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Resumen

Antecedentes

El sistema nervioso auténomo regula ciertas funciones automaticas del cuerpo, como
los musculos lisos, la digestién, la respiracion, los musculos del corazon o ciertas glandulas.
De este modo, permite el mantenimiento de la homeostasis interna del cuerpo. El
sistema nervioso auténomo se divide en el sistema nervioso simpatico y el sistema
nervioso parasimpatico, los cuales controlan simpaticamente las acciones antagonicas
mas frecuentes a través de diferentes neurotransmisores, entre los cuales encontramos
la norepinefrina y la adrenalina (catecolaminas) a nivel simpético, mientras que a nivel
parasimpatico encontramos la acetilcolina. Por otro lado, el sistema nervioso entérico
regula el sistema digestivo, asi como las actividades motoras y secretoras. Estos tres
sistemas gestionan la actividad de muchos érganos, tales como actividad cardiaca y vasos
sanguineos, pulmones, tracto digestivo, vejiga, dilatacion o contraccion de la pupila del
0jo, entre muchos otros.

El reciente auge de la ingenieria biomédica reside en buena parte en el uso de las
técnicas de procesamiento digital de senales e imégenes médicas con el objetivo de buscar
nuevas herramientas y soluciones en numerosos ambitos. En esta Tesis se han seleccionado
dos problemas especificos de ingenieria biomédica relacionados con el sistema nervioso
auténomo: (1) en cardiologia, abordamos el &mbito de la variabilidad de la frecuencia
cardiaca (HRV, del inglés Heart Rate Variabillity) y la prevencién de muerte cardiaca
subita (MCS); (2) en neurologia, estudiamos la pigmentacién del iris y su relacién con las
cefaleas en racimo (CH, del inglés Cluster Headache).

Respecto al primer ambito, la identificacién de pacientes con mayor riesgo de MCS se
ha estudiado ampliamente durante las 1iltimas décadas y se han propuesto varios indices a
partir del andlisis del electrocardiograma (ECG) almacenado en registros Holter de 1 dia.
Los indices basados en la dindmica no lineal de la variabilidad de la HRV han demostrado
transmitir informacién predictiva en términos de factores relacionados con la regulacién
cardiaca por el sistema nervioso autéonomo, y entre ellos, los métodos multiescala tienen
como objetivo proporcionar descripciones mas completas que las medidas basadas en en
escalas individuales. Sin embargo, existe un conocimiento limitado sobre la idoneidad de
las mediciones no lineales para caracterizar la dindmica cardiaca en los escenarios actuales
de monitoreo a lo largo de un plazo de varios dias.

En cuanto al segundo ambito, la dificultad de diagnodstico de las CH entre las diferentes
clases de cefaleas patologicas conlleva a la necesidad de investigar métodos que ayuden
al diagnostico y con ello mejorar la administracion de tratamiento especifico para las
mismas. El ser humano recién nacido tiene un color de iris indeterminado y la coloracion
del iris se realiza en los primeros meses de vida. El color final es heredado y determina la
pigmentacion progresiva, que se culmina en los primeros meses de vida por la actividad de
las células pigmentadoras (melanéforos). El sistema nervioso simpdtico ejerce una accién
trofica sobre la actividad de los melanéforos. Cuando existe un defecto simpatico congénito
o adquirido en el periodo neonatal, se produce un déficit de la pigmentacion en el iris del
lado de la hipofuncién simpatica. El resultado es la heterocromia, esto es, el individuo
tiene un ojo de cada color, tipicamente un ojo azul y el otro marrén, siendo el ojo claro el



i

defectuosamente pigmentado. La heterocromia con clara diferencia de color se reconoce
facilmente a simple vista. Sin embargo, si la diferencia es sutil, se precisa de un método
sensible para reconocerla.

Objetivos

El objetivo de esta Tesis es contribuir con técnicas de procesamiento digital emergentes
al conocimiento y la evaluacion de la funcién de autorregulacién del sistema nervioso
autonomo. Segun las consideraciones anteriores, la presente Tesis aborda dos objetivos
especificos:

e O1. Estudiar la informacién diagnoéstica adicional proporcionada por la HRV en
escalas de largo plazo disponibles en Holter de monitorizacion prlongada.

e O2. Estudiar la pigmentacién del iris con el objetivo de distinguir el color entre los
dos ojos de un individuo con cefaleas y con ello ayudar a decidir si padece o no
cefaleas en racimo.

Metodologia

En el objetivo de la primera linea de investigacion, se examinan las propiedades a largo
plazo de tres métodos no lineales para la caracterizaciéon de HRV, a saber, la Entropia
Multiescala (MSE, del inglés Multiscal Entropy), la Irreversibilidad Temporal Multiescala
(MTTI, del inglés Multiscal Time Irreversibility) y el Espectro Multifractal (MFS, del inglés
Multifractal Spectrum). Estos indices fueron seleccionados porque todos ellos han sido
disenados tedricamente para tener en cuenta las multiples escalas de tiempo inherentes
tanto en la fisiol6gica saludable como en la dinamica cardiaca patoldgica. Estas mediciones
multiescala han sido analizadas hasta el momento en el monitoreo de hasta 24 horas de
senales de ECG, correspondientes a aproximadamente 20 escalas de tiempo. Los analizamos
en registros Holter de 7 dias de dos conjuntos de datos, a saber, pacientes con fibrilacion
auricular (FA) e insuficiencia cardiaca crénica (ICC), hasta 100 escalas de tiempo, gracias
a la monitorizacion a largo plazo disponile en sistemas actuales de Holter.

En cuanto a la segunda linea, se ha desarrollado un método de cuantificacién del color
del iris (Iridocolorimetro) que permite detectar diferencias sutiles de pigmentacion. Para
ello, se han empleado técnicas de aprendizaje estadistico, en concreto basadas en Maquinas
de Vectores Soporte, que mediante su probabilidad de error al comparar imagenes en los
dos ojos permiten dar una medida cuantitativa sobre las diferencias de coloracién en el
iris. Se han realizado pruebas sistematicas sobre una base de datos con imagenes de 25
pacientes, y se han comparado las prestaciones de los diferentes espacios de color.
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Resultados

En el primer objetivo se destaca que las escalas mas largas de los intervalos inter-latido,
que estan disponibles en el monitoreo a largo plazo, contienen informacion adicional sobre
el estado del paciente. El MSE (MTI) exhibi6 el sesgo y la varianza mas bajos (mds
elevados) a grandes escalas, mientras que todos los métodos mostraron una descripcién
consistente de los procesos a gran escala en términos de robustez del indice multiescala,
con una sensibilidad a las diferentes dindmicas en las diferentes longitudes. Uno de los
resultados maés ilustrativos es que estos algoritmos multiescala, aunque probablemente
informativos, deberfan confiar no sélo en el aumento de la longitud de las senales para su
consistencia, sino también en la mejora de su robustez.

Una vez desarrollado el método para detectar diferencias en el color del iris, se tested en
los primeros pacientes diagnosticados de cefalea en racimos proporcionados por el Hospital
Universitario Fundacién de Alcorcén. En todos los pacientes se demostro que el iris del
lado sintomatico estaba menos pigmentado que el del lado asintomatico. Este hallazgo
indica que la hipofuncion simpatica del lado sintomatico es congénita o adquirida en el
periodo neonatal que condiciona la lateralizacion del dolor. Con esto se mejora la deteccién
asi como la prescripcién de tratamientos especificos para esta patologia. En un futuro
préximo se pretende aplicar el método a otras cefaleas que cursan con defecto simpatico.
La iridocolorimetria puede ademas, aportar claves patogénicas en diversos trastornos que
cursan con afectacion del sistema nervioso vegetativo.

Conclusiones

Estos resultados allanan el camino de estas técnicas hacia su uso en escenarios de
monitoreo con Holter cardiaco a largo plazo. Los indices basados en la dindmica no lineal
de la HRV han mostrado informacién predictiva en términos de factores relacionados
con la regulacion cardiaca por el sistema nervioso auténomo, y entre ellos, los métodos
multiescala que proporcionan descripciones mas completas que las medidas basadas en
una tUnica escala.

Se ha desarrollado un método de cuantificacién del color de los iris (iridocolorimetro)
que permite detectar diferencias sutiles de pigmentacion. Los ensayos preliminares de
aplicacién clinica demuestran en los pacientes analizados y afectos de cefalea en racimos una
hipopigmentacion del iris del lado sintomatico. Este hallazgo es de importancia patogénica
crucial puesto que indica que, en la cefalea en racimos, existe una hipofuncion simpatica
congénita o desarrollada en el periodo neonatal, que sugiere una predisposicién genética
a sufrir el trastorno y que condiciona la lateralizacion del dolor. La iridocolorimetria se
perfila como una técnica de interés en el estudio de trastornos que cursan con afectacion
del sistema simpatico.

Las técnicas de procesamiento digital de senal e imagen médica pueden contribuir cada
vez mas en la evaluacion de la funcién del ANS, detectando deficiencias que se traducen en
patologias, mejorar del diagnéstico, y con su ayuda mejorar la prescripcion de tratamientos
especificos.



Abstract

Background

The autonomic nervous system regulates certain automatic body functions, such as
smooth muscles, digestion, breathing, heart muscles, or certain glands. In this way,
it allows the maintenance of the body’s internal homeostasis. The autonomic nervous
system is divided into the sympathetic nervous system and the parasympathetic
nervous system, which sympathetically control the most frequent antagonistic actions
through different neurotransmitters, among which we find norepinephrine and adrenaline
(catecholamines) at the sympathetic level, while at the parasympathetic level we find
acetylcholine. On the other hand, the enteric nervous system regulates the digestive
system, as well as motor and secretory activities. These three systems manage the activity
of many organs, such as cardiac activity and blood vessels, lungs, digestive tract, bladder,
dilation or contraction of the pupil of the eye, among many others.

The recent boom in biomedical engineering lies largely in the use of digital signal and
medical image processing techniques with the aim of finding new tools and solutions in
many areas. In this Thesis, two specific problems of biomedical engineering related to the
autonomic nervous system have been selected: (1) in cardiology, we address the field of
heart rate variability (HRV) and the prevention of sudden cardiac death (SCD); (2) in
neurology, we study iris pigmentation and its relationship with cluster headaches (CH).

With respect to the first area, the identification of patients at greater risk of SCD has
been extensively studied over the last few decades and several indices have been proposed
based on the analysis of the electrocardiogram (ECG) stored in 1-day Holter records.
Indices based on the non-linear dynamics of HRV variability have been shown to convey
predictive information in terms of factors related to cardiac regulation by the autonomic
nervous system, and among these, multiscale methods aim to provide more complete
descriptions than measures based on individual scales. However, there is limited knowledge
about the suitability of non-linear measurements to characterize cardiac dynamics in
current monitoring scenarios over a period of several days.

As for the second area, the difficulty in diagnosing CH among the different types of
pathological headaches leads to the need to investigate methods that help diagnosis and
thus improve the administration of specific treatment for them. The newborn human being
has an indeterminate iris colour and the iris is coloured during the first months of life. The
final color is inherited and determines the progressive pigmentation, which is culminated
in the first months of life by the activity of the pigmenting cells (melanophores). The
sympathetic nervous system exerts a trophic action on the activity of the melanophores.
When there is a congenital or acquired sympathetic defect in the neonatal period, there
is a deficit of pigmentation in the iris on the side of the sympathetic hypofunction. The
result is heterochromia, that is, the individual has one eye of each color, typically one blue
eye and the other brown, with the light eye being the one that is defective in pigmentation.
Heterochromia with clear color difference is easily recognized with the naked eye. However,
if the difference is subtle, a sensitive method is required to recognize it.



Objectives

The objective of this Thesis is to contribute with emerging digital processing techniques
to the knowledge and evaluation of the self-regulatory function of the autonomic nervous
system. According to the previous considerations, this Thesis addresses two specific
objectives:

e O1. Study the additional diagnostic information provided by the HRV on long-term
scales available in extended monitoring Holter.

e 02. To study the pigmentation of the iris with the aim of distinguishing the colour
between the two eyes of an individual with headaches and thus help to decide whether
or not to suffer from cluster headaches.

Methodology

In the first line of research, the long-term properties of three non-linear methods for
the characterization of HRV are examined, namely Multiscale Entropy (MSE), Multiscale
Time Irreversibility (MTI) and Multifractal Spectrum (MFS). These indices were selected
because they have all been theoretically designed to take into account the multiple time
scales inherent in both healthy physiology and pathological cardiac dynamics. These
multiscale measurements have been analyzed so far in monitoring up to 24 hours of ECG
signals, corresponding to approximately 20 time scales. We analyzed them in 7-days Holter
records of two data sets, namely patients with atrial fibrillation (AF) and chronic heart
failure (CHF), up to 100 time scales, thanks to the long-term monitoring available in
current Holter systems.

As for the second line, a method for quantifying iris colour (Iridocolourmeter) has been
developed to detect subtle differences in pigmentation. For this purpose, statistical learning
techniques have been used, specifically based on Support Vector Machines, which by means
of their error probability when comparing images in the two eyes allow a quantitative
measure of the differences in colour in the iris. Systematic tests have been carried out on
a database with images of 25 patients, and the performance of the different colour spaces
has been compared.

Results

In the first objective, it is emphasized that the longer scales of the inter-beat intervals,
which are available in long-term monitoring, contain additional information about the
patient’s condition. The MSE (MTI) exhibited the lowest (highest) bias and variance at
large scales, while all methods showed a consistent description of large-scale processes
in terms of robustness of the multiscale index, with sensitivity to different dynamics at
different lengths. One of the most illustrative results is that these multiscale algorithms,
although probably informative, should rely not only on increasing the length of the signals
for consistency, but also on improving their robustness.

Once the method for detecting differences in iris colour was developed, it was tested
on the first patients diagnosed with CH provided by the Hospital Universitario Fundacion
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de Alcorcom. In all patients it was shown that the iris on the symptomatic side was less
pigmented than the one on the asymptomatic side. This finding indicates that sympathetic
hypofunction on the symptomatic side is congenital or acquired in the neonatal period
which conditions the lateralization of pain. This improves the detection as well as the
prescription of specific treatments for this pathology. In the near future, it is intended to
apply the method to other headaches with sympathetic defect. Iridocolourimetry can also
provide pathogenic clues in various disorders affecting the vegetative nervous system.

Conclusions

These results pave the way for these techniques to be used in long-term cardiac
holter monitoring scenarios. Indices based on the non-linear dynamics of HRV have
shown predictive information in terms of factors related to cardiac regulation by the
autonomic nervous system, and among them, multiscale methods that provide more
complete descriptions than measures based on a single scale.

A method of quantifying iris colour (iridocolourimeter) has been developed to detect
subtle differences in pigmentation. Preliminary trials of clinical application show a
hypopigmentation of the iris on the symptomatic side in patients analysed and affected by
cluster headache. This finding is of crucial pathogenic importance since it indicates that,
in cluster headache, there is a congenital or developed sympathetic hypofunction in the
neonatal period, suggesting a genetic predisposition to the disorder and conditioning the
lateralization of pain. Iridocolourimetry is a technique of interest in the study of disorders
that affect the sympathetic system.

Digital signal processing and medical imaging techniques can increasingly contribute
to the evaluation of the function of the ANS, detecting deficiencies that translate into
pathologies, improving diagnosis, and with their help improve the prescription of specific
treatments.
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“That whose existence is necessary must necessarily be one essence.”

Avicenna
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Chapter 1

Introduction

The present chapter provides an overview of the addressed topics. Initially, the physiologi-
cal and technical background that feeds the motivation of this doctoral dissertation are
described. Subsequently, the main objectives of the Thesis are stated and the method-
ology adopted for this work is also described. Finally, the outline of the Thesis and its
contributions to the scientific literature are indicated.

1.1 Background

Biomedical Engineering arising from the Information and Communications technologies
and applied to the medicine field provides an extended diagnosis of several pathologies,
through signal and image processing. This allows specifying accurately the appropriated
medical treatment, and it also promotes advanced methods for preventing sudden death.

Biomedical research [1, 2] over the past 25 to 30 years has led to a remarkable increase
in knowledge and its practical applications. These advances have been made in many
disciplines, ranging from biochemistry to various specialized clinical areas, but the most
important and far-reaching contributions are undoubtedly those of molecular biology. The
clinical sciences have also made great strides, both in terms of diagnostic procedures and
therapeutic methods. This progress has been and will continue to be largely dependent
on the results of basic research, particularly in molecular biology and immunology. It
should be pointed out that in some cases they have been made possible by techniques
borrowed from disciplines other than those normally forming part of the Biomedical
Sciences, such as Physics and Mathematics. Examples of diagnostic methods include
magnetic resonance imaging and positron emission tomography. In general, progress has
been more rapid in the field of diagnosis than in therapeutics, but progress in this area
should not be underestimated. Suffice it to mention that, in developed countries, many
common cancers have a cure rate of 50 %, that artificial joints have transformed the lives of
many people with various forms of arthritis, and that organ transplants, especially kidney
transplants, are a true miracle for patients once condemned to an early death. In some
cases, therapeutic procedures have been developed using techniques developed outside the
Biomedical Sciences [3]. One example is the increasingly widespread use of lasers. Lasers
have long been used in ophthalmic, gynaecological and otolaryngological surgery, but they
are now increasingly used in other forms of surgery. Perhaps the most promising area
of use is in cardiovascular surgery. Although still an experimental technique, it appears
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that the laser will be increasingly used in the surgical treatment of obstructed blood
vessels, particularly coronary arteries. If the experiment proves successful, the indications
for coronary artery bypass surgery will become much more rare. Even technologies and
physical sciences, some of which can undoubtedly facilitate directly or indirectly the
improvement of health care increasing products and processes that are of real or potential
interest in improving the health care system. As an example, ancillary technologies are
expected to play an equally important role in facilitating healthcare planning and problem
solving [4].

Currently, hundreds of millions of people worldwide are affected by nervous system
abnormalities which induce the development of disorders such as cardiovascular diseases
(CVD) and neurological pathologies [5]. Many diseases of the central nervous system
can be accompanied by cardiovascular changes such as stroke, epilepsy, or degenerative
diseases. These may include changes in the electrocardiogram (ECG), atrial or ventricular
cardiac arrhythmias, specific cardiac lesions (myocytolysis), changes in blood pressure or
subclinical manifestations, detected by non-invasive tests such as sinus variability. The
pathogenesis of these cardiovascular manifestations is not fully elucidated. It could result
from an imbalance of the vagosympathetic balance leading to sympathetic hyperactivity.
The asymmetry of cardiac innervation suggests that right brain lesions are more likely to
result in changes in heart rate or supraventricular arrhythmias and that left brain lesions
are more likely to be associated with atrioventricular conduction disorders or ventricular
arrhythmias. A better understanding of these cardiac consequences could lead to the
identification of subgroups at risk that could benefit from specific monitoring or therapeutic
measures.

The autonomic nervous system (ANS) is divided into three parts:

e The sympathetic nervous system in which we find norepinephrine and adrenaline
(catecholamines).

e The parasympathetic nervous system, which controls antagonistic actions through
different neurotransmitters, such as acetylcholine.

e The enteric nervous system, which regulates the digestive system, as well as the
motor and secretory activities.

These three systems manage the activity of many organs (heart and blood vessels, lungs,
digestive tract, bladder, dilatation or contraction of the pupil of the eye, among many
others). In this dissertation, two major conditions related to the state of the ANS are
investigated by means of signal and image digital processing techniques.

Risk on Sudden Cardiac Death

Sudden Cardiac Death (SCD) is defined as natural death with abrupt loss of consciousness
within one hour of the onset of symptoms, in a person with or without known heart disease.
The timing and mode of occurrence are unexpected. SCD is a public health issue, which
justifies major efforts to improve the management of the accident itself when it occurs
unexpectedly. The specificity of this definition varies depending on whether the event
was observed or not. However, most studies include cases associated with an observed
collapse, death within one hour of an acute change in clinical status, or unexpected death
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within the previous 24 hours [5, 6, 7, 8]. There are other causes of sudden death, but
cardiac is the most usual origin, specifically including: (a) Arrhythmic causes, such as
ventricular tachycardia (VT), ventricular fibrillation (VF), or asystole; (b) Several other
structural heart disease origins, for instance, those ones corresponding to congenital heart
disease; And (c¢) abnormal function of the ANS, which is not itself a death cause, but it
can promote others such as arrhythmic or hypertensive death [8]. The SCD mechanism in
the last case is often VT or VF. Given the incidence of SCD as major cause of mortality
in the world, methods have been proposed aiming to provide with risk stratification tools
for cardiac patients [9]. SCD episodes can happen not only in patients with coronary
or cardiomyopathic disease, but also they can occur in people with no previous heart
alteration, which makes the risk stratification extremely complex.

The prognostic significance of noninvasive studies and the efficacy of the therapeutic
actions have been pointed to be etiology dependent [10]. The most widely used SCD-risk
marker in the clinical practice is the Left Ventricular Ejection Fraction (LVEF), but given
its low specificity, many other techniques have been proposed. A relevant subset of them is
given by the computational indices that are obtained from the signal analysis of the ECG,
including a variety of proposed biomarkers such as late potentials, heart rate variability
(HRV), T-wave alternans, or deceleration capacity. The interested reader can refer to
[11] for a detailed review on issues related with signal processing, technology transfer,
and scientific evidence for all of them. Many of these SCD markers are obtained in a
Holter recording, which is a diagnostic tool consisting of 24 to 48 hour signal registers in
two or three chest leads to be subsequently processed by using a computer program, so
that a variety of cardiac events can be identified by the clinician. Probably one of the
most scrutinized markers of SCD risk from Holter recordings is HRV, which measures the
time changes between consecutive cardiac beats [12]. Its interest partially comes from its
non-invasive nature and its easy for analysis, only needing to know the time instants of
the beat occurrences. The heart does not behave like a periodic oscillator, but instead
its thythm is modulated by the ANS, and the simultaneous actuation of its two branches
(sympathetic and parasympathetic) causes dynamic oscillations of the cardiac frequency,
producing the presence of HRV [13]. Among the many methods that have been proposed
in the literature to quantify the HRV indices, the nonlinear methods extract relevant
information from HRV signals in terms of their complexity. Nonlinear indices are based
on the underlying idea that fluctuations in the between-beat intervals (also known as RR
intervals) can exhibit characteristics that are well known from Complex Dynamic Systems
Theory, and broadly speaking, healthy states are expected to correspond to more complex
patterns than pathological states. However, some pathologies are associated with highly
erratic fluctuations with statistical properties resembling uncorrelated noise [11], and
traditional algorithms could yield higher irregularity indices for such pathological signals
when compared to healthy dynamics, even though the latter represent more physiologically
complex states [14]. This possible inconsistency may be due to the fact that traditional
algorithms are based on single scale analysis, and they can not take into account the
complex temporal fluctuations inherent to healthy physiologic control systems. It is usual
that studies based on 1-day Holter monitoring [15] envision that relevant information
could be obtained from longer duration recordings, however, few studies [16, 17] have
scrutinized nonlinear indices in several-day Holter monitoring, despite its current and
increasing availability in the clinical practice. Note in the following that, whereas some
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authors refer to long-term Holter as those with duration about 24 h, we will use long-term
to refer to the Holter recordings when measured for several days.

Several of the nonlinear HRV measurements (based either on Chaos Theory, Information
Theory, or Fractal Theory) have been paid special attention according to the electro-
physiological hypothesis that the long-term regulation is a homeostatic yet dynamical
equilibrium, which can be expected to be complex and multi-cause enough to require a set
of indices that should be calculated at different scales. This has motivated the extension
of several of those indices to what can be called their multiscale versions. Remarkable
examples of this effort are the Multiscale Entropy (MSE) method [18, 19, 20, 21], the
Multiscale Time Irreversibility (MTI) method [19], and the Multifractal Spectrum (MFS)
method [22, 23].

Cluster Headache

On the other hand, Headache is a local pain felt in the skull or sometimes in the neck.
This pain can be lateral, often unilateral, or diffuse and generalized. It manifests itself in a
wide variety of ways through sensations of tightness or compression, pounding, hammering,
sinking, burning, tingling, or crushing, as well as a hyper-sensitivity to noise and light.

Trigeminal Autonomic Cephalalgias (TAC) belong to the Group III of the International
Headache Society (IHS), and they share the clinical features of pain felt in the area supplied
by the first division (V-1) of the trigeminal nerve, accompanied by a variable combination
of cranial autonomic features [24, 25]. Cluster Headache (CH) is the most frequent TAC
[26]. It is a male-predominant disorder with a usual age at onset in the late twenties. CH
typically presents with very severe strictly unilateral, orbital /periorbital pain, accompanied
by a variable combination of autonomic features, such as conjunctival injection, lacrimation,
rhinorrhea, nasal stuffiness, ptosis, miosis, eyelid edema and facial/forehead sweating. The
attacks last 15-180 minutes and recur with a frequency from one every other day to 8 per
day, during symptomatic periods (cluster periods).

During attacks of CH, a sympathetic hypofunction is manifested clinically as ptosis and
miosis on the painful side. The sympathetic hypofunction remains latent (subclinical) in
between attacks, throughout the symptomatic period but can be unveiled by provocative
tests with appropriate eye drops substances. If there is a persistent but subtle and
constitutional (since birth) sympathetic hypofunction in the symptomatic side, the iris of
the symptomatic side would have been less pigmented. In these cases the sympathetic
defect would be congenital or would have occurred in the neonatal period [27, 28]. One of
the CH signs could be the different iris color in the patient’s eyes, which is not always
noticeable by simple visual inspection. Accordingly, the screening and early detection of
CH could be addressed by creating a biomarker from subtle color changes in the iris.

1.2 Motivation and Objectives

Digital signal processing and medical imaging techniques are increasingly contributing
to the evaluation of the function of the ANS, detecting deficiencies that translate into
pathologies, improving diagnosis, and helping doctors to objectify the prescription with
an appropriate treatment.
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The most significant motivation of this dissertation is to evaluate the auto-regulation
function of the ANS and contribute to the solution of related diagnostic problems through
the use of appropriate digital signal and data processing techniques. The ANS is a part of
the nervous system that regulates certain automatic functions of the body and allows the
maintenance of the internal homeostasis, such as cardiovascular and neurological systems.

Cardiovascular diseases are statistically the major cause of morbidity, unfortunately,
classical invasive-based treatment methods present high risk and expensive cost [5]. On
the other hand, the cluster headache is a specific pain which is difficult to detect among
different pathologies having the same clinical signs. Up to now, the specialists prescribe
classical headache medicines to alleviate the pain [6].

The main objective of this Thesis is to improve the analysis using statistical tools
and multimedia processing methods to design two automatic non-invasive systems, the
first one able to provide improved SCD risk markers, and the second one able to detect
the cluster headache and objectify its treatment. Therefore, two specific aims are clearly
distinguished:

e The first specific objective is to scrutinize the HRV analysis methods proposed for
the SCD risk-stratification and to improve the robustness of non-linear methods
through a set of indices in long-term holter monitoring, namely Multiscale Entropy
(MSE), Multiscale Time Irreversibility (MTI), and Multifractal Spectrum (MFS).

e The second specific is to propose a multimedia concept for quantifying the color of
the iris, which allows the documentation and quantification of subtle pigmentation
differences. This concept is to be made operative though different machine learning
methods namely Support Vector Classifier (SVC), and K-Nearest Neighbour (K-NN).

1.3 Methodology

To achieve the first objective, we studied the suitability of nonlinear multiscale HRV
measurements to characterize different cardiac health states in LTM recordings. Specifically,
we made a comparative analysis of the three mentioned multiscale methods on a database
consisting of patients with 7-day Holter in two cardiac conditions, namely, Congestive
Heart Failure (CHF) and Atrial Fibrillation (AF) [29]. This study aims to give basic
knowledge on the usefulness and current limitations of these methods towards their future
and principle use for SCD risk stratification. For this purpose, a nonparametric statistical
test is proposed in order to compare and give cut-off comparison levels between two
different situations in terms of the confidence intervals (CI) for the median difference
across multiscale representations of poblational representations. This method can be used
either for establishing comparisons among patients or subjects with different conditions, or
to scrutinize the impact of preprocessing or data length on the statistical properties of the
multiscale representations. The procedure can be seen as an extension of previously used
statistical comparisons [30, 31] in terms of nonparametric bootstrap tests for confidence
bands [32, 16].

For the second objective, we developed an automatic CH diagnosis method using
machine learning classification (in particular, the SVC and K-NN principles) to analyze
differences in the iris color of a cephalea patient. We hypothesized that subtle differences
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in eyes color could be quantified in terms of the error probability of a pixel classification
system which is suitably designed and trained to identify color space differences in color-
pixel spaces. We built this system by using a specifically created database with images of
both eyes in 25 subjects, with images taken under the same conditions. It is worth noting
that the used database is completely new, and though the number of patients is limited,
it represents a trade-off for technically scrutinizing our method before large-scale data
assembling. First, we studied the applicability of statistical classifiers to detect differences
in the iris color under a pixel-by-pixel approach. Then, we analyzed the robustness of the
classifier to regional changes due to substructures possibly present in the iris images, as
well as the impact of simultaneously using different color spaces and the contribution of
the pixel neighborhood to the classifier performance.

1.4 Thesis Structure and Contributions

This Dissertation is outlined as follows:

e In the next chapter, an overview of the research field is exposed: ANS background,
cardiovascular system regulation, and the CH.

e Chapter 3 spreads our first contribution in SCD risk-stratification applying nonlinear
dynamics and multiscale indices in large scales of cardiac signals.

e Chapter 4 presents the second proposal in ANS function evaluation for CH diagnosis
support by classifying the iris color-pixel vectors of both eyes.

e Chapter 5 contains the discussion, the conclusions, and future perspectives.

Results of the described works of this Thesis have been previously published on journals
indexed in the Journal Citation Reports service and presented in international conferences.
The contributions of the first line of research have been published in two international
conferences and one journal article as follows:

e El-Yaagoubi, M.; Gan—Esteban, R.; Jabrane, Y.; Munoz-Romero, S.; Garcia-
Alberola, A.; Rojo-Alvarez, J.L. “On the Robustness of Multiscale Indices for
Long-Term Monitoring in Cardiac Signals”, Entropy 2019, 21, 594.

e M. El Yaagoubi, R. Goya, Y. Jabrane, S. Munoz-Romero, J.L.. Rojo Alvarez and
A. Garcia-Alberola “Multifractal Spectrum Analysis of Long-term Monitoring in
Cardiac Signals”, International Conference on Biomedical Engineering, 4-5 October
2018, Marrakech, Morocco.

e M. El Yaagoubi, R. Goya, Y. Jabrane, S. Mufioz-Romero, J.L. Rojo Alvarez and A.
Garcia-Alberola “Multiscale Entropy and Multiscale Time Irreversibility for Atrial
Fibrillation and Heart Failure from 7-Day Holter”, Congreso Anual de la Sociedad
Espanola de Ingenieria Biomédica, 29 November - 1 December 2017, Bilbao, Spain.

As for the second line of research, the results have been published in two international
conferences with a journal article to be submitted:
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e M. El Yaagoubi, I. Mora Jiménez, Y. Jabrane, S. Munoz-Romero, J.L.. Rojo Alvarez
and J.A. Pareja Grande “Quantitative Cluster Headache Analysis for Neurological
Diagnosis Support using Statistical Classification”, submitted to MDPI-Information.

e M. El Yaagoubi, I. Mora Jiménez, J.L.. Rojo Alvarez, Y. Jabrane and J.A. Pareja
Grande “Extended Iris Color Features Analysis and Cluster Headache Diagnosis

Based On Support Vector Classifier”, International Conference on Intelligent Systems
and Computer Vision, 17-19 April 2017, Fes, Morocco.

e M. El Yaagoubi, I. Mora Jiménez, J.L. Rojo Alvarez, and J.A. Pareja Grande “Cluster
Headache Diagnosis Using Iris Color Features and Statistical Pixel Classification”,
2016 - XIV Mediterranean Conference on Medical and Biological Engineering and
Computing.
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Chapter 2

Overview of the Research Field

This chapter presents a brief background of the ANS; its relation with the cardiovascular
system regulation, and the brief overview of the CH.

2.1 Autonomous Nervous System

The ANS or visceral nervous system, also called the vegetative nervous system, is the part
of the nervous system responsible for functions not under voluntary control [33].

The ANS regulates certain physiological processes, such as blood pressure and breathing
rate. This system works automatically (autonomously), without conscious effort on the
part of a person. ANS disorders can affect any part of the body or any physiological process.
Autonomous disorders can be reversible or progressive. This system connects the brain
stem and spinal cord to the internal organs and it regulates internal physiological processes
that do not require any voluntary effort and of which people are normally unaware, for
example, the heart rate and power of heart contractions, blood pressure, breathing rate
and the rate of food transit through the digestive tract [34]. The ANS is divided into three
parts [35], as it can be seen in Figure 2.1:

e The sympathetic system: Its main function is to prepare the body to react in case of
stress or emergency, to fight or escape. Its action is regulated by the norepinephrine
and adrenaline (catecholamines).

e The parasympathetic system: Its main function is to maintain the body’s nor-
mal functions during ordinary situations. Its action is regulated through different
neurotransmitters such as acetylcholine.

e A third part of the ANS is known as the Enteric Nervous System (ENS), as it can
be seen in Figure 2.2. The ENS regulates the digestive system, as well as the motor
functions, local blood flow, mucosal transport and secretions, and it also modulates
immune and endocrine functions.

Sympathetic and parasympathetic systems interact with each other, in general, one system
activates the actions of the internal organs while the other inhibits them. For example,
sympathetic activity increases pulse rate, blood pressure and respiratory rate, while
parasympathetic activity reduces them.
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Figure 2.1: ANS organs and function regulation.

Many organs are mainly controlled by the sympathetic or parasympathetic systems.
Sometimes the two systems have opposite effects on the same organ. For example, the
sympathetic system increases blood pressure, while the parasympathetic system reduces it.
Overall, these two systems work together to ensure that the body responds appropriately
to different situations.

The sympathetic system prepares the body to react in case of stress or emergency, to
fight or escape. It increases the heart rate and strength of cardiac contractions, and it
dilates the airways to facilitate breathing. It causes the release of energy stored in the
body. Muscle strength is also increased. This system is also responsible for sweating the
palms, dilating the pupils, and making the hair stand up. It slows down physiological
processes that are less important in emergencies, such as digestion and urination.

The parasympathetic system controls physiological processes during ordinary situations.
In general, the parasympathetic system preserves and restores. It slows the heart rate
and reduces blood pressure. It stimulates the digestive tract to digest food and eliminate
waste. The energy of digested food is used to restore and build tissues.

Both the sympathetic and parasympathetic systems are involved in sexual activity, as
well as those parts of the nervous system that control voluntary actions and transmit skin
sensations.

These three systems manage the activity of many organs (heart and blood vessels,
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Figure 2.2: Enteric Nervous System functions.

lungs, digestive tract, bladder, dilatation or contraction of the pupil of the eyes).

After the ANS has received information about the body and the external environment,
it responds by stimulating physiological processes, usually through the sympathetic system,
or by inhibiting them, usually through the parasympathetic system.

An autonomous nerve pathway connects two nerve cells located in two major structures,
one in the brain stem, and the other in the spinal cord. It is connected by nerve fibres
to the other cell, which is located in a network of nerve cells (called the autonomous
ganglion). The nerve fibres in these lymph nodes are connected to the internal organs.
Most of the lymph nodes of the sympathetic system are located just outside the spinal
cord, on either side of it. The nodes of the parasympathetic system are located near or in
the organs to which they are attached.

2.2 ANS Regulation of the Cardiovascular System

It is well known that central neural system acts on the circulation as well as the emotional
stress which causes an increase in heart rate or a blushing of the skin [36]. Moreover, it has
been observed that stimulation of peripheral sympathetic nerves causes vasoconstriction
and that interruption of the spinal cord in the lower cervical region drastically reduces
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Figure 2.3: ANS and Cardiovascular System Regulation. Hypothetical section through
the medulla.

blood pressure. All the experiments made suggest that the depressor and sinus nerves carry
sensory information to the brain and that the brain in some fashion uses this information
to control cardiovascular function. In Figure 2.3 a synoptic is shown of the relation between
the ANS and the cardiovascular system, and the behaviour of this relation is described in
[37] and summarized next.

The main variable controlled by the ANS is the systemic arterial blood pressure. The
mean arterial pressure must be both constant and high enough for glomerular filtration to
occur in the kidneys or to overcome high tissue pressures in organs such as the eye. Corneille
Heymans was the first to demonstrate that pressure receptors (called baroreceptors) are
located in arteries and they are part of a neural feedback mechanism that regulates
mean arterial pressure. Heymans hypothesized that increased blood pressure stimulates
arterial sensors, which send a neural signal to the brain, and that the brain in turn
transmits a neural signal to the heart, resulting in bradycardia (decreased heart rate).
The negative-feedback loop, when increased mean arterial pressure, causes vasodilation
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and bradycardia, whereas decreased mean arterial pressure causes vasoconstriction and
tachycardia (increased heart rate). Sympathetic and parasympathetic divisions of the
autonomic nervous system are both included in the efferent pathways of the baroreceptor
response:

e Sympathetic Efferents. Increased sympathetic activity produces vasoconstriction.
Indeed, the baroreceptor reflex produces vasodilation.

e Parasympathetic Efferents. Increased baroreceptor activity instructs the nervous

system to stimulate neurons in the nucleus ambiguus and the dorsal motor nucleus
of the vagus (cardioinhibitory area).

2.3 Cardiovascular System Overview

Consisting of the heart and vessels (arteries and veins), the cardiovascular system distributes
oxygen and nutrients essential to life to the organs through blood, while eliminating waste.
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The blood circulates within a network of pipes, with calibres perfectly adapted to their
functions:

e The arteries, from the large aorta (2.5 centimetres in diameter) to the small arterioles
(no more than 2 millimetres), carry oxygen-laden blood from the heart to the organs.

e The capillars, thin as hair, ensure the circulation of blood inside each organ.

e The veins bring back blood loaded with carbon dioxide to the heart.

2.3.1 Blood Circulation

The oxygen-laden blood is propelled into the aorta, which is the main artery of our
body. It then passes through the many secondary arteries that lead to the different parts
of the body. Then, blood is carried to the various organs from the arteries, which are
narrower and narrower (arterioles). In each organ, the blood, circulating in the capillaries,
distributes to the cells their ration of oxygen and nutrients, in exchange for carbon dioxide
and waste. The blood, charged with carbon dioxide, is brought back to the heart by the
venous circuit.

Venous blood is ejected from the heart to the lungs through the pulmonary artery. It
joins the pulmonary alveoli, a kind of small bags located on the bronchi, where the air
breathed ends. The blue blood then regenerates by drawing oxygen through the permeable
membrane of the alveoli, which is supported by the red blood cells, while evacuating
carbon dioxide. The pulmonary veins are responsible for bringing the regenerated blood
- rich in oxygen and low in carbon dioxide - back to the left heart, and ready for a new
journey through the arterial network.

2.3.2 Brain Circulation

Like all organs, the brain receives the oxygen and energy it needs to function through the
blood vessels. Four arteries provide blood to the brain:

e Two internal carotids (right and left) are born at the front of the neck of the common
carotid arteries. They penetrate the skull through the bone of the rock.

e Two vertebral arteries, at the back of the neck, penetrate through the occipital hole
and join into a single artery, the basilar trunk.

These four arteries are at the origin of the cerebral arteries.

2.3.3 The Heart

The heart is composed of two compartments (right / left heart), as it can be seen in Figure
2.5.

Inside each of these cavities there are two cavities, namely, atrium and ventricle. The
blood circulation is divided into two parts that correspond to the right and left cavities of
the heart. Oxygen-poor blood reaches the right heart through the vein cave, enters through
the right atrium and moves to the right ventricle owing to the pressure differences, and to
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Figure 2.5: The Heart.

a lesser extent, to the atrial systole. The ventricular systole (ventricular contraction) in
turn ejects the blood from the right ventricle to the lungs where it is oxygen-enriched. This
blood returns through the pulmonary veins and accumulates in the left atrium and passes
to the left ventricle owing to pressure differences to the atrial systole. The ventricular
systole also ejects blood to the peripheral organs through the aorta artery. Figure 2.6
shows the phases of the cardiac cycle.

2.3.4 ECG, Tachogram, and Long-Term Monitoring

The electrical function of the heart is based on the propagation of an electrical impulse
along the tissue of the myocardium (His bundle). This impulse is initially generated
in the sinus node and spreads due to the depolarization of the atrial muscle cells. The
impulse arrives at the atrio-ventricular node and spreads through the purkinje Fibres that
propagates it to several points of the ventricles, and then to the ventricular muscle cells.
The cycle can be seen as divided into two phases:

e The depolarization of cells, which causes systole in the phase of contraction (ejection
of blood), originating the following cardic waves:

— P wave, corresponding to atrial depolarization which causes the atrial systole
(contraction);

— PQ segment, corresponding to the atrio-ventricular conduction time delay of
the blood.

— QRS complex, corresponding to the ventricular depolarization causing the
ventricular systole (contraction of ventricles).
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Figure 2.6: Cardiac cycle.

e The repolarization of cells, leading to the diastole or the relaxation phase (filling of
atrial and ventricles):

— ST segment, corresponding to the repolarization time of the ventricles;

— T wave, corresponding to the repolarization of the ventricles and the ventricular
diastole (relaxation)

2.3.5 Physio-pathology and Cardiac Disorders

CHF and AF are two disorders that increase in prevalence as the population ages. This
combination is a problem with which the cardiologist is increasingly confronted. CHF
promotes AF which in turn worsens CHF [38]. The therapeutic management of these
patients is complex. It can be considered in several ways: Frequency control, i.e. compliance
with AF and prescription of decelerating drugs, or rhythm control, i.e. cardioversion
when the patient is in persistent AF, and sinus rhythm maintenance by anti-arrhythmic
drugs. However, class I antiarrhythmics are contraindicated in these patients, with the
best results being provided by amiodarone, which can have deleterious extracardial effects.
Non-pharmacological therapeutic methods can also have their place, whether it is ablation
or resynchronization. There is currently growing interest in drugs in the renin-angiotensin
system for CHF and AF. Beyond their therapeutic effect on CHF, they can also have a
preventive effect on AF when used in hypertensive patients [39].
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Figure 2.7: ECG waveform.

2.3.6 ANS Heartbeat regulation and SCD Risk Stratification
ANS and Heart Rate Regulation

The heart contraction is controlled by special neurological mechanisms which induce the
propagation of the action potentials through the myocardium resulting on a rhythmic
beats. The sympathetic and parasympathetic vagus nerves controls the blood pumping.
The heart rate can be affected by sympathetic stimulation going from 70 to 200 beats
per minute. The increased force of heart contraction, in turn, increases the volume of
blood pumped as well as the ejection pressure. The inhibition of the sympathetic nerve
that reaches the heart can decrease the heart rate and the volume of blood pumped. The
heartbeat can be stopped for a few seconds with a strong stimulation of parasympathetic
nerve fibers in the vagus nerve to the heart. Although, the heart changes response and
beats at a frequency of 20 to 40 beats per minute during the parasympathetic stimulation.

Risk stratification in SCD

A heart attack occurs when the blood supply to a part of the heart is interrupted by the
obstruction of a coronary artery. Without oxygen, the cells in this part of the heart muscle
gradually die until the supply is restored. The extent of damage varies according to the
duration of the interruption: cardiac damage can be benign, severe or irreversible. In some
cases, a heart attack can be fatal. Even if the two are often confused, cardiac arrest is
different from a heart attack. A heart attack is a circulatory problem (blocking a vessel
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that supplies blood to the heart) that can cause irreversible heart damage. Cardiac arrest
is caused by an electro-physiological problem (electrical dysfunction of the heartbeat).
Among the populations subject to the problem, there is a subgroup of patients with
shortened life expectancy. The main areas of analysis are: The study of ventricular
arrhythmias (ventricular extrasystoles and unsupported ventricular tachycardias) and their
frequency of occurrence; The study of the autonomic nervous system (HRV and HRT); And
the study of ventricular activity (duration of the QRS complex, length of the QT segment
and amplitude variability of the T-wave). These studies, which most often focus on the
predictive power of sudden death of a single descriptor (univariate studies) or sometimes
a linear combination of descriptors (multivariate studies), are generally consistent. The
main risk criteria identified are: a reduced HRV, a prolonged QRS complex, a QT segment
> 440 ms and the presence of T-Wave Alternans.

However, not all these studies conducted to better characterize the at-risk population have
necessarily made it possible to optimize the selection criteria for patients likely to benefit
from the prophylactic implantation of an cardioverter defibrillators (ICD), particularly
because the results obtained are not robust. A multivariate non-linear analysis of the
Holter recording descriptors has not yet been conducted, but it could improve, through the
combined contribution of each of the relevant descriptors, the specification of the patient
at risk of SCD and, ultimately, the recommendations for implementing an ICD in primary
prevention. Moreover, given the complex nature of the interactions present in physiological
systems, the interpretation and explanation of these indices are questionable, while the
study of the long-term evolution of these indices may well provide a new approach.

2.3.7 HRV Measurements and Analysis Methods

HRV [40, 41] can be measured using temporal, statistical, geometric, spectral, and non-
linear methods that can help us to describe the quantitative and qualitative aspects of the
oscillations of the NN interval around its mean value. The NN-intervals are defined as the
distance between R-waves of consecutive beats, excluding the ectopic beats.

Temporal, Statistical, and Geometrical Measurements

Statistical analysis of a dataset, which in our case is the temporal sequence of NN intervals.
The calculation methods used in this analysis family remain very simple and all these
operations can be done in a spreadsheet. Table 2.1 summarizes some of the statistical
methods for HRV.

Geometric methods are derived and constructed from the conversion of NN interval
sequences. There are different geometric forms for the evaluation of HRV: the histogram,
the triangular index HRV and its modification, the triangular interpolation histogram
of interval NN, and the method based on the Lorentz or Poincaré plots. The histogram
evaluates the relationship between the total number of detected NN intervals and the
variation of NN intervals. The triangular HRV index estimates the main peak of the
histogram as a triangle with its reference width corresponding to the amount of variability
of NN intervals, its height corresponding to the most frequently observed duration of
NN intervals, and its area corresponding to the total number of all NN intervals used to
construct it. The triangular HRV index is an estimate of the total HRV.
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’ Index \ Units \ Description
AVNN ms Mean of NN intervals
SDNN ms Standard deviation of NN intervals
SDANN ms Standard deviation of the averages of NN intervals
in all 5 min segments of the entire recording
SDNNindex | ms Mean of the standard deviations of

NN intervals for all 5 min segments
The Square root of the mean of the sum of the

RMSSD ms | squares of differences between adjacent NN intervals
NN50 Number of pairs of adjacent NN intervals
differing by more than 50 ms in the entire recording
pNN50 NN50 divided by the total number

of NN intervals

Table 2.1: Statistical indices of HRV.

Geometric methods are less affected by the quality of the recorded data and can provide
an alternative to statistical parameters that are easier to obtain. However, the duration
of the recording should be at least 20 minutes, which means that in the short term
the recordings cannot be evaluated by geometric methods. Table 2.2 sums up the most
important geometric indices.

Spectral Measurements

Spectral methods analysis of HRV [42, 43] are based on the fact that the influences of the
two branches of ANS on the heart, as well as on certain other systems, have well-defined
and different oscillatory behaviours. In this way, the following division into spectral bands
can be established according to the system that has the greatest contribution in that band.
Four spectral bands are mainly distinguished in the power spectral density of the NN
series, namely, high frequency (HF) band with f € (0.15,0.4) Hz, low frequency (LF) band
with f € (0.04,0.15) Hz, very low frequency (VLF) band with f € (0.003,0.04) Hz, and
ultra low frequency (ULF) band with f < 0.003 Hz.

As shown in table 2.3, a list of Frequency-domain indices have been proposed.

TI Measurements

Time irreversibility is a characteristic feature [44, 45| of non-equilibrium, complex systems
involving cardiovascular control mediated by autonomic nervous system. Its analysis in
HRYV signal represents a new approach to assess cardiovascular regulatory mechanisms.
Henceforth, an estimation of complexity and temporal asymmetry of short-term heart
HRV can be given as an index of complex neurocardiac control in response to stress using
symbolic dynamics and temporal irreversibility methods which will be further developed
in the following chapter.
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Index \ Units \ Description ‘
Total number of all NN intervals divided by the
Triangular index ms maximum of the density function

(height of the histogram of all NN intervals)
Base width of the minimum square
INN ms difference triangular interpolation
of the highest peak of the histogram
of all NN intervals
Lorentz plot dispersion | ms Representation of each NN interval duration
versus the duration of the previous interval
Difference between the widths of the
Differential index ms histogram of differences between adjacent NN
intervals measured at selected heights
Coefficient ¢ of the negative exponential
curve Kexp — ¢t which is the best
Logarithmic index adim approximation of the histogram of absolute
differences between adjacent intervals

Table 2.2: Geometric indices of HRV.

’ Index \ Units \ Description ‘
Total power | ms? | Total variance of NN intervals over the temporal segment
VLF ms? Power in very low frequency range
VF ms? SPower in low frequency range
LF norm % LF power in normalised units
LF/(Total power-VLF)*100
CHF ms? Power in High frequency range
CHF norm % CHF power in normalised units
CHF/(Total power-VLF)*100
LF/HR adim Ratio LF|ms?)/HR[ms?|

Table 2.3: Frequency domain methods of HRV.

Entropy

The entropy is a central concept of Information Theory [46, 47]. The entropy of a message
is a measure of the amount of information contained in it. For example, the message
“mmm mmmmmm” does not contain much information. In fact it can be shortened by
saying "9*m”. Most of the original message is redundant. However, the message “mey
jlr yrs” contains a lot of information. There is no redundancy or regularity. Therefore
in order to transmit this message at least 9 characters are necessary. The message “mey
mey mey” lies in between. It does contain some redundancy, but in order to transmit one
would need 5 characters: “3*mey”.

A more formal definition of the entropy has been provided by Shannon [48]. For a discrete
random variable X having n symbols, each symbol x; having a probability p; of appearing.
A message source that has n possible messages with probabilities pq, ...... , Pn- Then the
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entropy of a message is:
E; = —logsp(z;) [bit] (2.1)

where E denotes mathematical expectation, and log, the logarithm in base b. A base
2 logarithm is usually used because the entropy then has the units of bit/symbol. The
symbols represent the possible realizations of the random variable X. In this case, H(X)
can be interpreted as the number of yes/no questions to be asked on average by the
receiver at the source, or the amount of bit information that the source must provide to
the receiver in order for the receiver to unambiguously determine the value of X.

Chaos Measurements

Chaos has been defined as the study of multi variable, non-linear and non-periodic systems,
and describes natural systems in a different way because it can reflect the randomness
of nature [49, 50]. Perhaps Chaos Theory can help to better understand human resource
dynamics, taking into account that healthy heartbeats are slightly irregular and chaotic
to some extent, on the assumption that the complex fluctuations of the heart rhythm
are partly characterized by a deterministic chaos, and that the pathologies cause a
decrease in this non-linear variability. Therefore, HRV dynamics can be analysed by
chaotic system methods such as Lyapunov’s Exponent, and Correlation Dimension. The
Lyapunov spectrum is a central quantity of dynamical systems theory and chaos theory.
It is a measure of the sensitivity to the initial conditions of a trajectory, and thus of its
stability or chaoticity. Lyapunov exponents also appear as the temporal average of a
fluctuating quantity and therefore generally have a typical value for a given system. But
it is sometimes interesting to decompose the dynamics into its different ingredients, to
elucidate the complex behavior that results from this mixture. From an initial condition
called attractor, the correlation dimension is a fractal dimension estimation of the attractor
that appears in the reconstructed phase space, since the attractor, if it comes from a
chaotic dynamic system, has a fractal structure. The fractal dimension is related to the
minimum number of system variables needed to model the attractor, and thus related
to the complexity of the system itself. The correlation dimension can be estimated
computationally using the Grassberger-Procaccia algorithm.

Fractal Measurements

Non-linear fractal methods can provide new insights into human resource dynamics in
the context of physiological changes and in high-risk situations, particularly in patients
after myocardial infarction or in the context of sudden death. Recent data suggest that
fractal analysis against standard HRV measurements appears to detect abnormal trends
in NN fluctuations more effectively [51, 52]. Since heart rate dynamics are characterized
by the singularities, the knowledge of a singularity in time series or in fractal signals is
very interesting. Let us consider a continuous function f(t), which mathematically can be
developed by a Taylor Series in the vicinity of ¢; or power series, as follows:

ft) =ag+ar(t —t;) + as(t —t;)* +as(t —t;)* + ... (2.2)

When experimental or empirical time series are characterized by their fractal features and
for some times t;, function f(¢) exhibits singular behavior. In [53], step-like and cup-like
singularities features appear as non-integer powers of time in the signal components.
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This can be expressed as
ft) =ao+ar(t —t;) +ag(t —t;)* + as(t — ;) + ... + ap,(t — ;)" (2.3)

where h; is a non-integer number quantifying the local singularity of f(t) at t = ¢; and ¢ is
inside a small vicinity of ¢; [54].

Multifractal analysis measures globally the local dynamics of the time series data, based
on the Hausdorff dimension, denoted by f(«) (measurement of fractal dimension), where
« is the singularity strength of the decomposed interwoven signal sets. The Hausdorff
dimension allows us to find the non-integer dimension of fractals. Therefore, to measure
the singularity in function f(¢), authors in [53] explain a procedure for Hausdorff dimension
measurement and for s = 1,2, 3 measures. In case of non-integer s, let us consider a set F'
of fractal signals, thus it exists a unique d such as

ww={% 24

Accordingly, d is defined as a measurement of the fractal dimension of the set H defined
as H(f). According to [53], F is fractal if d is greater than another quantity called the
topological dimension, and the singularity spectrum can be written as:

fla) =dimp{z | p(B(€)) ~ %, fore— 0} (2.5)

where B, (€) is the € box at point x from tachogram signal, p is the measure and « represents
the singularity value or singularity strength. The f(«) spectrum is the hump-shaped
curve over a finite interval [min, Qmaz] Where aupi, and ag., represent the strongest and
weakest singularities, respectively. The different non-integer exponents h; characterize the
statistical properties of different subsets, which are modeled by function D(h), where D(hg)
represents the fractal dimension of the time series subsets and it allows us to alternately
measure singularities.

Choice of MSE, MTI and MFS

The focus of the work is on analyzing the usability of multiscale indices in several-day
cardiac monitoring, from different aspects including the algorithmic suitability of currently
proposed methods. Multiscale methods can be useful for characterizing long and short-term
health states. In particular for MSE, which was first delivered to analyze of nonlinear
and non-stationary signals in finite length time series, was of interest to characterize the
complex temporal fluctuations that are inherent in permanent AF, and maybe provide
additional prognostic information in clinical setting. This path in the work is followed,
and focused on obtaining the capability of these indices to characterize different dynamics.

2.4 Cluster Headache Overview

The eye, or eyeball, is a hollow structure with a generally spherical shape [55]. It consists of
tunics, a lens and liquids. The outer coat is the sclera, a dense, poorly vascular connective
tissue. It has a protective role for the eye. It is the white of the eye, it is surrounded by a
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Figure 2.8: Normal eye anatomy.

very thin and transparent membrane, called the conjunctiva. On the anterior side, this
sclera is replaced by the cornea, transparent which allows the entry of light rays into the
eyeball. It is also rich in nociceptive fibers: contact with an object induces blinking and
lacrimal secretion, two protective functions.

The transmission of information obtained from the retina to the brain is effected by
the optic nerve. All the optical fibers from the visual cells converge on a specific point
in the retina: the pupil. At this point also leads the venous and arterial network of the
retina. The optical fibers all join there to form a cable: the optic nerve, there is one optic
nerve per eye. The two nerves intersect in an area called the optic chiasm. At this point
only part of the fibers intersect as shown in Figure 2.9.

The nervous message is sent to the brain, it is transmitted from one nerve cell to
another. The functioning of a synapse which serves as a contact zone between the two
neurons is complex. The tip of the pre-synaptic extension is a lump, the synaptic button,
rich in neurotransmitters contained in small vesicles. There is a space separating the
pre-synaptic zone from the post-synaptic zone: the synaptic cleft. The post-synaptic
membrane, supposed to receive the influx, carries receptors specific to a neurotransmitter
and when a nerve impulse reaches the synaptic button, it causes the expulsion of the
neuromediator in the slit by bursting of the vesicles. This then reaches the receptor sites of
the postsynaptic membrane and triggers a nerve impulse there. The pathways of conscious
visual sensitivity, partially crossed in the chiasma, terminate in the occipital region. Any
damage to the visual area results in partial blindness corresponding to a defined region of
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the visual field. The retina projects point by point on the visual area, but the cortical
territory corresponding to the fovea is relatively very large. The neurons of the primary
visual cortex, on the other hand, have rather elongated receptive fields. They respond well
to lines of light with a specific orientation. These receptive fields responding to a given
orientation are those of single cells. These rectangular receiving fields often have a central
band responding positively to light (ON) flanked by two bands responding to dark (OFF).
If the light streak is not on the ON band, the stimulus is simply not transmitted.

The visual area of the brain is divided into several regions of which we do not know
everything:

e Areas V1 and V2: these areas play a very important role in the perception of contours.
They remain essential in any fine visual perception.

e Area V3: scientists have not clearly identified this area.

e Area V4: this area plays a role in the perception of colors, as demonstrated by
Semir Zeki of University College London. But specialists think that other regions
are associated with it.

e Area Vb5: it plays a role in the perception of movements as shown by experiments
with magnetic resonance imaging.

Simple eye defects like farsightedness can cause headache [56, 57]. But they are
sometimes indicative of much more serious ophthalmological pathologies, therefore, before
turning to a neurologist, consulting an ophthalmologist may be wise.

According to the International Headache Society (IHS), headaches in Group IV deserve
special attention because they are not associated with visible organic lesions, and they
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are characterized by their short duration, thereby falling into the Primary Headache
Short-Term group of the IHS [26]. These are known as Cluster Headaches (CH), they
are gender independent, and they can appear from childhood to old ages, with increased
prevalence in 30-to-40 year-old patients. The clinical signs in CH mainly include unilateral
pain located in the temporal, maxillary, and frontal regions, though they can extend and
include the neck and the ear structures. Under some circumstances, these headaches can
manifest as multiple pain attacks of short duration, with recurrence during prolonged
periods. This allows the clinicians to identify them among other headaches that result
from other diseases, such as those ones related to strokes, pancoast and frontal lobe
tumors, intracranial hypertension, or severe symptomatic thrombocytopenia [58]. Overall,
CH is a relevant pathology, characterized by a complicated diagnosis due to its difficult
classification as group IV in the THS.

One of the CH signs is the different iris color in the patient’s eyes, which is not always
noticeable by simple visual inspection. Accordingly, the screening and early detection
of CH could be addressed by creating a biomarker from subtle color changes in the iris.
Newborn has an indeterminate iris color. The coloration of the iris is done in the first
months of life. The final color is inherited and determines the progressive pigmentation
that is culminated in the first months of life by the activity of pigment cells (melanophores).
The sympathetic nervous system exerts a trophic action on the activity of melanophores.

2.4.1 Cluster Headache Symptoms

When there is a congenital or acquired sympathetic defect in the neonatal period, there is
a deficit of pigmentation in the iris on the side of the sympathetic hypofunction [28]. The
result is heterochromia: an eye of each colour, typically a blue eye and a brown eye, with
the clear eye being the defective pigmented eye. Heterochromia with a clear difference in
colour is easily recognised by the naked eye. If the difference is subtle, a sensitive method
would be needed to recognize it.

Some headaches (typically CH) occur with strictly unilateral pain centered in the
ocular region [28]. During symptomatic periods, a sympathetic deficit develops on the
pain side, causing ptosis (drooping of the upper eyelid) and myosis (small pupil). Both
signs of sympathetic hypofunction are known as Horner syndrome. If there is a latent
sympathetic defect on the pain side that manifests itself during symptomatic periods there
may also be less pigmentation of the iris on that side. If this were so, the sympathetic
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defect would have occurred in the neonatal period or would be congenital.

2.4.2 Data Analysis for Irido

Colour, texture, contour are elements that allow a low level analysis in human perception,
are also a determining characteristic that leads to the recognition of observed objects
and the their interpretation with a large field of applications of segmentation and image
classification.

Color spaces

A range of colors can be created by the primary colors of pigment and these colors then
define a specific color space [59]. Color space, also known as the color model, is an abstract
mathematical model which simply describes the range of colors as tuples of numbers,
typically as 3 or 4 values or color components (e.g. RGB). Basically speaking, color space
is an elaboration of the coordinate system and sub-space. Each color in the system is
represented by a single dot.

Color space is a three-dimensional mathematical model representing the set of percep-
tible, usable or reproducible colors by a human being or a device. Each color it contains
is thus associated with coordinates determining a precise point and corresponding, for
example, to values such as luminance, saturation and hue. There are three types of color
spaces: dependent color spaces, describing only the characteristics of the corresponding
device, independent color spaces, describing a set of visible colors without referring to a
particular device in the graphic chain; and finally workspaces, which are used by retouch-
ing software and file formats to determine the color palette with which it is possible to
work. Note that a three-dimensional representation makes it possible to visualize a color
space, but makes any comparison between two different spaces difficult. Two-dimensional
representations are thus more common, because it is thus possible to superimpose several
color spaces, therefore to assess the color palette that they represent in relation to each
other. It should be noted, however, that such two-dimensional graphics deprive us of
viewing the luminance information contained in the three-dimensional graphics.
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Textural analysis

Texture analysis remains an open problem in the field of computer vision. There is no
exact mathematical definition of texture that results from a coherent perception of an
entity observed in an image. For example, in [60], texture is defined as follows:

A texture is a field of the image that appears as a coherent and homogeneous domain, i.e.
forming a whole for an observer.

Although the perception of a given texture is obvious to the observer, it remains very
difficult to represent it mathematically: on the one hand, it is not trivial to represent the
spatial links that exist within the same object, and on the other hand, to define descriptors
that ensure invariance by changing scale, orientation, lighting, color, etc. (as is the case
for human interpretation) is a delicate task. As a result, a large number of definitions and
associated approaches have been developed for specific applications [61].
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Biometry and iris recognition

The iris is the colored, donut-shaped portion of the eye behind the cornea and surrounds the
pupil (Figure 2.13). A person’s iris pattern is unique and remains unchanged throughout
life. Also, covered by the cornea, the iris is well protected from damage, making it a
suitable body part for biometric authentication.

Indeed, biometric identification makes it possible to recognize or verify the identity
of people, with a high degree of reliability. For this reason, it was first used in “high
security” environments, such as high risk installations, nuclear power plants etc. where iris,
fingerprint or face recognition are used. With the advent of user-friendly and affordable
systems, biometric identification is increasingly used in our everyday environments such as
site access control. Iris recognition [62] is characterized by a very high level of precision.
This technique is considered impossible to defraud. The error rate of products available
on the market is very low and its stability is extended until the death of individuals. Iris
recognition is the only system that can be used on a large number of people with full
identification. The biometrics system searches for a positive match among all the models
saved in the database. If a matching model is found, the registration number is used as
the person’s identifier.

2.4.3 Analysis methods

Nowadays, machines are capable of reproducing human behavior, but without conscience.
Later, their capacities could grow to the point of turning into machines endowed with
consciousness, sensitivity and spirit.

Machine learning and SVM

Machine Learning (ML) and Deep Learning (DL) are Artificial Intelligence (Al). For
example, knowledge graphs or rule engines are Al but do not fall under ML or DL. Deep
Learning is a branch of Machine Learning. Al has evolved a lot thanks in particular to the
emergence of Cloud Computing and Big Data, which is inexpensive computing power and
accessibility to a large amount of data. Thus, the machines are no longer programmed;
they learn.

Machine Learning, or automatic learning, is capable of reproducing a behavior thanks
to algorithms, themselves fed by a large amount of data. Faced with many situations, the
algorithm learns which decision to adopt and creates a model. The machine can automate
tasks depending on the situation. For example, for a machine to learn the concept of cat,
an engineer compiles a large number of examples on the animal which it transmits to an
algorithm. Previously, the engineer had to establish the identity card of a cat (it has a
coat, whiskers, it falls on its legs, etc.) and represent these rules in a computer program.
Today, he only has to collect the data, which makes the task easier and faster. This new
way of automating leads to considerable progress. Support vector machine SVM [63, 64]
is a simple algorithm that every machine learning expert should have in his/her arsenal.
SVM is highly preferred by many as it produces significant accuracy with less computation
power. SVM can be used for both regression and classification tasks. But, it is widely
used in classification objectives.
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Algorithm 1 K-means clustering

input: K, set of pixels p1,- -, pn

place centroids ¢y, - - -, cx at random locations

repeat until convergence:

for each pixel p; do
find nearest centroid ¢; argmin;D(p;, ¢;)
assign the pixel p; to cluster j

end for

for each cluster j =1,---, K do
compute the new centroid ¢; = mean of all pizels p;
assign the new pixels to cluster j

end for

stop when none of the cluster assignments change

K Nearest Neighbours

The basic idea of this algorithm is centred on classifying a new element in the most frequent

class where its nearest K neighbours belong, on other words it consists on modifying and

adjusting the KNN parameter of the classifier taking into account the new number of

samples. The algorithm is therefore based on a very simple and intuitive idea, which

coupled with its easy implementation makes it a very widespread classification algorithm.
This algorithm is described as follows:

Choice of SVM and KNN

The work scrutinizes the scope of an automatic diagnosis-support system for early detection
of CH, by using as indicator the error rate provided by an statistical classifier designed
to identify the eye (left vs right) from iris pixels in color images. Systematic tests were
performed on a database of iris images adopting several aspects to design the classifier,



30 CHAPTER 2. OVERVIEW OF THE RESEARCH FIELD

including: (a) the most convenient color space; (b) whether the used of several color
spaces could improve the decision; (c) the robustness of the classification method to iris
spatial sub-regions; (d) the contribution of the pixels neighborhood. Although the cost
of classifying new instances with is very high due to the fact that practically all the
computation takes place at the time of classification instead of when the training examples
are first found. KNN is an algorithm that fits properly to the models that can be seen in
the improvements obtained in the accuracy rate, when the SVC is faster and robust.



Chapter 3

Nonlinear Dynamics and Multiscale
Indices in Holter LTM

The identification of patients with increased risk of SCD has been widely studied during
last decades, and several quantitative measurements have been proposed from the analysis
of the ECG stored in 1-day Holter recordings. Indices based on nonlinear dynamics of HRV
have shown to convey predictive information in terms of factors related with the cardiac
regulation by the autonomous nervous system, and among them, multiscale methods aim
to provide with more complete descriptions than single-scale based measures. However,
there is limited knowledge on the suitability of nonlinear measurements to characterize
the cardiac dynamics in current LTM scenarios of several days.

In this Tesis, we scrutinized the long-term robustness properties of three nonlinear
methods for HRV characterization, namely, the MSE, the MTI, and the MFS. These
indices were selected because all of them have been theoretically designed to take into
account the multiple time scales inherent in healthy and pathological cardiac dynamics,
and they have been analyzed so far when monitoring up to 24 hours of ECG signals,
corresponding to about 20 time scales. We analyzed them in 7-day Holter recordings from
two data sets, namely, patients with AF and with CHF, by reaching up to 100 time scales.

In addition, a new comparison procedure is proposed to statistically compare the
poblational multiscale representations in different patient or processing conditions, in
terms of the non-parametric estimation of confidence intervals for the averaged median
differences. Results show that variance reduction is actually obtained in the multiscale
estimators. The MSE (MTI) exhibited the lowest (largest) bias and variance at large
scales, whereas all the methods exhibited a consistent description of the large-scale
processes in terms of multiscale index robustness. In all the methods, the used algorithms
could turn to give some inconsistency in the multiscale profile, which was checked not
to be due to the presence of artifacts, but rather with unclear origin. The reduction
in standard error for several-day recordings compared to one-day recordings was more
evident in MSE, whereas bias was more patently present in MFS. Our results pave the
way of these techniques towards their use, with improved algorithmic implementations
and nonparametric statistical tests, in long-term cardiac Holter monitoring scenarios.

31
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3.1 Introduction

MSE has been applied to predict stroke-in-evolution in acute ischemic stroke patients
using one-hour ECG signals during 24 hours [30], and also recently to predict vagus-nerve
stimulation outcome in patients with drug-resistance epilepsy, who were found to have lower
preoperative HRV than controls [31]. Different preprocessing stages have been proposed for
it, including the use of MSE in the first difference of RR-interval time series instead of the
series itself, yielding better statistical support and discrimination capabilities between CHF
and control groups [65]. Some authors consider the MSE algorithm biased for two reasons:
First, the similarity criteria is fixed for all scales, whereas coarse grained time series
variance has been pointed to decrease with the scale; And second, spurious oscillations are
introduced due to the suboptimal procedure for eliminating the fast temporal scales of
the time series. Accordingly, a modified algorithm was proposed [66], so-called the refined
MSE (RMSE), in order to overcome these limitations, and it was tested in simulations
and in 24-hour HRYV signals from aortic stenosis and control groups. The use of RMSE
did not allow to make inferences that could not be made by MSE with real data, however,
simulations showed that RMSE can be a more reliable method for the assessment of
entropy-based irregularity. A comparative study between MSE and RMSE was performed
in [67] confirming that despite the differences they both present similar tendencies with
scale factor. MTI has been applied to HRV and blood preasure variability (BPV) signals
concluding that TT of beat-to-beat HRV and BPV is significantly altered during orthostasis
[68]. Also, recent interest has been raised in the use of some of the multiscale indices in
the analysis of AF dynamics, which has been scrutinized in the context of ischemic stroke
prediction in patients with permanent AF [69].

We can say that cardiac LTM has been technologically achieved, and previous studies
exist which have scrutinized the value of these recordings in simple and well-known clinical
indices from practice, such as the number or rate of ectopic beats or the number or rate
of different cardiac events [70]. However, algorithm robustness should be paid attention
if deeper physiological and pathological information is to be extracted from nonlinear
multiscale indices, in order to be sure about their reliability when working with long
series in populational data, and to our best knowledge, few previous works can be found
noting this point with attention. Therefore, we propose here to study the robustness of

nonlinear multiscale HRV measurements to characterize different cardiac health states in
LTM recordings.

Specifically, we made a comparative analysis of the three mentioned multiscale methods
on a database consisting of patients with 7-dayS Holter in two cardiac conditions, namely,
CHF and AF [29]. This study aims to give basic knowledge on the usefulness and
current limitations of these methods towards their future and principled use for SCD risk
stratification. For this purpose, a nonparametric statistical test is proposed in order to
compare and give cut-off comparison levels between two different situations in terms of
the confidence intervals (CI) for the median difference across multiscale representations of
poblational representations. This method can be used either for establishing comparisons
among patients or subjects with different conditions, or to scrutinize the impact of
preprocessing or data length on the statistical properties of the multiscale representations.
The procedure can be seen as an extension of previously used statistical comparisons
[30, 31] in terms of nonparametric bootstrap tests for confidence bands [32, 16].
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The structure of the chapter is as follows. In the next section, the fundamentals of the
multiscale methods selected here for HRV analysis are described. Then, existing methods
and the new procedure based on nonparametric bootstrap tests for median difference are
provided, together with the presentation of the available recordings in Physionet [15] used
as starting benchmark for this study and the LTM-ECG databases for CHF and AF during
7 days. In Results section, a set of experiments are conducted and results are presented
on the suitability, together with some technical limitations and consistency properties, of
these benchmarked multiscale algorithms.

3.2 Multiscale Methods for HRV Analysis

HRV measurements aim to give a numerical magnitude of the time fluctuations between
sets of consecutive beats. The short-term recordings of HRV are usually measured about
3 to 5 min, and they have been traditionally associated with the dynamic control of the
ANS on the heart rate and the cardiac properties. The long-term fluctuations of HRV have
been described to have a wide physiological meaning in terms of the cardiovascular system
self-regulation mechanism description. The ANS is divided into two branches, namely, the
sympathetic and the vagal (parasympathetic) ones. Broadly speaking, the activation and
excitation of the sympathetic branch has an accelerating effect on the cardiac cycle, whereas
the vagal activation has a decelerating effect, but both subsystems are simultaneously and
continuously working and compensating themselves, so that oscillations on a dynamic
equilibrium are produced on the heart rate [13]. In addition, the ANS receives information
through the so-called efferent pathways from a wide variety of systems and organs (heart,
digestive system, kidney, respiratory system, and many others), and those influences are
part of the genesis of ANS afferent pathways, in which heart rate is affected and is involved
through different control mechanisms. Additional influences on the ANS such as humoral
factors, night-day cycles, or environmental influences, are slower than the ANS, so that
they only can influence the long-term HRV [71]. All these sources are contributors to the
HRV modulation, which globally has its origin on a complex dynamic equilibrium arising
from diverse mechanisms in the cardiovascular system that are taking place in the short-,
the middle-, and the long-term scales.

A number of scientific, technical, and medical studies have focused on the HRV, and it
well might be the most studied index in the SCD risk-stratification literature. Nonlinear
methods [72] include several subfamilies, according to their calculation being based on
Information Theory, on Chaos Theory, or on Fractal Theory. These methods have been
paid special attention not only for their attractive theoretical foundations, but also because
they seemed to have promising risk capabilities in small-sized studies with patients [11]. A
usual situation in the literature of nonlinear HRV indices has been that some basic index
has been first proposed, which has shown descriptive capabilities and some independence
for SCD risk stratification, and then this index has been subsequently extended to a
multiscale formulation, aiming to capture a richer variety of descriptions for the signal
behavior. As described next, this is the case of MSE, MTI, and MFS methods for HRV
analysis.

We denote the continuous-time ECG signal of a patient by S(t), and we register it
during an observed time interval, denoted by ¢ € (¢;,t;). As a result of preprocessing
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steps devoted to signal filtering and R-wave detection, we can detect the R wave of each
beat in S(t), and the time instants associated to each R-wave are denoted as t%, with

n?

n =0,..., N, so that the detected set of R-waves can be expressed as a point process,
given by
N
RR(t) = >0t —tF) (3.1)
n=0

where 0(t) denotes the continuous-time Dirac’s delta function. It is often useful to work
with the so-called normal beats, which correspond to R-waves in beats that have been only
originated in sinus rhythm conditions and where artifacts and ectopic beats are discarded.
Here we assume that the R-waves correspond to cardiac beats but not to artifacts or
wrong R-wave detections. The RR-tachogram [13], or just tachogram, can be denoted
by x[n] and is defined as the discrete-time series given by the indexed time difference
between consecutive R-wave times (excluded artifacts and non-physiological beats, as well
as conventional quality-control beat filters), this is,

)=t —tf | n=1,... N (3.2)
The following algorithms and indices can be expressed and obtained in terms of the
tachogram registered in patients.

3.2.1 MSE Analysis

The approximate entropy (ApEn) can be described as a nonlinear fluctuation measurement
that aims to quantify the irregularity of a RR-interval time series [73]. An ApEn increase is
usually interpreted as an indicator of irregularity increase in the underlying cardiovascular
process. The Sample Entropy (SampEn) was subsequently introduced [74] to solve the
limitations of the ApEn [75], since the latter compares each pattern in a time series
with other patterns but also with itself, which leads to the overestimation of similarity
existence in that time series, and hence to strong bias and to some inconsistent results.
SampEn is the negative of the natural logarithm of the conditional probability that two
similar patterns of m point segments, x,,(j) and x,,(7) of tachogram z[n], remain similar
if we increase the number of points to m + 1, within a tolerance r that is defined as a
noise-rejection filter [74]. SampEn index reduces the statistical bias of ApEn index and it
is a measurement rather independent of the data length, but its problem is that it it can
be unstable when the counted events are scattered.

The new concept of multiscale analysis was proposed to overcome several limitations
pointed out for ApEn and SampEn measurements which could be leading to clinical
misinterpretation of HRV in some conditions. The MSE analysis was introduced by Costa
et al. in [18], and it was also intended to provide with a richer description of the cardiac
dynamics in terms of a set of naturally related indices, rather than to use a single number.
For a given discrete-time series, a new series is constructed in a scale 7, the terms of which
are the average of the consecutive elements of the original series without overlapping. For
a time series with 7 = 1, this corresponds to the original series, whereas for 7 = 2, the
series is constructed with the average of the elements taken from two by two, and so on.
We finally calculate the SampFEn for each one of these new generated series. When the
obtained values are represented versus the scale factor, the dependence of the measured
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entropy with the time scale can be scrutinized. The maximum scale to use depends on the
number of samples in the time series.

Starting with tachogram signal z[n], we denote M SE as M SE(x[n], T,r,m) to explicitly
consider the dependence of its design parameters. We obtain the consecutive time series
y”, determined by scaling factor 7 as follows:

e First, the original time series is divided into non-overlapping intervals with window
size of 7 samples. Then the signal mean is obtained for each of the sample windows.

e Each element of the series y[j] is calculated according to the equation:

L1 N
Y] = - > zln], 1<j<— (3.3)

where n; = (j — 1)7 + 1 for notation simplicity. For the first scale, the time series
y'[j] is just the original time series. The length of each obtained time subseries is
equal to g

e The sample entropy index is calculated for each time series y”, and it is represented
as a scale-factor function SampEn(7).

The MSE analysis has been applied to a variety of cardiac and cardiopathological
situations, including the analysis of CHF [18], hypertensive and sino-aortic denervated
conditions in experimental studies [67], as well as the ANS evolution before, during, and
after percutaneous transluminal coronary angioplasty [76], as well as for prediction of
ischemic stroke in patients with persistent AF [69], among others. In all these cases, the
length of the analyzed signals did not exceed 24 hours using 20 as a maximum scale value,
which involves z[n| tachograms with about or more than 20 000 samples each.

3.2.2 MTI Analysis

Time irreversibility has recently attracted attention in the cardiovascular-signal field. A
signal is said to be time irreversible if its statistical properties change after its time reversal.
The consistency loss of the statistical properties of a signal when the signal reading
undergoes a change through time inversion is measured using the MTI, which represents an
asymmetry index. This index is higher in healthy systems (with more complex dynamics)
and it decreases in conditions like pathology or aging, as introduced in [19, 20]. On the
other hand, physiological time series generate complex fluctuations in multiple depending
time scales, due to the existence of different hierarchical and interrelated regulatory
systems.

The MTT calculation process is presented next. Considering the time series x[n], for
1<i<N:

e For the first scale, the time series are:

Yi=vyln], yn|=zn+1]—2zn], 1<n<N-1 (3.4)
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e The difference A; is then calculate as follows:

Yoot H(—yn]) — 05 H(y[n))

A= .
' N -1 (3:5)
where H is the Heaviside function that can be expressed as:
- 0ifa<O
H(a) = {1ifa20 (3.6)

e For the j' scale, the time series is:

Vi=ylnl, ylnj=zn+j—zln], 1<i<N-—j (3.7)
e Then, A; is calculated for each scale j:

N—j pr(_ N

N—j

The MTT analysis has been applied to measure nonlinear dynamics in heart-rate time series.
For instance, MTT indices were computed in [77] for 20 healthy neonates to detect the
presence of nonlinearity in their cardiac-rhythm control system, and temporal asymmetries
were detected within their heart rate dynamics even shortly after birth.

3.2.3 MFS Analysis

Physiological signals have been shown to present fractal temporal structure under healthy
normal conditions [78, 79, 16]. In particular, it was shown in [80] that time series generated
by certain cardiovascular control systems in healthy conditions require a large number
of exponents to adequately characterize their scaling properties, and that the nonlinear
properties of this behavior are encoded in the Fourier phases. The same work used examples
of CHF patients to contrast the previous finding with the loss of multifractality in this
example of life-threatening condition. In this setting, RR-interval time series have been
analyzed in terms of multiple scaling exponents. We next summarize the basic principles
for estimating the MFS from RR signals that are usually followed in the literature. The
interested reader can consult the original works on its application [80, 23] and the details on
the wavelet-transform modulus maxima method [81], which gives a principled calculation
method for this purpose.

Whereas monofractal signals have the same scaling properties through time and they
can be indexed by a single global exponent (such as Hurst exponent H) characterizing
their fluctuations, other signals exhibit variations in their local Hurst exponent along time.
When several subsets of a signal are characterized by the same local Hurst exponent h,,
and when each of these signals can be characterized by a fractal dimension measurement,
we denote this estimated dimension as D(h,). Accordingly, D(h) will have nonzero values
on a set of discrete points in h for some class of signals. Local value of h is modernly
estimated with Wavelet Theory [81], often using successive derivatives of the Gaussian
function as the analyzing wavelet at different scales a, in order to remove polinomial trends
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with polinomial order up to the wavelet derivative order. In these conditions, the problem
reduces to obtain the modulus of the maxima extrema of the time series wavelt transform
at eath time instant.

We then estimate the partition function Z,(a), as the sumation of the ¢ powers of
these local maxima as a function of scale, and for small scales, it is fulfilled that it has
the form Z,(a) ~ a™@, where 7(t) are exponents that can be estimated. In monofractal
signals, a linear scaling exponent spectrum is obtained, given by 7(q) = ¢H — 1. However,
for multifractal signals we obtain a nonlinear expression, and it can be shown that
7(q) = qh(q) — D(h), where h(q) = dr(q)/dq is not constant. Accordingly, the estimated
fractal dimensions D(h) are obtained by the Legendre transform of 7(gq), finally yielding

D(h) = qh — 7(t) (3.9)

Given that h = 0.5 can be related to uncorrelated changing time series, this representation
allows to determine to what extent a process conveys anticorrelated (h < 0.5) or correlated
(h > 0.5) behaviour consistently manifested through different time periods.

The multifractal structure of HRV can reflect important properties of the heart-rate
autonomic regulation. Multifractal analysis is an expansion of fractal analysis since it
characterizes the time series variability with a collection of scaling exponents instead
of a single one, which makes possible to investigate and quantify HRV in terms of its
multiexponent properties. A right shift has been revealed in the multifractal spectrum
peaks for healthy subjects during meditation [82], which points to a better health condition
of persons with respect to multifractal nature. Accordingly, a healthy heart-rate regulation
promotes a multifractal signal.

3.3 Statistical Methods and ECG Databases

3.3.1 Previous Indices and Bootstrap Median Difference

A set of metrics were computed in order to quantify population differences in terms of the
information conveyed by small, medium, and large scales of MSE and MTT indices. Namely,
the area under the MSE and MTT profiles between scales 1 and 5 (so-called Areal — 5),
between scales 6 and 20 (Area6 — 20), and between scales 21 and 100 (Area21 — 100).
The area under the complete profiles (so-called Area) for MSE, MTI, and MFS was also
computed. These metrics have been previously used and validated in studies comparing
results of multiscale indices for different populations [31, 30]. The Wilcoxon-Rank Sum
Test was subsequently used to evaluate the statistical difference between populations in
terms of these metrics, also according to the previous works. As an extension of the
previous existing analysis, we contribute in this paper with a statistical procedure allowing
to establish simple statistical comparisons, either between two different population groups
or within the same group of patients, in terms of a given multiscale representation. The
procedure can be summarized and described as follows. We generically denote the scale
as v (which includes both possibilities for 7 in MSE and MTI, or h in MFS), and the
multiscale index as J(v) (where J stand for either MSE or MTI or MFS representations).
Let us assume that we have available a set of signals from a given patient dataset A, and
this set is denoted as

SAE{a:i[n],izl,---,NA} (310)



38 CHAPTER 3. MULTISCALE INDICES IN HOLTER LTM

and that the multiscale parameter can be obtained by using a given operator I' for each
signal in the database, i.e.,
Ji(v) =T (x;]n], 0) (3.11)

where 6 includes the set of preprocessing and processing parameters established for
preprocessing and conditioning the signal under analysis.

Note that in this case J(v) represents a random process, defined by its statistical
distribution fj(,) (J(v)), which in general has an unspecified expression. We can define its
median value and denote it as Jy/(v), which in practice can be estimated as the median of
the multiscale representations obtained in a given population with a given set of parameters,
and denoted as Jy(v|Sa,0). Therefore, statistical differences can be calculated in two
kinds of situations. First, when comparing the multiscale differences in two populations of
patients, S4 and Sp, we can build the statistic accounting for the difference between their
corresponding poblational medians, give by

Ay (V) = Tn(v[Sa, 0) — Jai(v|S5, 0) (3.12)

In addition, we can have two different sets of preprocessing conditions, given by €, and 6,
and in this case the differences due to this change in those conditions can be scrutinized in
terms of the difference of the median multiscale spectrum in a given population, as given
by

AJy(v) = Iy (v|Sa, 01) — I (v|Sa, 02) (3.13)

Hence, both representations are similar enough to provide a similar-to-handle view of the
scales in which differences can be observed. The use of the median gives a robust estimator
for cases where non-Gaussian distributions can be present, which was previously observed
to be this case.

Since the PDF of the multiscale indices is often complex to estimate and to handle, we
used nonparametric bootstrap resampling techniques, which provide us with an estimation
of the empirical distribution of any statistical magnitude that can be built from computa-
tional media [32].In our case, given a set of observed signals, we build a resample of this
set by sampling with replacement each of the individuals in S4 up to B times, so that
we get the so-called the b resample of the patient population, 8% (b), where superscript
* is the usual notation to point out all the bootstrap-estimated magnitudes. For this
resample, we obtain an estimate of the statistical magnitude of interest, widely known
as its bootstrap replication, and in our case it corresponds to weight vector W(y)- By
repeating the procedure B times, we get an estimate of the marginal distribution given
by the empirical probability density function (PDF') of the bootstrap replications of each
weight, this is, Jy(v|S%, 0). The estimated distribution of the median difference statistic
as a function of the scale can then be estimated from the replications of this statistic, which
for the case of two different patient populations is obtained by non-paired resampling as
follows:

ATy (v,b) = Jy(v|SH,0) — Ja(v|Sy, 0) (3.14)

whereas for changes in the preprocessing conditions, paired resampling can be addressed,
yielding

ATy (v,b) = Ty (v|Sh, 01) — Ju(v|Sh, 09) (3.15)
The corresponding CI can be readily obtained just using sorted statistics, with significance
level « yielding confidence level 1 — « (typically 1 — a = .95). We expect the relevant
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differences to exhibit non-zero overlapping CI. Also, the band confidence width should
be consistent with the expected statistical power of the bootstrap test, hence allowing to
study the consistency of the estimates when increasing the number of measured days in
the Holter signals, and the estimated median average should allow us to scrutinize the
presence of bias.

3.3.2 ECG Databases

We started by using multiscale methods to asses the variability of the RR-interval signals
derived from 24-hour Holter recordings from control subjects and from CHF patients. Both
sets of recordings were downloaded from Physionet database [15]. The control group was
obtained from 24-hour Holter recordings in 72 healthy subjects (35 men and 37 women,
from 20 to 76 years old). The original ECG recordings were sampled at 128 Hz. The CHF
group was obtained from 24-hour Holter recordings in 44 subjects (from 22 to 79 years
old, including 19 men and 6 women, though gender information was not available for all
the recordings). A subset of the original ECG recordings were sampled at 250 Hz (15
recordings), and the rest at 128 Hz. A number of studies have been conducted with these
Databases [83, 84, 85, 86] to determine the effect of exercise training on cardiac autonomic
modulation in normal older adults using HRV, to establish normal values of RR variability
for middle-aged persons, and to determine the effect of beta-blockers on parasympathetic
nervous system activity.

We also used a specific LTM database, in which two sets of 7-day Holter recordings
were also analyzed, one set from patients with CHF in sinus rhythm (73 recordings), and
another set from patients with CHF with chronic AF (14 recordings). For short, we will
denote them as CHF dataset and AF dataset, keeping in mind that both of them are
CHF patients, but with different basal rhythms. The protocol to collect these recordings
was carried out following the principles of Helsinki Declaration. It was approved by the
Local Ethics Committee. Patients were recruited during scheduled outpatient visits to
the CHF outpatient clinic in Virgen de la Arrixaca University Hospital (Murcia, Spain).
From June 2007 to May 2011, patients with an established diagnosis of stable CHF gave
written informed consent to participate. All patients had LVEF < 50% and they were
clinically stable, without need for hospital admission or intravenous vasoactive agents
within the past 3 months. Exclusion criteria included pacemaker-dependent patients, a
serious comorbid condition with associated life expectancy < 1 year, hospitalization for
Myocardial Infarction (MI) and unstable Coronary Artery Disease (CAD) within the past
3 months, or any cardiac revascularization procedure within 30 days before enrolment. The
7-day continuous Holter recordings were obtained using a commercially available device
(Lifecard CFT™ | Del Mar Reynolds, Issaquah, Washington). These databases had been
used [70, 87, 79, 16] in previous studies: (a) To demonstrate that the circadian rhythms
detected in 7-day recordings could not always be detected in 24-h periods; (b) To compare
the diagnostic sensitivity of 1-day Holter monitoring versus 7-days Holter monitoring
(7TDH); (c) To detect atrial and ventricular arrhythmias in a population of stable patients
with CHF and left ventricular dysfunction; (d) To characterize the relationship between
heart rate and post-discharge outcomes in patients with hospitalization for CHF with
reduced ejection fraction (EF) in sinus rhythm; And (e) and to characterize the infradian,
circadian, and ultradian components for each patient, as well as circadian and ultradian
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fluctuations.

A standard Holter analysis software (ELA Medical ™, Sorin Group, Paris, France) was
used to process the data. When needed, a trained cardiologist performed a visual check of
the QRS complex classification and every arrhythmic event, therefore, manual corrections
were made. Both data sets (Physionet and LTM) were preprocessed to exclude artifacts
and ectopic beats, as follows. RR intervals lower than 200 ms and greater than 2 000 ms
were eliminated, as well as those which differed more than 20% from the previous RR
interval [13]. The nonlinear indices were computed on the resulting time series

3.4 Results

In this section, we present a series of experiments in order to analyze the consistency and
robustness of the indices for multiscale characterization with 1-day and 7-days Holter
registers of healthy subjects, AF patients, and CHF patients. First, a robustness analysis
of all these methods is made with datasets from Physionet databases (specifically, healthy
subjects and CHF patients) in 1-day Holter recordings, and patients with AF and CHF
are then analyzed in 7-day Holter recordings. We also scrutinized how the results can
change when using 1-day Holter registers versus 7-day Holter registers and with increased
scaling factor. A study on the robustness of the indices on 7-day recordings is checked in
terms of 1-day segments, and a quantitative analysis is made for all of them in terms of
the confidence bands for the populational medians.

3.4.1 Physionet Database and 1-day Holter Recordings

We started our analysis by scrutinizing the effect of calculating multiscale indices in 1-day
Holter recordings above 20 scales, which is the usual limit value in the literature. The
multiscale indices were obtained in the 72 subjects in the control set of Physionet database.
Figure 3.1 (left panels) shows these results, where each plot represents the entropy value
(vertical axis) as a function of the multiscale parameter (7 or h), for every patient in
the database and with no specific ordering. Typical patterns can be observed for each
multiscale index. For instance, in MSE there is often a soft curve for low scales that
usually turns to near constant at larger scales. We can observe also a rift effect specially
in larger scales, which indicates that the method is being sensitive to noise. We can also
observe a bias effect among subjects, as some of them appear to be above increased or
decreased average levels compared with others. With respect to MTI, we can see that all
the cases start near zero value for low scales, and there is a general trend to increase as a
soft-changing curve above zero for all the cases. No rift effect is present in this multiscale
index. Finally, MFS often shows an inverted-U shape, as documented in the literature,
and there is a bow about h = 0.5 in many cases, followed by a flat or slow decaying set of
values. Note that some few cases seem to deviate from this populational behavior.

A different behavior is present when we scrutinize the three multiscale indices for
the CHF patients in 1-day Holter recordings, as seen in Figure 3.1 (right panels). This
figure and its panels allow us to check the individual profiles of a given multiscale index
in a population, so that individual profiles can be checked to be consistent with their
population, and also non-concordant profiles can be clearly identified. Note that the axis
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Figure 3.1: Results of multiscale analysis in Physionet Database:
MSE (top), MTI (middle), and MFS (down) for the control database (left) and for the
CHF patients (right).

are similar to the control panels, and that the vertical axis have been adjusted with the
same range and scale. In MSE there is a diversity of shapes in low scales, though the trend
to stabilize at larger scales is again observed, as well as the rift effect. In addition, there
are more cases with increased average value, and in general there is a trend to exhibit
lower average cases than controls. The MTI again starts from low values for low scales,
but then it smoothly and often (not always) tends to go towards negative values. With
respect to the MFS, it clearly decreases its width, the bow and the flat set of indices are
mostly lost, and it often deviates from 1. Some very atypical cases are present, specially
in the CHF set. Several patients are extremely different from the others in MSE and MTT,
and several (not few) cases in MFS seem to present a breakdown and even values above 1.
We thoroughly checked in all the patients that artifacts were correctly suppressed from the
signals with ad-hoc designed software to represent jointly the RR-signals and the ECG
signals on a similar time basis.

Artifact and noise effects

Artifacts and other noisy beat detections are not included in the analysis. We followed a
data-quality control process in long-term monitoring, which is, at least, as rigorous and
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Figure 3.2: Results of multiscale analysis in example patients
from Control Database (left) and from CHF Database (right) in Physionet: (a, b) Normal
trend; (¢, d) Abnormal MSE and MTTI profiles; (e, f) Abnormal MFS profile.

detailed as any relevant study in the related literature, the goal is to check that the data
are correct, even in long-term recordings.

Ectopic beats are in general included in the cited works on nonlinear analysis (which is
not the case in temporal, spectral, or geometrical methods), as they do not affect if they
are few, or they are assumed to take part on the dynamics if they are consistently present
for time periods. Some beat filter is also often used to discard artifacts (as those due to
electrode loose contact or disconnections, synchronization, or artificial pauses of any kind).

In this tesis a usual preprocessing scheme is used [13] for both datasets (1-day and
7-day recordings). The panels in the Figure 3.4.1 show an example in a Physionet case
(we thoroughly checked those ones in which the ECGs were available) for which the total
RR signal (preprocesed) is used to obtain the multiscale indices (in black), and also the
same in each time window (blue, red, green, orange).

The simultancous ECG recordings (together with the beat detections) were then
scrutinized with horizontal zooms in those MS-index windows with worse reproducibility
and in those ECG regions with more ectopic beats or with some different trends. It was
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checked that the presence of ectopic beats did not affect to the estimated profiles in these
cases, and that no artifacts were present in the underlying ECG signals. Furthermore,
the underlying signals did not have artifacts or aberrations, and custom software was
developed and used for this task.

Windowing analysis

Since there were these marked deviations in the profiles of some curves compared to others
for MSE, MTI and MFS, we subsequently analyzed the effect of calculating these indices
in segments of the cardiac signal, with their lengths being smaller but long enough to
maintain the multiscale properties. This could allow us to determine whether the profiles

deteriorate in a specific segment or just in the complete signal, which is denoted here as
the analysis of windowing effects on MSE, MTI, and MF'S.

Figure 3.2 presents six example cases (three from healthy subjects and three from CHF
patients) in specific cases, namely, a normal-trend patient (typical MSE, MTI, and MFS)
(Panels a, b), a patient with atypical MSE and MTI profiles (Panels ¢, d), and a patient
with atypical MFS profile (Panels e, f).

The panels on Figure 3.4 present the windowing analysis applied on the original heart-
rate signal by dividing it into 4 sub-signals and applying MSE, MTI, and MFS on each
of them. Regarding the first example, Panels a and b, the control patient presents a
similar response in terms of the tendency of the signals resulting from applying MSE,
MTI, and MFS. The second example, in Panels ¢ and d, represents a result that goes out
of the normal in terms of the result of applying MSE and MTI. We observe, in terms of
changes in the hear-rate signal, that the resulting signals trend differs in different time
windows. A similar view is noted regarding the application of MFS in Panels e and f,
where one segments follows an atypical profile compared to the rest of the segments in the
same registry by changing the windows. In general we can see that when one single time
window looses its consistency with respect to the general shapes, the continuous analysis
of the complete segment is compromised too, an effect that seems to be present in all the
multiscale indices. Right panels on Figure 3.4 present the windowing analysis done on
the heart-rate signals of CHF patients, which are again divided into sub-signals, and then
the MSE, MTI, and MFS are applied to this set of series separately. According to Panel
b, this CHF patient follows the trend of the complete signal when applying MSE, MTI,
and MFS. Panel d shows that the MSE and MTTI results disrupt in this example. Despite
the appearance of the hear-rate signal at the beginning, it undergoes a degradation in the
last window when these methods are applied. A similar remark can be extracted when
applying MFS, as seen in Panel f, since the first window notably differs from the last one.
Similar considerations can be done as in the healthy subjects windowing analysis. We can
conclude from this experiment that the multiscale profile trend depends on the window
where the nonlinear methods were applied, sometimes due to the cardiac activity which
differs depending on the day or the night periods. It appears that some segments present
an anomalous estimation, which affects the whole of the signal. Therefore this can be a
limitation of these current methods that should be considered by old and new algorithms
in this setting.
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3.4.2 LTM Database and 7-day Holter Recordings

Figure 3.5 shows the MSE, MTI, and MFS results for AF and CHF 7-day Holter recordings
databases. In the right panels, we can observe typical patterns that are similar to the
CHEF cases in 24-h recordings. In low scales, MSE exhibits a variety of shapes that tend
to stabilize at larger scales. MTI indices show decreasing values from low to large scales
reaching negative values in some cases. MFS shows a shape with an increased width and
a lost of the bow. In the left panels, different trends are observed for AF patients. MSE
shows an inverted shape compared to CHF patients, i.e., larger values for low scales and
lower values for high scales, or a decreasing soft curve for low scales that usually turns into
constant at larger scales. We can also observe a deviation of some of the subjects from
the general trend. Regarding MTI, for low scales, values start near zero with a generally
slight-decreasing trend curve. MFS shows an inverted-U shape with a bow about A = 0.2
for all cases, followed by slowly decreasing values.

We designed a simple experiment accounting for windowing analysis of 7-day recordings
in windows of 1-day duration. Our purpose here was to perform a robustness analysis of
the 7-days Holter recordings when compared with 1-day recordings, in order to scrutinize
the new knowledge provided by the scales up to 100 and to analyze the reproducibility of
the multiscale indices throughout the 7 days.

Figure 3.6 presents a comparative analysis between 1-day and 7-day recordings by
means of 3 patients with AF and 3 patients with CHF. The heart-rate signal of each
patient is presented as well as the MSE, MTI, and MFS profiles. Those profiles present
similar trends for every 1-day segment and for the 7-day segment with variable variance
depending on the particular case. However this variance is larger in CHF examples than
in AF examples for MTT in large scales and mainly for MFS.

We can also check that the consideration of larger scales in the 7-day recordings has
relevant effect on the estimation of the multiscale indices. For instance, the ripple in MSE
is reduced in the 7-day estimations. Also, the variance in the 1-day estimated indices for
larger scales in MSE and MTT seem to stabilize to a profile which is not just the average of
the consecutive days, which implies that nonlinear irregularity effects in these larger scales
are present and likely they are better accounted by the 7-day calculations. It is interesting
the effect that the use of 7-day recordings has on MFS, which is different from a simple
day-averaging of the windowed spectra. In some cases, a wider set of 1-day spectra is
condensed into a narrower spectrum with 7-day signals. In general, larger variance seems
to be present at larger scales with 1-day signals, which is reduced by 7-day based spectrum
(often yielding a spectral profile lower than the individual spectra in each day). Even in
one case, apparently inconsistent daily spectra turn into a well-shaped spectrum when
using the 7-day recording.

3.4.3 Statistical Analysis and Confidence Bands

Table 3.1 compares CHF patients and control subjects of Physionet database in terms
of Areal — 5, Area6 — 20, Area21 — 100, and Area metrics for the multiscale indices.
The Wilcoxon Rank-Sum Test reveals significant statistical differences for Areal — 5 in
MSE and MTI, and for Area6 — 20 in MTT, hence for small and medium scales. Table 3.2
shows the comparison for the two populations in the LTM database. In this case, statistical
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Scale Test CHF Control p-value
MSE (Area 1 - 5) 1.30 £+ 0.50 1.58 £+ 0.57 i 0.05
MSE (Area 6 - 20) 9.47 + 3.52 9.66 + 2.75 0.53
MSE (Area 21 - 100) 56.45 + 18.23 52.37 + 11.88 0.38
MSE (Area) 68.51 + 22.30 65.02 £ 15.27 0.69
MTI (Area 1 - 5) 0.09 £ 0.09 0.20 £ 0.14 i 0.05
MTTI (Area 6 - 20) 1.95 + 1.79 4.41 £ 2.37 i 0.05
MTTI (Area 21 - 100) 50.46 + 35.72 43.54 £+ 27.76 0.35
MTI (Area) 52.77 + 36.54 48.71 £+ 29.77 0.68
MFS (Area) 0.32 £ 0.41 0.27 £ 0.09 0.62

indices.

Table 3.1: Physionet database, CHF versus Control.

Areal — 5, Area6 — 20, Area21 — 100 and Area metrics expressed as mean + standard deviation for the multiscale
Significant statistical differences given by the Wilcoxon Rank-Sum Test are indicated.

indices.

Scale Test AF-TDH CHF-7TDH p-value
MSE (Area 1 - 5) 3.01 + 1.16 1.55 £+ 0.47 i 0.05
MSE (Area 6 - 20) 12.89 + 4.89 10.22 4+ 2.63 i 0.05
MSE (Area 21 - 100) 52.34 + 18.03 56.63 + 12.44 0.79
MSE (Area) 70.16 £+ 24.51 69.80 £+ 15.53 0.27
MTI (Area 1 - 5) 0.04 £ 0.04 0.16 £ 0.13 i 0.05
MTTI (Area 6 - 20) 0.72 + 1.61 3.13 £ 2.17 i 0.05
MTTI (Area 21 - 100) 19.74 + 50.62 42.78 £+ 25.18 i 0.05
MTI (Area) 20.60 + 52.31 46.47 £+ 26.29 i 0.05
MFS (Area) 0.25 £ 0.12 0.48 £ 0.91 i 0.05

Table 3.2: LTM database, AF-7TDH versus CHF-7DH.

Areal — 5, Area6 — 20, Area21 — 100 and Area metrics expressed as mean + standard deviation for the multiscale
Significant statistical differences given by the Wilcoxon Rank-Sum Test are indicated.

Areal —

Scale Test AF-1DH CHF-1DH p-value
MSE (Area 1 - 5) 3.06 + 1.18 1.63 £+ 0.58 i 0.05
MSE (Area 6 - 20) 12.96 4+ 4.74 10.58 + 3.24 i 0.05
MSE (Area 21 - 100) 50.58 £+ 17.37 56.68 + 14.16 0.28
MSE (Area) 68.54 + 23.48 70.35 £+ 18.11 0.82
MTI (Area 1 - 5) 0.04 £ 0.06 0.18 £ 0.17 i 0.05
MTI (Area 6 - 20) 1.12 + 2.69 3.41 £ 2.47 i 0.05
MTTI (Area 21 - 100) 31.68 + 87.92 45.79 £+ 30.89 i 0.05
MTTI (Area) 33.00 £ 90.97 49.82 + 32.48 i 0.05
MFS (Area) 0.26 £ 0.11 0.45 £ 0.51 i 0.05

Table 3.3: LTM database, AF-1DH versus CHF-1DH.

5, Area6 — 20, Area21 — 100 and Area metrics expressed as mean =+ standard deviation for the multiscale

indices. Significant statistical differences given by the Wilcoxon Rank-Sum Test are indicated.
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differences are present in MSE for small and medium scales, whereas in MTT these are
also preset for large scales Area21 — 100, and in MTI and MFS for the complete Area.
The same statistical differences are observed when comparing the one day average results
of LTM database (Table 3.3). Note that the interpretation of these differences should be
taken as descriptive of the different cardiac conditions in terms of the different scales of the
signal dynamics, and not as classifying characteristics for them with diagnostic purposes.

Additional details can be scrutinized from the proposed method, aiming to extend the
statistical behavior for the previous indices in different scales, populations and conditions,
or scale span, in terms of confidence bands width and median differences. Figure 3.7 shows
the confidence bands for the median multiscale indices when comparing the control set
with the two considered cardiac conditions, namely, CHF and AF. The former is obtained
from the Physionet CHF set and the later from the LTM-AF set. Each panel shows the
median and confidence bands for the first group (up, left), for the second group (up, right),
and for the median difference (down). Panel (a) shows that the MFS is mainly different
between both groups for low scales in MSE, whereas significant differences are present in
MTT differences in all the scales. For obtaining confidence bands in MFS, an interpolation
was done to a regular grid sampling using chirp interpolation, and given the different
scale spam for the obtained MF'S in each patient, the confidence bands in each point of
the scale grid was obtained conditional to the existence of the fractal spectrum in that
scale. As it can be seen in the right panel, the control set has a scale span between 0
and 1, with some exceptional case extending out of it, but the confidence band gets wider
after 0.6, whereas the scale span is mainly narrower in CHF patients, though sometimes
it reaches a similar set of values for different patients, as it can be observed from the
wider confidence bands in the left and specially in the right of the graph. The median
difference indicates a clear descending trend in the median value (blue line) from left to
right, which is only non-overlapping zero at about scale 0.5. Panel (b) in Figure 3.7 shows
the result of a similar comparison in this case between the control subjects from Physionet
(1D) and the CHF set from the LTM database (7D). The relevant differences with respect
to the previous comparison can be summarized as follows. For MSE, the differences in
the lowest scales are less present, and there is a trend to the band to be consistently
below zero, though it remains non-significantly yet borderline. For MTI, the differences
between both populations show a similar trend than in the previous comparison, though
the confidence bands in this case are borderline with respect to their zero overlapping. For
MFS, the confidence bands in the CHF population from 7D reaches a wider interval of
scale values remaining narrow, and the confidence bands for the median difference exhibit
a similar trend with smoother band limits than the previous comparison. Panel (c) in
Figure 3.7 shows the comparison between the control subjects from Physionet (1D) and
the AF set from the LTM database (7D). For MSE, significant differences are present in
low scales (below 60), whereas for MTI there are significant differences in all the scales.
Also significant differences are present in MFS in almost all the scales, whereas in this
case the median trend has the opposite slope than in the preceding comparisons with
CHEF. Whereas several of these results have been previously documented in the literature,
our results are consistent with those precedents and they can be observed at a glance
from the representation. It is evident that these indices are measuring different aspects of
the complexity and/or nonlinear nature of the cardiac dynamics, and that they probably
should be used complementarily.
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Figure 3.8 shows the confidence bands of multiscale analyses with the aim of establishing
the statistical properties that can be expected due to the use of LTM recordings. In this
setting, and as it could be expected, the confidence-band widths are consistently narrower
when scrutinizing paired datasets, i.e., those comparisons in which the indices estimated
from 7-day recordings are compared to the indices estimated in one day (the third in each
set for all of them in the 7D register) of 1D recordings for the same patients. Panel (a)
shows the scale-paired confidence bands for the median differences when analyzing the
CHF patient set, showing a trend to raise in the very low scales, which could mean that
the significance of these scales depends on the number of days considered, when working
with CHF patients. The estimated MTI remains very reproducible when obtaining it from
1D or from 7D in each patient. Note the different behavior of MSE and MTT in terms
of the confidence band width in terms of increasing scales (mostly constant in MSE and
increasing error standard with scale in MTI). With respect to MFS, whereas the median
value difference is not significant, the most critical scale regions are again the boundaries of
the population spectrum, in terms of confidence band widths. Similar conclusions can be
obtained for the AF patients when compared in terms of MSE and MTI. The scale-border
effects is even more critical in this case, as AF wide of this spectrum is narrower in the
patients compared with control subjects and with CHF condition patients. Panels (¢) and
(d) show the result of comparing different conditions (CHF and AF) when using 1D or
7D in these two different sets of patients. Note that in this case the confidence bands of
the differences are not very different for the cases of MSE and MTI, whereas both the
confidence band widths and the scale span are clearly narrower when they are compared
in terms of 7D recordings.
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Zos

Figure 3.3: Example of checking the non-presence of artifacts.
(a) MSE, MTI and MFS indices (top row); the RR and ECG signals (two leads, bottom
rows) have been synchronized in time, beat detections are marked as * (due to the signal
length they look like a continuous thick line). See text for details. (b) Zoom on the red
time window. (c) Zoom on the green time window.
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Figure 3.4: Physionet Control Database (left) and CHF Database (right) examples
for the windowing analysis: (a, b) Normal curves trend windowing; (¢, d) Abnormal MSE
and MTI windowing; (e, f) Abnormal MFS windowing.
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Figure 3.5: Results of multiscale analysis in LTM Database:
MSE (top), MTI (middle), and MFS (down), for the AF database (left) and for the CHF
database (right).
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Figure 3.7: Confidence bands of multiscale analysis
in control population vs different cardiopathy conditions: (a) Controls from Physionet
(1D) vs CHF patients from Physionet (1D); (b) Controls from Physionet (1D) vs CHF
patients (7D) from LTM database; (c¢) Controls from Physionet (1D) vs AF patients (7D)
from LTM database. From left to right columns, the MSE, MTI, and MFS confidence
bands and their differences are included.
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Figure 3.8: Confidence bands of multiscale analysis in LTM database:

(a) Paired 1D vs 7D in CHF patients; (b) Paired 1D AF vs 7D in AF patients; (c)
Non-paired 1D CHF vs 1D AF patients; (d) Non-paired 7D CHF vs 7D AF patients.
From left to right columns, the MSE, MTI, and MFS confidence bands and their
differences are included.
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Chapter 4

ANS Function Evaluation for CH
Diagnosis Support Using Iris
Color-Pixel Classification

4.1 Image Database

Heterochromia of the eye can be sometimes recognized by the naked eye. Thus, in the
example shown in Fig. 4.1, the blue eye is abnormal in terms of noticeably different iris
color, which is also confirmed by other signs such as a smaller pupil and subtle drooping
of the upper eyelid. In other cases, when the difference is subtle, visual identification
can be severely limited. In these cases, an automatic method can be extremely useful for
supporting medical diagnosis, what is in line with the approach proposed in this work.

Iris images analyzed in this work were obtained from the Ophthalmology Service in
Hospital Universitario Fundacién de Alcorcén (HUFA) (Madrid, Spain). RGB color images
were acquired under the same conditions of light, magnification, and exposition parameters.
They were recorded with high resolution (Zeiss FF 450 plus Fundus IR, 768x576 pixel
resolution) and stored with a digital image file system (451 Visupac Digital, version 3.2.1).
To avoid the potential influence of external elements, pictures were centered in the iris
by using a circle shaped frame overlapping the camera. Since the flash effect on the iris
cannot be always completely removed, we made sure that the flash was focused on the
pupil center when taking the image. The eyelashes presence was also minimized at this
acquisition stage.

No primary information regarding the symptomatic side of the patient was known by
the ophthalmologist who obtained the images. Clinical diagnosis were made by one of
the authors (J.A.P-G), and they were in accordance with the diagnostic criteria of the
ICH disorders [88]. A database with 11 patients was created, containing two iris images
for each one (left and right eye). Three subject subsets were considered, namely, four
subjects with symptomatic CH (Group 1), three control subjects (Group 2), and four with
ophthalmic diseases affecting iris pigmentation (Group 3). The iris segmentation could
not be done automatically with the usual Daugman algorithm [89], because the presence
of flash made it fail sometimes, therefore, the segmentation was done manually by using
two size-adjustable ellipses for each iris, one for the sclera outer edge and another one for
the pupil contour. Figure 4.1 shows an example of the segmentation for the left and right
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Figure 4.1: Screenshots of eyes in a patient with pigmentation deficit when heterochromia
is visible to the naked eye.

Figure 4.2: Example of right and left iris images (up)
and their corresponding segmentation (down).

iris in a subject of our database.

As far as the property which is scrutinized to be used as CH biomarker is conceptually
simple (color differences between pixels from both iris), one could thing in using simple
statistics on the color image, but we checked that it is not so straightforward. Figure 4.3(a)
shows the histogram of the segmented irises for the red component (RGB space) in a
control case (no CH). Example of histograms for a patient with CH are in Figure 4.3(b).
Note that the histogram shape for both irises is similar for the control case, and also
are their means and standard deviations. However, some differences may be observed in
the CH example both in the histogram shape and in their corresponding basic statistics.
Nevertheless, simple statistics may not be sufficient for providing a good-quality biomarker.
Figure 4.4 depicts the scatter plot of the iris pixels when using the three components of
the color space (Lab and RGB color space in these examples), showing that complex joint
distributions can be further more informative. In addition, the joint distribution can be
changing with the subject and with the color space. These observations represent the
rationale for proposing a classification strategy from machine learning techniques.

4.2 Support Vector Classifier Approach

In this work, we propose a statistical-learning approach to support the diagnosis of CH
from iris color differences in the patient’s eyes. We propose to use a Support Vector
Classifier (SVC) because of its model robustness and good generalization capabilities,
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Figure 4.3: Histograms of the red component in the RGB space
(after segmentation) for the iris images (mean =+ std, CI) of a patient: (a) with no CH,
right iris (mean=95.2, std=13.4), left iris (mean=93.5, std=16.0); and (b) with CH, right
iris (mean=98.1, std=13.6); left iris (mean=111.7, std=20.8).

arising from the structural risk minimization principle. The SVC principles were developed
by Vapnik for the first time [90], and this classifier has been after applied to tackle a
dramatically huge number of tasks [91].

The design of statistical classifiers as SVC is conducted by a set of N training samples
{x;, y; }I¥, where z; is the input multivariate sample (also named input feature vector) and
y; is a categorical variable indicating the corresponding label (desired output of the model).
From a conceptual point of view, the simplest classifier has just to distinguish between
two classes, then coding y; with binary labels 41 and -1. The aim of the SVC is to find
the optimal decision boundary based on the maximum margin from the boundary to the
training samples of each class. Note that the boundary is just a line in the two-dimensional
space, which readily extrapolates to a hyperplane in high dimensional spaces. The decision
function can be shown [90] to be expressed as

flz) = ;aiyz@i,z) +b (4.1)

where (.,.) denotes the inner product, L is the number of training samples contributing
to build the decision boundary, «; are the Lagrange multipliers obtained during the
optimization process, and b is the interception or bias term. Samples with a non-zero
Lagrange multiplier are known as support vectors.

When samples are not linearly separable in the original input space, Equation (4.1) does
not provide good performance, and input feature vectors are instead nonlinearly mapped
to an intermediate high dimensional feature space. In this case, the SVC constructs
an optimal hyperplane in the intermediate space, corresponding to a nonlinear decision
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Figure 4.4: Pixel scatter plot in the Lab (left) and in the RGB (right) space
for a patient with (up) and without (down) CH. Red circles (blue points) are associated
to the right (left) iris pixels.

boundary in the input space. The expression for the decision function can be shown [90]
to be as follows,

flz) = Z i K (x5, ) + b (4.2)

where K(.,.) is a Mercer kernel holding the nonlinear mapping. In our work, the Radial-
Basis Function (RBF) kernel has been used, due to its good performance in many other
problems. The RBF kernel, which corresponds to a spherical Gaussian function, has the
following expression:

K(z,z;) = exp (—M> (4.3)

202

where o refers to the Gaussian width, which best value has to be found. When samples of
two classes are not fully separable in the transformed space, the SVC includes a penalty
term of the structural risk, which is weighted by hyperparameter C' in the optimization
process. For large C' values, the optimization will choose a lower margin hyperplane if it
achieves a good classification in training. Conversely, a very small value of C' will cause
the optimization to look for a separation hyperplane with a higher margin, even if the
hyperplane misclassifies more training samples [90].

The proposed method for quantifying the presence of differences in pigmentation
between both eyes uses the pixel color features of each patient iris as input vectors. This
way, every component of the color space is an input feature to the classifier. For every
patient, iris pixels are randomly separated into two subsets, so-called training and test
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Figure 4.5: Study on the required number of training pixels for the machine learning
classification, benchmarked on a control subject (green), on a different pathology (orange)
and on a CH patient (red), when using SVC (continuous) and k-NN (dashed) classifiers.
Shaded bands depict the mean + standard deviation of 10 realizations.

subsets. The training subset is used to build the SVC, and the test subset is used to
provide with an estimation of the classification error probability, denoted as P.. Note that
that this separation between training and test subsets allows to check the generalization
capabilities of the SVC by using for this purpose the test pixels, which are different from
those used to adjust the SVC parameters. In addition, and since the RBF kernel implicitly
uses the Euclidean distance as a similarity measure between vectors, input features are
here scaled to a similar range before building the SVC. In our work, each feature was
normalized to have zero mean and unit variance.

Hence, the P, from an SVC on the iris pixels of both eyes can be used as a simple
biomarker for a patient, and it can support the clinician on determining whether a patient
could have CH in terms of the presence of color differences, as indicated by a reduced
P.. In those patients with other pathologies in which the differences in the eye-color are
well-known, this method is not necessarily to be run. However, the usefulness for the
clinical diagnosis would be focused on those cases of CH which remain asymptomatic but
they still can exhibit subtle differences in color.

4.3 Experiments and Results

Several experiments were performed in order to determine the most appropriate color
space and the classifier parameters ensuring the best system operation. On the one hand,
the number of pixels required for training was initially scrutinized, together with a succinct
comparison of several classifier architectures. On the other hand, the suitability of different
color spaces was analyzed, e.g. RGB, Lab or HSV. In addition, the impact of the possible
presence of image structures was tackled by analyzing iris sectors of 45° and comparing
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the right and left eyes in different color spaces. Finally, the effect of considering as input
features the pixel neighborhood and therefore information about local variability was
analyzed.

4.3.1 Number of Training Pixels for SVC Learning

Given that we are going to build machine learning classifiers for providing a P., and given
that it is built with pixels on iris images, the number of available pixels is extremely high,
and it is unnecessary to use all of them for training the machine. In addition, the use of a
too high number of input vectors for training would lead to a excessive computation time
and complexity. Therefore, we first addressed the analysis of how many training samples
were needed for yielding suitably trained classifiers.

On the other hand, it was also considered convenient to benchmark the SVC with some
other classifier, in order to make sure that it represents an adequate classifier structure to
be used in this problem. We chose to use the well-known k nearest neighbors (k-NN), in
which the classification of a sample is established by voting of the labels associated to its
k nearest neighbors in terms of the Euclidean distance [92]. In this statistical classifier,
only a free parameter (k) has to be tuned, and it has been often proven to be strongly
competitive with other classifiers, despite its conceptual simplicity [93].

Accordingly, the following experiment was conducted to determine the suitable and
lower enough size of the training set in our problem. After extraction of pixels from both
irises in each patient, a partition of samples was made, taking n, pixels for the training set
and the same number of pixels for the test set. The free parameter tuning was made using
conventional cross-validation [94] in the training set. The ranges searched for C' parameter
in the SVC classifier was [1,10%], and for v = 355 parameter it was [107'2,10°]. In the
k-NN classifier, the search range for k was [1,20]. We run 10 realizations for randomly
selecting the training and the test set from the complete set of pixels.

Figure 4.5 shows the results in terms of P, in two subjects, one being a control and the
other a CH patient. It can be seen that, for both classifiers, a higher P, is obtained in the
control subject. Note that the P, is not 0.5, as would correspond to a perfectly matched
color distribution in both eyes, but instead its value tends to be around 0.4. The P, value
obtained with the CH patient is in this case noticeably lower. Also, the P, is in general
lower for SVC than for £-NN, which is more patent in the CH patient, which gives the
rationale for choosing the SVC as classifier for building the CH biomarker. Finally, note
that about n, = 2000, the SVC reaches its stability, hence this was considered a sufficient
size for the training set in subsequent experiments.

4.3.2 Color Spaces

Different color spaces are usually considered in color image processing depending on the
scene characteristic and the ultimate goal. Thus, while the RGB color space is characterized
because the three components (red, green and blue) are necessary to define the color,
other spaces are characterized because they consider two components for describing the
chromatic information and one component for the achromatic part [95, 96].

This section scrutinizes the suitability of different color spaces in our system. In
addition to the original RGB color space, we benchmarked its normalized version RG,,,
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where the effect of normalization is reducing the dependence between the red and green
components on the brightness, being possible to omit the third component and hence
reducing the space dimensionality [97]. Other color spaces based on linear and non-linear
transformations of their components have been proposed [96, 98]. We have also considered
the Fleck color space [98], based on logarithmic transformations of the RGB components
and one of the so-called opponent color spaces. The Fleck transformation is physiologically
motivated by the way that the human visual system transforms the RGB values into
an opponent color vector with one achromatic and two chromatic components. The
Otha color components have been considered too [99]. They are obtained as a linear
transformation of the RGB space, proposed when trying to derive three orthogonal color
features with large discriminant power on a representative sample of images. The family
of perception-based models are quite intuitive to humans because they are related to
human color perception (color, saturation, and luminance): e.g., HSI (hue-saturation-
intensity) and HSV (hue-saturation-value), which are cylindrical color spaces based on a
non-linear transformation of the RGB space [96]. Finally, the CIE Lab (L for lightness,
a and b for the color) space has been also considered because, in addition to separate
chromatic and achromatic components, distance relations (Euclidean) are in accordance
with perceptual color differences. The separability of pixels belonging to the left and right
iris was benchmarked for each patient when considering as input features the six color
spaces previously presented (RGB, HSI, HSV, Otha, Fleck and Lab).

The estimated mean error probability on the test set for each patient is shown in
Table 4.1 for the k-NN classifier, and in Table 4.2 for the SVC.

In general terms, the error rate for the SVC is lower than for k-NN. Regarding the input
features, and though there are no features working best for all patients, we could state that:
(1) color spaces Lab, RGB-Lab, and HSI provide reasonable results when considering the
three components of the color space; (2) ab components are the best when just considering
chromatic components; and (3) HV and Lb could be selected when choosing the achromatic
component and one of the chromatic components, though there are some contradictory
trends for some patients. Taking into account these conclusions and analyzing the values
of P., we conclude that input features containing the ab components would be the most
appropriate for our purpose. This is in accordance with the similarity measure implicitly
considered by the statistical classifiers of this work, since both are based on the Euclidean
distance. Nevertheless, other options should not be discarded, such as HSI or RGB-Lab.

4.3.3 Effect of Neighbor Pixels and Textures

In the previous experiments, the usefulness of different color components as input features
to the classifier has been scrutinized on a pixel-basis. Despite the color being a pixel
property, it is reasonable to analyse whether the color of a given pixel could be better
represented by the color of its neighboring pixels. For this purpose, a new feature space
was generated by increasing the size of the 3 x 1 vector given by the three components of
the pixel in any color space with those provided by the three components associated to its 8
neighbouring pixels. Thus, the new feature space is represented by a vector of 27 elements.
On the other hand, to get a better characterization of the iris texture, we increased the
neighbouring size to a distance of 2 pixels. This is, each pixel can be characterized by a
vector of 75 elements (25 values per neighborhood and color component).
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Group Pat. RGB Lab La Lb ab HSI 1IH IS HSgsr
no.
HSV VH VS HSpsy RGn Fleck Ohta RGBLab
1 0.34 032 034 0.35 0.32 0.35 0.34 0.33 0.35
0.31 0.38 0.34 0.39 0.34 0.54 0.30 0.31
2 0.37 0.39 040 0.41 0.42 0.40 041 0.41 0.42
1 0.39 0.39 042 043 0.42 0.50 0.39 0.41
3 0.43 045 049 048 0.48 0.47 0.48 0.45 0.45
0.46 045 048 0.47 0.47 0.51 0.46 0.47
9 0.39 0.38 041 0.40 0.44 0.41 041 0.40 0.44
0.38 041 044 0.43 0.45 0.42 0.38 0.41
4 0.44 040 045 0.44 0.41 0.43 045 0.42 0.43
0.39 046 044 0.43 0.44 0.47 0.42 0.41
8 0.37 0.38 040 0.43 0.46 0.37 0.39 0.42 0.41
2 0.35 042 042 043 0.40 0.49 0.36 0.38
11 0.43 043 046 0.46 0.46 0.44 0.46 0.47 0.44
0.45 047 047 0.46 0.45 0.50 0.44 0.45
5 0.19 0.18 021 0.24 0.22 0.21 0.20 0.27 0.24
0.22 019 0.29 0.25 0.24 0.53 0.21 0.21
6 0.22 0.20 041 0.27 0.24 0.20 0.35 0.24 0.26
0.23 041 023 0.23 0.23 0.49 0.20 0.21
3 7 0.28 0.31 030 0.38 0.31 0.29 0.34 0.39 0.44
0.29 031 035 0.44 0.44 0.50 0.29 0.33
10 0.17 0.20 0.22 0.22 0.22 0.18 0.23 0.22 0.24
0.18 0.25 0.26 0.24 0.23 0.52 0.17 0.17

Table 4.1: Mean P, on the test partitions when applying the k-NN classifier on the iris
pixels of each patient (rows, organized according to the group they belong to). Double
column header represents two designs, each one with a different feature space (values in
cells keep the order in the column header).

Figure 4.6 shows the comparison of input spaces as given by individual pixels and
when extending to 8 neighbors, and more neighbors (texture). Classifiers were trained and
tested with 5,000 and 10,000 samples, respectively. Results are shown for the Lab input
space. The k-NN classifier shows a defined trend to bring closer all the cases in terms
of P, with increasing size of the pixel neighborhood, whereas the SVC is less sensitive
to the increase of the pixel neighborhood. Nevertheless, there is a trend in some specific
cases (specially for patient P4 in the figure) for which P. decreases despite being a control
case. Then, it can be concluded for this problem that feature spaces just associated with
individual pixels are better suited than extended spaces considering neighborhood pixels.

4.3.4 Iris Image-Region Analysis

In previous experiments, we considered the whole iris area and different number of neighbors
and components of the color space as features to design the statistical classifier. In addition,
some structures can be expected to be present in iris images, like spots or patches, which
could modify the color structure and affect the performance of the SVC in this setting.
We conducted an experiment for the analysis of the iris by taking the pixels in sectors of
45° as depicted in Figure 4.7. The features used for this purpose were components of the
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Group Pat. RGB Lab La Lb ab HSI IH IS HSpsr
no.
HSV VH VS HSpysv RGp Fleck Ohta RGBLab
1 0.32 0.29 0.34 0.32 0.37 0.33 0.33 0.36 0.38
0.30 0.36 0.32 0.34 0.35 0.47 0.29 0.28
2 0.38 0.40 0.41 0.42 0.40 0.40 0.41 0.42 0.41
1 0.38 0.39 041 041 0.41 0.49 0.38 0.38
3 0.44 046 047 048 0.46 0.46 047 0.46 0.46
0.45 0.47 047 0.47 0.47 0.49 0.44 0.45
9 0.37 0.36 0.38 0.38 0.42 0.36  0.40 0.39 0.42
0.34 0.40 0.39 0.43 0.43 0.51 0.34 0.37
4 0.42 0.39 0.43 042 0.44 0.40 0.45 0.42 0.42
0.39 0.44 0.43 0.40 0.40 0.45 0.41 0.37
8 0.36 0.37 0.35 0.42 0.43 0.38 0.37 0.41 0.42
2 0.38 042 0.42 041 0.43 0.50 0.35 0.32
11 0.43 0.43 0.44 0.43 0.40 0.45 0.45 0.43 0.42
0.48 043 045 0.44 0.43 0.50 0.43 0.41
5 0.19 0.18 0.20 0.24 0.22 0.20 0.19 0.26 0.25
0.19 0.18 0.25 0.27 0.21 0.52 0.20 0.17
6 0.22 0.21 0.39 0.25 0.21 0.19 0.34 0.24 0.24
0.22 0.38 0.20 0.23 0.23 0.48 0.19 0.18
3 7 0.28 0.27 0.27 045 0.39 0.29 0.30 0.39 0.46
0.27 0.29 0.34 045 0.43 0.49 0.28 0.27
10 0.17 0.16 0.19 0.19 0.22 0.17 0.20 0.19 0.23
0.17 0.19 0.23 0.23 0.23 0.48 0.16 0.15

Table 4.2: Mean P, on the test partitions when applying the SVC classifier on the iris
pixels of each patient (rows, organized according to the group they belong to). Double
column header represents two designs, each one with a different feature space (values in
cells keep the order in the column header).

previously analyzed RGB-Lab space.

We analyzed two strategies. Firstly, a classifier was designed using only those pixels of
the same iris angular sector on each eye. This approach aimed to account for the presence
of structures and for regional differences, being more noticeable in some sectors than in
others. Secondly, the impact of including pixels from increasingly accumulated sectors
was also studied. Each classifier was trained with 5,000 samples and tested with 10,000
samples for getting the P,.

Figure 4.8 shows that the four patients in Group 3 (P5, P6, P7 and P10) generally
exhibited a noticeable reduced P., which was consistent throughout all the angles, although
for some sectors their P. was increased. In general terms, the concatenation of all sectors
softened its P. and made it constantly low. Also, the three healthy subjects in Group 2
showed a consistently increased P., both in every sector (with some occasional drop in P.)
and in the accumulated.

However, results on CH patients in Group 1 exhibited a more complex behavior. In
the accumulated classifiers, patients P1 and P9 were readily and consistently identified by
the classifiers, P2 showed a trend to be identified but still it remained in the P, values of
control subjects, and P3 could not be identified and exhibited in general a high P.. On
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Figure 4.6: Comparison of the mean P, obtained when considering three approaches (one
pixel-based and two extensions to the neighbor pixels, see the abscisas axis), both for
k-NN (left panel) and SVC (right panel) classifiers.

Figure 4.7: Scheme of the iris segmentation in sectors of 45° for evaluating the impact of
image structures on the classifier performance.

the other hand, the identification by accounting for each sector separately exhibited a
larger variance, nevertheless, some sectors were more adequate to better separate Groups
1 and 3 from 2, namely, sectors of 180-225 degrees, and 270-315 degrees. Overall, a
perfect discrimination could not be achieved. Iris images of patients P2 and P3 often
showed a behavior strongly overlapping with an increased P,, which not seems to support
the hypothesis that the iris color features can provide with a universal criterion for CH
detection, at least as considered in this work. By visual iris inspection on our database, we
consider this can be mainly due to two facts: First, the iris tissue in those cases actually
contains a variety of spots and marks; and second, the subtle differences in color are
in these cases more patent on some sectors. Therefore, even when the sector analysis
increases its sensitivity, the reduction in the number of pixels makes it more sensitive to
spots and marks.
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Figure 4.8: Study of the P. per iris sector (abscissa axis), for each separate sector (top)
and for accumulated sectors (bottom), using k-NN (left panels) and SVC (right panels).
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

5.1.1 Nonlinear Dynamics and Multiscale Indices in Holter LTM

In this work, we have addressed the calculation of three representative multiscale indices,
namely, MSE, MTI, and MFS, on 1-day and 7-day Holter recordings. From our results,
we can conclude that, when present, the trends are consistent between the additional
scales provided by 1-day recordings and by the 7-day recordings, but the second ones
can give a statistically better view of this kind of representations, specially in the MFS
representations.

Contributions

Several preceding results can be found in which descriptions of 1-day estimated indices are
shown, however few works address from this perspective the 7-days case with scales up to
100. Accordingly, and given the advances in the monitoring and well-being technology in
our days, this represents a good moment to determine the possible advantages and issues
of using these methods in larger observation scales. Non-linear methods used in this work
(MSE, MTI, and MFS) have previously been proposed and widely used in the literature.
The contributions of our work are twofold. On the one hand, we analyzed the dynamics,
the consistency, and especially the robustness of these indices when applied to the new
long term scenarios (7 days) and to point out that algorithms may need to be improved
when using them in this area. On the other hand, to find out if further information is
conveyed in the temporal scales that have not been analyzed before in shorter recordings.

Summary and Discussion of Results

Results showed significant differences between CHF and AF populations not only for
short-term scales but also for long-term and very long-term scales in some indices, MSE
(MTTI) being higher (lower) for AF. These results are consistent with previous studies
[18, 19, 20]. Here we confirmed the same trends, but we also obtained several differences in
very long-term scales that had not been analyzed before. MSE was not further significantly
different for very long-term scales. This may be attributed to the fact that statistical
characteristics of AF signals resemble those from noise, and being MSE a entropy-based

67
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measure, it is higher for AF than for CHF for short-term and long-term scales, but not
for very long-term scales, where the surrogate signals present attenuated these erratic
characteristics. On the other hand, MTT shows that time irreversiblity is for all time scales
lower in AF patients, i.e., for those presenting a more severe pathology.

We detected that 1-day estimations of the multiscale indices can show a distorted
profile. The different estimations observed in the different time windows could be due to
several reasons. In addition, this effect could have statistical roots, in terms of consistency
and variance of the estimation with shorter time series. On the other hand, it also could
be due to the fact that some frames had some properties in their dynamics which made
the multiscale algorithm fail or disrupt. The differences in daily activities should not be a
limitation, as far as the multiscale algorithm measurements are the correlations present in
the signal at different time scales. In the conventionally used surrogate-signal test, which
is built with lower-pass versions of the original signal, the more we increased the scales,
the more the short-term relationships were eliminated to manifest the long-term. Thus,
the short-term differences would be hidden for high scales. We thoroughly checked that
the underlying signals did not have artifacts or aberrations with a specifically customized
software to support an observer to watch at the heart-rate signals and at the original
ECG signals simultaneously. Accordingly, one of our conclusions is that these multiscale
algorithms, while likely informative, should trust not only on the increase of the length
of the signals for their consistency, but also on improving their algorithmic robustness.
Although stationarity can not often be assumed for HRV signals, MSE was originally
proposed and applied in 24-hour Holter recordings, and later many other works have used
MSE to study different dynamics in 24-hours. The analysis of the underlying dynamics
during the day or night can be complex with these methods. Nevertheless, we observed
that the disruption effect in one day does not have any significant impact in the 7-day
analysis, which promotes their use in favor of improved statistical consistency.

Usefulness of Median-difference Tests

An extension of previously proposed statistical comparisons for scales has been proposed
here in terms of nonparametric bootstrap resampling, which allows us to establish pobla-
tional comparisons in terms of the median difference of the multiscale representations,
either for different health conditions, or for different acquisition conditions. Our results
with this method were consistent with the results identified in the literature and showed
some non-observed differences, specially the ones related with AF patients, and with
different statistical consistency behavior and retrieved information about the patient given
by these three multiscale indices, which suggests their use jointly in these and other
populations.

Related Relevant LTM Applications

With the technological availability of cardiac monitoring systems for extended time periods,
LTM is expected to bring interest to new applications in health, wellness, and research. For
instance, it has been recently pointed out [71] that energetic environmental phenomena can
affect psychophysical processes on people in different ways depending on their sensitivity,
health status, and ability of the ANS to self-regulate. In that study, the HRV was recorded
for 72 consecutive hours per week over a five-month period in 16 participants, in order to
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examine ANS responses during normal background environmental periods. Interestingly,
HRV measurements were negatively correlated with the solar wind speed, and the low-
frequency and high-frequency power were negatively correlated with the magnetic field.
This study confirmed that the daily activity of the ANS responds to changes in geomagnetic
and solar activity during periods of undisturbed normal activity, it starts at different times
after changes in various environmental factors, and it persist for variable time periods. As
far as the activity of the ANS reflected by HRV measurements is affected by solar and
geomagnetic influences, the analysis of HRV should take into account these effects when
possible. This study is focused on the ANS modulation, and hence spectral measurements
were mostly used, nevertheless, this kind of data could be analyzed with multiscale indices
to provide with a wider view on the long-term behaviour of HRV.

On the Clinical Usefulness of Multiscale Indices

As described with detail in [11], many indices have been proposed in the last years to develop
risk stratification from different kinds of analysis of electric cardiac signals. However,
these techniques from the academic research world rarely are used in the clinical practice.
In that reference, our team analyzes the possible reasons by decoupling the sometimes
limited accuracy and the lack of consensus on the robustness with the appropriate signal
processing implementations. In this line of search, the present work aims to first establish
the need for robustness in the methods that are widely used nowadays, as a requirement
before enrolling in risk stratification studies, which require high-cost and high effort to
yield clinically useful use to these techniques. Our future research would consider first to
perform the same multiscale analysis (MSE, MTI, and MFS) in LTM healthy subjects, in
order to study the dynamic behavior in normal conditions when increasing the number of
scales. As indicated, the development of more robust multiscale indices is a desirable target
in order to continue to progress in this informative characterization of the cardiac dynamics.
On the other hand, AF and CHF are different heart diseases with different dynamics,
though in this study we only could analyze AF patients as a subset of CHF patients. CHF
is a syndrome of the deterioration in short-term and long-term regulatory mechanisms,
while AF, and especially the persistent one, is an intrinsic short-term mechanism. Whereas
long-term mechanisms can be present in AF, it seems that LTM recordings should be
better used to analyze their presence or deterioration.

5.1.2 ANS Function Evaluation for CH Diagnosis Support Using
Iris Color-Pixel Classification

A SVC-based approach was developed with the aim to support the diagnosis detection
system of CH by an automatic system. Statistical analysis of its performance was based
on sample-based algorithms for learning to classify the pixels of each iris image of the
same individual. The corresponding error probability when classifying iris image pixels of
an individual is inversely associated to the risk the individual suffers from CH.

We obtained better CH identification results with features containing both luminance
and chrominance information. Also, the SVC was a good option as machine learning
classifier to be used in this task. Moreover, some color spaces were found to be more
suitable (Lab, RGB, and HSI). And finally, single-pixel input spaces were found to be
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better than pixel-neighborhood input spaces. However, CH patients with extremely subtle
changes in their eye color could not always be identified by the method. Though this could
be alleviated by considering more reduced regions of the iris for increasing its sensitivity
to color differences, it also increases the sensitivity of the method to marks and spots.

From a clinical viewpoint, the implications of this study can be relevant. According
to recent works, newborns have an inherited and indeterminate iris coloration, which is
performed during the first months of life by the cell-coating activity (melanophors). The
sympathetic nervous system exerts a trophic action on the activity of the melanophors.
When there is a congenital or acquired sympathetic defect in the neonatal period, pigmen-
tation deficiency occurs in the side of the sympathetic hypofunction [27, 28]. This results in
hetherochromia, which can be noted in the different colored eyes, typically blue and brown,
the clearer iris being the defectively pigmented one. Some headaches (typically CH) occur
with strictly unilateral pain centered in the ocular region. During symptomatic periods, a
sympathetic deficit on the side of the pain causes ptosis, and miosis is developed. Both
signs of sympathetic hypofunction are known as Horner’s syndrome. If there is a latent
defect in the sympathetic side of pain that occurs during the symptomatic periods, then
decreased pigmentation of the iris in that side could also exist. In that case, sometimes the
sympathetic defect has occurred in the neonatal period, or sometimes it can be congenital
[28][100].

5.2 Future Works

5.2.1 Nonlinear Dynamics and Multiscale Indices in Holter LTM

Despite the need for more robust algorithms in long-term nonlinear indices, we still
consider that the effort is worth to use these indices, as vast literature supports their
informativeness in other scenarios in addition to the very long-term monitoring. In general
terms, the underlying hypothesis in precedent studies is that heart rate oscillations respond
to phenomena with very different characteristic times, ranging from seconds to months.
The former are well evaluated in a 24-hour recording, but the low frequency (such as
circadian cycles, many hormonal cycles, or secondary to changes in activity during the
week) would only be represented in long-term monitoring. The response to these stimuli
has been moderately studied, but it could provide us with interesting information on some
clinical aspects, such as the prediction of decompensation in heart failure, the evolution of
cardiovascular remodelling after acute injury (e.g., in the weeks following acute myocardial
infarction), the evolution of sports training, or the susceptibility to the development of
malignant arrhythmias (related with sudden cardiac death). All these aspects involve
hormonal processes, inflammatory processes, adaptations of different organs or systems,
and they are characterized by the interaction of mechanisms with slow response times, so
that they develop in days or weeks, rather than in minutes or hours. Therefore, methods
of analyzing the very long-term behavior of heart rate responses could be of interest,
especially in noisy rhythms such as AF, in which almost all the usual HRV parameters are
difficult to interpret. We still do not know if these methods will be widely used in the
future clinical practice because we are still in the phase of describing how these indices
behave, their variability, their comparison with the results in 24 h, among others. In any
case, all these efforts should be supported by robust algorithms for multiscale nonlinear
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indices, an idea that had not been previously paid much attention in the nonlinear HRV
literature.

5.2.2 ANS Function Evaluation for CH Diagnosis Support Using
Iris Color-Pixel Classification

The second work has been aimed to open the wave towards an automatic system. As
such, it has highlighted the scope and limitations of the color as sole criterion. The main
limitation of this study is the reduced number of available examples. A larger database
will allow to create technically improved systems, likely improving the performance by
efficiently and robustly accounting for the regional information of the iris.

The method has provided encouraging results, and it arises as a possibility to provide
the clinicians with diagnostic support for early detection and screening of CH patients
with a low-cost system.

Also it will be very interesting to use the entropy as a measure to compare between left
and right eye of patients. On another hand the mutual Information (MI) is an alternative
to adopt for the same comparison. Both methods can provide a good information so as to
confirm our previous results.

Since deep learning is one of the ways of executing machine learning, and is, nowadays,
a suitable method for extracting meaningful features from the raw data, we will consider
this deep learning as a method in a future work.

The development of cluster headache analysis opened up another research topic, which
would address the assessment of the pain degree that would then be used as an index
of response to medication. As an example, it would be the case of patients in palliative
cancer therapy avoiding the supply of overdose of pain relief medication.
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