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Abstract

In this thesis we will deal with ad-nilpotent elements in associative algebras and

superalgebras with involution and superinvolution, and ad-nilpotent elements in Lie

superalgebras. The first aim of this work fits with Herstein’s branch of theory that

studies nilpotent inner derivations in algebras. There are many studies on this area,

highlighting for our work the articles of W. S. Martindale and C. R. Miers [55], [56]

and T. K. Lee [54]. Later, in the second part, we study how to associate some Jordan

structures to a Lie superalgebra, motivated by the work of A. Fernández, E. Garćıa

and M. Gómez Lozano [24].

Objectives

Three objectives are addressed throughout this thesis. In the first instance, we seek to

describe in detail the ad-nilpotent elements in semiprime associative algebras with in-

volution. The second aim of this thesis is to carry over the descriptions of ad-nilpotent

elements in semiprime associative algebras to prime associative superalgebras, that

is, to give a detailed description of homogeneous ad-nilpotent elements belonging to

prime associative superalgebras. Finally, motivated by the work of A. Fernández, E.

Garćıa and M. Gómez Lozano in [24], to associate a Jordan superstructure to a Lie

superalgebra with an ad-nilpotent element of a certain index.

Methodology

To develop the first two goals we have worked within the framework of semiprime

algebras with involution and prime associative superalgebras with superinvolution.
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Moreover, the extended centroid will be an important tool in this thesis. For the

last objective, we have worked with nonassociative superstructures such as Lie and

Jordan superalgebras, defined by the Grassmann envelope, and Jordan superpairs.

We can highlight the high combinatorial content throughout the entire thesis.

Results

We have successfully covered the three initial goals. First, we have described in detail

ad-nilpotent elements belonging to a semiprime associative algebra. Moreover, we

have succeeded in reducing the torsion in the classification of ad-nilpotent elements

in semiprime associative algebras with involution due to the new concept of a pure

ad-nilpotent element, introduced in this thesis in Chapter 2. The conditions on the

scalar rings has been weakened to be free of
(
n
s

)
and s torsion with s := [n+1

2
] instead

of being free of n! torsion. On the other hand, for the skew-symmetric ad-nilpotent

elements of a semiprime associative algebra R with involution ∗, we have given a

description that depends on their ad-nilpotent index modulo 4. In this description

we can emphasize: If a skew-symmetric element a is ad-nilpotent such that its index

of ad-nilpotence of K := Skew(R, ∗) and R do not coincide, that is, adnaK = 0 but

adnaR 6= 0, (it can only occur for ad-nilpotent indices of K congruent to 0 or 3 modulo

4) then a certain corner of R satisfies a PI, hence R holds a GPI. These results have

been developed throughout Chapter 2 which have originated an article that has been

published in the journal Bulletin of the Malaysian Mathematical Sciences Society

([12]). The second aim, to describe in prime associative superalgebras with superin-

volution nilpotent inner derivations, has also been positively solved during Chapter

3. This description depends on the parity of the homogeneous element: if the element

is even, what has been developed in the previous chapter in algebra settings ([12]),

is largely rescued. However, if the element is odd, we have worked on its square,

which is an even ad-nilpotent element, and we have applied the descriptions for even

ad-nilpotent elements studied above. These results has been published in the journal

Linear and Multilinear Algebra ([28]). During Chapter 4, we have given examples

for each of the cases appearing in the descriptions of the elements in both algebras
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and superalgebras, thus showing that these descriptions are not trivial. Finally, in

Chapter 5, we have associated a Jordan superstructure to a Lie superalgebra L with a

homogeneous ad-nilpotent element a of index 3 or 4, according to its parity. Further-

more, the Jordan superpair we have constructed following the spirit of the paper of A.

Fernández, E. Garćıa and M. Gómez Lozano [24], coincides with the subquotient of

a Lie superalgebra associated with an abelian inner ideal [a, [a, L]]. This last chapter

has been published and can be consulted in the journal Communications in Algebra

([30]).
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Introduction

The main topic of this thesis is the study of ad-nilpotent elements belonging to Lie

algebras and superalgebras. This work could be splitted in two parts: the first part

sticks to the branch of Herstein’s theory which studies nilpotent inner derivations

in algebras; at the same time, this part can be splitted again into two, the study

of nilpotent inner derivations in associative algebras, and the study of nilpotent in-

ner derivations in the super setting. The second part studies Jordan superstructures

attached to an ad-nilpotent element of a Lie superalgebra and the subquotients asso-

ciated to abelian inner ideals of Lie superalgebras.

On one hand, Herstein’s theory, which started in 1954 in [40] (see also the influ-

ential works [41] and [63]), is the study of nonassociative objects in associative prime

and semiprime rings perhaps with involution, or in rings with well-behaved idempo-

tents that provide a context rich enough for the theory to be satisfactorily developed.

Among the main contributors, apart from Herstein itself, we can also cite works of

K. I. Beidar, M. Bresar, M. A. Chetobar and W. S. Martindale [6], P. Grzeszczuk

[38], T. K. Lee, [54], W. S. Martindale and C. R. Miers [56] and E. C. Posner [63].

Herstein’s theory developed into several similar but different branches: the study of

sets with an additional nonassociative structure, as Lie and Jordan ideals (e.g. [58]),

culminating in the development of GPI theory ([7]); the study of special conditions

(e.g. commutativity) on certain maps (e.g. generalized derivations) over some sets

(e.g. Jordan ideals), in which strong knowledge is gained through the a priori weaker

properties (e.g. [9], [50], [21], [64]); and the determination of the structure of nonas-

sociative maps, as Lie homomorphisms and derivations (e.g. [4], [5], [6]), culminating

in the development of the theory of functional identities ([8]). It is to this last branch

IX



of Herstein’s theory that the first part of this thesis is about, centering on the struc-

ture of nilpotent derivations, which have been broadly studied since the 1960’. In

1963, Herstein proved that for any ad-nilpotent element a of index n in a simple

ring of characteristic zero or greater than n there exists some λ in the center of R

such that a− λ is nilpotent. Furthermore, he showed that the index of nilpotence of

such element is not greater than [n+1
2

], see [42, Theorem page 84]. Herstein’s result

was extended by Martindale and Miers in 1983 ([55, Corollary 1]) to prime rings of

characteristic greater than n making use of the extended centroid of R. In 1978,

Kharchenko obtained in [48] an important result: all algebraic derivations of prime

rings of characteristic zero are inner for certain elements in an overring; he extended

this result to torsion-free semiprime rings in 1979, see [49]. In 1983, Chung and Luh

stated that the index of nilpotence of a nilpotent derivation on a semiprime ring of

zero characteristic is always odd (see [16] and [17]), and in 1984 Chung, Kobayashi

and Luh ([18]) proved that if R is semiprime and charR = p > 2 then the index of

nilpotence of a nilpotent derivation is of the form n = asp
s+as+1p

s+1+· · ·+alpl where

0 ≤ s ≤ l, the ai are non negative integers less than p, as is odd, and as+1, . . . , al

are even. Moreover, Chung in 1985 proved, for prime rings R of characteristic zero,

that a nilpotent derivation is inner and induced by a nilpotent element of an overring,

see [15]. In 1992, with different techniques, Grzeszczuk showed that any nilpotent

derivation in a semiprime ring with minimal restrictions on its characteristic is an

inner derivation in a semiprime subring of the right Martindale ring of quotients of

R and is induced by a nilpotent element in such subring, see [38, Corollary 8] and its

generalization by Chuang and T. K. Lee in [14, §3].

Some examples of Lie algebras appear when working with rings R with involution

∗: the Lie algebras of skew-symmetric elements K := Skew(R, ∗) and K/Z(R) and

the derived Lie algebras [K,K] and [K,K]/([K,K] ∩ Z(R)). The nilpotent deriva-

tions of the skew-symmetric elements of prime rings with involution were studied by

Martindale and Miers in the 1990’s. In this case, if R has zero characteristic and

is not an order in a 4-dimensional central simple algebra, for every inner derivation

ada with adna = 0 there exists an element λ in the extended centroid of R such that
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either (a − λ)[n+1
2

] = 0 or the involution is the identity in the extended centroid of

R and a[n+1
2

]+1 = 0, see [56, Main Theorem]. This result was partially extended

to semiprime rings by T.K. Lee in 2018. In his main result he proved that if R is

semiprime with involution and has no n!-torsion, then for any a ∈ K with adna(K) = 0

there exist λ and a symmetric idempotent ε in the extended centroid of R such that

(εa− λ)[n+1
2

]+1 = 0, see [54, Theorem 1.5].

In chapter 2 we study ad-nilpotent elements in Lie algebras arising from semiprime

associative algebras R free of 2-torsion. With the idea of keeping under control the

torsion of R we introduce a more restrictive notion of ad-nilpotent element, pure

ad-nilpotent element, which is a technical condition since every ad-nilpotent element

can be expressed as an orthogonal sum of pure ad-nilpotent elements of decreasing

indices. This allows us to be more precise when setting the torsion inside the algebra

R in order to describe its ad-nilpotent elements. If R is a semiprime associative

algebra, C(R) its extented centroid and a ∈ R is a pure ad-nilpotent element of R of

index n with R free of t and
(
n
t

)
-torsion for t = [n+1

2
], then n is odd and there exists

λ ∈ C(R) such that a − λ is nilpotent of index t. If R is a semiprime associative

algebra with involution ∗ and a is a pure ad-nilpotent element of Skew(R, ∗) free of

t and
(
n
t

)
-torsion for t = [n+1

2
], then either a is an ad-nilpotent element of R of the

same index n (this may occur if n ≡4 1, 3) or R is a nilpotent element of R of index

t+ 1 and R satisfies a nontrivial GPI (this may occur if n ≡4 0, 3). The case n ≡4 2

is not possible.

On the other hand, an associative superalgebra is a Z2-graded associative algebra

R = R0 +R1. The elements of R0 ∪R1 are called homogeneous elements and we say

that the degree of a ∈ R0 ∪ R1 is i (denoted |a| = i) when a ∈ Ri, i ∈ {0, 1}. Given

an associative superalgebra R, we obtain a Lie superalgebra if the associative product

is replaced by the superbracket [a, b] = ab − (−1)|a| |b|ba for homogeneous a, b ∈ R.

The Lie structure of prime/simple associative superalgebras was investigated by F.

Montaner in [60] and S. Montgomery in [62].

We say that a Z2-linear map ∗ : R → R is a superinvolution when (a∗)∗ = a

and (ab)∗ = (−1)|a| |b|b∗a∗ for homogeneous a, b ∈ R0∪R1. The set of skew-symmetric
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elements of an associative superalgebra is a Lie superalgebra and it will be denoted by

K throughout this paper. Moreover, the study of the Lie structure of K of a simple

associative superalgebra with superinvolution was iniciated by C. Gómez-Ambrosi and

I. Shestakov in 1997 in [37], and their results were extended to prime superalgebras

in [35]. The study of superinvolutions in associative superalgebras has been of great

interest. We highlight the work of J. Laliena [52] about the description of the derived

superalgebra [K,K] of a semiprime superalgebra with superinvolution, and the recent

works of A. Giambruno, A. Ioppolo, D. La Mattina and F. Martino ([32], [33], [34],

[45]) on superinvolutions in superalgebras related to polynomial identities and related

to the growth of certain substructures of the superalgebras.

Another interesting and very active topic in superalgebras is the study of su-

perderivations (see for example the works of A. Fošner and M. Fošner [26], H. Ghahra-

mani, M. N. Ghosseiri and S. Safari [31] or Y. Wang [66]). A linear map d = d0 + d1

in R is called a superderivation if each di, i ∈ {0, 1}, satisfies di(Rj) ⊂ Ri+j and

di(ab) = di(a)b + (−1)i|a|adi(b), for homogeneous a, b ∈ R0 ∪ R1. For instance, if

a ∈ R0 ∪ R1, the map ada : R → R given by ada(x) = [a, x] is a superderivation (of

degree |a|). Such a superderivation is called an inner derivation. In [31] the authors

describe the structure of superderivations on some Z2-graded rings and study when

superderivations are inner.

In chapter 3 we give an in-deph analysis of the nilpotency index of nilpotent homo-

geneous inner superderivations in associative prime superalgebras with and without

superinvolution.

Chapter 4 is devoted to giving examples for all of the types of elements studied

in the chapters 2 and 3. Since the even part of an associative superalgebra is an

associative algebra and a superinvolution restricted to the even part of an associative

superalgebra is an involution, the examples of even ad-nilpotent elements of an asso-

ciative superalgebra with superinvolution will also provide examples of ad-nilpotent

elements of an associative algebra with involution.

Finally, local algebras of Jordan systems were introduced by Meyberg [59], used

by Zelmanov and revisited by D’Amour and McCrimmon in their classification of
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linear and quadratic Jordan systems [67], [19], [20]. Ever since their introduction,

they have played a prominent role in the structure theory of Jordan systems, mainly

due to the fact that nice properties flow between the system and their local algebras

(see for example [1], [2] or [61]).

In [24] E. Garćıa, A. Fernández López and M. Gómez Lozano attached a Jordan

algebra to any Lie algebra L with an ad-nilpotent element x of index less than or

equal to three. Their construction extended the fact that every Lie algebra with an

sl2-triple (e, [e, f ], f) is automatically 5-graded relative to the eigenspaces of ad[e,f ]

and L2 = ad2
e(L) is a unital Jordan algebra. Although their object imitates the

construction of a “local” algebra of a Lie algebra, they did not get a Lie algebra

again but a Jordan algebra, so this object was called the Jordan algebra of L at x.

Furthermore, any Z-graded Lie algebra L = L−n⊕· · ·⊕L0⊕· · ·⊕Ln comes together

with a Jordan pair V = (L−n, Ln) and any element x of Ln is ad-nilpotent of index

less than or equal to three, so one can construct the local algebra of V at x (in the

sense of Meyberg [59]) and this Jordan algebra coincides with the Jordan algebra of

L at x.

The Jordan algebras of Lie algebras, together with their extension to subquotients

(Jordan pairs) associated to abelian inner ideals of Lie algebras, have provided a new

way of connecting the Lie and the Jordan settings. For example, they were used by

E. Zelmanov in his proof of the Lie version of the Kurosh problem [68, §2], and by

J. Hennig in her classification of ad-integrable simple, locally finite Lie algebras over

algebraically closed fields of characteristic > 3 [39, Theorem 2]. This construction

was also mimicked in [65] to construct a quasi-Jordan algebra from a Leibniz algebra

and an ad-nilpotent element of index less than or equal to three.

In chapter 5, given a Lie superalgebra and an even ad-nilpotent element of index

less or equal to 3, we can obtain a Jordan superalgebra attached to that element by

using the Grassmann envelope; inspired by that construction we build a Jordan super-

pair attached to an odd ad-nilpotent element of index less or equal to 4. We introduce

inner ideals for Lie superalgebras, and we prove that the associated subquotients are

Jordan superpairs.
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Chapter 1

Algebraic methodology

During all this work Φ is a unital commutative ring of scalars with 1
2
∈ Φ.

Previously, in the introduction, we have established the topics that are covered in

this work. In this section we go a step further, laying the foundations of this thesis

and establishing its main concepts. Firstly, we will define the basics fundamentals

related to associative algebras and superalgebras. Next, we will review some relevant

concepts and results to better understand the structure underlying such algebras

and superalgebras such as, for example, the notions of primeness and semiprimeness.

Afterwards, we will introduce the extended centroid and how it behaves in prime or

semiprime associative algebras and superalgebras with involution and superinvolution.

Finally, we will recall basic notions on nonassociative algebras and superalgebras, in

particular, about Lie and Jordan superalgebras.

In Chapter 2, we will study ad-nilpotent elements belonging to semiprime asso-

ciative algebras R over Φ with or without involution. In particular, the extended

centroid will be a crucial tool (e.g., it allows us to define what is a pure ad-nilpotent

element). In Chapter 3 we will work on the super setting, i.e, on ad-nilpotent elements

in prime associative superalgebras R over Φ with or without superinvolution. Finally,

throughout Chapter 5 we will deal with Lie superalgebras and Jordan superstructures.
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1.1 Basic notions on associative algebras and su-

peralgebras

1.1.1. Let R be an algebra over Φ. We say that R is a superalgebra if R is Z2-graded,

i.e., R = R0 ⊕ R1 such that Ri · Rj ⊆ Ri+j with i, j ∈ Z2. R0 it is the even part and

it is a subalgebra of R and R1 is the odd part and it is a bimodule over R0. Any

element of R0 ∪ R1 is called a homogeneous element and we define the parity of a

homogeneous element as |a| = 0 if a ∈ R0 and |a| = 1 if a ∈ R1.

Let f : R → R′ be a linear map where R and R′ are both superalgebras. We

say that f is homogeneous of degree γ ∈ Z2 if f(Ri) ⊂ R′i+γ. In addition, we say

that f is a superalgebra homomorphism if it is an algebra homomorphism and it is

homogeneous of degree 0, i.e., f(Ri) ⊂ R′i.

1.1.2. Let X = {x1, x2, ...} be a countable infinite set of variables and let Φ〈X〉 be

the free unital associative algebra generated by X over Φ. If I is the two-sided ideal

of Φ〈X〉 generated by the set of elements {xixj+xjxi | i, j ≥ 1}, we set G := Φ〈X〉/I.

We call G the (infinite dimensional) Grassmann algebra. We denote by ξi := xi + I.

With this notation G has the following presentation:

G = 〈1, ξ1, ξ2, ... | ξiξj + ξjξi = 0, for all i, j ≥ 1〉.

Notice that ξ2
i = 0 since 1

2
∈ Φ. The set B = {1, ξi1 , ...ξik | 1 < i1 < ... <

ik, for all k ∈ N} is a basis of G over Φ. In addition, G is a Z2-graded module

over Φ:

G0 := 〈1, ξi1 · · · ξi2k | 1 ≤ i1 < ... < i2k, k ≥ 1〉,

G1 := 〈ξi1 · · · ξi2k+1
| 1 ≤ i1 < ... < i2k+1, k ≥ 0〉.

Thus, G is an associative superalgebra. Moreover, if R = R0 ⊕ R1 is a superalgebra

over Φ, we can define the Grassmann envelope of R, G(R), as the even part of the

tensor product G⊗R, i.e., G(R) = (G⊗R)0 = G0⊗R0 +G1⊗R1. Notice that G(R)

is an algebra.

2



The Grassmann envelope allows us to define varieties of superalgebras. Let R =

R0+R1 be a superalgebra. We say that R belongs to a certain variety of superalgebras

(Lie, Jordan, associative,...) if G(R) belongs to the same variety of algebras.

Notice that if R = R0 ⊕ R1 is a superalgebra (i.e., Z2-graded) such that it is

associative as algebra then it is easy to check that G(R) is associative as well. Hence

R is an associative superalgebra if and only if R is an associative Z2-graded algebra.

But in general a Lie or Jordan superalgebra is not a Lie or Jordan Z2-graded algebra.

1.1.3. Let R = R0 ⊕ R1 be an associative superalgebra over Φ. In these conditions

the map σ : R → R defined by σ(x0 + x1) = x0 − x1, for every x0 ∈ R0, x1 ∈ R1, is

an algebra automorphism with σ2 = id. Conversely, given an associative algebra R,

every algebra automorphism σ : R → R with σ2 = id defines a Z2-graduation on R

given by R0 = {a ∈ R | σ(a) = a} and R1 = {a ∈ R | σ(a) = −a}. Therefore, a

Z2-graduation on R is equivalent to an algebra automorphism σ with σ2 = id.

Notice that a Φ-module S of R is graded if and only if σ(S) ⊂ S.

1.1.4. Let R be an associative algebra or superalgebra. We say that ∗ is an involution

if it is a linear map ∗ : R→ R such that, for every a, b ∈ R, (a∗)∗ = a and (ab)∗ = b∗a∗,

and we say that ∗ is a superinvolution if it is a homogeneous, 0-degree, linear map

such that for every homogeneous a, b ∈ R, (a∗)∗ = a and (ab)∗ = (−1)|a||b|b∗a∗.

We denote the symmetric and skew-symmetric sets with respect an involution or a

superinvolution ∗ as H := Sym(R, ∗) = {a ∈ R | a∗ = a} and K := Skew(R, ∗) =

{a ∈ R | a∗ = −a} respectively.

1.1.5. An associative algebra R is semiprime (resp. ∗-semiprime) if for every nonzero

ideal (resp. ∗-ideal) I of R, I2 := {
∑

i xiyi | xi, yi ∈ I} 6= 0, and it is prime (resp.

∗-prime) if IJ := {
∑

i xiyi | xi ∈ I, yi ∈ J} 6= 0 for every pair of nonzero ideals (resp.

∗-ideals) I, J of R.

We recall that a ∗-ideal is an ideal I such that I∗ ⊂ I.

It is easy to prove that R is semiprime if and only if is ∗-semiprime: It is clear that

if R is semiprime then is ∗-semiprime. Conversely, let R be a ∗-semiprime algebra

and let I be an ideal of R such that I2 = 0. Notice that I ∩ I∗ is a ∗-ideal whose
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square is zero. Then I ∩ I∗ = 0, hence II∗ = I∗I = 0. Thus (I + I∗)2 = 0, and

since I + I∗ is a ∗-ideal, we have that I = 0. Therefore R is semiprime. However, an

algebra can be ∗-prime but not prime: Let S be a prime associative algebra over Φ

and let us consider R = S × S with involution (a, b)∗ = (b, a). Then R is a ∗-prime

algebra but it is not prime. It is interesting to remark that the symmetric elements

are of the form (a, a) and the skew-symmetric are of the form (a,−a).

We can prove that an associative algebra R is prime if and only if aRb 6= 0

for arbitrary nonzero elements a, b ∈ R, and it is semiprime if and only if it is

nondegenerate, i.e., aRa 6= 0 for every nonzero element a ∈ R (see [53, §10]).

We are going to study these concepts in super setting. Let R = R0 ⊕ R1 be

an associative superalgebra and let σ be the automorphism associated to the Z2-

graduation. We say that an ideal I is graded if I = I0 ⊕ I1 where I0 = I ∩ R0 and

I1 = I ∩R1 or, as we remarked in 1.1.3, if σ(I) ⊂ I.

An associative superalgebra R is semiprime if for every nonzero graded ideal I of

R, I2 6= 0. And it is prime (as a superalgebra) if it does not have nonzero orthogonal

graded ideals.

Notice that a ∗-ideal or a graded ideal satisfies I∗ ⊂ I or σ(I) ⊂ I, respectively.

Then, arguing as before, the concepts of semiprime associative superalgebra and

semiprime associative algebra coincide. An associative superalgebra can be prime

but not prime as an algebra: for instance, let S be a prime associative algebra over

Φ. Then R = S × S with R0 = {(a, a) | a ∈ S} and R1 = {(a,−a) | a ∈ S} is a

prime associative superalgebra, which is not prime as an algebra (see [25]). We can

say more: If R is prime as a superalgebra but not as an algebra we can consider a

nonzero ideal P of R with P ∩ σ(P ) = 0. Then P ⊕ σ(P ) is an essential graded

ideal of R, where (P ⊕ σ(P ))0 = {x + σ(x) | x ∈ P} ∼= P as an algebra and

(P ⊕ σ(P ))1 = {x− σ(x) | x ∈ P}. Hence

P ⊕ σ(P ) /ess R ↪→ R/P ⊕R/σ(P ).

Primeness in associative superalgebras can be also characterized by elements: for
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any two elements a, b of a prime associative superalgebra R where a and b are ho-

mogeneous, the condition aRb = 0 implies that either a or b is zero (see [25, pag.

693]). As we said before, semiprime associative superalgebras are semiprime as al-

gebras hence the property aRa 6= 0 for every nonzero homogeneous element a ∈ R

holds in semiprime superalgebras.

Moreover, when dealing with superalgebras we can always consider the algebra

R0. In the next two lemmas F. Montaner states what happens on the even part when

the whole superalgebra is semiprime or prime:

Lemma 1.1.6. [60, Lemma 1.2] If R = R0 ⊕R1 is a semiprime associative superal-

gebra, then R and R0 are semiprime algebras.

Lemma 1.1.7. [60, Lemma 1.3] If R = R0⊕R1 is a prime associative superalgebra,

then either R or R0 are prime as algebras.

1.1.8. An ideal I of an associative algebra R (resp., an associative algebra with

involution ∗) is prime (resp., ∗-prime) if R/I is a prime (resp. ∗-prime) associative

algebra. If R is a semiprime associative algebra then there exists a family of prime

ideals {Iα}α∈∆ such that
⋂
α∈∆ Iα = {0} and therefore R can be seen as a subdirect

product of prime associative algebras (see [53, §12]). Similarly, if R is a semiprime

associative algebra with involution ∗ there exists a family of ∗-prime ideals {Iα}α∈∆

such that
⋂
α∈∆ Iα = {0} and therefore R can be seen as a subdirect product of

∗-prime associative algebras. This is also true for superalgebras.

Moreover, if R is semiprime and free of n-torsion then the intersection of all prime

ideals Iα such that R/Iα is free of n-torsion is zero (notice that the intersection of

all prime ideals Iα such that R/Iα has n-torsion contains the essential ideal nR) and

therefore R is a subdirect product of prime associative algebras, all of them free of

n-torsion.
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1.2 The extended centroid of associative algebras

and superalgebras

1.2.1. Given an ideal I of R, we can define the ideal AnnR(I) := {z ∈ R | zI =

Iz = 0}, which is called the annihilator of I in R. Moreover, when R is semiprime,

AnnR(I) = {z ∈ R | zIz = 0}. An ideal I of R is essential (for every nonzero ideal J

of R, I ∩ J 6= 0) if and only if AnnR(I) = 0 (see [23, Proposition 1.6(1)]).

1.2.2. Given an associative algebra R, we define a permissible map of R as a pair

(I, f) where I is an essential ideal of R and f : I → R is a homomorphism of

right R-modules. For permissible maps (I, f) and (J, g) of R, define a relation ≡ by

(I, f) ≡ (J, g) if there exists an essential ideal K of R, contained in I ∩ J , such that

f(x) = g(x) for all x ∈ K. It is easy to see that this is an equivalence relation. If R

is a semiprime associative algebra then Qr
m(R) has an associative algebra structure

coming from the addition of homomorphisms and from the composition of restrictions

of homomorphisms, see [7, Chapter 2]:

� [I, f ] + [J, g] := [I ∩ J, f + g],

� [I, f ] · [J, g] := [(I ∩ J)2, f ◦ g].

The quotient set Qr
m(R) with the operations defined above is called the Martindale

algebra of quotients of R. Note that if R is a semiprime associative algebra then the

map f : R → Qr
m(R) defined by f(r) := [R, λr], where λr : R → R is defined by

λr(x) := rx, is a monomorphism of associative algebras, i.e., R can be considered

as a subalgebra of its right Martindale algebra of quotients. The right Martindale

algebra of quotients of R satisfies that for all q ∈ Qr
m(R) there exists an essential

ideal I of R such that qI ⊆ R. This facts allow us to prove that every subalgebra S

of Qr
m(R) which contains R is semiprime. Otherwise, if I is a nonzero nilpotent ideal

of S and pick 0 6= q ∈ I. There exists an essential ideal J of R such that qJ ⊆ R,

i.e., qJ = qJ ∩ I ⊆ R ∩ I is a nonzero nilpotent ideal of R which is a contradiction

with the semiprimeness of R.
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The symmetric Martindale algebra of quotients of R is defined as

Qs
m(R) := {q ∈ Qr

m(R)| ∃ an essential ideal I of R such that qI + Iq ⊂ R}

(if R has an involution one can replace the filter of essential ideals by the filter of

essential ∗-ideals in the definition of the symmetric Martindale algebra of quotients,

see [3, p. 858-859]). If R is semiprime then Qs
m(R), which is a subalgebra of Qr

m(R)

containing R, is also a semiprime algebra.

When R has an involution ∗, this involution can be extended to Qs
m(R) as follows:

let us consider q ∈ Qs
m(R) and I an essential ∗-ideal such that qI+Iq ⊆ R. We define

f : I → R by the rule f(x) = (x∗q)∗. We set q∗ := [I, f ] and note that q∗x∗ = (xq)∗

for all x ∈ I (see [7, 2.5.4]).

The extended centroid C(R) of a semiprime algebra R is defined as the center

of Qs
m(R). The extended centroid of a prime algebra is a field (see [7, p. 70]), the

set of symmetric elements of the extended centroid of a ∗-prime algebra is again a

field (see [3, Theorem 4(a)]), and the extended centroid of a semiprime algebra is a

commutative and unital von Neumann regular algebra (see [7, Theorem 2.3.9(iii)]). In

particular, if R is semiprime, C(R) is a semiprime algebra without nilpotent elements.

The central closure of R, denoted by R̂, is defined as the unital subalgebra of

Qs
m(R) generated by R and C(R), i.e., R̂ := C(R)R + C(R), and can be seen as

a C(R)-algebra. Therefore we can consider R contained in R̂. Moreover, since R̂

contains R and it is contained in Qs
m(R), if R is semiprime then R̂ is semiprime. The

algebra R̂ is centrally closed, i.e., it coincides with its central closure. In particular

its center equals its extended centroid, Z(R̂) = C(R̂).

1.2.3. The notion of extended centroid for semiprime associative superalgebras was

studied by M. Fošner, see [25]. LetR be a semiprime associative superalgebra. SinceR

is semiprime as algebra we can consider the symmetric Martindale algebra of quotients

Qs
m(R). Let σ : R→ R be the automorphism associated to the Z2-grading of R (σ2 =

id). This automorphism, by [7, Proposition 2.5.3], can be extended to Qs
m(R) and

we denote this extension by σ̂. Therefore Qs
m(R) is an associative superalgebra such
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that Ri ⊂ (Qs
m(R))i with i = 0, 1. Moreover, if R is endowed with a superinvolution

∗, this can be also extended to Qs
m(R) as follows: let us consider q ∈ Qs

m(R)i, with

i = 0, 1, and I an essential graded ∗-ideal such that qI+Iq ⊆ R. We define f : I → R

by f(x) = (−1)|q||x|(x∗q)∗. We set q∗ := [I, f ] and note that q∗x∗ = (−1)|x||q|(xq)∗ for

all x ∈ I homogeneous. Indeed, ∗ is a superinvolution on Qs
m(R): Let us consider

qi ∈ (Qs
m(R))i and qj ∈ (Qs

m(R))j with i, j = 0, 1. Choose an essential graded ∗-ideal

J of R such that Jqi, qiJ , Jqj, qjJ , Jqiqj, qiqjJ are all contained in R and let I = J2.

Then Iqi, qiI, Iqj, Iqi ⊆ J . For every homogeneous x ∈ I we have

(qiqj)
∗x = (−1)|x|(i+j)(x∗qiqj)

∗ = (−1)|x|(i+j)+(|x|+i)jq∗j (x
∗qi)

∗

= (−1)|x|(i+j)+(|x|+i)j+|x|iq∗j q
∗
i x = (−1)ijq∗j q

∗
i x.

Hence (qiqj)
∗ = (−1)ijq∗j q

∗
i for all qi ∈ (Qs

m(R))i and qj ∈ (Qs
m(R))j with i, j = 0, 1.

On the other hand, since R is semiprime as an algebra, we can consider the

extended centroid C(R) of R, which it is also Z2-graded because C(R) = Z(Qr
m(R)).

Let R̂ = C(R)R + C(R) be the central closure of R. We will say that R is centrally

closed if R = R̂.

1.2.4. Let R be a prime associative superalgebra such that R is not prime as an

algebra. Let σ denote the automorphism associated to the Z2-grading of R and

consider a nonzero ideal P of R with P ∩ σ(P ) = 0. Then P ⊕ σ(P ) is a graded

essential ideal of R, where (P ⊕ σ(P ))0 = {x+ σ(x) | x ∈ P} ∼= P as an algebra and

(P ⊕ σ(P ))1 = {x− σ(x) | x ∈ P}. Since P ⊕ σ(P ) is essential in R,

C(R) ∼= C(P ⊕ σ(P )) = C(P )⊕ σ̂(C(P )),

where the isomorphism is given by the restriction of permissible maps (for any λ =

[I, f ] ∈ C(R) we define λ̂ = [(I∩(P⊕σ(P )))2, g] where g : (I∩(P⊕σ(P ))2 → P⊕σ(P )

is the restriction of f to the essential ideal (I ∩ (P ⊕ σ(P )))2 of P ⊕ σ(P )). Notice

that the Z2-grading of C(P ) ⊕ σ̂(C(P )) comes from the Z2-grading of P ⊕ σ(P ):

(C(P )⊕σ̂(C(P )))0 = {λ+σ̂(λ) | λ ∈ C(P )} and (C(P )⊕σ̂(C(P )))1 = {λ−σ̂(λ) | λ ∈
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C(P )}. In particular,

C(R)0
∼= {λ+ σ̂(λ) | λ ∈ C(P )} ∼= C(P ).

On the other hand, by Lemma 1.1.7, R0 is prime as an algebra, and therefore its

nonzero ideals are essential. By restricting permissible maps from R0 to (P ⊕ σ(P ))0

we get C(R0) ∼= C((P ⊕ σ(P ))0) ∼= C(P ).

We have obtained that C(R)0
∼= C(R0).

Lemma 1.2.5. Let R = R0⊕R1 be a prime associative superalgebra, and let a ∈ R0.

If there exists λ ∈ C(R) such that a−λ is nilpotent of index n and R has no n-torsion

then λ ∈ C(R)0.

Proof. Let us consider a ∈ R0 and suppose that there exists λ = λ0 +λ1 ∈ C(R) such

that a−λ is nilpotent of index n. If λ1 6= 0, it is invertible by Lemma 1.2.6 and there

exists µ1 ∈ C(R)1 such that λ1µ1 = 1. From the nilpotency of a−λ0−λ1 we get that

µ1a − µ1λ0 − 1 is again nilpotent of index n, i.e., the element b = µ1a − µ1λ0 ∈ R1

satisfies a polynomial of the form p(X) = (X − 1)n ∈ C(R)0[X]. Since C(R)0 is a

field, p(X) ∈ C(R)0[X] is the minimal polynomial of b over C(R)0. In particular

bn −
(
n

1

)
bn−1 +

(
n

2

)
bn−2 + · · · = 0

and by homogeneity (
n

1

)
bn−1 +

(
n

3

)
bn−3 + · · · = 0

i.e., b satisfies the polynomial q(X) =
∑[n+1

2
]

i=1

(
n

2i−1

)
Xn−2i+1. But n− 1 = deg q(X) <

deg p(X) = n, a contradiction with the minimality of p(X). Therefore λ1 = 0 and

λ ∈ C(R)0.

Lemma 1.2.6. [25, Lemma 3.1] Let R be a semiprime associative superalgebra. Then

the following assertions are equivalent:

(i) R is a prime superalgebra.
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(ii) all nonzero homogeneus elements on C(R) are invertible.

(iii) C(R)0 is a field.

1.3 Basic notions on Lie and Jordan algebras and

superalgebras

1.3.1. We will work with Lie algebras and superalgebras arising from associative

algebras and superalgebras. A Lie algebra L over a ring of scalars Φ is a Φ-module

with a bilinear product [ , ] satisfying, for every x, y, z ∈ L, the anticommutativity

property and the Jacobi identity:

(i) [x, y] = −[y, x],

(ii) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi identity).

Let L = L0 +L1 be a superalgebra over Φ with bilinear product denoted by [ , ]s .

By using the Grassmann envelope, L is a Lie superalgebra if G(L) is a Lie algebra. Let

us suppose that L = L0 +L1 is a Lie superalgebra, i.e., G(L) = L0⊗G0 +L1⊗G1 is a

Lie algebra. We can deepen into which identities L satisfies: let us pick x⊗ξi, y⊗ξj ∈

(L0 ⊗G0) ∪ (L1 ⊗G1), then

[x, y]s⊗ξiξj = [x⊗ξi, y⊗ξj] = −[y⊗ξj, x⊗ξi] = −[y, x]s⊗ξjξi = −(−1)|x||y|[y, x]s⊗ξiξj

so we can assure, by linearity, that [x, y]s = −(−1)|x||y|[y, x]s for every x, y ∈ L0 ∪L1.

Notice that the factor (−1) in the identity naturally arises from the property ξiξj +

ξjξi = 0, i.e, ξiξj = −ξjξi of the generators of the Grassman algebra. Therefore, the

identities (i) and (ii) can be translated to super setting as follows: Let L be a Z2-

graded module over Φ with a bilinear product [ , ]s such that for every homogeneous

x, y, z ∈ L:

(i) [x, y]s = −(−1)|x||y|[y, x]s (super-anticommutativity),
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(ii) [x, [y, z]s]s+(−1)|x|(|y|+|z|)[z, [x, y]s]s+(−1)|z|(|x|+|y|)[y, [z, x]s]s = 0 (Jacobi super-

identity).

Conversely, a superalgebra is a Lie superalgebra if both identities above are satisfied

(see [?, Section 1]).

Recall that the adjoint map determined by any a ∈ L (resp. any homogeneous

a ∈ L) is ada(x) := [a, x] (resp. ada(x) := [a, x]s in super setting) for every x ∈ L. We

say that an element a ∈ L is ad-nilpotent of index n ≥ 1 if adnaL = 0 and adn−1
a L 6= 0.

We say that an element a in L is a Jordan element if ad3
aL = 0 (see [23, Chapter

4]). Since in superalgebras we will always consider homogeneous elements, we will

define Jordan element in superalgebras for even elements as an even element which

is ad-nilpotent of index less or equal to 3 of the whole Lie superalgebra. For odd

elements we will work with ad-nilpotency of index less or equal to 4.

Typical examples of Lie algebras and superalgebras come from the associative

setting: if R is an associative algebra (resp. superalgebra) over a ring of scalars

Φ, then R with product, called bracket, [x, y] := xy − yx for every x, y ∈ R (resp.

[x, y]s = xy − (−1)|x||y|yx, called super-bracket, for every homogeneous x, y ∈ R) is a

Lie algebra (resp. a Lie superalgebra) denoted by R−. When dealing with R− as a

superalgebra, if a ∈ R0 then ada behaves as the usual adjoint map in the non-super

setting; when a ∈ R1, ad2
a = ada2 .

We will deal with Jordan algebras and superalgebras in Chapter 5. A linear Jordan

algebra J over a ring of scalars Φ, with 1
2
∈ Φ, is a Φ-module with a bilinear product

• satisfying, for every x, y ∈ J , the commutativity property and Jordan identity:

(i) x • y = y • x,

(ii) ((x • x) • y) • x = (x • x) • (y • x) (Jordan identity).

We already know that a superalgebra is a Jordan superalgebra if its Grassmann

envelope is a Jordan algebra. But to translate the Jordan identity to super setting

first we need to linearize it because the generatos in the Grassman algebra satisfy

ξ2
i = 0. We can prove that a Z2-graded module J over Φ with a bilinear product •s

is a Jordan superalgebra if it satisfies
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(i) x •s y = (−1)|x||y|y •s x (super-commutativity),

(ii) (x •s y) •s (z •s t) + (−1)|y||z|(x •s z) •s (y •s t) + (−1)|y||t|+|z||t|(x •s t) •s (y •s z) =

= ((x•sy)•sz)•st+(−1)|y||z|+|y||t|+|z||t|((x•st)•sz)•sy+(−1)|x||y|+|x||z|+|x||t|+|z||t|((y•s
t) •s z) •s x (Jordan super-identity)

for every homogeneous x, y, z, t ∈ J . As above, if R is an associative algebra (resp.

superalgebra) over a ring of scalars Φ, then R with product, called bullet, x • y =

xy + yx for every x, y ∈ R (resp. x •s y = xy + (−1)|x||y|yx, called super-bullet, for

every homogeneous x, y ∈ R) is a Jordan algebra (resp. Jordan superalgebra) denoted

by R+.

The algebras R− and R+ are well-known and it was I.N. Herstein the first one

to study the relations between R and both of them in the non-super case (see for

example [43]). Moreover, K is a Lie subalgebra (resp. subsuperalgebra) of R− and H

is a Jordan subalgebra (resp. subsuperalgebra) of R+. We refer the reader to [25], [35],

[36], [37], [52], [60] and [62] for further information on associative superalgebras and

on the Herstein theory on superalgebras. Although we have denoted super bracket

as [ , ]s, in Chapter 3, in order to simplify the notation, we will denote it as [ , ] (we

will just work with the super bracket and there will not be any confusion).

1.3.2. If R is a centrally closed ∗-prime algebra and Skew(C(R), ∗) 6= 0 then for any

0 6= λ ∈ Skew(C(R), ∗) we have R = H + K = λ2H + K ⊆ λK + K ⊆ R because

0 6= λ2 is invertible, so R = λK + K for every 0 6= λ ∈ Skew(C(R), ∗). This occurs

in particular when R is ∗-prime but not prime, because in this situation there exists

a nonzero ideal I of R such that I ∩ I∗ = 0, and so we can define a nonzero skew

element λ : I ⊕ I∗ → R in C(R) given by λ(x+ y) := x− y.

If R is a centrally closed semiprime ring then R− is a Lie algebra over the ring

of scalars C(R); if in addition R has an involution ∗, then K is a Lie algebra over

H(C(R), ∗).

Lemma 1.3.3. ([13, Lemma 2.11]) Let (R, ∗) be a semiprime associative algebra with

involution and let a ∈ R. If there exist λ ∈ C(R) such that a− λ is nilpotent then λ
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is the unique element of C(R) such that a− λ is nilpotent. Moreover, if a ∈ K then

λ ∈ Skew(C(R), ∗).

Proof. If a−λ and a−µ are nilpotent elements of the central closure R̂ of R, a−λ−(a−

µ) = µ−λ is a nilpotent element in the semiprime commutative ring C(R). Therefore

λ = µ. Now, if a ∈ K and a − λ is nilpotent then (a − λ)∗ = −(a + λ∗) is nilpotent

and therefore a+ λ∗ is nilpotent, which implies that λ = −λ∗ ∈ Skew(C(R), ∗).

We will need also this result in superalgebras. With the same argument as in the

above lemma we have:

Lemma 1.3.4. Let R = R0⊕R1 be a semiprime associative superalgebra with super-

involution ∗, and let a ∈ R0∪R1. If there exists λ ∈ C(R) such that a−λ is nilpotent

then λ is the unique element of C(R) such that a−λ is nilpotent. Moreover, if a ∈ K

then λ ∈ Skew(C(R), ∗).
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Chapter 2

Ad-nilpotent elements in an

associative algebra

This chapter has been published in the journal Bulletin of the Malaysian Mathematical

Sciences Society and can be found in [12].

Throughout all this chapter R is an associative algebra over Φ with 1
2
∈ Φ.

The main goal of this chapter is to deepen into the description of ad-nilpotent

elements of R and K where R is a semiprime associative algebra with involution. In

the spirit of Martindale and Miers’ result [56, Main Theorem], we will obtain different

types of ad-nilpotent elements of K of index n depending on the equivalence class of

n modulo 4. In this chapter we will also study ad-nilpotent elements in semiprime

associative algebras, as T.K. Lee did in [54], but we introduce a new concept called

pure ad-nilpotent, that it will allow us to weaken torsion conditions and to obtain

a more detailed classification. We say that an ad-nilpotent element a of index n in

R− is pure if λa remains ad-nilpotent of the same index for every λ in the extended

centroid such that λa 6= 0. An ad-nilpotent element a of index n in K is pure if for

every symmetric λ in the extended centroid such that λa 6= 0, λa is ad-nilpotent of

the same index n. This is just a technical condition, since every ad-nilpotent element

of R− can be expressed as an orthogonal sum of pure ad-nilpotent elements of the

central closure R̂ of R with decreasing indices of ad-nilpotency.

As a first step we focus on ad-nilpotent elements of R−. In this case, under the
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hypothesis of pure ad-nilpotence, the condition on the torsion of the algebra can be

weakened when compared with the result of T.K. Lee in [54, Theorem 1.3].

From Theorems 2.2.4 and 2.3.6 we easily recover Lee’s results [54, Theorem 1.3 and

Theorem 1.5]. Furthermore, we also describe ad-nilpotent elements of Lie algebras of

the form R/Z(R) and K/(K∩Z(R)), and of their derived Lie algebras [R,R]/([R,R]∩

Z(R)) and [K,K]/([K,K] ∩ Z(R)).

Let us write down some useful results where the extended centroid C(R) plays

a really important role. We will use the following results due to Beidar, Martindale

and Mikhalev.

Theorem 2.0.1. ([57, Theorem 2(a)]) Let R be a prime associative algebra. Let

ai, bi ∈ R for i = 1, 2, . . . , n with b1 6= 0 be such that
∑n

i=1 aixbi = 0 for every x ∈ R.

Then there exist λi ∈ C(R) for i = 2, . . . , n such that a1 =
∑n

i=2 λiai in R̂.

Theorem 2.0.2. ([7, Theorem 2.3.3]) Let R be a semiprime associative algebra and

let a1, a2, . . . , an ∈ R. If a1 6∈
∑n

i=2 C(R)ai in R̂ then there exist rj, sj ∈ R for

j = 1, 2, . . . ,m such that
∑m

j=1 rja1sj 6= 0 and
∑m

j=1 rjaksj = 0 for k = 2, . . . , n.

The next corollary can be found in [13]. For the sake of completeness we include

its proof here.

Corollary 2.0.3. Let R be a semiprime associative algebra. Let ai, bi ∈ R for i =

1, 2, . . . , n be such that IdR(a1) ⊂ IdR(b1) and
∑n

i=1 aixbi = 0 for every x ∈ R. Then

there exist λi ∈ C(R) for i = 2, . . . , n such that a1 =
∑n

i=2 λiai in R̂.

Proof. By Theorem 2.0.2, if a1 6∈
∑n

i=2C(R)ai there exist rj, sj ∈ R, j = 1, . . . ,m,

such that
∑m

j=1 rja1sj 6= 0 and
∑m

j=1 rjaksj = 0 for k = 2, 3, . . . , n. Replace x by sjx

and multiply
∑n

i=1 aixbi = 0 on the left by rj. We have

0 =
n∑
i=1

m∑
j=1

rjaisjxbi =
m∑
j=1

rja1sjxb1,

which implies that the ideal generated by
∑m

j=1 rja1sj is orthogonal to the ideal gener-

ated by b1 and therefore, since IdR(a1) ⊂ IdR(b1), the ideal generated by
∑m

j=1 rja1sj

has zero square, a contradiction because R is semiprime.
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The following proposition is an easy generalization of [7, Theorem 2.3.9(i)].

Proposition 2.0.4. Let R be a centrally closed semiprime associative algebra. For

any subset V ⊂ R there exists a unique idempotent ε ∈ C(R) such that εv = v for all

v ∈ V , the annihilator in C(R) of V is AnnC(R)(V ) = (1− ε)C(R), the annihilator in

R of the ideal generated by V is AnnR(IdR(V )) = (1− ε)R, and the ideal generated by

V is essential in εR. Moreover, when R has an involution ∗ and V ⊂ H or V ⊂ K,

then ε ∈ H(C(R), ∗).

Proof. The first part of the proof follows as in [7, Theorem 2.3.9(i)] with the obvious

changes. Let V ⊂ H or V ⊂ K, and consider the unique idempotent ε ∈ C(R) such

that εv = v for all v ∈ V , the annihilator in C(R) of V is AnnC(R)(V ) = (1− ε)C(R)

and the annihilator in R of the ideal generated by V is AnnR(IdR(V )) = (1 − ε)R.

When R has an involution we can decompose ε = εk + εh with εk ∈ Skew(C(R), ∗)

and εh ∈ H(C(R), ∗). We have that εv = v implies εkv = 0. Therefore, εk ∈

AnnC(R)(V ) = (1 − ε)C(R), i.e., εkε = 0 and ε2k = εkεh = 0 and therefore ε = ε2 =

(εk + εh)
2 = ε2h ∈ H(C(R), ∗).

Lemma 2.0.5. Let R be a centrally closed semiprime associative algebra and let

{νi}i∈I be a family of idempotent elements in C(R). Suppose there exists a family

{λi}i∈I of elements in C(R) such that for every i, j ∈ I, λiνiνj = λjνiνj. Then there

exists λ ∈ C(R) such that λνi = λiνi for every i ∈ I. Moreover, if the ideal generated

by the family {νi}i∈I is essential in R, such λ is unique.

Proof. Let us consider the ideal S =
∑
Rνi generated by the family of idempotents

{νi}i∈I and the essential ideal T = S ⊕ AnnR(S). Define λ : T → R by

λ(
∑

xiνi + z) :=
∑

λixiνi.

Let us prove that λ is well defined and an element in C(R). If
∑
xiνi + z = 0 then∑

xiνi = 0 = z and for every νk we have

(∑
λixiνi

)
νk =

∑
λkxiνiνk = λk

(∑
xiνi

)
νk = 0.
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Therefore
∑
λixiνi ∈ S ∩ AnnR(S) = 0 which proves that λ is well defined. By

construction [T, λ] ∈ C(R). Moreover, if the ideal S generated by the family {νi}i∈I
is essential, AnnR(S) = 0 and [S, λ] ∈ C(R) is uniquely defined.

2.1 Pure ad-nilpotent elements

Recall that an element a in a Lie algebra L is ad-nilpotent of index n if adnaL = 0

and adn−1
a L 6= 0.

2.1.1. (i) Let us consider R−: we say that an element a is a pure ad-nilpotent element

of R− of index n if for every λ ∈ C(R) with λa 6= 0, λa is ad-nilpotent in R̂− of index

n, where R̂ is the central closure of R.

(ii) Let us consider K: we say that an element a is a pure ad-nilpotent element of K

of index n if for every λ ∈ H(C(R)), ∗) with λa 6= 0, λa is ad-nilpotent in Skew(R̂, ∗)

of index n, where R̂ is the central closure of R.

Lemma 2.1.2. If R is a semiprime associative algebra and a is an ad-nilpotent

element of R of index n, the following conditions are equivalent:

(i) a is a pure ad-nilpotent element of R−.

(ii) IdR(adn−1
a (R)) is an essential ideal of IdR(a).

(iii) AnnR(IdR(adn−1
a (R))) = AnnR(IdR(a)).

Proof. Suppose that R is semiprime and centrally closed (otherwise, substitute R by

its central closure R̂).

(i) ⇒ (ii). Let us consider V = {adn−1
a x | x ∈ R}. By Proposition 2.0.4 there

exists e ∈ C(R) such that ev = v for every v ∈ V and AnnR(IdR(V )) = (1 − e)R.

Suppose that (1 − e)a 6= 0. By hypothesis (1 − e)a is ad-nilpotent of index n,

hence 0 6= adn−1
(1−e)a(R) = (1 − e)adn−1

a (R) = 0, a contradiction. So ea = a and

AnnIdR(ea)(IdR(adn−1
a (R))) ⊂ AnnR(IdR(adn−1

a (R))) = (1 − e)R must be zero, i.e.,

IdR(adn−1
a (R)) is essential in IdR(ea).
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(ii)⇒ (iii). This holds in general if I and J are ideals of R with I essential in J :

0 = AnnJ(I) = AnnR(I) ∩ J implies AnnR(I)J = 0, so AnnR(I) ⊂ AnnR(J).

(iii) ⇒ (i). Let λ ∈ C(R) be such that λa 6= 0. Clearly adnλa(R) = 0. Suppose

that adn−1
λa (R) = 0: then λn−1adn−1

a (R) = 0, so λn−1 ∈ AnnR(IdR(adn−1
a (R))) =

AnnR(IdR(a)), which is not possible because R is semiprime and λa 6= 0.

Lemma 2.1.3. Let R be a centrally closed semiprime associative algebra with invo-

lution ∗, and let a ∈ K be a pure ad-nilpotent element of K of index n. If there

exists λ ∈ H(C(R), ∗) such that λa is ad-nilpotent of R of index n, then λa is a pure

ad-nilpotent element of R of index n.

Proof. Let us see that for every µ ∈ C(R) with µλa 6= 0, the element µλa has index of

ad-nilpotency in R equal to n. Suppose that there exists µ ∈ C(R) with adn−1
µλaR = 0,

and let us prove that µλa = 0:

We have that µn−1adn−1
λa R = adn−1

µλaR = 0, so µadn−1
λa R = 0 because C(R) is regular

von Neumann. In particular, µadn−1
λa H = µadn−1

λa K = 0. Since µ = µh + µk, we have

that µhadn−1
λa R = µkadn−1

λa R = 0.

From 0 = µn−1
h adn−1

λa R = adn−1
µhλa

R we get that µhλa index of ad-nilpotency in K

lower than n, implying µhλa = 0 because a is a pure ad-nilpotent element of K.

From 0 = (µ2
k)
n−1adn−1

λa R = adn−1
µ2kλa

R we get that µ2
kλa has index of ad-nilpotency

in K lower than n, so again µ2
kλa = 0 (because a is a pure ad-nilpotent element of

K), and by regularity of C(R), µkλa = 0.

This implies µλa = 0.

The next proposition shows that every ad-nilpotent of R− or of K can be expressed

as an orthogonal sum of pure ad-nilpotent elements of decreasing indices.

Proposition 2.1.4. Let R be a centrally closed semiprime associative algebra and

let a ∈ R be an ad-nilpotent element of R− of index n. There exists a family of

orthogonal idempotents {εi}ki=1 ⊂ C(R) such that a =
∑k

i=1 εia with εia a pure ad-

nilpotent element of index ni in εiR for n = n1 > n2 > · · · > nk.

Similarly, if R has an involution ∗ and a is an ad-nilpotent element of K of index

n, then there exists a family of orthogonal idempotents {εi}ki=1 ⊂ H(C(R), ∗) such
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that a =
∑k

i=1 εiai with εia a pure ad-nilpotent element of index ni in Skew(εiR, ∗)

for n = n1 > n2 > · · · > nk.

Proof. Let us prove the result for Lie algebras of skew-symmetric elements. We will

proceed by induction on n. If n = 1 there is nothing to prove. Let us suppose that

the result is true for every ad-nilpotent element of index less than n and let a ∈ K

be an ad-nilpotent element of index n ≥ 2. Let us consider V = {adn−1
a x | x ∈ K}.

By Proposition 2.0.4 there exists ε ∈ H(C(R), ∗) such that εv = v for every v ∈ V

and AnnR(IdR(V )) = (1− ε)R. Then a = εa+ (1− ε)a.

Clearly, by construction (1 − ε)a is ad-nilpotent of index less than n in K: for

every x ∈ K, adn−1
(1−ε)ax = (1− ε)adn−1

a x = adn−1
a x− εadn−1

a x = 0.

Let us prove that εa is pure ad-nilpotent of index n in Skew(εR, ∗). For any λ ∈

H(C(R), ∗) such that λεa 6= 0, λεa is ad-nilpotent of index n: clearly adnλεa(Skew(εR, ∗)) =

0 and if adn−1
λεa (Skew(εR, ∗)) = 0 then λn−1ε ∈ AnnR(IdR(V )) = (1− ε)R, which leads

to a nilpotent ideal generated by the nonzero element λεa, a contradiction with the

semiprimeness of R.

Apply now the induction hypothesis to (1 − ε)a and the Lie algebra of skew-

symmetric elements Skew((1− ε)R, ∗).

2.2 Ad-nilpotent elements of R−

In this section we are going to prove that every nilpotent inner derivation is induced by

a nilpotent element, generalizing to semiprime algebras Herstein’s result [42, Theorem

in p. 84] for simple algebras. This result was already proved by Grzeszczuk ([38,

Corollary 8]). Our techniques are rather elementary and, by adding the hypothesis of

pure ad-nilpotence, we can describe such elements with less restrictions on the torsion

of the algebra.

Lemma 2.2.1. Let R be a semiprime associative algebra and let a ∈ R be a nilpotent
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element. Suppose that there exist some λi ∈ Z, i = 0, . . . , n, such that

n∑
i=0

λia
i[x, y]an−i = 0

for all x, y ∈ R. Then for every i = 0, . . . , n we have λia
max(i,n−i) = 0. In particular,

each term in the identity above is zero.

Proof. First, let us suppose that R is prime and suppose that a 6= 0 has index of

nilpotence s. If the lemma is not satisfied, there exists some k with λka
max(k,n−k) 6= 0.

In particular, max(k, n − k) < s. Let us multiply the expression
∑n

i=0 λia
i[x, y]an−i

by as−1−k on the left and by as−1−(n−k) on the right, so that

0 = as−1−k

(
n∑
i=0

λia
i[x, y]an−i

)
as−1−(n−k) = λka

s−1[x, y]as−1

for every x, y ∈ R. Hence λka
s−1xyas−1 = λka

s−1yxas−1 for every x, y ∈ R. Since

as−1 6= 0 for every x ∈ R we have by Theorem 2.0.1 that there exists αx ∈ C(R) such

that λka
s−1x = αxλka

s−1. Multiplying this last expression by a on the right we get

λka
s−1xa = 0 for every x ∈ R. By primeness of R we get that either as−1 = 0 or

λka = 0, leading to a contradiction.

If R is semiprime then R is a subdirect product of prime quotients R/Iα with⋂
α Iα = 0. For any α and any i, by the prime case λia

max(i,n−i) ∈ Iα, so λia
max(i,n−i) =

0.

Lemma 2.2.2. Every nilpotent element of an associative algebra R is ad-nilpotent.

If a has index of nilpotence t and index of ad-nilpotence n then n ≤ 2t − 1. If R is

semiprime then n ≥ t, and if in addition R is free of
(
n
s

)
-torsion for s := [n+1

2
], then

t = s and n = 2t− 1.

Proof. Since at = 0, for every x ∈ R we have

ad2t−1
a x =

2t−1∑
i=0

(
2t− 1

i

)
(−1)2t−1−iaixa2t−1−i = 0
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because if i < t then 2t− 1− i ≥ s. Therefore n ≤ 2t− 1.

Suppose now that R is semiprime and let us see that n ≥ t: if on the contrary

adt−1
a x =

t−1∑
i=0

(
t− 1

i

)
(−1)t−1−iaixat−1−i = 0

for every x ∈ R, focusing on the first summand of this expression ((−1)t−1xat−1) we

get that at−1 = 0 by Lemma 2.2.1, a contradiction.

Moreover, since for every x ∈ R we have 0 = adna(x) =
∑n

i=0

(
n
i

)
(−1)n−iaixan−i,

again by Lemma 2.2.1
(
n
s

)
as = 0 for s := [n+1

2
]. If R is free of

(
n
s

)
-torsion then as = 0

so s ≥ t, i.e., n ≥ 2t− 1, and therefore n = 2t− 1 (equivalently, t = s).

The next example shows that all possible cases in the lemma above can be realized:

Let p be an odd prime number and R a prime associative algebra with characteristic

p. If a ∈ R is a nilpotent element of index t ∈ {p+1
2
, . . . , p} then a is ad-nilpotent of

index p. In particular there are no ad-nilpotent elements of index between p+ 1 and

2p− 1, and a nilpotent element of index p is ad-nilpotent of the same index p.

Proposition 2.2.3. Let R be a prime associative algebra and let a ∈ R be an ad-

nilpotent element of R− of index n. Let F denote the algebraic closure of the field

F := C(R) and R := R̂⊗ F. Then:

1. There exists µ ∈ F such that a− µ is a nilpotent element of R.

2. If R is free of
(
n
s

)
-torsion for s := [n+1

2
] then n is odd and the index of nilpotence

of a− µ is n+1
2

. If in addition R is free of s-torsion then µ ∈ C(R).

Proof. (1) Since R is prime, F = C(R) is a field and R is a centrally closed prime

algebra (see [7, pp. 445–446]). From

0 = adnax =
n∑
i=0

(
n

i

)
(−1)n−iaixan−i

for every x ∈ R we have, by Theorem 2.0.1, that a seen as an element of R̂ is an

algebraic element over F of degree not greater than n. Let us consider the minimal
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polynomial p(X) ∈ F[X] of a. Let F be the algebraic closure of F and let µ1, . . . , µr ∈

F be the roots of p(X) in F, i.e., p(X) = (X − µ1)k1 · · · (X − µr)kr ∈ F[X].

Let us prove that p(X) has only one root in F and therefore p(X) = (X − µ)k ∈

F[X], whence a−µ is nilpotent in R: Suppose on the contrary that p(X) has different

roots µ1, . . . , µr, r > 1, and define qi(X) := p(X)/(X − µi) for every i. Since p(X)

is the minimal polynomial of a, qi(a) 6= 0 in R. Note that (a − µi)qi(a) = p(a) = 0

and therefore aqi(a) = µiqi(a). Now, since we are in the prime case, there exists

y ∈ R such that q1(a)yq2(a) 6= 0 and therefore ada(q1(a)yq2(a)) = aq1(a)yq2(a) −

q1(a)yq2(a)a = (µ1−µ2)q1(a)yq2(a) 6= 0. This means that q1(a)yq2(a) is an eigenvector

of the linear map ada associated to the eigenvalue µ1 − µ2, hence it is an eigenvector

of ad2
a associated to (µ1 − µ2)2, etc. This is a contradiction because both q1(a)yq2(a)

and each power of (µ1 − µ2) are nonzero, while ada is nilpotent. Therefore r = 1,

p(X) = (X − µ)k ∈ F[X] and (a− µ)k = 0.

(2) Let us consider b := a − µ ∈ R, which is ad-nilpotent of index n. Let us see

that n is odd: Suppose on the contrary that n = 2m. Then

0 = adnax = adnb x =
n∑
i=0

(
n

i

)
(−1)n−ibixbn−i

implies by Lemma 2.2.1 that
(
n
m

)
bm = 0 and, since R is free of

(
n
m

)
-torsion, that bm =

0. Substituting in adn−1
b x =

∑n−1
i=0

(
n−1
i

)
(−1)n−1−ibixbn−1−i we get that adn−1

b x = 0

for every x ∈ R, a contradiction.

Therefore n is odd and a− µ is nilpotent of R of index s := n+1
2

by Lemma 2.2.2.

Moreover, since the coefficient of degree s−1 of p(X) = (X−µ)s ∈ F[X] is −sµ ∈ F,

if R is free of s-torsion then µ ∈ F, i.e., there exists µ ∈ C(R) such that a − µ is

nilpotent of index s = n+1
2

.

In the following theorem we get the description of the pure ad-nilpotent elements

of R−. In its proof, Proposition 2.2.3 is primarily used to find that any ad-nilpotent

element a ∈ R of index n forces [a, [adn−1
a x, [adn−1

a x, y]]] = 0 for every x, y ∈ R. If

2, 3, . . . , r were invertible in R for r ≥ n+ [n
2
] + 1, this identity would directly follow

from the proof of [29, Theorem 2.3].
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Theorem 2.2.4. Let R be a semiprime associative algebra, let R̂ be its central closure,

and let a ∈ R be a pure ad-nilpotent element of R− of index n. Put s := [n+1
2

], and

suppose that R is free of
(
n
s

)
-torsion and s-torsion. Then n is odd and there exists

λ ∈ C(R) such that a− λ ∈ R̂ is nilpotent of index n+1
2

.

Proof. Let us suppose that R is a prime associative algebra and, without loss of

generality, that it is centrally closed. Consider µ ∈ C(R) as given by Proposition

2.2.3. Putting b := a− µ, we know that bs = 0 for s := n+1
2

, hence for every x, y ∈ R

we have

(adn−1
a x)(adn−1

a x) = (adn−1
b x)(adn−1

b x) = 0, and

[a, [adn−1
a x, [adn−1

a x, y]]] = [b, [adn−1
b x, [adn−1

b x, y]]]

= −2

(
n− 1

s− 1

)(
n− 1

s− 1

)
[b, bs−1xbs−1ybs−1xbs−1] = 0.

If R is semiprime, R is a subdirect product of prime associative algebras (without(
n
s

)
and s-torsion) and in any of these prime quotients

(adn−1
a x)(adn−1

a x) = 0 and [a, [adn−1
a x, [adn−1

a x, y]]] = 0,

which imply that

(adn−1
a x)(adn−1

a x) = 0, and [a, [adn−1
a x, [adn−1

a x, y]]] = 0

for every x, y ∈ R. For every x ∈ R, let zx := adn−1
a x. By the identity above,

0 =
1

2
[a, [zx, [zx, y]]] = −azxyzx + zxyzxa.

Therefore, since IdR(zxa) ⊂ IdR(zx), by Corollary 2.0.3 there exists λx ∈ C(R) such

that zxa = λxzx and by Proposition 2.0.4 there exists εx ∈ C(R) such that εxzx = zx

and AnnR(IdR(zx)) = (1− εx)R. Therefore
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0 = zxadnay = zx

(
n∑
i=0

(
n

i

)
(−1)n−iaiyan−i

)
=

n∑
i=0

(
n

i

)
(−1)n−izxa

iyan−i

=
n∑
i=0

(
n

i

)
(−1)n−izxλ

i
xya

n−i = zxy

(
n∑
i=0

(
n

i

)
(−1)n−iλixa

n−i

)
= zxy(a− λx)n

for every y ∈ R, whence (a − λx)
n ∈ AnnR(IdR(zx)). So εx(a − λx)

n = 0. Now,

for every x, x′ ∈ R there exist λx, λx′ ∈ C(R) and idempotents εx, εx′ ∈ C(R)

such that 0 = (εxεx′a − εxεx′λx)
n = (εxεx′a − εxεx′λx′)

n, so εxεx′λx = εxεx′λx′ by

Lemma 1.3.3. By Lemma 2.0.5 there exists λ ∈ C(R) such that εxλ = εxλx for

every x ∈ R. Then for every x ∈ R we have zx(a − λ)n = εxzx(a − λx)
n = 0,

so 0 = εxzxadnay = zxy(a − λ)n for every y ∈ R thus (a − λ)n ∈ AnnR(IdR(zx))

(see 1.2.1). Moreover
⋂
x∈R AnnR(IdR(zx)) = AnnR(IdR(adn−1

a (R))) by definition of

zx, and AnnR(IdR(adn−1
a (R))) = AnnR(IdR(a)) because a is pure (Lemma 2.1.2(iii)).

Finally, let ε ∈ C(R) be such that εa = a and AnnR(IdR(a)) = (1 − ε)R. Then

ε(a− λ)n = (a− ελ)n = 0 because it is contained in (1− ε)R.

Hence a − ελ is nilpotent in addition to being ad-nilpotent of index n. Put s :=

[n+1
2

] and take any prime quotient without s and
(
n
s

)
-torsion in which a− ελ is still ad-

nilpotent of index n. By Proposition 2.2.3(2) we get that n must be odd and a− ελ

is nilpotent of index s. Since in any prime quotient (a− ελ)s = 0̄ by Proposition

2.2.3(2), we have that s is the index of nilpotence of a− ελ.

Lee’s description of ad-nilpotent elements of R− is recovered when the hypothesis

of being pure is removed.

Corollary 2.2.5. ([54, Theorem 1.3]) Let R be a semiprime associative algebra, let

R̂ be its central closure, let a ∈ R be an ad-nilpotent element of R− of index n, and

suppose that R is free of n!-torsion. Then n is odd and there exists λ ∈ C(R) such

that a− λ ∈ R̂ is nilpotent of index n+1
2

.

Proof. Suppose without loss of generality that R is centrally closed, i.e., R = R̂.

By Proposition 2.1.4 there exists a family of orthogonal idempotents {εi}ki=1 ⊂

C(R) such that a =
∑k

i=1 εia with εia a pure ad-nilpotent element of index ni (n =
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n1 > n2 > · · · ) of Rεi. Then by Theorem 2.2.4 there exists λi ⊂ C(Rεi) ⊂ C(R)

such that (εia− λi)si = 0 for si := [ni+1
2

] and for all i = 1, ..., k. Hence λ =
∑n

i=1 εiλi

satisfies the claim.

Interesting Lie algebras associated to simple associative algebras R are the quo-

tient algebras [R,R]/([R,R] ∩ Z(R)), which are simple unless R has 2-torsion and is

4-dimensional over its center ([44, Theorem 1.13]). Let us study ad-nilpotent elements

in these associative algebras.

Lemma 2.2.6. ([23, Lemma 4.6]) Let R be a semiprime associative algebra and let

a ∈ R be such that adna(R) ⊂ Z(R). Then adna(R) = 0.

Proof. For every x ∈ R we have

0 = [adna(xa), x] = [(adnax)a, x] = (adnax)[a, x].

Therefore 0 = adn−1
a ((adnax)[a, x]) = (adnax)2 which implies, since R is semiprime and

adnax ∈ Z(R), that adnax = 0.

Lemma 2.2.7. Let R be a semiprime associative algebra, let L := [R,R]/([R,R] ∩

Z(R)) and let a := a+ ([R,R] ∩ Z(R)) ∈ L be an ad-nilpotent element of L of index

n. Then a is an ad-nilpotent element of index n in R−.

Proof. For every x ∈ R, adn+1
a x = adna([a, x]) ∈ adna([R,R]) ⊂ Z(R) so, by Lemma

2.2.6, adn+1
a x = 0 for every x ∈ R, i.e., a is ad-nilpotent in R− of index n or n+ 1.

Let us suppose that R is prime. Then, by Proposition 2.2.3, there exists µ ∈ F,

the algebraic closure of F := C(R), such that a − µ is nilpotent in R ⊗ F of some

index s. Moreover, by Lemma 2.2.2, s ≤ n+ 1. Put b := a− µ. Then

0 = adna([x, y]) = adnb ([x, y]) =
n∑
i=0

(
n

i

)
(−1)n−ibi[x, y]bn−i

for every x, y ∈ R. By Lemma 2.2.1, for every k ∈ {0, 1, . . . , [n+1
2

]} we have
(
n
k

)
bmax(k,n−k) =

0, so

adnax = adnb x =
n∑
i=0

(
n

i

)
(−1)n−ibixbn−i = 0,
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i.e., a is an ad-nilpotent element of R− of index n.

Finally, since a is ad-nilpotent of index not greater than n in any prime quotient,

a is an ad-nilpotent element of R− of index n when R is semiprime.

In particular, from these last two lemmas we get that if R is semiprime then

[R,R]/([R,R]∩Z(R)) and R/Z(R) are nondegenerate Lie algebras (see [44, Sublemma

in p. 5]).

Corollary 2.2.8. Let R be a semiprime associative algebra, let R̂ be its central clo-

sure, and let L := [R,R]/([R,R]∩Z(R)) or L := R/Z(R). If a ∈ L is an ad-nilpotent

element of L of index n and R is free of n!-torsion, then n is odd and there exists

λ ∈ C(R) such that a− λ ∈ R̂ is nilpotent of index n+1
2

.

Proof. If L = [R,R]/([R,R]∩Z(R)) the result follows by Lemma 2.2.7 and Corollary

2.2.5. If L = R/Z(R) the result follows by Lemma 2.2.6 and Corollary 2.2.5.

2.3 Ad-nilpotent elements of K

In this section we focus on semiprime algebras R with involution ∗ and their set of

skew-symmetric elements K. As in the previous section, we will first describe the

pure ad-nilpotent elements of K, and then remove the hypothesis of being pure by

decomposing each ad-nilpotent element into a sum of pure ad-nilpotent elements of

decreasing indices.

The following lemma collects some results about ∗-identities. Item (1) is [44,

Remark on p. 43] (with a different proof), item (2) is a generalization of [56, Lemma

5], and item (3) is a generalization of [13, Lemma 5.2].

Lemma 2.3.1. Let R be a semiprime associative algebra with involution ∗. Let k ∈ K

and h ∈ H. Then:

1. kKk = 0 implies k = 0.

2. hKh = 0 implies hRh ⊂ H(C(R), ∗)h. In particular, R satisfies

hxhyh = hyhxh for every x, y ∈ R,
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and if IdR(h) is essential then Skew(C(R), ∗) = 0.

3. hKh = 0 and hKk = 0 imply hRk = 0. In particular, if IdR(h) is essential

then k = 0, while if h ∈ IdR(k) then h = 0 (resp. if k ∈ IdR(h) then k = 0).

4. k[K,K]k = 0 and k2 = 0 imply k = 0.

Proof. We can suppose without loss of generality that R = R̂, i.e., R is centrally

closed.

(1) Take x ∈ R. Note that k(x− x∗)k = 0, so that kxk = kx∗k. Then

k(xkx)k = k(xkx)∗k = −kx∗kx∗k = −(kx∗k)x∗k = −kxkx∗k

= −kx(kx∗k) = −kxkxk

and so we have kxkxk = 0 since R is free of 2-torsion. Therefore kxkxkyk = 0 for

every y ∈ R, hence

0 = −kxk(xky)k = −kxk(xky)∗k = kxky∗kx∗k = kxkykxk,

so (kxk)R(kxk) = 0 and kxk = 0 since R is semiprime. Now kRk = 0 implies, again

by semiprimeness, that k = 0.

(2) If h = 0 then the claim is trivially fulfilled, so assume h 6= 0. Take x, y ∈ R.

Note that h(x− x∗)h = 0 and therefore hxh = hx∗h. Then

0 = h(xhy − (xhy)∗)h = hxhyh− hy∗hx∗h = hxhyh− (hy∗h)x∗h =

= hxhyh− hy(hx∗h) = hxhyh− hyhxh = (hxh)yh− hy(hxh),

i.e., hxhyh = hyhxh. By Corollary 2.0.3, since h 6= 0 and IdR(hxh) ⊆ IdR(h), for

each x ∈ R there exists µx ∈ C(R) such that hxh = µxh. Hence 0 6= hRh ⊂ C(R)h.

Moreover, since hx∗h = hxh, 2hxh = hxh + hx∗h = (µx + µ∗x)h ∈ H(C(R), ∗)h, so

hRh ⊆ H(C(R), ∗)h.

Let us suppose that IdR(h) is essential in R and let us show that Skew(C(R), ∗) =
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0: Take λ ∈ Skew(C(R), ∗) and y ∈ R. Then (λh)y(λh) = λh(yλ)h = λµλyh ∈ K

for some µλy ∈ H(C(R), ∗). On the other hand (λh)y(λh) = λ2hyh = λ2µyh ∈ H

for some µy ∈ H(C(R), ∗). Therefore (λh)y(λh) = 0 for every y ∈ R, and by

semiprimeness of R, λh = 0, so λ = 0 because IdR(h) is essential.

(3) Suppose first that R is ∗-prime and, without loss of generality, that it is

centrally closed. If R is not prime then there is λ ∈ Skew(C(R), ∗) such that R =

K+λK (see 1.3.2), hence hKh = 0 implies hRh = 0 and h = 0 since R is semiprime,

so trivially hRk = 0. Now assume R is prime. Since R = H + K we only need to

show that hHk = 0. Let x ∈ H and y ∈ R. Then

0 = h(xky − (xky)∗)h = hxkyh+ hy∗kxh = hxkyh+ hykxh

since h(y∗ − y)k = 0 for every y ∈ R. By Corollary 2.0.3, since IdR(hxk) ⊂ IdR(h),

for each x ∈ R there exists µx ∈ C(R) such that hxk = µxh. If µx = 0 then hxk = 0

and we are done. Otherwise, 0 = hxkxk = µxhxk = µ2
xh, hence h = 0 and we are

also done.

Suppose now that R is semiprime. Then there exists a family of ∗-prime ideals

{Iα}α∈∆ such that
⋂
α∈∆ Iα = 0. In each ∗-prime quotient R/Iα we have h̄R/Iαk̄ = 0̄,

so hRk ⊂ Iα for all α, hence hRk = 0.

(4) Since k2 = 0 and k[K,K]k = 0, for all x, y ∈ K we get

0 = k[[x, k], y]k = kxkyk + kykxk, (a)

thus kxkyk = −kykxk and 2kxkxk = 0 for all x ∈ K, hence kxkxk = 0 since R is

free of 2-torsion. Now, by (a),

0 = (kxkxk)yk = kx(kxkyk) = −kxkykxk

for all x, y ∈ K. Thus (kxk)K(kxk) = 0 for all x ∈ K, kKk = 0 and k = 0 by item

(1) applied twice.

Remark 2.3.2. Let R be a semiprime associative algebra with involution. If a ∈ K is
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an ad-nilpotent element of K of index n, then for every x = xh+xk ∈ R with xh ∈ H

and xk ∈ K:

adna(ax+ xa) = adna(axk + xka) + adna(axh + xha)

= aadna(xk) + adna(xk)a+ adna(axh + xha) = 0,

since axh + xha ∈ K. On the other hand, expanding this expression,

0 = adna(ax+ xa) = (−1)nxan+1 +
n∑
i=1

((
n

i

)
−
(

n

i− 1

))
(−1)n−iaixan+1−i + an+1x.

Observe that a nilpotent element in K is ad-nilpotent of both K and R, but its

index of ad-nilpotence in R may be higher than the one found in K.

In the following proposition we describe the ad-nilpotent elements of K of index

n that are already nilpotent of certain index s. The description depends on the

equivalence class of the index of ad-nilpotence modulo 4 and relates the index of

nilpotence to the index of ad-nilpotence.

Proposition 2.3.3. Let R be a semiprime associative algebra with involution ∗, let

R̂ be its central closure, and let a ∈ K be a nilpotent element of index of nilpotence

t. Then a is ad-nilpotent in R. If the index of ad-nilpotence of a in K is n and R is

free of
(
n
s

)
-torsion for s := [n+1

2
], then:

1. If n ≡4 0 then t = s+ 1 and asKas = 0.

2. If n ≡4 1 then t = s and the index of ad-nilpotence of a in R is also n.

3. The case n ≡4 2 is not possible.

4. If n ≡4 3 then there exists an idempotent ε ∈ C(R) such that εas = as. More-

over, when we write a = εa+ (1− ε)a, we have:

(4.1) If 0 6= εa ∈ R̂ then εa is nilpotent of index s + 1, εas = as generates

an essential ideal in εR̂ and (εa)s−1k(εa)s = (εa)sk(εa)s−1 for every k ∈

Skew(R̂, ∗).
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(4.2) If 0 6= (1− ε)a ∈ R̂, then the index of ad-nilpotence of (1− ε)a in R̂ is not

greater than n, and (1− ε)as = 0.

Furthermore, if a is a pure ad-nilpotent element of K then in (2) and in (4.2) we

obtain pure ad-nilpotent elements of R (respectively of R̂) of index n.

Proof. Let us suppose without loss of generality that R = R̂, i.e., R is centrally closed.

Let a ∈ K be a nilpotent element of index of nilpotence t. Then a is ad-nilpotent

of K of a certain index n. If we apply Lemma 2.2.1 to the second formula obtained

in Remark 2.3.2 we get that all the monomials appearing in it are zero. We will now

focus on certain monomials depending on the parity of n.

• If n is even, n = 2s. Let us see that t = s+ 1: on the one hand, for any x ∈ R

we know that ((
n

s

)
−
(

n

s− 1

))
(−1)sasxas+1 = 0

and, since
(
n
s

)
−
(
n
s−1

)
is a divisor of 2

(
n
s

)
and R is free of 2

(
n
s

)
-torsion, we have that

asxas+1 = 0 for all x. Therefore as+1 = 0 by semiprimeness, hence t ≤ s+ 1. On the

other hand, if t = s then as = 0 and ad2s−1
a (R) = 0, a contradiction.

Let us see that n ≡4 0: For any k ∈ K,

0 = ad2s
a (k) =

2s∑
i=1

(
2s

i

)
(−1)2s−iaika2s−i =

(
2s

s

)
(−1)saskas,

so askas = 0 for every k ∈ K, which implies that s has to be even, since otherwise

as ∈ K and asKas = 0 imply as = 0 by Lemma 2.3.1(1), a contradiction. We have

shown that, if n is even, n ≡4 2 is not possible.

• If n is odd, n = 2s− 1, and for any x ∈ R,

((
n

s− 1

)
−
(

n

s− 2

))
as−1xas+1 = 0.

Since
(
n
s−1

)
−
(
n
s−2

)
is a divisor of 2

(
n
s

)
and R is free of 2

(
n
s

)
-torsion, we have that

as−1xas+1 = 0 for all x. Therefore as+1 = 0 by semiprimeness, hence t ≤ s + 1. On

the other hand t > s− 1 since otherwise ad2s−2
a (R) = 0, a contradiction.

31



If as = 0 then a is already an ad-nilpotent element of R of index n. In this case

n ≡4 1 or n ≡4 3 by Proposition 2.2.3(2). Furthermore, if a is pure in K then a is

pure in R by Lemma 2.1.3.

Suppose from now on that as 6= 0. Let us show that n ≡4 3. By Proposition 2.0.4

there exists an idempotent ε ∈ H(C(R), ∗) such that εas = as and AnnR(IdR(as)) =

(1−ε)R (so as = εas generates an essential ideal in εR). Notice that εa 6= 0 (otherwise

0 = (εa)s = εas = as, a contradiction). For every k ∈ K we have

0 = adnεak =
n∑
i=1

(
n

i

)
(−1)n−iεaikan−i =

=

(
n

s− 1

)
(−1)sεas−1kas +

(
n

s

)
(−1)s−1εaskas−1 =

=

(
n

s

)
(−1)s−1(−εas−1kas + εaskas−1).

Since R has no
(
n
s

)
-torsion, εas−1kas = εaskas−1 for every k ∈ K. Moreover, multi-

plying by a on the right we get εaskas = askas = 0, so asKas = 0, which by Lemma

2.3.1(1) is only possible if as 6= 0 is symmetric, hence s is even and n ≡4 3.

If (1− ε)a 6= 0 then ad2s−1
(1−ε)a(R) = 0 and (1− ε)a is an ad-nilpotent element of R

of index not greater than 2s− 1.

If a is a pure ad-nilpotent element of index n in K then (1− ε)a is ad-nilpotent of

K of index n and therefore (1− ε)as−1 6= 0. From this the index of ad-nilpotence of

(1−ε)a in R must be n = 2s−1. Then by Lemma 2.1.3 (1−ε)a is a pure ad-nilpotent

element of R of index n.

Remark 2.3.4. Let a ∈ K be a nilpotent element of index t. If we denote its index

of ad-nilpotence in K by n, we obtain from Proposition 2.3.3 that, under the right

torsion hypothesis, 2t− 3 ≤ n ≤ 2t− 1 and n+1
2
≤ t ≤ n+3

2
.

The next two results can be joint in one, but in order to clarify our proof we

have decided split them in two. Firstly, in the next proposition we prove that a pure

ad-nilpotent element of K can be descomposed into two parts, where one part is

ad-nilpotent of R and the other part is nilpotent. After that, in Theorem 2.3.6, we
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apply Proposition 2.3.3 to obtain the classification of a pure ad-nilpotent element of

K depending on its index of ad-nilpotence modulo 4.

Proposition 2.3.5. Let R be a semiprime associative algebra with involution ∗, let

R̂ be its central closure, and let a ∈ K be a pure ad-nilpotent element of K of index

n > 1. Then:

(1) There exists an idempotent ε ∈ H(C(R), ∗) such that (1− ε)a is an ad-nilpotent

element of R̂ of index ≤ n and εa is nilpotent with adnµεa(R̂) 6= 0 for every

µ ∈ C(R) such that µεa 6= 0.

(2) Moreover, if a is pure ad-nilpotent in K and R is free of
(
n
s

)
-torsion and t-

torsion for s := [n+1
2

], when we write a = εa+ (1− ε)a we have:

(2.1) If εa 6= 0 then εa is nilpotent of index s+ 1.

(2.2) If (1−ε)a 6= 0 then (1−ε)a is pure ad-nilpotent in R̂ of index n. In this case

n is odd and there exists λ ∈ Skew(C(R), ∗) such that ((1− ε)a− λ)s = 0.

Proof. Notice that n ≥ 3 since ad2
a(K) = 0 implies a ∈ Z(R) by [27, Corollary 4.8]

and so ada(K) = 0, which is not possible because n > 1 by hypothesis.

(1) Let us suppose first that R is a ∗-prime associative algebra and, without loss of

generality, that it is centrally closed.

(1.a) Case 1: adna(R) = 0 and we get the claim for the idempotent ε = 0.

(1.b) Case 2: adna(R) 6= 0 implies that there are no nonzero skew elements λ in C(R),

since otherwise (by 1.3.2) R = K + λK would imply adna(R) = 0; in particular R

is prime. Since adna(K) = 0, by the second formula of Remark 2.3.2 and Corollary

2.0.3, a is an algebraic element of R over the field F := C(R). Let us consider

the minimal polynomial p(X) ∈ F[X] of a. Let F be the algebraic closure of C(R)

and let µ1, . . . , µt ∈ F such that p(X) = (X − µ1)k1 · · · (X − µs)
ks . Let q1(X) :=
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p(X)/(X − µ1), so q1(a)a = µ1q1(a). Now, for any x ∈ R⊗ F,

0 = adna(ax+ xa)q1(a)

= a
n∑
i=0

(
n

i

)
(−1)n−iaixan−iq1(a) +

n∑
i=0

(
n

i

)
(−1)n−iaixan−iaq1(a)

= a

n∑
i=0

(
n

i

)
(−1)n−iaixµn−i1 q1(a) +

n∑
i=0

(
n

i

)
(−1)n−iaixµn−i1 µ1q1(a)

= a
n∑
i=0

(
n

i

)
(−1)n−iaiµn−i1 xq1(a) +

n∑
i=0

(
n

i

)
(−1)n−iaiµn−i1 µ1xq1(a)

= a(a− µ1)nxq1(a) + (a− µ1)nµ1xq1(a) = (a− µ1)n(a+ µ1)xq1(a)

and therefore, since R ⊗ F is a centrally closed prime algebra (see [7, pp. 445–446]),

(a− µ1)n(a+ µ1) = 0. If µ1 = 0 then a is nilpotent of index at most n+ 1. If µ1 6= 0,

since the involution is the identity over C(R) because Skew(C(R), ∗) = 0, it extends

to R ⊗ F via (r ⊗ λ)∗ := r∗ ⊗ λ, hence 0 = ((a − µ1)n)∗(a + µ1)∗ = (a∗ − µ1)n(a∗ +

µ1) = (−a − µ1)n(−a + µ1) implies (a + µ1)n(a − µ1) = 0. From the conditions

(a−µ1)n(a+µ1) = 0 and (a+µ1)n(a−µ1) = 0 we obtain p(X) = (X −µ1)(X +µ1).

Thus a2 = µ2
1, but then ad3

a(k) = 4µ2
1[a, k] for every k ∈ K, a contradiction with

n ≥ 3.

Let us study the semiprime case, and suppose without loss of generality that R

is centrally closed: If a is already ad-nilpotent in R of index n, take ε = 0 and

the claim holds. Suppose from now on that adna(R) 6= 0. By Proposition 2.0.4

let ε ∈ H(C(R), ∗) be an idempotent such that εadna(x) = adna(x) for every x ∈

R, AnnR(IdR(adna(R))) = (1 − ε)R and AnnC(R)(adna(R)) = (1 − ε)C(R). Then

adn(1−ε)a(R) = (1− ε)adna(R) = 0.

Let us study the element εa: First notice that adnµεaR 6= 0 for every µ such that

µεa 6= 0, since otherwise µεadna(R) = adnµεaR = 0 implies µε ∈ AnnC(R)(adna(R)) =

(1−ε)C(R) and hence µε = 0, a contradiction. Let us see that εa is nilpotent. Since R

is semiprime, the intersection of all ∗-prime ideals of R is zero. Consider the essential

∗-ideal S := IdR(adna(R)) ⊕ AnnR(IdR(adna(R))) = IdR(adna(R)) ⊕ (1 − ε)R. Let us

34



consider the families

∆1 := {I /∗ R | R/I is ∗-prime and S 6⊂ I}

and

∆2 := {I /∗ R | R/I is ∗-prime and S ⊂ I}.

Since S ⊂
⋂
I∈∆2

I and S is essential,
⋂
I∈∆1

I = 0 and R is a subdirect product of

R/I with I ∈ ∆1. Let us see that in any ∗-prime quotient εa is nilpotent of index not

greater than n+ 1. Take I ∈ ∆1 and consider R̄ := R/I. We may have two cases:

� If ε = 0 then εa = 0.

� If ε 6= 0 then ε = 1 ∈ R/I and 1− ε = 0, so (1 − ε)R ⊂ I. Moreover,

adnεa(R/I) 6= 0 since otherwise adnεa(R/I) = 0 would imply S ⊂ I, a contra-

diction. Let us see that R/I is prime: if R/I is ∗-prime and not prime there

would exist a nonzero skew element λ in C(R/I), which implies that R/I =

Skew(R/I, ∗)⊕ λSkew(R/I, ∗) (see 1.3.2), so adnεa(R/I) = adnεa(Skew(R/I, ∗)⊕

λSkew(R/I, ∗)) = 0, a contradiction. So R/I is a prime algebra with involution

and adnεa(R/I)) 6= 0 which implies, by the case (1.b), that εa is nilpotent of

index not greater than n+ 1.

In conclusion, for any I ∈ ∆1 we have εan+1 ∈ I and therefore εan+1 = 0.

(2) Suppose now that a is a pure element of K of index n and R is free of 2
(
n
s

)
-

torsion and free of s-torsion for s := [n+1
2

]. If a is already ad-nilpotent of R of index

n then a is pure in R by Lemma 2.1.3 and we can use Theorem 2.2.4 to find that

n is odd and there exists λ ∈ Skew(C(R), ∗) such that (a − λ)s = 0. Otherwise

write a = εa + (1 − ε)a as before. Since εa is nilpotent and ad-nilpotent of K of

index n (because we are assuming that a is pure in K), εa is nilpotent of index

s + 1 (it has index s or s + 1 by Proposition 2.3.3, but adnεa(R) 6= 0). Moreover,

(1 − ε)a is a pure ad-nilpotent element of R of index n (if it is nonzero, its index of

ad-nilpotence cannot be lower than n since (1− ε)a is ad-nilpotent in K of index n),

and we can apply Theorem 2.2.4 and Lemma 1.3.3 to get that n is odd and there

35



exists λ ∈ Skew(C(R), ∗) such that ((1− ε)a− λ)s = 0.

Theorem 2.3.6. Let R be a semiprime associative algebra with involution ∗, let R̂ be

its central closure, and let a ∈ K be a pure ad-nilpotent element of K of index n > 1.

If R is free of
(
n
s

)
-torsion and s-torsion for s := [n+1

2
] then:

1. If n ≡4 0 then as+1 = 0, as 6= 0 and asKas = 0. Moreover, there exists an

idempotent ε ∈ H(C(R), ∗) such that εa = a and the ideal generated by as is

essential in εR̂. In addition εR̂ satisfies the GPI asxasyas = asyasxas for every

x, y ∈ εR̂.

2. If n ≡4 1 then there exists λ ∈ Skew(C(R), ∗) such that (a − λ)s = 0 (a is an

ad-nilpotent element of R of index n).

3. It is not possible that n ≡4 2.

4. If n ≡4 3 then there exists an idempotent ε ∈ H(C(R), ∗) making a = εa+ (1−

ε)a ∈ R̂ such that:

(4.1) If εa 6= 0 then εas+1 = 0, εas 6= 0 and εaskεas−1 = εas−1kεas for every

k ∈ Skew(R̂, ∗). The ideal generated by εas is essential in εR̂ and εR̂

satisfies the GPI asxasyas = asyasxas for every x, y ∈ εR̂.

(4.2) If (1 − ε)a 6= 0 then there exists λ ∈ Skew(C(R), ∗) such that ((1 − ε)a −

λ)s = 0 ((1− ε)a is a pure ad-nilpotent element of R̂ of index n).

In particular, for all n > 1 there exists λ ∈ Skew(C(R), ∗) such that (a− λ)s+1 = 0,

(a− λ)s−1 6= 0.

Proof. We can suppose without loss of generality that R = R̂, i.e., R is centrally

closed. By Proposition 2.3.5 there exists an idempotent ε ∈ H(C(R), ∗) such that

εadnax = adnax for every x ∈ R and AnnR(IdR(adna(R))) = (1− ε)R, and moreover:

� If εa 6= 0, it is nilpotent of index s + 1 and ad-nilpotent of K of index n. By

Proposition 2.3.3 this may happen if either n ≡4 0, in which case as+1 = 0,

as 6= 0, asKas = 0 and (1− ε)a = 0 (because (1− ε)a is ad-nilpotent of R and
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its index cannot be even), or n ≡4 3. The case n ≡4 1 is not possible because

εas 6= 0.

� If (1− ε)a 6= 0 then (1− ε)a is a pure ad-nilpotent element of R, n is odd and

there exists λ ∈ Skew(R, ∗) with ((1− ε)a− λ)s = 0. By Proposition 2.3.3 this

may happen if either n ≡4 1 (in this case εa = 0) or n ≡4 3. The decomposition

(1 − ε)a − λ = a1 + a2 given by Proposition 2.3.3(4) occurs with a1 = 0 since

otherwise the index s+ 1 of a1 would contradict ((1− ε)a− λ)s = 0.

In the particular case of n ≡4 3 with εa 6= 0, the idempotent ε1 produced in Propo-

sition 2.3.3(4) for the nilpotent element εa satisfies ε1εa
s = εas, so (1 − ε1)ε ∈

AnnR(IdR(adna(R))) = (1 − ε)R, thus ε1ε = ε and εas = ε1εa
s generates an essential

ideal in εR. On the other hand, we know from Proposition 2.3.5 that (εa)s−1k(εa)s =

(εa)sk(εa)s−1 for every k ∈ K; in particular (εa)sK(εa)s = 0. Therefore, by Lemma

2.3.1(2) the identity

asxasyas = asyasxas

holds in εR.

In the particular case of n ≡4 0 the idempotent ε produced in Proposition 2.3.5

satisfies εasxas = εas for every x ∈ R and AnnRIdR(asRas) = (1− ε)R. On the other

hand, (1 − ε)a must be zero because adn(1−ε)a(R) = 0 and a is a pure ad-nilpotent

element (so a = εa). Therefore, the ideal generated by as in εR is essential in εR and

the identity asxasyas = asyasxas holds in εR by Lemma 2.3.1(2).

Remark 2.3.7. It is worth noting that in the semiprime case, when n ≡4 3 there can

exist elements a with two nonzero parts εa and (1 − ε)a behaving as in Theorem

2.3.6(4.1) and Theorem 2.3.6(4.2). This is no longer true in the prime case, see [56,

Main Theorem].

In the next corollary we recover T.K. Lee’s main result by taking into account that

every ad-nilpotent element can be expressed as a sum of pure ad-nilpotent elements

of decreasing indices.
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Corollary 2.3.8. ([54, Theorem 1.5]) Let R be a semiprime associative algebra with

involution ∗ and free of n!-torsion, let R̂ be its central closure, and let a ∈ K be

an ad-nilpotent element of K of index n. Then there exist λ ∈ Skew(C(R), ∗) and

an idempotent ε ∈ H(C(R), ∗) such that (εa − λ)s+1 = 0 and (εa − λ)s−1 6= 0 for

s := [n+1
2

], and (1− ε)R̂ is a PI-algebra satisfying the standard identity S4.

Proof. We can suppose without loss of generality that R = R̂, i.e., R is centrally

closed. By Proposition 2.1.4 there exists a family of orthogonal symmetric idem-

potents {εi}ki=1 of the extended centroid such that a =
∑k

i=1 εia, with εia a pure

ad-nilpotent element of index ni (n = n1 > n2 > . . . ) of Skew(εiR, ∗). If nk = 1 then

εka can be decomposed as εka = εk1a+(1−εk1)a, where εk1a ∈ Z(R) and (1−εk1)R is

a PI-algebra satisfying the standard identity S4 by [13, Theorem 4.2(i),(ii) and (*)].

The claim follows now from Theorem 2.3.6.

Let us extend this last result to Lie algebras of the form K/(K ∩ Z(R)) and

[K,K]/([K,K] ∩ Z(R)).

Corollary 2.3.9. Let R be a semiprime associative algebra with involution free of n!-

torsion, let R̂ be its central closure, and consider the Lie algebra L := K/(K ∩Z(R)).

If ā is an ad-nilpotent element of L of index n then there exist λ ∈ Skew(C(R), ∗)

and an idempotent ε ∈ H(C(R), ∗) such that (εa− λ)s+1 = 0 and (εa− λ)s−1 6= 0 for

s := [n+1
2

], and (1− ε)R̂ is a PI-algebra that satisfying the standard identity S4.

Proof. Let us prove that adna(K) ⊂ Z(R) implies adna(K) = 0: Suppose first that R is

∗-prime and, without loss of generality, centrally closed. If adna(K) 6= 0, there would

exist 0 6= λ ∈ adna(K) ∩ Z(R), so R = K + λK by 1.3.2 and hence adna(R) ⊂ Z(R),

which implies by Lemma 2.2.6 that adna(R) = 0, a contradiction. The same result

follows for semiprime algebras because they can be expressed as subdirects product

of ∗-prime quotients.

The claim follows now from Corollary 2.3.8.

Now we turn to Lie algebras of the form [K,K]/([K,K]∩Z(R)). We first need a

technical lemma.
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Lemma 2.3.10. Let R be a semiprime associative algebra with involution ∗ and

a ∈ K be such that adna([K,K]) ⊂ Z(R), n > 1. If R is free of (n + 1)!-torsion then

adna(K) = 0.

Proof. Let us first suppose that R is a ∗-prime associative algebra and, without loss

of generality, that it is centrally closed. If Skew(C(R), ∗) 6= 0 then R = K + λK

for any 0 6= λ ∈ Skew(C(R), ∗) (see 1.3.2); thus adna([R,R]) ⊂ Z(R), and by Lemma

2.2.7 a is an ad-nilpotent element of R of index n. Otherwise Skew(C(R), ∗) = 0,

in which case R must be prime and K ∩ Z(R) = 0, so adna([K,K]) = 0. From

adn+1
a K ⊂ adna([K,K]) = 0 and Skew(C(R), ∗) = 0 we get from Proposition 2.3.5

that a is a nilpotent element of R. Let t be its index of nilpotence. If adnaK = 0 we

are done; suppose it is not and let us compare the index of ad-nilpotence of a in K

with its index of nilpotence t (see Proposition 2.3.3) to get a contradiction:

(a) If n + 1 ≡4 0 then t = n+3
2

and at−1Kat−1 = 0. From
(
n
t−2

)
=
(
n
t−1

)
we get,

for every x ∈ R, that adnax = (−1)t−1
(
n
t−2

)
(at−2xat−1 − at−1xat−2). Then, for every

k, k′ ∈ K,

2(adnak)k′(adnak) =

= 2

(
n

t− 2

)(
n

t− 2

)(
at−2kat−1k′at−2kat−1 + at−1kat−2k′at−1kat−2

)
= 2

(
n

t− 2

)(
n

t− 2

)
at−2k(at−1k′at−2 − at−2k′at−1)kat−1+

+ 2

(
n

t− 2

)(
n

t− 2

)
at−1k(at−2k′at−1 − at−1k′at−2)kat−2 =

= 2(−1)t−2

(
n

t− 2

)
(at−2k(adnak

′)kat−1 − at−1k(adnak
′)kat−2) =

= (−1)t−2

(
n

t− 2

)
(at−2ad2

k(adnak
′)at−1 − at−1ad2

k(adnak
′)at−2) =

= adna(ad2
k(adnak

′)) ∈ adna([K,K]) = 0

because aadnak = 0 = (adnak)a, at−1Kat−1 = 0 and t ≥ 3 implies at−1at−2 = 0.

Therefore (adnak)K(adnak) = 0 and hence adnak = 0 for every k ∈ K by Lemma

2.3.1(1).
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(b) If n + 1 ≡4 1 then t = n
2

+ 1. For every x ∈ R, adnax = (−1)t−1
(
n
t−1

)
at−1xat−1.

Then, for every k, k′ ∈ K,

2(adnak)k′(adnak) = 2

(
n

t− 1

)(
n

t− 1

)
at−1kat−1k′at−1kat−1 =

=

(
n

t− 1

)(
n

t− 1

)
at−1ad2

k(a
t−1k′at−1)at−1 =

= adna(ad2
k(adnak

′)) ∈ adna([K,K]) = 0

because at−1at−1 = 0. Therefore (adnak)K(adnak) = 0 and hence adnak = 0 for every

k ∈ K by Lemma 2.3.1(1).

(c) The case n+ 1 ≡4 2 is not possible.

(d) If n+ 1 ≡4 3 then, by primeness of R, either t = n
2

+ 2 and at−2kat−1 = at−1kat−2

for every k ∈ K (case (4.1) in Theorem 2.3.6) or t ≤ n
2

+ 1 (case (4.2) in Theorem

2.3.6).

(d.1) Suppose t = n
2

+ 2 and at−2kat−1 = at−1kat−2 (1) for every k ∈ K. For

convenience write α :=
(
n
t−3

)
, β :=

(
n
t−2

)
and observe that α 6= β (since n 6= 2t − 5).

For every k, k′ ∈ K we have

0 = adna([k, k′]) = αat−3[k, k′]at−1 − βat−2[k, k′]at−2 + αat−1[k, k′]at−3. (2)

Multiplying on the left by a and applying (1) to the second term afterwards,

0 = aadna([k, k′]) = αat−2[k, k′]at−1 − βat−1[k, k′]at−2 =

= αat−2[k, k′]at−1 − βat−2[k, k′]at−1 = (α− β)at−2[k, k′]at−1,

which gives at−2[k, k′]at−1 = 0 (3) since R is free of (α − β)-torsion. Now we study

two separate cases:

If n = 2 then t = 3 and a ∈ K satisfies ad3
a(K) = 0 and a2 6= 0, a3 = 0, so it is

a Clifford element (see [10]). Since R is free of 2, 3-torsion there is a twin element

b ∈ K of a such that aba = a and a2b2a2 = a2 ([10, p. 289 and Proposition 3.7(6)]).
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Then, by (3),

0 = a[[b, a], b]a2 = 2(aba)ba2 − a2b2a2 − ab2a3 = 2aba2 − a2 = a2,

a contradiction.

If n > 2 then n ≥ 6 and t ≥ 5, so 2t− 4 > t and (at−2)2 = 0. We see that

at−2[k1, k
′
1]at−2[k2, k

′
2]at−2[k1, k

′
1]at−2 = 0 (4)

for every k1, k
′
1, k2, k

′
2 ∈ K: from (2) we can write βat−2[k2, k

′
2]at−2 as a linear combi-

nation of at−1[k, k′]at−3 and at−3[k, k′]at−1, so (4) follows since R is free of β-torsion

and at−2[k1, k
′
1]at−1 = 0 = at−1[k1, k

′
1]at−2 by (3) and (1). Since for each k1, k

′
1 ∈ K

we have that b := at−2[k1, k
′
1]at−2 ∈ K is such that b2 = 0 and b[K,K]b = 0 by (4), by

Lemma 2.3.1(4) we get b = 0 for each k1, k
′
1 ∈ K, so at−2[K,K]at−2 = 0, and at−2 = 0

again by Lemma 2.3.1(4), a contradiction.

(d.2) Suppose t ≤ n
2
+1. In this case, the proof follows as in (b): adnax = (−1)

n
2

(
n
n
2

)
a

n
2 xa

n
2

for every x ∈ R, (adnak)K(adnak) = 0 and hence adnak = 0 for every k ∈ K by Lemma

2.3.1(1).

In any case adna(K) = 0. Finally, the semiprime case follows because R is a

subdirect product of ∗-prime associative algebras.

From this lemma and Corollary 2.3.8 we get:

Corollary 2.3.11. Let R be a semiprime associative algebra with involution ∗, let

R̂ be its central closure, and consider the Lie algebra L := [K,K]/(Z(R) ∩ [K,K]).

If ā is an ad-nilpotent element of L of index n > 1 and R is free of (n + 1)!-torsion

then there exist λ ∈ Skew(C(R), ∗) and an idempotent ε ∈ H(C(R), ∗) such that

(εa − λ)s+1 = 0 and (εa − λ)s−1 6= 0 for s := [n+1
2

], and (1 − ε)R̂ is a PI-algebra

satisfying the standard identity S4.
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Chapter 3

Ad-nilpotent elements in a prime

associative superalgebra

This chapter is part of an article that has been published in the journal Linear and

Multilinear Algebra [28].

In this chapter we are going to study nilpotent inner superderivations in prime

associative superalgebras with and without involution.

The goal is to extend the results of the previous chapter to the prime super setting.

In the first section we will give a detailed description of a homogeneous ad-nilpotent

element a of index n in a prime associative superalgebra R free of
(
n
s

)
and s-torsion,

where s = [n+1
2

], depending on the degree of the element and the equivalence class of

n modulo 4. If a belongs to R0 we can adjust the techniques and use the results from

the previous chapter because R0 is an algebra. On the other hand, if a ∈ R1 we will

work with a2 ∈ R0 and we will show that the only possible indexes of ad-nilpotency of

a are n ≡4 1, 2. These two cases correspond to a nilpotent element of index n+1
2

, when

n ≡4 1, or to an element a for which there exists λ ∈ C(R)0 with (a2 − λ)
n+2
4 = 0,

when n ≡4 2.

In the second section we will study ad-nilpotent elements of the skew-symmetric

elements K of a prime superalgebra with superinvolution and characteristic p > n ,

i.e., elements a ∈ K0 ∪ K1 such that adnaK = 0 and adn−1
a K 6= 0. The key point is

the fact proven in Proposition 3.2.3 that any ad-nilpotent element a of K of index
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n is either nilpotent or ad-nilpotent of the whole R with the same index n. When

a ∈ K is an ad-nilpotent homogeneous even element, it will be classified depending

on its index of ad-nilpotency modulo 4 (see Theorem 3.2.4), and when a ∈ K1 is ad-

nilpotent of index n, its description will depend on the congruence class of n modulo

8 (see Theorem 3.2.5): if n ≡8 1, 2, 5, 6 then a behaves as an ad-nilpotent element of

R and if n ≡8 0, 7 then a is nilpotent of index s + 1 for s = [n+1
2

], and asKas = 0,

implying that asRas is commutative as a local superalgebra at as. We will also show

that the indexes of ad-nilpotency n ≡8 3, 4 are not possible.

3.0.1. Let R be an associative superalgebra. We recall that a homogeneous 0-degree

linear map ∗ : R→ R is a superinvolution in R if (a∗)∗ = a and (ab)∗ = (−1)|a||b|b∗a∗

for every homogeneous a, b ∈ R0 ∪R1. In particular

(abc)∗ = (−1)|a||b|+|a||c|+|b||c|c∗b∗a∗

for homogeneous a, b, c ∈ R0 ∪R1 and and

(aba)∗ = (−1)|a||b|+|a||a|+|b||a|a∗b∗a∗ = (−1)|a|a∗b∗a∗.

the set of skew-symmetric elements K := {a ∈ R | a∗ = −a} and the set of symmetric

elements H := {a ∈ R | a∗ = a} are graded submodules of R. Since 1
2
∈ Φ,

R = H ⊕K. We will denote Hi = H ∩Ri and Ki = K ∩Ri, i = 0, 1. Notice that

a ∈ K0 =⇒

 as ∈ H0, when s is even,

as ∈ K0, when s is odd,

a ∈ K1 =⇒



as ∈ H0, when s ≡4 0,

as ∈ K1, when s ≡4 1,

as ∈ K0, when s ≡4 2,

as ∈ H1, when s ≡4 3.

Moreover, if R is a prime superalgebra and Skew(C(R), ∗) 6= 0, then R = K+µK

for any nonzero homogeneous µ ∈ Skew(C(R), ∗) (indeed, µ2 ∈ C(R)0 is invertible
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because C(R)0 is field, and therefore R ⊆ K + µ2H ⊆ K + µK ⊆ R).

3.0.2. Let a ∈ R1. Taking into account that ad2
a = ada2 , it is convenient to compute

the adjoint map depending on n modulo 4 and focus in the central terms because if

a is nilpotent these will remain:

n ≡4 0

ad2s
a x = adsa2x =

s∑
i=0

(
s

i

)
(−1)s−ia2ixa2s−2i =

= ...+

(
s

s
2
− 1

)
(−1)

s
2
−1as−2xas+2 +

(
s
s
2

)
(−1)

s
2asxas +

(
s

s
2

+ 1

)
(−1)

s
2

+1as+2xas−2 + ...

n ≡4 1

ad2s−1
a x = adaad2s−2

a x = ada
(
ads−1

a2 x
)

= ada

(
s−1∑
i=0

(
s− 1

i

)
(−1)s−ia2ixa2s−2i−2

)
=

= ada

(
...+

(
s− 1
s−1

2

)
(−1)

s−1
2 as−1xas−1 + ...

)
=

= ...+

(
s− 1
s−1

2

)
(−1)

s−1
2 asxas−1 −

(
s− 1
s−1

2

)
(−1)

s−1
2

+|x|as−1xas + ...

n ≡4 2

ad2s
a x = adsa2x =

s∑
i=0

(
s

i

)
(−1)s−ia2ixa2s−2i =

= ...+

(
s
s−1

2

)
(−1)

s−1
2 as−1xas+1 +

(
s
s+1

2

)
(−1)

s+1
2 as+1xas−1 + ...

n ≡4 3

ad2s−1
a x = adaad2s−2

a x = ada
(
ads−1

a2 x
)

= ada

(
s−1∑
i=0

(
s− 1

i

)
(−1)s−ia2ixa2s−2i−2

)
=

= ada

(
...+

(
s− 1
s−2

2

)
(−1)

s−2
2 as−2xas +

(
s− 1
s
2

)
(−1)

s
2asxas−2 + ...

)
=

= ...+

(
s− 1
s
2
− 1

)
(−1)

s
2
−1as−1xas +

(
s− 1
s
2

)
(−1)

s
2as+1xas−2−

−
(
s− 1
s
2
− 1

)
(−1)

s
2
−1+|x|as−2xas+1 −

(
s− 1
s
2

)
(−1)

s
2

+|x|asxas−1 + ...
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Throughout all this chapter we will use these calculations without mentioning

them.

3.1 Ad-nilpotent elements of R−

In the following result we will relate the index of nilpotence of a homogeneous element

of R with its index of ad-nilpotence in R. It will be useful in our study of ad-nilpotent

elements of K.

Proposition 3.1.1. Let R = R0 ⊕ R1 be a semiprime associative superalgebra. If

a ∈ R is a homogeneous nilpotent element of index s and

(1) a ∈ R0 and R is free of
(

2s−2
s−1

)
-torsion, then a is ad-nilpotent of R (and of R0)

of index n = 2s− 1,

(2a) a ∈ R1, s is even and R is free of
(
s−2
s−2
2

)
-torsion, then a is ad-nilpotent of R of

index n = 2s− 2 (n ≡4 2),

(2b) a ∈ R1, s is odd and R is free of
(
s−1
s−1
2

)
-torsion, then a is ad-nilpotent of R of

index n = 2s− 1 (n ≡4 1).

Proof. (1) Since a ∈ R0, the operator ada behaves as the adjoint map in the non-super

setting. From as = 0 we get that ad2s−1
a (R) = 0. On the other hand, as−1 6= 0, so by

semiprimeness of R (and of R0) (see Lemma 1.1.6) there exists x ∈ R (respectively,

x ∈ R0) such that as−1xas−1 6= 0 and, since R has no
(

2s−2
s−1

)
-torsion,

(
2s−2
s−1

)
as−1xas−1 6=

0. Thus

ad2s−2
a (x) =

(
2s− 2

s− 1

)
(−1)s−1as−1xas−1 6= 0.

We have shown that a is ad-nilpotent of R (and of R0) of index n = 2s− 1.

(2a) Suppose that a ∈ R1 is a nilpotent element of even index s. Since ad2
a = ada2

and a2 ∈ R0 is nilpotent of index s
2
, we have by (1) that a2 is ad-nilpotent of R of

index 2( s
2
)−1 = s−1. Hence the index of ad-nilpotence of a is less or equal to 2s−2.
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Let x be any element in R0 ∪R1:

ad2s−3
a (x) = ad2s−4

a ada(x) = ads−2
a2 ada(x) =

=

(
s− 2
s−2

2

)
(−1)

s−2
2 as−2(ax− (−1)|x|xa)as−2 =

=

(
s− 2
s−2

2

)
(−1)

s−2
2 as−1xas−2 −

(
s− 2
s−2

2

)
(−1)

s−2
2

+|x|as−2xas−1, hence

ad2s−3
a (x)a =

(
s− 2
s−2

2

)
(−1)

s−2
2 as−1xas−1.

Therefore ad2s−3
a (R) cannot be zero, since otherwise as−1 = 0 because R is free of(

s−2
s−2
2

)
-torsion and semiprime, a contradiction. We have shown that a is ad-nilpotent

of index n = 2s− 2.

(2b) Suppose that a ∈ R1 is a nilpotent element of odd index s. For any homoge-

neous x ∈ R0 ∪R1:

ad2s−1
a (x) = adaad2s−2

a (x) = adaads−1
a2 (x) = ada

((
s− 1
s−1

2

)
(−1)

s−1
2 as−1xas−1

)
=

=

(
s− 1
s−1

2

)
(−1)

s−1
2 (asxas−1 − (−1)|x|as−1xas) = 0

so ad2s−1
a (R) = 0. Let us see that ad2s−2

a (R) 6= 0: as−1 6= 0, so there exists x ∈ R

such that

ad2s−2
a (x) = ads−1

a2 (x) =

(
s− 1
s−1

2

)
(−1)

s−1
2 as−1xas−1 6= 0

becauseR is semiprime and free of
(
s−1
s−1
2

)
-torsion. We have shown that a is ad-nilpotent

of index n = 2s− 1.

In the following theorem we describe the homogeneous ad-nilpotent elements of

R, depending on the equivalence class of their indexes of ad-nilpotence modulo 4.

Theorem 3.1.2. Let us consider a prime associative superalgebra R = R0 ⊕ R1, let

R̂ denote the central closure of R, and let a ∈ R0 ∪R1 be a homogeneous ad-nilpotent

element of index n. If R is free of
(
n
s

)
-torsion and free of s-torsion, for s = [n+1

2
],

then:
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1. If a ∈ R0, n is odd and exists λ ∈ C(R)0 such that a − λ ∈ R̂ is nilpotent of

index n+1
2

.

2. If a ∈ R1, then

(a) if n ≡4 1 and R is free of
(n−1

2
s−1
2

)
-torsion, then a is nilpotent of index n+1

2
.

(b) if n ≡4 2 then there is λ ∈ C(R)0 such that (a2 − λ) ∈ R̂ is nilpotent of

index n+2
4

.

(c) the cases n ≡4 0 and n ≡4 3 do not occur.

Proof. We will suppose without loss of generality that R is centrally closed.

(1) Let a ∈ R0 be an ad-nilpotent element of index n. By Lemma 1.1.6, R is semiprime

as an algebra. Moreover, the element a is a pure ad-nilpotent element of R because

every graded ideal of R is essential (see 2.1.2). Therefore, we can use Theorem 2.2.4

to obtain that n is odd and there exists λ ∈ C(R) such that a − λ is nilpotent of

index n+1
2

. Moreover, a ∈ R0, R is prime and has no n+1
2

-torsion, so λ ∈ C(R)0 by

Lemma 1.2.5.

(2) Let a ∈ R1 be an ad-nilpotent element of index n. Let us split our argument in

two cases:

(2a) If n is odd, n = 2s − 1 for some s. Then 0 = adn+1
a (R) = ad2s

a (R) =

adsa2(R), and a2 ∈ R0 is ad-nilpotent of index s (notice that ads−1
a2 (R) = ad2s−2

a (R) =

adn−1
a (R) 6= 0). Therefore, by (1), s is odd (equivalently, n ≡4 1) and there exists

λ ∈ C(R)0 such that a2 − λ is nilpotent of index s+1
2

. Let us see prove that λ = 0:

Let us denote b = (a2 − λ)
s−1
2 . Then, for every x ∈ R0 ∪R1,

0 = adna(x) = ada(ad
n−1
2

a2 (x)) = ada(ad
n−1
2

a2−λ(x)) =

= [a,

n−1
2∑
i=0

(
n−1

2

i

)
(−1)

n−1
2
−i(a2 − λ)ix(a2 − λ)

n−1
2
−i] =

= [a,

(n−1
2
s−1

2

)
(−1)

s−1
2 (a2 − λ)

s−1
2 x(a2 − λ)

s−1
2 ] =

= [a,

(n−1
2
s−1

2

)
(−1)

s−1
2 bxb] =

(n−1
2
s−1

2

)
(−1)

s−1
2

(
abxb− (−1)|x|bxba

)
.
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Since R is free of
(n−1

2
s−1
2

)
-torsion, we get that

abxb = (−1)|x|bxba, for every x ∈ R0 ∪R1.

Take any x ∈ R0. Multiplying this last equality by a on the left and taking into

account that ab = ba we have a2bxb = a(abxb) = a(bxba) = abxab; but a2bxb =

ab(ax)b = −b(ax)ba = −abxab because ax ∈ R1. Then a2bR0b = abR0ab = 0.

Similarly, for any x ∈ R1 we have that a2bxb = a(abxb) = −a(bxab), and we also have

that a2bxb = ab(ax)b = b(ax)ba = abxab because ax ∈ R0. Then a2bR1b = abR1ab =

0. We have obtained

a2bRb = abRab = 0.

From the definition of b we have that (a2−λ)b = 0, i.e., a2b = λb, so 0 = a2bRb =

λbRb. If λ 6= 0, we would have that bRb = 0 (notice that λ ∈ C(R)0 and C(R)0 is

a field (Lemma 1.2.6)), leading to a contradiction with the semiprimeness of R and

b 6= 0.

Thus λ = 0, so 0 6= b = as−1, ab = as and 0 = abRab = asRas implies as = 0 by

semiprimeness of R.

(2b) If n is even, then n = 2s for some s, so a2 ∈ R0 is ad-nilpotent of index s

(adsa2(R) = adna(R) = 0 and ads−1
a2 (R) = ad2s−2

a (R) = adn−2
a (R) 6= 0). Then by (1)

we obtain that s is odd (equivalently, n ≡4 2) and there exists λ ∈ C(R)0 such that

(a2 − λ)
s+1
2 = 0.

Notice that the cases n ≡4 0 and n ≡4 3 do not occur.

3.2 Ad-nilpotent elements of K

As in the non-super setting, the associative local superalgebra at the ad-nilpotent ele-

ment give us extra information about the structure. In non-super setting for example

we get that the GPI atxatyat = atyatxat holds for an ad-nilpotent element a of index

n ≡4 0 of K for every x, y ∈ K.
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3.2.1. Let R be an associative superalgebra over Φ and take an element a ∈ R0∪R1.

Then Ra := aRa with (aRa)i := aRi+|a|a, i ∈ {0, 1}, is a Z2-graded Φ-module.

Moreover, the product (axa)(aya) := axaya for any x, y ∈ R induces an associative

superalgebra structure in Ra, which is called the local superalgebra of R at a. When

R is an associative superalgebra with superinvolution ∗, the superinvolution induces

a superinvolution ? in Ra given by (axa)? := (−1)|a|ax∗a, for every x ∈ R.

We start with a technical lemma, which is also interesting by itself. For example,

it claims that every semiprime superalgebra with superinvolution and no nonzero

skew even elements is a trivial superalgebra, i.e., the odd part is zero.

Lemma 3.2.2. Let R = R0⊕R1 be a semiprime associative superalgebra with super-

involution ∗.

(i) If K0 = 0 then R1 = 0 and R = R0 = H0 is commutative.

(ii) Let us consider h0 ∈ H0. If h0K0h0 = 0 then h0R1h0 = 0 and h0Rh0 =

h0R0h0 = h0H0h0 is commutative as the (trivial) local superalgebra of R at h0.

Proof. (i) Take any k1, k
′
1 ∈ K1 and h1, h

′
1 ∈ H1. Then, since R0 = H0, we have that

k1h1 = (k1h1)∗ = h1k1, k1k
′
1 = (k1k

′
1)∗ = −k′1k1, h1h

′
1 = (h1h

′
1)∗ = −h′1h1.

In particular, k2
1 = h2

1 = 0.

We claim that K1 = 0. Take any k1 ∈ K1. Then for every h0 ∈ H0, k1h0k1 =

(k1h0k1)∗ = −k1h0k1 implies k1h0k1 = 0, so k1H0k1 = 0; similarly, for every h1 ∈ H1,

(k1h1)k1 = h1k
2
1 = 0, so k1H1k1 = 0, and, for every k′1 ∈ K1, (k1k

′
1)k1 = −k′1k2

1 = 0,

so k1K1k1 = 0. We have shown that k1Rk1 = 0, so by semiprimeness of R, k1 = 0.

Let us show that H1 = 0. Take any h1 ∈ H1. For every h0 ∈ H0, since h1h0h1 =

(h1h0h1)∗ = −h1h0h1, we have that h1h0h1 = 0, so h1H0h1 = 0. Similarly, for

every h′1 ∈ H1, h1h
′
1h1 = −h′1h2

1 = 0, so h1H1h1 = 0, and, finally, for every k1 ∈

K1, h1k1h1 = k1h
2
1 = 0, so h1K1h1 = 0. We have shown that h1Rh1 = 0, so by

semiprimeness of R, h1 = 0.
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Therefore, R1 = H1 +K1 = 0.

Finally, H0 is commutative because for every h0, h
′
0 ∈ H0,

h0h
′
0 = (h0h

′
0)∗ = h′0h0.

(ii) Take h0 ∈ H0 and let us consider the local algebra Rh0 = h0Rh0 as defined in

3.2.1, which is an associative superalgebra with induced superinvolution (h0xh0)? :=

h0x
∗h0, for every x ∈ R. Clearly Skew(h0Rh0, ?) = h0Kh0 and Sym(h0Rh0, ?) =

h0Hh0. If we suppose that h0K0h0 = 0 then Skew(h0Rh0, ?)0 = 0 and by (i) we have

(Rh0)1 = h0R1h0 = 0 and Rh0 = h0Rh0 = (Rh0)0 = h0R0h0 = h0H0h0.

Proposition 3.2.3. Let R be a prime associative superalgebra with superinvolution ∗

and let a ∈ K be a homogeneous ad-nilpotent element of K of index n > 2. Suppose

that R is free of
(
n
s

)
-torsion and free of s-torsion, for s = [n+1

2
]. If Skew(C(R), ∗) 6= 0

then a is ad-nilpotent of R of index n. Otherwise, a is nilpotent.

Proof. If there exists a homogeneous 0 6= λ ∈ Skew(C(R), ∗) then λ2 is invertible in

the field C(R)0, and R = K + λ2H ⊆ K + λK so adna(R) = 0. Suppose from now on

that Skew(C(R), ∗) = 0. We split our proof in two cases, depending on the parity of

a:

(I) Suppose that a ∈ K0. Let us see that a is nilpotent. Every x ∈ R can be

expressed as x = xh + xk, so for every x ∈ R

adna(ax+ xa) = adna(axk + xka) + adna(axh + xha) = aadna(xk) + adna(xk)a

+ adna(axh + xha) = 0

because axh + xha ∈ K and aadia(x) = adia(ax) for every x ∈ R and any i ∈ N.
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Expanding this expression

0 = adna(ax+ xa) = (−1)nxan+1 +
n∑
i=1

((
n

i

)
−
(

n

i− 1

))
(−1)n−iaixan+1−i + an+1x.

Since R is semiprime as an algebra, by Lemma 2.0.3, a is an algebraic element of R

over C(R).

(I.a) Let us suppose that R is prime as an algebra. The calculations of (1.b) in

the proof of Proposition 2.3.5 [12, Proposition 5.5] show that a is nilpotent.

(I.b) If R is prime as a superalgebra but not prime as an algebra, R0 is prime by

1.1.7, C(R)0
∼= C(R0) by 1.2.4, the superinvolution ∗ restricted to R0 is an involution

and Skew(C(R0), ∗) = 0 because we are assuming that Skew(C(R), ∗) = 0. The

element a is a pure ad-nilpotent element of K0 because C(R0) is a field, so we can

apply Proposition 2.3.5(2) to the prime associative algebra R0 to obtain that a is

nilpotent.

(II) If a ∈ K1, consider a2 ∈ K0 and by (I), a2 is nilpotent, i.e., a is nilpotent.

In the following two theorems we will describe the homogeneous ad-nilpotent

elements of K. Our goal is to relate the index of ad-nilpotence of a homogeneous

element of K with its index of ad-nilpotence in R (and in R0 and in K0 when the

element is even). Moreover, when these indexes in K and in R do not coincide, we

will show that the element is nilpotent of an explicit index.

We begin with the description of even ad-nilpotent elements of K.

Theorem 3.2.4. Let R be a prime associative superalgebra of characteristic p > n

with superinvolution ∗, let R̂ be its central closure, let a ∈ K0 := Skew(R, ∗)0 be an

ad-nilpotent element of K of index n > 1 and let s = [n+1
2

]. Then

(1) If n ≡4 0 then a is nilpotent of index s+1, ad-nilpotent of R and of R0 of index

n+ 1 and satisfies asKas = 0. Moreover, the index of ad-nilpotence of a in K0

can be n− 1 or n.

(2) If n ≡4 1 then there exists λ ∈ Skew(C(R), ∗)0 such that a− λ ∈ R̂ is nilpotent

of index s and a is ad-nilpotent of R, of R0 and of K0 of index n.
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(3) The case n ≡4 2 is not possible.

(4) If n ≡4 3 then either:

(4.1) a is nilpotent of index s+ 1, ad-nilpotent of K0 of index n, ad-nilpotent of

R and of R0 of index n + 2 and satisfies askas−1 − as−1kas = 0 for every

k ∈ K. In particular R satisfies asKas = 0, or

(4.2) there exists λ ∈ Skew(C(R), ∗)0 such that a − λ ∈ R̂ is nilpotent of index

s and a is ad-nilpotent of R, of R0 and of K0 of index n.

Proof. Suppose without loss of generality that R is centrally closed. Let a ∈ K0 be

an ad-nilpotent element of K of index n.

– If Skew(C(R), ∗) 6= 0, by Proposition 3.2.3, a is ad-nilpotent of index n of R and

by Theorem 3.1.2 n has to be odd (n ≡4 1 or n ≡4 3) and there exists λ ∈ C(R)0

such that a−λ is nilpotent of index s, so a is ad-nilpotent of R and of R0 of the same

index n = 2s− 1, see Proposition 3.1.1(1). Moreover, λ ∈ Skew(C(R), ∗)0 by Lemma

1.3.4 and since Skew(C(R), ∗)0 ⊂ Skew(C(R0), ∗), the index of ad-nilpotence of a−λ

in K0 is again n = 2s − 1 (notice that, by Lemma 1.3.4, λ is the unique element of

C(R0) such that a− λ is nilpotent). These are the cases (2) and (4.1).

– If Skew(C(R), ∗) = 0, by Proposition 3.2.3, a is nilpotent. We are going to approach

this case considering the index of ad-nilpotence of a in K0 and comparing it with its

index of ad-nilpotence in K and in R. Let us suppose that a is ad-nilpotent of

K0 of index m ≤ n and let r = [m+1
2

]. Since R0 is a semiprime algebra and the

superinvolution ∗ restricted to R0 is an involution, by Proposition 2.3.3 we have four

possibilities:

• m ≡4 0 then a is nilpotent of index r + 1 and arK0a
r = 0, which, by Lemma

3.2.2(ii), implies that arR1a
r = 0, so a is also ad-nilpotent of index m of K, i.e.,

m = n and a is nilpotent of index s+ 1 with s = n
2

= r. Now, since s+ 1 is the index

of nilpotence of a, by Proposition 3.1.1(1) a is ad-nilpotent of index n + 1 of R and

of R0. This is the case (1) (n ≡4 0) with the index of ad-nilpotence of a in K0 equal

to the index of ad-nilpotence of a in K.
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• m ≡4 1 then a is nilpotent of index r. This implies, by Proposition 3.1.1(1),

that a is ad-nilpotent of R and of R0 of index m. So n has to be equal to m and

therefore the index of nilpotence of a is s = n+1
2

= r. This is the case (2), i.e., n ≡4 1.

• m ≡4 2 does not occur.

• m ≡4 3 then there exists an idempotent ε ∈ C(R0) such that εar = ar and a

decomposes as a = εa+ (1− ε)a (although the elements εa and (1− ε)a do not belong

to R but in central closure of R0, this decomposition will be useful for our purposes):

� If εa = 0 then a = (1 − ε)a is nilpotent of index r. By Proposition 3.1.1(1),

this implies that a is ad-nilpotent of R and of R0 of index m, so n = m and the

index of nilpotence of a is s = n+1
2

= r. This is the case (4.2), i.e., n ≡4 3.

� If εa 6= 0 then a is nilpotent of index r+1 and ark0a
r−1−ar−1k0a

r = (εa)rk0(εa)r−1−

(εa)r−1k0(εa)r = 0 for every k0 ∈ K0. Since ar+1 = 0, arK0a
r = 0 and, by

Lemma 3.2.2(ii), arR1a
r = 0, so arKar = 0 and therefore adm+1

a K = 0. There

are two possibilities:

– Either arkar−1 − ar−1kar = 0 for every homogeneous k ∈ K and therefore

a is ad-nilpotent of index m of K. Then n = m, r = n+1
2

= s, so askas−1−

as−1kas = 0 and a is nilpotent of index s+1 which, by Proposition 3.1.1(1),

implies that a is ad-nilpotent of R and of R0 of index n + 2 and fits with

the case (4.1), i.e., n ≡4 3,

– or there exists k ∈ K such that arkar−1−ar−1kar 6= 0, so a is ad-nilpotent

of K of index m + 1. Hence n = m + 1, r = n
2

= s, and a is nilpotent of

index s+ 1. Therefore, by Proposition 3.1.1(1), a is ad-nilpotent of R and

of R0 of index n+ 1. This is again case (1) with the index of ad-nilpotence

of a in K0 equal to n− 1 and n ≡4 0.

In the following theorem we describe the odd ad-nilpotent elements of K. We will

first distinguish whether C(R) has skew-symmetric elements, in which case a is ad-

nilpotent of R of the same index, or Skew(C(R), ∗) = 0, which implies by Proposition
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3.2.3 that a is nilpotent. In this second case, we will consider a2 ∈ K0 and use

Theorem 3.2.4 applied to a2 to obtain the description of a.

Theorem 3.2.5. Let R be a prime associative superalgebra of characteristic p > n

with superinvolution ∗, let R̂ be its central closure, let a ∈ K1 := Skew(R, ∗)1 be an

ad-nilpotent element of K of index n > 1 and let s = [n+1
2

].

(1) If n ≡8 0 then a is nilpotent of index s+ 1, ad-nilpotent of R of index n+ 1 and

asKas = 0 (so asRas is a commutative trivial local superalgebra).

(2) If n ≡8 1 then as−1 ∈ H0, and a is nilpotent of index s and ad-nilpotent of R of

index n.

(3) If n ≡8 2 then there exists λ ∈ Skew(C(R), ∗)0 such that a2−λ ∈ R̂ is nilpotent

of index s+1
2

and a is ad-nilpotent of R of index n.

(4) If n ≡8 5 then as−1 ∈ K0, and a is nilpotent of index s and ad-nilpotent of R of

index n.

(5) If n ≡8 6 then there exists λ ∈ Skew(C(R), ∗)0 such that a2−λ ∈ R̂ is nilpotent

of index s+1
2

and a is ad-nilpotent of R of index n.

(6) If n ≡8 7 then a is nilpotent of index s + 1, ad-nilpotent of R of index n + 2

and askas−1 + (−1)|k|as−1kas = 0 for every homogeneous k ∈ K (so asRas is a

commutative trivial local superalgebra).

(7) The cases n ≡8 3 and n ≡8 4 do not occur.

Proof. Suppose without loss of generality that R is centrally closed.

Let a ∈ K1 be an ad-nilpotent element of K of index n. If Skew(C(R), ∗) 6= 0, by

Proposition 3.2.3, a is ad-nilpotent of R of index n. By Theorem 3.1.2 n can be:

� n ≡4 1 and therefore a is nilpotent of index s (cases (2) and (4)), or

� n ≡4 2 and therefore there exists λ ∈ Skew(C(R)0, ∗) such that a2 − λ is

nilpotent of index s+1
2

(cases (3) and (5)).

55



Let us suppose that Skew(C(R), ∗) = 0. By Proposition 3.2.3, a is nilpotent.

Then, since a2 ∈ K0 and ad2
a(x) = ada2(x), a2 is an ad-nilpotent element of K. Let

us denote by m the index of ad-nilpotence of a2 in K and let r =
[
m+1

2

]
. By Theorem

3.2.4 applied to the element a2 we have:

• If m ≡4 0 and r = m
2

, (a2)r 6= 0, (a2)r+1 = 0 and a2rKa2r = 0. We are going to

show that a2r+1 = 0: let x be any homogeneous element in R, so ax + (−1)|x|x∗a ∈

K1+|x|,

0 = adma2(ax+ (−1)|x|x∗a)a =

(
m
m
2

)
(−1)

m
2 (am(ax+ (−1)|x|x∗a)am)a =

=

(
m

r

)
(−1)ra2r(ax+ (−1)|x|x∗a)a2r+1 =

(
m

r

)
(−1)ra2r+1xa2r+1

+

(
m

r

)
(−1)r(−1)|x|a2rx∗a2r+2 =

(
m

r

)
(−1)ra2r+1xa2r+1.

Since R is semiprime and free of
(
m
r

)
-torsion, a2r+1 = 0. Moreover, since adm−1

a2 (K) 6=

0, we have two possibilities:

• If ad2m−1
a (K) 6= 0, then a is an ad-nilpotent element of K of index n = 2m.

In this case n ≡8 0 and for s = n
2

we have that as+1 = 0, as 6= 0 and asKas = 0.

Moreover, by Proposition 3.1.1, a is ad-nilpotent of R of index n+ 1, case (1).

• If ad2m−1
a (K) = 0, then a is an ad-nilpotent element of K of index n =

2m − 1. So in this case we have got n ≡8 7 and for s = n+1
2

we have that as+1 = 0,

as 6= 0. Moreover, for every homogeneous k ∈ K,

0 = ad2m−1
a (k) =

(
m− 1

m
2

)
(−1)

m
2 (amkam−1 + (−1)|k|am−1kam) =

=

(
m− 1

s
2

)
(−1)

s
2 (askas−1 + (−1)|k|as−1kas)

and since R is free of
(
m−1

s
2

)
-torsion we have that askas−1 + (−1)|k|as−1kas = 0. In

addition, by Proposition 3.1.1, a is ad-nilpotent element of R of index n+ 2, case (6).

• If m ≡4 1 and r = m+1
2

we have that (a2)r = 0, (a2)r−1 6= 0 and adma2(R) = 0.

Since adm−1
a2 (K) 6= 0, we have two possibilities:

• If ad2m−1
a (K) 6= 0, then a is an ad-nilpotent element of K of index n = 2m
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and there exists a homogeneous k in K such that:

0 6= ad2m−1
a (k) = adm−1

a2 ada(k) =

=

(
m− 1
m−1

2

)
(−1)

m−1
2 (amkam−1 − (−1)|k|am−1kam) =

=

(
m− 1

r

)
(−1)r(a2r−1ka2r−2 − (−1)|k|a2r−2ka2r−1).

Therefore, since R is free of
(
m−1
r

)
-torsion, a2r−1 6= 0. In this case n ≡8 2 and for

s = n
2

we have that as+1 = 0, as 6= 0. By Proposition 3.1.1, a is ad-nilpotent of index

n, case (3).

• If ad2m−1
a (K) = 0, then a is ad-nilpotent of K of index n = 2m− 1. Let x

be any homogeneous element in R and let us consider ax+ (−1)|x|x∗a ∈ K1+|x|:

0 = ad2m−1
a (ax+ (−1)|x|x∗a) = ad2m−2

a ada(ax+ (−1)|x|x∗a) =

= adm−1
a2

ada(ax+ (−1)|x|x∗a) =

=

(
m− 1
m−1

2

)
(−1)

m−1
2 am−1(a2x+ (−1)|x|ax∗a− (−1)1+|x|(axa+ (−1)|x|x∗a2))am−1 =

=

(
m− 1

r − 1

)
(−1)r−1a2r−2(a2x+ (−1)|x|ax∗a− (−1)1+|x|(axa+ (−1)|x|x∗a2))a2r−2 =

=

(
m− 1

r − 1

)
(−1)

m−1
2

+|x|a2r−1(x∗ + x)a2r−1

and

0 = ad2m−1
a (x− x∗)a = ad2m−2

a ada(x− x∗)a = adm−1
a2

ada(x− x∗)a =

=

(
m− 1
m−1

2

)
(−1)

m−1
2 am−1(ax− ax∗ − (−1)|x|(xa− x∗a))am =

=

(
m− 1

r − 1

)
(−1)r−1a2r−2(ax− ax∗ − (−1)|x|(xa− x∗a))a2r−1 =

=

(
m− 1

r − 1

)
(−1)r−1a2r−1(x− x∗)a2r−1.

Therefore, since R is free of
(
m−1
r−1

)
-torsion, a2r−1Ra2r−1 = 0, and by semiprimeness

of R, a2r−1 = 0 and a is an ad-nilpotent element of R of index n = 2m− 1. So n ≡8 1

and for s = n+1
2

we have that as = 0, as−1 6= 0. By Proposition 3.1.1, a is ad-nilpotent
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of R of index n, case (2).

• m ≡4 2 is not possible.

• If m ≡4 3 and r = m+1
2

, let us first see that (a2)r = 0. Suppose otherwise that

(a2)r 6= 0. Then (a2)r+1 = 0 and a2rka2r−2− a2r−2ka2r = 0 for every k ∈ K. Let x be

any homogeneous element in R and let us consider ax+ (−1)|x|x∗a ∈ K1+|x|:

0 = adma2(ax+ (−1)|x|x∗a)a3 =

(
m
m−1

2

)
(−1)

m−1
2 am+1(ax+ (−1)|x|x∗a)am+2+

+

(
m
m+1

2

)
(−1)

m+1
2 am−1axam+4 +

(
m
m+1

2

)
(−1)

m+1
2 am−1(−1)|x|x∗aam+4 =

=

(
m

r − 1

)
(−1)r−1a2r(ax+ (−1)|x|x∗a)a2r+1 +

(
m
m+1

2

)
(−1)

m+1
2 a2r−2axa2r+3

+

(
m
m+1

2

)
(−1)

m+1
2 a2r−2(−1)|x|x∗aa2r+3 =

(
m
m−1

2

)
(−1)

m−1
2 a2r+1xa2r+1

and therefore, since R is free of
(
m
r−1

)
-torsion and semiprime, a2r+1 = 0. Then for

every homogeneous x ∈ R

0 = aadma2(ax+ (−1)|x|x∗a) =

(
m
m−1

2

)
(−1)

m−1
2 am+2(ax+ (−1)|x|x∗a)am−1+

+

(
m
m+1

2

)
(−1)

m+1
2 amaxam+1 +

(
m
m+1

2

)
(−1)

m+1
2 am(−1)|x|x∗aam+1 =

=

(
m

r − 1

)
(−1)r−1a2r+1(ax+ (−1)|x|x∗a)a2r−2+

+

(
m

r

)
(−1)ra2r−1axa2r +

(
m

r

)
(−1)ra2r−1(−1)|x|x∗aa2r =

(
m

r

)
(−1)ra2rxa2r

and therefore, since R is free of
(
m
r

)
-torsion and semiprime, a2r = 0, a contradiction.

Thus (a2)r = 0, (a2)r−1 6= 0 and adma2(R) = 0.

• If ad2m−1
a (K) 6= 0, then a is ad-nilpotent of K of index n = 2m and there
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exists k ∈ K homogeneous such that

0 6= ad2m−1
a (k) = ad2m−2

a ada(k) = adm−1
a2 ada(k) =

=

(
m− 1
m−1

2

)
(−1)

m−1
2 (amkam−1 − (−1)|k|am−1kam) =

=

(
m− 1

r − 1

)
(−1)r−1(a2r−1ka2r−2 − (−1)|k|a2r−2ka2r−1).

Therefore, since R is free of
(
m−1
r−1

)
-torsion, a2r−1 6= 0 so a is nilpotent of index 2r. So

n ≡8 6 and with s = n
2
, as+1 = 0, as 6= 0 and by Proposition 3.1.1 a is ad-nilpotent

of R of index n, case (5).

• If ad2m−1
a (K) = 0, then a is ad-nilpotent of K of index n = 2m− 1. Let x

be any homogeneous element in R and let us consider ax+ (−1)|x|x∗a ∈ K1+|x|:

0 = ad2m−1
a (ax+ (−1)|x|x∗a) = ad2m−2

a ada(ax+ (−1)|x|x∗a) =

= adm−1
a2 ada(ax+ (−1)|x|x∗a) =

=

(
m− 1
m−1

2

)
(−1)

m−1
2 am−1(a2x+ (−1)|x|ax∗a− (−1)1+|x|(axa+ (−1)|x|x∗a2))am−1 =

=

(
m− 1

r − 1

)
(−1)r−1a2r−2(a2x+ (−1)|x|ax∗a− (−1)1+|x|(axa+ (−1)|x|x∗a2))a2r−2 =

=

(
m− 1

r − 1

)
(−1)r−1+|x|a2r−1(x∗ + x)a2r−1,

and

0 = ad2m−1
a (x− x∗)a = ad2m−2

a ada(x− x∗)a = adm−1
a2 ada(x− x∗)a =

=

(
m− 1
m−1

2

)
(−1)

m−1
2 am−1(ax− ax∗ − (−1)|x|(xa− x∗a))am =

=

(
m− 1

r − 1

)
(−1)r−1a2r−2(ax− ax∗ − (−1)|x|(xa− x∗a))a2r−1 =

=

(
m− 1

r − 1

)
(−1)

m−1
2 a2r−1(x− x∗)a2r−1.

Therefore, since R is free of
(
m−1
r−1

)
-torsion, a2r−1Ra2r−1 = 0, and by semiprimeness of

R, a2r−1 = 0. So in this case n ≡8 5. For s = n+1
2

we have that as = 0, as−1 6= 0 and,

by Proposition 3.1.1, a is an ad-nilpotent element of R of index n, case (4).
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Chapter 4

Examples of ad-nilpotent elements

In this chapter we are going to construct examples of all types of ad-nilpotent ele-

ments appearing in Theorems 2.3.6 and 2.2.4 (non-super setting), and all types of

ad-nilpotent homogeneous elements appearing in Theorem 3.1.2, and in Theorems

3.2.4 and 3.2.5. The examples of even ad-nilpotent elements of R and of K are based

on the examples of ad-nilpotent elements in the non-super setting, see [11]; here we

have rewritten those examples to have one example for both non-super and super

setting.

4.0.1. Let Φ be a ring of scalars and let r, s be natural numbers. Following the

notation of [46], the matrix algebra Mr+s(Φ) with

M(r|s)0 :=


 A 0

0 D

 : A ∈Mr(Φ), D ∈Ms(Φ)

 and

M(r|s)1 :=


 0 B

C 0

 : B ∈Mr,s(Φ), C ∈Ms,r(Φ)


becomes an Z2-graded associative algebra. It will be denoted M(r|s) = M(r|s)0 +

M(r|s)1. We will use the notation M(r) =M(r|r).

4.0.2. Let r and s be two natural numbers with odd r > 1 and even s, let F be a field

with involution (a second-order automorphism) denoted by α for any α ∈ F, and let
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R be the superalgebraM(r|s) over F. Let {ei,j} denote the matrix units, and define

H =
∑r

i=1(−1)iei,r+1−i ∈Mr(F) (notice H = H t = H−1)

J =
∑s

i=1(−1)iei,s+1−i ∈Ms(F) (notice J t = −J = J−1).

The map ∗ : R→ R given by

 A B

C D

∗ =

 H 0

0 J

−1  A −B

C D

t  H 0

0 J


defines a superinvolution in R. In particular

e∗i,j = (−1)j−ier−j+1,r−i+1 for every i, j ∈ {1, . . . , r},

e∗r+i,r+j = (−1)j−ier+s−j+1,r+s−i+1 for every i, j ∈ {1, . . . , s} and

e∗i,r+j = (−1)i−j+1er+s+1−j,r+1−i for every i ∈ {1, ..., r} and j ∈ {1, ..., s}.

Notice the superinvolution restricted to R0 is an involution ? such that K0 =

Skew(R, ∗)0 = Skew(R0, ?).

The associative superalgebra R is a simple superalgebra with superinvolution, and

its extended centroid C(R), which coincides with Z(R), is isomorphic to F. Moreover,

the restriction of the superinvolution ∗ to Z(R) is isomorphic to the involution − of

F.

4.1 Examples in the non-super setting and of even

ad-nilpotent elements of R− and of K.

Let k be an even number( k ≥ 2), let r = 3k + 3 and s = 2k, and let us consider the

associative superalgebra R =M(r|s) over F with the superinvolution defined in 4.0.2.

Let us denote by K the skew-symmetric elements of R with respect to ∗. Consider
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the following nilpotent matrices:

T :=
2k+1∑
i=k+2

ei,i+1 ∈ R0 (nilpotent of index k + 1)

S :=
k−1∑
i=1

(ei,i+1 + er−i,r−i+1) ∈ R0 (nilpotent of index k)

U :=
k−1∑
i=1

er+i,r+i+1 +
2k−1∑
i=k+1

er+i,r+i+1 ∈ R0 (nilpotent of index k).

By Proposition 3.1.1(1), T is ad-nilpotent of R and of R0 of index 2k+ 1, and S and

U are ad-nilpotent elements of R and of R0 of index 2k − 1.

Notice that T ∗ = −T , S∗ = −S and U∗ = −U so T, S, U ∈ K0. Let us calculate

their indexes of ad-nilpotence in K:

(a) If Skew(F,−) 6= 0, by Proposition 3.2.3 the index of ad-nilpotence of T in K

coincides with its index of ad-nilpotence in R, i.e., 2k + 1.

(b) If Skew(F,−) = 0, for any B =
∑

i,j λi,jei,j ∈ K we have that λ2k+2,k+2 = 0 and

λ2k+1,k+2 = λ2k+2,k+3, so

ad2k−1
T (B) =

(
2k − 1

k

)
(T k−1BT k − T kBT k−1) =

=

(
2k − 1

k

)
((ek+2,2k+1 + ek+3,2k+2)B(ek+2,2k+2))−

−
(

2k − 1

k

)
(ek+2,2k+2)B(ek+2,2k+1 + ek+3,2k+2)) =

=

(
2k − 1

k

)
(λ2k+1,k+2 ek+2,2k+2 + λ2k+2,k+2 ek+3,2k+2)−

−
(

2k − 1

k

)
(λ2k+2,k+2 ek+2,2k+1 + λ2k+2,k+3 ek+2,2k+2) = 0.

Furthermore,

ad2k−2
T (e2k+1,k+2 − e∗2k+1,k+2) = ad2k−2

T (e2k+1,k+2 + e2k+2,k+3) 6= 0.

Thus T is ad-nilpotent of K of index 2k − 1.
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(c) S is ad-nilpotent of K of index 2k − 1: by its ad-nilpotence in R, we have

ad2k−1
S (K) = 0. Moreover, 0 6= C = ek,1 − e∗k,1 = ek,1 + er,r−k+1 ∈ K and

ad2k−2
S (C) = −

(
2k − 2

k − 1

)
Sk−1(ek,1 + er,r−k+1)S

k−1 =

= −
(
2k − 2

k − 1

)
(e1,k + er−k+1,r)(ek,1 + er,r−k+1)(e1,k + er−k+1,r) =

= −
(
2k − 2

k − 1

)
(e1,k + er−k+1,r) 6= 0,

so S is also ad-nilpotent of K of index 2k − 1.

(d) U is ad-nilpotent of K of index 2k − 1: by its ad-nilpotence in R, we have

ad2k−1
U (K) = 0. Moreover, 0 6= C = er+k,r+1−e∗r+k,r+1 = er+k,r+1 +er+2k,r+k+1 ∈

K and

ad2k−2
U (C) = ad2k−2

U (er+k,r+1 + er+2k,r+k+1) =

= −
(

2k − 2

k − 1

)
Uk−1(er+k,r+1 + er+2k,r+k+1)Uk−1 =

= −
(

2k − 2

k − 1

)
(er+1,r+k + er+k+1,r+2k) 6= 0.

Let us use these matrices T , S and U to get examples of any of models of ad-

nilpotent elements in Theorems 2.3.6 and 2.2.4 from non-super setting and of even

ad-nilpotent elements in Theorems 3.1.2 and 3.2.4. Here is important to point out

in Theorems 3.1.2 and 3.2.4 we gave the index of ad-nilpotency of R0 and K0 aswell,

therefore if an even element is ad-nilpotent of R or K it will be always ad-nilpotent of

the same index of R0 and K0 but in the case n ≡4 0 and ad-nilpotent of K then could

be of index n− 1 of K0. Thus, we will give examples of even homogeneous elements

ad-nilpotent of R and K and will give examples for non-super setting ad-nilpotent of

R0 and K0.

(i). Suppose Skew(F,−) 6= 0. For any λ ∈ Skew(F,−), the element T + λid is

ad-nilpotent of R of index 2k + 1, and by Proposition 3.2.3 its index in K is again

n = 2k + 1. This is an example that fits case (2) of Theorem 3.2.4 and of Theorem

2.3.6 (a skew element a in K0 with nilpotent (a − λ) of index k + 1 such that a is
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ad-nilpotent of index n ≡4 1 in K, K0 and the same index in R). It also provides an

example of case (1) in Theorem 3.1.2 and of Theorem 2.2.4.

(ii). Suppose Skew(F,−) 6= 0. For any λ ∈ Skew(F,−), S + λid is an ad-nilpotent

element of R and of K of index n = 2k − 1. This is an example that fits case (1) of

Theorem 3.1.2 and case (4.2) of Theorem 3.2.4 and of Theorem 2.3.6 (a skew element

in K0, which is ad-nilpotent of index n ≡4 3 in K0 and in K, and ad-nilpotent of the

same index in R and R0).

(iii). Suppose Skew(F,−) = 0. T is an element of K0 which is ad-nilpotent of K

of index n = 2k − 1. This is an example that fits case (4.1) of Theorem 3.2.4 (an

element in K0 which is ad-nilpotent of index n ≡4 3 in K and in K0, and ad-nilpotent

of index n+ 2 in R and R0).

(iv). Suppose Skew(F,−) = 0. The matrix A = T + S, which is an orthogonal sum

of T and S, is nilpotent of index t+1 and ad-nilpotent of R and of R0 of index 2k+1.

Let us see that it is ad-nilpotent of K of index 2k: from the indexes of nilpotence of

T and S, their indexes of ad-nilpotence in K and the fact that TS = 0 = ST we get

that ad2k
A (K) = 0. Moreover, C = ek,k+2 − e∗k,k+2 = ek,k+2 − e2k+2,2k+4 ∈ K and one

can check that ad2k−1
A (C) = −

(
2k−1
k

)
(e1,2k+2 + ek+2,3k+3) 6= 0. This is an example that

fits case (1) of Theorem 3.2.4 (a skew element in K0 which is ad-nilpotent of index

n ≡4 0 in K0 and in K, and ad-nilpotent of index n+ 1 in R and R0).

(v). Suppose Skew(F,−) = 0. Let us consider A = T + U , which is an orthogonal

sum of T and U . The nilpotence of T + U implies that the index of ad-nilpotence

of A in R (and in R0) is 2k + 1 (by Proposition 3.1.1(1)). Since both T and U are

ad-nilpotent elements of K0 of indexes 2k−1, A is ad-nilpotent of K0 of index 2k−1.

Nevertheless, its index of ad-nilpotence in K is higher: for any B =
∑
λi,jei,j ∈ K

we have that

ad2k
A (B) =

(
2k

k

)
AkBAk =

(
2k

k

)
ek+2,2k+2B ek+2,2k+2 =

=

(
2k

k

)
λ2k+2,k+2ek+2,2k+2 = 0

because λ2k+2,k+2 = 0. Moreover, if we consider the element C = e2k+2,r+1 −

65



e∗2k+2,r+1 = e2k+2,r+1 − er+s,k+2 ∈ K one can check that

ad2k−1
A (C) =

(
2k − 1

k

)
(Ak−1CAk − AkCAk−1) =

= −
(

2k − 1

k

)
(er+k+1,2k+2 + ek+2,r+k) 6= 0

because

Ak−1 = T k−1 + Uk−1 = ek+2,2k+1 + ek+3,2k+2 + er+1,r+k + er+k+1,r+s.

This means that the index of ad-nilpotence of A in K is n = 2k. This gives an

example of an element in the conditions of Theorem 3.2.4 (1) and a case, again, (4.1)

of Theorem 2.3.6 (a skew element in K0, which ad-nilpotent of K of index n ≡4 0,

ad-nilpotent of K0 of index n− 1, and ad-nilpotent of R index n+ 1).

4.2 Examples of odd ad-nilpotent elements of R−

and of K.

Let F be a field with identity involution, let r > 1 be an odd number, let s = r − 1,

and consider the superalgebra R = M(r|s) with the superinvolution given in 4.0.2.

Again, let us denote by K the skew-symmetric elements of R with respect to ∗.

Let us consider T :=
∑r−1

i=1 ei,r+i ∈ R1. Then

A = T − T ∗ =
r−1∑
i=1

ei,r+i +
r∑
i=2

er+i−1,i ∈ K1 (nilpotent of index 2r − 1).

We have that

A2 =
∑r−1

i=1 ei,i+1 +
∑r−1

i=2 er+i−1,r+i,

A2r−7 = e1,2r−3 + e2,2r−2 + e3,2r−1 + er+1,r−2 + er+2,r−1 + er+3,r,

A2r−6 = e1,r−2 + e2,r−1 + e3,r + er+1,2r−2 + er+2,2r−1,
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A2r−3 = e1,2r−1 + er+1,r,

A2r−2 = e1,r and

A2r−1 = 0.

By Proposition 3.1.1(2b) A is ad-nilpotent in R of index m = 4r − 3. For every

B =
∑

i,j λi,jei,j ∈ K0 ∪K1,

ad4r−5
A (B) = ad2r−3

A2 adA(B) =

=

(
2r − 3

r − 1

)
((A2)r−2adA(B)(A2)r−1 − (A2)r−1adA(B)(A2)r−2) =

=

(
2r − 3

r − 1

)
(A2r−3BA2r−2 + (−1)|B|A2r−2BA2r−3) =

=

(
2r − 3

r − 1

)
((e1,2r−1 + er+1,r)Be1,r + (−1)|B|e1,rB(e1,2r−1 + er+1,r)) =

=

(
2r − 3

r − 1

)
(λ2r−1,1e1,r + λr,1er+1,r + (−1)|B|λr,1e1,2r−1 + (−1)|B|λr,r+1e1,r) = 0

because when B ∈ K0 we always have that λ2r−1,1 = λr,r+1 = 0 (by grading) and

λr,1 = 0, and when B ∈ K1, λr,1 = 0 (by grading) and λ2r−1,1 = λr,r+1. Moreover, by

Theorem 3.2.5, the index of ad-nilpotence of A in K can be m, m− 1 or m− 2, so it

is m− 2 = 4r − 5.

(i). The element A ∈ K1 is an example of an element in the conditions of Theorem

3.2.5(6) (a nilpotent element of index 2r − 1, which is ad-nilpotent of index n =

4r− 5 ≡8 7 in K and ad-nilpotent of index n+ 2 in R, and such that A2r−3BA2r−2 +

(−1)|B|A2r−2BA2r−3 = 0 for every B ∈ K0 ∪K1).

To produce examples for the rest of the cases of Theorem 3.2.5, let us consider

A5 ∈ K1 for some particular cases of odd r > 1.

(ii). Fix r = 10t+ 1 for some t ∈ N. Then

(A5)4t+1 = A2r+3 = 0,

(A5)4t = A2r−2 ∈ H0,
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(A5)4t−1 = A2r−7.

In particular, A5 is nilpotent of index 4t + 1 and ad-nilpotent of R of index 8t + 1.

Notice that for every B =
∑

i,j λi,jei,j ∈ K

(A5)4tB(A5)4t = e1,rBe1,r = λr,1e1,r = 0

because every B ∈ K has λr,1 = 0. Therefore, for every B ∈ K we have

ad8t
A5(B) = ad4t

A10(B) =

(
4t

2t

)
(A10)2tB(A10)2t = 0.

Furthermore, considering C = er,r+1 − e∗r,r+1 = er,r+1 + e2r−1,1 ∈ K1

ad8t−1
A5 (C) = ad8t−2

A5 (adA5(er,r+1 + e2r−1,1)) =

= ad4t−1
A10 (adA5(er,r+1 + e2r−1,1)) =

=

(
4t− 1

2t

)
(A10)2t−1(adA5(er,r+1 + e2r−1,1))(A10)2t−

−
(

4t− 1

2t

)
(A10)2t(adA5(er,r+1 + e2r−1,1))(A10)2t−1 =

=

(
4t− 1

2t

)(
A20t−5(er,r+1 + e2r−1,1)A20t)− (A20t(er,r+1 + e2r−1,1)A20t−5

)
=

=

(
4t− 1

2t

)
(e3,r − e1,r−2) 6= 0.

The element A5 gives an example of an element in the conditions of Theorem 3.2.5(1)

(a nilpotent element of index 4t+ 1, ad-nilpotent element in K1 of index n = 8t ≡8 0,

ad-nilpotent in R of index n+ 1 = 8t+ 1 and such that (A5)4tK(A5)4t = 0).

(iii). Fix r = 10t+ 3 for some t ∈ N. Then

(A5)4t+1 = A2r−1 = 0

(A5)4t = A2r−6.

In particular, A5 is nilpotent of index 4t + 1 and ad-nilpotent of R of index 8t + 1

(see Proposition 3.1.1(2b)). In this case the index of ad-nilpotence of A5 in K is the
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same as in R because for C = er,r+1 − e∗r,r+1 = er,r+1 + e2r−1,1 ∈ K1 we have

adA5
8t(C) = ad4t

A10(er,r+1 + e2r−1,1) =

=

(
4t

2t

)
(A10)2t(er,r+1 + e2r−1,1)(A10)2t =

=

(
4t

2t

)
(e3,2r−2 + er+2,r−2) 6= 0.

The element A5 gives an example of an element in the conditions of Theorem 3.2.5(2)

(a nilpotent element in K1 of index 4t + 1, ad-nilpotent of K and of R of the same

index n = 8t+ 1 ≡8 1).

(iv). Fix r = 10t + 5 for some t ∈ N. Then A5 is nilpotent of index 4t + 2. Since

the index of nilpotence of A5 is even, we know by Proposition 3.1.1(2a) that A5 is

ad-nilpotent of R of index 2(4t + 2) − 2 = 8t + 2. Moreover, from the fact that A5

is ad-nilpotent of R of index 8t + 2 ≡8 2 we get from Theorem 3.2.5 that its index

of ad-nilpotence in K is the same as in R. The element A5 gives an example of an

element in the conditions of Theorem 3.2.5(3) with λ = 0 (a nilpotent element of K1

of index 4t+2 which is ad-nilpotent of K and of R of the same index n = 8t+2 ≡8 2.)

(v). Fix r = 10t + 7 for some t ∈ N. Then A5 is nilpotent of index 4t + 3. Since

the index of nilpotence of A5 is odd, we know by Proposition 3.1.1(2a) that A5 is

ad-nilpotent of R of index 2(4t + 3) − 1 = 8t + 5. Moreover, from the fact that A5

is ad-nilpotent of R of index 8t + 5 ≡8 5 we get from Theorem 3.2.5 that its index

of ad-nilpotence in K is the same as in R. The element A5 gives an example of an

element in the conditions of Theorem 3.2.5(4) (a nilpotent element of K1 of index

4t+ 3 which is ad-nilpotent of K and of R of the same index n = 8t+ 5 ≡8 5).

(vi). Fix r = 10t+ 9 for some t ∈ N. Then A5 is nilpotent of 4t+ 4. Since the index

of nilpotence of A5 is even, we know by Proposition 3.1.1(2a) that A5 is ad-nilpotent

of R of index 2(4t+ 4)− 2 = 8t+ 6. Moreover, from the fact that A5 is ad-nilpotent

of R of index 8t + 6 ≡8 6 we get from Theorem 3.2.5 that its index of ad-nilpotence

in K is the same as in R. The element A5 gives an example of an element in the

conditions of Theorem 3.2.5(5) with λ = 0 (a nilpotent element of K1 of index 4t+ 4
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which is ad-nilpotent of K and of R of the same index n = 8t+ 6 ≡8 6).

The matrices given in (i), (ii), (iii) and (v) provide examples of (2.a) in Theorem

3.1.2. Moreover, the matrices of (iv) and (vi) fit in case (2.b) of Theorem 3.1.2 with

λ = 0.

4.2.1. Some other examples of odd ad-nilpotent elements of K and of R.

The examples (iv) and (vi) in the previous section are ad-nilpotent elements of

K of indexes n ≡8 2 and n ≡8 6, and fit in Theorem 3.2.5(3) and (5) with λ = 0. To

get examples of such types of elements with nonzero λ’s, we will work with matrices

over a field with nontrivial involution.

Let r be a natural number, let C be the field of complex numbers with involution

given by conjugation, and let us consider the simple superalgebra R =M(r) over C.

The map trp given by  A B

C D

trp =

 Dt −Bt

Ct At

 ,
where A,B,C,D ∈ Mr(C) and ( )t denotes the usual matrix transposition, defines

a superinvolution in R known as the transpose superperinvolution (see [36, Example

2.2]).

Let us denote by K the set of skew-symmetric elements ofM(r) with respect trp.

Note that any element of K1 has the form

 0 B

C 0

 where B is a symmetric matrix

and C is a skew-symmetric matrix inMr(C) with respect to the usual transposition.

Let us consider a symmetric matrix B ∈Mr(C) with Br = 0 and Br−1 6= 0 (it is

shown in [51, Corollary 5] that for every r there exist symmetric nilpotent matrices

inMr(C) of rank r− 1). Let 0 6= λ ∈ R and let i denote the square root of -1. Then

a =

 0 B + id

(λi)id 0

 ∈ K1 and a2 =

 (λi)B + (λi)id 0

0 (λi)B + (λi)id


i.e., (a2 − λi) is nilpotent of index r.

When r is odd a is an example for Theorem 3.2.5 (3), and when r is even a is

an example for Theorem 3.2.5 (5). Both cases are examples of elements of the form
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(2.b) of Theorem 3.1.2.
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Chapter 5

Local superalgebra of Lie

superalgebras at ad-nilpotent

elements

This chapter is part of an article that has been published in the journal Communica-

tions in Algebra and can be found in [30].

In this chapter we extend the ideas of local algebras of Jordan algebras to the super

setting, and Jordan superstructures are attached to Lie superalgebras at ad-nilpotent

homogeneous elements.

We also generalize in the section 6.3 the notion of subquotient to the Lie superal-

gebra. It comes attached to an abelian Lie inner ideal of a Lie superalgebra, and it is

indeed a Jordan superpair. Moreover, in the particular case of an abelian inner ideal

of the form [a, [a, L]], the subquotient agrees with the Jordan superobject obtained

in the section 6.2.

The chapter is organized as follows. When a is even, we easily obtain a Jordan

superalgebra by using the Grassmann envelope. But when we deal with an odd ad-

nilpotent element a of index less than or equal to 4 we first define a triple product in

[a, [a, L]], and then we double this triple and change a sign in one of the associated

triple products to get a Jordan superpair. We introduce subquotients associated to

abelian inner ideals of Lie superalgebras and show that they are Jordan superpairs.
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Finally, we show that the Jordan superalgebras/superpairs obtained in the previous

section agree with the subquotients associated to abelian inner ideals of the form

[a, [a, L]].

In addition, we will assume that 1
3
∈ Φ.

5.0.1. Let M = M0 ⊕M1 be a supermodule over Φ. Then the associative algebra

End(M) is provided with the induced Z2-grading End(M) = End(M)0 ⊕ End(M)1,

in which

End(M)i = {f ∈ End(M) | f(Mj) ⊆Mi+j}.

Let L = L0 ⊕ L1 be a Lie superalgebra over Φ then End(L) becomes an associative

superalgebra and (End(L))− with product [f, g] = fg− (−1)|f ||g|gf for homogeneous

elements f, g ∈ End(L) becomes a Lie superalgebra. The set ad L of adjoint maps is

a Lie superideal of (End(L))−, so if we denote by capital letters the adjoint maps as-

sociated to elements, i.e., A = ada, B = adb, etc., we have [A,B] = AB− (−1)|a||b|BA

for homogeneous elements a, b ∈ L0 ∪ L1. This notation will be useful because it

allows us to think in an associative way when we are doing calculations.

5.1 A Jordan superalgebra at an even homoge-

neous ad-nilpotent element

5.1.1. Let L = L0 + L1 be a Lie superalgebra, and let a ∈ L0 such that ad3
aL = 0.

Such an element will be called Jordan element of L. In the Φ-module [a, [a, L]] we

can define a new product

[a, [a, x]] · [a, [a, y]] =
1

2
[a, [a, [x, [a, y]]]].

The (nonassociative) algebra ([a, [a, L]], ·) is Z2-graded with homogeneous parts

[a, [a, L]]0 = [a, [a, L0]] and [a, [a, L]]1 = [a, [a, L1]]. The parity of an homogeneous

element x̄ coincides with the parity of x as an element in the Lie superalgebra L, i.e.,

|x̄| = |x| for every homogeneous element x ∈ L0 ∪ L1. In the next proposition we
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prove that this superalgebra is in fact a Jordan superalgebra.

Proposition 5.1.2. Let L = L0 + L1 be a Lie superalgebra and a ∈ L0 be a Jordan

element. Then ([a, [a, L]], ·) is a Jordan superalgebra.

Proof. Let us check that the Grassmann envelope of [a, [a, L]] is a Jordan algebra

with the induced product. Let us consider ã = a ⊗ 1 ∈ G(L), which is a Jordan

element of the Lie algebra G(L). By Theorem [24, 2.4(ii)] and Remark [24, 2.44] we

can consider the Jordan algebra [ã, [ã, G(L)]] of G(L) at ã with product

[ã, [ã, x̃]] · [ã, [ã, ỹ]] =
1

2
[ã, [ã, [x̃, [ã, ỹ]]]]

for any x̃, ỹ ∈ G(L).

The map ϕ : [ã, [ã, G(L)]] → G([a, [a, L]]) given by ϕ([ã, [ã, x ⊗ ξi1ξi2 . . . ξik ]]) =

[a, [a, x]]⊗ ξi1ξi2 . . . ξik is an isomorphism, so G([a, [a, L]]) is a Jordan algebra, giving

that [a, [a, L]] is a Jordan superalgebra.

Remark 5.1.3. The induced triple product on [a, [a, L]] is given by

{x̄, ȳ, z̄} = (−1)|y||z|
1

4
A2XZA2(y)

for homogeneous x̄, ȳ, z̄ ∈ [a, [a, L]]. Indeed,

4 {x̄, ȳ, z̄} = 4
(
x̄ · (ȳ · z̄) + (−1)|y||z|+|x||z|z̄ · (x̄ · ȳ)− (−1)|x||y|ȳ · (x̄ · z̄)

)
=

= A2[x, [a, [y, [a, z]]]] + (−1)|y||z|+|x||z|A2[z, [a, [x, [a, y]]]]−

− (−1)|x||y|A2[y, [a, [x, [a, z]]]] =

= [[x, a], [[y, a], z]] + (−1)|y||z|+|x||z|[[z, a], [[x, a], y]]− (−1)|x||y|[[y, a], [[x, a], z]] =

= A2[[[x, a], [y, a]], z] + (−1)|x||y|+|y||z|+|x||z|A2[z, [a, [[y, a], x]]] =

= A2[[x, [a, [y, a]]], z] = (−1)|z|(|x|+|y|)A2[z, [x, [a, [a, y]]]] = (−1)|y||z|A2XZA2(y).

Remark 5.1.4. An equivalent construction of the Jordan superalgebra ([a, [a, L]], ·)
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is the following: in L define a new product by x • y = 1
2
[x, [a, y]] for any x, y ∈ L,

and denote L(a) the (nonassociative) Z2-graded algebra (L, •), with L
(a)
0 = L0 and

L
(a)
1 = L1. If we define KerL(a) := {x ∈ L|[a, [a, x]] = 0}, then KerL(a) is the kernel of

the Z2-graded algebra homomorphism ϕ : L(a) → [a, [a, L]] given by ϕ(x) = [a, [a, x]],

so L(a)/KerL(a) and [a, [a, L]] are isomorphic as Jordan superalgebras.

5.2 Jordan superalgebras at odd homogeneous ad-

nilpotent elements

Now we turn to odd ad-nilpotent elements. Notice that for every homogeneous el-

ement a ∈ L1 we have ad[a,a] = 2ad2
a. When dealing with ad-nilpotent elements

of L1 we will require ad4
aL = 0. In this case the element b = [a, a] ∈ L0 verifies

ad2
b = ad2

[a,a] = 4ad4
a = 0.

Remark 5.2.1. Given such an element a ∈ L1 with ad4
a = 0, if we consider the Φ-

module [a, [a, L]] and we define the bilinear product as in 5.1.1 ([a, [a, x]] · [a, [a, y]] =

1
2
[a, [a, [x, [a, y]]]] for every x, y ∈ L) then [a, [a, L]] is Z2-graded with [a, [a, L]]0 =

[a, [a, L1]] and [a, [a, L]]1 = [a, [a, L0]]. The parity of the homogeneous elements of

[a, [a, L]] changes and |[a, [a, x]]| = |x|+ 1 for any homogeneous element x ∈ L0 ∪ L1.

Moreover,

x̄ · ȳ = −(−1)|x̄||ȳ|ȳ · x̄

for homogeneous x̄ = [a, [a, x]], ȳ = [a, [a, y]] ∈ [a, [a, L]], i.e., ([a, [a, L]], ·) is super-

anticommutative. To avoid this situation and get a Jordan superstructure, we define

a trilinear product on [a, [a, L].

5.2.2. For an element a ∈ L1 with ad4
a = 0, we consider the trilinear map { , , } on

[a, [a, L]] defined by

{x̄, ȳ, z̄} :=
1

4
[[a, [a, x]], [y, [a, [a, z]]]] =

1

4
A2XY A2(z) (5.2.1)

for every homogeneous x̄ = [a, [a, x]], ȳ = [a, [a, y]] and z̄ = [a, [a, z]] ∈ [a, [a, L]] (no-
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tice that [[a, [a, x]], [y, [a, [a, z]]]] = 1
4
[[[a, a], x], [y, [[a, a], z]]] = A2XY A2(z) because

ad[a,a]adyad[a,a] = 0). The Φ-module [a, [a, L]] is Z2-graded with respect to this trilin-

ear product and [a, [a, L]]i = [a, [a, Li]], i ∈ {0, 1}.

We have that

[[a, [a, x]], [y, [a, [a, z]]]] = [[[a, [a, x]], y], [a, [a, z]]]

for every x, y, z ∈ L0 ∪ L1 because [[a, [a, x]], [a, [a, z]]] = 1
4
[[[a, a], x], [[a, a], z]] =

0 since [a, a] is an absolute zero divisor. This implies that the triple product is

supersymmetric in the outer variables:

{x̄, ȳ, z̄} = (−1)|x||y|+|x||z|+|y||z|{z̄, ȳ, x̄}. (5.2.2)

Moreover,

{x̄, ȳ, z̄} = (−1)|y||z|{x̄, z̄, ȳ} (5.2.3)

because 4 {x̄, ȳ, z̄} = [[a, [a, x]], [y, [a, [a, z]]]] = (−1)|y||z|+1[[a, [a, x]], [[a, [a, z]], y]] =

= 1
4
(−1)|y||z|+1[[[a, a], x], [[[a, a], z], y]] = 1

4
(−1)|y||z|[[a, a], [x, [z, [[a, a], y]]]] =

= (−1)|y||z|A2XZA2(y) = 4(−1)|y||z|{x̄, z̄, ȳ}. From equations (5.2.2) and (5.2.3) we

get that the triple product defined in (5.2.1) is supercommutative on its three vari-

ables.

Lemma 5.2.3. For a homogeneous element a ∈ L1 with ad4
a = 0, the trilinear map

given in (5.2.1) satisfies

{x̄, ȳ, {z̄, ū, v̄}} = {{x̄, ȳ, z̄}, ū, v̄}+ (−1)|x||y|+|x||z|+|y||z|{z̄, {ȳ, x̄, ū}, v̄}

+ (−1)|x||z|+|x||u|+|y||z|+|y||u|{z̄, ū, {x̄, ȳ, v̄}} (∗)

for every x, y, z, u, v ∈ L0 ∪ L1.
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Proof. For every x, y, z, u, v ∈ L0 ∪ L1,

8 {x̄, ȳ, {z̄, ū, v̄}} = [[[a, [a, x]], y], [[[a, [a, z]], u], [a, [a, v]]]] =

= [[[[a, [a, x]], y], [[a, [a, z]], u]], [a, [a, v]]]+

+ (−1)(|x|+|y|)(|z|+|u|)[[[a, [a, z]], u], [[[a, [a, x]], y], [a, [a, v]]]] =

= [[[[[a, [a, x]], y], [a, [a, z]]], u], [a, [a, v]]]+

+ (−1)(|x|+|y|)|z|[[[a, [a, z]], [[[a, [a, x]], y], u]], [a, [a, v]]]+

+ (−1)(|x|+|y|)(|z|+|u|)[[[a, [a, z]], u], [[[a, [a, x]], y], [a, [a, v]]]] =

= 8 {{x̄, ȳ, z̄}, ū, v̄}+ (−1)(|x|+|y|)|z|[[[a, [a, z]], [[[a, [a, x]], y], u]], [a, [a, v]]]+

+ (−1)|x||z|+|x||u|+|y||z|+|y||u|8 {z̄, ū, {x̄, ȳ, v̄}}

Let us see that (−1)(|x|+|y|)|z|[[[a, [a, z]], [[[a, [a, x]], y], u]], [a, [a, v]]] coincides with the

second term on the right side of equality (∗): from the definition of the triple product,

[[[a, [a, z]], [[[a, [a, x]], y], u]], [a, [a, v]]] = 4 {z̄, [[[a, [a, x]], y], u], v̄}

and

[[[a, [a, x]], y], u] = [a, [a, [[[a, [a, x]], y], u]]] = (−1)1+|y|[[a, [a, x]], [a, y]], [a, u]]+

+ (−1)|y|[[a, [a, x], [a, y]], [a, u]] + [[[a, [a, x]], y], [a, [a, u]]] =

= 4 {x̄, ȳ, ū} = (−1)|x||y|4 {ȳ, x̄, ū}

hence

(−1)(|x|+|y|)|z|[[[a, [a, z]], [[[a, [a, x]], y], u]], [a, [a, v]]] =

= (−1)|x||y|+|x||z|+|y||z|8 {z̄, {ȳ, x̄, ū}, v̄}

and we have shown (∗).
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5.2.4. A pair of Z2-graded Φ-modules V = (V +, V −) is a (linear) Jordan superpair

if there exist two trilinear maps { , , }σ : V σ × V −σ × V σ → V σ, σ = ±, both

supersymmetric in the outer variables, and that satisfy (JSP15):

{a, b, {c, d, e}σ}σ = {{a, b, c}σ, d, e}σ − (−1)|a||b|+|a||c|+|b||c|{c, {b, a, d}−σ, e}σ

+ (−1)|a||c|+|a||d|+|b||c|+|b||d|{c, d, {a, b, e}σ}σ, σ = ±

for homogeneous a, c, e ∈ V σ and homogeneous b, d ∈ V −σ, σ = ±.

We have just shown that when a ∈ L1 has ad4
a = 0, [a, [a, L]] with the trilinear

map {, , } given in (5.2.1) is a (1,1)-Jordan supertriple in the sense of [47, §3], which

are a particular case (ε, δ)-Freudenthal-Kantor supertriple systems, ε = ±1, δ = ±1

[47, §3]. We say that a Z2-graded Φ-module M = M0 + M1 with a graded triple

product { , , } : M ×M ×M →M is a (1, 1)-Jordan supertriple if

• {a, b, c} = (−1)|a||b|+|a||c|+|b||c|{c, b, a} and

• {a, b, {c, d, e}} = {{a, b, c}, d, e}+ (−1)|a||b|+|a||c|+|b||c|{c, {b, a, d}, e}

+ (−1)|a||c|+|a||d|+|b||c|+|b||d|{c, d, {a, b, e}}

for homogeneous elements a, b, c, d, e ∈ M . The second identity resembles (JSP15)

but there is a change of sign in the second summand of its right side. Notice that

every (1, 1)-Jordan supertriple M with triple product { , , } gives rise to a Jor-

dan superpair V = (V +, V −) = (M,M) with products {a, b, c}+ := {a, b, c} and

{b, c, d}− := −{b, c, d} for every a, c ∈ V + and b, d ∈ V −. In our case we have

shown that if we double [a, [a, L]] and twist one of the triple products we have that

([a, [a, L]], [a, [a, L]]) is a Jordan superpair.

5.2.5. Another Jordan structure can be defined from an ad-nilpotent element a ∈

L1: suppose that a ∈ L1 has ad6
a = 0. Then b = [a, a] ∈ L0 is a Jordan element

(ad3
b = (2ad2

a)
3 = 0), and we can define a Jordan superalgebra on the Φ-module
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[b, [b, L]] = ad4
aL as in 5.1.2. The product is now given by

[b, [b, x]] · [b, [b, y]] =
1

2
[b, [b, [x, [b, y]]]]

or, equivalently,

ad4
ax · ad4

ay = 2ad4
a[x, ad2

ay].

5.3 Subquotients associated to abelian inner ideals

of Lie superalgebras

5.3.1. Let L = L0 + L1 be a Lie superalgebra. We say that B = B0 + B1 ⊂ L is an

inner ideal of L if [B, [B,L]] ⊂ B, and B is abelian if [B,B] = 0. Inner ideals can be

easily produced from homogeneous ad-nilpotent elements.

Example 5.3.2. Let L = L0 +L1 a Lie superalgebra and let a ∈ L0 with ad3
a = 0 or

a ∈ L1 with ad4
a = 0. Then

[a] := [a, [a, L]] (a) := Φa+ [a, [a, L]]

are inner ideals of L. Moreover, [a] is an abelian inner ideal.

Conversely, given an abelian inner ideal B = B0 + B1, any homogeneous b ∈ B0

is a Jordan element and gives rise to the inner ideals [b] and (b) contained in B. If

b ∈ B1 then 0 = [b, b] implies 0 = ad[b,b] = 2ad2
b so [b] = 0 and (b) = Φb.

Proposition 5.3.3. Let L be a Lie superalgebra and B an abelian inner ideal of L.

Let us consider KerB := {x ∈ L | [B, [B, x]] = 0}. Then (B,L/KerB) is a Jordan

superpair with products:

{a, x, b} : = [a, [x, b]] = [[a, x], b]

{x, a, y} : = [x, [a, y]] = [[x, a], y]

for a, b ∈ B and x, y ∈ L (here x̄, ȳ, [x, [a, y]] and [[x, a], y] denote equivalence
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classes in the quotient L/KerB). This Jordan superpair is called the subquotient of

L associated to B.

Proof. First notice that [a, [x, b]] = [[a, x], b] and [x, [a, y]] = [[x, a], y] for every a, b ∈

B and every x, y ∈ L because B is abelian and the definition of KerB.

The products are well defined: clearly {a, 0, b} = 0, and if we take homogeneous

x, y ∈ L/KerB with x = 0 or y = 0 then for homogeneous a, b, c ∈ L we have that

[b, [c, [x, [a, y]]]] = [b, [[c, x], [a, y]]] + (−1)|c||x|[b, [x, [c, [a, y]]]] =

= (−1)|c||x|[[b, x], [c, [a, y]]] + (−1)|c||x|+|b||x|[x, [b, [c, [a, y]]]] = 0

Let us see that the triple products are supersymmetric in the outer variables:

{a, x, b} = [a, [x, b]] = (−1)1+|x||b|[a, [b, x]] = (−1)|b||x|+|a|(|b|+|x|)[[b, x], a]] =

= (−1)|b||x|+|a||b|+|a||x|[b, [x, a]] = (−1)|b||x|+|a||b|+|a||x|{b, x, a}

{x, a, y} = [x, [a, y]] = [[x, a], y] + (−1)|x||a|[a, [x, y]] =

= (−1)|x||y|+|x||a|+|y||a|[y, [a, x]] = (−1)|x||y|+|x||a|+|y||a|{y, a, x}

Let us prove (JSP15). For homogeneous a, b, c ∈ B and homogeneous x, y, z ∈ L,

• {a, x, {b, y, c}} = [[a, x], [[b, y], c]] =

= [[[[a, x], b], y], c] + (−1)(|a|+|x|)b[[b, [[a, x], y]], c] + (−1)(|b|+|y|)(|a|+|x|)[[b, y], [[a, x], c]]

= {{a, x, b}, y, c} − (−1)|a||b|+|x||b|+|a||x|{b, {x, a, y}, c}+

+ (−1)(|b|+|y|)(|a|+|x|){b, y, {a, x, c}}.

• {x, a, {y, b, z}} = [[x, a], [[y, b], z]] =

= [[[[x, a], y], b], z] + (−1)|y|(|x|+|a|)[[y, [[x, a], b]], z] + (−1)(|y|+|b|)(x+a)[[y, b], [[x, a], z]]

= {{x, a, y}, b, z} − (−1)|y||x|+|y||a|+|a||x|{y, {a, x, b}, z}+

+ (−1)(|y|+|b|)(|x|+|a|){y, b, {x, a, z}}
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Therefore, (B,L/KerB) is a Jordan superpair.

Remark 5.3.4. Let a ∈ L0 be a Jordan element or a ∈ L1 with ad4
a = 0. Then

B = [a] = [a, [a, L]] is an abelian inner ideal and we can build the subquotient

([a], L/Ker[a]). In this particular case, for homogeneous x, y, z ∈ L the triple product

{[a, [a, x]], y + Ker[a], [a, [a, z]]} = [[a, [a, x]], [y, [a, [a, z]]]] =

= (−1)|y||z|+1+|a|A2XZA2(y)

coincides, up to a scalar, with the triple product we have already defined in [x], see

Remark 5.1.3 when [a] is even and 5.2.2 when a is odd. In the following result we are

going to prove that the Jordan superpair structures defined in this section and in the

previous ones coincide.

Corollary 5.3.5. Let L be a Lie superalgebra, take a ∈ L0 with ad3
a = 0 or a ∈ L1

with ad4
a = 0, and let us consider the subquotient associated to the abelian inner ideal

[a].

(a) When a ∈ L0, if we consider the Jordan superpair structure induced on

([a, [a, L]], [a, [a, L]]) by Remark 5.1.3, then the pair of maps

(Ψ1,Ψ2) : ([a, [a, L]], [a, [a, L]])→ ([a], L/Ker[a])

given by

Ψ1 = −1

2
id and Ψ2([a, [a, x]]) =

1

2
x+ Ker[a]

is an isomorphism of Jordan superpairs.
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(b) When a ∈ L1, if we consider the Jordan superpair structure defined on

([a, [a, L]], [a, [a, L]]) by5.2.3, then the pair of maps

(Ψ1,Ψ2) : ([a, [a, L]], [a, [a, L]])→ ([a], L/Ker[a])

given by

Ψ1 =
1

2
id and Ψ2([a, [a, x]]) =

1

2
x+ Ker[a]

is an isomorphism of Jordan superpairs.

Proof. In both cases, the pair of maps given by

Ψ1([a, [a, x]]) = (−1)|a|+1 1

2
[a, [a, x]] ∈ [a], and

Ψ2([a, [a, x]]) =
1

2
x+ Ker[a] ∈ L/Ker[a],

for every x ∈ L, are well defined (if [a, [a, x]] = [a, [a, y]], then [a, [a, x−y]] = 0 implies

x− y ∈ Ker[a]). They are clearly bijective. Let us see that they are Jordan superpair

homomorphisms.

(a) Suppose that a ∈ L0 and take homogeneous x, y, z ∈ L.

• Ψ1({[a, [a, x]], [a, [a, y]], [a, [a, z]]}) = Ψ1((−1)|y||z|
1

4
A2XZA2(y)) =

= (−1)|y||z|+1 1

8
A2XZA2(y) = {−1

2
[a, [a, x]],

1

2
y + Ker[a],−1

2
[a, [a, z]]} =

= {Ψ1([a, [a, x]]),Ψ2([a, [a, y]]),Ψ1([a, [a, z]])}.

• Ψ2({[a, [a, x]], [a, [a, y]], [a, [a, z]]}) = Ψ2((−1)|y||z|
1

4
A2XZA2(y)) =

= (−1)|y||z|
1

8
XZA2(y) + Ker[a] = −1

8
[x, [[a, [a, y]], z]] + Ker[a] =

= {1

2
x+ Ker[a],−1

2
[a, [a, y]],

1

2
z + Ker[a]} =

= {Ψ2([a, [a, x]]),Ψ1([a, [a, y]]),Ψ2([a, [a, z]])}.
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(b) Suppose that a ∈ L1 and take homogeneous x, y, z ∈ L.

• Ψ1({[a, [a, x]], [a, [a, y]], [a, [a, z]]}) = Ψ1((−1)|y||z|
1

4
A2XZA2(y)) =

= (−1)|y||z|
1

8
A2XZA2(y) = {1

2
[a, [a, x]],

1

2
y + Ker[a],

1

2
[a, [a, z]]} =

= {Ψ1([a, [a, x]]),Ψ2([a, [a, y]]),Ψ1([a, [a, z]])}.

• Ψ2({[a, [a, x]], [a, [a, y]], [a, [a, z]]}) = Ψ2(−1

4
[[[a, [a, x]], y], [a, [a, z]]]) =

= −1

4
Ψ2((−1)|y||z|A2XZA2(y)) =

1

8
(−1)1+|y||z|XZA2(y) + Ker[a] =

=
1

8
[x, [[a, [a, y]], z]] + Ker[a] = {1

2
x+ Ker[a],

1

2
[a, [a, y]],

1

2
z + Ker[a]} =

= {Ψ2([a, [a, x]]),Ψ1([a, [a, y]]),Ψ2([a, [a, z]])}.
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Results and discussion

In this thesis we have studied ad-nilpotent elements belonging to semiprime associa-

tive algebras with involution or prime associative superalgebras with superinvolution,

and ad-nilpotent elements in Lie superalgebras. First, we have dealt with semiprime

associative algebras with involution. In these algebras we have defined the notion of

pure ad-nilpotent element; this notion will be a relevant definition throughout Chap-

ter 2 because it will allow us to give a more precise description of such elements, and

to weaken the torsion conditions required to the whole algebra.

We have described the pure ad-nilpotent elements belonging to a semiprime asso-

ciative algebra R with involution ∗ and belonging to K := Skew(R, ∗). Indeed, if a

is a pure ad-nilpotent element in R of index n, with R free of
(
n
s

)
and s-torsion, with

s = [n+1
2

], then there exists λ in the extended centroid of R such that a−λ is nilpotent

of index s. On the other hand, if a is a pure ad-nilpotent element in K of index n, the

description of a depends on the equivalence class of n modulo 4, and there are three

posibilities: If n ≡4 0 then the index of ad-nilpotence of a in R is greater than n and

there exists a corner of R that satisfies a PI. If n ≡4 0 then the index of ad-nilpotence

of a in R is n and we can conclude that there exists λ in the extended centroid such

that a − λ is nilpotent. If n ≡4 3 then a can be descomposed as an orthogonal sum

of an ad-nilpotent element of R of index n and another ad-nilpotent element of R of

index greater than n. It is important to note that in semiprime associative algebras

the extended centroid is not a field, but it is a von Neumann regular ring.

In the next chapter, we have studied homogeneous ad-nilpotent elements in prime

associative algebras R = R0+R1 with superinvolution ∗. We have started by studying

the homogeneous ad-nilpotent elements a of index n in R. If a is even, since R0 is

85



an algebra, we can use the above description of ad-nilpotent elements in associative

algebras. Although it is an almost direct implication of the previous chapter, we have

to deepen into the structure of the extended centroid C(R) to ensure that a − λ is

nilpotent with λ an even element in the extended centroid. On the other hand, if

a ∈ R1 , we have focused on a2. Thus, unlike the descriptions of even elements, two

different cases appear: If n is even then a2 ∈ R0 is ad-nilpotent of R of index n
2

which

implies that there exists λ ∈ C(R)0 such that a2− λ is nilpotent of index n+2
4

. If n is

odd then a is ad-nilpotent of R of index n+1
2

and hence a is nilpotent of index n+1
2

.

Continuing in the super setting, we have described the homogeneous ad-nilpotent

elements a ∈ K := Skew(R, ∗) of index n of K. Once we have shown that any

homogeneous ad-nilpotent element of K is either an ad-nilpotent element of R of the

same index or nilpotent, we can describe these elements in depth. This description

depends on the parity of the element: In the even case, the proof and the description

is strongly supported by the non-super case. While, in the odd case, we will focus

on a2 and thus use the description of even ad-nilpotent elements. More precisely, if

a ∈ K1 is an ad-nilpotent element of K of index n and R has characteristic p > n,

there are seven possibilities depending on the equivalence class of n modulo 8:

(1) If n ≡8 0 then a is nilpotent of index n
2

+ 1, ad-nilpotent of R of index n + 1

and a
n
2Ka

n
2 = 0 (so a

n
2Ra

n
2 is a commutative trivial local superalgebra).

(2) If n ≡8 1 then a
n−1
2 ∈ H0, and a is nilpotent of index n+1

2
and ad-nilpotent of

R of index n.

(3) If n ≡8 2 then there exists λ, a skew-symmetric element in the extended cen-

troid, such that a2 − λ is nilpotent of index n+2
4

and a is ad-nilpotent of R of

index n.

(4) If n ≡8 5 then a
n−1
2 ∈ K0, and a is nilpotent of index n+1

2
and ad-nilpotent of

R of index n.

(5) If n ≡8 6 then there exists λ, a skew-symmetric element in the extended cen-

troid, such that a2 − λ is nilpotent of index n+2
4

and a is ad-nilpotent of R of
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index n.

(6) If n ≡8 7 then a is nilpotent of index n+1
2

+1, ad-nilpotent of R of index n+2 and

a
n+1
2 ka

n−1
2 +(−1)|k|a

n−1
2 ka

n+1
2 = 0 for every homogeneous k ∈ K (so a

n+1
2 Ra

n+1
2

is a commutative trivial local superalgebra).

(7) The cases n ≡8 3 and n ≡8 4 do not occur.

Afterwards, we have given examples of elements fitting these descriptions. Our

examples are matrices considered in the superalgebra M(r|s) over a field with a

nontrivial superinvolution. Although these examples are considered in superalgebras,

restricting to the even part yields examples in the non-super setting. These examples

allow us to ensure that all the cases appearing in our descriptions hold.

Finally, in Chapter 5, given any Lie superalgebra over Φ with 1
6
∈ Φ, we have

studied the even ad-nilpotent elements of index 3 and the odd ad-nilpotent elements

of index 4. For the even elements it is possible to associate a Jordan superalgebra

to the initial Lie superalgebra by transferring to super setting the existing result in

Lie and Jordan algebras due to A. Fernández, E. Garćıa and M. Gómez Lozano in

[24]. However, for odd ad-nilpotent elements of index 4 we have obtained a Jordan

superpair. We have also introduced the notion of subquotient of a Lie superalgebra

associated to an abelian inner ideal. Furthermore, the subquotient of a Lie super-

algebra associated to an abelian inner ideal is a Jordan superpair, generalizing the

structure defined above by the homogeneous ad-nilpotent elements.

Future work

We have studied homogeneous ad-nilpotent elements in prime associative superalge-

bras but we can also study these descriptions in semiprime associative superalgebras.

We note that the main difficulty of working on semiprime superalgebras is that the

extended centroid drops the property of its elements being invertible with all that this

entails. Another possibility could be to study these descriptions for non-homogeneous

ad-nilpotent elements.
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On the other hand, the subquotients of a Lie superalgebra associated to an abelian

inner ideal could be a starting point to study the concept of socle and a Wedderburn-

Artin theory for Lie superalgebras following the ideas of C. Draper, A. Fernández, E.

Garćıa, and M. Gómez Lozano [22]. Some other future research could be to study

the relationship between Jordan superstructures and Leibniz superalgebras, as R.

Velásquez and R. Felipe have done in the algebra settings [65].
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General conclusions

The main conclusions of this thesis can be summarized as follows:

� We have defined the notion of pure ad-nilpotent element in Chapter 2. The

extended centroid plays an important role in this definition. It is a technical

condition, since every ad-nilpotent element can be expressed as an orthogonal

sum of pure ad-nilpotent elements of decreasing indices. Furthermore, this

definition allows us to give a more precise description of such elements, and to

weaken the torsion conditions required to the whole algebra. For more details

we refer the reader to Section 2.1.

� We have proved that for any pure ad-nilpotent element a in a semiprime asso-

ciative algebra R of index n with R free of
(
n
s

)
and s-torsion, where s = [n+1

2
],

there exists λ in the extended centroid such that a− λ is nilpotent of index s.

This fact is proved in the Theorem 2.2.4. We have weakened the conditions of

Theorem [54, Theorem 1.3].

� Considering a semiprime associative algebra R with involution ∗ we have de-

scribed any skew-symmetric pure ad-nilpotent element a of index n depending

on n modulo 4: If n ≡4 0 then the indexes of ad-nilpotence of a in R and K

do not coincide and there exists a corner of R satisfying a PI. If n ≡4 1 then

the indexes of ad-nilpotence of a in R and K coincide and there exists λ in the

extended centroid such that a−λ is nilpotent. If n ≡4 3 then we can decompose

a in an orthogonal sum a = a1 + a2 such that, if a1 6= 0, a1 is ad-nilpotent of

R of index n (so there exists λ in the extended centroid such that a1 − λ is

nilpotent) and, if a2 6= 0, a2 is ad-nilpotent of R of index n+ 2 (therefore there
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exists a corner of R that satisfies a PI). The case n ≡4 2 cannot occur. This

description has been proved in Theorem 2.3.6.

� In the same spirit as in the non-super setting, we have given descriptions of

ad-nilpotent elements in prime associative superalgebras with superinvolution.

These descriptions relate the index of ad-nilpotence of a homogeneous element

with its nilpotence index. An important remark related with these descriptions

is that every ad-nilpotent element has a minimal polinomial in the central clo-

sure with one root in the extended centroid. We refer readers to Theorems

3.1.2, 3.2.4, 3.2.5 for more details.

� To conclude our study about ad-nilpotent elements in associative algebras and

superalgebras, in Chapter 4, we have given examples of elements appearing in

these descriptions. The examples are matrices considered in the associative

superalgebra M(r|s) over a field with a nontrivial superinvolution. Although

we have considered a superalgebra, we also provide examples for descriptions of

ad-nilpotent elements in associative algebras when we restrict the examples to

the even part of the matrices M(r|s).

� For a Lie superalgebra L with an even ad-nilpotent element a of index 3 we have

shown that ([a, [a, L]], ·) with a new product · defined by [a, [a, x]] · [a, [a, y]] :=

1
2
[a, [a, [x, [a, y]] is a Jordan superalgebra isomorphic to La = L(a)/KerL(a)

where L(a) = (L, •) with x • y := [x, [a, y]] and KerL(a) := {x ∈ L | [a, [a, x]] =

0}. This result has been proved in Proposition 5.1.2.

� However, for a Lie superalgebra with an odd ad-nilpotent element the same

construction gives a super anticommutative superalgebra, hence it cannot be a

Jordan superalgebra. Instead, we have proved that it is possible to construct a

Jordan superpair, see 5.2.3.

� Finally, we have defined the subquotient of a Lie superalgebra associated to an

abelian inner ideal and we have proved that it is a Jordan superpair (Proposi-

tion 5.3.3). Moreover, we have shown that the subquotient corresponds to the
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construction made before (Corollary 5.3.5).

91



92



Resumen de la tesis en castellano

Esta tesis se enmarca en el estudio de los elementos ad-nilpotentes en álgebras y

superálgebras asociativas con involución y superinvolución y elementos ad-nilpotentes

en superálgebras de Lie. La primera parte encaja con la rama de teoŕıa de Herstein

que estudia las derivaciones internas nilpotentes en álgebras. Son muchos los estudios

sobre este área, destacando para nuestro trabajo los art́ıculos de W. S. Martindale

y C. R. Miers [55], [56] y de T. K. Lee [54]. Posteriormente, en la segunda parte,

estudiamos cómo asociar estructuras Jordan a una superalgebra de Lie, siguiendo la

idea del art́ıculo de A. Fernández, E. Garćıa y M. Gómez Lozano [24].

Objetivos

Se han desarrollado tres objetivos a lo largo de esta tesis, todos con la misma premisa,

trabajar con elementos ad-nilpotentes. En primera instancia buscamos describir de-

talladamente los elementos ad-nilpotentes en álgebras asociativas semiprimas con in-

volución. En el segundo objetivo, trasladamos el estudio que hemos realizado previa-

mente sobre álgebras asociativas semiprimas a las superálgebras asociativas primas,

es decir, se pretende dar una descripción con detalle análoga para los elementos ad-

nilpotentes homogéneos. Y por último, asociamos a una superálgebra de Lie con un

elemento ad-nilpotente de cierto ı́ndice una super estructura de Jordan.

Metodoloǵıa

Para desarrollar los dos primeros objetivos hemos trabajado en el marco de las

álgebras semiprimas con involución y en las superálgebras asociativas primas con
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superinvolución. Además, el centroide extendido tendrá una importancia esencial en

esta tesis. Para el último de los objetivos, hemos trabajado con super estructuras no

asociativas como las superálgebras de Jordan y Lie, que se definen mediante la envol-

vente de Grassmann, y super pares de Jordan. Podemos destacar el alto contenido

combinatorio a lo largo de toda la tesis.

Resultados

Hemos abarcado con éxito los tres objetivos iniciales. En primer lugar, hemos des

crito con detalle los elementos ad-nilpotentes pertenecientes a un álgebra asociativa

semiprima. Además, se ha conseguido reducir la torsión en la clasificación de los

elementos ad-nilpotentes en álgebras asociativas semiprimas con involución gracias

al nuevo concepto de elemento ad-nilpotente puro, introducido en esta tesis. Se ha

pasado de pedir libre de n! torsión para un elemento ad-nilpotente de ı́ndice n a

pedir libre de
(
n
s

)
y s torsión con s = [n+1

2
]. Por otra parte, para los elementos ad-

nilpotentes antisimétricos de una álgebra asociativa semiprima, R, con involución, ∗,

hemos dado una descripción que depende de su ı́ndice de ad-nilpotencia módulo 4.

En esta descripción podemos destacar lo siguiente: Si un elemento antisimétrico, a,

es ad-nilpotente tal que su ı́ndice de ad-nilpotencia sobre K := Skew(R, ∗) y R no

coinciden, es decir, adnaK = 0 pero adnaR 6= 0, (sólo puede ocurrir para los ı́ndices de

ad-nilpotencia sobre K congruentes con 0 ó 3 módulo 4) entonces un cierto corner

del álgebra verifica una PI y por tanto el álgebra inicial satisface una GPI. Estos

resultados se han desarrollado a lo largo del caṕıtulo 2 y han originado un art́ıculo

que ya está publicado en la revista Bulletin of the Malaysian Mathematical Sciences

Society ([12]). El segundo objetivo, describir en superálgebras asociativas primas con

superinvolución las derivaciones internas nilpotentes, también se ha resuelto positiva-

mente en el caṕıtulo 3. Esta descripción depende a su vez de la paridad del elemento

homogéneo: Si el elemento es par se rescata en gran medida lo desarrollado en el

caṕıtulo anterior sobre álgebras asociativas ([12]). Sin embargo, si el elemento es

impar se trabajará sobre el cuadrado del elemento, que es un elemento ad-nilpotente

par, y se le aplicará la descripción de los elementos ad-nilpotentes pares. Este caṕıtulo
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ha dado lugar a un art́ıculo que está publicado on-line en la revista Linear and Mul-

tilinear Algebra ([28]). En el caṕıtulo 4, se han dado ejemplos para cada uno de los

casos que aparecen en las descripciones de los elementos, tanto en álgebras como en

superálgebras, demostrando aśı que estas descripciones no son triviales. Por último,

en el caṕıtulo 5, hemos asociado una superestructura Jordan a una superálgebra de

Lie con un elemento ad-nilpotente homogéneo, a, de ı́ndice 3 ó 4, según su paridad.

Además, el super par de Jordan que construimos siguiendo la filosof́ıa del art́ıculo de

A. Fernández, E. Garćıa y M. Gómez Lozano [24] coincide con el subcociente de la su-

peralgebra de Lie asociado a un ideal interno abeliano [a, [a, L]]. Este último caṕıtulo

ha sido publicado y puede consultarse en la revista Communications in Algebra ([30]).

Conclusiones

Las principales conclusiones de esta tesis se pueden resumir de la siguiente manera:

� Hemos definido la noción de elemento ad-nilpotente puro en el caṕıtulo 2. El

centroide extendido juega un papel muy importante en esta definición. Es una

condición técnica, ya que todo elemento ad-nilpotente puede ser expresado como

una suma ortogonal de elementos ad-nilpotentes puros de ı́ndices decrecientes.

Además, esta definición nos permite dar una descripción más precisa de dichos

elementos, y debilitar las condiciones de torsión del álgebra. Para más detalles

consultar la sección 2.1.

� Hemos probado que para cualquier elemento ad-nilpotente puro a en un álgebra

asociativa semiprima R de ı́ndice n con R libre de
(
n
s

)
y s-torsión, donde s =

[n+1
2

], existe λ en el centroide extendido tal que a− λ es nilpotente de ı́ndice s.

Este hecho se demuestra en el Teorema 2.2.4. Hemos debilitado las condiciones

del Teorema [54, Theorem 1.3].

� Considerando un álgebra asociativa semiprima R con involución ∗, hemos des-

crito cualquier elemento antisimétrico ad-nilpotente puro a de ı́ndice n depen-

diendo de n en módulo 4. Si n ≡4 0 entonces los ı́ndices de ad-nilpotencia de a
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en R y en K no coinciden y existe un corner de R que satisface una PI. Si n ≡4 1

entonces los ı́ndices de ad-nilpotencia de a en R y K coinciden y existe λ en el

centroide extendido tal que a − λ es nilpotente. Si n ≡4 3 entonces podemos

descomponer a en una suma ortogonal a = a1 + a2 tal que, si a1 6= 0, a1 es

ad-nilpotente de R de ı́ndice n (y por tanto existe λ en el centroide extendido

tal que a1 − λ es nilpotente) y, si a2 6= 0, a2 es ad-nilpotente de R de ı́ndice

n + 2 (y entonces existe un corner de R que satisface una PI). El caso n ≡4 2

no puede ocurrir. Esta descripción se ha demostrado en el Teorema 2.3.6.

� Siguiendo la misma idea que en el ambiente no super, hemos dado una des-

cripción de elementos ad-nilpotentes en superalgebras asociativas primas con

superinvolución. Estas descripciones relacionan el ı́ndice de ad-nilpotencia de un

elemento homogéneo con su ı́ndice de nilpotencia. Una observación importante

sobre estas descripciones es que todo elemento ad-nilpotente tiene un polinomio

minimal en la clausura central con una única ráız perteneciente al centroide

extendido. Para más detalles ver los teoremas 3.1.2, 3.2.4 y 3.2.5.

� Para terminar nuestro estudio sobre elementos ad-nilpotentes en álgebras y su-

perálgebras asociativas, en el caṕıtulo 4, hemos dado ejemplos de cada uno

de los casos que aparecen en estas descripciones. Los ejemplos son matrices

consideradas en la superálgebra asociativaM(r|s) sobre un cuerpo con una su-

perinvolución no trivial. Aunque hemos considerado una superálgebra, también

se construyen ejemplos para las descripciones de los elementos ad-nilpotentes

en álgebras asociativas cuando restringimos los ejemploes a la parte par de las

matrices M(r|s).

� Para una superálgebra de Lie L con un elemento ad-nilpotente par a de ı́ndice

3 hemos demostrado que ([a, [a, L]], ·) con un nuevo producto · definido por

[a, [a, x]] · [a, [a, y]] := 1
2
[a, [a, [x, [a, y]] es una superálgebra de Jordan isomorfa a

La = L(a)/KerL(a) donde L(a) = (L, •) con x • y := [x, [a, y]] y KerL(a) := {x ∈

L | [a, [a, x]] = 0}. Este resultado se ha demostrado en la Proposición 5.1.2.
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� Sin embargo, para una superálgebra de Lie con un elemento ad-nilpotente impar,

la misma construcción genera una superálgebra anticonmutativa, y por tanto

no puede ser una superálgebra de Jordan. Se demuestra que esta construcción

es un superpar de Jordan, ver 5.2.3.

� Finalmente, hemos definido el subcociente de una superálgebra de Lie asociada

a un ideal interno abeliano y hemos probado que es un superpar de Jordan

(Proposición 5.3.3). Además, hemos demostrado que el subcociente coincide

con la construcción realizada anteriormente (Corolario 5.3.5).
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[9] Matej Brešar and Špela Špenko. Functional identities in one variable. J. Algebra,

401:234–244, 2014.

99
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[27] E. Garćıa and M. Gómez Lozano. A characterization of the Kostrikin radical of

a Lie algebra. J. Algebra, 346(1):266–283, 2011.
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