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Abstract

Textiles are ubiquitous in our daily lives, being the fashion and textile industry one of

the main drivers of the global economy. Despite technological advances, the fashion

industry resists the irruption of digital design processes. The reason lies in the fact that

existing computational models found in engineering, albeit accurate, do not satisfy the

performance requirements compatible with industrial processes. Recently, advances

in computer graphics simulation methods have resulted in the development of high-

performance solutions for the simulation of fabrics at the yarn level that narrow the

accuracy gap with engineering approaches. Although current trends point towards the

emergence in the near future of high-fidelity models that will satisfy the requirements

for predictive digital prototyping, today there remain open challenges that limit the

achievement of this objective. In this thesis, we address some of these challenges and

contribute towards the creation of high fidelity simulation models.

To this end, we approach two relevant aspects for the characterization and be-

havior of cloth. First, we address the modeling of dissipative behavior in cloth. We

propose a framework for the design of damping forces based on dissipation potentials

formulated as functions of strain rate. We study its application to continuum and dis-

crete deformation models, its practical implications, and advantages over commonly

adopted dissipation models. We demonstrate its applicability to two highly different

deformation models, Saint Venant-Kirchhoff (StVK) hyperlasticity and yarn-level cloth

with sliding persistent contacts. Then, we address the challenge of simulating mul-

tilayered clothing. We introduce a robust method for the simulation of complex rod

assemblies and stacked layers with implicit contact handling. Previous methods fail to

robustly handle such complex situations due to ubiquitous and intrinsic degeneracies.

Our novel discretization supports accurate and efficient contact while remaining in-

sensitive to such degeneracies. Our solution is simple and elegant, producing robust

simulations even on large-scale scenarios with pervasive degeneracies.
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Chapter 1

Introduction

Textiles play a significant role in our daily lives. Beyond their biological utility in

protecting us from environmental hazards, they serve an important cultural function.

Status, personality, history, values or convictions: clothing and ornamental textiles

serve as a medium for humans to establish their individual and collective identities. It

is not surprising, then, that they have aroused so much interest throughout history.

Over the last few centuries, the fashion and textile industries have become one

of the main drivers of the global economy [Karthik and Gopalakrishnan, 2014]. The

industrial revolution brought with it the appearance of machinery capable of manu-

facturing fabrics on a large scale, leading to a dramatic leap in terms of cost reduction

and, therefore, in the accessibility of these essential goods to the population.

Since then, the growing consumption of manufactured goods and the demand for

sustainable fabrics that meet increasing criteria of quality and variety, among other

technical requirements, have led to an intense revision of the industry. In recent

decades, this has materialized in the adoption of automation and digitalization tech-

niques in order to optimize the production process.

However, despite technological advances, the fashion industry continues to resist

the irruption of digital design processes [Arribas and Alfaro, 2018]. While digital pro-

totyping and evaluation are well established in other industries such as the automotive

or aeronautics industries, the fashion industry essentially maintains a development

model based on physical prototypes. This iterative process is slow and costly, both

from the environmental and business perspectives.

The primary reason behind this lies in the state of the existing computational mod-

els. Although the industry has developed tools that allow pattern digitization, the

1
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mechanical models that reflect fabric behavior are still far from the required levels

of accuracy and performance to be compatible with industrial processes. This is not

surprising, given that the phenomena behind fabric behavior is inherently chaotic.

The study of cloth and its simulation began in the 1930s, when the engineering

community developed textile mechanics to support the textile industry [Peirce, 1937].
Since then, advances in computing and computational methods have resulted in the

creation of highly accurate models capable of predicting textile behavior even at meso-

scopic levels, down to individual fibers [Durville, 2009]. Although these models have

been applied to a variety of engineering problems [Long et al., 2011], including the

analysis of mechanical properties and damage, the study of draping behavior and the

development of functional materials for specialized equipment, their use has been

limited to small sections of fabric (on the millimeter scale) due to the computational

challenges they entail.

Parallel to the engineering industry, the rapid evolution of computer-generated

imagery and computer animation in the 1980s ignited an interest in the virtual repre-

sentation of fabrics among the computer graphics community. Its focus, however, was

markedly different from that of the textile community: instead of focusing on high-

accuracy solutions, computer graphics is concerned with generating visually plausible

representations within a reasonable amount of computational time.

Today, both fields are converging. Advances in computing capability (backed by

the vast parallelism offered by modern graphics hardware), along with a deeper under-

standing of the problem and the numerical tools involved, have led to the development

of high-accuracy, high-performance solutions for yarn-level fabric simulation [Kaldor

et al., 2008, Yuksel et al., 2012, Cirio et al., 2017]. Although these technologies are

not yet accurate enough for engineering applications, current trends indicate that the

gap between engineering and computer graphics will progressively become narrower.

As a result, we expect to see the advent of what we refer to as high-fidelity fabric
simulation models in the near future: methods that achieve accuracy comparable to

engineering approaches while maintaining the high performance of graphics meth-

ods. These methods will hold the key to revolutionizing the fashion industry by finally

meeting the productivity constraints of accuracy and efficiency needed for digital pre-

dictive prototyping and, as a result, significantly accelerate, improve, and lower the

environmental, social, economic, and cultural costs associated with design processes

in the fashion supply chain.
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In this thesis, we take steps towards the creation of such high fidelity models. To

this end, we focus on two interesting aspects of cloth simulation that are crucial for

fabric characterization: the study of the dissipative properties and their impact on the

behavior of the cloth, and the representation of complex yarn assemblies and stacked

layers of fabric in persistent contact.

1.1 Cloth Simulation in Computer Graphics

The creation of high fidelity simulation models capable of accurately reproducing the

complex mechanical properties of fabrics, remains the core pillar of cloth simulation.

However, graphics applications require a delicate balance between computational cost

and accuracy to make these approaches practical.

The numerous and complex challenges that arise in cloth simulation make it a

difficult task. As a result, it has sparked research efforts for many decades. On one

hand, the mechanical representation of the fabric must be precise enough to cap-

ture the nonlinearities and large deformations inherent in the cloth, whether they are

wrinkles, waves, or different types of folds. On the other hand, interactions between

fabrics and rigid and deformable materials, as well as self-collisions, must be treated

efficiently and precisely to prevent simulation artifacts. This requires advanced colli-

sion detection and resolution methods.

The first approaches to fabric modeling leveraged on geometrical formulations

[Weil, 1986]. These models employed simple geometrical descriptions of the fabric

without its physical and mechanical properties, primarily focusing on its appearance,

especially its folds and wrinkles. However, many authors date the beginning of cloth

simulation in computer graphics to 1987, with the work of [Terzopoulos et al., 1987],
who pioneered the first physics-based approach (Fig. 1.1).

Although limited to simple scenes, these early models opened up cloth research

to the graphics community. By the 90s, a large body of literature began to emerge,

simulating complete garments while taking into account a variety of other phenomena

such as body modeling and animation, as well as collision detection and response.

Since then, most developments were devoted to produce higher accuracy simulations

while maintaining or improving their efficiency.
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Figure 1.1: [Terzopoulos et al., 1987] introduced a deformable model intended for generalized
flexible objects. Their finite element simulations demonstrated 3-D cloth-like structures that
bend, fold, wrinkle and interact with solid geometry.

For decades, the outstanding approach to cloth simulation in computer graphics

has been the use of thin-shell models. From simple mass-spring systems to more so-

phisticated finite element methods, the efforts of graphics researchers led to a sub-

stantial leap in accuracy of cloth behavior modeling. However, these models have

difficulties capturing macroscopic effects that arise from subtle interactions occurring

at the yarn-level (under the millimeter scale) and those are critical for high-fidelity

characterization.

[Kaldor et al., 2008] pioneered the simulation of large pieces of cloth at yarn-level

in computer graphics. They captured the mechanics of individual yarns through an

inextensible rod model and explicitly modeled inter-yarn frictional contact to mimic

the behavior of real clothing. Nevertheless, the sheer amount of yarns present on a real

garment makes contact-related computation impractical, being the primary bottleneck

of the model. Few years later, [Cirio et al., 2014], improved the efficiency of yarn-level

cloth models by considering persistent contact between yarns, thus avoiding contact

management altogether at the expense of limiting the range of possible yarn structures

that the model is able to represent.
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Both works suppose a milestone towards the development of high fidelity cloth

simulation. By modeling the dynamics of cloth at yarn-level, macroscopic non-linear

and anisotropic behavior that is otherwise difficult to capture with triangles, emerges

naturally. Moreover, thanks to their computational efficiency, real-size garments can

be simulated at the yarn scale within reasonable times. However, despite these out-

standing advances, these methods are still far from the levels of accuracy and efficiency

to which high-fidelity simulation methods aspire, leaving many challenges yet to be

addressed.

1.2 Dissipative Phenomena

Among the challenges that remain in the characterization of real fabrics, we found that

the modeling of dissipative properties has often been one of the most overlooked in

computer graphics works. The energy accumulated in oscillating mechanical systems

may be dissipated for a variety of purposes, including collisions, friction, or ultimately

due to the resistance of matter to change its current shape or structure. In the field of

mechanics, many of these dissipative effects are referred to as damping.

Many interesting materials exhibit highly varying damping behaviors, from the in-

viscid behavior of water to the highly damped behavior of flesh. Nevertheless, and

despite the large amount of literature on the subject, neither the mechanisms nor the

relevant state variables that give rise to it are still well understood. As such, many

works in the computer graphics literature simply rely on linear damping models or fo-

cus on mitigating the dissipation induced by numerical integration [Barbič and James,

2005, Gast et al., 2015, Cirio et al., 2014].

However, dissipation is a central component in fabric characterization. Cloth tends

to exhibit highly damped motion across different deformation modes. As such, accu-

rate modeling of dissipative properties that enables a controllable description of dis-

sipative behavior (i.e. decoupled across the different modes) is critical for achieving

accurate simulations.

In Chapter 3 we propose a framework for the design of damping forces based on

strain rate dissipation potentials. Our method guarantees the controllability criterion

by design, enabling its application to a wide range of simulation problems, including

high fidelity cloth. Furthermore, we develop diverse applied examples that prompt the
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considerations to be addressed for practical implementations. On one hand, we show

the application of the proposed formulation to the Saint-Venant Kirchhoff (StVK) hy-

perelasticity model. In this setting, we study the design of continuum dissipation mod-

els and their discretization, possibilities for parameterization under multi-dimensional

strain metrics, as well as the implications of implicit integration. On the other hand,

we apply it to yarn-level cloth simulation with sliding persistent contacts [Cirio et al.,

2014]. This model allows us to analyze the application to discretizations that combine

Lagrangian and Eulerian coordinates.

1.3 Multilayered and Stacked Clothes

Daily-life garments are usually composed of multiple layers of cloth in contact: the

flounces of a dress, the pockets of jeans or the embroidery on jackets, are all examples

of how different patches of cloth can be stacked or sewn together to attain a desired

look or behavior. It is not surprising that these composite structures have attracted the

interest of researchers, both from a graphics and engineering point of view, as they

exhibit highly distinctive visual and mechanical properties that make them desirable

for a variety of applications, ranging from fashion to the creation of functional gar-

ments and fabrics. Therefore, a high fidelity cloth simulation method must pay close

attention to how these contacts between the different layers are resolved and be able

to robustly and reliably replicate their behavior.

However, contact handling still remains as another significant unsolved problem.

While detection and resolution algorithms have evolved to a point in which they of-

fer reliable solutions to the intricate configurations that usually appear in cloth sim-

ulation, they are often complex and computationally challenging, particularly when

considering the sheer amount of degrees of freedom required for the simulation of a

full-scale garment.

Nonetheless, it is possible to identify partial solutions that enjoy higher computa-

tional efficiency if their scope is limited to specific problems under certain assump-

tions. Such is the case of the work by [Cirio et al., 2014], who followed this strat-

egy and employed a special discretization to reduce the computational cost associated

with inter-yarn contact handling by assuming persistent contact. However, while their

method enables the representation of yarns sliding at contact points up to a certain

degree, their discretization precludes the application of the same concept to problems
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involving multiple layers sliding against each other due to the vulnerability of this

discretization to degenerate configurations.

In Chapter 4 we propose a highly efficient approach for the simulation of complex

rod assemblies and stacked layers that overcomes these limitations. We accomplish

this by extending the persistent contact assumption to multiple layers, developing

a novel mixed discretization that supports accurate and efficient contact while being

transparent to internal rod forces and hence insensitive to degeneracies. By combining

our novel discretization with the one employed by [Cirio et al., 2014] as appropriate,

we enable free sliding motion between different cloth layers, thus extending the ca-

pabilities of the method to the simulation of multilayered structures such as pockets,

labels, tablecloths and certain complex knitting patterns (all of which present complex

rod arrangements and pervasive degeneracies) at a comparable computational cost.

1.4 Overview and Contributions

The main contributions of this thesis can be summarized as follows:

• In Chapter 3 we introduce a framework for the design of damping using dis-

sipation potentials formulated as functions of strain rate. Our damping model

is built on top of the concept of dissipation potentials from classical mechan-

ics. This approach parallels the design of elastic deformation models based on

energy formulations and simplifies the enforcement of what we refer to good
damping conditions. This framework also helps us demonstrate why the popu-

lar Rayleigh damping model fails for nonlinear deformation models.

• In Chapter 3 we also analyze in detail the application of strain rate dissipation

potentials to two highly different deformation models, StVK hyperelasticity and

yarn-level cloth with sliding persistent contacts. These deformation models are

representative of the range of applicability of the damping model.

• Chapter 4 introduces a method to simulate complex rod assemblies and stacked

layers of cloth with implicit contact handling, through Eulerian-on-Lagrangian

(EoL) discretizations. Previous EoL methods fail to handle such complex sit-

uations, due to ubiquitous and intrinsic degeneracies in the contact geometry,

which prevent the use of remeshing and make simulations unstable. We propose
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a novel mixed Eulerian-Lagrangian discretization that supports accurate and ef-

ficient contact as in EoL methods, but is transparent to internal rod forces, and

hence insensitive to degeneracies.

• In Chapter 4 we also combine standard and novel EoL discretizations as appro-

priate, deriving mixed statics-dynamics equations of motion that can be solved

in a unified manner with standard solvers. Our solution is simple and elegant in

practice, and produces robust simulations on large-scale scenarios with complex

rod arrangements and pervasive degeneracies. In our results, we show the appli-

cation of our solution to challenging simulations of yarn-level cloth. We extend

the power of EoL methods to stacked layers of fabrics, by handling implicitly

both intra-fabric as well as inter-fabric contacts.

1.5 Publications

The following chapters are based on the following publications

• Chapter 3: "Dissipation Potentials for Yarn-Level Cloth" - Rosa M. Sánchez-Banderas

and Miguel A. Otaduy - CEIG, 11-18 [Sánchez-Banderas and Otaduy, 2017]. This

paper, presented at the Spanish Conference of Computer Graphics (CEIG), es-

tablishes the foundations of the design of damping forces based on dissipation

potentials and presents its application to yarn-level formulations.

• Chapter 3: "Strain Rate Dissipation for Elastic Deformations" - Rosa M. Sánchez-

Banderas and Miguel A. Otaduy - Computer Graphics Forum 37 (8), 161-170.
[Sánchez-Banderas and Otaduy, 2018]. This paper extends the previous one by

applying dissipation potentials to other domains such as thin-shell formulations,

further formalizing the concept of good damping. For simplicity, both works are

presented under the same chapter.

• Chapter 4: "Robust eulerian-on-lagrangian rods" - Rosa M. Sánchez-Banderas,

Alejandro Rodríguez, Héctor Barreiro and Miguel A. Otaduy - ACM Transactions
on Graphics (TOG) 39 (4), 59: 1-59: 10. [Sánchez-Banderas et al., 2020]. This

paper introduces an efficient and robust method to simulate complex rod assem-

blies and stacked layers in sliding motion.
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1.6 Outline

This thesis is organized as follows

• Background. Chapter 2 summarizes the major works that influenced this thesis,

highlighting their advantages and disadvantages and demonstrating why further

analysis in those areas was essential. We have grouped the literature into a gen-

eral section about cloth simulation and two main topics: dissipative phenomena

and multilayer and stacked clothes.

• Strain Rate Dissipation for Elastic Deformations. Chapter 3 describes and

analyzes in detail our proposed damping model based on strain rate dissipation

potentials. We start by defining the desired properties of a good damping model.

Then, we introduce strain rate dissipation potentials and the generic derivation

of damping forces. Finally, we compare our method to the Rayleigh damping

model, a simple method commonly used in the computer animation literature.

• Robust Eulerian-On-Lagrangian Rods. Chapter 4 introduces a method to sim-

ulate complex rod assemblies and stacked layers with implicit contact handling,

through Eulerian-on-Lagrangian(EoL) discretizations. We start with a recap of

the regular EoL discretizations and its application to yarn-level cloth simulation.

Then, we discuss the sources of degenerate discretizations and their devastating

effects, to conclude with our new discretization solution.

• Conclusions. Chapter 5 contains discussions about the methods developed in

this thesis, along with an analysis of the limitations of the proposed models,

possible applications and potential future work.
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Chapter 2

Background

The simulation of cloth has been a widely studied topic in the field of computer graph-

ics and it covers a large number of research areas. In this section we outline the works

that have inspired the development of this thesis. First, we will summarize the most

important works in cloth simulation, reviewing the literature in continuum descrip-

tions of cloth as well as those based on discrete elements such as yarns. Second,

we will talk about the previous works in dissipative phenomena, and finally we will

overview related work on multilayered and stacked cloth.

2.1 Cloth Simulation

For many years, cloth simulation has been an extensive field of research. The rep-

resentation of virtual cloth can be categorized into two main groups. The first one,

oriented to the textile industry, tries to understand the cloth from a mechanical en-

gineering perspective to develop an accurate representation for predicting the cloth

properties. The second group is the computer graphics industry, whose main objec-

tive is to obtain plausible behavior and visualization of cloth at minimal computational

cost. Our research is more tightly connected to this last group.

The animation and simulation of cloth in computer graphics is full of technical

challenges: creating realistic results of complex garments at faster run-times is one of

the largest drives of research in this area. Around the 1980s, researchers became in-

terested in more physically based techniques to model clothing behavior. Since then,

cloth simulation has driven most of the notable breakthroughs in the field: mechani-

cal modeling, contact handling, friction or numerical integration, among others. The

11
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broad range of potential applications and run-time constraints has led to the develop-

ment of different techniques that describe the behavior of cloth with different degrees

of accuracy.

We group cloth simulation methods into two main categories. On one hand, thin-

shell models describe fabrics as a continuous surface, therefore disregarding the un-

derlying yarn structure. On the other hand, rod-based models treat the problem of

simulating each independent yarn present in the fabric. Following that, we will go

over some of the key literature in both categories.

2.1.1 Thin-Shell Models

A wide range of simulation models used in Computer Graphics considers the fabric

as a continuous thin-shell. Such models enable simple treatment of cloth kinematics,

providing a tradeoff between performance and accuracy. The work by [Terzopoulos

et al., 1987] pioneered this way of approaching cloth simulation using continuum

mechanics. This work inspired later researchers to explore different methods while

maintaining this thin-shell assumption.

Some of the earliest approaches discretized the fabric surface into sets of mass-

spring networks to model the elasticity of cloth. The seminal work of [Provot et al.,

1995] introduced ensembles of spring networks with different topologies for mod-

eling resistance to different deformation modes, the so-called structural, shear and

flexion springs. While simple and highly performant, these formulations often come

across several limitations: their accuracy is low, and due to their ad-hoc nature, pa-

rameterization of their elastic properties is often artist-driven. Moreover, they are

limited in their ability to model relevant phenomena present in real-world textiles

such as anisotropy or non-linear material response. Provot noted this last limitation

and introduced a local strain limiting procedure to prevent unrealistically large elon-

gations. Later works [Bridson et al., 2002, Bridson et al., 2003, Thomaszewski et al.,

2009] would adopt this strategy to overcome the limitations of linear elasticity, even

enabling anisotropy [Hernandez et al., 2013].

The use of high stiffnesses can alleviate the problems associated with linear elastic-

ity models. However, this involves considerations of numerical stability or computa-

tional cost. One such problem is buckling instability. When subjected to compression,

forces applied at the extremes of a thin material reach critical levels, the structure
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reaches unstable equilibrium which leads to sudden changes in its shape (i.e. the

structure buckles). This manifests in the simulation as numerical instabilities and

ill-conditioned system matrices in implicit integration schemes, proving to be prob-

lematic in applications where robustness is key. Previous works solve this problem

by introducing large dissipative forces on out-of-plane motions [Baraff and Witkin,

1998, Volino and Magnenat-Thalmann, 2000]. However, this diminishes the realism

of naturally-emerging wrinkles in cloth, sometimes even removing them altogether.

[Choi and Ko, 2005] circumvent this problem by handling buckling explicitly through

an approximation of the post-buckling state, thus increasing both robustness and per-

formance.

Alternatively to these, several works explored methods derived from continuum

mechanics foundations, employing different discretization approaches. Out of these,

the finite element method (FEM) is perhaps the most well-known, often based on the

geometrically exact thin-shell formulation by [Simo and Fox, 1989]. Thanks to its

continuum foundations, cloths modelled using this method enjoy several advantages

over discrete approaches. On one hand, they enable the use of a large number of

possible constitutive models with different degrees of geometrical and material non-

linearity [Müller et al., 2002, Grinspun et al., 2003, Volino et al., 2009]while providing

resolution-independence, a quality that has been successfully exploited by adaptive

schemes to bring detail only to certain regions of interest. In this regard, the seminal

work of [Narain et al., 2012], dynamically refines and coarsens triangle meshes to

introduce detail in some areas while preserving the curvature and wrinkles of the

cloth (Fig. 2.1). On the other hand, material characterization is well understood and

can be obtained through standard engineering measurement [Penava et al., 2014],
leading to plausible matches to real-world fabrics.

While a clear improvement over mass-spring networks, these models are not free of

limitations: continuum mechanics primarily address membrane elasticity (i.e. stretch-

ing, shearing and area preservation), requiring explicit formulation that model resis-

tance to out-of-plane (i.e. bending) deformations. [Grinspun et al., 2003] formulate

a discrete flexural energy through the discrete approximation of continuous curvature

measurements. A similar formulation was proposed by [Bridson et al., 2003], who

identified an independent bending mode that does not affect rigid body transforma-

tions nor in-plane deformations. [Thomaszewski et al., 2005] designed a subdivision-
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Figure 2.1: [Narain et al., 2012] proposed a technique to dynamically refine and coarsen a
finite element mesh used for cloth simulation. To this end, they create anisotropic elements
that follow the curvature of wrinkles and creases in the cloth.

based finite element based in the Kirchhoff-Love shell theory that models both mem-

brane and bending energy in a consistent way.

Moreover, capturing interesting yarn-scale subtleties such as anisotropic and plas-

tic behavior is very challenging under these formulations, often requiring very com-

plex constitutive models. Researchers leveraged on data-driven models for capturing

such phenomena using real-world data [Wang et al., 2011, Miguel et al., 2012, Miguel

et al., 2016].

2.1.2 Rod-Based Models

The simulation of rods, strands, or deformable curves in general, has attracted the

attention of Computer Graphics researchers for many years. Earlier approaches in

the literature relied on networks of masses connected by springs to simulate hair and

fur [Rosenblum et al., 1991]. Not long ago, these mass-spring methods were modified

to meet the needs of production animations [Selle et al., 2008, Iben et al., 2013].
However, although simple and robust, these methods were problematic when trying

to capture twisting behavior. Following the mass-spring idea, other approaches model

rods as a serial chain of rigid bodies connected by joints [Choe et al., 2005, Hadap,

2006].

[Pai, 2002] introduced the Cosserat theory of elastic rod simulation to the com-

puter graphics community. In his work, rods are represented by using curvature as

minimal coordinates. Although efficient, the centerline is only represented implicitly

by the rod’s curvature and has to be recovered through integration, thus making con-

tact handling difficult. [Bertails et al., 2006] extended this approach to the super-helix
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Figure 2.2: The discrete elastic rod model proposed by [Bergou et al., 2008] uses a curve-
angle parameterization to guarantee that the orientation frame naturally remains adapted to
the centerline.

model, specially designed to simulate the dynamics of helical elastic rods such as curly

hair.

Other alternative approaches represent rods using an explicit representation of

the centerline. [Spillmann and Teschner, 2007] simulate the dynamics of rods by ap-

plying the finite element method to continuous deformation energies from Cosserat

theory. Thanks to the explicit representation of the centerline, collisions can be han-

dled efficiently, which allows them to simulate knots at interactive rates [Spillmann

and Teschner, 2008].

[Bergou et al., 2008] introduced the discrete elastic rod model (Fig. 2.2), where

an oriented frame automatically follows the deformation of the rod center line thanks

to a curve-angle parameterization. This work was later extended to simulate discrete

viscous threads [Bergou et al., 2010a].

Most of these previous works rely on implicit integration schemes for solving the

rod’s stiff equations of motion. However, such integration schemes are often not suit-

able for applications where real-time rates are required. To overcome this, some re-

cent works have focused on developing models based on constrained dynamics solvers

such as position-based dynamics (PBD) [Müller et al., 2007] to simulate rods [Umetani

et al., 2014].

Rod-based models have been successfully applied for modeling cloth at yarn level.

The first incursion arguably began with [Peirce, 1937] who derived in a set of pa-

rameters and equations for modeling the crossing of yarns as inextensible curves in

woven fabric. Since then, textile research has dedicated a lot of attention to yarn-level

models to better understand the behavior of cloth.

Several methods have been developed for predicting the mechanical behavior of

yarns [Kawabata et al., 1973, Hearle et al., 1969], as well as to alleviate the large



16 2.1. Cloth Simulation

Figure 2.3: Cirio et al. proposed a yarn-level cloth model that managed intra-fabric contacts
implicitly. This work was applied for the simulation of woven [Cirio et al., 2014] and knitted
garments [Cirio et al., 2017].

computational cost of yarn-level models [Nadler et al., 2006, Reese, 2003, McGlockton

et al., 2003]. However, all these works focused on studying the mechanics from an

engineering point of view, often paying attention to very small patches of fabric in

controlled conditions, ignoring the computational complexity of full-size garments.

In computer graphics, the seminal work of [Kaldor et al., 2008]was the first able to

simulate entire knitted garments at the yarn level. In their method, yarns were mod-

eled as inextensible rods, and inter-yarn contacts were explicitily computed through

stiff penalty forces and velocity-filter friction. Their work was later extended to ac-

celerate contact handling through the use of local rotated linearizations of penalty

forces [Kaldor et al., 2010]. However, despite the improvements introduced in the

method, the sheer number of contacts present in knitted garments led to important

time step constraints in order to guarantee robust and accurate contact handling.

To avoid explicit inter-yarn contact handling, [Cirio et al., 2014] introduced an

alternative yarn-level model based in the discretization proposed by [Sueda et al.,

2011], assuming that yarns are in persistent contact (Fig. 2.3). This way, yarns were

modeled as flexible rods with additional sliding degrees of freedom to allow them

to slide along each other. Thanks to this discretization they were able to represent

complex plastic effects such as snags or pulls. Their innovative method for woven

fabrics was later extended to support some types of knits [Cirio et al., 2017]. However,

the method was limited to some specific knit patterns, as yarns are not allowed to cross

each other while sliding. Recently, [Pizana et al., 2020] improved the model proposed

by [Cirio et al., 2014] by introducing a robust and controllable bending model for

yarn-level cloth simulation with nodal discretizations.
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Yarn-level cloth models are also used in computer graphics for the design of fabrics

and fabrication processes, in particular for knits. In 2018, [Leaf et al., 2018] extended

the model of [Kaldor et al., 2008] for the authoring and editing of small periodic

knit patches. Thanks to the efficient GPU implementation of the method and the

formulation of periodic boundary conditions, they were able to simulate a multitude

of stitches and patterns at interactive rates.

[Yuksel et al., 2012], on the other hand, created a stitch mesh data structure

to define the construction of knit garments as a tiling procedure. This work was

later extended to fulfill fabrication constraints [Wu et al., 2019], to represent cro-

chet patterns [Guo et al., 2020] and to use it in the context of fabrication-oriented

editing [Narayanan et al., 2019].

Recent approaches have focused on improving the yarn-level simulation models by

pursuing a good trade-off between efficiency and realism. In this context, [Casafranca

et al., 2020] developed a method that enriches triangle-based representations with

yarn-level details at regions of interest, solving both in a seamless and robust man-

ner. On the other hand, [Sperl et al., 2020] introduced a homogenization method

that estimates thin-shell deformations from yarn-scale simulations. The use of the

Material Point Method [Jiang et al., 2017] has also shown success to track yarn-level

details while allowing robust treatment of collisions, thus achieving cost-effective sim-

ulations.

2.2 Dissipative Phenomena

Computer animation has addressed the simulation of materials and effects with very

diverse damping behaviors, from the highly damped behavior of flesh to the inviscid

behavior of water. The relevant works in the literature usually distinguish three dis-

tinct types of damping, depending on their nature and purpose. (i) Damping that is

deliberately formulated in order to simulate the nature of the given material is often

referred to as material-intrinsic damping [Choi and Ko, 2005]. (ii) Damping produced

by implicit formulations of the system dynamics is referred to as artificial or numerical

damping. (iii) Damping added to enhance stability is usually referred to as fictitious

damping [Yu et al., 2000].
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In this section we will focus on describing some material-intrinsic damping ap-

proaches, as the purpose of our work is particularly related to this type of damping.

We separate the literature into two groups, depending on the relevant state variables

that determine energy dissipation. On one hand, the most common approach is to

assume that dissipation is only determined by instantaneous velocities, which gives

rise to velocity-dependent damping forces. This type of damping is usually so-called

Viscous damping. On the other hand, some recent works have explored different ap-

proaches to define the dissipative behavior of materials. We have grouped them into

Other damping approaches.

2.2.1 Viscous Damping

Characterization of damping mechanisms in dynamics simulation is an active area

of research to achieve realistic behavior of real-world materials and to improve the

stability of the simulated systems. However, in spite of a large amount of literature,

understanding of damping mechanisms is still quite primitive. A major reason for this

is that, in contrast with inertia and stiffness forces, it is not clear which state variables

are relevant to determine the damping forces. By far, the most common approach in

computer graphics is to use the so-called linear viscous damping, in which the damping

force linearly depends on the instantaneous velocities. This is commonly formulated

as:

fd = −Dv, (2.1)

where D is a positive semi-definite damping matrix, v is the linear velocity of all

the degrees of freedom in the simulated system, and fd is the resulting damping force.

In cloth simulation, one of the first works that recognized the need of damping

forces was developed by [Terzopoulos et al., 1987]. In their work, the cloth was dis-

cretized as a rectangular mesh, and energy functions were derived using a continuum

formulation. In terms of damping, they only implemented a simple viscous drag force.

Following Terzopoulos et al.’s treatment of deformable surfaces, [Carignan et al.,

1992] described a cloth simulation system using a rectangular discretization. They

recognized the need of damping functions that do not penalize rigid-body motions of

the cloth (unlike simple viscous damping), hence they added a force which damps
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cloth stretch and shear (but not bending). Nevertheless, their damping function —a

linear function of velocity— does not match the quartic energy functions of their con-

tinuum formulation.

Among all the works that make use of linear viscous damping, Rayleigh damp-

ing [Rayleigh, 1896] is probably the oldest but still the most widely used one. Rayleigh

damping is a linear approximation of Caughey damping [Caughey and O’Kelly, 1965],
a method designed for regulating the strength of damping for different spectral com-

ponents. In this model, the damping force is formulated as the linear combination

of the mass and stiffness matrices. This way, the damping force can be defined as

f= Cv(t), where C is usually formulated as:

C= αM+ βK, (2.2)

being M,K the mass and stiffness matrices respectively and α, β are constants of pro-

portionality. One advantage of this method is that it enables a straightforward reuse of

the mass and stiffness matrices when using implicit integration schemes, thus avoiding

explicit formulation of damping forces. However, for systems with many degrees of

freedom, it is difficult to guess meaningful values of α and β . Moreover, such damp-

ing approach affects the global object dynamics, often producing an overly damped

system, which turns out in an undesirable loss of kinetic energy and therefore unre-

alistic behavior. A detailed analysis of this problem is presented in Section 3.2.5 of

Chapter 3.

Finer control over the damping behavior can be achieved by splitting the stiffness-

proportional term and assigning a different one to each deformation mode (i.e. C =
αM + βaKa + βbKb + βcKc + ...). However, while more controllable, the problem of

excessive kinetic loss still remains.

In computer animation several works implement linear damping models that fol-

low Rayleigh’s approach. [Grinspun et al., 2003] used Rayleigh damping for the sim-

ulation of thin flexible structures with a Newmark ODE integration scheme. [Cirio

et al., 2014] employed this same scheme in the context of yarn-level cloth simulation

using a backward Euler implicit integrator, and [Gast et al., 2015] used a “lagged ver-

sion” of Rayleigh damping to define a damping energy function for optimization-based

integration.
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Figure 2.4: [Xu and Barbič, 2017] proposed an example-based method for the design of non-
linear anisotropic damping in an artist-friendly fashion, enabling independent damping design
for each example deformation.

Recent works take inspiration from Rayleigh damping to design different dissipa-

tion approaches. [Xu and Barbič, 2017] introduced a method to design damping be-

haviors in an artist-friendly manner. Starting from a regular Rayleigh damping model,

they developed a framework to modify the damping behavior for arbitrary deforma-

tion directions as illustrated in Fig. 2.4. [Li et al., 2018] introduced a new type of

damping model specifically designed for Projective Dynamics. Through the use of the

Laplacian matrix of Projective Dynamics, they can approximate Rayleigh’s stiffness

matrix and remove high-frequency vibrations.

Nevertheless, as mentioned before, Rayleigh damping tends to overdamp high fre-

quency responses, usually leading to an underwhelming loss of kinetic energy, which

is very problematic when fine control is necessary. To avoid this loss of kinetic energy,

other works proposed alternative dissipation strategies. [Baraff and Witkin, 1998] de-

scribed a general treatment for damping that was independent of the specific energy

function being damped. They defined damping forces aligned with soft-constraint

elastic forces, but proportional to constraint velocities instead. Inadvertently, Baraff

and Witkin designed a damping model that constitutes a particular case of dissipation

potential [Goldstein et al., 2002], with the benefit of avoiding unnecessary dissipa-

tion of the system’s total kinetic energy. Our work on this topic, further described

in section 3.2, draws inspiration from the damping approach proposed by Baraff and

Witkin and proposes a formalization of the requirements for designing a good damp-
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ing model. [Bender and Deul, 2013] also used this type of damping for adaptive cloth

simulation with corotational finite elements and [Oh et al., 2006] further improved it

with an implicit integration technique that is able to reproduce stable cloth without

introducing excessive damping forces.

Other works, such as that by [Volino and Magnenat-Thalmann, 2000, Volino and

Magnenat-Thalmann, 2001] found that inappropriate damping forces may prevent

wrinkles from forming or disappearing correctly, or may prevent fabrics even from

falling under their own weight. Later, [Choi and Ko, 2005] proposed a method that

includes artificial damping and material-intrinsic damping, but avoids fictitious damp-

ing through the use of a predicted static post-buckling response, effectively handling

the instabilities associated with post-buckling situations.

2.2.2 Other Damping Sources

Some causes of dissipation may not be directly related to velocities. One example is

the numerical dissipation that appears as a result of the dynamics integration process.

Implicit solvers are a prime example of this: although highly stable, these methods

trade off stability at the cost of high kinetic energy damping. As a result, researchers

have explored different approaches to mitigate such dissipation. Variational methods

formulate integration preserving dynamic invariants accurately, minimizing numerical

damping [Kharevych et al., 2006, Gast et al., 2015]. Other approaches find success

in mitigating this problem by tracking undesired dissipation and injecting it back into

the system as a post-process. These strategies are common practice in the context of

fluid simulation. In such context, [Fedkiw et al., 2001] introduced vorticity confine-

ment forces to computer graphics for restoring kinetic energy at vortices and eddies,

counteracting dissipation produced by semi-Lagrangian advection schemes. In the

context of deformable bodies, [Su et al., 2013] devised momentum-conserving cor-

rection forces to preserves the system’s global energy.

2.3 Multilayered and Stacked Clothes

Daily-life garments are usually composed of multiple layers of cloth, either sewn or

stacked, whose appearance and behavior is greatly influenced by the contacts occur-

ring between them. Consequently, if we want to reproduce the behavior of such gar-
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ments, we must pay special attention to how such contacts between these different

layers are handled.

Unfortunately, this is still an open challenge in the cloth simulation literature: be-

cause of the thin-shell nature of cloth, contact detection algorithms require a high de-

gree of accuracy (both spatial and temporal) to prevent tunneling effects. Moreover,

even if detected, solving robustly the actual contacts poses a very challenging prob-

lem, specially due to the sheer amount of contact arrangements that arise in common

situations. Both facts make the whole procedure very costly in terms of performance,

usually becoming one of the bottlenecks in a simulation pipeline.

In this section, we will review the different works in the literature that have ap-

proached the problem of modeling multi-layered cloth or stacked garments. We will

classify the different approaches in two main categories, according to the way in which

contact is handled: on one hand, explicit methods, which make use of collision detec-

tion and resolution mechanisms to manage the contact between the different layers.

On the other hand, implicit methods, which manage contact indirectly through the

preservation of certain mesh attributes or as a consequence of the discretization.

2.3.1 Explicit Contact Handling

Explicit methods constitute the most prominent approach in the contact handling lit-

erature. The earliest works in the field primarily addressed contact detection and

handling of rigid bodies, drawing inspiration from the well-established methods in

the Computer-Assisted Design (CAD) and robotics fields. However, deformable bodies

introduce additional challenging problems, especially for two-dimensional manifolds

such as cloth.

The traditional explicit contact handling pipeline usually consists of two steps: a

collision detection, and a contact resolution step. Formally, detection of inter-object

collisions and self collisions involves testing all potential pairs of geometric features

(e.g. triangles, tetrahedra) for intersection. However, while rigid body simulations

often produce relatively few contacts per object, deformable bodies naturally give rise

to large numbers of them. Therefore, this task usually becomes the most expensive

part of a collision handling pipeline.
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Over the years, researchers have proposed different schemes to accelerate this pro-

cess by exploiting spatial relationships in order to cull large sets of potential contacts.

The use of bounding volume hierarchies (BVH) is arguably the most prominent strat-

egy used in the deformable bodies literature [Bergen, 1997]. Given a set of geometric

features (e.g. primitives), BVH-based methods construct a tree structure by recursively

partitioning the space surrounding the geometry, forming a hierarchical structure and

wrapping each level using a bounding volume. This way, contact detection becomes

a tree-traversal problem which enables the pruning of large potential contact sets.

The performance of BVH trees is largely affected by the bounding volume and

partitioning heuristic of choice. Deformable objects and self-collision in general also

impose additional complexities. The spatial relationship between primitives changes

in every simulation step as objects deform. Moreover, in the case of self-collisions,

geodesically nearby surface primitives cannot be easily pruned away. As such, large

efforts have been put in different aspects of their design: use of different bounding

volumes, good split heuristics, accelerated parallel traversal, fast construction and up-

dating. A comprehensive summary covering such approaches can be found in [Ericson,

2004].

Other acceleration schemes have been successfully applied for collision and self-

collision detection. Some examples are spatial hashing [Teschner et al., 2003], the

use of representative primitives [Curtis et al., 2008] or visibility-based culling [Govin-

daraju et al., 2003] at different hierarchical levels [Johnson and Cohen, 2001].

While physical integrators evaluate the new states of the deformable objects at

distinct intervals only, collisions can occur at any instant in between such intervals.

Failing to detect such events can create entangled states from which it is hard to re-

cover later, specially due to the thin nature of structures such as cloth and hair. Al-

gorithms based on continuous collision detection (CCD) can handle these cases in a

robust way [Provot, 1997, Bridson et al., 2002, Bridson et al., 2003], but special con-

sideration needs to be taken to ensure that the detection procedures are fail-proof

against numerical and rounding error [Wang, 2014].

Once the contacting manifolds have been determined, an appropriate response

has to be computed in order to resolve the contact. Collision response algorithms

can be classified into three categories on a general basis[Baraff and Witkin, 1997]:
constraint-based methods, penalty-based methods and impulse-based methods.
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Constraint-based methods [Pauly et al., 2004, Otaduy et al., 2009] model con-

tact response by the introduction of non-penetration constraints, usually formulated

and solved within linear complementarity problem (LCP) or non-linear programming

frameworks. While these are observed to produce the highest quality results, their res-

olution is computationally challenging, therefore relegating their use to rigid body sim-

ulations due to the scarce number of potential contacts. Penalty-based and impulse-

based methods offer a more computationally amenable alternative to constraints.

Penalty-based approaches aim to transform the constrained dynamics problem into

an unconstrained one by formulating a conservative force field (i.e. “soft-constraint”)

that attempts to restore the non penetrating state [Terzopoulos et al., 1987]. While

simple, these approaches suffer from many robustness and stability issues. Inappro-

priate choices of penetration metrics yielding force discontinuities or poorly estimated

magnitudes can lead to problems such as jittery behavior, instabilities or constraint

violation altogether in the form of over-penetration or even pop-through. [Harmon

et al., 2009]mitigated this problem by introducing a barrier formulation instead of stiff

springs. [Tang et al., 2012] employ time-continuous force computation to determine

a well-behaved collision response, significantly improving the stability and robustness

in contrast with previous penalty approaches. Despite these limitations, penalty meth-

ods have been widely used for complex applications such as cloth [Baraff and Witkin,

1998, Choi and Ko, 2005].

First introduced by [Mirtich and Canny, 1995], impulse-based methods sit on a

middle ground between constraint and penalty-based methods. Instead of introducing

forces or accelerations, contacts are resolved by introducing a series of instantaneous

changes in velocities (i.e. impulses) between colliding objects. These methods enjoy

relatively good stability and performance, although special attention must be paid to

ensure energy conservation [Tang et al., 2013]. Nonetheless, they have found success

in the simulation of complex contact arrangements. [Bridson et al., 2002, Bridson

et al., 2003] leveraged on a hybrid strategy combining penalty for near-penetration

scenarios and impulse methods with rigid impact areas for penetrating features.
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2.3.2 Implicit Contact Handling

Beyond the use of explicit methods for the detection and resolution of contacts be-

tween different layers of cloth, other approaches proposed implicit or indirect strate-

gies.

Some works handle contact indirectly by posing the problem as the preservation

of some mesh or field attributes. [Sifakis et al., 2008] proposed a method motivated

by the response of an incompressible fluid inserted between the colliding surfaces.

Instead of explicitly modeling this fluid, they approximate it by using the tetrahedra

defined by colliding point-triangle or edge-edge pairs. This idea was further extended

by [Müller et al., 2015]. They proposed an efficient unified approach to dynamically

handle collision detection and contact modeling without the requirement of testing

pairs of geometric elements. They accomplish this by meshing empty regions between

objects (i.e. generating an air mesh). This way, inter-object intersections manifest as

element inversions in the air mesh, which are solved by the introduction of unilateral

volume constraints to each element. Although these approaches are able to efficiently

handle multiple layers of cloth, they require an initial collision-free state as input.

Moreover, a mesh optimization procedure is required to ensure that the meshes satisfy

the Delaunay condition, which is computationally challenging on tetrahedral meshes.

Other approaches take advantage of the discretization of cloth to efficiently man-

age contact. Classical methods usually rely on Lagrangian schemes to represent the

cloth behavior, which are closely related to explicit contact handling methods. In

Lagrangian discretizations, each individual node of the computational mesh follows

the associated material particle during motion. This allows easy tracking of free sur-

faces and facilitates the treatment of materials with history-dependent constitutive

relations. However, it is not possible to follow large distortions of the computational

domain without resorting to frequent remeshing operations [Narain et al., 2012].

In contrast, Eulerian discretizations track the evolution of the continuum at fixed

points in space. This allows handling large distortions in the continuum motion with

relative ease, at the expense of precise free surface tracking and level of detail. Al-

though this representation has been more commonly used in the fluid mechanics lit-

erature, recent works have successfully applied it for the simulation of deformable ob-

jects [Levin et al., 2011]. Because Eulerian simulations represent multiple objects un-
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Figure 2.5: Anisotropic Elastoplasticity for Cloth, Knit and Hair Frictional Contact [Jiang et al.,
2017]

der the same spatial discretization, contact detection and resolution naturally emerge

without the need for any explicit mechanism.

The benefits of Eulerian discretizations in contact resolution have attracted the in-

terest of computer graphics researchers, who explored hybrid discretization schemes.

[McAdams et al., 2009] combined features of Eulerian and Lagrangian discretization

to simulate hair. In particular, they take advantage of Eulerian representations to man-

age bulk hair interactions and Lagrangian schemes for detailed contact. [Faure et al.,

2007] mapped the geometry of the bodies to a regular Eulerian grid at each timestep,

which acts as a common mechanical layer where detection and resolution of colli-

sions take place. [Li et al., 2013] proposed an Eulerian discretization of hyperelastic

membranes moving on a triangulated surface to simulate skin. This way, the skin is

automatically constrained to move on the body and not separate from it, avoiding the

need of contact processing.

Recently, combined Eulerian-Lagrangian methods have also shown success for the

robust simulation of stacks of cloth within the Material Point Method. These methods

enable accurate Lagrangian tracking of cloth surfaces, plus efficient Eulerian contact

handling using a constitutive model of frictional contact [Jiang et al., 2017] (Fig. 2.5).

Later methods have been extended to handle rich bending models [Guo et al., 2018].

[Fan et al., 2013] coined the term Eulerian-on-Lagrangian (EoL) to denote simu-

lations that use both Eulerian and Lagrangian coordinates to define aggregate kine-

matics. They used their method to combine large rigid or modal motion with robust

deformation on Eulerian grids. In their setting, the combined Eulerian and Lagrangian
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kinematics yield an ambiguous representation, which is resolved by minimizing the

Eulerian contribution.

Earlier, however, [Sueda et al., 2011] had introduced an EoL method for the sim-

ulation of rods in contact with other objects. Their method places nodes with both

Eulerian and Lagrangian coordinates at contact locations, and ensures that rod bend-

ing is accurately and efficiently resolved even when contacts slide. [Cirio et al., 2014]
leveraged on this method for the simulation of cloth at the yarn level. [Weidner et al.,

2018] extended Sueda’s rod discretization to cloth modeled as a thin shell. By set-

ting discretization nodes at sharp contacts, simulations avoid locking and spurious

energy artifacts. In their work, conformal remeshing is used to maintain good mesh

quality while contact nodes slide in the material domain. However, in the examples

shown by the authors, contact nodes are sparse, and there are no sandwiched contacts

or multiple stacked cloth layers, hence contact nodes never approach and cross each

other.

Our work, further described in Chapter 4, is based in the Eulerian-on-Lagrangian
assumption to allow the simulation of multiple stacked cloth layers and complex knit

patterns. Contrary to the method of [Weidner et al., 2018], our model is able to

represent sandwiched contacts crossing each other in the material domain without

the use of remeshing techniques. Detailed information can be found in Chapter 4.
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Chapter 3

Strain Rate Dissipation for Elastic Defor-
mations

3.1 Introduction

Damping is a defining characteristic of real-world deformable objects. It determines

the duration of oscillations, and hence the perception of dynamics and sound. Due

to this relevance, it becomes a basic ingredient of physics-based computer animated

deformations.

However, despite the omnipresence of damping, its study has received far less at-

tention than its companion elasticity. Few works have been explicitly dedicated to the

problem, with notable exceptions to avoid spurious damping [Su et al., 2013], esti-

mate model parameters [Bhat et al., 2003], or design damping behaviors in an artist-

friendly manner [Xu and Barbič, 2017]. Perhaps due to the limited attention, many

computer animation works have used simplistic damping models, such as Rayleigh

damping [Rayleigh, 1896].

In our experience, Rayleigh damping, although simple, turns problematic when

fine control is necessary, either for artistic design or to match real-world behaviors.

This fact has motivated us to study the design of simple damping models that satisfy

important conditions by construction. In particular, we seek forces that damp only the

change of deformation, and leave other dynamics unaffected. Although such condi-

tions have been advocated before [Baraff and Witkin, 1998, Bridson et al., 2003], we

formalize the requirements for good damping and establish a framework for the design

of simple damping models.

29
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Figure 3.1: With strain rate dissipation potentials, we ensure by construction that damping
forces affect only motions that produce a change of deformation. The damping model is simple
yet rich and versatile, as demonstrated by the examples. We have tested strain rate dissipa-
tion potentials on cloth simulations modeled with StVK elasticity and with yarns with sliding
persistent contacts. The snapshots show a yarn-level shirt with over one million nodes.

We build our damping model on top of the concept of dissipation potential from

classical mechanics [Goldstein et al., 2014]. This approach parallels the design of

elastic deformation models based on energy formulations [Xu et al., 2015, Miguel

et al., 2016], simplifying the process of designing damping forces that satisfy the good

damping condition. As described in Section 3.2, we propose a framework for damping
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models with dissipation potentials based on strain rate. This framework also helps us

demonstrate why the popular Rayleigh damping model fails for nonlinear deformation

models.

Furthermore, we develop diverse applied examples that prompt the considerations

to be addressed for practical implementations. In Section 3.3, we discuss the appli-

cation of strain rate dissipation potentials to the Saint-Venant Kirchhoff (StVK) hyper-

elasticity model [Sifakis and Barbic, 2012]. In this setting, we study the design of

continuum dissipation models and their discretization, possibilities for parameteriza-

tion under multi-dimensional strain metrics, and implications of implicit integration.

In Section 3.4, we discuss the application of strain rate dissipation potentials to yarn-

level cloth simulation with sliding persistent contacts [Cirio et al., 2014]. This model

allows us to analyze the application to discretizations that combine Lagrangian and

Eulerian coordinates. In addition, damping of yarn bending gives rise to challenges in

the design of strain metrics, which are not present in elastic deformations alone.

We have evaluated the implementation of strain rate dissipation potentials on

StVK elasticity for cloth simulation as well as yarn-level cloth (Fig. 3.1). Thanks to

their diversity, these two examples cover many aspects of elastic deformation models,

namely, nonlinear, multidimensional, and/or angular deformation metrics, as well as

Lagrangian and mixed Lagrangian-Eulerian discretizations.

3.2 Dissipation Potentials for Good Damping

In this section, we describe and analyze the damping model based on strain rate dis-

sipation potentials. We start by defining the desired properties of a good damping

model. Then, we introduce strain rate dissipation potentials and the generic deriva-

tion of damping forces. We follow with practical considerations for the implementa-

tion of strain rate dissipation potentials on continuum and discrete elastic deformation

models. And we discuss the computation of force Jacobians for implicit integration.

To conclude the section, we compare strain rate dissipation potentials to other

simple damping models used in computer animation. In particular, for the Rayleigh

damping model, we provide theoretical and experimental analysis.
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3.2.1 Good Damping

Let us assume that deformation is measured through some generic strain metric ε. We

define that a certain velocity v is decoupled from deformation if it produces no strain

rate, or change of deformation, i.e., ε̇ =∇xε
T v= 0. In other words, a velocity that is

decoupled from deformation lies on the null-space of the strain gradient ∇xε.

We define good damping as the dissipative forces fd that produce no effect on veloc-

ities that are decoupled from deformation. Even though real-world dissipative forces

may also act on velocities that are decoupled from deformation, such relationship is

complex and generally unknown. Then, our strategy is to model coupled and de-

coupled damping separately, as also advocated by others before [Baraff and Witkin,

1998, Bridson et al., 2003].

From the definition of velocities that are decoupled from deformation, good damp-

ing implies that dissipative forces have a null projection onto the null-space of the

strain gradient, i.e.,

�

I−∇xε
�

∇xε
T ∇xε

�−1
∇xε

T
�

fd = 0. (3.1)

3.2.2 Strain Rate Dissipation Potential

We model dissipation using the concept of dissipation potential from classical mechan-

ics [Goldstein et al., 2014]. Given a dissipation potential Vd , dissipative forces are

obtained as the negative velocity-gradient of the dissipation potential. These forces

can be added to the regular Euler-Lagrange equations.

For a system with kinetic energy T = 1
2 vT M v, conservative potential Ve, and dis-

sipation potential Vd , the Euler-Lagrange equations on reduced coordinates x, with

velocities v= ẋ, are:

M v̇=∇xT −∇xVe −∇vVd − Ṁ v. (3.2)

We propose to define the dissipation potential in terms of the strain rate metric ε̇,

i.e., Vd(ε̇). Then, the dissipative forces fd can be expressed as

fd = −∇vVd = −∇xε∇ε̇Vd . (3.3)
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The term ∇ε̇Vd can be regarded as an (integrated) dissipative stress. Then, we

observe that strain rate dissipation potentials produce dissipative forces that can be

obtained by projecting a dissipative stress onto the space of motions defined by the

strain gradient. And it follows that these dissipative forces have a null projection onto

the null-space of the strain gradient. We can confirm this by plugging the dissipative

forces (3.3) into (3.1), and we conclude that strain rate dissipation potentials satisfy

the good damping condition by construction.

3.2.3 Integration of Potential Densities

Furthermore, we consider a particular type of potential, obtained by integrating po-

tential densities. We start from an elastic potential, defined in terms of some multi-

dimensional strain metric ε, i.e.,

Ve =
∑

i

wi Ψe,i(ε), (3.4)

where Ψe,i(ε) is a strain energy density evaluated on some integration point, and wi is

the corresponding weight. Such integrated models are ubiquitous, and they encom-

pass both discrete elastic models, as well as FEM models where energies are evaluated

using quadrature formulations. Note that, for example, the simple FEM model with

linear basis functions on simplicial meshes corresponds to the case where the strain

energy density is evaluated once per mesh element, and the integration weight is the

volume of the element.

From the elastic potential above, we may derive elastic forces fe. For Lagrangian

discretizations, where integration weights wi are constant, the elastic forces can be

obtained as

fe = −∇xVe = −
∑

i

wi∇xε Se,i. (3.5)

Here, the term Se,i = ∇εΨe,i is, by definition, the elastic stress. We define similarly a

dissipation potential, by integrating dissipation potential densities that depend on the

strain rate ε̇:

Vd =
∑

i

wi Ψd,i(ε̇). (3.6)
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And we derive the corresponding dissipative forces:

fd = −∇vVd = −
∑

i

wi∇xε Sd,i. (3.7)

Here, Sd,i = ∇ε̇Ψd,i is the dissipative stress. By contrasting (3.7) and (3.5), we can

conclude that, for purely Lagrangian discretizations, elastic and dissipative forces can

be obtained by following a similar procedure. In both cases, they can be obtained as

weighted sums of the respective stress values multiplied by the strain gradient.

In Section 3.4 we visit the case of recently popular mixed Lagrangian-Eulerian

discretizations, which do not follow the same pattern.

3.2.4 Force Jacobians

Implicit integration methods require the computation of force Jacobians for the lin-

earization of accelerations. Damping forces (3.7) depend on both positions and ve-

locities, hence we need both Jacobians.

The Jacobian w.r.t. velocities is:

∂ fd

∂ v
= −

∑

i

wi∇xε
∂ Sd,i

∂ ε̇
∇xε

T . (3.8)

This Jacobian is typically not problematic. The term
∂ Sd,i

∂ ε̇ is symmetric and, for the

case of quadratic dissipation potentials, constant. In that case, positive definiteness

can easily be enforced.

The Jacobian w.r.t. positions is:

∂ fd

∂ x
= −

∑

i

wi

�

∂ 2ε

∂ x2
Sd,i +∇xε

∂ Sd,i

∂ ε̇
∇xε̇

T

�

. (3.9)

This Jacobian may be problematic for two reasons. The second term is not symmetric,

and we choose to discard it. The first term, on the other hand, may not be positive

definite. To enforce positive definiteness, we propose to clamp the negative eigen-

values of the stress Sd,i. Note that a similar term ∂ 2ε
∂ x2 Se,i arises in the Jacobian ∂ fe

∂ x of

elastic forces (3.5); therefore, implicit integration of damping forces based on strain

rate dissipation potentials does not add notable complexity or cost.
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We have validated that the two modifications to the Jacobian are beneficial in

practice. We have tested them on implicit integration with Newmark and backward

Euler methods with full Newton solves, and in the backward Euler case also with just

one Newton iteration. The modifications to the Jacobian provide faster convergence of

the Newton solves, as they enable the use of fast solvers for symmetric positive-definite

matrices. Under just one Newton iteration, we have observed a slight difference in

kinetic energy (less than 2% in our tests), which is far less than the error introduced

by exiting the solve early.

3.2.5 Damping Models in Computer Animation

[Baraff and Witkin, 1998] designed dissipative forces for soft constraints, where their

constraints can be paralleled to strain metrics. Their formulation enforces that dissipa-

tive forces are aligned with constraint gradients, hence they satisfy the good damping

condition by construction.

Our strain rate dissipation potentials can be regarded as a generalization of their

dissipative forces. By working with dissipation potentials, and not directly with forces

as they do, our formulation supports arbitrary nonlinearity, anisotropy, etc., while

theirs is limited to quadratic dissipation potentials. Furthermore, by integrating po-

tential densities as described in Section 3.2.3, our formulation enables a discretization-

independent parameterization.

A very common damping model in computer animation is the Rayleigh dissipa-

tion function [Rayleigh, 1896], which defines a generic dissipation potential that is

quadratic on the velocities, i.e., Vd =
1
2 vT Dv. Unfortunately, there is no guarantee

that the resulting forces satisfy the good damping condition.

As a particular case of Rayleigh dissipation function, the Rayleigh damping model

chooses D = αM + β ∂ 2Ve
∂ x2 . The scalar values α and β weight, respectively, the mass

matrix and the Hessian of the elastic energy (or tangent stiffness matrix). These two

terms are supposed to provide damping of absolute motion and change of deformation

respectively, hence α = 0 is a trivial requirement for our condition of good damping.

From (3.5), and assuming a purely Lagrangian discretization, we conclude that the

tangent stiffness matrix can be expressed in terms of the strain gradient as

∂ 2Ve

∂ x2
=
∂ 2ε

∂ x2
∇εVe +∇xε

∂ 2Ve

∂ ε2
∇xε

T . (3.10)
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With α= 0, the resulting Rayleigh damping force is

fR = −β
�

∂ 2ε

∂ x2
∇εVe +∇xε

∂ 2Ve

∂ ε2
∇xε

T

�

v. (3.11)

By plugging this force in the good damping condition (3.1), we conclude that

Rayleigh damping is good damping only if the strain metric is linear, i.e., ∂
2ε
∂ x2 = 0.

Unfortunately, linear strain metrics fail for large deformations. In the next section,

we analyze the effect of Rayleigh damping on a simple experiment.

Another corollary is that, by dropping the offending term of the stiffness matrix,

we can obtain good Rayleigh damping which is equivalent to the following strain rate

dissipation potential:

Vd =
1
2
β ε̇T ∂

2Ve

∂ ε2
ε̇. (3.12)

3.2.6 Experimental Analysis: Damping a Linear Spring

Let us consider a linear spring on a horizontal plane, with one moving end-point x and

the other end-point fixed at the origin, as shown in Fig. 3.2. With rest-length L, the

strain of the spring is ε = ‖x‖
L −1. It follows that the strain gradient is∇xε =

1
L ·

x
‖x‖ , the

strain Hessian is ∂ 2ε
∂ x2 = 1

L

�

I− x
‖x‖

xT

‖x‖

�

, and the strain rate is ε̇ = 1
L ·

xT

‖x‖ ẋ. We design a

quadratic elastic energy of the form Ve =
1
2 L ke ε

2, Rayleigh damping with α= 0, and

an equivalent strain rate dissipation potential Vd =
1
2 β L ke ε̇

2.

In Fig. 3.2 we plot kinetic energy profiles for several animations where we com-

pare Rayleigh damping and strain rate dissipation potentials. In all the animations,

the moving end-point is initialized with a velocity of 20 tangent to the spring, with

the spring undeformed. The simulation parameters were: rest-length L = 2, elastic

stiffness ke = 100, mass m= 1.

Fig. 3.2 compares the behavior for several values of β . With strain rate dissipation

potentials, damping affects only the oscillation of the spring length, and the system

reaches a uniform circular motion where the elastic force acts as centripetal force.

With Rayleigh damping, the system slows down toward a full stop.

The results were obtained with a time step of 0.01, and are practically identical

for symplectic Euler and implicit Newmark, hence we can rule out effects due to the
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Figure 3.2: We simulate a spring rotating on a horizontal plane under different damping
models. Left: Initial conditions, with mass at position x and velocity v tangent to the spring, of
rest-length L. Right: Evolution of the kinetic energy with our strain rate dissipation potential
vs. Rayleigh damping, for three different values of damping coefficient β . The dissipation
potential is modeled according to (3.12) in this experiment.

integration method. Backward Euler, on the other hand, suffers noticeable numerical

damping, however far less than the one introduced by Rayleigh damping. With im-

plicit Newmark and a time step of 0.1, the damping behavior is still well preserved

under a full Newton solve, while exiting the Newton solve after one iteration intro-

duces some error, again far less than the error introduced by Rayleigh damping.

3.3 Application to StVK Hyperelastic Model

We choose the StVK elastic material model as an example of hyperelasticity. In this sec-

tion, we study the application of strain rate dissipation potentials to this deformation

model, and we propose a parameterization that produces a linear isotropic dissipative

stress.
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Given deformed and undeformed positions x and x̄ respectively, the deforma-

tion gradient is defined as F = ∂ x
∂ x̄ . Then, the Green strain tensor is defined as ε =

1
2

�

FT F− I
�

, and the StVK elastic material model defines a strain energy density

Ψe =
λ

2
tr (ε)2 +µ tr

�

ε2
�

, (3.13)

with λ and µ the Lamé constants.

This energy definition yields the second Piola-Kirchhoff stress

Se =∇εΨe = λ tr (ε) I+ 2µε. (3.14)

The use of a nonlinear strain metric turns the complete model nonlinear, yet the stress-

strain relationship is linear and isotropic.

Based on the integral formulation (3.4) of the StVK strain energy density (3.13),

we could define a dissipation potential for StVK by following the Rayleigh damping

analogy (3.12). However, strain rate dissipation potentials allow much more versatile

formulations.

Here, we explore one example, using a parameterization anologous to the StVK

strain energy density (3.13). We formulate an analogous dissipation potential, substi-

tuting the strain with the strain rate:

Ψd =
λd

2
tr (ε̇)2 +µd tr

�

ε̇2
�

, (3.15)

We consider two independent material parameters λd and µd , analogous to the Lamé

parameters for the elastic case. Interestingly, isotropic Newtonian fluids are also pa-

rameterized by two parameters, typically the dynamic viscosity and the bulk viscosity.

However, the mapping to these two parameters is unclear, as they are defined for a

different strain rate tensor.

Our proposed dissipation potential definition yields the following linear isotropic

dissipative stress:

Sd =∇ε̇Ψd = λd tr (ε̇) I+ 2µd ε̇. (3.16)

This formulation enables very simple implementation in practice, as discussed in

Section 3.2.3. At each integration point, the dissipative stress is evaluated and added
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to the second Piola-Kirchhoff stress, and the rest of the force computation follows

as usual. The evaluation of the dissipative stress requires the strain rate, which is

obtained by differentiating the Green strain tensor, and yields:

ε̇ =
1
2

�

FT Ḟ+ Ḟ
T

F
�

. (3.17)

The time derivative of the deformation gradient is nothing else but the gradient of

the velocity w.r.t. undeformed coordinates, i.e., Ḟ = ∂ v
∂ x̄ . For linear shape functions,

the deformation gradient is obtained per element as F = X · X̄−1, where X is a matrix

built with element node positions as columns, and X̄ is a constant matrix that depends

on undeformed node positions [Sifakis and Barbic, 2012]. The time derivative of the

deformation gradient can be obtained similarly as Ḟ = V · X̄−1, where V is a matrix

built with element node velocities as columns.

The dissipative stress (3.16) could be applied also to other deformation models.

One example is corotational elasticity, with strain ε = R−1 F−I, and R a rotation matrix

obtained through polar decomposition of the deformation gradient F. The implemen-

tation would differ in the computation of the gradient and the time derivative of the

strain, and we leave the test of such extensions for future work.

As discussed in Section 3.2.4, the application of the model with implicit integra-

tion requires the computation of force Jacobians. With our stress definition (3.16),

ensuring well-behaved Jacobians is simple. In the Jacobian w.r.t. velocities (3.8), the

term
∂ Sd,i

∂ ε̇ is constant, symmetric, and also positive definite for the right values of λd

and µd . In the Jacobian w.r.t. positions (3.9), we do as proposed in Section 3.2.4, and

clamp the negative eigenvalues of the stress Sd,i for each mesh element.

3.4 Application to Yarn-Level Cloth

[Cirio et al., 2014, Cirio et al., 2017] designed a yarn-level cloth model that represents

yarns as flexible rods in persistent contact, but with the option to slide with respect

to each other. Their reduced-coordinate representation combines Lagrangian coordi-

nates for the 3D position of yarn crossings, with Eulerian coordinates for the sliding

arc-length positions of such yarn crossings. Thanks to the sliding arc-length coor-

dinates, their method avoids altogether the computation of collision detection and
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collision response between yarns that are permanently in contact, and handles such

inter-yarn contact implicitly as discussed in Section 2.3.2 of Chapter 2.

The model of yarns with sliding persistent contacts poses two interesting questions

for the design of good damping. First, due to the existence of Eulerian coordinates,

the analysis of elastic and damping forces in Section 3.2.3 does not hold. Second,

the straightforward design of strain rate dissipation potentials for rod bending suffers

robustness problems due to indeterminacy of the strain gradient.

In this section, we address these two questions, demonstrating the application of

strain rate dissipation to yarn-level cloth simulation.

3.4.1 Forces and Their Jacobians

Yarns with sliding persistent contacts constitute a case of mixed Lagrangian-Eulerian

discretization [Sueda et al., 2011, Fan et al., 2013]. In such models, the integration

weights of elastic energies formulated as (3.4) are not constant, as they depend on

the Eulerian coordinates. Revisiting the derivation of elastic forces, we obtain the

following expression:

fe = −∇xVe = −
∑

i

wi∇xε∇εΨe,i −
∑

i

∇xwi Ψe,i. (3.18)

Unlike the elastic force (3.5) for purely Lagrangian discretizations, in this case the

elastic force does not point in the direction of the strain gradient ∇xε. It exhibits a

term that minimizes elastic energy simply by smearing it out by changing the Eulerian

discretization. This term points in the direction ∇xwi.

The damping force (3.7) for Lagrangian discretizations is valid for the mixed Lagrangian-

Eulerian case, as the integration weights depend on positions, not velocities. Several

authors in the past, notably [Baraff and Witkin, 1998], have argued for damping forces

that are aligned with elastic forces. As shown here, this should not be the case for

mixed Lagrangian-Eulerian discretizations.
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𝐚
𝜃

𝐛

Figure 3.3: Computation of bending strain angle of two consecutive segments a and b. The
strain gradient vanishes when the bending angle approaches θ = 0, which is not problematic
for elastic forces but leads to an undefined force direction for damping forces.

In the computation of force Jacobians, the Jacobian w.r.t. positions (3.9) also needs

to be revisited. For mixed Lagrangian-Eulerian discretizations, it turns:

∂ fd

∂ x
= −

∑

i

wi

�

∂ 2ε

∂ x2
Sd,i +∇xε

∂ Sd,i

∂ ε̇
∇xε̇

T

�

+∇xε Sd,i∇xwT
i . (3.19)

The added term, due to the gradient of the integration weight∇xwi, is not symmetric.

Following the same recommendations discussed in Section 3.2.4, we choose to discard

this term.

3.4.2 Damping for Rod Bending

[Cirio et al., 2014] model individual yarns as twist-free isotropic elastic rods. They

are discretized into linear segments, with stretch and bending elastic energies that

capture their internal resistance to deformation. Unfortunately, the bending defor-

mation model is problematic for the formulation of strain rate dissipation potentials,

due to indeterminacies at small angles. This problematic behavior is independent of

the Eulerian discretization; therefore, we limit our discussion to a purely Lagrangian

discretization.

Given two consecutive rod segments as shown in Fig. 3.3, with segment vectors a

and b, and added rest-length L, bending strain εθ can be defined as

εθ =
θ

L
, with tanθ =

|a× b|
aT b

. (3.20)

Others have proposed similar bending strain formulations, using, e.g., tan θ
2 [Bergou

et al., 2008] or sin θ
2 [Bridson et al., 2003] instead of the angle θ . However, they are
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not well behaved for the large bending angles suffered by cloth yarns. tan θ
2 →∞ for

θ → π, and sin θ
2 yields a nonconvex energy for θ > π

2 .

From the strain expression (3.20), bending strain rate can be derived as ε̇θ =
θ̇
L ,

with angular velocity

θ̇ =
cos2 θ

aT b

�

�

aT ḃ+ bT ȧ
�

tanθ +
(a× b)T

|a× b|
�

a× ḃ− b× ȧ
�

�

. (3.21)

The strain gradient is not defined when the bending angle is θ = 0. This is not a

problem for elastic forces (3.5) as long as the stress cancels out, which is the case, for

example, for typical quadratic energies. However, in damping forces (3.7), the stress

at θ = 0 may be arbitrary, leading to an undefined force direction.

The indeterminacy problem at vanishing angles can be circumvented thanks to a

small-angle approximation of the bending strain. In particular, and based on the small-

angle approximation of the tangent, i.e., limθ→0
tanθ
θ = 1, we propose the following

vector strain metric for small bending angles:

εk =
k
L

, with k=
a× b
aT b

. (3.22)

For quadratic energies, the energy for the large-angle bending strain (3.20) and the

small-angle bending strain (3.22) are equivalent under small angles, as demonstrated

through

lim
θ→0

ε2
θ

εT
k εk
= lim
θ→0

θ 2

‖k‖
= lim
θ→0

θ 2

tan2 θ
= 1. (3.23)

From the small-angle strain expression (3.22), bending strain rate can be derived

as

ε̇k =
1
L
·

1
aT b

��

aT ḃ+ bT ȧ
�

k+ a× ḃ− b× ȧ
�

. (3.24)

The small-angle bending strain (3.22) has a well-defined gradient for vanishing

angles; therefore, it enables robust computation of damping forces. For angles larger

than a threshold, we switch back to the regular bending strain (3.20), as the small-

angle bending strain tends to infinity for large angles.
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3.5 Results

We have tested the practical implementation of strain rate dissipation potentials on

the two deformation models described in Section 3.3 and Section 3.4, both applied to

cloth simulation. For StVK cloth, we have used the implementation with remeshing

available in ARCSim [Narain et al., 2012]. The simulator uses backward Euler integra-

tion with one Newton iteration per time step, and this integration method introduces

numerical damping. For yarn-level cloth, we have used the woven cloth simulation

method with sliding persistent contacts [Cirio et al., 2014], with repulsive forces for

collision handling. We use backward Euler numerical integration with adaptive time

stepping, with a full Newton solve per time step. Again, the integration method in-

troduces numerical damping. The code is implemented fully on the GPU. The StVK

and yarn-level cloth models are not supposed to be compared to each other, as the ex-

amples use models of very different resolution, and the parameters do not necessarily

produce best-match behaviors.

In Fig. 3.4 we demonstrate the ability of strain rate dissipation potentials to con-

trol damping behavior on specific deformation modes, while leaving other motions

unaffected. We have executed two different experiments.

Using the StVK cloth model on a square patch with 1, 089 vertices (with remesh-

ing disabled), we compare the behavior with no damping, Rayleigh damping with

β = 0.15, and our damping tuned to match Rayleigh damping as in (3.12). Damp-

ing is applied only to membrane deformation, not to bending. The two left plots

in Fig. 3.4 show the evolution of kinetic energy for two different motions (‘hanging’

and ‘swinging’), shown beneath. In the ‘hanging’ motion, our damping and Rayleigh

damping produce almost equivalent overdamped motion. In the ‘swinging’ motion,

on the other hand, our model produces a result close to the no-damping case, while

Rayleigh suffers high damping.

Using the yarn-level cloth model on a square patch with 20,402 nodes, we com-

pare the behavior for different values of stretch damping (βs) and bending damping

(βb). In both cases, we parameterize the dissipation potential following the analogy

to Rayleigh damping (3.12).
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Figure 3.4: The plots demonstrate the ability of strain rate dissipation potentials to correctly
damp target deformations, leaving others unaffected. All plots show the evolution of kinetic
energy under various settings, for the motions depicted beneath. The two plots on the left
correspond to the StVK cloth model with no damping, Rayleigh damping with β = 0.15, and
our damping tuned to match Rayleigh damping as in (3.12). Damping is applied only to the
membrane StVK model, not to bending. In the ‘hanging’ motion, our damping and Rayleigh
damping produce almost equivalent overdamped motion. In the ‘swinging’ motion, on the
other hand, our model produces a result close to the no-damping case, while Rayleigh suffers
high damping. The two plots on the right correspond to the yarn-level cloth model using our
damping model, comparing two combinations of stretch damping βs and two combinations of
bending damping βb. As desired, the stretch damping coefficient determines the behavior in
the ‘hanging’ motion, while the bending damping coefficient determines the behavior in the
‘flapping’ motion.
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The two right plots in Fig. 3.4 show the evolution of kinetic energy for two different

motions (‘hanging’ and ‘flapping’), shown beneath. As desired, the stretch damping

coefficient determines the behavior in the ‘hanging’ motion, while the bending damp-

ing coefficient determines the behavior in the ‘flapping’ motion.

We have also tested the strain rate dissipation potentials on larger animations.

We have dressed a character model with a shirt, and we have simulated the motion

of the shirt using both the StVK and yarn-level cloth models, with two different sets

of damping parameters each (medium damping and low damping). The character is

animated using publicly available data [Pons-Moll et al., 2015]. Figs. 3.5, 3.6, 3.7, 3.8

shows several snapshots of the animation for each cloth model and choice of damping

parameters. In the snapshots, the examples with less damping exhibit more folds.

For the StVK simulation, we have followed the parameterization of dissipation

potentials in (3.15), with the following parameter values: in the medium damping

case, λd = 30 and µd = 20 (Fig. 3.7); in the low damping case, λd = 1.5 and µd = 1

(Fig. 3.8). With remeshing, the number of vertices in the simulation ranges from 3, 300

to 5,976 in the medium damping case, and from 3, 386 to 6, 926 in the low damping

case. Performance varies as the mesh resolution changes, which in turn depends on

the amount of dynamics and fine wrinkles. To calibrate performance, we have used

a fixed mesh with 10,437 vertices. With a time step of 1.6 ms, the simulation took

roughly 1.45 seconds per time step. We have also compared performance w.r.t. the

Rayleigh damping model, and dissipation potentials add an overhead of just 2%, due

to a slight increase in the cost of collision processing under more vivid dynamics, not

due to force computation or solver convergence.

For the yarn-level simulation, we have followed the parameterization of dissipation

potentials with the Rayleigh damping analogy described in (3.12), with the following

parameter values: in the medium damping case, stretch damping with βs = 0.03 and

bending damping with βb = 0.16 (Fig. 3.5); in the low damping case, stretch damping

with βs = 3 × 10−4 and bending damping with βb = 0.016 (Fig. 3.6). With a shirt

with 136, 741 nodes and an average time step of 1 ms, the simulation took roughly

9.85 seconds per time step. We have also simulated a higher resolution shirt, shown in

Fig. 3.1, with 1, 053,175 nodes and intermediate damping values of βs = 3×10−3 and

βb = 0.1. With an average time step of 1 ms, the simulation took roughly 86 seconds

per time step.
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Figure 3.5: We compare a simulation of a shirt with two different deformation models and
different settings of the strain rate dissipation potentials. These four pictures illustrate the
yarn-level cloth simulation example with medium damping (βs = 0.03 and βb = 0.16)
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Figure 3.6: We compare a simulation of a shirt with two different deformation models and
different settings of the strain rate dissipation potentials. These four pictures illustrate the
yarn-level cloth simulation example with low damping (βs = 3× 10−4 and βb = 0.016)
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Figure 3.7: We compare a simulation of a shirt with two different deformation models and
different settings of the strain rate dissipation potentials. These four pictures illustrate the
StVK cloth simulation with medium damping (λd = 30 and µd = 20).
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Figure 3.8: We compare a simulation of a shirt with two different deformation models and
different settings of the strain rate dissipation potentials. These four pictures illustrate the
StVK cloth simulation with low damping (λd = 1.5 and µd = 1).
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3.6 Discussion and Future Work

We have presented a framework for the design of damping models, building on the

concept of dissipation potentials. We show that a formulation based on strain rate

achieves controllable damping for deformation modes, leaving other motions unaf-

fected. We discuss parameterization and implementation aspects, and demonstrate

the method on diverse deformation models.

Our approach also suffers some limitations. Since the strain rate is tightly coupled

to the choice of strain, the damping model may inherit some limitations of the elas-

tic deformation model. In addition, constraining damping forces to the direction of

the strain gradient is the major strength of the model, but it also constitutes a limita-

tion. Our model is not capable of modeling dissipative effects in the null-space of the

strain gradient at all, hence it needs to be complemented with other damping forces to

achieve such effects. Note, however, that the constitutive model that maps strain rate

to dissipation potential may be arbitrarily nonlinear, anisotropic, or heterogeneous,

not limited to the characteristics of the elastic constitutive model.

Our work opens interesting avenues for future work. Same as energy-based elastic

models set a solid framework for the design of elastic behavior, damping models based

on strain rate dissipation potentials set a solid framework for the design of dissipative

behavior. The model could be used as an integral building block of measurement-

based damping estimation or artist-driven damping design. To this end, it is important

to identify artist-friendly parameterizations.



Chapter 4

Robust Eulerian-On-Lagrangian Rods

4.1 Introduction

The simulation of rods has been extensively studied in computer graphics. This is

not surprising, as many daily-life objects are composed of rod-like structures, such

as ropes [Pai, 2002, Bergou et al., 2008], chains, belts, cloth [Kaldor et al., 2008],
cables [Servin et al., 2010], hair [Selle et al., 2008], tendons [Sachdeva et al., 2015],
spaghetti, or even fluid filaments [Bergou et al., 2010b].

Rod simulations become particularly challenging under complex contact arrange-

ments, as their small cross-section makes them vulnerable to collision handling er-

rors. But when contacts persist over time, with rods sliding with respect to each other,

Eulerian-on-Lagrangian (EoL) discretizations [Sueda et al., 2011] offer an attractive

approach to gain robustness in contact handling, at the expense of a slightly more

complex derivation of the equations of motion. EoL methods augment the classic

Lagrangian discretization of deformable solids with Eulerian coordinates that allow

nodes to move in the material domain. The power of EoL methods is the ability to

track explicitly contact points both in the spatial and material domains, simply by

placing nodes at contact locations, and thus reduce the complexity and increase the

accuracy of contact handling.

However, we have observed that existing EoL works exploit only moderately this

power. To the best of our knowledge, none of them shows multiple stacked layers

of rods or shells sliding with respect to each other. As we discuss in detail later in

Section 4.2, there is a fundamental reason for this. With sliding contacts, EoL dis-

cretizations easily become degenerate. To avoid simulation instabilities, previous EoL

51
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Figure 4.1: Simulation of three yarn-level tablecloths stacked on top of each other. We handle
both intra-fabric and inter-fabric contacts implicitly with our novel Eulerian-on-Lagrangian
(EoL) simulation. Frictional contact is correctly handled, even under extreme sliding and
crossing of yarns. We introduce novel EIL nodes to handle robustly pervasive degeneracies
in the discretization. The rightmost image shows the soup of nodes around the edge of the
table. White dots represent contacts between standard EoL nodes, red dots contacts between
our novel EIL nodes, and pink dots contacts between EoL and EIL nodes.

works use remeshing, but this strategy cannot be used under multiple stacked lay-

ers, when the geometry of the contact configuration is intrinsically degenerate, with

contacts crossing each other.

We propose a simulation method that handles robustly degenerate discretizations

in EoL rods. Our method does not use remeshing; it relies instead on a formulation

of equations of motion that is insensitive to degenerate elements. As a result, we can

simulate stacks of rods sandwiched between sliding contacts, with nodes constantly

crossing each other in the material domain, all with implicit contact handling enabled

by the EoL approach.

The key to our solution is a type of mixed Eulerian-Lagrangian discretization node,

carefully designed to support accurate and efficient modeling of contact interactions

as in EoL methods, but transparent to the modeling of internal rod forces, and hence

insensitive to degeneracies in the discretization. In Section 4.2 we describe this type
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of node, which we call Eulerian with Interpolated Lagrangian (EIL in short), and we

discuss its beneficial properties.

Based on a combination of the new EIL and regular EoL discretizations, we have

designed a simple and elegant algorithm to derive robust equations of motion at run-

time. The strategy is to replace offending EoL nodes with EIL nodes, and skip EIL

nodes in the definition of internal forces. Our algorithm, described in Section 4.3,

yields a combination of dynamics and statics equations, which can be solved in a uni-

fied manner with standard solvers.

In our results, we show the application of our solution to challenging simulations

of yarn-level cloth. Beyond single woven or knit fabrics [Cirio et al., 2014, Cirio et al.,

2017], we extend the power of EoL methods to stacked layers of fabrics, by handling

implicitly both intra-fabric as well as inter-fabric contacts. We demonstrate results on

several familiar settings: tablecloth layers, pant pockets, and shirt tags. We also show

that our method enables scalable EoL-based simulation of complex knit fabrics where

multiple yarns slide and cross each other. To date, these fabrics could be handled only

through traditional Lagrangian methods with explicit contact handling [Kaldor et al.,

2008], assuming periodicity to predict the relaxed pattern shapes [Leaf et al., 2018].

The combined simplicity and effectiveness of our solution leads to an elegant im-

plementation and robust results, despite ubiquitous discretization degeneracies as

shown in Fig. 4.1. While we only demonstrate our ideas on rods, we believe that the

core concepts can also be extended to other EoL domains such as thin shells [Weidner

et al., 2018].

4.2 Eulerian-Lagrangian Rods

In this section, we present a novel mixed Eulerian-Lagrangian discretization of rods.

We start with a recap of the regular EoL discretization [Sueda et al., 2011], and its

application to yarn-level cloth simulation [Cirio et al., 2014]. Then we discuss the

sources of degenerate discretizations and their devastating effects. We conclude with

the introduction of our new discretization.

All our exposition refers to the representation of the center line of a rod. The

representation of twist is complementary. In our implementation, we use twist-free
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rods and we assume a homogeneous cross-section, but our approach can be extended

to rod representations with twist.

4.2.1 Eulerian on Lagrangian Discretization

When rods are in contact with other objects, contact points tend to concentrate large

local bending, due to the low bending stiffness of the rod and the action of localized

external forces. Then, it appears particularly interesting to introduce discretization

nodes at contact points, and thus represent efficiently and accurately rod bending.

Moreover, if contacts are persistent, using these points in the discretization may sim-

plify overall computations, by avoiding explicit detection and resolution of contacts.

However, contact points may not be stationary in the material domain, due to

sliding. To account for the motion of discretization nodes within the material domain,

[Sueda et al., 2011] introduced the EoL discretization of constrained rods. As shown

in Fig. 4.2-a, a rod node is placed at the contact point between the rod and an arbitrary

object O, and its coordinates (u,x) store both Lagrangian (spatial) coordinates x and

Eulerian (material) coordinates u. We use as Eulerian coordinate the undeformed arc

length of the rod. With both Eulerian and Lagrangian coordinates, the kinematics

of the rod can suffer ambiguities. However, by forcing the rod node to remain at

the contact point, its Lagrangian coordinates are constrained, and the ambiguity is

resolved. We denote the contact point on the other object O as xo, and then, without

loss of generality, the constraint on the rod node can be expressed as

x− xo = 0. (4.1)

Later, [Cirio et al., 2014] considered the particular case of rod-rod contact. Then,

the contact point on object O is also an EoL rod node, with Eulerian coordinate v.

Moreover, in rod-rod contact, the contact constraint (4.1) can be enforced implicitly,

by making both EoL nodes share their Lagrangian coordinates. In other words, the

two EoL nodes have coordinates (u,x) and (v,x), as shown in Fig. 4.2-b. Another way

of looking at the EoL discretization of rod-rod contact is as a 5-dimensional reduced-

coordinate formulation.
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Figure 4.2: Examples of mixed Eulerian-Lagrangian discretization of rods. (a) EoL discretiza-
tion of a rod in sliding contact with an arbitrary object O, proposed by [Sueda et al., 2011].
(b) Application of the EoL discretization to sliding rod-rod contact, proposed by [Cirio et al.,
2014]. (c) Two rods (orange and green) slide on another rod (blue). As the material dis-
tance ∆u between the contact points gets smaller, forces become infinitely stiff, even in the
undeformed case. The degeneracy in the discretization makes the simulation unstable. (d)
We propose a novel discretization of sliding rod contacts. When a rod segment is close to
degenerate, we replace one EoL node with an EIL node (in red). In this node, the Eulerian
coordinate is free, while the Lagrangian coordinates are linearly interpolated. The material
distance of the degenerate segment does not participate in the discrete elastic energy of the
rod, which results in robust equations.

4.2.2 Degeneracies and Instabilities

While EoL rod discretizations are beneficial for the efficient and accurate simulation

of rods in contact, they are not free of difficulties. Elastic forces become infinitely stiff

when two sliding rod nodes get arbitrarily close to each other. Consider the situation

shown in Fig. 4.2-c. The orange and green rods in the figure slide on the blue rod,

and approach each other. Their contact points define a blue rod segment with material

length ∆u = uc − ub and spatial length ∆x = ‖xc − xb‖. The stretch energy Vs of a
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rod segment can be expressed as a function of the ratio between the Lagrangian and

Eulerian lengths [Cirio et al., 2014], i.e.,

Vs =
1
2

ks∆u
�

‖∆x‖
∆u

− 1
�2

, (4.2)

where ks is the material stiffness.

In the undeformed case, i.e., ‖∆x‖ = ∆u, the effective stiffness of the stretch

energy with respect to either the Lagrangian or Eulerian length is ∂ 2Vs

∂ ‖∆x‖2 =
∂ 2Vs

∂∆u2 =
ks
∆u .

It is evident that as the nodes slide and get closer in the material domain, the stiffness

tends to infinity, making simulations unstable.

The problem at hand boils down to a degeneracy in the discretization. The classic

approach to avoid degenerate discretizations is to remesh the geometry, as done as

well in other EoL methods [Weidner et al., 2018]. In the case of rods, the trivial

approach to remeshing is to collapse both adjacent nodes into one. However, this

approach is not viable when the nodes represent two sliding contacts. It is paramount

to retain the Eulerian coordinates of both nodes in order to determine how the contacts

continue sliding. To the best of our knowledge, no prior work on EoL rods shows

situations where sliding contacts get arbitrarily close and cross each other. [Sueda

et al., 2011] showed sliding contact of rods with fixed or rigid bodies; [Cirio et al.,

2014, Cirio et al., 2017] considered rod-rod contact in woven and knitted cloth, but

they applied a repulsive force when two contacts were in close proximity; remeshing

due to degeneracies was used in EoL cloth [Weidner et al., 2018], but the examples did

not exhibit arbitrarily close sliding contacts either. Challenging situations may appear

when rods are sandwiched and the contacts cross each other, and this situation cannot

be handled by simply collapsing nearby nodes.

4.2.3 Eulerian with Interpolated Lagrangian Discretization

To robustly handle degenerate discretizations under sliding contact, we introduce an-

other type of mixed Eulerian-Lagrangian node. This node has only a free Eulerian

coordinate, as this property is key to correctly capture sliding. Its Lagrangian coordi-

nates, on the other hand, are interpolated between adjacent nodes. We call this node

an Eulerian with Interpolated Lagrangian node (EIL).
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Looking again at Fig. 4.2-c, we take the node with Eulerian coordinate ub, and

we transform into an EIL node, as shown in Fig. 4.2-d, with the node highlighted in

red. Then, its Lagrangian coordinates are computed through linear interpolation of

its adjacent EoL nodes as:

x(ub) =
uc − ub

uc − ua
xa +

ub − ua

uc − ua
xc. (4.3)

Linear interpolation of the Lagrangian coordinates produces geometric properties

that make the EIL node transparent to internal rod forces. There is no bending, hence

the node does not participate in any bending energy computation. Stretch is the same

on the two adjacent segments, hence stretch energy can be measured between the

two adjacent nodes, bypassing the EIL node. As a result, even if the Eulerian distance

between the EIL node and its adjacent nodes becomes arbitrarily short, there is no

pernicious effect on the numerical stiffness, and the degenerate discretization becomes

harmless. Later in Section 4.3.2, we provide more details about the definition of elastic

energy terms.

At an EIL node, the contact constraint (4.1) can not be enforced trivially, as the

Lagrangian coordinates are not free coordinates. Therefore, this constraint must be

handled explicitly. In the rod-rod contact shown in Fig. 4.2-d, this translates into

an explicit constraint between x(ub), the interpolated position of the EIL node, and

xb, the position of the corresponding EoL node along the orange rod. Through the

interpolation (4.3) of the Lagrangian coordinate on the EIL node, the constraint affects

its Eulerian coordinate, and thus it induces sliding despite the degeneracy, as desired.

It also affects the motion of the adjacent nodes, and thus it satisfies two-way coupling

at the contact. To compute the effect of the constraint on the various free coordinates,

we make use of the Jacobian of the linear interpolation (4.3).

4.3 Robust Discrete Mechanics

In this section, we describe our runtime algorithm to robustly simulate the dynamics

of complex arrangements of rods in sliding contact. Our central strategy to avoid

instabilities under degenerate discretizations is to replace offending EoL nodes with

the novel EIL nodes described in the previous section, and formulate internal rod forces

that ignore the EIL nodes. We start the section with a description of the dynamic node
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assignment, we continue with the formulation of internal and external force terms,

and we conclude with the derivation of the equations of motion.

4.3.1 Node Assignments

On each simulation step, we start by identifying EoL and EIL nodes for all rods in

the simulation scene. To do this, we check the material distance between pairs of

consecutive nodes along each rod, and we ensure that an EIL node is introduced every

time that the distance is below a safety threshold. We do this efficiently through simple

list sorting and traversal operations.

For each step and each rod, let us consider as input a set of nodes defined by

their current Eulerian and Lagrangian coordinates (u,x). These nodes may be sliding

contacts inherited from the previous step, new contacts detected through collision

detection, discretization points with fixed Eulerian coordinates (e.g., end points), or

persistent contacts in the woven or knitted structure of a yarn-level fabric which can

be defined at preprocessing.

We initialize all nodes as EoL. Then, we sort the nodes according to their Eulerian

coordinates, which yields a sorted sequence {(ui,xi)}, ui > ui−1. Next, we traverse the

sequence in order. Whenever we find that a node is closer than a safety threshold

distance d from the previous node, we tag it as EIL node (In our implementation, the

safety distance is 0.1× the length of rest-shape rod segments). In a special case, when

the current node has a fixed Eulerian coordinate (e.g., it is an end node), we leave it

as EoL node, and we tag as EIL the last EoL node instead. Thanks to this simple node

assignment strategy, we ensure that the material distance between any pair of consec-

utive EoL nodes is above the safety threshold. As EIL nodes are determined based on

sorting, they switch when two adjacent nodes actually cross each other. However, this

has little effect on the simulation, as the nodes are co-located when they cross. We

have not observed noticeable effects due to the EIL selection policy.

We revise the assignment of nodes on every simulation step. More specifically, in

our implementation we revise them before the first Newton step of a full nonlinear

solve. Switching node assignments to and from EoL and EIL introduces discontinu-

ities in energy and momentum. These discontinuities could be reduced by locally

optimizing the Lagrangian and Eulerian coordinates of the nodes in contact.
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Consider a node with Eulerian coordinate ub, which transitions from EoL (as in

Fig. 4.2-c) to EIL (as in Fig. 4.2-d) and vice versa. This transition produces a dis-

continuity in the local energy. Under certain assumptions, the discontinuity can be

minimized through a closed-form optimization of the Eulerian coordinate ub. In this

optimization, we assume that the matching node (v,xb) remains fixed, and we con-

sider only stretch energies.

In the transition from EIL to EoL, the Lagrangian coordinate moves from x(ub)
to xb, to join the matching node. This jump introduces stretch energy, which can be

minimized by making stretch uniform across the new EoL node. Then, the optimal

Eulerian coordinate can be computed as

ub←
‖xb − xc‖ua + ‖xa − xb‖uc

‖xa − xb‖+ ‖xb − xc‖
. (4.4)

In the transition from EoL to EIL, the Lagrangian coordinate is now interpolated

from xa and xc. This jump introduces a non-zero energy in the newly created soft-

constraint with xb. This energy can be minimized by placing x(ub) on the closest point

to xb along the segment between xa and xc. Then, the optimal Eulerian coordinate

can be computed as

ub←max

�

(xa − xc)T (xb − xc)ua + (xa − xc)T (xa − xb)uc

(xa − xc)T (xa − xc)
, uc

�

. (4.5)

This result can also be expressed as a function of the angle θ between the rod segments

(xa − xb) and (xb − xc):

ub←max
�

wa ua +wc uc

wa +wc
, uc

�

, (4.6)

with wa = ‖xb − xc‖2 + ‖xa − xb‖‖xb − xc‖ cosθ ,

and wc = ‖xa − xb‖2 + ‖xa − xb‖‖xb − xc‖ cosθ .

Furthermore, with uniform stretch in both segments, the result can be expressed as a

function of the Eulerian coordinates alone:

wa = (ub − uc)
2 + (ua − ub) (ub − uc) cosθ , (4.7)

wc = (ua − ub)
2 + (ua − ub) (ub − uc) cosθ .
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Then, it is easy to see that, as the segments become collinear, i.e., θ → 0, the optimal

result is to simply leave the Eulerian coordinate ub of the EIL node unchanged. We

have opted for this simple solution in practice. Furthermore, whenever a node changes

its status between two steps from EIL to EoL, we initialize its Lagrangian coordinates

according to the contact constraint (4.1). Energy and momentum discontinuities could

also be smoothed by making the transitions progressive within an interval of material

distance, but we found that this was not necessary in practice. All our simulations

were executed with no smoothing, yet there are no artifacts, despite the ubiquitous

node transitions.

4.3.2 Definition of Force Terms

In our simulations of rods, we consider internal forces that model the resistance of

rods to deformation, inter-rod forces that account for yarn-yarn contacts in yarn-level

cloth simulation, other external forces due to rod-rod contact between different layers

of cloth, or due to additional contacts, plus gravity and damping effects. We focus the

attention on internal forces and yarn-yarn contacts. Gravity, damping, and external

collisions are unaffected by our proposed discretization. In all cases, we follow the

definitions of force terms in previous yarn-level cloth models [Cirio et al., 2014, Cirio

et al., 2017].

Stretch and bending are defined using discrete strains, which yield strain energy

densities that are then integrated along yarn segments. The stretch energy is defined

in (4.2), and the bending energy is rewritten from [Cirio et al., 2014] as

Vb = kb
θ 2

∆u1 +∆u2
, (4.8)

where kb is the bending stiffness, θ is the angle between two segments, and ∆1 and

∆2 are the material lengths of the two segments.

As introduced in Section 4.2.3, the key to a robust formulation under degeneracies

is to avoid EIL nodes in the definition of stretch and bending energy terms. Then, on

each simulation step, and for each rod, we traverse the sequence of sorted nodes

{(ui,xi)}, and we define a stretch (resp. bending) energy term for every pair (resp.

triple) of consecutive EoL nodes.
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The inclusion of EIL nodes also requires the explicit addition of the constraint (4.1).

We enforce this constraint using a soft constraint with large stiffness (In our implemen-

tation, 1000× larger than the effective stretch stiffness ks
∆u of rest-shape rod segments).

Note that the constraint may be acting between two EIL nodes (one on each rod, if

both rods suffer a degeneracy close to their contact), or between an EIL node and

an EoL node. For EIL nodes, the force on the interpolated Lagrangian coordinates is

mapped to the actual free coordinates through the Jacobian of linear interpolation, as

discussed in Section 4.2.3. We have opted for stiff soft constraints because, in our ex-

perience, stiff zero-rest-length springs are comparatively less problematic than other

elastic terms. Note that the alternative of hard constraints would yield a complex

system of equations, combining Lagrange multipliers with implicit integration of stiff

stretch forces. Our constraints are similar to the soft bindings of [Sifakis et al., 2007],
but we set springs with EIL nodes, which are not fixed in the material domain, while

soft bindings set springs between particles and fixed points on a meshed object.

[Cirio et al., 2014] proposed to model friction for rod-rod contacts as a trivial

anchored spring on Eulerian coordinates. In our case, this force model can be adopted

with no changes, as both EoL and EIL nodes retain free Eulerian coordinates. The joint

effect of the contact constraint (4.1) and the friction force is actually the main reason

for sliding of contact points, and therefore for the change of the Eulerian coordinates

of rod nodes. Thanks to our proposed discretization, with free Eulerian coordinates at

EIL nodes, the dynamics of rods are correctly and robustly represented when sliding

contacts cross each other. Remeshing through naïve node collapse misses the required

free Eulerian coordinates, and does not allow correct sliding. Fig. 4.3 demonstrates

the validity of our friction model.

The simulation of cloth with yarn-level persistent contacts requires special force

terms that resist the deformation modes of yarn-yarn contact. These are, for example,

shear forces [Cirio et al., 2014] and, in the case of knits, wrapping forces [Cirio et al.,

2017]. These forces are defined on Lagrangian coordinates only, with no effect on

the material length of yarn segments; therefore, they do not induce robustness prob-

lems under degenerate discretizations. For EIL nodes, the force is mapped to the free

coordinates in the same way as for the contact constraint discussed above.

The last relevant force is the parallel-yarn contact force, designed by [Cirio et al.,

2014] to model the inability of some yarns to cross each other within fabric patterns.

In our setting, some rod nodes should receive parallel-yarn contact forces as well, but
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30°

𝜇 = 1 = tan 45°
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Figure 4.3: Validation of the friction model and sliding of two patches of cloth. All contacts
are handled implicitly using EoL and EIL nodes. The green patch is fixed, and the friction
coefficient with the yellow patch is µ = 1. The yellow patch remains still at inclines below
45 degrees, and slides at steeper inclines, as expected with Coulomb’s model.

others should not, to allow them to cross each other. We disable parallel-yarn contact

forces between a pair of nodes if (a) one of the nodes represents an external contact

(e.g., with another fabric), or (b) the two colliding yarns lie on different sides of the

rod and they do not bend around the rod. To test if a colliding yarn bends around

the rod, we compute a bending vector by averaging the direction vectors of the two

incident yarn segments, and we check if the dot product of this bending vector and

the contact normal is above a threshold (0.25 in our implementation).

4.3.3 Mixed Statics-Dynamics

Once that force terms are defined, we can also define inertial terms and derive the

equations of motion using the general Euler-Lagrange equations [Goldstein et al.,

2002], as done by [Sueda et al., 2011] for the original formulation of EoL rods. La-

grangian velocities along a rod are obtained by interpolating Lagrangian velocities of

EoL nodes, while EIL nodes are irrelevant in this regard. Since EIL nodes do not affect

Lagrangian velocities, they do not affect kinetic energy either. As a corollary, EIL nodes

do not carry inertial terms, i.e., they can be considered massless, and then their coor-

dinates are defined through static equilibrium. Therefore, to obtain the kinetic energy

of each rod, we traverse the sequence of sorted points {(ui,xi)}, and we sum a kinetic

energy term for each pair of consecutive EoL nodes. For details on the computation of

the kinetic energy term of a rod segment and the associated mass submatrix, we refer

the reader to [Cirio et al., 2014].
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The combined Lagrangian and Eulerian coordinates of the simulation scene form

a set of reduced coordinates. We split this set into two: q are the coordinates of EoL

nodes, and qeil are the (Eulerian only) coordinates of EIL nodes. We denote as V the

total potential energy of the simulation scene, and as M the mass matrix of EoL nodes.

Note that all mass terms of EIL coordinates qeil are null. Despite these null terms, the

equations of motion can be derived using the general Euler-Lagrange equations. They

result in:

M q̇+∇qV =M q̇+ f (q,qeil) = 0; dynamic (4.9)

∇qeil
V = feil (q,qeil) = 0; static (4.10)

The vector f (resp. feil) represents the forces on EoL nodes (resp. EIL nodes). As

denoted in the equations, there are two distinct sets. EoL nodes are governed by dy-

namics, while EIL nodes are governed by static equilibrium. Despite this apparent

difference, we can safely solve all equations together. We apply implicit Euler integra-

tion to the dynamics equations on EoL nodes, and we solve the combined system of

equations using Newton’s method. We do not resize the system matrix when nodes

transition to/from EIL. Instead, we just cancel the matrix rows and columns of the

Lagrangian coordinates of EIL nodes.

4.4 Results

Implementation Details

We have applied our rod simulation method to yarn-level cloth. To this end, we have

adapted the GPU solver proposed by [Cirio et al., 2014] to handle dynamic rod dis-

cretizations. On every simulation step, we first execute the node sorting and assign-

ment operations of Section 4.3.1, in parallel over all rods. These operations have neg-

ligible cost compared to the actual solver. Next, we execute force computations and

Jacobian evaluations, parallelized at node level. Note that forces can be referenced

to nodes thanks to the linear structure of rods, hence force stencils can be defined

implicitly from the node ordering and rod-rod contacts.
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Case Lagrangian
EoL

Intra-Fabric
EoL

Inter-Fabric (max) EIL (max) Default step
Sim cost

(secs/step)

Tablecloth
(Figs. 4.1 and 4.8) 1 576 96290 132200 79 019 1 ms 15.9

Pocket
(Fig. 4.6) 2 484 398782 245024 45 742 1 ms 93.9

Tag
(Fig. 4.7) 1 010 68810 18356 4 563 2 ms 18.18

Knit 1
(Fig. 4.5-left) 184 75096 − 671 0.5 ms 17.33

Knit 2
(Fig. 4.5-right) 208 55520 − 602 0.5 ms 15.53

Table 4.1: Simulation size and performance for the main examples presented in this thesis. The
columns indicate, for each scene: the number of pure Lagrangian nodes (i.e., rod endings), the
intra-fabric EoL nodes due to yarn-yarn contacts within a pattern, the maximum inter-fabric
EoL nodes to satisfy implicit sliding contact between patches, and the maximum simultaneous
EIL nodes to correctly handle discretization degeneracies. The last two columns show the
default time step and the average simulation cost per time step.

For collision detection, we use a sphere packing approach for cloth-cloth collisions

and self-collisions, and distance fields for external objects. For non-persistent contacts,

we use stiff penalty potentials to resolve collisions.

To determine contacts that require EoL discretization, we combine two strategies.

For intra-fabric contacts, we simply use the initial topology of the weave or knit pat-

tern. For inter-fabric contacts, we select the contacts detected by the collision detection

step. In our examples, we do this at initialization, as the various layers remain in a

stacked configuration once initialized. We did not support dynamic addition of EoL

contact nodes, as in the examples the cost of collision handling of dynamic contacts

was negligible. We did support, however, removal of contact nodes. One obvious rea-

son for removal is that the Eulerian coordinate of a node indicates that it has exit the

length of the rod; another reason is that the normal force between two constrained

EoL nodes pulls them together instead of pushing, as discussed in [Cirio et al., 2014].

Performance

Our simulation examples have been executed on an Intel Core i7-7700K 4-core 4.20

GHz PC with 32 GB of RAM and a Nvidia GeForce GTX 1080 Ti GPU with 11 GB of

VRAM.
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Figure 4.4: Four different knit patterns with slip-stitches, where yarn-yarn contacts slide over
each other. These examples could not be handled by previous EoL yarn-level methods, and had
to resort to purely Lagrangian methods with explicit contact handling. The left column shows
the initial configuration for loose knit structures, the middle column the relaxed configuration
after simulation of these loose knit structures, and the right column the relaxed configuration
after simulation of tight knit structures. The three top-most examples are custom structures
inspired by those of [Leaf et al., 2018], and the bottom-most example is a jacquard structure.

In Table 4.1 we show the simulation complexity of the examples shown in this

thesis. We classify different types of nodes: fully Lagrangian nodes at rod endings,

intra-fabric EoL nodes that represent persistent contacts in the topology of the pattern,

maximum number of EoL nodes due to inter-fabric contact, and maximum number of

simultaneous EIL nodes at any time in the simulation. All simulations run robustly de-
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spite the large number of simultaneous EIL nodes, which is an indicator of the number

of degenerate rod segments in the scene.

Table 4.1 also shows the simulation cost for each example, measured in seconds per

time step. The default time step ranged from 0.5 ms to 2 ms. We have used adaptive

time-stepping to reduce the time step if the Newton solver exhibits bad convergence.

The examples occasionally reduce the time step, but they use the default value in the

large majority of steps.

Complex Knits

Earlier yarn-level simulation methods assumed a fixed topology of the pattern mesh.

This is sufficient for single-layer wovens or simple knits made of knit or purl stitches.

However, in multi-layer wovens or complex knits with cables or slip stitches, slid-

ing contacts often sandwich yarns and cross each other. Our rod simulation method

enables robust handling of these structures through an efficient EoL approach. In par-

ticular, we have tested slip-stitch knit patterns where the slipped yarns can slide when

the fabric gets deformed. In Fig. 4.4 we show the relaxation of four different patterns:

three custom structures inspired by examples of [Leaf et al., 2018], and one jacquard

structure. We have tested the four patterns under loose knitting, but also under tight

knitting, which produces more complex contact configurations. Both settings are han-

dled robustly.

We program the initial topology of knit patterns using a regular grid of instructions,

and we tune the rest-length of slipped yarns to obtain relaxed patterns with different

aesthetics. This approach is equivalent to the one followed by [Leaf et al., 2018]. for

pattern design. However, with our EoL discretization, we also enable scalable draping

of large-scale complex knits. In such case, purely Lagrangian yarn-level models can

obviously not exploit patch periodicity, as done by [Leaf et al., 2018] Fig. 4.5 shows

two large cloth patches draped on a sphere. These patches are stitched using two of

the patterns in Fig. 4.4. The simulations consist of 55K and 75K nodes, with average

inter-stitch distances of just 0.8 mm.
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Figure 4.5: Two large knit patches draped on a sphere. The knit patterns are drawn from
the examples in Fig. 4.4, and applied to larger patches. Thanks to our EoL formulation, the
simulation of these complex knits scales to large sizes without compromising robustness.

Multiple Layers of Yarn-Level Cloth

Cloth often appears stacked in layers, either different garments on top of each other,

or panels of the same garment stitched together. When contact between the layers

persists over time, even if the layers slide relative to each other, the EoL approach offers

an attractive way to simulate cloth deformation without explicit contact handling. We

have evaluated the performance of our method when applied to the simulation of

multiple layers of yarn-level cloth. The rods of the various layers pile up in complex

contact arrangements, and require constant updates to the discretization to correctly

handle the pervasive degeneracies.

Fig. 4.6 shows snapshots of a simulation of a jeans back pocket. The scene consists

of two layers of twill denim fabric, stitched on the sides and at the bottom. The fabric is

modeled at the yarn-level at a realistic resolution, with 44 yarns per inch. This yields

a total of 645K nodes. We pull the pocket from the top and the bottom, inducing

sliding of the two layers. When the tension grows, the lateral compression produces

fine wrinkles that conform to the two layers of fabric.

Fig. 4.7 shows snapshots of a simulations of a shirt neck tag. The tag is stitched

to the underlying shirt fabric on the sides. It is roughly 5 times stiffer than the shirt;

therefore, when we pull from the fabric of the shirt, the deformation suffers a dis-
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Figure 4.6: Snapshots of a simulation of a jeans back pocket. The scene consists of two layers
of yarn-level twill denim fabric, stitched on the sides and at the bottom. We pull from the
top and the bottom, inducing sliding of the two layers, as well as wrinkles influenced by the
combined material. The full simulation is resolved with implicit contact handling in our EoL
formulation, and it has over 645K nodes. When the layers slide, the two groups of sliding
warp and weft yarns induce pervasive degeneracies in the discretization. The rightmost image
shows the soup of nodes at the top of the pocket, with EIL nodes in red.

continuity at the boundary of the tag. The snapshots show horizontal stretch, vertical

stretch, shear followed by vertical stretch in the middle, and vertical stretch in the

middle followed by horizontal compression of the tag. Notice in the second and third

snapshots visible sliding of the two layers, and in the first and third snapshots wrinkles

next to the boundary of the tag due to the differences in material combined with slid-

ing. The last snapshot also shows the tag separating as it buckles. In this last snapshot,

the simulation begins by stretching the underlying cloth, and the EoL representation

resolves the sliding motion of the two layers without the need for explicit contact han-

dling. Then, we compress the tag, which buckles and produces sticking forces at EoL
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contacts. We trigger automatically the removal of EoL contact constraints, allowing

the tag to separate.

Fig. 4.1 and Fig. 4.8 show two simulations of stacked tablecloth layers with dif-

ferent friction properties. The tablecloths are modeled as thick-yarn plain weaves,

with an inter-yarn separation of 5.6 mm, and yarn radius of 2.25 mm. In this scene,

we also added EoL nodes at the edge of the table, to enable smooth sliding on sharp

features. As described by [Weidner et al., 2018], the tablecloths suffer energy discon-

tinuities or even get stuck if we do not do so. With three stacked layers, the number

of simultaneous EIL nodes can be as high as 34% of the total nodes. The figures also

show close-ups of the discretizations at particular instants in time. Despite continuous

sliding and changes to the discretization, our simulation method handles contact and

friction correctly. Note that friction is controlled simply through the Coulomb coeffi-

Figure 4.7: Snapshots of simulations of a shirt neck tag. The tag is roughly 5 times stiffer
than the shirt, and is stitched on the sides. We apply different deformations to the underlying
shirt fabric, from left to right: horizontal stretch, vertical stretch, shear followed by vertical
stretch in the middle, and vertical stretch in the middle followed by horizontal compression
of the tag. The difference in stiffness induces sliding of the layers, as well as wrinkling at the
interface (see first and third snapshots). The last example shows the separation of the tag as
it buckles. We trigger the separation of EoL contacts automatically by checking the sign of the
normal force.
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Figure 4.8: Similar scenes to the one in Fig. 4.1, but with no friction between the tablecloths,
and in two different arrangements. Two left-most images: aligned tablecloths. Two right-most
images: tablecloths at an angle. Despite continuous sliding and changes to the discretization,
the green tablecloth remains perfectly on the table. Sliding is smooth and robust both when
the tablecloths are aligned or at an angle. In the left scene, the number of simultaneous EIL
nodes can be as high as 34% of the total nodes.

cient of the Eulerian anchor force (see Section 4.3.2 and [Cirio et al., 2014]). In the

frictionless case shown in Fig. 4.8, the green tablecloth remains perfectly on the table.

4.5 Conclusions

In this work, we have extended EoL rod simulation to handle robustly complex con-

tact arrangements with multiple stacked rods, and sliding and crossing contacts. As

shown in our experiments, these conditions appear in diverse practical scenarios, in-

cluding the simulation of complex knits, and contact between multiple layers of cloth.

Our solution handles ubiquitous discretization degeneracies in a simple and elegant

manner, and its implementation brings only small changes to previous methods.

In the development of our method and implementation, we have identified sev-

eral limitations as well as opportunities for further investigation. As discussed in Sec-
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tion 4.3.1, switching node assignments to and from EoL and EIL introduces disconti-

nuities in energy and momentum. These discontinuities did not turn into artifacts in

our examples, but perhaps they affected mildly the convergence of the Newton solve.

Smoothing these discontinuities is possible, by locally optimizing the Lagrangian and

Eulerian coordinates of switching nodes, or by making node transitions progressive.

In the examples, we did not implement dynamic addition of EoL nodes. It is not

evident when this could turn beneficial or not. It would be necessary to design some

metric that compares simulation accuracy and/or robustness with or without the ad-

dition of EoL nodes at contacts, and then use this metric to guide the addition of new

EoL nodes.

The contact constraint of EoL and/or EIL nodes ignores the thickness of rods. How-

ever, this thickness should be accounted for in the computation of bending forces. We

currently add the thickness as postprocessing for rendering, and the same procedure

could be followed at runtime for force computation.

Our knit relaxation examples demonstrate the ability of EoL methods to support

complex and tight knits with yarn sliding. However, some cases may be difficult to

handle due dynamic creation of contacts. In such cases, one could use a purely La-

grangian method as in [Leaf et al., 2018] for the initial relaxation of the yarn structure,

followed by our EoL method for dynamic simulation of larger patches or garments.

We have demonstrated our solution on patches of cloth simulated fully at yarn

level. Such full yarn-level detail appears particularly relevant in our complex knit

examples, to correctly capture sliding of slip-stitches. However, in other examples

the simulation cost could be reduced drastically by considering yarn-level detail only

when and where necessary.

To conclude, we think it is worth to explore the main ideas of our work beyond

rods, for EoL formulations on other domains, such as thin-shell cloth [Weidner et al.,

2018]. A key insight of our method is to avoid remeshing, and turn EoL nodes into

EIL nodes when the discretization becomes degenerate. The extension of EIL nodes to

other domains may be simple, but our node assignment algorithm is tied to the linear

domain of rods.
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Chapter 5

Conclusions

This chapter concludes the discussion of the presented works by providing general

conclusions of the proposed ideas, potential applications and future strategies.

5.1 General Conclusions

This thesis aims to take further steps towards the realization of high-fidelity fabric

simulation through the study of two fundamental aspects of cloth: the analysis of dis-

sipative properties and their influence on the fabric’s global behavior, and the efficient

representation of complex knits and multiple fabrics in contact.

On one hand, we have found that dissipative properties are fundamental for char-

acterizing high-fidelity textiles, yet the literature has usually overlooked this aspect. A

major challenge in this regard lies in finding a simple and accurate model, capable of

independently controlling the dissipative behavior of the different deformation modes

of the fabric. We address this challenge in Chapter 3, where we provide the details

of a framework for the design of damping forces using dissipation potentials. We an-

alyze its application to different deformation models and demonstrate its advantages

over traditional approaches. Even though the proposed framework does not directly

address the subject of accuracy, it provides the basis for the definition of the concept

of good damping and the means to design a dissipative model by analogy to elastic

potentials while guaranteeing the controllability criterion we established.

On the other hand, we found an interesting research avenue in the management

of contact between multiple layers of cloth, as it has been an open problem for many

73
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years, fraught with technical challenges. Previous methods presented in the litera-

ture are often complex and computationally challenging, especially when considering

the large amount of degrees of freedom necessary for the simulation of full-scale gar-

ments. The work we present in Chapter 4 addresses this challenge by introducing a

highly efficient method for the simulation of complex rod assemblies and stacked lay-

ers of cloth. For this purpose, we take the fundamentals of persistent contact between

yarns proposed by [Cirio et al., 2014] and modify the discretization as appropriate to

enable sliding motion between different layers while avoiding instabilities caused by

degenerate configurations.

The following sections will discuss the contributions of both techniques, highlight-

ing the strengths of our methodology, their limitations, and potential paths for further

research.

5.2 Strain Rate Dissipation for Elastic Deformations

The framework we presented enables the design of damping models by relying on

the concept of dissipation potentials from classical mechanics. The proposed formula-

tion, based on strain rate, achieves controllable damping for the different deformation

modes, leaving other motions unaffected. Moreover, the analogy of the formulation

with the design of elastic potentials, simplifies and generalizes our solution, reinforc-

ing the concept of good damping. The proposed method has been successfully applied

on two different deformation models, StVK hyperelasticity and yarn-level cloth with

sliding persistent contacts. Furthermore, we demonstrate its advantages with respect

to the classical Rayleigh model, concluding that the latter model does not satisfy our

good damping criterion. However, it also suffers from some limitations:

Since strain rate is tightly coupled to the choice of strain, the designed damping

model may inherit the same limitations of the elastic deformation model. Although

constraining the damping forces to the direction of the strain gradient enables decou-

pling dissipative behavior across the different deformation modes, it also constitutes a

limitation on itself. Our model needs to be complemented with other damping forces

if modeling dissipation in the null-space of the strain gradient is required.

Our work also opens interesting avenues for future work. Damping models based

on strain rate dissipation potentials set a solid framework for the design of dissipa-
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tive behavior in the same way that energy-based elastic models set a solid framework

for the design of elastic behavior. Moreover, the proposed model could be used as

an integral building block of measurement-based damping estimation or artist-driven

damping design.

Finally, posing dynamics as an optimization problem unlocks a wide range of high

performance numerical solvers. However, formulating non-conservative effects such

as damping into optimization form is challenging. Recent works [Brown et al., 2018]
found success in the use of a specific form of dissipative potentials that is amenable to

optimization-based integrators. Exploring the incorporation of the proposed frame-

work into such schemes could be another interesting avenue for future work.

5.3 Robust Eulerian-On-Lagrangian Rods

We introduced a method to simulate complex rod assemblies and stacked layers of

cloth with implicit contact handling using Eulerian-on-Lagrangian discretizations. Our

method is simple, efficient and insensitive to degenerate elements without relying

on the use of remeshing techniques. The mixed Eulerian-Lagrangian discretization

we propose allows us to represent stacks of yarns sandwiched with nodes constantly

sliding and crossing each other in the material domain.

Additionally, we provide the practical details essential to carry out an efficient

implementation of the method. Along with the description of our EoL and EIL node

selection strategy, we provide a simple and elegant algorithm for solving the resulting

equations of motion based on a unified solver for dynamic and static equations.

We demonstrate the strengths of our approach through the simulation of multiple

layers of cloth in contact sliding one over each other, as well as complex knit relax-

ations with tight knits that exhibit a large yarn sliding. Such scenarios are frequently

encountered in high-performance clothing such as sportswear, where multiple layers

of fabric are layered in tight configurations to imbue the garment with certain protec-

tion, comfort or thermal properties.

Nonetheless, during the development of our method, we have identified several

limitations as well as opportunities for further research.

First, switching node assignments to and from EoL and EIL introduces disconti-

nuities in energy and momentum. While they did not turn into artifacts in our ex-
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periments, they have the potential of affecting the convergence of the Newton solve.

Smoothing these discontinuities, either through the optimization of the switching de-

grees of freedom or through the introduction of progressive transitions, could alleviate

this problem.

Moreover, our implementation does not support the dynamic addition of EoL nodes.

This limitation makes it difficult to represent certain scenarios, such as separated fab-

ric layers coming into contact and complex knit patterns whose relaxation could lead

to the appearance of new contacts. The latter scenario could be handled by following

a similar approach to [Leaf et al., 2018] by precomputing the relaxed configuration

of a smaller portion of the fabric using a purely Lagrangian technique. The resulting

configuration could then be used as a starting point for our EoL method for simulating

the dynamics of the garment at full scale.

In cases when dynamic addition of EoL nodes is required, it is not evident when

the generation of these new nodes could become beneficial. It would be necessary

to design some metric that compares simulation accuracy and/or robustness with or

without the addition of EoL nodes at contacts, and then use this metric to guide the

addition of new EoL nodes. In any case, allowing the dynamic generation of EoL nodes

requires the addition of an explicit collision detection algorithm, which may limit the

computational efficiency advantages offered by our method. Exploring strategies to

reduce detection costs, e.g. by adopting an algorithm similar to the Air Meshes method

proposed by [Müller et al., 2015] for near-contact regions could, be an interesting line

of future research.

A key insight of our method is to avoid remeshing, and turn EoL nodes into EIL

nodes when the discretization becomes degenerate. We believe this strategy could

find application in other domains beyond rods, such as thin-shell cloth [Weidner et al.,

2018]. However, this scenario poses several challenges. To begin, our selection criteria

for EIL nodes is tied to one-dimensional domains, such as rods. The transition to 2D

manifolds significantly complicates the selection heuristic, and may even require the

use of remeshing techniques. Furthermore, the regions shared across the different

layers in material space must be treated with care to avoid locking artifacts while

ensuring that optimal mesh properties are preserved.
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5.4 Final remarks

Overall, we believe that the two approaches proposed in this thesis constitute a mile-

stone towards building the foundations of high-fidelity textile simulation. Our contri-

butions reach beyond academia, with some of the proposed solutions being adopted

for production in the industry. An example of this is SEDDI, a young company that

is widely regarded as a world-class leader in pioneering the digitalization of fashion.

Recently, SEDDI adopted the dissipative model proposed in Chapter 3 for its inter-

nal simulation pipeline, recognizing its robustness and controllability as a qualitative

jump over previously implemented solutions.

We acknowledge that there is still a long way to go to achieve the ambitious goal

of high-fidelity approaches. However, the rapid evolution of the simulation meth-

ods, the ever-increasing computational prowess of current hardware platforms and

the emergence of new technologies such as deep learning, that solve complex prob-

lems previously thought to be impossible; allow us to be optimistic about the future

of digitalization in the fashion industry.
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Appendix A

Resumen

Los textiles están siempre presentes en nuestra vida diaria, siendo la industria textil y

de la moda uno de los principales motores de la economía mundial. No obstante, a pe-

sar de los avances tecnológicos, esta industria se resiste a la irrupción de los procesos

de diseño digital. La razón radica en que los modelos computacionales existentes de-

sarrollados en el ámbito de la ingeniería, aunque precisos, no satisfacen los requisitos

de rendimiento compatibles con los procesos industriales.

Recientemente, los avances en los métodos de simulación para la informática grá-

fica han dado lugar al desarrollo de soluciones de alto rendimiento para simular teji-

dos a nivel de hilo que reducen la brecha de precisión con los enfoques de ingeniería.

Aunque las tendencias actuales apuntan a la aparición en un futuro próximo de mod-

elos de alta fidelidad que satisfagan los requisitos para la creación de prototipos digi-

tales predictivos, hoy en día siguen existiendo retos abiertos que limitan la consecución

de este objetivo.

En esta tesis abordamos algunos de estos retos y contribuimos hacia la creación

de modelos de simulación de alta fidelidad. Para ello, nos enfocamos en dos aspectos

relevantes para la caracterización y el comportamiento de la tela. El modelado del

comportamiento disipativo y la simulación de prendas multicapa (Fig. A.1).

En este capítulo proporcionamos un resumen del desarrollo de esta tesis a lo largo

de las diferentes secciones: antecedentes, objetivos, metodología, resultados y con-

clusiones.
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92 A.1. Antecedentes

Figure A.1: En esta tesis nos enfocamos en dos aspectos relevantes para la caracterización y
el comportamiento de la tela: el modelado del comportamiento disipativo y la simulación de
prendas multicapa.

A.1 Antecedentes

La creación de modelos de alta fidelidad capaces de reproducir las complejas propiedades

mecánicas de los tejidos, sigue siendo el pilar fundamental de la simulación de telas.

Sin embargo, las aplicaciones gráficas requieren un delicado equilibrio entre el coste

computacional y la precisión para que estos enfoques sean prácticos.

Simulación de Telas

Los numerosos y complejos retos que surgen en la simulación de telas hacen que sea

un reto difícil. Por un lado, la representación mecánica de la tela debe ser lo suficien-

temente precisa como para capturar las no linealidades y las grandes deformaciones

inherentes a la misma. Por otro lado, las interacciones entre las telas y los materi-

ales rígidos y deformables, así como las autocolisiones, deben tratarse con eficacia y

precisión para evitar la aparición de artefactos en la simulación.

Durante décadas, la aproximación más destacada ha sido el uso de modelos de

estructura laminar (thin-shell). Sin embargo, estos modelos tienen dificultades para

captar los efectos macroscópicos que surgen de las sutiles interacciones que se pro-

ducen a nivel del hilo (por debajo de la escala milimétrica) y que son fundamentales

para una caracterización de alta fidelidad.
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[Kaldor et al., 2008] fue pionero en la simulación de grandes piezas de tela a nivel

de hilo para la informática gráfica. En su trabajo, la mecánica de cada hilo individual

es capturada a través de un modelo de varilla inextensible (inextensible rod) utilizando

un sistema de gestión de contactos explícito. No obstante, la gran cantidad de hilos

presentes en una prenda real hace que su coste computacional sea poco abarcable.

Pocos años después, [Cirio et al., 2014], mejoró su eficiencia considerando el contacto

entre hilos como persistente, consiguiendo una sustancial mejora computacional a

costa de limitar el rango de posibles estructuras que es capaz de representar.

Ambos trabajos suponen un hito en el desarrollo de la simulación de telas de alta

fidelidad. No obstante, y a pesar de estos notables avances, estos métodos todavía

están lejos de los niveles de precisión y eficiencia requeridos para ser considerados de

alta fidelidad, quedando todavía muchos retos por resolver.

Fenómenos Disipativos

Entre los diferentes retos, se encuentra el modelado de las propiedades disipativas

de los tejidos, que, por desgracia, ha sido uno de los aspectos más desatendidos en

la literatura. La amortiguación de la energía de un sistema puede producirse por

diversos motivos: por contacto, fricción o por la propia resistencia de la materia. Sin

embargo, a pesar de la gran cantidad de literatura sobre el tema, todavía no se conocen

bien ni los mecanismos ni las variables de estado relevantes que lo originan. Por ello,

muchos trabajos en el área de la informática gráfica se limitan a recurrir a modelos de

amortiguación lineales o se centran en mitigar la disipación inducida por la integración

numérica [Barbič and James, 2005, Gast et al., 2015, Cirio et al., 2014].

Entre los trabajos que emplean modelos de amortiguación lineales, el modelo de

amortiguamiento de [Rayleigh, 1896] es probablemente el más antiguo, pero sigue

siendo el más utilizado. Si bien este modelo destaca por su simplicidad y facilidad de

implementación, las fuerzas disipativas que produce afectan indiscriminadamente a

la dinámica global del objeto, dando lugar a una amortiguación excesiva del sistema.

Por desgracia, su simplicidad ha hecho que muchos trabajos en gráficos implementen

este modelo [Grinspun et al., 2003, Cirio et al., 2014, Gast et al., 2015, Xu and Bar-

bič, 2017, Li et al., 2018]. Como alternativa, [Baraff and Witkin, 1998] describió un

método para la amortiguación que evita la disipación innecesaria en la energía cinética

total del sistema. Si bien este trabajo ha inspirado a trabajos posteriores [Bender and
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Deul, 2013, Oh et al., 2006], su derivación no se rige por fundamentos de mecánica

del continuo, lo que dificulta su aplicación a formulaciones más generales.

Prendas Multicapa

Muchas prendas cotidianas suelen estar compuestas por varias capas de tela en con-

tacto: volantes, bolsillos, bordados, etc. Las propiedades visuales y mecánicas que

presentan, las hacen muy distintivas y deseables para una gran variedad de aplica-

ciones, desde la moda hasta la creación de prendas y tejidos funcionales.

No obstante, el tratamiento de los contactos sigue siendo otro de los grandes re-

tos sin resolver. Si bien los algoritmos de detección y resolución de colisiones han

evolucionado hasta ofrecer soluciones robustas a las intrincadas configuraciones que

suelen aparecer en las telas [Bridson et al., 2002, Bridson et al., 2003, Tang et al.,

2012, Müller et al., 2015], éstos suponen todavía un gran reto computacional. Al-

gunos trabajos como los de [Sueda et al., 2011], [Cirio et al., 2014] y [Weidner et al.,

2018] identifican soluciones parciales de mayor eficiencia computacional a costa de

limitar su alcance a problemas más específicos. Sin embargo, no existen modelos que

proporcionen una gestión eficiente de los contactos entre múltiples capas que además

permitan la posibilidad de que deslicen entre sí.

A.2 Objetivos

El objetivo general de esta tesis es el estudio y diseño de soluciones eficaces que per-

mitan superar algunos de los actuales límites del estado del arte, acercando así el

objetivo final de la creación de modelos de simulación de tejido de alta fidelidad.

Para ello, nos centramos en dos retos de gran interés y que tienen un impacto di-

recto en la consecución de dicho objetivo: el modelado del comportamiento disipativo

de la tela, y la gestión de contacto multicapa.

Modelado del Comportamiento Disipativo

Lograr una simulación precisa de la tela requiere encontrar modelos que permitan

describir de forma controlable el comportamiento disipativo de los diferentes modos
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de deformación. La solución alcanzada debe garantizar el desacoplamiento entre mo-

dos y reducir lo máximo posible la disipación indiscriminada de la energía cinética.

Además de esto, el método debe ser versátil y robusto, permitiendo una correcta apli-

cación a diferentes formulaciones.

Gestión de Contacto Multicapa

La gestión de lo contactos supone uno de los principales cuellos de botella en los méto-

dos de simulación de tela. El método propuesto deberá conseguir reducir de forma

efectiva el coste computacional asociado a la resolución de contactos entre múltiples

capas. Además de esto, se deberá hacer especial enfásis en su robustez, manteniendo

la estabilidad de la simulación incluso ante la presencia de grandes deslizamientos

entre las diferentes capas.

A.3 Metodología

Para la realización de esta tesis, hemos seguido la siguiente metodología:

Revisión Bibliográfica

En el Capítulo 2 de esta tesis se recoge un exhaustivo análisis del estado del arte en

simulación de telas, en concreto de aquellos trabajos que están más relacionados con

los objetivos que abordamos en esta tesis. Comenzamos con la identificación de los

diferentes retos y oportunidades, realizando un estudio general de las diferentes ver-

tientes que atañen a la simulación de telas. Tras esto, nos centramos en estudiar detal-

ladamente los trabajos previos que han abordado el modelado disipativo, analizando

sus ventajas e inconvenientes, así como aquellos trabajos que proponen modelos para

la gestión de contactos entre múltiples capas de tejido.

Estudio y Diseño de un Modelo Disipativo Controlable

Tras el análisis del estado del arte, pasamos a abordar el primero de los retos iden-

tificados: el modelado del comportamiento disipativo de la tela. En el Capítulo 3
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Figure A.2: Ejemplo de aplicación de nuestro método de disipación al modelo hiperelástico de
Saint Venant-Knirchhoff (StVK)

proponemos un marco para el diseño de fuerzas de amortiguación basado en poten-

ciales de disipación formulados como funciones de la tasa de deformación. Para su

desarrollo estudiamos los fundamentos relacionados de la mecánica clásica, derivando

así la formulación que finalmente daría lugar a nuestro trabajo. Tras esto, estudiamos

su posible aplicación a modelos de deformación continua y discreta, sus implicaciones

prácticas y sus ventajas sobre los modelos de disipación comúnmente adoptados. Estos

estudios se materializaron en la aplicación de nuestro método a dos modelos de defor-

mación muy diferentes, la hiperelasticidad de Saint Venant-Kirchhoff (StVK) (Fig. A.2)

y las telas a nivel de hilo con contactos persistentes deslizantes.

Estudio y Diseño de un Modelo de Simulación Multicapa

Asimismo, en el Capítulo 4 abordamos el reto de la representación de tejidos multi-

capa, introduciendo un método robusto para la simulación de ensamblajes complejos

de varillas y capas deslizantes apiladas con gestión implícita de los contactos. Para su

desarrollo partimos del trabajo de [Cirio et al., 2017], el cual no es capaz de manejar

de forma robusta estas situaciones debido a la aparición de degeneraciones intrínse-

cas (Fig. A.3). Para solventar este problema, formulamos y prototipamos diferentes

variantes de la discretización y de la formulación energética empleada en el trabajo de
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Figure A.3: Ejemplo de aplicación de nuestro método para la simulación de tejidos de punto
de gran complejidad. En este caso aplicado a una estructura de tipo jacquard. La imagen de
la izquierda muestra la configuración inicial, mientras que la imagen de la derecha muestra
el estado relajado. Durante el proceso de relajación, los hilos han deslizado dando lugar a
diversas configuraciones degeneradas que nuestro modelo es capaz de resolver de manera
robusta.

Cirio et al., analizando su efectividad y robustez sobre casos de ejemplo. La solución

que alcanzamos es sencilla y elegante, produciendo simulaciones robustas incluso en

escenarios a gran escala con degeneraciones generalizadas. Tras esto, estudiamos sus

implicaciones prácticas, llevando a cabo una implementación capaz de simular telas

de alta resolución de forma eficiente con el fin de poder demostrar el rango de aplica-

ciones del modelo.

A.4 Resultados

Las contribuciones principales de esta tesis pueden ser resumidas de la siguiente forma:

• En el Capítulo 3 introducimos un marco para el diseño de modelos de amor-

tiguación basado en potenciales de disipación formulados como funciones de la

tasa de deformación. Nuestro modelo de amortiguación se basa en el concepto

de potenciales de disipación de la mecánica clásica. Este enfoque es paralelo

al diseño de los modelos de deformación elástica basados en formulaciones en-

ergéticas y simplifica la aplicación de lo que denominamos condiciones de amor-
tiguación correcta. Este marco también nos ayuda a demostrar por qué el clásico

modelo de amortiguamiento de Rayleigh falla para los modelos de deformación

no lineales.
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• En el Capítulo 3 también analizamos en detalle la aplicación de potenciales de

disipación a dos modelos de deformación muy diferentes: El modelo de hipere-

lasticidad de Saint-Venant Kirchhoff (StVK) y el modelo de simulación de tela a

nivel de hilo con contactos persistentes deslizantes. Estos modelos de deforma-

ción representan el rango de aplicabilidad de nuestro modelo de amortiguación.

• En el Capítulo 4 introducimos un método para simular configuraciones com-

plejas de varillas y capas apiladas de tela haciendo una gestión implícita de los

contactos mediante discretizaciones Eulerian-on-Lagrangian (EoL). Los métodos

EoL anteriores no son capaces de manejar estas configuraciones complejas, de-

bido a la aparición de degeneraciones ubicuas e intrínsecas en la geometría de

los contactos que impiden el uso de técnicas de remallado y hacen que las sim-

ulaciones se tornen inestables. Proponemos una nueva discretización mixta que

permite modelar el contacto de forma tan precisa y eficiente como en los méto-

dos EoL, pero que además es transparente a las fuerzas internas de las varillas,

y por tanto insensible a las degeneraciones.

• En el Capítulo 4 combinamos nuestra discretización novedosa con la discretización

estándar EoL según convenga, derivando ecuaciones de movimiento mixtas estático-

dinámicas que pueden resolverse de forma unificada con métodos de resolución

estándar. Nuestra solución es sencilla y elegante en la práctica, produciendo

simulaciones robustas en escenarios a gran escala con disposiciones complejas y

degeneraciones generalizadas. En nuestros resultados, mostramos la aplicación

de nuestra solución a simulaciones desafiantes de telas a nivel de hilo. Ampli-

amos la potencia de los métodos EoL a las capas apiladas de tejidos, gestionando

de forma implícita los contactos intra e inter tejido.

Los resultados de las contribuciones de esta tesis se encuentran compilados en los

siguientes trabajos

• Capítulo 3: "Dissipation Potentials for Yarn-Level Cloth" - Rosa M. Sánchez-

Banderas and Miguel A. Otaduy - CEIG, 11-18 [Sánchez-Banderas and Otaduy,

2017].

• Capítulo 3: "Strain Rate Dissipation for Elastic Deformations" - Rosa M. Sánchez-

Banderas and Miguel A. Otaduy - Computer Graphics Forum 37 (8), 161-170.
[Sánchez-Banderas and Otaduy, 2018].



Chapter A Resumen 99

• Capítulo 4: "Robust eulerian-on-lagrangian rods" - Rosa M. Sánchez-Banderas,

Alejandro Rodríguez, Héctor Barreiro and Miguel A. Otaduy - ACM Transactions
on Graphics (TOG) 39 (4), 59: 1-59: 10. [Sánchez-Banderas et al., 2020].

A.5 Conclusiones

En el Capítulo 5 presentamos las distintas conclusiones alcanzadas de los resultados

obtenidos en cada uno de los modelos propuestos en esta tesis, así como sus limita-

ciones y posibles líneas de investigación futuras.

Por un lado, proporcionamos los detalles de un marco para el diseño de las fuerzas

de amortiguación utilizando potenciales de disipación. Analizamos su aplicación a

diferentes modelos de deformación y demostramos sus ventajas sobre los enfoques

tradicionales. Aunque el marco propuesto no aborda directamente el tema de la pre-

cisión, proporciona los medios para diseñar un modelo disipativo garantizando el cri-

terio de controlabilidad que establecimos. No obstante, nuestro modelo requiere ser

complementado con otras fuerzas de amortiguación si se requiere modelar disipación

en el espacio nulo del gradiente de deformación. Además de esto, nuestro trabajo

también abre interesantes vías para trabajos futuros. El modelo propuesto podría uti-

lizarse como un bloque de construcción integral de la estimación de la amortiguación

basada en la medición o en criterios arísticos. Además, de forma similar a trabajos

recientes [Brown et al., 2018], el uso de potenciales disipativos podría permitir su

integración en esquemas de integración basados en optimización.

Por otro lado, introducimos un método para simular configuraciones complejas

de varillas y capas apiladas de tela con gestión implícita de los contactos. Nuestro

método es simple, eficiente e insensible a los elementos degenerados sin depender del

uso de técnicas de remallado. Proporcionamos los detalles prácticos esenciales para

llevar a cabo una implementación eficiente del método y demostramos sus fortalezas a

través de la simulación de casos complejos. No obstante, durante su desarrollo hemos

identificado varias limitaciones, así como oportunidades de investigación futura. La

transición entre discretizaciones introduce discontinuidades en la energía y el mo-

mento, que pese a no haberse manifestado como artefactos en nuestros experimentos,

tienen el potencial de afectar a la convergencia de la simulación. La introducción de

métodos para suavizar estas discontinuidades podría aliviar este problema. Por otro

lado, nuestra implementación no admite la adición dinámica de nodos EoL, lo que di-



100 A.5. Conclusiones

ficulta la representación de determinados casos en los que aparecen nuevos contactos.

En estos casos, no es evidente cuándo la generación de nuevos nodos podría resultar

beneficiosa. Además de ésto, la inclusión de un algoritmo explícito de detección de

colisiones podría limitar las ventajas de eficiencia computacional que ofrece nuestro

método. Explorar estrategias que reduzcan su impacto podría ser una interesante línea

de investigación futura.

En general, creemos que los dos enfoques propuestos en esta tesis constituyen

un hito hacia la construcción de las bases de la simulación textil de alta fidelidad.

Nuestras contribuciones van más allá del ámbito académico, ya que algunas de las

soluciones propuestas se están adoptando en la industria para su uso en producción.

Ejemplo de ello es la empresa SEDDI, la cual adoptó el modelo disipativo propuesto

en en el Capítulo 3 para su uso interno, reconociendo su robustez y controlabilidad

como un salto cualitativo sobre las soluciones implementadas anteriormente.


	Abstract
	List of Figures
	List of Tables
	Introduction
	Cloth Simulation in Computer Graphics
	Dissipative Phenomena
	Multilayered and Stacked Clothes
	Overview and Contributions
	Publications
	Outline

	Background
	Cloth Simulation
	Thin-Shell Models
	Rod-Based Models

	Dissipative Phenomena
	Viscous Damping
	Other Damping Sources

	Multilayered and Stacked Clothes
	Explicit Contact Handling
	Implicit Contact Handling


	Strain Rate Dissipation for Elastic Deformations
	Introduction
	Dissipation Potentials for Good Damping
	Good Damping
	Strain Rate Dissipation Potential
	Integration of Potential Densities
	Force Jacobians
	Damping Models in Computer Animation
	Experimental Analysis: Damping a Linear Spring

	Application to StVK Hyperelastic Model
	Application to Yarn-Level Cloth
	Forces and Their Jacobians
	Damping for Rod Bending

	Results
	Discussion and Future Work

	Robust Eulerian-On-Lagrangian Rods
	Introduction
	Eulerian-Lagrangian Rods
	Eulerian on Lagrangian Discretization
	Degeneracies and Instabilities
	Eulerian with Interpolated Lagrangian Discretization

	Robust Discrete Mechanics
	Node Assignments
	Definition of Force Terms
	Mixed Statics-Dynamics

	Results
	Conclusions

	Conclusions
	General Conclusions
	Strain Rate Dissipation for Elastic Deformations
	Robust Eulerian-On-Lagrangian Rods
	Final remarks

	Bibliography
	Resumen
	Antecedentes
	Objetivos
	Metodología
	Resultados
	Conclusiones


