
1

Minimizing Transmit-Power for Coherent
Communications in Wireless Sensor Networks with

Finite-Rate Feedback
Antonio G. Marques,Member, IEEE,Xin Wang, Member, IEEE,and Georgios B. Giannakis,Fellow,

IEEE

Abstract— We minimize average transmit-power with finite-
rate feedback for coherent communications in a wireless sensor
network (WSN), where sensors communicate with a fusion center
(FC) using adaptive modulation and coding over a wireless
fading channel. By viewing the coherent WSN setup as a dis-
tributed space-time multi-input single-output (MISO) system, we
present optimal distributed beamforming and resource allocation
strategies when the full (F-) channel state information at the
transmitters (CSIT) is available through a feedback channel. We
also develop optimal adaptive transmission policies and design
optimal quantizers for the finite-rate feedback case where the
sensors only have quantized (Q-) CSIT, or, each sensor has F-
CSIT of its own link with the FC but only Q-CSIT of other
sensors. Numerical results confirm that our novel finite-rate
feedback based strategies achieve near-optimal power savings
based on even a small number of feedback bits.

Index Terms— Wireless sensor networks, power efficiency,
quantization, non-linear optimization, resource allocation, MISO
systems.

I. I NTRODUCTION

A wireless sensor network (WSN) comprises a large num-
ber of spatially distributed signal processing devices (sensor
nodes). In a number of application scenarios, WSN nodes
are equipped with a non-rechargeable battery and thus have
limited computing and communication capabilities. When
properly programmed and networked, nodes in a WSN can
cooperate to perform advanced signal processing tasks with
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unprecedented robustness and versatility, thus making WSN
an attractive low-cost technology for a wide range of remote
sensing and environmental monitoring applications [1]. One
of the main objectives in current WSN research is to design
power-efficient devices and algorithms to support different
aspects of network operations [6]. Various power-efficient
algorithms have been proposed for network coverage, medium
access control protocols, decentralized estimation and routing;
see e.g., [6], [19], [24], [23], and [2]. The WSN in many of
these works includes a fusion center (FC) with which sensors
are linked.

When these links are fading, communication performance
across the WSN coverage area is severely degraded. A well-
known approach to mitigate the adverse effects of fading
relies on transmissions adapting to thefull (F-) channel state
information (CSI) [12], [10]. In practice, CSI at transmitters
(CSIT) is typically acquired through a limited-rate feedback
channel from the receiver, and thus, onlyquantized(Q-) CSIT
is available [9]. This finite-rate feedback model is pragmati-
cally affordable and is robust to channel estimation errors,
feedback delay and jamming [13]. Adaptive transmissions
and/or beamforming schemes based on Q-CSIT have been
optimized for multi-input multi-output (MIMO) systems to
maximize rate or receive-signal-to-noise-ratio (SNR), [16],
[20], or, to minimize bit error rate (BER) [25]; as well as
to optimize power-efficiency for single-input single-output
(SISO) and multi-user systems [18], [19].

This paper deals with adistributed multi-input single-
output (MISO) communication system in thepower-limited
regime of a WSN where sensor transmissions arrive coherently
at the FC [3], [4]. Timing needed to ensure coherence is
assumed to have been acquired using e.g., the low-complexity
synchronization algorithm of [17]. Specifically, the sensors’
average transmit-power is minimized subject to average rate
and BER constraints, based on three different types of CSIT:

(i) F-CSIT where each channel realization is assumed avail-
able at each sensor;

(ii) Q-CSIT where the sensors only have quantized knowl-
edge of their links with the FC; and

(iii) Individual (I-) CSIT where each sensor has full knowl-
edge of its own channel but only quantized knowledge
of the other sensors’ channels.

For these cases, we develop corresponding adaptive modula-



2

������

���	
�
�
�
���
�

�����
�

�������
�

�

��
	���
�
���
�
�����
�
�� 	����

� ��

 !� �
�

�"#$%&%'(

 !� �
�

�"#$%&%'(

 !� �
�

�"#$%&%'(

)* )+

,* ,-,+

��./�� 0 ��./�� 1 ��./�� 2

  … 

333

4

 

5
6789:;8< 78=>?8;=@

AB

Fig. 1. System model.

tion/coding, power loading and beamforming strategies as well
as the channel quantizers needed to form the required Q-CSIT
as the solution of constrained optimization problems.

The rest of the paper is organized as follows. After in-
troducing modeling preliminaries in Section II, we derive
in Section III optimal transmit-adaptation based on F-CSIT
which provides fundamental limits and benchmarks the power
efficiency based on Q-CSIT. Subsequently, we solve the opti-
mal adaptation problem based on Q-CSIT in Section IV, while
Section V deals with the optimal design based on I-CSIT.
Simulated examples and comparisons are provided in Section
VI, followed by concluding remarks.

Notation: We use boldface lower-case letters to denote
column vectors,T to denote transposition,† conjugate,H

conjugate transposition, and‖ · ‖ the Euclidean norm. For a
random variablex, fx(x) will denote its probability density
function (PDF), andFx(x) its cumulative distribution function
(CDF). Furthermore,CN (µ, σ2) will denote the complex-
Gaussian distribution with meanµ and varianceσ2, dxe the
minimum integer≥ x, andEx[·] the expectation operator over
x.

II. M ODELING PRELIMINARIES

We consider a WSN setup whereM sensors indexed bym ∈
{1, . . . ,M} wish to communicate an information message (say
the value of a random variable they track or information they
relay) to the FC; see Fig. 1. We assume that:
(as1) the information is common to all sensors and arrives
coherently at the FC.

With {hm}M
m=1 denoting block fading channel coefficients

between sensors and the FC, we further assume that:
(as2) {hm}M

m=1 are independent and identically distributed
(i.i.d.) according to a complex Gaussian distribution with zero
mean and unit variance, i.e.,hm ∼ CN (0, 1); and each block
fading channel processhm is ergodic;
(as3) the FC feeds back to the sensors the CSI indexed byB
bits per channel realization, without error and with negligible
delay.

As in [3] and [4], synchronization in (as1) is assumed ac-
quired using low-complexity synchronization algorithms; see
e.g., [17] and references therein. A setup where sensors have
a common message to transmit as in (as1) fits a cooperative
scenario where bits from a common source encoded with
sufficiently powerful error control codes are relayed through
distributed sensors to a destination. On the other hand, for
WSNs deployed to perform an estimation task, common data
across sensors can be safely assumed identical under any one
of the following three operating conditions: (c1) sensors are
located inside a small area and the information-bearing source
is close enough so that errors in recovering the source data at
the sensors can be deemed negligible; (c2) instead of multiple
single-antenna sensors, we have a single multi-antenna sensor;
or (c3) sensors exchange information to consent on the source.
Besides providing mathematical tractability, (as2) can also
hold under any one of aforementioned operating conditions
(c1)-(c3). Extension to correlated channels is possible but is
out of the scope of this work. Finally, (as3) can be easily
guaranteed with sufficiently strong error control codes, since
the feedback channel has typically low rate.

Given a pool of adaptive modulation and coding (AMC)
pairs, we suppose that each sensor supports a finite number
L of AMC modes indexed byl ∈ {1, . . . , L}, with each
mode having constellation sizeMl and transmission raterl :=
rc log2(Ml), whererc denotes the coding rate. To guarantee
quality of service, the rates{rl}L

l=1 must be delivered with
a prescribed BERε0. To mitigate the effects of fading, the
sensors beamform their transmitted symbol. Since a MISO
system has multiplexing gain one (see e.g., [9, pp. 48]), the
sensors encode one information-bearing symbols per channel
use utilizing a common AMC mode. With this AMC mode,
themth sensor transmitss multiplied by a complex (steering)
weight wm. Let w := [w1, . . . , wM ]T denote the distributed
beamforming vector andh := [h1, . . . , hM ]T the fading MISO
channel. The received symboly at the FC can be expressed
as

y = wT hs + v := ‖w‖2uT hs + v (1)

where u := w/‖w‖, and v denotes the additive white
Gaussian noise (AWGN) with zero mean and varianceN0.
Notice that both the phase and the modulus ofw can be tuned
to effect not only distributed beamforming but also power
allocation per fading stateh. Letting Es denote the average
energy per symbol, we can write the total transmit-power and
receive-SNR per symbol as

p := ‖w‖2Es = ‖w‖2, (2)

γ := |wT h|2 Es

N0
= p|uT h|2, (3)

where for the last equality in (2) and (3) we have assumed
without loss of generality thatEs = N0 = 1. It follows from
(3) that after beamforming, the MISO vector channelh in (1)
is fully characterized by the equivalent SISO scalar channel
with normalized power gaing := |uT h|2. The receive-SNR
for the equivalent SISO system can be re-written asγ = pg.

Let c = c(h) denote theB-bit Q-CSI codeword that the
FC feeds back to the sensors per (as3). Based onc(h), the
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sensors adapt their transmit-parameters to one ofN = 2B

prescribed modes specifying the transmission rater = r(c),
transmit-powerp = p(c) and beamforming vectoru = u(c).

Our goal is to optimally design the channel quantizer which
yields c(h) based on which we wish to adaptr = r(c), p =
p(c), andu = u(c), so that the total average power transmitted
by all sensors is minimized subject to average rate and BER
requirements. To this end, we will first rely on F-CSIT which
corresponds to settingB = ∞ in (as3).

III. SOLUTION BASED ON F-CSIT

In this section, we derive the optimal adaptive transmission
policy based on F-CSIT to provide insight and benchmark
the Q-CSIT based design of Section IV. ForB = ∞, Q-
CSIT becomes F-CSIT; i.e.,c(h) = h. Given h, we wish to
adapt the transmit-powerp(h), rate r(h) and beamforming
vector u(h) to minimize the average transmit-power subject
to prescribed requirements on the average rate (r0) and BER
(ε0). As we show next, the adaptation of the beamformer can
be performed separately from the power and rate adaptation
without loss of optimality (w.l.o.o.). This allows us to tackle
the original problem in two separate phases: first we solve
for the optimal1 adaptation of the beamformeru∗(h); next
we introduceu∗(h) in the original problem and solve for the
optimal powerp∗(h) and rater∗(h) adaptation.

A. Optimal Distributed Beamformer

From (2) and (3) we recognize that the selection ofu
affects the scalar channel gaing. Since for any AMC mode the
required transmit powerp = p(h) is monotonically decreasing
w.r.t. g (for any givenr0 and ε0), to minimize the transmit-
power we have to adaptu = u(h) per channel realization
h so that g = |uT (h) h|2 is maximized. The optimal
unitary beamforming vector maximizing|uT (h) h|2, hence
minimizing the required transmit-power, is clearly (see, e.g.,
[10, Sec. 7.3.1])

u∗(h) = h†/‖h‖, (4)

and depends only on the channel phase, i.e.,u∗(h) =
u∗(h/‖h‖).

To proceed with the optimal rate and power allocation
strategies, we need to characterize statistically the channel in
(1) when beamforming is adapted as in (4). Whenu∗(h) =
h†/‖h‖, ∀h, the channel gain is

g = |uT (h) h|2 = ‖h‖2. (5)

As per (as2),g adheres to a chi-squared distribution with PDF

fg(g) =
gM−1 exp(−g)

Γ(M)
(6)

where Γ(b, x) :=
∫∞

x
tb−1e−tdt is the incomplete Gamma

function andΓ(b) := Γ(b, 0). The corresponding CDF is

Fg(g) =
Γ(M, g)
Γ(M)

. (7)

1Henceforth,x∗ will denote the optimal value ofx.

It is worth to recall that when optimal beamformingu∗(h)
in (4) is implemented, the MISO channel in (1) is fully
characterized by an equivalent SISO channel with power gain
g dictated by (5). This implies w.l.o.o. that solving for the
optimal r∗(h) andp∗(h) is equivalent to finding the optimal
r∗(g) andp∗(g). Notice that sinceh (and thusg) varies from
one realization to the next, rate and power will be adapted
across time in order to minimize theaveragetransmit-power
under anaveragerate constraintr0 (the requirementε0 on
BER will be automatically accounted for in the relationship
between the power and the rate as we will see next).

B. Optimal Rate and Power Allocation

We order the AMC modes such thatrl < rl+1 ∀l > 1 and
let the first mode represent the inactive mode with zero rate
and power (r1 = p1 = 0). With ε(·) denoting the instantaneous
BER function, the minimum transmit-power for thelth AMC
mode to satisfy the BER requirementε0 can be calculated by
solving with respect to (w.r.t.)pl the equation

ε(g, pl, rl) = ε0. (8)

For M -ary quadrature amplitude modulation (QAM), the BER
can be accurately approximated as2 [11] (e.g.,κ1 = 0.2, κ2 =
1.5 for uncoded transmissions)

ε(g, p, r) = κ1 exp (−κ2gp/(2r − 1)). (9)

Substituting (9) into (8), the required power for thelth AMC
mode can be expressed as

pl(g, rl, ε0) =
(2rl − 1)

g

ln(κ1/ε0)
κ2

. (10)

With F-CSIT available, (10) shows that specifying the AMC
mode determines not only the rate but also the power required
to meet the prescribedε0. Furthermore, it is easy to see
that with pl, rl given the range ofg can be divided intoL
consecutive intervals[τl, τl+1) with τ1 = 0 and τL+1 = ∞,
and the lth AMC mode will be chosen ifg ∈ [τl, τl+1).
Conversely, this means that once the intervals[τl, τl+1) are
specified forl = 1, . . . , L, the rate and power allocations will
be

r(g) = rl; if g ∈ [τl, τl+1) (11)

p(g, ε0) =





0, g ∈ [τ1, τ2)

(2rl−1)
g

ln(κ1/ε0)
κ2

, g ∈ [τl, τl+1), l > 1.
(12)

Letting τ := [τ1, . . . , τL+1]T , (11) and (12) imply that to
find the optimal rate and power allocations, we only need
to search for the optimalτ ∗ which solves the following

2Extensions to modulation schemes other than M-QAM are also possible.
By appropriately selectingκ1 and κ2, (9) can also be used to accommo-
date (un)coded transmissions as a BER upperbound based on the Chernoff
bound [21].
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constrained minimization problem




min
τ

p̄,

where p̄ :=
L∑

l=1

∫ τl+1

τl
pl(g, rl, ε0)fg(g)dg

subject to : C1.

L∑

l=1

∫ τl+1

τl
rlfg(g)dg ≥ r0

C2. τl ≤ τl+1 ∀l

(13)

where the average transmit-powerp̄ in the objective and the
average rate inC1 are calculated as the expectation ofp(g)
and r(g) over all the possible realizations ofg. The set of
constraintsC2 ensures consistency of the intervals[τl, τl+1).

Let λ denote the non-negative Lagrange multiplier asso-
ciated with the rate constraintC1 and α := [α1, . . . , αL]T

the non-negative Lagrange multipliers associated with theL
constraints inC2. The Lagrangian of (13) is then given by

L(λ, α, τ ) =
L∑

l=1

∫ τl+1

τl

pl(g, rl, ε0)fg(g)dg

−λ

(
L∑

l=1

∫ τl+1

τl

rlfg(g)dg − r0

)
+

L∑

l=1

αl(τl − τl+1). (14)

At the optimumτ∗l the necessary Karush-Kuhn-Tucker (KKT)
condition is [7]:

∂L(λ∗, α∗, τ ∗)
∂τl

= [pl−1(τ∗l , rl−1, ε0)− λ∗rl−1

− pl(τ∗l , rl, ε0) + λ∗rl] fg(τ∗l )
− α∗l−1 + α∗l = 0 (15)

If all the constraints inC2 are slack, i.e.,τ∗l < τ∗l+1, then
α∗l = 0, ∀l. In this case, solving (15) w.r.t.τ∗l yields for
l ∈ {2, . . . , L} [cf. (10)]

τ∗l =
(2rl − 2rl−1)
λ∗(rl − rl−1)

ln(κ1/ε0)
κ2

. (16)

Eq. (16) expresses the optimal thresholdτ∗l in closed-form
as a function of the Lagrange multiplierλ∗. Upon defin-
ing f(x) := (2x) ln(κ1/ε0)/(λ∗κ2), we can rewrite (16)
as τ∗l = [f(rl) − f(rl−1)]/(rl − rl−1). As ∂f(x)/∂x =
2x/x3[ln2(2)x2 − 2 ln(2)x + 2] > 0, ∀x > 0, it is easy to
seeτ∗l < τ∗l+1. Therefore, the thresholds given by (16) indeed
satisfyτ∗l < τ∗l+1 and thus they are the solutions to (15).

With τ∗l specified by (16),λ∗ can be calculated to satisfy
C1 using the following algorithm.

Algorithm 1: Off-line Power-Efficient Quantization (F-CSIT)

(S1.0) Let δ be a small tolerance level and initializeλ
with an arbitrary positive number.

(S1.1) Calculate{τl}L
l=2 via (16).

(S1.2) Using (7), calculate the average rate asr̄ =∑L
l=1[Fg(τl+1)−Fg(τl)]rl, and checkC1. If |r̄−

r0|/r0 < δ thenstop; otherwise, calculate4λ :=
(r̄ − r0)c, update the multiplier asλ = λ +4λ,
and go to(S1.1). Parameterc in the calculation of
4λ is an adaptive penalty parameter that can be

updated (per iteration) depending on convergence
requirements3.

Onceλ∗ is obtained using Algorithm 1 (that is computed
off-line), {τ∗l }L

l=2 and in turn the optimal rate and power
allocations are determined after plugging (16) into (11) and
(12).

C. On-line Feedback and Adaptation of Transmitters

Having obtained {τ∗l }L
l=2, the following algorithm

summarizes the on-line resource allocation steps the WSN
has to execute per channel realization:

Algorithm 2: On-line Adaptation (F-CSIT)

For each channel realizationh:
(S2.1) The FC determines the indexl∗(h) = l∗(g) of

the interval [τ∗l , τ∗l+1) the channel gaing falls
into, and broadcasts to the sensors the F-CSIT
codewordc((h)) = [l∗(h); h].

(S2.2) Each sensorm transmits using thel∗(h)th AMC
mode and the optimal steering weight [cf. (4) and

(10)] w∗m =
√

pl∗(h)

(
g, rl∗(h), ε0

)
h†m/‖h‖.

Notice that even though each sensor can calculatel∗(h) using
only h of the feedback message, we also includel∗(h) in c(h)
for robustness. This augmented feedback codeword reduces
the computational burden at each sensor and also avoids
the feedback during the initialization phase needed for the
sensors to acquireτ ∗ (recall that knowledge ofτ ∗ is required
to determine the optimal power allocation and AMC mode
selection). With the insights gained from the F-CSIT based
benchmark, we next derive the optimal adaptation schemes
when only Q-CSIT is available.

IV. SOLUTION BASED ON Q-CSIT

In this section, power-efficient sensor transmission and
quantization schemes are derived based on Q-CSIT fed back
from the FC to the sensors. Per fading realization, the FC
quantizesh to find separately the optimalu according to a
quantizerQu(·), and the optimal AMC mode andp according
to a different quantizerQt(·). Concatenating the beamforming
vector indexcu = Qu(h) with the transmission mode index
ct = Qt(h), the FC feeds back theB-bit Q-CSI codeword
c = [cu; ct], whereB = Bu + Bt, with Bu := length(cu) and
Bt := length(ct). Based on this codewordc, sensors adapt
their transmissions and beamforming weights to minimize
their total average transmit-power.4

3The proposed updating scheme forλ is based on themethod of multipli-
ers [5, Sec. 4.2].

4Although Qu(·), Qt(·), and pertinent adaptation schemes will be found
as solution of optimization problems, in principle we can not claim global
optimality among all the possible Q-CSIT designs that utilizeB feedback
bits. In Section VI, we simulate the performance of our design and compare
it with a lower bound on all Q-CSIT designs. Simulations indicate that the
gap from the bound is small even for small values ofB and thus demonstrate
that our design exhibits near-optimal performance globally among all Q-CSIT
designs.
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A. Optimal Distributed Beamformer

With only Bu bits available, the beamforming vectoru is
chosen from a finite setU := {ui}Nu

i=1, whereNu = 2Bu .
As with F-CSIT to minimize the transmit-power, the optimal
u ∈ U maximizes the equivalent scalar channel gain in (3);
i.e.,

u∗(h) = arg max
u∈U

∣∣uT h
∣∣2 . (17)

CodebooksU have been optimized for collocated MISO
systems [20], [16], [22]. Under various criteria, optimal code-
books minimize the maximum correlation between codewords.
Based on the Grassmanian line packing criterion, [16] further
showed that minimization of the maximum correlation is
equivalent to maximization of the minimum chordal distance
which for two unitary complex vectorsa and b is defined
as [8]

dch(a,b) :=
(
1− |aT b|2)

1
2 . (18)

In view of (18), the optimization in (17) can be expressed as

u∗(h) = arg min
u∈U

dch

(
u,

h
‖h‖

)
, (19)

and the optimal codebookU∗ as

U∗ = max
{ui}Nu

i=1

min
∀i6=j

dch(ui,uj). (20)

For arbitrary beamformer sizesM and codebook sizesNu,
numerical solutions of (20) are available; see e.g., [15]. With
the optimal codebookU∗ available to both the FC and the
sensors, the Q-CSI and optimal beamforming vector are then
determined as

cu = Qu(h) := argi min
u∈U∗

{
dch

(
u,

h
‖h‖

)}
(21)

u∗(h) = ucu . (22)

Remark 1: Beamforming specified by (21) and (22) has been
proved to be optimal ifNu ≥ M . For detailed analysis on Q-
CSIT based beamforming whenNu < M , we refer the reader
to [22].

Let us now turn our attention to the statistical characteri-
zation of the equivalent channel when Q-CSIT is available.
Recall that the gain of this equivalent channel with F-CSIT
available isg = ‖h‖2 for the optimal beamformer in (4). But
with the Q-CSIT based optimal beamformer in (21)-(22), the
equivalent channel gain becomesg̃ := g(1− z), where

z := min
u∈U∗

d2
ch(u,h/‖h‖) = d2

ch(u∗(h),h/‖h‖) (23)

can be interpreted as the channel gain loss due to quantization.
This channel gain loss degrades the instantaneous receive-SNR
to γ := pg̃.

Based on the union bound, the CDF ofz can be upper-
bounded tightly as [26]

Fz(z) ≤ F̃z(z) =

{
NuzM−1, 0 ≤ z ≤ zmax

1, z ≥ zmax

(24)

wherezmax := N
−1/(M−1)
u . Becauseg andz are independent

[cf. (as2)], using the approximationFz(z) ' F̃z(z), we can
obtain the CDF of̃g as

Fg̃(x) = Pr{g(1− z) < x}

=
∫ x

1−zmax

g=0

∫ zmax

z=max(0,1−x/g)

fz(z)dzfg(g)dg

=
∫ x

g=0

∫ zmax

z=0

fz(z)dzfg(g)dg

+
∫ x

1−zmax

g=x

∫ zmax

z=1−x/g

fz(z)dzfg(g)dg

=
∫ x

g=0

[F̃z(zmax)− F̃z(0)]fg(g)dg

+
∫ x

1−zmax

g=x

[F̃z(zmax)− F̃z(0)]fg(g)dg

= 1− Γ(M,x/(1− zmax))
Γ(M)

(25)

− N exp(−x)
(

1− Γ(M, xzmax/(1− zmax))
Γ(M)

)
.

The PDF ofg̃ can be in turn obtained as∂Fg̃(g̃)/∂g̃, yielding

fg̃(g̃) =
1

Γ(M)

{
exp

( −g̃

1− zmax

)
g̃M−1

(1− zmax)M
(1−NuzM

max)

+ Nu exp(−g̃)
[

Γ(M)− Γ(M, zmaxg̃/(1− zmax))
]}

.

(26)

The scalar channel gaiñg fully characterizes the MISO
channel when the optimal beamformer in (21)-(22) is adopted.
Based on the closed-form expressions (25) and (26), we next
follow an approach similar to what we used when F-CSIT
is available to analytically derive the optimal rate and power
allocation based on Q-CSIT.

B. Optimal Rate and Power and Allocation

When only finite-rate feedback is available, the FC needs
to quantizeg̃ using a finite number of regions. Towards this
objective, identifying each quantization region with an AMC
mode selection emerges as a natural first step. We consider
L different quantization regions{Rl := [τ̃l, τ̃l+1)}L

l=1, and as
with F-CSIT, we associate with them the vector of thresholds
τ̃ := [τ̃1, . . . , τ̃L+1]T .

The lth transmission mode is characterized by the rate-
power pair(rl, p̃l) in the quantization regionRl (see also [14]
which deals with throughput maximization). Whilerl is fixed
for a given AMC mode, we will select̃pl to satisfy the BER
requirement. Clearly, the average BERε̃l for the regionRl can
be obtained as the expected number of erroneous bits divided
by the expected number of transmitted bits; i.e.,

ε̃l(τ̃l, τ̃l+1, p̃l, rl) :=
Eg̃∈[τ̃l,τ̃l+1) [rlε(g̃, p̃l, rl)]

Eg̃∈[τ̃l,τ̃l+1) [rl]
. (27)

To satisfy the overall BER requirementε0, we set

ε̃l(τ̃l, τ̃l+1, p̃l, rl) = ε0 ∀l. (28)
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It is easy to see that (28) reduces to (8) asL → ∞ (F-CSIT
case). Furthermore, substituting (27) into (28) yields

ϕε(τ̃l, τ̃l+1, p̃l, rl, ε0) :=
∫ τ̃l+1

τ̃l

ε(g̃, p̃l, rl)fg̃(g̃)dg̃

− ε0

∫ τ̃l+1

τ̃l

fg̃(g̃)dg̃ = 0. (29)

Using an analytical expression forϕε we derive in Appendix
A, we can solve (29) for̃pl. The same expression forϕε

can be used to obtaiñεl in closed-form, and thus quantify
the average BER for any given quantization. Solving (29) for
p̃l can be easily carried out with a one-dimensional search.
Letting p̃l(τ̃l, τ̃l+1, rl, ε0) denote this solution, the rate and
power allocation∀g̃ can be expressed as [cf. (11) and (12)]

r̃(g̃) = rl; if g̃ ∈ [τ̃l, τ̃l+1) (30)

p̃(g̃, ε0) =





0, g̃ ∈ [τ̃1, τ̃2)

p̃l(τ̃l, τ̃l+1, rl, ε0), g̃ ∈ [τ̃l, τ̃l+1), l > 1.
(31)

Now as in the F-CSIT case, finding the optimal rate and
power allocations reduces to searching for the optimal thresh-
olds τ̃ ∗. The corresponding optimization problem based on
Q-CSIT is:




min
τ̃

p̄,

where p̄ :=
L∑

l=1

p̃l(τ̃l, τ̃l+1, rl, ε0)
∫ τ̃l+1

τ̃l
fg̃(g̃)dg̃

subject to : C1.

L∑

l=1

rl

∫ τ̃l+1

τ̃l
fg̃(g̃)dg̃ ≥ r0

C2. τ̃l ≤ τ̃l+1 ∀l

(32)

where both transmit-power in the objective as well as transmit-
rate inC1 are averaged over all channel regions (quantization
states). Notice that different from the F-CSIT based problem
in (13), the loaded power here does not vary with the channel
gain, but only with the region index (i.e., the power loading
is fixed per AMC mode) and therefore it does not appear in
the integrals. In fact,

∫ τ̃l+1

τ̃l
fg̃(g̃)dg̃ can be interpreted either

as the probability of falling into thelth quantization region or
as the probability of selecting thelth AMC mode.

Next we use the KKT conditions to find̃τ∗l . Let λ̃ denote the
Lagrange multiplier associated with the rate constraintC1 and
α̃ := [α̃2, . . . , α̃L]T the Lagrange multipliers corresponding to
C2. As in (16), withα̃ = 0, the KKT condition at the optimal
τ̃∗l dictates

∂L(λ̃∗, τ̃ ∗)
∂τl

=
[
p̃l−1(τ̃∗l−1, τ̃

∗
l , rl−1, ε0)− λ̃∗rl−1

− p̃l(τ̃∗l , τ̃∗l+1, rl, ε0) + λ̃∗rl

]
fg̃(τ̃∗l ) (33)

+
∂p̃l−1

∂τ̃l
(τ̃∗l−1, τ̃

∗
l , rl−1, ε0)

∫ τ̃∗l

τ̃∗l−1

fg̃(g̃)dg̃

+
∂p̃l

∂τ̃l
(τ̃∗l , τ̃∗l+1, rl, ε0)

∫ τ̃∗l+1

τ̃∗l

fg̃(g̃)dg̃ = 0.

Notice that using the CDF in (25), we have
∫ τ̃∗l+1

τ̃∗l
fg̃(g̃)dg̃ =

Fg̃(τ̃∗l+1)− Fg̃(τ̃∗l ).

Sincep̃l(τ̃∗l−1, τ̃
∗
l , rl−1, ε0) is an implicit function [cf. (29)],

to calculate∂p̃l/∂τl we rely on the implicit differentiation
theorem:dϕε = ∂ϕε

∂x dx + ∂ϕε

∂y
∂y
∂xdx = 0, which yields ∂y

∂x =
−∂ϕε/∂x
∂ϕε/∂y . Therefore,∀l ∈ {2, . . . , L} and∀i ∈ {1, . . . , L} we

have

∂p̃i

∂τ̃l
(τ̃i, τ̃i+1, ri, ε0) = (34)

=





− [−ε(τ̃l,p̃i,rl)+ε0]fg̃(τ̃l)R τ̃i+1
τ̃i

[∂ε(g̃,p̃i,rl)/∂p]fg̃(g̃)dg̃
, i = l;

[−ε(τ̃l,p̃i,rl−1)+ε0]fg̃(τ̃l)R τ̃i+1
τ̃i

[∂ε(g̃,p̃i,rl−1)/∂p]fg̃(g̃)dg̃
, i = l − 1;

0, otherwise.

The denominators in (34) can be evaluated analytically (see
Appendix B).

Different from the F-CSIT set-up, we can not guarantee
that the optimal thresholds calculated from (33) always satisfy
τ̃∗l < τ̃∗l+1, ∀l. If by solving (33) we obtaiñτ∗l ≥ τ̃∗l+1, C2 is
not slack,α̃∗l > 0, and (33) does not hold. In this case, since
the KKT conditions also impose that̃α∗l (τ̃

∗
l − τ̃∗l+1) = 0, the

optimal solution should yield̃τ∗l = τ̃∗l+1, and thus thelth
mode should be removed from consideration. This implies
that we need to check the feasibility of the solution obtained
from (33). If solving (33) yieldsτ̃∗l ≥ τ̃∗l+1 for a given
l, we then need to remove thislth mode from the AMC
pool and re-solve (33) for the remaining modes. Notice
that calculating the optimal̃τ∗l here depends not only on
λ̃∗ but also on the previous̃τ∗l−1 and the nextτ̃∗l+1. This
prevents one from obtaining a closed-form expression for
τ̃∗l . However, since closed-form expressions for all the terms
in (33) are available,̃τ∗l can be obtained numerically using
a two-dimensional search which is computationally affordable.

Algorithm 3: Off-line Power-Efficient Quantization (Q-CSIT)

(S3.0) Let δ denote a small tolerance,ε a small step size,
and τ̃max

L > 0 the maximum value for the highest
quantization threshold (e.g., a value bringing the
probability of the highest region close to 0).

(S3.1) Initialize λ̃ with a small positive number and set
τ̃L = τ̃max

L ; then calculate{τ̃l}L
l=2 by solving

(33). If C2 is not satisfied for someτl, set τl =
τl+1. If the obtained solution is feasible, go to
(S3.2); otherwise decreasẽτL = τ̃L−ε and repeat
(S3.1).

(S3.2) Based on the closed-form in (25), calculate the
average ratēr =

∑L
l=1[Fg̃(τ̃l+1) − Fg̃(τ̃l)]rl.

Check C1 and if |r̄ − r0|/r0 < δ then stop;
otherwise, calculate4λ̃ := (r̄−r0)c using a small
positive adaptive constantc, update the multiplier
to λ̃ = λ̃ +4λ̃, and go back to (S3.1).

Notice that the main computational burden in Algorithm 3
pertains to the calculation of the optimal thresholds in step
(S3.1), which requires a two-dimensional search. Once the
optimal λ̃∗ as well as{τ̃∗l }L

l=2 are calculated, the optimal
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quantizerQt(·) can be readily determined as

ct = Qt(h) (35)

:= arg
i

{
g

[
1−min

u∈U
d2

ch(u,h/‖h‖)
]
∈ [τ̃i, τ̃i+1)

}
.

With the AMC mode indexct given by (35), the optimal rate
and power allocation are obtained via (30) and (31).

C. On-line Feedback and Adaptation of Transmitters

Based on the optimal beamforming and resource allocation
policy, we outline next the on-line algorithm executed by the
FC and the sensors per channel realization.

Algorithm 4: On-line Adaptation (Q-CSIT)

For each channel realizationh:

(S4.1) The FC obtainscu = Qu(h) andct = Qt(h) us-
ing, respectively, (21) and (35), and broadcasts the
aggregate codewordc = [cu; ct] to the sensors.

(S4.2) Each sensorm transmits using themth entry of
the optimal beamforming vector indexed bycu,
and loads the optimal power and rate allocation
indexed byct.

Notice that the optimal beamforming and resource allo-
cation configurations must be available to both the FC and
sensors during the initialization phase. In step(S4.2) the
optimal transmit-power̃p∗ct

corresponding toct is calculated
at the sensors by solving (29). This means that the sensors
must know the optimal thresholds{τ̃∗l }L

l=2 (i.e., the FC must
broadcast them during the WSN deployment). To reduce the
computational load at the sensors, an alternative is to let the
FC calculate and feed back{p̃∗l }L

l=2 to the sensors during the
initialization phase.

V. SOLUTION BASED ON I-CSIT

So far we derived optimal adaptive transmission strategies
based on F-CSIT where sensors perfectly know the vector
channelh, and based on Q-CSIT where sensors have available
a quantized version ofh. In both cases, CSIT was obtained
through feedback from the FC. However, for time-division
duplex (TDD) systems, each sensorm can acquirehm via
pilot-based channel estimation during the symmetric reverse
transmission. This motivates analysis of what we call in-
dividual (I-) CSIT scenario, where each sensorm has full
knowledge ofhm, but only finite-rate is available for CSI
feedback.

A. Optimal Distributed Beamforming

The adaptation in this case is similar to the one based on
F-CSIT. When F-CSIT is available, (4) states that the optimal
beamforming weight atmth sensor isu∗m(h) = h†m/‖h‖. On
the other hand when only I-CSIT is available, sensorm has
access toh†m but the value of‖h‖ is unknown. To bypass this
difficulty we define scaled beamformer and power variables as
v := ‖h‖u andρ := p/‖h‖2, respectively, so thatw =

√
ρv.

Now themth entry of the optimalv∗(h) = h† is v∗m(h) = h†m,
which requires only I-CSIT. The receive-SNR after optimal
beamforming based on I-CSIT isγ = ρg2 = pg, where g
corresponds to the equivalent SISO channel gain in (5) and
has PDF and CDF given by (6) and (7), respectively.

B. Optimal Rate and Power Quantization and Allocation

Given I-CSIT, the optimal (scaled) beamformer isv∗(h).
To construct the entire steering vectorw(h), the sensors
need also the (scaled) transmit-powerρ(h) = p(h)/‖h‖2 (or
equivalentlyρ(g) := p(g)/g), which requires knowledge of
‖h‖ and therefore depends on all the individual channelshm.
With finite-rate feedback, again the FC quantizes the channel
gaing using a finite number of regions. Similar to Q-CSIT, the
domain ofg is partitioned intoL different quantization regions
{Rl := [τ̃l, τ̃l+1)}L

l=1 so that thelth AMC mode is employed
by the sensors wheng ∈ Rl. Different from Q-CSIT, now the
lth AMC mode is characterized by the rate-power pair(rl, ρ̃l),
where ρ̃l is fixed per region and must be selected to satisfy
the BER requirementε0. Upon defining

ψε(τ̃l, τ̃l+1, ρ̃l, rl, ε0) :=
∫ τ̃l+1

τ̃l

ε(g, ρ̃lg, rl)fg(g)dg

− ε0

∫ τ̃l+1

τ̃l

fg(g)dg, (36)

and arguing as in (27)-(35), it follows that ãρl satisfying the
prescribed BER (denoted bỹρl(τ̃l, τ̃l+1, rl, ε0)) should solve
ψε(τ̃l, τ̃l+1, ρ̃l, rl, ε0) = 0. Unlike what we had in the Q-CSIT
case forϕε, no closed-form expression is available forψε.
However, relying on the fact thatε(g, ρ̃lg, rl) is monotonically
decreasing w.r.t. tõρl, the rootρ̃l(τ̃l, τ̃l+1, rl, ε0) can still be
efficiently obtained via one-dimensional search.

We can now proceed to optimize resource allocation
based on I-CSIT. Givenρ̃l(τ̃l, τ̃l+1, rl, ε0) and a realiza-
tion h, the transmit-power when thelth AMC mode is
selected can be found asp(h) = ‖h‖2ρ̃l(τ̃l, τ̃l+1, rl, ε0) =
gρ̃l(τ̃l, τ̃l+1, rl, ε0) = p(g). To find the optimal quantization
thresholdsτ̃ ∗ := [τ̃∗1 , . . . , τ̃∗L+1]

T minimizing the average
transmit-power, we need to solve





min
τ̃

p̄,

where p̄ :=
L∑

l=1

ρ̃l(τ̃l, τ̃l+1, rl, ε0)
∫ τ̃l+1

τ̃l
g fg(g)dg

subject to : C1.

L∑

l=1

rl

∫ τ̃l+1

τ̃l
fg(g)dg ≥ r0

C2. τ̃l ≤ τ̃l+1 ∀l.
(37)

Letting λ̃ denote the Lagrange multiplier associated with
C1 and assuming all the constraints inC2 are satisfied with
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strict inequality, the KKT condition for the optimal̃τ∗l yields

∂L(λ̃∗, τ̃ ∗)
∂τl

=
[
τ̃∗l ρ̃l−1(τ̃∗l−1, τ̃

∗
l , rl−1, ε0)− λ̃∗rl−1

− τ̃∗l ρ̃l(τ̃∗l , τ̃∗l+1, rl, ε0) + λ̃∗rl

]
fg(τ̃∗l ) (38)

+
∂ρ̃l−1

∂τ̃l
(τ̃i, τ̃i+1, ri, ε0)

∫ τ̃∗l

τ̃∗l−1

gfg(g)dg

+
∂ρ̃l

∂τ̃l
(τ̃i, τ̃i+1, ri, ε0)

∫ τ̃∗l+1

τ̃∗l

gfg(g)dg = 0

where
∫ b

a
gfg(g)dg = [Γ(M +1, a)−Γ(M +1, b)]/Γ(M); and

∂ρ̃i/∂τ̃l, ∀l ∈ [2, L], ∀i ∈ [1, L], can be obtained through
implicit differentiation as

∂ρ̃i

∂τ̃l
(τ̃i, τ̃i+1, ri, ε0) = (39)

=





− [−ε(τ̃l,τ̃lρ̃i,rl)+ε0]fg(τ̃l)R τ̃i+1
τ̃i

[∂ε(g,gρ̃i,rl)/∂p]gfg(g)dg
, i = l

[−ε(τ̃l,τ̃lρ̃i,rl−1)+ε0]fg(τ̃l)R τ̃i+1
τ̃i

[∂ε(g,gρ̃i,rl−1)/∂p]gfg(g)dg
, i = l − 1

0, otherwise.

Noticing the similarity between (38) and (33), we can readily
devise the counterpart of Algorithm 3 to computeλ̃∗ and τ̃ ∗

off-line.

C. On-line Feedback and Adaptation of Transmitters

Once the optimal thresholds̃τ ∗ are obtained, the
correspondingρ̃l(τ̃∗l , τ̃∗l+1, rl, ε0) can be computed at both
the FC and the sensors, which then implement the following
on-line algorithm to adapt their transmissions per channel
realization:

Algorithm 5: On-line Channel Adaptation (I-CSIT)

For each channel realizationh:

(S5.1) The FC finds l∗(h) = l∗(g) = arg
l

{g ∈
[τ̃∗l , τ̃∗l+1)}, and broadcastsc = [l∗(h)] to all
sensors.

(S5.2) Each sensorm transmits the common symbols
using thel∗(h)th AMC mode and steering weigh

w∗m =
√

ρl∗(h)

(
τ̃∗l∗(h), τ̃

∗
l∗(h)+1, rl∗(h), ε0

)
h†m.

Notice that since the beamformer based on I-CSIT does not
require feedback from the FC, we only needB = log2(L)
bits for CSI feedback, which may be significantly less than
B = log2(L + Nu) bits required to feed back the Q-CSIT,
especially whenNu is large.

VI. SIMULATIONS

In this section, we present numerical examples to assess
the transmit-power consumed by the sensors when F-CSIT, Q-
CSIT or I-CSIT is available. The energy per symbol, system
bandwidth and AWGN power spectral density are selected
to satisfyEs/N0 = 1. The simple cases tested include four
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Fig. 2. Total transmit-power vs total transmit-rate for different CSIT scenarios
(M = 4, L = 4, Nu = 16).

sensors5 with fading links adhering to (as1). Unless otherwise
specified, we suppose that each sensor supports three active
M -ary QAM uncoded modes: 2-QAM, 8-QAM and 32-QAM
plus the inactive state; i.e., the transmission rates of AMC
modes are:rl = 0, 1, 3, 5 bits per symbol. In all simulations,
we set the BER requirement toε0 = 10−3 and wherever
applicable, the codebook of beamforming vector has size
Nu = 16.
Test Case 1 (Comparison of transmit-power consumption):
For variable rate requirements, Fig. 2 shows the average
normalized transmit-power per symbol (indB) achieved by the
optimal adaptation policies based on: (i) F-CSIT, (ii) Q-CSIT,
(iii) I-CSIT, and (iv) spatial (S-) CSIT. In the fourth S-CSIT
case, we consider for comparison and illustration purposes that
the sensors implement optimal spatial beamforming based on
F-CSIT but do not implement temporal power allocation across
time.

From Fig. 2, we have the following interesting observations:
(i) both Q-CSIT and I-CSIT based strategies can achieve
power efficiency close to the optimal F-CSIT based one; (ii)
the Q-CSIT based and the I-CSIT based policies yield almost
identical performance; (iii) the gap (indB) between limited-
rate feedback based policies and the optimal F-CSIT based
one remains almost constant for different rate requirements;
and, (iv) both Q-CSIT and I-CSIT based strategies clearly
outperform the optimal S-CSIT scheme although the latter
requires F-CSIT while the former only require of few bits
of feedback.

To test the importance of feedback on power efficiency, we
compare the power consumption by the optimal F-CSIT based
policy and that of an open-loop system without feedback. As
shown in Table I, the power consumed by the open-loop design
is 20 ∼ 25 dB higher than that of the closed-loop design
based on F-CSIT. As expected, CSI can largely reduce power
requirements, and thus considerably increase thelifespan of

5This setup is reasonable for, e.g., a WSN organized in clusters where the
role of the FC is played by a cluster-head and only a few sensors are awake
per cluster to minimize power consumption.



9

TABLE I

AVERAGE TRANSMIT-POWER(IN dB) FOR OPEN-LOOP AND CLOSED-LOOP

SYSTEMS ASr0 VARIES.

r0 1.75 2 2.25 2.5 2.75 3

Closed-loop (F-CSIT) 5.8 6.8 8.0 8.6 9.8 10.6
Open-loop 28.4 29.34 30.1 30.5 31.1 31.8

TABLE II

AVERAGE TRANSMIT-POWER(IN dB) FOR (F, I, Q, AND S)-CSIT

SCHEMES. (REFERENCE CASE: M = 4, r0 = 2.5, ε0 = 10−3 , L = 4,

rl = [0, 1, 3, 5], Nu = 16, Es/N0 = 1; IN OTHER CASES,ONLY ONE

INDICATED PARAMETER IS CHANGED W.R.T. THE REFERENCE CASE.)

CASE F-CSIT I-CSIT Q-CSIT S-CSIT
Reference Case 8.6 10.2 10.7 13.8

M = 6 5.0 6.5 6.9 11.2
Es/N0 = 3 3.9 5.4 5.9 9.1
ε0 = 10−4 10.1 11.9 12.1 16.7

L = 6 8.5 9.4 9.8 13.8
rl = [0, 1, 2.6, 4] 8.7 10.2 10.5 13.2

the WSN.
Test Case 2 (Power consumption for different scenarios):
Numerical results assessing the performance of F-CSIT, Q-
CSIT, I-CSIT and S-CSIT based schemes over a wide range of
parameter values are summarized in Table II. The simulation
results confirm: (i) the near optimality of Q-CSIT and I-CSIT
based policies, and (ii) the significant loss in power perfor-
mance that the S-CSIT based system suffers from because it
does not exploit the temporal diversity of the fading channel.
Test Case 3 (Characterizing the optimum solution):To gain
more insights, Table III lists the optimal quantization and
resource allocation for the three forms of CSIT. Recall that in
the F-CSIT and I-CSIT based solutions the thresholds pertain
to the channel gaing whereas in the Q-CSIT solution they
pertain tog̃ < g.

It can be seen that in all closed-loop systems, the AMC
mode with lower transmission-rate consumes the smallest aver-
age transmit-power. We also observe that the optimal solutions
try to equalize the power price per bit in all quantization
regions. It turns out that for all cases the most likely AMC
mode is the third one whose transmission rate (r3 = 3) is
the closest to the required rater0 = 2.5. This fact is more
pronounced in the F-CSIT case where the optimal allocation
allows adaptation of the transmit-power per AMC mode and
thus, reduces the need for adapting the rate. Interestingly, the
thresholds are noticeably different for the three cases (recall
that to fairly gauge the Q-CSIT case, we should use the
equivalent thresholds pertaining tog, which are slightly larger
than those for̃g shown in Table III). These discrepancies are
due to the difference in the SNR at the FC. Specifically, the
receive-SNR is: (i) constant in the F-CSIT solution where
γ = pl(g)g with pl(g) proportional to1/g; (ii) proportional to
g̃ in the Q-CSIT solution whereγ = p̃lg̃ with p̃l constant; and
(iii) proportional tog2 in the I-CSIT solution whereγ = ρ̃lg

2

with ρ̃l constant. This also implies that the I-CSIT solution
is very sensitive to small channel gains and, thus, it sets the
threshold of the first active region to a relatively high value.

TABLE IV

AVERAGE TRANSMIT-POWER(IN dB) AS L VARIES.

L 1 2 4 6 8 ∞
F-CSIT 9.8 9.4 8.6 8.5 8.4 8.3
I-CSIT 13.9 11.5 10.2 9.4 8.9 8.3
Q-CSIT 14.2 11.7 10.7 9.8 9.3 8.9

Test Case 4 (Effect of the number of feedback bits):We have
seen that withL = 4 (three active AMC modes) andNu = 16,
the Q-CSIT and I-CSIT based solutions yield power efficiency
close to the optimal F-CSIT benchmark. This is achieved
using dlog2(4) + log2(16)e = 6 and dlog2(4)e = 2 bits
per channel realization for Q-CSIT and I-CSIT, respectively.
Next, we analyze how the number of feedback bits affects the
performance.

We first study the impact of varying the number of supported
AMC modes. Table IV lists the total power cost in the F-
CSIT, I-CSIT and Q-CSIT cases for differentL values. (When
L = 1, the sensors only support one AMC mode which does
not require feedback; whereas for all the remaining cases,
sensors supportL−1 active AMC modes plus an inactive mode
indexed by feeding backdlog2(L)e bits.) Recall that in the Q-
CSIT based design, we assume thatNu = 16 beamforming
modes can be employed. AsL increases, we observe that:
(i) the power consumption decreases for all solutions, (ii) the
power-gap of the Q-CSIT and I-CSIT based systems from
the F-CSIT benchmark also decreases, and (iii) the first and
second increments ofL bring the largest power savings. Notice
also that the power consumed by the Q-CSIT solution exceeds
that of the F-CSIT based system even asL → ∞ when the
former only relies on a beamforming codebook of finite size.

We next gauge the effect of varyingNu in the Q-CSIT case.
Fig. 3 plots the average transmit-power versus the number
of feedback bitslog2(Nu). For comparison, we also depict
the transmit-power for the corresponding I-CSIT and F-CSIT
based solutions. Again the power consumption decreases as
Nu increases, while the reduction for each additional bit
decreases. Note that asNu = ∞, g̃ = g, and thus only power
quantization is implemented. Interestingly, we observe that
whenNu is large, the Q-CSIT based system outperforms the
I-CSIT based one. As we already mentioned, divergence of the
solutions in these two cases is due to the fact that quantizing
the different variables (p andρ = p/‖h‖2) results in different
optimal quantization designs. Intuitively, the advantage of Q-
CSIT can be explained because variations in receive-SNR are
less pronounced in the Q-CSIT solution (g vs g2) and this
results in an optimal policy closer to the F-CSIT benchmark.
However, it is worth to reiterate that the adaptation based on
Q-CSIT requires more feedback bits than the one based on
I-CSIT, especially when the Q-CSIT solution outperforms the
I-CSIT one; i.e., whenNu is large.

Finally, we should to point out that although theoretically
the power gap of Q-CSIT and I-CSIT relative to F-CSIT tends
to zero asL,Nu →∞, our numerical results suggest that even
a few feedback bits (e.g.,L = 23 andN = 25) suffice to close
the gap.
Test Case 5(Sensitivity to synchronization, i.e., mistiming
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TABLE III

OPTIMUM AVERAGE POWER (IN dB) AND RATE LOADING PER AMC MODE (QUANTIZATION STATE) AND QUANTIZATION THRESHOLDS (M = 4,

r0 = 2.5, ε0 = 10−3 , L = 4, rl = [0, 1, 3, 5], Nu = 16).

F-CSIT I-CSIT Q-CSIT

AMC mode l = 2 l = 3 l = 4 l = 2 l = 3 l = 4 l = 2 l = 3 l = 4
Average Tx-Power:̄pl 4.96 9.57 11.75 4.40 10.64 14.62 7.02 11.45 13.54

Tx-Rate:rl 1 3 5 1 3 5 1 3 5
Thresholds:τl+1 0.8 2.4 9.7 1.7 3.0 5.8 0.6 1.6 5.1

Probability:Pr{l∗ = l} 0.22 0.75 0.01 0.26 0.48 0.17 0.25 0.68 0.05
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Fig. 3. Effect of number of feedback bits for Q-CSIT scheme (M = 4,
r0 = 2.5, L = 4).

effects): Since the synchronization among sensors assumed
under (as1) is challenging to obtain, we will rely on simulated
tests to gauge how sensitive is our design to synchronization
errors. Although systems with instantaneous CSI at both
receiver and transmitter can cope with synchronization errors,
here we test a worst case scenario where these errors are
so fast that neither the receiver nor the nodes can account
for them. The simulated setup consists of four sensors with
random mistiming bounded byε. On the one hand the FC is
unable to estimate and compensate for these mistiming errors
and thus quantizes the erroneous channel gain. On the other
hand, the sensors adapt their transmit configurations using
codebooks designed considering perfect synchronization (thus,
sub-optimum in the presence of mistiming) and based on the
erroneous information fed-back by the FC.

Based on this set-up, Fig.4 depicts BER measured at the FC
for different mistiming errors when the target rate and BER are
2.5 and10−3, respectively, for the cases of F-CSIT, Q-CSIT
and I-CSIT based operation. As expected, BER performance
degrades when synchronization errors occur, increasing mod-
erately for small values ofε and exponentially for systems with
very poor synchronization (average transmit power and rate are
not presented since they remain unchanged with the FC not
mitigating for mistiming). Focusing on the Q-CSIT case, we
observe that this system exhibits the best BER performance.
Specifically for timing errors not exceeding 5%, the system
performs below the target BER and even for errors up to 20%,
the BER in less than twice the required value. The reason for
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I-CSIT
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Fig. 4. BER degradation due to synchronization mistiming for F-CSIT, Q-
CSIT and I-CSIT schemes (M = 4, r0 = 2.5, L = 4).

this behavior is twofold: (i) our design is based on an upper
bound [cf. (24)] which, although tight, yields a conservative
design that slightly oversatisfies the BER requirement; and
(ii) the quantized CSIT naturally accounts for uncertainty in
channel estimation making the design more robust synchro-
nization errors. More importantly, Fig.4 suggests that our
novel adaptive schemes are robust to low-moderate timing
synchronization errors.

VII. C ONCLUSIONS

In a WSN entailing coherent sensor communications with
a fusion center, we minimized the average transmit-power
subject to average rate and BER requirements when full (F-)
CSIT, quantized (Q-) CSIT or individual (I-) CSIT is available.
With finite-rate feedback, we optimally separated the main
design in two subproblems: (i) MISO channel quantization and
beamforming, and (ii) rate/power quantization and allocation.
By exploiting the parallelism between the coherent WSN
setup and a distributed MISO system, we relied on non-linear
programming tools to solve the programs at hand and derived
the corresponding power-efficient channel quantization and
adaptive transmission policies. Numerical results confirmed
that our limited-rate feedback (Q-CSIT and I-CSIT) based
solutions attain power efficiency surprisingly close to the
optimal F-CSIT based benchmark. They outperform a S-CSIT
scheme which only exploits spatial diversity with F-CSIT, and
offer significant power savings relative to open loop systems
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that do not exploit CSIT.6

APPENDIX A
CLOSED-FORM BER EXPRESSION FORQ-CSIT

Finding a closed-form expression forϕε(τ̃l, τ̃l+1, p̃l, rl, ε0)
requires analytical evaluation of the two integrals in-
volved in (29). Using the CDF ofg, we have for the
second integral that

∫ τ̃l+1

τ̃l
fg̃(g̃)dg̃ = F̃g̃(τ̃l+1)− F̃g̃(τ̃l).

The first integral in (29) requires solving analytically
Φ̃(p, r, x) :=

∫
ε(g̃, p, r)fg̃(g̃)dg̃

∣∣
g̃=x

. Utilizing (9) with b :=
κ2p/(2r − 1), the latter can be re-written as̃Φ(p, r, x) =
κ1

∫
exp(b, g̃)fg̃(g̃)dg̃

∣∣
g̃=x

, which after tedious manipula-
tions yields [cf. (26)]∫

exp(−bg̃)fg̃(g̃)dg̃ (40)

=
∫

1
Γ(M)

{
exp

(
−1 + b(1− zmax)

1− zmax
g̃

)

× g̃M−1

(1− zmax)M
(1−NuzM

max) + Nu exp(−(1 + b)g̃)

×
[

Γ(M)− Γ(M, zmaxg̃/(1− zmax))
]}

dg̃

=
−1

Γ(M)[1 + b]

{
(1 + b)(1−NuzM

max) + NuzM
max

[1 + b(1− zmax)]M

×Γ
(

M, g̃
1 + b(1− zmax)

1− zmax

)
+

Nu exp(−(1 + b)g̃)
1 + b

× [Γ(M)− Γ(M, g̃zmax/(1− zmax))]} .

Based on (40), we can write (29) in closed-form as

ϕε(τ̃l, τ̃l+1, p̃l, rl, ε0) = Φ̃(p̃l, rl, τ̃l+1)− Φ̃(p̃l, rl, τ̃l)
− ε0[F̃g̃(τ̃l+1)− F̃g̃(τ̃l)]. (41)

Finally, based on (28) and (41) we arrive at

ε̃l(τ̃l, τ̃l+1, p̃l, rl) =
Φ̃(p̃l, rl, τ̃l+1)− Φ̃(p̃l, r, τ̃l)

F̃g̃(τ̃l+1)− F̃g̃(τ̃l)
(42)

which quantifies the average BER analytically when the pro-
posed Q-CSIT design is in force.

APPENDIX B
CLOSED-FORM OF THE POWER DERIVATIVE BASED ON

Q-CSIT

For the PDF of̃g in (26), we can write
∫ τ̃i+1

τ̃i

[∂ε(g̃, p, r)/∂p]fg̃(g̃)dg̃ = ξ̃(p, r, τ̃i+1)− ξ̃(p, r, τ̃i).

(43)
Differentiating (9) w.r.t.p, we can re-write (43) as

ξ̃(p, r, x) :=
∫

[∂ε(g̃, p, r)/∂p]fg̃(g̃)dg̃

∣∣∣∣
g̃=x

:=
−κ1κ2

2r − 1
Ĩξ

(
κ2p

2r − 1
, g̃

) ∣∣∣∣
g̃=x

(44)

6The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U. S.
Government.

where Ĩξ(b, g) is found in closed-form as

Ĩξ(b, g̃) :=
∫

g̃ exp(−bg̃)fg̃(g̃)dg̃ (45)

=
∫

1
Γ(M)

{
exp

(
−1 + b(1− zmax)

1− zmax
g̃

)
g̃M

(1− zmax)M

× (1−NuzM
max) + Nu exp(−(1 + b)g̃)

×
[

Γ(M)− Γ(M, zmaxg̃/(1− zmax))
]
g̃
}

dg̃

=
−1

Γ(M)

{
(1− zmax)

1−NuzM
max

[1 + b(1− zmax)]M+1

× Γ
(

M + 1, g̃
1 + b(1− zmax)

1− zmax

)

+
Nu exp(−(1 + b)g̃)(1 + (1 + b)g̃)

(1 + b)2

× [Γ(M)− Γ(M, g̃zmax/(1− zmax))]

+
NuzM

max

(1 + b)2[1 + b(1− zmax)]M+1

[
1 + b(1− zmax)Γ

(
M, g̃

1 + b(1− zmax)
1− zmax

)

× (1 + b)(1− zmax)Γ
(

M + 1, g̃
1 + b(1− zmax)

1− zmax

)]}
.
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