed optimization problem that needs to be regularized. This can be do in a variational

framework as in [Kolev et al., 2009]. Another approach is to cast it as a regression problem to be solved

with a DNN that estimates every joint. Dealing in this way with such an ill-posed problem requires prior

information. For instance in [Tome et al., 2017] a biological probabilistic model is proposed. The other

option is to do Deep Regression Bayesian Networks, for instance[Nie et al., 2018].

In this chapter we solve the regression problem in a model-free NN, end-to-end, architecture that

incorporates our proposed BCN formulation. The whole system attempts to minimize a multi-task

objective to improve the accuracy of the main target (3D coordinates) avoiding the use of other techniques

such as transfer-learning, using other data sets or taking into account the previous images if the image

belongs to a video-sequence. The data set used is known as Human 3.6, described in detail in Section 6.3.
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The architecture proposed consists of 3 modules, each being a NN of a different kind. The input image is

firstly processed by a CNN with residual blocks. Then a BCN transforms the feature maps into capsules

and finally three different Bayesian Fully Connected NNs produce the estimation of the 3D pose together

with a reconstruction of the 2D pose and heat maps of each joint.

6.1.2 Preliminaries

We first introduce the notation used throughout this chapter as well as recap basic background on BNN

and Capsule Networks.

Notations We mark with a hat those variables that are estimations obtained by means of a NN, e.g.

ŷ, with a star those which are solution of an optimization problem, e.g. w∗, and with a tilde the samples

from a probability distribution, e.g. x̃ ∼ p(x). ‖X‖F represents the Frobenius norm of a matrix X , and

In is the identity matrix of size n× n.

As usual, let X be a data set of N instances {x(i)}, and let Y be a set of the corresponding labels,

or a ground truth, {y(i)}, for i = 1 . . . N . We will also assume that the pairs (x(i), y(i)) are i.i.d. Let

f : X→ Y be the function implemented by a given NN, and let ŷ = f(x;W) be the output (prediction)

of such a NN for a given input x and a given configuration of the weights and biases of the NN, jointly

represented by W and referred to simply as the weights.

Bayesian Neural Networks

The bayesian approach is two-fold. On one hand it is the maximum a posteriori estimation of the NN

weights. On the other hand, it is the bayesian inference of the target output according to a prediction

distribution. We next present the basic background of both together with the issues risen and the state of

the art solutions.

MAP estimation of the weights Following the presented Bayesian Inference in chapter 3, we set p(W)

as prior probability distribution over the weights of the NN, and then look for W∗, i.e., the MAP weights

given the data X and Y. According to the Bayes theorem and taking into account that the input is

independent of the weights, the problem is formalized as

W∗ = arg max
W

{p(W|X,Y)} = arg max
W

{p(W)p(Y|X,W)}, (6.1)

where p(Y|X,W) is the likelihood and p(W|X,Y) is the posterior. The proposal is to assume that both

the likelihood and the prior are Normal distributions. However, and following [Kendall and Gal, 2017],

we will also consider as objective parameters, those of both normal distribution rather that fixing their

values (which is in fact to consider a bayesian inference approach vs machine learning task). Specifically,

the prior over the weights is a multivariate normal centred in 0 with covariance matrix Σ=σwI. For the

sake of clarity, we use σw.

p(W) =
1√

2πσw
exp

(
−‖W‖

2
2

2σ2
w

)
. (6.2)
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The likelihood of a pair (x(i), y(i)) is centered in the output of the NN f(x(i);W) with standard deviation

σ,

p(y(i)|x(i),W) =
1√

2πσ
exp

(
−‖y

(i) − f(x(i);W)‖22
2σ2

)
. (6.3)

The standard deviations introduced in the last two expressions are associated to different types of

uncertainty in bayesian modeling. According to [Kendall and Gal, 2017], σw is the Epistemic uncertainty

of the model, and σ is the Aleatoric uncertainty associated to the difficulty on the particular task. If the

aleatoric uncertainty is the same for all the inputs, it is said to be homoscedastic. On the contrary, if it

depends on the input data it is known as heteroscedastic. Here we shall assume homoscedasticity.

Taking into account that p(Y|X,W) =
∏N
i=1 p(y

(i)|x(i),W), introducing (6.2) and (6.3) into (6.1),

and taking logarithms we have

{W∗, σ∗, σ∗w} = arg min
W,σ,σw

{LMSE + LH + LT + LE}, (6.4)

where LMSE =
1

2σ2

1

N

N∑
i=1

(
‖y(i) − f(x(i); W)‖22

)
, (6.5)

LH = log σ, (6.6)

LT =
1

2σ2
w

‖W‖22, (6.7)

LE = log σw. (6.8)

In the functional above, (6.5) is the Mean Squared Error (MSE) or L2 loss function and (6.7) is the

Tikhonov regularization over the weights which in NN is usually introduced in the minimization step

referred to as weight decay. Additionally, the normality assumptions have brought the homoscedastic

term (6.6) and the epistemic term (6.8). Otherwise these two terms can be renamed into a constant λ,

recovering the loss function L = MSE + λ‖W‖22 for non bayesian NN.

Notice that limσ→0 log σ = limσw→0 log σw = −∞; so both (6.6) and (6.8) may dominate the

minimization (6.4). Pushing σ towards 0 means attaining 100% accuracy, but σw towards 0 carries ‖W‖22
to 0 and viceversa. We deal with this issue in the Practical BNN section below.

Bayesian inference Another bayesian approach to is through inference, predicting the target y for a

new given input x according to the aforementioned prediction distribution

p(y|x,X,Y) =

∫
p(y|x,W)p(W|X,Y)dW. (6.9)

We have shown that, since integrating over all possible weight configurations is computationally intractable,

the posterior is approximated by a family of probability distributions qθ(W). The parameter θ is found

looking for the one that minimizes the KL divergence with the actual posterior distribution, which is

known as the variational approach, that leads to maximizing the Evidence Lower Bound (ELBO) and an

optimization problem expressed as follows (see chapter 3 for a detailed derivation):

θ∗ = arg min
θ

{
KL
(
qθ(W)

)
‖p(W|X,Y)

}
= arg max

θ
{ELBO}

= arg min
θ

{
−Eqθ

(
log p(Y|X,W)

)
+ KL

(
qθ(W)‖p(W)

)}
. (6.10)



6.1. Introduction: BCNs for 3D Pose Estimation and Advanced DL 91

In fact, both terms in equation (6.10) are the negative log-likelihood and the imposed or assumed prior

over the weights W, recovering both expressions from the MAP approach. This is tractable via Monte

Carlo integration. Let {W̃t}t=1...T ∼ qθ(W) be a set of T samples drawn from the distribution qθ. Then,

−Eqθ
(

log p(Y|X,W)
)
≈ − 1

T

T∑
t=1

log p
(
Y|X,W̃t

)
, (6.11)

KL
(
qθ(W)‖p(W)

)
≈ 1

T

T∑
t=1

log W̃t −
1

T

T∑
t=1

log p(W̃t). (6.12)

Once θ∗ is estimated, Eq∗θ
(
p(y|x,W)

)
is also approximated via Monte Carlo.

Practical BNN The choice of the prior is a key of the Bayesian approach. We have shown that the

assumption of normality leads to terms in the loss function that may difficult the training, whereas

choosing another prior should also take into account to be easy to sample from. The solution to the

first issue, proposed in [Gal and Ghahramani, 2016b], is to remove (6.7) and (6.8) from the functional

in (6.4) and use dropout instead. Dropout was firstly introduced in [Srivastava et al., 2014] as a way of

preventing overfit in DNN. Later in [Kendall and Gal, 2017], it was explained as if every weight in a NN

was multiplied by a binary random variable z with probability π, i.e. z ∼ Ber(π). Hence, doing dropout

in every layer is a practical way to get samples W̃t ∼ p(W), not necessarily normally distributed. By

doing so, and defining s = log σ2, (6.4) is rewritten as.

{W∗, s∗} = arg min
W,s

{
e−sLMSE + s

}
. (6.13)

Moreover, if we consider LMSE as the loss of a given task, we can extend (6.13) for multiple tasks carried

out by the same NN as follows:

{W∗, s∗1 . . . s
∗
τ} = arg min

W,s1...sτ

{
e−s1L1 + s1 + · · · e−sτLτ + sτ

}
. (6.14)

In summary, dropout in every layer is an easy way towards BNN in practice and provides two extra

adventages: it allows to minimize the uncertainty in the model by using (6.13); and it also allows to

self-balance multiple losses in the same NN because s1, . . . , sτ are optimized at the same time in (6.14).

Notice that (6.14) requires the loss functions to be MSE. Kendall et al. show in [Kendall et al., 2017] that

it is also possible to use softmax as the activation of the last layer and then cross-entropy for the loss.

Thus, BNN can be applied both in regression and classification tasks.

Capsule Networks

The so-called Capsule Network architecture has been released recently [Sabour et al., 2017], initially with

the purpose of image recognition, introducing some variations with respect to the CNN. The Capsule

Network architecture can be divided in 5 steps: Input, Encapsulation, Inverse graphics, Routing and

Output, depicted in Figure 6.1. The feed-forward step during training is detailed in Algorithm 6.1.

Notice that the coefficients ck,j are updated in this step, whereas the matrices Ak,j are updated in the

back-propagation.
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Algorithm 6.1: Capsule Network

1 Hyperparameters: J , K and S′ are positive integers arbitrarily chosen.

2 Preconditions: The reminder of M ·N ·D divided by J must be 0.

3 Postconditions: 0 < ‖φk‖2 ≤ 1 for k = 1 . . .K.

4 Def: ReshapeJ×S : RM×N×D → RJ×S , with J = MND/S.

5 Def: squash(u) =
(
‖u‖22 · u

)
/
(
1 + ‖u‖22 · ‖u‖2

)
6 Steps:

7

1. Input: ψ ∈ RM×N×D.
2. Encapsulation: U = {uj}j=1...J = Squash

(
ReshapeJ×S (ψ)

)
,

with uj ∈ RS and U ∈ RJ×S .

3. Inverse graphics: vk,j = Ak,j · uj , with vk,j∈RS
′
,

Ak,j∈RS
′×S , and Vk = {vk,j}k=1...K ∈RK×S

′
.

4. Routing: Compute coefficients ck,j with the

Routing by agreement algorithm, as in [Sabour et al., 2017],

s.t.
∑K

k=1 ck,j = 1; ck,j ∈ R.

5. Output: φk = Squash
(∑J

j=1 ck,jvk,j

)
8 Return: Φ = {φk}k=1...K , where φk ∈ RS′ and Φ ∈ RK×S′

6.2 Proposed Methods: Bayesian Capsule Networks

Experience tells us that, in many cases, when some ground-breaking technique shows up in the field

of DL, it is likely to relate it to a sort of regularization or the introduction of a prior. This may be not

the case in order fields as Variational Methods, where those regularizing terms are, in some way, the

bread and the butter of such techniques when applied to CV and IP. Keeping this in mind, the following

proposal makes use of: (1) a novel NN that imposes a prior structure regularization (as a CNN does, see

2.2.5), (2) a regularization term over the matrices of the mentioned network and (3) a Bayesian Inference

Approximation approach through Variational Inference using dropout.

We start introducing a Bayesian formulation of Capsnets. To this end, we propose to introduce

prior knowledge as restrictions over the matrices Ak,j related to their geometric interpretation. In

[Sabour et al., 2017] authors motivate these matrices as doing the inverse of computer graphics, in which

a 3D scene is shown in a 2D screen, thus reducing the dimensionality. In Figure 6.2, a given 2D projection

(image) of an object (cube) is retro-projected to infer the original object. Thus, this retro-projected inferred

object (prediction) is projected again to check if the original datum is recovered.

Here, on the contrary, every capsule uj ∈ RS is mapped K times into a higher dimensional space by

means of linear transformations Ak,j ∈ RS′×S , to obtain vk,j = Ak,j · uj , with vk,j ∈ RS′ and S′ > S.

Following with the intuition behind Inverse graphics, every vk,j is an estimation in a higher dimensional

space of its projection uj . Hence, it is reasonable to expect recovering the projection by means of an

inverse transformation Bk,j ∈ RS×S′ , such that

ûj = Bk,j · vk,j , subject to Bk,jAk,j = IS .

Clearly, the first candidate for Bk,j is A(−1)
k,j , the Moore-Penrose pseudo-inverse of Ak,j . However, this

pseudo-inverse has a closed form when Ak,j has full rank, which is a very weak constraint. Instead we
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Figure 6.1: CapsNet module. Capsules are created reshaping the feature maps incoming from a previous
NN. Then each one is mapped K times into a higher dimensional space. The results are combined and
squashed into the outgoing capsules. The block with the red line is the squash function. In this Figure
M = N = D = 16, J = 512, S = 8, S′ = 16 and K = 17. Dropout is proposed here as part of the
Bayesian formulation.

Figure 6.2: Left: 2D - 3D analogy. Right: retro-projection and inverted projection pipeline.

propose to learn the matrix Bk,j at the same time than Ak,j . This is equivalent to relax the constraint on

the invertivility of the retro-projection so ûj = Bk,jAk,juj ≈ uj .

Lemma Let A and B two matrices such that B is left-compatible with A. If ‖BA− I‖2F ≈ 0 then B is

a consistent left pseudo-inverse matrix of A in the sense of the Frobenius norm.

Proof Consider the vector u, its projection v = Au due to the linear transformation A and its estimated

retro-projection û = Bv due to the linear transformation B. Assuming that ‖BA− I‖2F ≈ 0, we have
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that

0 ≤ ‖û− u‖2F = ‖BAu− u‖2F ≤ ‖(BA− I)‖2F · ‖u‖2F ≈ 0.

Let v̂ = Aû be the projection of the estimated retro-projection û. Hence, 0 ≤ ‖v̂ − v‖2F = ‖Aû −
Au‖2F ≤ ‖A‖2F · ‖û− u‖2F . Therefore, if ‖û− u‖2F ≈ 0, then ‖v̂ − v‖2F ≈ 0 too. �

Thus we are allowing a certain amount of uncertainty in the only step of the Capsnet that is learned

during back-propagation. Moreover, we can control it by imposing the assuming a prior jointly over Ak,j
and Bk,j ,

p(Ak,j , Bk,j) =
1√

2πσb
exp

(
−
‖Bk,jAk,j − IS‖2F

2σ2
b

)
.

(6.15)

We then can incorporate this prior to (6.1), assume the same likelihood than in (6.3), and assume that

matrices Ak,j , Bk,j are independent from parameters W, to obtain the following optimization problem,

similar to (6.13),

{W∗, s∗, s∗b} = arg min
W,s,sb

{
e−sLMSE + s+ e−sbLb + sb

}
, (6.16)

where Lb =
1

JK

J∑
j=1

K∑
k=1

‖Bk,jAk,j − IS‖2F (6.17)

and sb = log σb. Recall that, in order to be bayesian, the above expression imposes doing dropout in all

the layers of the full NN. With regards to a Capsnet module within such a NN, this is only possible after

the Encapsulation and before the Inverse Graphics. Thus we propose a dropout that randomly sets to zero

some capsule components before going into the Inverse graphics step. With this dropout technique and

regularization term we achieve approximate invertibility along capsule layers. In other words, following

the analogy depicted in Figure 6.2, the result of such a bayesian regularized capsule is the minimization of

the projection and retro-projection errors, as depicted in Figure 6.3 below.

Figure 6.3: Error bounds on projection and retro-projection steps.

6.2.1 CNN with Residual blocks

The input image is first processed by a CNN consisting of 4 convolutional layers with residual units

[He et al., 2016], kernels of size 9 × 9, stride= 2 and padding “valid”, followed by a ReLU activation

function. The combination of stride and padding produces a reduction of the input size. Besides, the

layers produce 32, 64, 128 and 16 feature maps respectively. Thus, with this configuration the output

tensor of this module has size 16 × 16 × 16. The residual units were proposed in [He et al., 2016] for

allowing features to skip convolutional layers, thus acting as an identity function, which is known to be

hard to “mimic” by a convolutional network. In this module Dropout is not used. The reason is, again, that
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Figure 6.4: Global structure of the proposed CapsNet-based Bayesian Neural Network for the Human3.6
challenge. The input image is first analyzed through a CNN with Residual blocks. The feature maps are
sent into a Bayesian CapsNet as defined in this paper. The CapsNet output provides encoded vectorial
features that are decoded in three different versions of the same concept: 2D and 3D coordinates together
with Joint heat maps. The loss is a self-balanced combination of the loss from each task plus the one due
to the prior on the Capsnet.

convolutional neurons are equivalent to fully connected neurons with many of their inputs disconnected,

i.e., thus having dropout implicitly implemented. Finally, we stress that the activation of the last layer in

[Sabour et al., 2017] is the squash function, not ReLU, as in ours. Thus, we force the CNN to produce

representations in the positive (16×16×16)-dimension cuadrant.

6.2.2 Bayesian Capsnet

The proposed BCN is summarize through 5 steps as follows.

Input It is a tensor of size M ×N ×D = 16× 16× 16. As in [Sabour et al., 2017], it is modified with

the squash function so its norm is upper bounded to 1.

Encapsulation According to Algorithm 6.1, we have to choose J and S, the number of capsules that

we initialize and their size such that the precondition is satisfied. Given the input tensor, our choice is

J = 512 capsules of size S = 8, satisfying that 512× 8 = 16× 16× 16. Each capsule is cloned K = 17

times. This choice is arbitrary so we set 17 because there are 17 joints to predict. Thus we will have one

final capsule for every joint. In this step, we introduce dropout by setting to zero a 30% of the 512× 8× 7

components that we have considering all the capsules and all the clones. The result is grouped in blocks

as depicted in Figure 6.1.

Inverse graphics The procedure is the one described in Algorithm 6.1. Specifically, there are 17 blocks

and 512× 17 matrices Ak,j , each one producing a respective capsule vk,j of size S′ = 16.

Routing by agreement Capsules outgoing from each block are averaged according to coefficients

ck,j . These coefficients are computed using the Routing by agreement algorithm, described in detail in

[Sabour et al., 2017], where authors defined it as a version of the Expectation-Maximization procedure.

This algorithm runs twice in the feed-forward step of training and none in the back-propagation step.
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Output The capsules resulting by the Routing are finally squashed. Therefore this Capsnet module

produces 17 capsules of 16 components, each capsule with norm upper bounded to one.

6.2.3 Estimation and Reconstruction

In this proposed architecture, capsules encode joints of the skeleton sketch. The goal is to estimate the

coordinates of each joint in 3D, their projections in 2D and a heat map of each joint at the same time.

The hypothesis is that these three tasks are complementary, so they help each other. Such approach,

in fact, forces the architecture to create a meaningful space of latent variables from which the three

aforementioned targets must be reconstructed. Conversely to other approaches, here we directly infer 2D

and 3D coordinates, this is, no post-processing or joint locations is deemed. This greatly increments the

problem difficulty. To this end we make use of three FCNNs, one for each output, ŷ3D, ŷ2D and ŷjoints.

Let us define the following layers:

Dense[x] a Dense layer of x neurons with ReLU activation,

Sigm[x] a Dense layer of x neurons with Sigmoid activation,

Drop[x] a x% dropout layer,

then the following expressions describe each FCNN:

z1 = z2 = z3 = Drop[15]

(
Dense[2048]

(
Dense[1024] (Φ)

))
, (6.18)

ŷ2D = Sigm[34=17×2] (z1) , (6.19)

ŷ3D = Sigm[51=17×3] (z2) , (6.20)

ŷjoint = Reshape256×256×16

(
Dense[699632] (z3)

)
. (6.21)

Notice that they don’t share layers but the structure is identical and the header is different. The loss

function for this problem is the expansion of (6.16) to our set of tasks T = {2D, 3D, joints} so

L = e−sbLb + sb +
∑
τ∈T

(
e−sτLτ + sτ

)
. (6.22)

6.3 Experimental results and discussions

In this Section we first describe the Human 3.6 data set [Ionescu et al., 2014] together with works related

to the 3D human pose estimation from a single 2D image. Then we compare our proposal with the works

that attained the best performances in the CVPR’17 and also in the IJCV, Jan.’18.

6.3.1 Human 3.6 Data set and related works

The 3D human pose estimation problem has attracted a lot of interest during the last years both in the

computer vision and machine learning communities; but not all the works are comparable to our proposal.

For example, the variational approach in [Kolev et al., 2009] uses multiple views for reconstructing the

volume rather than the position of the joints; while the Deep Regression Bayesian Network proposed in

[Nie et al., 2018] in for reconstructing 2D images (inpainting, block occlusion and face restoration).

The Table 6.1 collects the state of the art works that aim at estimating the 3D coordinates of every joint

in the skeleton sketch from 2D images taken from a single view, summarizing the main features of their
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Works E2E R.I. P. T. T.L. M. O.D.
Ours Y Y Y∗

Tekin [Tekin et al., 2017] Y Y Y
Tome [Tome et al., 2017] Y Y Y
Zhou [Zhou et al., 2016] Y Y Y

Katircioglu [Katircioglu et al., 2018] Y∗ Y Y Y
Bogo [Bogo et al., 2016] Y∗ Y Y

Sanzari [Sanzari et al., 2016] Y∗ Y Y
Y: yes, Y∗: yes in table 6.3; E2E. End to end approach, R.I. Rotation invariant,
P. Procrustes transformation, T. Temporal information, T.L. Transfer Learning,

M. Biometric Model, O.D. Other datasets.

Table 6.1: State of the art works that have used the Human3.6 dataset.

(a) (b) (c) (d)

Figure 6.5: (a) An input RGB image from the validation set and its 2D predicted coordinates. (b) 3D
predicted joints together with the inner epistemic uncertainty (the circle magnitude). (c) Ground truth for
the joint heat maps. (d) Joint heat maps estimated. Each joint is depicted with a different color.

solutions. The two columns on the left are qualities that our work exhibit, namely being an end-to-end

approach (column E2E) and that the pose is invariant to rotations with respect to the vertical axis (column

R.I.) By end-to-end we mean that the 3D estimation does not have to depend on anything other than the 2D

image. In that sense other works use a pipeline that firstly focus on performing very well in an estimation

of the the 2D joints, an then estimate the third dimension. Additionally, these works use other data sets,

not only Human3.6. (column O.D.) Another not end-to-end approach, that also uses more data sets,

consists of learning a richer set of features that, afterwards, by Transfer Learning (column TL), are used

for training their solutions. The rest of columns refer to aids, such as Procrustes transformations (column

P), using previous frames to aid the prediction in the current time (column T) or having a biometric model

(column M).

The Human 3.6 data set consists of 15 videos that add up to a total of 3.6 million RGB images.

Each video shows a person doing a different activity. The videos are sub-sampled at 10 fps, resulting in

311,724 images for training and 110,040 for testing. The person is bounding-boxed in every frame and,

together with the images, the data set provides a ground truth given by the 3D coordinates of each joint

in the skeleton, scaled to the interval [0, 1], as an array of size 17× 3 elements. Additionally, from this

information we generate Joint heat maps, i.e. images with 17 channels, each of them representing a binary

mask of the joint locations as depicted in Figure 6.5. We also crop every frame by the bounding box and

re-scale to 300× 300 to obtain the input image.

We trained our NN following the Protocol #1 as described in [Ionescu et al., 2014]: subjects S1, S5,
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Activity Zhou Tekin Tome, I Ours, I Tome, II Ours, II Ours, III
Directions 87.36 85.03 68.55 79.42 64.98 73.15 73.33
Discussion 109.31 108.79 78.27 83.73 73.47 84.95 83.45

Eating 87.05 84.38 77.22 84.01 76.82 85.87 85.33
Greeting 103.16 98.94 89.05 83.15 86.43 80.12 79.08
Phoning 116.18 119.39 91.63 86.42 86.28 91.44 89.99
Photo 143.32 95.65 110.05 112.38 110.67 109.42 109.95
Posing 106.88 98.49 74.92 81.34 68.93 76.4 76.08

Purchases 99.78 93.77 83.71 77.65 74.79 76.72 73.61
Sitting 124.52 73.76 115.94 105.10 110.19 105.54 104.12

SittingDown 199.23 170.4 185.72 135.55 173.91 130.15 136.27
Smoking 107.42 85.08 88.25 88.25 84.95 88.07 87.59
Waiting 118.09 116.91 88.73 79.24 85.78 80.25 79.19

WalkDog 114.23 113.72 92.37 87.45 86.26 88.75 87.13
Walking 79.39 62.08 76.48 67.56 71.36 66.1 66.31

WalkTogether 97.7 94.83 77.95 80.45 73.14 76.84 76.88
Avg. by activity 112.91 100.08 93.26 88.78 88.53 87.58 87.22

Std. Dev. 27.78 24.21 27.63 16.28 26.21 15.86 17.15

Table 6.2: Comparison of three versions of the Bayesian Capsule Networks with respect to the top-3 in
CVPR’17 Human 3.6 challenge, due to Zhou [Zhou et al., 2016], Tekin [Tekin et al., 2017] and Tome
[Tome et al., 2017]. The background bars are sized with respect to the max. and min. of every row

S6, S7, S8 are used for training, while S9 and S11 are kept for test. The reported metrics are the averaged

errors of the Euclidean Distances of the 17 joints (we do not use others joints to help the training step).

We used AdamOptimizer starting with a learning rate of 10−5 and batch-size of 1, and increasing it by

10 until 20 when the loss reaches a plateau.

6.3.2 Comparison with the State Of The Art

We first compare our NN with the top-3 less averaged error on the same dataset and with the same pro-

tocol as reported in Tome et al.[Tome et al., 2017] at CVPR’17, namely: Zhou et al.[Zhou et al., 2016],

Tekin et al.[Tekin et al., 2017] and Tome et al.[Tome et al., 2017]. We have removed Sanzari et al

[Sanzari et al., 2016] from this top-3 because they use the Procrustes transformation. For such par-

ticular comparison, we include it them in table 6.3. A Procrustes transformation consists of a geometric

transformation where only a combination of translation, rotation and uniform scaling is allowed.

The best result is due to the second proposal of Tome et al; in which the authors use a 6-stage

deep architecture to improve belief-maps in each stage, projecting in 2D a proposed 3D pose from a

Probabilistic pre-trained 3D Model. It should be noted that all those state of the art approaches belongs

to a category of methods that follows a pipeline, i.e., does not directly infer the 3D coordinates. In

general, direct methods performs quite poorly in comparison to pipeline approaches. However, our BCN

arquitecture achieves state of the art results in an end-to-end fashion while uses only the considered

Human3.6M dataset to train.

To assess the contribution of the bayesian approach both in the Capsnet and in the FCNN headers, we

try three different versions of our solution. The first version (Ours-I) has dropout only in the Capsnet,
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but there is no regularization over matrices Ak,j nor dropout in the FCNN headers. The second version

(Ours-II) incorporates the regularization over matrices Ak,j . Finally, the third version (Ours-III) is the full

solution as described in Section 6.1.1.

The results of the comparison are detailed per activity in the rows of Table 6.2. Each cell in the table

presents the error accumulated by the 17 joints averaged over the whole activity video-sequence. The last

two rows are the average by activity and its standard deviation respectively. Results show that:

1. The best method in [Tome et al., 2017] is almost matched by Ours-I, and overtaken by Ours-II and

Ours-III. We show 8 frames of one test video-sequence together with the 3D estimation and the 3D

ground truth in Figure 6.6, from different views.

2. The homoscedastic uncertainty σ is much lower with any version of our proposed Bayesian Capsnet

than with the methods reported in [Tome et al., 2017]. This is an expected result, since the loss

function includes the homoscedastic uncertainty as an objective. The minimum is attained by

Ours-II, i.e. when FCNN headers have no dropout. Moreover, the improvement due to Ours-III in

the average is not as much as the improvement due to Ours-II, suggesting that it could account for

an excess of regularization.

3. The epistemic uncertainty σw is indirectly estimated as the variance of predictions due to different

samples of the NN. In the bayesian formulation, sampling a NN is approximated as dropout during

the evaluation of an instance in all those layers where it is possible. To this end we take the image

shown in Figure 6.5(a) and produce 50 predictions, each one with a sample from Ours-III. The

standard deviation of the 2D and 3D predictions is shown as the magnitude of balls surrounding

each joint in Figures 6.5(a) and 6.5(b) respectively.

4. Compared with the rest of solutions in Table 6.2, our proposal is much more straightforward since it

directly aims at inferring the 3D, 2D and heat maps. Specifically, the proposal in [Tome et al., 2017]

uses other data sets in the stages that precede the estimation of the 3D coordinates, which accounts

for a complex system structure.

The best performance in 3D human pose estimation from a single image so far has been recently

reported in [Katircioglu et al., 2018]. When using Procrustes for comparing with respect to the ground-

truth For the sake of completeness, we incorporate this transformation to the fully bayesian architecture,

referred to as Ours-IV in Table 6.3, and compare with Sanzari et al.[Sanzari et al., 2016], Bogo et

al.[Bogo et al., 2016] and Katircioglu et al. [Katircioglu et al., 2018].

Our proposal ranks second with a significant improvement both in the accuracy and in the homoscedas-

tic uncertainty. However, we remark that [Katircioglu et al., 2018] is also aided by Transfer learning,

Biometric model and the use of other data sets. Specifically, their approach consists in the use of a

pre-trained overcomplete 3D pose autoencoder, using the latent space created by each 3D sample as target

for a CNN. The final 3D output is given by the pre-trained decoder, which receives an estimation of the

latent space from the CNN feeded with a single image. They propose a ShallowNet-Autoencoder CNN,

which is comparable to our CNN with residual connections, and a ResNet50-Autoencoder pre-trained for

2D joint heat-map predictions. With the ShallowNet, they achieve 127.07mm error while the ResNet50

boosts the results to their best (without Procrustes), 67.27 mm; which shows that the improvement is

probably due to the deep ResNet50 architecture.
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Activity Sanzari Bogo Ours, IV Katircioglu
Directions 48.82 62 57.55 43.89
Discussion 56.31 60.2 61.32 48.54
Eating 95.98 67.8 66.48 46.57
Greeting 84.78 76.5 64.49 49.95
Phoning 96.47 92.1 68 53.94
Photo 105.58 77 83.16 59.29
Posing 66.3 73 56.05 43.77

Purchases 107.41 75.3 54.85 43.94
Sitting 116.89 100.3 77.65 60.2

SittingDown 129.63 137.3 97.32 73.64
Smoking 97.84 83.4 67.31 51.15
Waiting 65.94 77.3 59.63 46.3
WalkDog 130.46 79.7 64.76 52.25
Walking 92.58 86.8 49.96 39.81

WalkTogether 102.21 81.7 60.47 47.18
Avg. by Activity 93.15 82.03 65.93 50.69

Std. Dev. 23.97 17.90 11.74 8.23

Table 6.3: Comparison of three versions of the Bayesian Capsule Networks with respect to the
top-3 in IJCV’18, due to Sanzari [Sanzari et al., 2016], Bogo [Bogo et al., 2016] and Katircioglu
[Katircioglu et al., 2018]. The background bars are sized with respect to the max. and min. of every row.
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Figure 6.6: Some results of our proposed Bayesian Capsule Network in a test subject. (Left) The 2D RGB
image input, (middle) the 3D predicted Human Pose, and (right)the given ground-truth. 3D skeletons have
different viewpoints for the sake of visualization, but all of them have the same orientation.





CHAPTER 7

Conclusions

La realidad imita a la tele ...

Eduardo Galeano

This thesis aims to propose new models and their resolutions for problems concerning the CV field.

Applications in CV deal with a particular signal of information, namely, images. We have seen that many

problems can be addressed with Variational Methods and Machine Learning techniques, but, although

those approaches seem, and eventually are, quite different in practice, there are some key elements that

are very similar. This Chapter is devoted to resume the main conclusions and contributions of this work,

as well as outline research lines that I plan to address in the near future.

7.1 Practical Conclusions

In Chapters 2 and 3 , we aim to lay bridges between Variational Methods and Deep Learning. For

this purpose, both approaches are explained from a bayesian modeling framework. Besides, we highlight

common elements that generalize the understanding of those techniques. Finally, we show that, in fact,

they may be derived from a general methodology framed in the field of Bayesian Inference.

In Chapter 4 we have presented a new non-local non-convex diffusion model for saliency detection

and classification which promotes a fast foreground detection when it is applied to a FLAIR given image.

This new approach is based on reactive flows which facilitates the saliency detection task promoting

binary solutions which encapsulate the underlying classification problem. The computational cost of the

resulting algorithm is greatly alleviated by using recent ideas on quantized convolutional operators filters,

making suth an approach practical and efficient.

The results reveal that this method can achieve very high accurate statistics metrics over the ground-

truth BRATS2015 dataset [Menze et al., 2015]. Also, as a by-product of the reactive model, the solution

has, after few iterations, a reduced number of quantized values making simpler the final thresholding step.

Such a technique could be improved computationally by observing that the diffusion process combined

with the saliency term evolves producing more cartoon like piece-wise constant solutions which can be

coded with less number of quantization values while converging to a binary mask. This is related to the
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absorption-reaction balance in the PDE where absorption is active where the solution is small, u ≈ 0 and

the reaction is active where u ≈ 1.

The non-local diffusion properties of the model also allow to detect salient objects which are not

spatially close as well as connected regions (disjoint areas). This can be useful in many other medical

images modalities, specially in Functional Magnetic Resonance Imaging (fMRI). Non-convex properties,

meanwhile, promote sparse non-local gradient, pushing the solution to a cartoon piece-wise constant

image.

We have also proposed the analogous local version of the model that particularizes the regularization

term to the TV operator. The elliptic equation that results from the model is then solved through the

Chambolle and Pock Primal Dual algorithm [Chambolle and Pock, 2011]. As a counterpart of the non

local model, this local version is faster in its numerical resolution. We take advantage of this fact to embed

it in a CNN and built a Deep Variational Framework that allows to optimize the parameters of our model

using previous knowledge from the application. The test results confirm the potential of the proposed

approach. Moreover, this Variational Framework can easily consider different variational models without

more than adapt their numerical resolution to a trainable graph.

In Chapter 5 we have presented a computer vision-based method for dumpsters classification using

CNNs. The first approach we have carried out is based on Transfer Learning, which allows to take

advantage of the already trained Google Inception-v3 CNN. Such strategy reduces the training time as

well as the amount of labeled images we need for feeding the CNN. This has led us to a semi-supervised

approach where we have presented two iterative methods for getting an accurate CNN. The first one,

based on a worst cases selection, and the second one, based on a GMM technique. We have shown

that is it possible to use such methods for selecting a very small set of images to be manually labeled,

obtaining a higher performance than selecting them randomly. Furthermore, the effort to label manually

the training set of images in both cases is the same. The results we have presented show that our proposal

increased the performance of the intended CNN, 25% and 34% for the Half-Worst and GMM based

methods respectively, in terms of accuracy. In comparison with a random selection of the tiny training set,

the obtained CNN using the proposed methods reveals a sightly better prevention of the over-fitting.

In Chapter 6 we present, for the first time, a Bayesian Capsule Network. As far as we know, it is also

the first attempt to address a regression problem (rather than a classification on) with a Capsule Network.

Bayesian Neural Networks are easy to implement and offer two big advantages. By doing dropout and

small modifications in the usual loss functions, both in classification and regression, it is possible to: 1)

minimize the homoscedastic uncertainty, and 2) use multiple losses for different complementary tasks,

self-balancing their contribution to the total loss. Due to the structure of Capsnets, its bayesian formulation

consists of doing dropout on the initial capsules and a regularization term. We have tested the proposal on

an ill-posed problem and have shown that the results are comparable to those of the state of the art, but

using a straightforward and much simpler approach over the Human3.6 dataset.

7.2 General Conclusions

There is a significant concept throughout this dissertation that, from my perspective, deserves to be treated

in a more general way. Regularization, prior knowledge and generalization are the reflect of the need of
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abstraction.

For example, from the Variational field, Tikhonov regularization term such as the L2 energy of the

gradient of the solution, in the Image Restoration case, makes sense because it exploits the fact that images

have very often smooth regions (nearby pixels are similar). An improvement of this kind of regularization

is the TV operator that preserves sharp edges while smoothes the rest of the image. Regarding the

statistics of images (Figure 2.3b), we can realize that other regularizing terms could be more appropriated

(hyper-laplacian among others). This is similar to learn from data in the DL context, the difference is

who processes that information. On the other hand, from DL and NNs, huge improvements have been

achieved when using CNNs in CV problems. We have also shown how to understand convolutions as

neural network layers with infinitely strong priors, i.e., the regularization here is introduced implicitly in

the structure of the convolution operation. This was obtained after understanding the hierarchical features

extraction that the animal’s visual system performs to detect objects. In short, improvements come when

someone finds out a way to include extra knowledge.

The target field of this thesis is CV. However, the willingness to solve problems of this field using

different approaches and, possibly, a combination of them, has opened the way to link up concepts that

lead us to think that they have more in common than we often realize, to the extend that they can be

merged in one. Similarly, not only the techniques to solve problems of CV, but problems themselves, can

also be taken from a more general viewpoint.

Abstraction is the key concept.

Of course, this is not new. Nonetheless, knowledge seems to be increasingly specialized. More and

more universities degrees appear and the key of success relies on choosing a particular topic and try to

deepen on it (notice the irony). As a result of this work, I claim, this is a mistake. Analysis without

synthesis is incomplete.

Returning to Variational and Deep Learning Methods, we have seen that both have advantages and

drawbacks that are complementary. Variational problems provide a great control as well as very accurate

results if adequate priors are found. DL aims at finding those priors from data, avoiding any direct human

supervision and thus increasing uncertainty. Beyond how to resolve their inconveniences, this lead us to a

more important question. What is the correct way to acquire such prior knowledge? Is there a principled

way to do it? In brief:

What is learning?

We return back to the Introductory Chapter 1, where we addressed this concept as a kind of process.

Learning is the process of acquiring knowledge. Thus, what is knowledge? One can quickly fall on

philosophical questions. It is well-known that philosophy does not provide answers, rather, she aims

to formulate the correct questions. DL, despite its lack of foundations mainly due to its rapid growth,

has pointed out this very interesting and still nowadays unsolved question of learning. It often occurs in

science that before discovering the principles and paradigms of a field, some practical results are found:
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the first airplanes began to fly before the principles of aeronautics were discovered. I personally believe,

despite the hype in media of DL and AI, which are sometimes unjustified and not realistic, this must be

seen as an invitation to other fields and researchers.

“The isolated man does not develop any intellectual power. It is necessary for him to be

immersed in an environment of other men, whose techniques he absorbs during the first

twenty years of his life. He may then perhaps do a little research of his own and make a very

few discoveries which are passed on to other men. From this point of view the search for new

techniques must be regarded as carried out by the human community as a whole, rather than

by individuals.” Alan Turing

To this end, it is necessary to share a common language to avoid misunderstandings. For instance, the

pooling step that is done between layers of CNN is nothing but a sub-sampling operation. NNs are usually

explained by DL practitioners through their structures and objectives rather than by their definition, in

the sense that they are Universal Approximation Functions. Even if this may seem trivial, it is indeed a

limitation depending on the background of each individual that starts in this field. From the Mathematical

viewpoint, it is well-known how solid are the foundations of such a discipline, however, here the language

is very often a limitation if we do not have previous background. In my opinion the reason is, while in

DL there is a lack of foundations but many applied examples and available tools, in Variational Methods

there are solid basis but too little applied examples to allow a wide spread use of them. For example, the

gap between the development and properties of the TV and the solution of the ROF denosing model with

duality arguments to its practical code implementation (just few lines) is too big. This thesis aims also to

reduce this gap to motivate collaboration across Variational and Deep Learning practitioners.

The study of Variational Methods and Deep Learning in parallel has led me to better understand them.

Also, it has allowed me to find a framework that extends both: Bayesian Inference. NNs explained through

Bayesian Inference in Chapter 3, find correlations in data. Based on this, a large number of tasks can be

faced. AI community is starting to go a step further, and consider to replace correlations between features

or events by causes and effects. Causal Inference may be a good opportunity to get involved in the AI

field, which, certainly, will required to a huge effort in both of theoretical and practical development.

This causality perspective give us in fact a bright view in hindsight of the problems we were solving

in this thesis.

First, in Chapter 4 we proposed a variational model for Saliency detection. From a causal perspective,

it is a direct problem (2.1) as long as the output of the method is an effect (segmentation). However, since

we also consider a fidelity term, in fact we start from a denoising model (restoration), an inverse problem

is also involved in the process. A reaction-absorption term (saliency) is opposed to a diffusion term. This

must make us think if some changes could improve the model. For instance, create a fidelity term between

in the space of the gradients rather that with respect to the given image that is confined to evolve to a

nearly binary one.

Second, in Chapter 5, the proposed semi-automatic methods to train a CNN for image classification

of dumpsters, display that a highly accurate DL system can be obtain using very little data reducing, in

addition, the uncertainty. A causal analysis of such results tell us that, besides the importance of selecting

good images rather than increasing the quantity of them, the order of samples in the training step can be

very relevant. This is quite natural if we translate to how humans learn, however, very little works have

been carried out.
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Finally, in Chapter 6 we aim at recovering a 3D human pose from single 2D images. Such a process

is an inverse problem as we have defined in Chapter 2. Making use of novel NN architectures and the

Bayesian Inference tools, we have formulated the BCNs that include a regularization over the considered

parameters. This regularization comes from the fact that if a NN is trained to inverse a process (which is

our case), it is mandatory to guarantee a sort of invertibility of this NN (the direct problem).

7.3 Future work

Future works include all the above mentioned ideas. Moreover, the resulting conclusions of this work lead

us to expand the scope of research from CV to AI. Several ideas and hints have been drawn to define new

lines of research. Among others:

1. Uncertainty must be addressed in Deep Learning

2. Variational Methods are boosted if data is considered

3. Causality matters

4. Abstraction is the way to Artificial General Intelligence (AGI)

The last refers to achieve Machines that can perform any task a human is able to do. In this thesis we

have shown that generalizing the methodology for CV problems allows us to built simple and reduced

architectures that in turn achieve state of the art problems and can be used for other different purposes as

well. Learning with less data, Predictive models, Self-supervised Learning (formerly called Unsupervised

Learning) or Causal Inference are few topics that can shed light in the next years. In this sense, the next

step starts formulating the following question:

What is the general mechanism for abstraction?
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CHAPTER 8

Appendixes

8.1 Convolution as Matrix Operation

Here we give an example of how to built a matrix W from a given kernel K. Let K ∈ R3×3, X ∈ R4×4

K =

 k1,1 k1,2 k1,3

k2,1 k2,2 k2,3

k3,1 k3,2 k3,3

 , X =


x1,1 x1,2 x1,3 x1,4

x2,1 x21,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

 .
The output dimension of the convolution is: (3 + 4− 1, 3 + 4− 1) = (6, 6). The vectorization of X

in x if done by zero-padding such that the input vector dimensions fit the number of row of the ouput:

6× 6 = 36

X =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 x1,1 x1,2 x1,3 x1,4

0 0 x2,1 x21,2 x2,3 x2,4

0 0 x3,1 x3,2 x3,3 x3,4

0 0 x4,1 x4,2 x4,3 x4,4


then x = X(:)

x = [0, · · · , 0, x1,1, x1,2, x1,3, x1,4, 0, · · · , 0, x4,1, x4,2, x4,3, x4,4]T ∈ R36

In the same way, the kernel K is also vectorized with zero-padding:

K =



k1,1 k1,2 k1,3 0 0 0

k2,1 k2,2 k2,3 0 0 0

k3,1 k3,2 k3,3 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


this is:

k = [k1,1, k1,2, k1,3, 0, 0, 0, k2,1, k2,2, k2,3, 0, 0, 0, k3,1, k3,2, k3,3, 0, · · · , 0]T ∈ R36
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Finally, the matrix W is built as follows:

W =



k1 k2 k3 k4 · · · k36

0 k1 k2 k3 · · · k35

0 0 k1 k2 · · · k34

0 0 0 k1 · · · k33

...
...

...
...

. . .
...

0 0 0 0 · · · k1


recovering the equivalence of equation (2.42).

8.2 Multi-class Study

As we face a multi-class problem, we want to study the by-class performance computing some of well-

known metrics as True-False Positives Ratio, ROCs. We first introduce some common definitions which

allow us to evaluate and compare between different methods. In our particular case, we have a partition of

7 different classes, i.e., 7 subsets

C = {C1, . . . , C7} , where Cn ⊂ C

each of them have several samples

Cn = {s1, . . . , sk}

We define the number of samples for each class as a column vector

Sn =


∂C1

...

∂C7


where ∂Cn denotes the cardinality of the subset Cn. The total number of samples is then

TS =
∑
n

Sn

A multiclass confusion matrix is defined as:

Mi,j =



Pred1 Pred2 ... P redn−1 Predn

Cat1 m1,1 m1,2 . . . m1,n−1 m1,n

Cat2 m2,1 m2,2 . . . m2,n−1 m2,n

...
...

...
. . .

...
...

Catn−1 mn−1,1 mn−1,2 . . . mn−1,n−1 mn−1,n

Catn mn,1 mn,2 . . . mn,n−1 mn,n


where i, j depict gold-label and prediction respectively. Based on this multi-class confusion matrix we

define usual metrics for each class.

Per-class metrics:
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• True Positives (TP)

TPn = diag(M) =


tp1

...

tpn


• True Negatives (TN)

TNn = TS − Sn − FPn =


tn1

...

tnn


• False Positives (FP)

FPn =

[∑
i

Mi 6=n,n

]T
=


fp1

...

fpn


• False Negatives (FN)

FNn =

[∑
i

Mn,i 6=n

]T
= Sn − TPn =


fn1

...

fnn


In fact, ∑

n

FPn =
∑
n

FNn =
∑
i,j

Mi,j −
∑
n

TPn

Summarizing, the results are averaged obtaining the performance estimation for the whole system:

TP =
1

n

∑
n

TPn, FN =
1

n

∑
n

FNn, FP =
1

n

∑
n

FPn, TN =
1

n

∑
n

TNn.
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