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Crosslinker concentration effect on the poroviscoelastic relaxation of 
polyacrylamide hydrogels using depth-sensing indentation 
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A B S T R A C T   

The effect of crosslinker concentration on the mechanical behaviour of polyacrylamide based hydrogels is 
established by using depth sensing indentation. In this work, hydrogels are considered as poroviscoelastic solids, 
being viscoelasticity and poroelasticity taken into account at intermediate length scales such as those here 
explored. A constrained fitting method is derived to implement a multiplicative rule that accommodates the 
contribution of each deformation mechanism on the global material response. The proposed method is robust 
enough to properly separate poroelastic and viscoelastic contributions from relaxation curves measured at 
different indentation depths and strain rates. At the length scales here tested viscoelasticity appears as dominant, 
but the poroelastic contribution becomes increasingly important as the crosslinker concentration is reduced.   

1. Introduction 

Hydrogels are three – dimensional networks with a high ability to 
retain large amounts of water inside [1]. Swelling is a consequence of 
the thermodynamic affinity of the solvent by the hydrogel [2]. This 
hydrophilicity of the polymeric lattice is determined by the presence of 
hydrophilic groups such as –NH2, –COOH, –OH, –CONH2 y –SO3H [3]. 
The polymer network adopts its stiffness by chemical and physical 
crosslinking methods [1]. Hydrogels accept water up to a thermody
namic equilibrium. Swollen hydrogels use to show a very high flexibility 
[3] with elastic moduli in the kPa range [4]. 

Among the main applications of hydrogels are drug delivery, tissue 
engineering, agriculture, and others [1–3,5]. In all of them, the me
chanical properties largely determine their applicability [6,7]. Addi
tionally, the behaviour of hydrogels has similarities with that of 
biological tissues [8–11] making their study and characterization rather 
interesting. In both cases, a combined response between viscoelasticity 
(VE) and poroelasticity (PE) is observed, giving rise to the so called 
poroviscoelastic (PVE) behaviour [8,12–16]. There are general models 
describing poroviscoelastic behaviour, which take into account both the 
viscoelastic and poroelastic effects in truly modelling framework [17, 
18]. However, it is not clear how the chemical composition and the 
structural arrangement of the 3D lattice control the mechanical behav
iour. More in depth, if the key microstructural features controlling the 
mechanical response of the hydrogels are revealed, tailoring of the 

properties could be accessible by modifying the chemistry and/or the 
structural parameters of the material. 

The viscoelastic behaviour of hydrogels is given as a result of the 
conformational changes inside the polymeric structure in order to find 
an equilibrium state when it is subjected to a stress [12,13,19]. This 
response is controlled by a characteristic time which is independent on 
the test contact size [8,11,12,14,19–21], assuming that mesh size of the 
polymeric network is much smaller than the contact size used during a 
mechanical test [12,19]. 

The viscoelastic behaviour of hydrogels can be expressed as a stan
dard viscoelastic solid model or Maxwell-Wierchert model [14,22–24]. 
In a relaxation test, load decreases continuously while displacement is 
set at a control value. In this conditions, the relaxation function, E(t), 
can be fitted to a Prony series following Eq. (1). 

E(t)=E∞ +
∑n

i=1
Ei⋅exp

(
− t⋅Ei

ηi

)

(1)  

where E∞ is the value after the viscoelastic process is relaxed, Eiand 
ηi the elastic modulus and the viscosity associated with each of the el
ements of the Maxwell - Wiechert model. Emphasize that Ei/ηi = τi, 
where τi correspond to the viscoelastic relaxation time associated to 
each of the elements used. 

Numerous studies [20,21,25] have described the viscoelastic 
behaviour of hydrogels by only using one single-term Prony series in Eq. 
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(1). 
The poroelastic behaviour of hydrogels is due to the migration of the 

solvent through the pores of the polymeric mesh under mechanical 
stress [8,12,14,16,19,22,26,27]. This behaviour can be described by the 
theory of poroelasticity developed by M. Biot [26]. The migration rate of 
the solvent is determined by the intrinsic permeability of the solvent in 
the hydrogel, k, that is related to the diffusivity coefficient, D, by Eq. (2). 

k =
D⋅(1 − 2ν)⋅ηs

2(1 − ν)⋅G (2)  

where ν is the Poisson ratio, G is the transverse elastic modulus of the 
hydrogel and ηs is the viscosity of the solvent contained in the hydrogel. 
(In the case of being water its value is 0.89 ⋅ 10− 3 Pa s) [28]. 

The poroelastic response is not only time - dependent [8,12,14,19, 
27,28] but also size - dependent [8,19,27,28]. The fact that poroelas
ticity is size – dependent and viscoelasticity is not has governed the 
mechanical characterization of hydrogels in most of the work previously 
done. Contact size is usually changed in the mechanical tests to promote 
one response over the other [14,19]. 

One of the preferred method for characterizing hydrogels has been 
relaxation by uniaxial unconfined compression tests [25]. Mostly the 
experimental curve has been treated as poroelastic assuming that 
viscoelastic relaxation time is much smaller than the test duration. 
However, several problems have been observed because tests need to be 
too long and it is not so clear that viscoleasticiy can be completely 
neglected. 

Yuhang Hu et al. [19] and Edwin E. Chan et al. [16] used macroscale 
indentation to characterize hydrogels through the predominance of the 
poroelastic response. It was determined that the poroelastic load 
relaxation function g(ϕ), is not only dependent on the indentation size, 
a2, but also on the indenter geometry. Using numerical simulation 
explicit poroelastic relaxation equations for spherical indentation tests 
were provided (Eqs (3) and (4)). 

PPE(t) − P(∞)

PPE(0) − P(∞)
= g(ϕ) (3)  

Where ϕ = D⋅t/a2 and 

g(ϕ)= 0.491 exp
(
− 0.908

̅̅̅̅
ϕ

√ )
+ 0.509 exp(− 1.679ϕ) (4) 

Micro/nanoscale load relaxation indentation tests have been also 
performed with hydrogels [21,23] by considering the material as a 
viscoelastic solid. Matteo Galli et al. [21] perform nanoscale and 
microscale indentation tests treating the experimental response as 
viscoelastic and obtaining by finite element simulation the poroelastic 
properties. Jessica D. Kaufman et al. [24], Wei Hu et al. [27] and Z. Ilke 
Kalcioglu et al. [28] did an experimental comparison between the me
chanical behaviour of hydrogels at macro- and microscale. 

Commonly, the mechanical characterization of hydrogels has been 
oriented to a simplification of the actual behaviour. A significant 
advance in the study of the poroviscoelastic response would be the 
development of a methodology capable of separating and quantifying 
the viscoelastic and poroelastic contributions without the need to 
neglect any of them. 

Edwin P. Chan et al. in Ref. [16] propose an additive poroviscoelastic 
interaction following Eq. (5). 

PPVE(t) =PVE(t) + PPE(t) (5) 

On the other hand, Daniel G. T. Strange et al. [12] propose a mul
tiplicative poroviscoelastic interaction according to Eq. (6). 

PPVE(t) =
PVE(t)⋅PPE(t)

P∞
(6) 

Although it is not clear the validity of Eqs (5) and (6), it seems that 
the additive rule can be used when characteristic times for poroelastic 

and viscoelastic responses are largely different for the particular length 
scale. However, if the characteristic times of each phenomenon are 
overlapped, the multiplicative rule appears as the best option describing 
how the deformation mechanisms interact on each other. 

It is important to note that all of the previous expressions are based 
on continuum mechanics and it is hardly to know how the material 
features affect the parameters governing constitutive equation of 
hydrogels. Several efforts have been made to enlighten the influence of 
microstructural parameters on mechanical behaviour; but, to the au
thors knowledge, most of them does not study the poroviscoelastic 
behaviour of the materials. 

In this work, we study polyacrylamide based hydrogels at the micro 
length scale by means of depth sensing indentation. It is assumed that 
both deformation mechanism, poroelasticity and viscoelasticity, are 
activated during the test. Crosslinking of the hydrogels should be one of 
the most relevant phenomena affecting the mechanical behaviour of 
these materials. Consequently, the main objective of this work is to 
determine the influence of crosslinker concentration on the poro
viscoelastic performance of the polyacrylamide hydrogels. 

2. Experimental methodology 

2.1. Materials 

2.1.1. PAAm hydrogels 
Cross - linked polyacrylamide hydrogels were synthesized using so

lution polymerization. Two types of polyacrylamide hydrogels of 
different composition were synthesized, 15% T - 6% C and 15% T - 0.6% 
C, following relations Ec. 7 and Ec. 8 collected by Chirani N. et al. (2016) 
[2] and Aleksandra K. Denisin et al. (2016) [4]. 

%T (w / v)=
weight of monomer(g) + weight of x − crosslinker (g)

total volume (mL)
(7)  

%C (w /w)=
weight of x − crosslinker (g)

weight of monomer (g) + weight of x − crosslinker(g)
(8) 

The weight proportions for each composition of acrylamide mono
mer (Merck Group, ref. 8.00830) and N,N′-Methylenebisacrylamide 
cross – linker (Merck Group, ref. 1.01546) were put into mili – Q water 
in a beaker glass until their complete dissolution. The dissolution was 
helped by a magnetic stirrer. Once the N,N′-Methylenebisacrylamide 
clusters was dissolved, N,N,N′,N′-Tetramethylethylendiamine polimeri
zation accelerator (Merck Group, ref. 1.10732) and Amonium Persulfate 
reaction initiator (Hach, ref. 11201H) were added to the solution in a 
weight proportion of 0.0046 and 0.0045 times the weight of acrylamide, 
respectively. The precursor solution was poured into PMMA moulds 
covered by glass bases enclosing it in a cylindrical cavity (R = 5 mm, h =
6 mm) where the hydrogel polimerization was carried out. After 24 h the 
polymerized hydrogels samples were demoulded and hydrated in milli – 
Q water for another 24 h before being tested. 

2.1.2. PAAm xerogels synthesis 
Two types of xerogels have been synthesized corresponding to the 

PAAm hydrogels of composition 15% T - 6% C and 15% T - 0.6% C. The 
synthesis method of these hydrogels exposed in the previous section has 
been followed, but instead of pouring the precursor solution into 
moulds, it has been introduced into 1 cm diameter syringes where they 
have cured. Once cured, they have been cut into cylindrical test tubes 
and left to dry at room temperature for a minimum time of 2 weeks. In 
the drying process, a permeable mesh has been used to impose equal 
boundary conditions on all of the free surfaces, avoiding evaporation 
gradients and, therefore, residual stresses that deform or stresses the 
specimen. 
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2.2. Depth sensing indentation 

Load – relaxation microindentation tests were carried out using an 
Agilent G200 indenter with a Keysight XP indenter head with a 500 mN 
load cell. Experiments run two segments under displacement control. 
During first one, displacement of the indenter was linearly increased on 
the sample at a prescribed strain rate up to reach the maximum depth 
programmed in the test. Afterwards, during the second segment, 
displacement was held during 1200 s at a constant value equal to that 
reached in the previous part. Load was recorded during the whole 
duration of the experiment revealing the relaxation behaviour of sam
ples during the second branch of the test. All tests were performed with a 
temperature control of 20 ◦C. A ruby spherical indenter (800 μm of 
radius) has been used. 

In order to establish the influence of the contact size and the strain 
rate on the poroviscoelastic behaviour under relaxation of hydrogels, 
three penetration depths and three strain rates during the loading ramp 
were programmed for these materials. Note that contact size can be 
estimated for spherical indentation as the square root of the product 
between the indenter radius and the penetration depth. All tests in 
hydrogels were conducted in a liquid cell under immersion in milli– Q 
water to maintain the saturation condition in the samples during the 
whole test. In contrast, xerogels were tested at dry condition. Three 
maximum penetration depths and two strain rates were used for 
xerogels. 

To ensure statistical validation of the experimental campaign, tests 
were repeated at each experimental condition. Table 1 collect experi
mental details used in this work. 

3. Results 

Fig. 1 shows the loading segment and the relaxation curves measured 
for polyacrylamide hydrogels at three maximum penetration depths and 
at three prescribed strain rates during the loading ramp for each 

material. Although a certain degree of dispersion is observed among 
different samples, it is considered that a good control is achieved and 
properly maintained during the test. For all tests, a good repeatability is 
observed, allowing the calculation of an average curve for each exper
imental condition (black curves in Fig. 1). The average curves at each 
penetration depth will be used throughout the rest of the manuscript. 

As expected, once the maximum depth is reached and displacement 
is held to observe the samples relaxation, load decreases with time and 
contact size, showing the typical load relaxation curve for these mate
rials. It is evident that crosslinker concentration clearly affects to the 
stiffness of the material. The higher the concentration, the higher the 
measured loads for the same indentation depth. Strain rate of the 
loading ramp also have an influence on the relaxation curves. For both 
hydrogels, the maximum load reached at the end of the loading ramp is 
higher as the strain rate of the loading ramp is increased. On the other 
hand, the equilibrium is found during the relaxation by reaching a 
constant load value well before 1200 s. Although samples are not 
relaxing exactly at the same time, all of them relaxes at a similar range 
from 100 to 300 s. Relaxation times are slightly affected by the strain 
rate of the loading segment. It seems that tests performed at higher strain 
rate relaxed at lower times than those measured at lower strain rates. 
However, it is difficult to assess the exact time relaxation scale by direct 
observation of the curves, thus, a more in depth analysis is needed. In 
other words, experimental curves by themselves do not allow for a clear 
discrimination between deformation mechanisms or for a ranking be
tween materials focused on the contributions of the poroelastic or 
viscoelastic phenomena. 

Fig. 2 includes relaxation curves for the xerogels 15%T - 6%C and 
15%T – 0.6%C polyacrylamide samples measured at three penetration 
depths and two strain rates imposed during the loading segment. 
Displacement control is also well achieved, and also the repeatibility is 
acceptable allowing the calculation of average curves for each experi
mental condition (black curves in Fig. 2). 

As expected, measured loads are increased by one order of 

Table 1 
Experimental details for depth – sensing indentation tests.  

Material Condition Loading 
time 

Strain rate during the 
loading ramp 

Maximum penetration 
depth (hmax) 

Contact size during relaxation 
(R⋅hmax)0.5 

Holding Time during 
relaxation 

No. 
Tests 

(− ) (− ) (s) (s− 1) (μm) (μm) (s) (− ) 

15%T-6%C Hydrogel 6 0.17 25 141 ≈1200 3 
20 126 3 
15 110 4 

50 0.02 25 141 4 
20 126 4 
15 110 4 

360 0.0027 25 141 4 
20 126 4 
15 110 4 

Xerogel 50 0.02 1 28 4 
0.75 24 4 
0.5 20 2 

360 0.0027 1 28 4 
0.75 24 4 
0.5 20 4 

15%T-0.6%C Hydrogel 6 0.17 25 141 3 
20 126 3 
15 110 2 

50 0.02 25 141 4 
20 126 4 
15 110 4 

360 0.0027 25 141 4 
20 126 4 
15 110 4 

Xerogel 50 0.02 1 28 4 
0.75 24 4 
0.5 20 3 

360 0.0027 1 28 4 
0.75 24 4 
0.5 20 4  
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Fig. 1. Experimental load – vs time curves a) 15%T – 6%C polyacrylamide hydrogel measured at 0.17 s− 1 of strain rate during the loading ramp. B) 15%T – 0.6%C 
polyacrylamide hydrogel measured at 0.17 s− 1 of strain rate during the loading ramp c) 15%T – 6%C polyacrylamide hydrogel measured at 0.02 s− 1 of strain rate 
during the loading ramp. D) 15%T – 0.6%C polyacrylamide hydrogel measured at 0.02 s− 1 of strain rate during the loading ramp. E) 15%T – 6%C polyacrylamide 
hydrogel measured at 0.0027 s− 1 of strain rate during the loading ramp. F) 15%T – 0.6%C polyacrylamide hydrogel measured at 0.0027 s− 1 of strain rate during the 
loading ramp. 
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magnitude compared to those of hydrogels in Fig. 1 mesaured at same 
strain rate, revealing that xerogels are much stiffer than hydrogels 
counterparts. Additionally, strain rate of the loading ramp affects in the 
same way than that pointed out for hydrogels. The higher the strain rate, 
the higher the maximum load measured prior the relaxation segment. 
Again, it is difficult to stablish a correlation between strain rate and 
relaxation time, but it seems that curves performed at lower strain rate 
of the loading ramp are shifted to higher relaxation times. However, a 
more detailed analysis of the experimental curves is required. 

4. Discussion 

4.1. On the relative importance of the viscoelastic and poroelastic 
contributions in polyacrylamide hydrogels 

Load curves presented in Figs. 1 and 2 have to be explained attending 
to the relaxation phenomena that are activated in the materials during 
the indentation test. As was stated before, hydrogels are considered time 
– dependent materials due to the concurrence of two types of relaxation 
mechanisms: on one side, the spacial lattice is formed by a polymer 
presenting an intrinsic viscoelastic behaviour; on the other hand, water 

retained inside the 3D polymeric network is forced to migrate during the 
load application, driving to the poroelastic contribution. Competition 
between both are stablished in terms of a length scale, because poroe
lastic behaviour is size - dependent, while viscoelastic is not. 

Using the concept of normalization a master curve is built computing 
a dimensionless load as was stated in previous works. 

Pnorm =
P(t) − P∞

P0 − P∞
(9)  

where P∞ is the asymptotic load value when the sample is fully relaxed 
and P0 is the instantaneous load measured at the initial step of the 
relaxation. 

This methodology is based on the fact that the viscoelastic contri
bution is not size - dependent, and once the load is normalized, the 
curves of viscoelastic materials measured at different penetration depths 
should collapse in a single one. However, normalization for a poroelastic 
material would also require dividing the time by the contact size at 
different penetration depths. In a poroviscoelastic material, the load 
normalization following Eq. (9) can be used as a first insight in the 
relative importance of both deformation mechanisms at the particular 
length scale used in the test. All curves tend to collapse in a single trend 

Fig. 2. Experimental Load vs time curves. A) 15%T – 6%C polyacrylamide Xerogel measured at 0.02 s− 1 of strain rate during the loading ramp. B) 15 %T – 0.6%C 
polyacrylamide Xerogel measured at 0.02 s− 1 of strain rate during the loading ramp. C) 15%T – 6%C polyacrylamide Xerogel measured at 0.0027 s− 1 of strain rate 
during the loading ramp. D) 15%T – 0.6%C polyacrylamide Xerogel measured at 0.0027 s− 1 of strain rate during the loading ramp. 
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if viscoelasticity is the dominant mechanism. However, as the poroe
lastic contribution becomes more important, an appropriate normali
zation requires to use the contact size. 

Fig. 3 comprises the normalization plots for the hydrogels and 
xerogels tested in this work. Fig. 3a and b shows the load normalization 
plots for the polyacrylamide based hydrogels. For both materials, when 
tests obtained at the same strain rate for the loading ramp are observed, 
a quasi – single master curve is displayed by the fully collapse of single 
curves measured at different penetration depths. Thus, hydrogels seem 
to show a noticeable viscoelastic behaviour at this length scale. In 
addition, it is interesting to note that normalized plots are slightly 
shifted to higher relaxation times as the strain rate is decreased. On the 
other side, Fig. 3c and d presents normalized plots for xerogels. As these 
materials are tested in dry conditions, viscoelastic behaviour should be 
the key mechanism explaining the relaxation behaviour for this mate
rials. As expected, despite of the strain rate value used to perform the 
tests, single experiments measured at different contact sizes, but at the 
same strain rate, form a single master curve when they are normalized; 
confirming the previous hypothesis. However, there are some different 
behaviours among materials. While highly crosslinked hydrogel 15% T - 
6%C (Fig. 3a) shows a unique trend at each strain rate for all penetration 
depths, very similar to that observed for xerogels (Fig. 3c and d), low 
crosslinked hydrogels curves are not perfectly collapsed (Fig. 3b). 

Furthermore, relaxation time is clearly displaced to higher values for the 
low crosslinked hydrogels. 

In more detail, Fig. 4 shows a comparison of normalized plots be
tween hydrogels and xerogels tested at the same strain rate. Two main 
observations arises from these plots. Firstly, xerogels behaves in a very 
similar way when normalized loads are used. They are placed at the 
same path independently on the crosslinker concentration or on the 
strain rate. Secondly, hydrogels present a clear difference when 
normalized loads are compared to those of xerogels. Highly crosslinked 
hydrogel follow a very similar normalized trend than those exhibited by 
xerogels. However, low crosslinked hydrogel curves are clearly shifted 
to higher relaxation times far from those showed for the other materials. 
These observations are systematic despite of the strain rate used during 
the tests. 

As was stated before, as the xerogels samples are tested in dry con
ditions, viscoleasticity should be responsible for the entire relaxation 
curve measured in these cases. Thus, it can be concluded that the 
viscoelastic charateristic relaxation time is directly related to the poly
mer nature of the 3D network, and not to the crosslinker concentration. 
Secondly, once the load is normalized, highly crosslinked hydrogel is 
nearly placed at the same curve than those displayed by the xerogels, 
pointing out that this material presents a mainly viscoelastic behaviour 
at the length scale here tested. Elseways, the low crosslinked hydrogel is 

Fig. 3. Load normalization plots of the relaxation segment for the materials studied. A) 15 %T – 6%C hydrogel. B) 15 %T – 0.6%C hydrogel. C) 15 %T – 6%C xerogel. 
D) 15 %T – 0.6%C xerogel. 

C. Reinhards – Hervás et al.                                                                                                                                                                                                                  



Polymer Testing 100 (2021) 107265

7

clearly shifted to higher relaxation times. Thus, its behaviour should be 
explained attending to the poroelastic contribution. In other words, for 
low crosslinked hydrogels, viscoelasticity does not seem to be the unique 
deformation mechanism that is activated during the mechanical 
relaxation. 

At this stage, we can affirm that by reducing the crosslinker con
centration, an increment of the relative contribution of the poroelastic 
deformation mechanism is achieved. However, this is a qualitative 
conclusion obtained from direct observation of the experimental curves 
and the normalization plots. A deeper analysis is needed to quantify the 
ratio between poroelasticty and viscoelasticity on the global mechanical 
behaviour. 

4.2. Fitting constrained method 

From the experiments showed in the previous section one must 
conclude that the poroelastic and viscoleastic contributions in poly
acrylamide hydrogels are overlapped for the contact size tested because 
a single relaxation is observed. According to Ref. [16], if relaxations 
corresponding to different deformation mechanisms are not overlapped 
because characteristic relaxation times are enough different, material 
transits for two different realxation phenomena that can be directly 
observed in the experimental curve. It is clear that this is not observed in 
the experimental trends measured for polyacrylamide hydrogles at this 
length scale. Accepting this, two main questions remain. Is competition 
between poroelasticity and viscoelasticity dependent on the composi
tion of hydrogels? Can the poroelastic and viscoelastic contributions be 
discriminated? Actually, both questions could be answered developing a 
method to properly discriminate both deformation mechanisms from the 
experimental curve. Once the contributions are known, the influence of 
the hydrogels concentration can be determined. 

The multiplicative rule in Eq. (6) can be used when poroelastic and 
viscoelastic relaxations are overlapped during the relaxation segment. In 
the case of poroelasticity, Eqs. (3) and (4) express the time and size 
dependence of the load. This can be also particularized for a spherical 
indentation. Viscoelastic contribution can be modelled using the well 
known Prony series. In this case a two – term were used trying to 
characterize the short and medium/long time scales. If theses constitu
tive relations are included in Eq. (6), a fitting model can be derived (Eq. 
(10)). A detailed deduction of this model is included in Appendix 1. 

PPVE(t) − P∞ =
(
PVE

0 − P∞
)
[

Aexp
(

− t/τVE1

)

+ (1 − A)exp
(

− t/τVE2

)]

+ P∞(1 − 2ν∞)

[

0.491 exp

(

− 0.908
̅̅̅̅̅̅̅̅̅̅̅̅
Dt/Rh

√
)

+ 0.509 exp
(

− 1.679 Dt/Rh

)]

+
(
PVE

0

− P∞
)
[

A exp
(

− t/τVE1

)

(1 − A) exp
(

− t/τVE2

)]

⋅(1

− 2ν∞)

[

0.491 exp

(

− 0.908
̅̅̅̅̅̅̅̅̅̅̅̅
Dt/Rh

√
)

+ 0.509 exp
(

− 1.679 Dt/Rh

)]

(10) 

It must be said that this is a highly parametrized model in which six 
coefficients have to be fitted: viscoelastic pre-exponential factor, A, 
instantaneous load of the viscoelastic contribution, PVE

0 , characteristic 
viscoelastic relaxation times, τVE1 and τVE2, diffusivity, D, and Poisson 
ratio when the material is fully relaxed, ν∞. First four coefficients are 
related to the viscoelastic contribution and the last two parameters are 
linked to the poroelastic one. Obviously, a free fit of Eq. (10) to the 
experimental data is not recommended because it is difficult to evaluate 
how good the fit is. Actually, a measure of the robustness of a fitting 
method can be checked by using experimental data from a material in 
which the mechanical response is known. As was stated before, xerogels 
have to be considered purely viscoelastic materials because they are 
mechanically tested at dry conditions. However, if a free fit of Eq. (10) is 
applied to the experimental data from xerogels a non – sense solution is 
obtained as it is shown in Fig. 5. 

As the model includes a poroelastic segment, fit is forced to obtain 
Diffusivity and Poisson ratio. As a result, best fit provides a minor, but 
still significant, poroelastic contribution in xerogels for all experimental 
conditions. Even when it is known that the material should be exclu
sively viscoelastic because any fluid is present. Surprisingly, square of 
the correlation factor is computed above of 0.997 for these fits. A robust 
fitting method should deliver a model solution with no poroelastic 
contribution when it is used to explain curves measured in xerogels. 

To circumvent this problem, a mathematical restriction that con
straints the fitting model is proposed. This constraint can be derived 
precisely from the same multiplicative rule in Eq. (6) and relies again on 
the fact that poroelasticity is size - dependent and viscoelasticity is not. 
The load normalization method needed for each mechanisms allows 

Fig. 4. Comparison between load normalization plots for hydrogels and xerogels a) strain rate of 0.02 s–1. B) strain rate of 0.0027 s–1.  
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discriminating them. If the multiplicative rule is subsequently normal
ized by viscoelastic and poroelastic contributions, a very interesting 
relation between tests performed at different contact sizes can be 
derived (Eq. (11)). A detailed deduction is collected in Appendix 2. 

PPVE(t)hi

PPVE(t)hj
−

P∞hi

P∞hj
+

PVE(t)hi

PVE(t)hj
−

PPE(t)hi

PPE(t)hj
= 0 (11) 

Where PPVE(t) is the experimental load measured for a poroviscoe
lastic material, P∞, is the load when the material is fully relaxed, PVE(t) is 
the load contribution for the viscoelastic mechanism, PPE(t) is the load 
contribution for the poroelastic mechanism, and hi, hj states for tests 
performed at two different contact size or penetration depths or even 
two indentations using different indenter geometries. At least two 
different relaxation tests at different penetrations must be carried out to 
apply the constraint. Interestingly, Eq. (11) can be derived indepen
dently on the particular constitutive equation used for the viscoelastic or 
the poroelastic contribution. Advantageously, the first two terms in Eq. 
(11) are experimentally measured, while the last two terms are obtained 
once the model in Eq. (10) is fitted to experimental data. This is precisely 
why Eq. (11) constraints the fit. The problem now is to determine six 
fitting coefficients to provide the poroelastic and the viscoelastic con
tributions that minimize the difference between experimental 

measurements and fitted responses in Eq. (11), when different pene
tration depths are tested. 

A depth sensing indentation experiment at three different contact 
sizes was performed, and using Eq. (11) three constraint conditions can 
be calculated for this particular work by combining results of different 
penetration depths, as it is presented in Eq. (12). 

f12(t)=
PPVE(t)1

PPVE(t)2
−

P∞1

P∞2
+

PVE(t)1

PVE(t)2
−

PPE(t)1

PPE(t)2
= 0  

f13(t)=
PPVE(t)1

PPVE(t)3
−

P∞1

P∞3
+

PVE(t)1

PVE(t)3
−

PPE(t)1

PPE(t)3
= 0 (12)  

f23(t)=
PPVE(t)2

PPVE(t)3
−

P∞2

P∞3
+

PVE(t)2

PVE(t)3
−

PPE(t)2

PPE(t)3
= 0  

where 1, 2 and 3 states for the three different penetration depths and 
fij(t) is a contraction to express the constraint factor for the combination 
of penetrations i and j. According to Eqs. (11) and (12), the constraint 
factor should be null at each testing time despite of the particular couple 
of penetration depths used. Thus, a general fitting condition for the fit 
can be derived combining tests performed at an arbitrary number of 
contact sizes by adding the individual constraints: 

Fig. 5. Best free fit of model in Eq. (10) applied to average relaxation curves of Xerogels. Curves from up to down in each plot corresponds to penetration depths 
maintained at 1 μm, 0.75 μm and 0.5 μm, respectively. A) 15% T – 6% C xerogel tested at 0.02 s− 1 b) 15% T – 0.6% C xerogel tested at 0.02 s− 1. C) 15% T – 6% C 
xerogel tested at 0.0027 s− 1. D) 15% T – 0.6% C xerogel tested at 0.02 s− 1. 
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∑n

i = 1
j = 1

fij(t)= 0; i ∕= j (13) 

In this work, Eq. (13) is particularized as: 

f12(t) + f13(t) + f23(t) = 0 (14) 

Constraint in Eq. (14) must be included in the fitting process. How
ever, this means that fitting algorithm has to be changed. In this work, a 
procedure based on a sensitivity analysis of one of the fitting co
efficients, the short viscoelastic relaxation time, was implemented. As a 
two – term Prony series was used to model the viscoelastic behaviour, 
one of the relaxation times accounts for the conformational changes 
occurred in the polymeric chains at very short times. In particular, 
literature points out that for polyacrylamide hydrogels the short visco
elastic time should be in the order of 1 s or lower. Consequently, prior to 
the fitting calculation the value of short viscoelastic time was fixed be
tween 0.01 and 10 s. Afterwards, the fit at the three penetration depths 
experimentally measured was performed to obtain the other five fitting 
coefficients by the least squares methodology, selecting those with the 
best correlation number R2. Once the fit is obtained for each short 

viscoelastic time value, the poroelastic and the viscoelastic contribution 
can be derived for each penetration depth. Finally, Eq. (14) can be used 
to compute the global constraint factor in each fit. One thousand values 
for the short viscoelastic time were swept in the range used. Therefore, 
one thousand global constraint factors were estimated following Eq. 
(12)–14. The final step is to select the fitting model corresponding to the 
lowest value of the global constraint factor. 

Fig. 6, in contrast to Fig. 5, shows results obtained when the global 
constraint factor is used in the fitting calculations for polyacrylamide 
xerogels using previous procedure. It is clear that the constraint factor 
allows to obtain a well based result for all experimental conditions. In 
this case, despite of the penetration depth or the strain rate, xerogels are 
interpreted as purely viscoelastic materials. Green (viscoelastic contri
bution) and red (fitting model) curves in Fig. 6 completely overlap, 
pointing out that fitting is only dependent on viscoelastic properties. 
Additionally, as the model is forced to compute a poroelastic contribu
tion, the constrained fitting method drives to a non-time dependent 
curve (blue line in Fig. 6) reaching from the very beginning the P∞ value. 
In other words, constrained fitting is able to properly discriminate the 
viscoelastic and poroelastic contributions from the experimental curves. 
The global constraint factor obtained for each fit using Eq. (14) is 
maintained at a low value for the whole time range. Finally, fitting 

Fig. 6. Constrained fit of model in Eq. (10) applied to average relaxation curves of Xerogels. Curves from up to down in each plot corresponds to penetration depths 
maintained at 1 μm, 0.75 μm and 0.5 μm, respectively. A) 15% T – 6% C xerogel tested at 0.02 s− 1 b) 15% T – 0.6% C xerogel tested at 0.02 s− 1. C) 15% T – 6% C 
xerogel tested at 0.0027 s− 1. D) 15% T – 0.6% C xerogel tested at 0.0027 s− 1. 
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coefficients for xerogels at each condition are included in Table 1. Note 
that short and long term viscoelastic relaxation times and pre- 
exponential factor, A, are very similar between xerogels despite of the 
crosslinker concentration; which is in agreement with plots showed at 
Fig. 4, justifying why normalized curves measured at the same strain 
rate from xerogels are shifted to the same master curve when load is 
normalized. 

4.3. Discriminating viscoelastic and poroelastic contributions in hydrogels 

The fitting procedure in the previous section was applied to poly
acrylamide based hydrogels. Fig. 7 shows the experimental curve, the 
fitting model and the viscoelastic and poroelastic contributions for each 
material, penetration depth and strain rate. Fig. 7a, c and 7e present 
results for 15% T – 6% C hydrogels at different strain rates. It can be seen 
that, despite of the strain rate of the loading ramp, viscoelastic contri
bution explains the majority of the experimental curves for this material. 
However, there is still a poroelastic part which presents a minor 
importance at the initial stages of the relaxation curve. Additionally, 
poroelastic contribution is fully relaxed at very short times, pointing out 
that highly crosslinked hydrogel can be understood as a quasi – visco
elastic solid. 

Table 2 includes fitting coefficients for this material. Short and long 
viscoelastic relaxation times and pre-exponential factor of the Prony 
series are very similar to those computed for xerogels at the same 
experimental conditions, explaining why 15% T – 6% C hydrogel 
collapsed to the same normalized curve as xerogels in Fig. 4. On the 
other side, in Fig. 7b, d and 7f viscoelastic and poroelastic contributions 
for low crosslinked hydrogel are included for all experimental condi
tions. Although viscoelasticity remains as the most relevant deformation 
mechanism for these materials at all experimental conditions; interest
ingly, poroelastic contribution is much more important than that 
observed for highly crosslinked hydrogel. For some penetration depths 
and strain rates, blue lines in Fig. 7 (poroelastic parts) overcome green 
lines (viscoelastic parts) at the shorter times, pointing out that the first 
relaxation stages in low crosslinked hydrogels should be attributed to 
the poroelastic contribution (note that we are under the multiplicative 
rule hypothesis). Afterwards, viscoelasticity explain the relaxation at 
medium and longer times. Table 2 collects fitting coefficients for 15 %T 
– 0.6% C polyacrylamide. It can be observed that viscoelastic relaxation 
times are higher than those obtained in 15% T – 6% C hydrogels and 
xerogels when they are compared at the same strain rate. This is the 
reason explaining different trends observed for low crosslinked hydro
gels in normalization plots in Fig. 4. Consequently, a low amount of 
crosslinker in the hydrogel formulation leads to an increment of the 
relative importance of the poroelastic behaviour. In other words, highly 
crosslinked polyacrylamide hydrogels are quasi - viscoelastic, while low 
crosslinked hydrogels have to be considered as poroviscoelastic mate
rials at the length scale tested in this work. 

Poroelastic related fitting coefficients are also included in Table 2. 
Interestingly, strain rate does not affect values of diffusivity and Poisson 
ratio. Obtained values can be contrasted to those given in the literature 
to provide a validation of the discrimination method presented here. T. 
Takigawa et al. [29] conclude that the poisson’s ratio in a poly
acrylamide hydrogel similar to the highly crosslinked one used in this 
work is 0.457. Regarding Poisson ratio, highly crosslinked hydrogels 
showed higher values than those of low crosslinked materials. As the 
Poisson ratio at the equilibrium state is related to the compresibility 
change in a poroelastic material, and taking into account that at the 
initial load hydrogels can be considered as incompressible (ν0 = 0.5), it 
can be concluded that low crosslinked hydrogels exhibited a higher 
compressibility variation, which in turn points out the increasingly 
poroelastic character of these materials. The diffusivity values including 
in Table 2 are in agreement with those published previously in the 
literature [13,30]. Additionally, to check the validity range of the fitting 
parameters computed for hydrogels, Eq. (2) can be used to estimate the 

intrinsic permeability, which in turn, depends on most of the variables 
collected in Table 2. Transverse elastic modulus, G, must be previously 
calculated using Eq. (15): 

G=
3PPE

0

16 h3/2R1/2 (15) 

Table 2 includes G and k for high and low crosslinked hydrogels for 
all experimental conditions. It is clear that stiffness depends on the 
crosslinker agent concentration. The higher the concentration, the stiffer 
the hydrogel. However, the average intrinsic permeability can be 
calculated as 1.1⋅10− 18 m2 despite of the penetration depth, or more 
interesting, independently on the crosslinker concentration or the strain 
rate. This result is in total agreement with previous literature [28,30, 
31]. In Ref. [30] intrinsic permeability of polyacrylamide gels is re
ported as 1.4⋅10− 18 m2 for a 15% of polymer whose value is pretty 
similar to those obtained in this work. Also, in Refs. [30,31] the intrinsic 
permeability was found to be independent of the amount of crosslinking 
which is consistent with the results obtained. 

Finally, the average pore size, ξ, of hydrogels can be estimated 
through the permeability computed previously. Average pore size is 
related to intrinsic permeability through Eq. (16) referenced in 
Ref. [16]. Using this equation, the average pore size of the tested sam
ples must be in the order of nm (≈2 nm). 

ξ= 2
̅̅̅
k

√
(16) 

In Table 1 contact size during the relaxation test has been included 
for all experimental conditions. This value ranged from 110 to 141 μm 
for hydrogels. In any case, contact size during relaxation was several 
orders of magnitude higher than the pore size predicted in Eq. (16), 
allowing the isotropy hypothesis that was taken for the equations and 
methods proposed in this work. 

Poisson ratio and diffusivity values of xerogels have not a physical 
meaning but they are simply fitting parameters showing the lack of 
poroelasticity for these materials. 

5. Conclusions 

In this work, relaxation response measured by depth sensing inden
tation is used to enlighten how the crosslinker concentration affects the 
poroviscoelastic behaviour of polyacrylamide based hydrogels. Mate
rials with different concentration of the crosslinker agent have been 
synthesized. In addition, three different penetration depths have been 
programmed for spherical indentation relaxation tests in order to obtain 
not only the time dependence behaviour of hydrogels, but also the 
contact size influence due to poroelasticity. Several conclusions can be 
drawn from experimental results:  

- Depth sensing indentation have been successfully used to explore 
intermediate length scales revealing the poroviscoelastic behaviour 
of Polyacrylamide hydrogels. Poroelasticity and viscoelasticy are 
overlapped in the global relaxation behaviour of the materials when 
a nanoindenter is used in the experiments.  

- A load relaxation equation for a poroviscoelastic solid is used to 
explain the observed results. The model has been derived combining 
equations in the literature, with the idea that overlapping of poroe
lasticity and viscoelasticity can be discriminated using a multipli
cative rule previously established. The relaxation equation is a highly 
parametrized model that can be fitted to experimental relaxation 
curves.  

- A constrained fitting procedure has been developed to properly 
separate the viscoelastic and poroelastic contributions during the 
fitting calculations. Constrained condition is obtained by taking into 
account that poroelasticity is size dependent but viscoelasticity is 
not. Therefore, relaxation curves measured under different pene
tration depths are required. Methodology has been validated by 
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Fig. 7. Fitting model, viscoelastic and poroelastic contributions for hydrogels using constrained methodology. A) 15%T – 6%C polyacrylamide hydrogel measured at 
0.17 s− 1 of strain rate during the loading ramp. B) 15%T – 0.6%C polyacrylamide hydrogel measured at 0.17 s− 1 of strain rate during the loading ramp c) 15%T – 6% 
C polyacrylamide hydrogel measured at 0.02 s− 1 of strain rate during the loading ramp. D) 15%T – 0.6%C polyacrylamide hydrogel measured at 0.02 s− 1 of strain 
rate during the loading ramp. E) 15%T – 6%C polyacrylamide hydrogel measured at 0.0027 s− 1 of strain rate during the loading ramp. F) 15%T – 0.6%C poly
acrylamide hydrogel measured at 0.0027 s− 1 of strain rate during the loading ramp. 
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applying the fitting procedure to xerogels tested in dry conditions. In 
these cases, the calculation drives to a curve corresponding to a pure 
viscoelastic solid, which is the expected result.  

- Crosslinker concentration affects the mechanical behaviour of 
polyacrylamide hydrogels in two ways. Firstly, it is confirmed that 
stiffness is clearly explained through this parameter. As the 

crosslinker concentration is increased hydrogels become stiffer, 
which is in agreement with previous literature. Secondly, visco
elasticity is the main deformation mechanism explaining the global 
mechanical behaviour at the intermediate length scales probed here. 
However, important differences can be pointed out among hydrogels 
with different crosslinker concentration. It should be noted that 

Table 2 
Average fitting parameters obtained for polyacrylamide based hydrogels. A 99.5% confidence interval is included in brackets for each parameter.    

Fitting parameters. Average values Derived properties  

strain 
rate of 
the 
loading 
ramp 
(s− 1) 

Penetration 
depth (μm) 

Short 
relaxation 
time (s) 

Long 
relaxation 
time (s) 

Preexponential 
factor, A (− ) 

Poisson ratio at 
the equilibrium, 
νinf (− ) 

Diffusivity, 
D (μm2/s) 

Initial load of 
the 
viscoelastic 
contribution, 
P0 (mN) 

Transverse 
Elastic 
Modulus, G 
(kPa) 

Intrinsic 
Permeability, 
k (m2) 

Hydrogel 
15% T - 
6% C 

0.17 25.0 0.1 110 
(97–123) 

0.2831 
(0.2823–0.2845) 

0.4534 
(0.4527–0.4544) 

834 
(822–849) 

1.03 
(1.01–1.04) 

49 1.3 10− 18 

20.0 0.1 103 
(94–119) 

0.3091 
(0.3033–0.3099) 

0.4589 
(0.4567–0.4601) 

812 
(808–815) 

0.82 
(0.78–0.89) 

55 1.1 10− 18 

15.0 0.1 108 
(103–110) 

0.2500 
(0.2486–0.2511) 

0.4601 
(0.4578–0.4672) 

887 
(880–892) 

0.53 
(0.49–0.61) 

54 1.1 10− 18 

0.02 25.0 0.2 112 
(103–117) 

0.2761 
(0.2734–0.2782) 

0.4632 
(0.4623–0.4640) 

844 
(832–850) 

0.98 
(0.93–1.03) 

47 1.1 10− 18 

20.0 0.1 115 
(111–118) 

0.2803 
(0.2787–0.2841) 

0.4591 
(0.4577–0.4599) 

826 
(820–830) 

0.69 
(0.62–0.72) 

46 1.2 10− 18 

15.0 0.1 116 
(113–120) 

0.3132 
(0.3112–0.3141) 

0.4702 
(0.4691–0.4710) 

877 
(864–883) 

0.45 
(0.43–0.47) 

46 1.0 10− 18 

0.0027 25.0 0.2 131 
(124–135) 

0.2987 
(0.2962–0.2992) 

0.4675 
(0.4664–0.4680) 

852 
(850–854) 

0.93 
(0.90–0.95) 

44 1.1 10− 18 

20.0 0.2 127 
(122–129) 

0.2786 
(0.2771–0.2801) 

0.4687 
(0.4680–0.4697) 

861 
(857–865) 

0.63 
(0.60–0.65) 

42 1.1 10− 18 

15.0 0.2 133 
(125–136) 

0.2754 
(0.2736–0.2766) 

0.4701 
(0.4695–0.4707) 

867 
(858–872) 

0.39 
(0.32–0.43) 

40 1.1 10− 18 

Xerogel 
15% T - 
6% C 

0.02 1.0 0.3 91 
(87–123) 

0.3533 
(0.3502–0.3567) 

0.4608 
(0.4600–0.4612) 

2765 
(2713–2813) 

43.12 
(42.25–43.64) 

– – 

0.75 0.3 104 
(95–112) 

0.3066 
(0.2989–0.3102) 

0.4733 
(0.4725–0.4740) 

2812 
(2765–2842) 

13.39 
(13.27–13.46) 

– – 

0.5 0.3 96 
(89–102) 

0.3387 
(0.3333–0.3410) 

0.4701 
(0.4692–0.4709 

2656 
(2599–2671) 

5.10 
(5.02–5.16) 

– – 

0.0027 1.0 0.2 118 
(114–121) 

0.3324 
(0.3312–0.3356) 

0.4754 
(0.4745–0.4763) 

3124 
(3077–3209) 

27.21 
(27.14–27.36) 

– – 

0.75 0.3 120 
(117–123) 

0.3456 
(0.3417–0.3470) 

0.4763 
(0.4750–0.4770) 

3063 
(2992–3098) 

11.46 
(11.00–11.85) 

– – 

0.5 0.2 119 
(116–122) 

0.3265 
(0.3254–0.3273) 

0.4722 
(0.4716–0.4730) 

3124 
(3100–3143) 

4.52 
(4.23–4.76) 

– – 

Hydrogel 
15% T - 
0.6% C 

0.17 25.0 1.0 235 
(228–238) 

0.3000 
(0.2929–0.3072) 

0.4211 
(0.4205–0.4218) 

211 
(198–223) 

0.49 
(0.47–0.50) 

23 1.1 10− 18 

20.0 1.0 234 
(231–236) 

0.3000 
(0.2976–0.3096) 

0.4189 
(0.4173–0.4199) 

232 
(219–241) 

0.35 
(0.33–0.37) 

23 1.2 10− 18 

15.0 1.0 285 
(267–297) 

0.3000 
(0.2904–0.3088) 

0.4234 
(0.4221–0.4240) 

223 
(211–227) 

0.28 
(0.22–0.33) 

29 1.0 10− 18 

0.02 25.0 1.0 256 
(251–262) 

0.2871 
(0.2864–0.2888) 

0.4118 
(0.4108–0.4123) 

221 
(217–226) 

0.37 
(0.36–0.38) 

23 1.3 10− 18 

20.0 1.0 248 
(244–252) 

0.2987 
(0.2972–0.2993) 

0.4271 
(0.4265–0.4273) 

209 
(202–214) 

0.32 
(0.30–0.35) 

21 1.1 10− 18 

15.0 1.0 261 
(258–263) 

0.3201 
(0.3197–0.3210) 

0.4255 
(0.4250–0.4257) 

215 
(209–220) 

0.24 
(0.22–0.26) 

25 1.0 10− 18 

0.0027 25.0 1.0 298 
(293–301) 

0.3345 
(0.3333–0.3351) 

0.4301 
(0.4292–0.4312) 

234 
(230–240) 

0.26 
(0.25–0.27) 

18 1.4 10− 18 

20.0 1.0 311 
(307–314) 

0.3000 
(0.2990–0.3011) 

0.4299 
(0.4286–0.4308) 

221 
(216–224) 

0.20 
(0.18–0.21) 

16 1.4 10− 18 

15.0 1.0 301 
(296–305) 

0.2921 
(0.2913–0.2032) 

0.4323 
(0.4311–0.4332) 

211 
(203–220) 

0.14 
(0.13–0.15) 

18 1.2 10− 18 

Xerogel 
15% T - 
0.6% C 

0.02 1.0 0.2 97 
(88–106) 

0.2683 
(0.2622–0.2731) 

0.4653 
(0.4632–0.4667) 

3112 
(3086–3141) 

80.76 
(80.00–8103) 

– – 

0.75 0.2 127 
(114–135) 

0.2408 
(0.2366–0.2456) 

0.4711 
(0.4704–0.4718) 

3074 
(3000–3103) 

47.34 
(47.11–47–54) 

– – 

0.5 0.2 103 
(92–108) 

0.2214 
(0.2200–0.2235) 

0.4723 
(0.4715–0.4730) 

2958 
(2923–2962) 

18.62 
(18.43–18.69) 

– – 

0.0027 1.0 0.2 118 
(116–119) 

0.3022 
(0.3009–0.3029) 

0.4751 
(0.4744–0.4757) 

3028 
(3002–3038) 

78.68 
(78.55–78.74) 

– – 

0.75 0.1 121 
(118–124) 

0.2928 
(0.2914–0.2942) 

0.4802 
(0.4795–0.4810) 

3051 
(3036–3075) 

66.53 
(66.39–66.57) 

– – 

0.5 0.2 120 
(116–123) 

0.2789 
(0.2776–0.2798) 

0.4779 
(0.4772–0.4784) 

3142 
(3100–3187) 

8.72 
(8.60–8.81) 

– –  
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viscoelastic relaxation times and pre-exponential factors in highly 
crosslinked hydrogels are very similar to those observed in xerogels. 
In other words, highly crosslinked polyacrylamide hydrogels can be 
understood as viscoelastic solids for the experimental conditions 
used in this work. Nevertheless, as the crosslinker concentration is 
reduced, the poroelastic contribution appears to be more important, 
doing that low crosslinked polyacrylamide hydrogels should be 
considered as poroviscoelastic solids. This work suggests how me
chanical behaviour of polyacrylamide based hydrogels can be 
tailored by tuning the initial formulation of the chemical 
constituents. 
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Appendix 1. About obtaining the Poroviscoelastic fitting equation 

In a poroviscoelastic material, the viscoelastic and poroelastic contributions interact with each other to give rise to the global response. Daniel G. T. 
Strange et al. [12] proposes a multiplicative poroviscoelastic interaction according to Eq. A1.1. 

PPVE(t) =
PVE(t)⋅PPE(t)

PPVE
∞

(A1.1)  

Where PPVE(t) is the poroviscoelastic load response, PVE(t) is the viscoelastic contribution, PPE(t) is the poroelastic contribution and PPVE
∞ is the 

equilibium load in the poroviscoelastic response. The use of Eq. A1.1 assumes that PPVE
∞ = PVE

∞ = PPE
∞ = P∞ . 

The viscoelastic behaviour of hydrogels can be described as a Prony series [14,22–24]. In the case of using two exponential terms the viscoelastic 
response is expressed by Eq. A1.2. 

PVE(t) =P∞ +
(
PVE

0 − P∞
)
[

Aexp
(

− t/τVE1

)

+(1 − A)exp
(

− t/τVE2

)]

(A1.2)  

where PVE
0 is the initial load value, A is a dimensionless factor between 0 and 1, and τVE1 and τVE2 are the characteristic times of the viscoelastic 

response. Yuhang Hu et al. [19] used indentation at macroscale to characterize the poroelastic response of hydrogels. They determined that in a 
poroelastic material, the load relaxation is given by Eq. A1.3. 

PPE(t) =P∞ +
(
PPE

0 − P∞
)

g(t) (A1.3)  

where PPE
0 is the initial load value of the poroelastic response and g(t) is the poroelastic relaxation function depending of the indentation geometry. 

Yuhang Hu et al. [19] determined that for a spherical indenter, 

g(t)= 0.491 exp

(

− 0.908
̅̅̅̅̅̅̅̅̅̅̅
Dt/a2

√
)

+ 0.509 exp
(

− 1.679 Dt/a2

)

(A1.4)  

where D is the difusión coefficient of the poroelastic material and a is the contact size of the indentation. 
For a plane – strain cylindrical indenter, 

g(t)= 0.791 exp

(

− 0.213
̅̅̅̅̅̅̅̅̅̅̅
Dt/a2

√
)

+ 0.209 exp
(

− 0.95 Dt/a2

)

(A1.5)  

for a cylindrical punch indenter, 

g(t)= 1.303 exp

(

−
̅̅̅̅̅̅̅̅̅̅̅
Dt/a2

√
)

− 0.303 exp
(

− 0.254 Dt/a2

)

(A1.6)  

for a conical indenter, 

g(t)= 0.493 exp

(

− 0.822
̅̅̅̅̅̅̅̅̅̅̅
Dt/a2

√
)

+ 0.507 exp
(

− 1.348 Dt/a2

)

(A1.7) 

Also, Yuhang Hu et al. [19] determined the relation between the initial and the equilibrium loads of a poroelastic material with equilibrium 
Poisson ratio ν∞ by Eq. A1.8. 
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PPE
0 = 2P∞(1 − ν∞) (A1.8) 

So, introducing Eq. A1. 8 in Eq. A1.3 it turns out that the poroelastic load relaxation function is 

PPE(t) =P∞ + P∞(1 − 2ν∞) g(t) (A1.9) 

Using Eq. A1.2 and Eq. A1.9 in Eq. A1.1 results; 

PPVE(t) ⋅ P∞ =P∞ +
(
PVE

0 − P∞
)
[

Aexp
(

− t/τVE1

)

+(1 − A)exp
(

− t/τVE2

)]

⋅[P∞ +P∞(1 − 2ν∞) g(t)] (A1.10)  

in this way, developing the equation Eq. A1.10 equation Eq. A1.11 is obtained. 

PPVE(t) − P∞ =
(
PVE

0 − P∞
)
[

Aexp
(

− t/τVE1

)

+(1 − A)exp
(

− t/τVE2

)]

+P∞(1 − 2ν∞) g(t)

+
(
PVE

0 − P∞
)
[

Aexp
(

− t/τVE1

)

+(1 − A)exp
(

− t/τVE2

)]

(1 − 2ν∞) g(t) (A1.11) 

Note that the equation Eq. A1.11 can be rewritten as, 

PPVE(t) − P∞ = (PVE(t) − P∞) + (PPE(t) − P∞) + (PVE(t) − P∞)⋅ (PPE(t) − P∞)/ P∞ (A1.12) 

The equation Eq. A1.11 is presented as a poroviscoelastic fitting equation capable of being adjusted to obtain viscoelastic and poroelastic prop
erties. In the case of a spherical indentation equation Eq. A1.4 must be introduced in Eq. A1.11, knowing that in this case a2 = Rh, resulting in, 

PPVE(t) − P∞ =
(
PVE

0 − P∞
)
[

Aexp
(

− t/τVE1

)

+(1 − A)exp
(

− t/τVE2

)]

+P∞(1 − 2ν∞)

[

0.491 exp

(

− 0.908
̅̅̅̅̅̅̅̅̅̅̅̅
Dt/Rh

√
)

+ 0.509 exp
(

− 1.679 Dt/Rh

)]

+
(
PVE

0 − P∞
)
[

Aexp
(

− t/τVE1

)

+(1 − A)exp
(

− t/τVE2

)]

⋅(1 − 2ν∞)

[

0.491 exp

(

− 0.908
̅̅̅̅̅̅̅̅̅̅̅̅
Dt/Rh

√
)

+ 0.509 exp
(

− 1.679 Dt/Rh

)]

(A1.13)  

where R is the indenter radius and h is the penetration depth reached during the relaxation test. 

Appendix 2. About obtaining the Poroviscoelastic constraint factor for indentation tests 

Starting from the equation proposed by Daniel G. T. Strange et al. [12] and expressed in Appendix 1 as Eq. A1.1, the following steps are developed.  

1. About the viscoelastic normalization relations. 

In relaxation tests, viscoelastic behaviour can be expressed as a Prony series following the equation Eq. A2.2. This statement has been collected by 
numerous authors who work with hydrogels [14,23,24]. 

PVE(t) =P∞ +
(
PVE

0 − P∞
)∑n

i=1
Aiexp

(
− t
τi

)

(A2.1)  

where P0
VE is the initial viscoelastic load, Ai are a dimensionless factors that must meet that 

∑n

i=1
Ai = 1 and τi are the characteristic times of the 

viscoelastic response. 
In equation Eq. A2.1 the exponential parts are independent of the contact size, and so, for a specific material must be invariant with penetration 

depth, so that, 

PVE(t) − P∞

PVE
0 − P∞

=
∑n

i=1
Aiexp

(
− t
τi

)

(A2.2) 

Using equation Eq. A1.1, the viscoelastic response can be written as, 

PVE(t) =
PPVE(t)⋅P∞

PPE(t)
(A2.3)  

and therefore, if we multiply both sides of equality in Eq. A2.3, by a factor that normalizes the viscoelastic part, results 

PVE(t) ⋅

⎛

⎜
⎜
⎝

1 − P∞/PVE(t)
PVE

0 − P∞

⎞

⎟
⎟
⎠ =

PPVE(t)⋅P∞

PPE(t)
⋅

⎛

⎜
⎜
⎝

1 − P∞/PVE(t)
PVE

0 − P∞

⎞

⎟
⎟
⎠ (A2.4)  

so, 
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PVE(t) − P∞

PVE
0 − P∞

=
PPVE(t)⋅P∞

PPE(t)
⋅

⎛

⎜
⎜
⎝

1 − P∞/PVE(t)
PVE

0 − P∞

⎞

⎟
⎟
⎠ (A2.5) 

combining equation Eq. A2.2 and equation Eq. A2.5 gives that, 

∑n

n=i
Aiexp

(
− t
τi

)

=
PPVE(t)⋅P∞

PPE(t)
⋅

⎛

⎜
⎜
⎝

1 − P∞/PVE(t)
PVE

0 − P∞

⎞

⎟
⎟
⎠ (A2.6) 

According to Eq. A1.1 it is fulfilled that P∞/PVE(t) = PPE(t)/PPVE(t), and so, Eq. A2.6 can be transformed to: 

∑n

n=i
Aiexp

(
− t
τi

)

=

(
PPVE(t) − PPE(t)

PPE(t)

)

⋅
P∞

PVE
0 − P∞

(A2.7) 

M. Sakai [32] proposed Eq. A2.8 a modification of the equation developed by Sneddon in 1965 for elastic indentations valid for lineal viscoelastic 
materials. 

PVE(t) =C⋅E(t)⋅h(t)n (A2.8)  

where C is a geometrical coefficient depending of the tip geometry, E(t) is the relaxation function, h(t) is the penetration in the sample and the 
exponent n is a geometry coefficient depending on the tip geometry. So, in a relaxation process where a fixed penetration h is maintained Eq. A2.8 
must be transformed to, 

PVE(t) =C⋅E(t)*⋅hn (A2.9)  

and so, 

PVE
0 − P∞ = C ⋅ E(0)*hn − C ⋅ E(∞)

* ⋅ hn =C ⋅ hn⋅(E(0)*
− E(∞)

*
) (A2.10) 

Introducing Eq. A2. 10 in Eq. A2.7 gives that 
∑n

n=i
Aiexp

(
− t
τi

)

=

(
PPVE(t) − PPE(t)

PPE(t)

)

⋅
P∞

C⋅hn⋅(E(0)*
− E(∞)

*
)

(A2.11) 

Applying Eq. A2.11 to any two penetrations (hi and hj) maintaining geometry and material the relationship Eq. A2.12 is obtained. 
[
∑n

n=iAiexp
(

− t
τi

)]

hi[
∑n

n=iAiexp
(

− t
τi

)]

hj

=

(
PPVE(t)hi − PPE(t)hi

PPE(t)hi

)

⋅ P∞hi
Chi ⋅h

nhi
hi ⋅(E(0)− E(∞))hi

(
PPVE(t)hj − PPE(t)hj

PPE(t)hj

)

⋅ P∞hj

Ch=j ⋅h
nhj
hj ⋅(E(0)* − E(∞)*)hj

(A2.12) 

As the viscoelastic exponential parts do not change with penetration or geometry tip, and also, E(0)*and E(∞)
* are kept constant, the Eq. A2.12 can 

be expressed as, 

1=

(
PPVE(t)hi − PPE(t)hi

PPE(t)hi

)

⋅ P∞ hi
Chi ⋅h

nhi
hi

(
PPVE(t)hj − PPE(t)hj

PPE(t)hj

)

⋅ P∞ hj

Chj ⋅h
nhj
hj

(A2.13) 

By using the equation Eq. A2.9, 

P∞hi

Chi⋅hnhi
hi

=
P∞hj

Chj⋅h
nhj
hj

= E(∞)
* (A2.14)  

and so, Eq. A2.13 gives that 

PPVE(t)hi

PPVE(t)hj
−

PPE(t)hi

PPE(t)hj
= 0 (A2.15)    

2. About the poroelastic normalization relation. 

Yuhang Hu et al. [19] provided a poroelastic indentation relaxation equation expressed by Eq. A2.16, in which the function depend on the ge
ometry and size of the indenter for a specific material and PPE

0 is the initial poroelastic load. 

PPE(t) − P∞

PPE
0 − P∞

= g(t) (A2.16) 

In the same way as in the previous section, the expression Eq. A1.1 can be rewritten as 
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PPE(t) =
PPVE(t)⋅P∞

PVE(t)
(A2.17) 

Using the equation Eq. A2.17 and multiplying both sides of the equality by a factor that normalizes the poroviscoelastic loads it turns out that 

PPE(t) ⋅ 2

⎛

⎜
⎝

1 − P∞/PPE(t)
PPE

0 − P∞

⎞

⎟
⎠ =

PPVE(t)⋅P∞

PVE(t)
⋅2

⎛

⎜
⎝

1 − P∞/PPE(t)
PPE

0 − P∞

⎞

⎟
⎠ (A2.18)  

developing gives to, 

2
(

PPE(t) − P∞

PPE
0 − P∞

)

=
PPVE(t)⋅P∞

PVE(t)
⋅2

⎛

⎜
⎝

1 − P∞/PPE(t)
PPE

0 − P∞

⎞

⎟
⎠ (A2.19)  

so, combining Eq. A2. 16 and Eq. A2. 19 turns out that 

2g(t)=
PPVE(t)⋅P∞

PVE(t)
⋅2

⎛

⎜
⎝

1 − P∞/PPE(t)
PPE

0 − P∞

⎞

⎟
⎠ (A2.20) 

Knowing that through the multiplicative relation Eq. A1.1 it must be fulfilled that P∞/PPE(t) = PVE(t)/PPVE(t) so that 

2g(t)=
PPVE(t)⋅P∞

PVE(t)
⋅2

⎛

⎜
⎜
⎝

1 − PVE(t)/PPVE(t)
PPE

0 − P∞

⎞

⎟
⎟
⎠ (A2.21)  

rearranging equation Eq. A2.21 is that 

2g(t)=
2P∞

PPE
0 − P∞

⋅
(

PPVE(t) − PVE(t)
PVE(t)

)

(A2.22) 

Using the equation listed in Appendix 1 as Eq. A1.8 and developed by Yuhang Hu et al. [19] the following relationship can be found. 

2P∞

PPE
0 − P∞

=
1

PPE
0 − P∞

2P∞

=
1

PPE
0

2P∞
− 1

2

=
1

1 − ν∞ − 1
2
=

1
1
2 − ν∞

=
2

1 − 2ν∞
(A2.23) 

So, recombining Eq. A2.23 in Eq. A2.21 turns out to 

2g(t)=
2

1 − 2ν∞
⋅
(

PPVE(t)
PVE(t)

− 1
)

↔ g(t)=
1

1 − 2ν∞
⋅
(

PPVE(t)
PVE(t)

− 1
)

(A2.24)  

rearranging equation Eq. A2.24 is that 

PPVE(t) = (1+(1 − 2ν∞) ⋅ g(t)) ⋅ PVE(t) ↔
PPVE(t)
PVE(t)

= 1+(1 − 2ν∞)⋅g(t) (A2.25) 

Such that, if we divide the Eq. A2.25 corresponding to any two penetrations (h = i and h = j) each other for any geometry indentation (g1 and g2) 
and for the same material the relationship Eq. A2.26 is obtained. 

PPVE(t)hi

PPVE(t)hj
=

1 + (1 − 2ν∞)⋅g1hi(t)
1 + (1 − 2ν∞)⋅g2hj(t)

⋅
PVE(t)hi

PVE(t)hj
(A2.26) 

So that, the relation between two poroviscoelastic relaxations must be equal to the relation of their poroelastic contribution functions as it can be 
seen in Eq. A2.15, so Eq. A2.26 can be rewritten as, 

PPE(t)hi

PPE(t)hj
=

1 + (1 − 2ν∞)⋅g1hi(t)
1 + (1 − 2ν∞)⋅g2hj(t)

⋅
PVE(t)hi

PVE(t)hj
(A2.27)  

applying Eq. A2.16 to Eq. A2.27, 

PPE(t)h=i

PPE(t)h=j
=

P∞h=i +
(
PPE

0 h = i − P∞h=i
)
⋅g1h=i(t)

P∞h=j +
(

PPE
0 h = j − P∞h=j

)
⋅g2h=j(t)

=
1 + (1 − 2ν∞)⋅g1h=i(t)
1 + (1 − 2ν∞)⋅g2h=j(t)

⋅
PVE(t)h=i

PVE(t)h=j
(A2.28) 

Knowing that by Eq. A1.8, PPE
0 − P∞ = P∞(1 − 2ν∞) so Eq. A2.28 could be transformed to 

PPE(t)hi

PPE(t)hj
=

1 + (1 − 2ν∞)⋅g1hi(t)
1 + (1 − 2ν∞)⋅g2hj(t)

⋅
P∞hi

P∞hj
=

1 + (1 − 2ν∞)⋅g1hi(t)
1 + (1 − 2ν∞)⋅g2hj(t)

⋅
PVE(t)hi

PVE(t)hj
(A2.29) 
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therefore, it must be fulfilled that, 

PVE(t)hi

PVE(t)hj
−

P∞hi

P∞hj
= 0 (A2.30) 

In this way, combining equations Eq. A2.15 and Eq. A2.30, a relationship is obtained that must be fulfilled for the same poroviscoelastic material 
when it is subjected to two different indentations (geometry or size). This equation restricts the poroviscoelastic fitting parameters valid for a good 
mechanical characterization. 

PVE(t)hi

PVE(t)hj
−

P∞hi

P∞hj
+

PPVE(t)hi

PPVE(t)hj
−

PPE(t)hi

PPE(t)hj
= 0 (A2.31)  
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