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Abstract

In this thesis we will deal with ad-nilpotent elements in associative algebras and
superalgebras with involution and superinvolution, and ad-nilpotent elements in Lie
superalgebras. The first aim of this work fits with Herstein’s branch of theory that
studies nilpotent inner derivations in algebras. There are many studies on this area,
highlighting for our work the articles of W. S. Martindale and C. R. Miers [55], [56]
and T. K. Lee [54]. Later, in the second part, we study how to associate some Jordan
structures to a Lie superalgebra, motivated by the work of A. Fernandez, E. Garcia

and M. Gémez Lozano [24].

Objectives

Three objectives are addressed throughout this thesis. In the first instance, we seek to
describe in detail the ad-nilpotent elements in semiprime associative algebras with in-
volution. The second aim of this thesis is to carry over the descriptions of ad-nilpotent
elements in semiprime associative algebras to prime associative superalgebras, that
is, to give a detailed description of homogeneous ad-nilpotent elements belonging to
prime associative superalgebras. Finally, motivated by the work of A. Fernandez, E.
Garcifa and M. Gémez Lozano in [24], to associate a Jordan superstructure to a Lie

superalgebra with an ad-nilpotent element of a certain index.

Methodology

To develop the first two goals we have worked within the framework of semiprime

algebras with involution and prime associative superalgebras with superinvolution.
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Moreover, the extended centroid will be an important tool in this thesis. For the
last objective, we have worked with nonassociative superstructures such as Lie and
Jordan superalgebras, defined by the Grassmann envelope, and Jordan superpairs.

We can highlight the high combinatorial content throughout the entire thesis.

Results

We have successfully covered the three initial goals. First, we have described in detail
ad-nilpotent elements belonging to a semiprime associative algebra. Moreover, we
have succeeded in reducing the torsion in the classification of ad-nilpotent elements
in semiprime associative algebras with involution due to the new concept of a pure
ad-nilpotent element, introduced in this thesis in Chapter 2. The conditions on the
scalar rings has been weakened to be free of (Z) and s torsion with s := [”TH] instead
of being free of n! torsion. On the other hand, for the skew-symmetric ad-nilpotent
elements of a semiprime associative algebra R with involution %, we have given a
description that depends on their ad-nilpotent index modulo 4. In this description
we can emphasize: If a skew-symmetric element a is ad-nilpotent such that its index
of ad-nilpotence of K := Skew(R, *) and R do not coincide, that is, ad] K = 0 but
ad’ R # 0, (it can only occur for ad-nilpotent indices of K congruent to 0 or 3 modulo
4) then a certain corner of R satisfies a PI, hence R holds a GPI. These results have
been developed throughout Chapter 2 which have originated an article that has been
published in the journal Bulletin of the Malaysian Mathematical Sciences Society
([12]). The second aim, to describe in prime associative superalgebras with superin-
volution nilpotent inner derivations, has also been positively solved during Chapter
3. This description depends on the parity of the homogeneous element: if the element
is even, what has been developed in the previous chapter in algebra settings ([12]),
is largely rescued. However, if the element is odd, we have worked on its square,
which is an even ad-nilpotent element, and we have applied the descriptions for even
ad-nilpotent elements studied above. These results has been published in the journal

Linear and Multilinear Algebra ([28]). During Chapter 4, we have given examples

for each of the cases appearing in the descriptions of the elements in both algebras
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and superalgebras, thus showing that these descriptions are not trivial. Finally, in
Chapter 5, we have associated a Jordan superstructure to a Lie superalgebra L with a
homogeneous ad-nilpotent element a of index 3 or 4, according to its parity. Further-
more, the Jordan superpair we have constructed following the spirit of the paper of A.
Fernandez, E. Garcia and M. Gémez Lozano [24], coincides with the subquotient of
a Lie superalgebra associated with an abelian inner ideal [a, [a, L]]. This last chapter

has been published and can be consulted in the journal Communications in Algebra

([30]).
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Introduction

The main topic of this thesis is the study of ad-nilpotent elements belonging to Lie
algebras and superalgebras. This work could be splitted in two parts: the first part
sticks to the branch of Herstein’s theory which studies nilpotent inner derivations
in algebras; at the same time, this part can be splitted again into two, the study
of nilpotent inner derivations in associative algebras, and the study of nilpotent in-
ner derivations in the super setting. The second part studies Jordan superstructures
attached to an ad-nilpotent element of a Lie superalgebra and the subquotients asso-
ciated to abelian inner ideals of Lie superalgebras.

On one hand, Herstein’s theory, which started in 1954 in [40] (see also the influ-
ential works [41] and [63]), is the study of nonassociative objects in associative prime
and semiprime rings perhaps with involution, or in rings with well-behaved idempo-
tents that provide a context rich enough for the theory to be satisfactorily developed.
Among the main contributors, apart from Herstein itself, we can also cite works of
K. I. Beidar, M. Bresar, M. A. Chetobar and W. S. Martindale [6], P. Grzeszczuk
[38], T. K. Lee, [54], W. S. Martindale and C. R. Miers [56] and E. C. Posner [63].
Herstein’s theory developed into several similar but different branches: the study of
sets with an additional nonassociative structure, as Lie and Jordan ideals (e.g. [58]),
culminating in the development of GPI theory ([7]); the study of special conditions
(e.g. commutativity) on certain maps (e.g. generalized derivations) over some sets
(e.g. Jordan ideals), in which strong knowledge is gained through the a priori weaker
properties (e.g. [9], [50], [21], [64]); and the determination of the structure of nonas-
sociative maps, as Lie homomorphisms and derivations (e.g. [4], [5], [6]), culminating

in the development of the theory of functional identities ([8]). It is to this last branch
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of Herstein’s theory that the first part of this thesis is about, centering on the struc-
ture of nilpotent derivations, which have been broadly studied since the 1960’. In
1963, Herstein proved that for any ad-nilpotent element a of index n in a simple
ring of characteristic zero or greater than n there exists some A in the center of R
such that a — X is nilpotent. Furthermore, he showed that the index of nilpotence of
such element is not greater than [%#t], see [42, Theorem page 84]. Herstein’s result
was extended by Martindale and Miers in 1983 ([55, Corollary 1]) to prime rings of
characteristic greater than n making use of the extended centroid of R. In 1978,
Kharchenko obtained in [48] an important result: all algebraic derivations of prime
rings of characteristic zero are inner for certain elements in an overring; he extended
this result to torsion-free semiprime rings in 1979, see [49]. In 1983, Chung and Luh
stated that the index of nilpotence of a nilpotent derivation on a semiprime ring of
zero characteristic is always odd (see [16] and [17]), and in 1984 Chung, Kobayashi
and Luh ([18]) proved that if R is semiprime and char R = p > 2 then the index of
nilpotence of a nilpotent derivation is of the form n = a,p*+a,1p** 1+ - - +a;p’ where
0 < s <[, the a; are non negative integers less than p, as is odd, and asq,...,q
are even. Moreover, Chung in 1985 proved, for prime rings R of characteristic zero,
that a nilpotent derivation is inner and induced by a nilpotent element of an overring,
see [15]. In 1992, with different techniques, Grzeszczuk showed that any nilpotent
derivation in a semiprime ring with minimal restrictions on its characteristic is an
inner derivation in a semiprime subring of the right Martindale ring of quotients of

R and is induced by a nilpotent element in such subring, see [38, Corollary 8] and its

generalization by Chuang and T. K. Lee in [14, §3].

Some examples of Lie algebras appear when working with rings R with involution
x: the Lie algebras of skew-symmetric elements K := Skew(R,*) and K/Z(R) and
the derived Lie algebras [K, K| and [K, K]/([K, K] N Z(R)). The nilpotent deriva-
tions of the skew-symmetric elements of prime rings with involution were studied by
Martindale and Miers in the 1990’s. In this case, if R has zero characteristic and
is not an order in a 4-dimensional central simple algebra, for every inner derivation

ad, with ad] = 0 there exists an element A in the extended centroid of R such that
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either (a — /\)[nTH] = 0 or the involution is the identity in the extended centroid of

R and al"z 1+ = 0, see [56, Main Theorem]. This result was partially extended
to semiprime rings by T.K. Lee in 2018. In his main result he proved that if R is
semiprime with involution and has no n!-torsion, then for any a € K with ad](K) =0
there exist A and a symmetric idempotent € in the extended centroid of R such that
(ea — \)I"7 1+ = 0, see [54, Theorem 1.5].

In chapter 2 we study ad-nilpotent elements in Lie algebras arising from semiprime
associative algebras R free of 2-torsion. With the idea of keeping under control the
torsion of R we introduce a more restrictive notion of ad-nilpotent element, pure
ad-nilpotent element, which is a technical condition since every ad-nilpotent element
can be expressed as an orthogonal sum of pure ad-nilpotent elements of decreasing
indices. This allows us to be more precise when setting the torsion inside the algebra
R in order to describe its ad-nilpotent elements. If R is a semiprime associative

algebra, C'(R) its extented centroid and a € R is a pure ad-nilpotent element of R of

n+1

-], then n is odd and there exists

index n with R free of t and (7)-torsion for ¢ = |
A € C(R) such that a — A is nilpotent of index ¢. If R is a semiprime associative
algebra with involution * and a is a pure ad-nilpotent element of Skew(R, ) free of
¢ and (7)-torsion for ¢t = [%1], then either a is an ad-nilpotent element of R of the
same index n (this may occur if n =4 1,3) or R is a nilpotent element of R of index

t + 1 and R satisfies a nontrivial GPI (this may occur if n =4 0,3). The case n =4 2

is not possible.

On the other hand, an associative superalgebra is a Zs-graded associative algebra
R = Ry + R;. The elements of Ry U R; are called homogeneous elements and we say
that the degree of a € Ry U Ry is i (denoted |a| = i) when a € R;, ¢ € {0,1}. Given
an associative superalgebra R, we obtain a Lie superalgebra if the associative product
is replaced by the superbracket [a,b] = ab — (—1)l%/"lba for homogeneous a,b € R.
The Lie structure of prime/simple associative superalgebras was investigated by F.

Montaner in [60] and S. Montgomery in [62].

We say that a Zs-linear map % : R — R is a superinvolution when (a¢*)* = a

and (ab)* = (—1)19®lp*a* for homogeneous a,b € Ry U R;. The set of skew-symmetric
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elements of an associative superalgebra is a Lie superalgebra and it will be denoted by
K throughout this paper. Moreover, the study of the Lie structure of K of a simple
associative superalgebra with superinvolution was iniciated by C. Gémez-Ambrosi and
I. Shestakov in 1997 in [37], and their results were extended to prime superalgebras
in [35]. The study of superinvolutions in associative superalgebras has been of great
interest. We highlight the work of J. Laliena [52] about the description of the derived
superalgebra [K, K] of a semiprime superalgebra with superinvolution, and the recent
works of A. Giambruno, A. Ioppolo, D. La Mattina and F. Martino ([32], [33], [34],
[45]) on superinvolutions in superalgebras related to polynomial identities and related
to the growth of certain substructures of the superalgebras.

Another interesting and very active topic in superalgebras is the study of su-
perderivations (see for example the works of A. Fosner and M. Fosner [26], H. Ghahra-
mani, M. N. Ghosseiri and S. Safari [31] or Y. Wang [66]). A linear map d = dy + d;
in R is called a superderivation if each d;, i € {0,1}, satisfies d;(R;) C R;+; and
di(ab) = di(a)b + (—1)"?lad;(b), for homogeneous a,b € Ry U R;. For instance, if
a € Ry U Ry, the map ad, : R — R given by ad,(z) = [a, 2] is a superderivation (of
degree |al). Such a superderivation is called an inner derivation. In [31] the authors
describe the structure of superderivations on some Zsy-graded rings and study when
superderivations are inner.

In chapter 3 we give an in-deph analysis of the nilpotency index of nilpotent homo-
geneous inner superderivations in associative prime superalgebras with and without
superinvolution.

Chapter 4 is devoted to giving examples for all of the types of elements studied
in the chapters 2 and 3. Since the even part of an associative superalgebra is an
associative algebra and a superinvolution restricted to the even part of an associative
superalgebra is an involution, the examples of even ad-nilpotent elements of an asso-
ciative superalgebra with superinvolution will also provide examples of ad-nilpotent
elements of an associative algebra with involution.

Finally, local algebras of Jordan systems were introduced by Meyberg [59], used

by Zelmanov and revisited by D’Amour and McCrimmon in their classification of
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linear and quadratic Jordan systems [67], [19], [20]. Ever since their introduction,
they have played a prominent role in the structure theory of Jordan systems, mainly
due to the fact that nice properties flow between the system and their local algebras
(see for example [1], [2] or [61]).

In [24] E. Garcia, A. Fernandez Lépez and M. Gémez Lozano attached a Jordan
algebra to any Lie algebra L with an ad-nilpotent element z of index less than or
equal to three. Their construction extended the fact that every Lie algebra with an
slo-triple (e, [e, f], f) is automatically 5-graded relative to the eigenspaces of adp
and L, = ad?(L) is a unital Jordan algebra. Although their object imitates the
construction of a “local” algebra of a Lie algebra, they did not get a Lie algebra
again but a Jordan algebra, so this object was called the Jordan algebra of L at z.
Furthermore, any Z-graded Lie algebra L=L_,&---®& Ly® - --® L, comes together
with a Jordan pair V' = (L_,, L,) and any element x of L, is ad-nilpotent of index
less than or equal to three, so one can construct the local algebra of V' at = (in the
sense of Meyberg [59]) and this Jordan algebra coincides with the Jordan algebra of
L at x.

The Jordan algebras of Lie algebras, together with their extension to subquotients
(Jordan pairs) associated to abelian inner ideals of Lie algebras, have provided a new
way of connecting the Lie and the Jordan settings. For example, they were used by
E. Zelmanov in his proof of the Lie version of the Kurosh problem [68, §2], and by
J. Hennig in her classification of ad-integrable simple, locally finite Lie algebras over
algebraically closed fields of characteristic > 3 [39, Theorem 2]. This construction
was also mimicked in [65] to construct a quasi-Jordan algebra from a Leibniz algebra
and an ad-nilpotent element of index less than or equal to three.

In chapter 5, given a Lie superalgebra and an even ad-nilpotent element of index
less or equal to 3, we can obtain a Jordan superalgebra attached to that element by
using the Grassmann envelope; inspired by that construction we build a Jordan super-
pair attached to an odd ad-nilpotent element of index less or equal to 4. We introduce
inner ideals for Lie superalgebras, and we prove that the associated subquotients are

Jordan superpairs.
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Chapter 1

Algebraic methodology

During all this work ® is a unital commutative ring of scalars with % € .

Previously, in the introduction, we have established the topics that are covered in
this work. In this section we go a step further, laying the foundations of this thesis
and establishing its main concepts. Firstly, we will define the basics fundamentals
related to associative algebras and superalgebras. Next, we will review some relevant
concepts and results to better understand the structure underlying such algebras
and superalgebras such as, for example, the notions of primeness and semiprimeness.
Afterwards, we will introduce the extended centroid and how it behaves in prime or
semiprime associative algebras and superalgebras with involution and superinvolution.
Finally, we will recall basic notions on nonassociative algebras and superalgebras, in

particular, about Lie and Jordan superalgebras.

In Chapter 2, we will study ad-nilpotent elements belonging to semiprime asso-
ciative algebras R over & with or without involution. In particular, the extended
centroid will be a crucial tool (e.g., it allows us to define what is a pure ad-nilpotent
element). In Chapter 3 we will work on the super setting, i.e, on ad-nilpotent elements
in prime associative superalgebras R over ® with or without superinvolution. Finally,

throughout Chapter 5 we will deal with Lie superalgebras and Jordan superstructures.



1.1 Basic notions on associative algebras and su-

peralgebras

1.1.1. Let R be an algebra over ®. We say that R is a superalgebra if R is Zo-graded,
ie., R = Ry® R, such that R; - R; C R;; with ¢,j € Zy. Ry it is the even part and
it is a subalgebra of R and R; is the odd part and it is a bimodule over Ry. Any
element of Ry U R; is called a homogeneous element and we define the parity of a
homogeneous element as |a| =0 if a € Ry and |a| =1 if a € R;.

Let f : R — R’ be a linear map where R and R’ are both superalgebras. We
say that f is homogeneous of degree v € Z, if f(R;) C Rj, . In addition, we say
that f is a superalgebra homomorphism if it is an algebra homomorphism and it is

homogeneous of degree 0, i.e., f(R;) C R;.

1.1.2. Let X = {z,x9,...} be a countable infinite set of variables and let ®(X) be
the free unital associative algebra generated by X over ®. If [ is the two-sided ideal
of ®(X) generated by the set of elements {z;x;+x;x; | i,j > 1}, we set G := ®(X)/I.
We call G the (infinite dimensional) Grassmann algebra. We denote by &; := x; + 1.
With this notation G has the following presentation:

G=(1,&,&, ... | &5 +E& =0, foralli,j > 1).

Notice that & = 0 since 1 € ®. The set B = {1,§,,..&, | 1 < i1 < ... <
ix, for all k € N} is a basis of G over ®. In addition, G is a Zy-graded module

over ®:

Go:=(1,&, &, | 1 <y < ... <o, k> 1),
Gl = <€zl .. 'figk+1 | 1< 1< ... < i2k+1,k > O)

Thus, G is an associative superalgebra. Moreover, if R = Ry & R, is a superalgebra
over &, we can define the Grassmann envelope of R, G(R), as the even part of the
tensor product G® R, i.e., G(R) = (G R)y = Gy ® Ry + G1 ® Ry. Notice that G(R)

is an algebra.



The Grassmann envelope allows us to define varieties of superalgebras. Let R =
Ro+ R; be a superalgebra. We say that R belongs to a certain variety of superalgebras
(Lie, Jordan, associative,...) if G(R) belongs to the same variety of algebras.

Notice that if R = Ry @ R; is a superalgebra (i.e., Zs-graded) such that it is
associative as algebra then it is easy to check that G(R) is associative as well. Hence
R is an associative superalgebra if and only if R is an associative Zy-graded algebra.

But in general a Lie or Jordan superalgebra is not a Lie or Jordan Z,-graded algebra.

1.1.3. Let R = Ry & R; be an associative superalgebra over ®. In these conditions
the map ¢ : R — R defined by o(z¢ + z1) = xo — x1, for every xy € Ry, x1 € Ry, is
an algebra automorphism with o2 = id. Conversely, given an associative algebra R,
every algebra automorphism ¢ : R — R with ¢? = id defines a Z,-graduation on R
given by Ry = {a € R | o(a) = a} and Ry = {a € R | 0(a) = —a}. Therefore, a
Zo-graduation on R is equivalent to an algebra automorphism o with o2 = id.

Notice that a ®-module S of R is graded if and only if o(S) C S.

1.1.4. Let R be an associative algebra or superalgebra. We say that * is an involution
if it is a linear map * : R — R such that, for every a,b € R, (a*)* = a and (ab)* = b*a*,
and we say that * is a superinvolution if it is a homogeneous, 0-degree, linear map
such that for every homogeneous a,b € R, (a*)* = a and (ab)* = (—1)llltlp*q*.
We denote the symmetric and skew-symmetric sets with respect an involution or a
superinvolution * as H := Sym(R,*) = {a € R | a* = a} and K := Skew(R,*) =

{a € R | a* = —a} respectively.

1.1.5. An associative algebra R is semiprime (resp. x-semiprime) if for every nonzero
ideal (resp. *-ideal) I of R, I? := {> ", xiy; | xi,y; € I} # 0, and it is prime (resp.
s-prime) if I.J = {>, x;y; | z; € I,y; € J} # 0 for every pair of nonzero ideals (resp.
x-ideals) I, J of R.

We recall that a x-ideal is an ideal [ such that I* C I.

It is easy to prove that R is semiprime if and only if is x-semiprime: It is clear that
if R is semiprime then is x-semiprime. Conversely, let R be a x-semiprime algebra

and let I be an ideal of R such that I? = 0. Notice that I N I* is a *-ideal whose



square is zero. Then I N I* = 0, hence IT* = [*] = 0. Thus (I + I*)* = 0, and
since I 4+ I* is a x-ideal, we have that I = 0. Therefore R is semiprime. However, an
algebra can be x-prime but not prime: Let S be a prime associative algebra over ®
and let us consider R = S x S with involution (a,b)* = (b,a). Then R is a *-prime
algebra but it is not prime. It is interesting to remark that the symmetric elements

are of the form (a, a) and the skew-symmetric are of the form (a, —a).

We can prove that an associative algebra R is prime if and only if aRb # 0
for arbitrary nonzero elements a,b € R, and it is semiprime if and only if it is

nondegenerate, i.e., aRa # 0 for every nonzero element a € R (see [53, §10]).

We are going to study these concepts in super setting. Let R = Ry & Ry be
an associative superalgebra and let ¢ be the automorphism associated to the Zo-
graduation. We say that an ideal I is graded if I = Iy @ I, where Iy = I N Ry and
I, = I N Ry or, as we remarked in 1.1.3, if o(I) C I.

An associative superalgebra R is semiprime if for every nonzero graded ideal I of
R, I # 0. And it is prime (as a superalgebra) if it does not have nonzero orthogonal

graded ideals.

Notice that a x-ideal or a graded ideal satisfies I* C I or o(I) C I, respectively.
Then, arguing as before, the concepts of semiprime associative superalgebra and
semiprime associative algebra coincide. An associative superalgebra can be prime
but not prime as an algebra: for instance, let S be a prime associative algebra over
®. Then R = S x S with Ry = {(a,a) | a € S} and R, = {(a,—a) | a € S} is a
prime associative superalgebra, which is not prime as an algebra (see [25]). We can
say more: If R is prime as a superalgebra but not as an algebra we can consider a
nonzero ideal P of R with P No(P) = 0. Then P & o(P) is an essential graded
ideal of R, where (P & o(P))y = {z +o(x) | « € P} = P as an algebra and
(P®o(P))1 ={r—o(x) |z e P}. Hence

P®o(P)<ess R— R/P® R/o(P).

Primeness in associative superalgebras can be also characterized by elements: for

4



any two elements a,b of a prime associative superalgebra R where a and b are ho-
mogeneous, the condition aRb = 0 implies that either a or b is zero (see [25, pag.
693]). As we said before, semiprime associative superalgebras are semiprime as al-
gebras hence the property aRa # 0 for every nonzero homogeneous element a € R

holds in semiprime superalgebras.

Moreover, when dealing with superalgebras we can always consider the algebra
Ry. In the next two lemmas F. Montaner states what happens on the even part when

the whole superalgebra is semiprime or prime:

Lemma 1.1.6. [60, Lemma 1.2] If R = Ry @ R is a semiprime associative superal-

gebra, then R and Ry are semiprime algebras.

Lemma 1.1.7. [60, Lemma 1.3] If R = Ry &® Ry is a prime associative superalgebra,

then either R or Ry are prime as algebras.

1.1.8. An ideal I of an associative algebra R (resp., an associative algebra with
involution *) is prime (resp., *-prime) if R/I is a prime (resp. *-prime) associative
algebra. If R is a semiprime associative algebra then there exists a family of prime
ideals {I,}aea such that () . Io = {0} and therefore R can be seen as a subdirect
product of prime associative algebras (see [53, §12]). Similarly, if R is a semiprime
associative algebra with involution * there exists a family of *-prime ideals {I,}.en
such that (),cn o = {0} and therefore R can be seen as a subdirect product of

x-prime associative algebras. This is also true for superalgebras.

Moreover, if R is semiprime and free of n-torsion then the intersection of all prime
ideals I, such that R/I, is free of n-torsion is zero (notice that the intersection of
all prime ideals I, such that R/, has n-torsion contains the essential ideal nR) and
therefore R is a subdirect product of prime associative algebras, all of them free of

n-torsion.



1.2 The extended centroid of associative algebras
and superalgebras

1.2.1. Given an ideal I of R, we can define the ideal Anng(l) :== {2 € R | 2] =
Iz = 0}, which is called the annihilator of I in R. Moreover, when R is semiprime,
Anng(I) ={z € R | zIz =0}. Anideal I of R is essential (for every nonzero ideal J
of R, INJ #0) if and only if Anng(l) =0 (see [23, Proposition 1.6(1)]).

1.2.2. Given an associative algebra R, we define a permissible map of R as a pair
(I, f) where I is an essential ideal of R and f : I — R is a homomorphism of
right R-modules. For permissible maps (I, f) and (J, g) of R, define a relation = by
(I, f) = (J, g) if there exists an essential ideal K of R, contained in I N .J, such that
f(z) = g(x) for all x € K. It is easy to see that this is an equivalence relation. If R
is a semiprime associative algebra then @7 (R) has an associative algebra structure
coming from the addition of homomorphisms and from the composition of restrictions

of homomorphisms, see [7, Chapter 2:
o [If]+[Jgl:=1NJ[f+yd]
o [I.f]-[J.g]=[(INJ)?* fogl

The quotient set Q7 (R) with the operations defined above is called the Martindale
algebra of quotients of R. Note that if R is a semiprime associative algebra then the
map f : R — Q! (R) defined by f(r) := [R, ], where A, : R — R is defined by
A-(z) = rx, is a monomorphism of associative algebras, i.e., R can be considered
as a subalgebra of its right Martindale algebra of quotients. The right Martindale
algebra of quotients of R satisfies that for all ¢ € Q! (R) there exists an essential
ideal I of R such that ¢/ C R. This facts allow us to prove that every subalgebra S
of Q! (R) which contains R is semiprime. Otherwise, if I is a nonzero nilpotent ideal
of S and pick 0 # q € I. There exists an essential ideal J of R such that qJ C R,
ie., qJ =qJ NI C RNI is a nonzero nilpotent ideal of R which is a contradiction

with the semiprimeness of R.



The symmetric Martindale algebra of quotients of R is defined as
Q;.(R) :={q € Q,,(R)| 3 an essential ideal I of R such that ¢/ + Iq C R}

(if R has an involution one can replace the filter of essential ideals by the filter of
essential x-ideals in the definition of the symmetric Martindale algebra of quotients,
see [3, p. 858-859]). If R is semiprime then @ (R), which is a subalgebra of Q! (R)
containing R, is also a semiprime algebra.

When R has an involution x, this involution can be extended to Q? (R) as follows:
let us consider ¢ € Q%,(R) and I an essential *-ideal such that ¢/ +1q C R. We define
f: I — R by the rule f(z) = (2*q)*. We set ¢* := [I, f] and note that ¢*z* = (z¢q)*
for all x € I (see [7, 2.5.4]).

The extended centroid C(R) of a semiprime algebra R is defined as the center
of Q% (R). The extended centroid of a prime algebra is a field (see [7, p.70]), the
set of symmetric elements of the extended centroid of a *-prime algebra is again a
field (see [3, Theorem 4(a)]), and the extended centroid of a semiprime algebra is a
commutative and unital von Neumann regular algebra (see [7, Theorem 2.3.9(iii)]). In
particular, if R is semiprime, C'(R) is a semiprime algebra without nilpotent elements.

The central closure of R, denoted by R, is defined as the unital subalgebra of
Q. (R) generated by R and C(R), ie., R := C(R)R + C(R), and can be seen as
a C(R)-algebra. Therefore we can consider R contained in R. Moreover, since R
contains R and it is contained in Q% (R), if R is semiprime then Ris semiprime. The
algebra R is centrally closed, i.e., it coincides with its central closure. In particular
its center equals its extended centroid, Z(R) = C(R).

1.2.3. The notion of extended centroid for semiprime associative superalgebras was
studied by M. Fosner, see [25]. Let R be a semiprime associative superalgebra. Since R
is semiprime as algebra we can consider the symmetric Martindale algebra of quotients
Q¢ (R). Let o : R — R be the automorphism associated to the Z,-grading of R (0% =
id). This automorphism, by [7, Proposition 2.5.3], can be extended to @2, (R) and

we denote this extension by . Therefore Q2 (R) is an associative superalgebra such
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that R; C (Q:,(R)); with ¢ = 0,1. Moreover, if R is endowed with a superinvolution
%, this can be also extended to Q% (R) as follows: let us consider ¢ € Q7 (R);, with
1 =20,1, and I an essential graded *-ideal such that g/ +1q C R. We define f : I - R
by f(z) = (—1)lllel(z*q)*. We set ¢* := [I, f] and note that ¢*z* = (—1)/ll4l(zq)* for
all z € I homogeneous. Indeed, * is a superinvolution on Q7 (R): Let us consider
¢ € (@;,(R)); and ¢; € (Q;,(R)); with ¢, 7 = 0,1. Choose an essential graded *-ideal
J of R such that Jg;, ¢;J, Jq;, ¢;J, J4:q;, qiq;J are all contained in R and let [ = J2.

Then Iq;, ¢;1, Iq;, Iq; € J. For every homogeneous x € I we have

(Qiq]‘)*$ = (‘U‘xl(iﬂ)@*%%)* = (—1)‘xl(iﬂ)ﬂmqu;(95*%')*

— (1l g g — (—1)igrgra

Hence (giq;)* = (—=1)"q;q; for all ¢; € (Q;,(R)); and ¢; € (@, (R)); with4,j =0, L.

On the other hand, since R is semiprime as an algebra, we can consider the
extended centroid C'(R) of R, which it is also Zs-graded because C(R) = Z(Q!.(R)).
Let R = C(R)R + C(R) be the central closure of R. We will say that R is centrally
closed if R = R.

1.2.4. Let R be a prime associative superalgebra such that R is not prime as an
algebra. Let o denote the automorphism associated to the Zj-grading of R and
consider a nonzero ideal P of R with PN o(P) = 0. Then P & o(P) is a graded
essential ideal of R, where (P @ o(P))o = {x +o(z) | x € P} & P as an algebra and
(P®o(P))y ={x—o(x) | z € P}. Since P ® o(P) is essential in R,

CR)=2C(Pe®o(P))=C(P)®a(C(P)),

where the isomorphism is given by the restriction of permissible maps (for any \ =
1, f] € C(R) we define A = [(IN(P&a(P)))2, g] where g : (IN(P&®0o(P))? — P&o(P)
is the restriction of f to the essential ideal (I N (P @ o(P)))? of P @ o(P)). Notice
that the Zs-grading of C(P) @ ¢(C(P)) comes from the Zs-grading of P @ o(P):
(C(P)2a(C(P)))o = {A+a(A) | A € C(P)} and (C(P)@a(C(P)))1 = {A-6(A) | X €
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C(P)}. In particular,
C(R)o=Z{ \+d(\) | AeC(P)} =ZC(P).

On the other hand, by Lemma 1.1.7, Ry is prime as an algebra, and therefore its
nonzero ideals are essential. By restricting permissible maps from Ry to (P & o(P))o
we get C(Ro) = C((P @ a(P))y) = C(P).

We have obtained that C'(R)y = C(Ry).

Lemma 1.2.5. Let R = Ry® Ry be a prime associative superalgebra, and let a € Ry.
If there exists A € C(R) such that a— X is nilpotent of index n and R has no n-torsion
then A € C(R)o.

Proof. Let us consider a € Ry and suppose that there exists A = A\g+ Ay € C(R) such
that a — X is nilpotent of index n. If A\; # 0, it is invertible by Lemma 1.2.6 and there
exists py € C'(R); such that Ay = 1. From the nilpotency of a — A\g — \; we get that
pia — pipAg — 1 is again nilpotent of index n, i.e., the element b = pya — puyAg € Ry
satisfies a polynomial of the form p(X) = (X — 1)" € C(R)o[X]. Since C(R)y is a
field, p(X) € C(R)o[X] is the minimal polynomial of b over C'(R),. In particular

n n
pn — bnfl bn72 e —
(e ()=
n n
bn—l bn—?) R
() (e
[244]

i.e., b satisfies the polynomial ¢(X) = 3,2 * (") X" %™ But n —1 = degq(X) <

and by homogeneity

degp(X) = n, a contradiction with the minimality of p(X). Therefore \; = 0 and
A€ C(R)o.
O

Lemma 1.2.6. /25, Lemma 3.1] Let R be a semiprime associative superalgebra. Then

the following assertions are equivalent:

(i) R is a prime superalgebra.



(ii) all nonzero homogeneus elements on C(R) are invertible.

(i1i) C(R)g is a field.

1.3 Basic notions on Lie and Jordan algebras and

superalgebras

1.3.1. We will work with Lie algebras and superalgebras arising from associative
algebras and superalgebras. A Lie algebra L over a ring of scalars ® is a ®-module
with a bilinear product |, | satisfying, for every x,y,z € L, the anticommutativity

property and the Jacobi identity:

(1) [I,y] = —[y,ZL'],
(ii) [z, [y, z]] + [z, [z, ¥]] + [y, [z, z]] = O (Jacobi identity).

Let L = Lo+ Ly be a superalgebra over ® with bilinear product denoted by [, | .
By using the Grassmann envelope, L is a Lie superalgebra if G(L) is a Lie algebra. Let
us suppose that L = Lo+ L is a Lie superalgebra, i.e., G(L) = LoQ Gy + L1 ® Gy is a
Lie algebra. We can deepen into which identities L satisfies: let us pick 2 ®§;, y®¢; €
(Lo ® Go) U (L1 ® Gy), then

[z,y],®&6&; = 10§, Y& = —[y®&), 2®&] = —[y, 2],&;& = —(—1) Wy, 2],0¢;

so we can assure, by linearity, that [z, y], = —(—1)#¥[y, z], for every z,y € LoU L,.
Notice that the factor (—1) in the identity naturally arises from the property &;&; +
§i& =0, ie, §& = =& of the generators of the Grassman algebra. Therefore, the

identities (i) and (ii) can be translated to super setting as follows: Let L be a Zo-

graded module over ® with a bilinear product [, |5 such that for every homogeneous
r,y,z € L:
(i) [z,y]s = — (=)W [y, z], (super-anticommutativity),
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(ii) [z, [y, Z]S]s+<_1)|z|(‘y|+|zl)[27 [z, y]5]8+(_1)|2\(|m\+|y|)[y7 2, 7]5]s = 0 (Jacobi super-
identity).

Conversely, a superalgebra is a Lie superalgebra if both identities above are satisfied
(see [?, Section 1]).

Recall that the adjoint map determined by any a € L (resp. any homogeneous
a € L) is ad,(z) := [a, ] (resp. ad,(z) := [a, z]s in super setting) for every x € L. We
say that an element a € L is ad-nilpotent of index n > 1 if ad”L = 0 and ad” "L # 0.
We say that an element a in L is a Jordan element if ad>L = 0 (see [23, Chapter
4]). Since in superalgebras we will always consider homogeneous elements, we will
define Jordan element in superalgebras for even elements as an even element which
is ad-nilpotent of index less or equal to 3 of the whole Lie superalgebra. For odd
elements we will work with ad-nilpotency of index less or equal to 4.

Typical examples of Lie algebras and superalgebras come from the associative
setting: if R is an associative algebra (resp. superalgebra) over a ring of scalars
®, then R with product, called bracket, [z,y| := zy — yx for every z,y € R (resp.
[z,y]s = zy — (=1)#I¥yz, called super-bracket, for every homogeneous z,y € R) is a
Lie algebra (resp. a Lie superalgebra) denoted by R~. When dealing with R~ as a
superalgebra, if a € Ry then ad, behaves as the usual adjoint map in the non-super
setting; when a € Ry, ad? = ad,e.

We will deal with Jordan algebras and superalgebras in Chapter 5. A linear Jordan
algebra J over a ring of scalars ¢, with % € &, is a -module with a bilinear product

e satisfying, for every z,y € J, the commutativity property and Jordan identity:
(i) zey=yeu,
(ii) (rex)ey)ex = (rex)e(yex) (Jordan identity).

We already know that a superalgebra is a Jordan superalgebra if its Grassmann
envelope is a Jordan algebra. But to translate the Jordan identity to super setting
first we need to linearize it because the generatos in the Grassman algebra satisfy
&2 = 0. We can prove that a Zy-graded module J over ® with a bilinear product e,

is a Jordan superalgebra if it satisfies
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(i) z e,y = (—1)Vy e, 2 (super-commutativity),

(ii) (37 ) Z/) ] (Z ] t) + (_D\yllz\(x ] Z) ] (y o, t) + <_1)|yHt|+|Z“t|(5U o t) o (y o Z) =
= ((q;.sy).sz).st+<_1)|yHZ|+|yHt|+|Z||t|((x.st).sz).sy+(_1)\$||y\+|1’\|2|+|$|\t|+\2||t|((y.s

t) es z) s x (Jordan super-identity)

for every homogeneous x,y, z,t € J. As above, if R is an associative algebra (resp.
superalgebra) over a ring of scalars ®, then R with product, called bullet, z e y =
ry + yx for every x,y € R (resp. x o,y = xy + (—1)*Wyx, called super-bullet, for
every homogeneous z,y € R) is a Jordan algebra (resp. Jordan superalgebra) denoted
by R*.

The algebras R~ and R* are well-known and it was I.N. Herstein the first one
to study the relations between R and both of them in the non-super case (see for
example [43]). Moreover, K is a Lie subalgebra (resp. subsuperalgebra) of R~ and H
is a Jordan subalgebra (resp. subsuperalgebra) of R*. We refer the reader to [25], [35],
[36], [37], [52], [60] and [62] for further information on associative superalgebras and
on the Herstein theory on superalgebras. Although we have denoted super bracket
as [, ]s, in Chapter 3, in order to simplify the notation, we will denote it as [, | (we

will just work with the super bracket and there will not be any confusion).

1.3.2. If R is a centrally closed *-prime algebra and Skew(C'(R), *) # 0 then for any
0 # X € Skew(C'(R),*) we have R = H+ K = A?H + K C AK + K C R because
0 # A2 is invertible, so R = AK + K for every 0 # A € Skew(C(R), x). This occurs
in particular when R is *-prime but not prime, because in this situation there exists
a nonzero ideal I of R such that I N I* = 0, and so we can define a nonzero skew
element A\ : I @& I* — R in C(R) given by A(x +y) :=z — y.

If R is a centrally closed semiprime ring then R~ is a Lie algebra over the ring

of scalars C(R); if in addition R has an involution %, then K is a Lie algebra over

H(C(R),*).

Lemma 1.3.3. ([13, Lemma 2.11]) Let (R, %) be a semiprime associative algebra with

involution and let a € R. If there exist X € C(R) such that a — X is nilpotent then A
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is the unique element of C(R) such that a — X\ is nilpotent. Moreover, if a € K then
A € Skew(C(R), *).

Proof. 1f a— X\ and a—p are nilpotent elements of the central closure Rof R, a—\— (a—
() = p— A is a nilpotent element in the semiprime commutative ring C(R). Therefore
A = p. Now, if a € K and a — A is nilpotent then (a — \)* = —(a + \*) is nilpotent
and therefore a + \* is nilpotent, which implies that A = —\* € Skew(C(R),*). O

We will need also this result in superalgebras. With the same argument as in the

above lemma we have:

Lemma 1.3.4. Let R = Ry ® Ry be a semiprime associative superalgebra with super-
involution *, and let a € RyUR;. If there exists A € C(R) such that a— \ is nilpotent

then X is the unique element of C(R) such that a — \ is nilpotent. Moreover, if a € K
then A € Skew(C(R), ).

13
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Chapter 2

Ad-nilpotent elements in an

associative algebra

This chapter has been published in the journal Bulletin of the Malaysian Mathematical
Sciences Society and can be found in [12].

Throughout all this chapter R is an associative algebra over ® with % € .

The main goal of this chapter is to deepen into the description of ad-nilpotent
elements of R and K where R is a semiprime associative algebra with involution. In
the spirit of Martindale and Miers’ result [56, Main Theorem]|, we will obtain different
types of ad-nilpotent elements of K of index n depending on the equivalence class of
n modulo 4. In this chapter we will also study ad-nilpotent elements in semiprime
associative algebras, as T.K. Lee did in [54], but we introduce a new concept called
pure ad-nilpotent, that it will allow us to weaken torsion conditions and to obtain
a more detailed classification. We say that an ad-nilpotent element a of index n in
R~ is pure if Aa remains ad-nilpotent of the same index for every A in the extended
centroid such that Aa # 0. An ad-nilpotent element a of index n in K is pure if for
every symmetric A in the extended centroid such that Aa # 0, Aa is ad-nilpotent of
the same index n. This is just a technical condition, since every ad-nilpotent element
of R~ can be expressed as an orthogonal sum of pure ad-nilpotent elements of the
central closure R of R with decreasing indices of ad-nilpotency.

As a first step we focus on ad-nilpotent elements of R~. In this case, under the
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hypothesis of pure ad-nilpotence, the condition on the torsion of the algebra can be
weakened when compared with the result of T.K. Lee in [54, Theorem 1.3].

From Theorems 2.2.4 and 2.3.6 we easily recover Lee’s results [54, Theorem 1.3 and
Theorem 1.5]. Furthermore, we also describe ad-nilpotent elements of Lie algebras of
the form R/Z(R) and K/(KNZ(R)), and of their derived Lie algebras [R, R]/(|R, R]N
Z(R)) and [K, K|/([K,K]|NZ(R)).

Let us write down some useful results where the extended centroid C(R) plays

a really important role. We will use the following results due to Beidar, Martindale

and Mikhalev.

Theorem 2.0.1. ([57, Theorem 2(a)]) Let R be a prime associative algebra. Let
a;,b; € R fori=1,2,...,n with by # 0 be such that Z:L:l a;xb; = 0 for every x € R.
Then there exist \; € C(R) fori=2,...,n such that ay =Y , \ia; in R.

Theorem 2.0.2. ([7, Theorem 2.3.3]) Let R be a semiprime associative algebra and
let ay,as,...,a, € R. If ay & >, C(R)a; in R then there exist r;,8; € R for
j=1,2,...,m such that 37" rja1s; # 0 and 37" rjars; =0 for k=2,...,n.

The next corollary can be found in [13]. For the sake of completeness we include

its proof here.

Corollary 2.0.3. Let R be a semiprime associative algebra. Let a;,b; € R for i =
1,2,...,n be such that Idg(a1) C Idg(b1) and 3, a;xb; = 0 for every x € R. Then
there exist \; € C(R) fori=2,...,n such that a, = >, \ia; in R.

Proof. By Theorem 2.0.2, if ay ¢ > " , C(R)a; there exist rj,s; € R, j = 1,...,m,
such that ) 7", rjais; # 0 and Y7 rjars; = 0 for k= 2,3,...,n. Replace x by s;x
and multiply """ | a;zb; = 0 on the left by r;. We have

m

n m
0= E E rjaiijbi: E Tj(llsjflfbl,

i=1 j=1 j=1

which implies that the ideal generated by Z;”Zl rja1s; is orthogonal to the ideal gener-
ated by b; and therefore, since Idg(a;1) C Idg(b:), the ideal generated by » 7" r;a:15;

has zero square, a contradiction because R is semiprime. O
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The following proposition is an easy generalization of [7, Theorem 2.3.9(i)].

Proposition 2.0.4. Let R be a centrally closed semiprime associative algebra. For
any subset V- C R there exists a unique idempotent € € C'(R) such that ev = v for all
v €V, the annihilator in C(R) of V is Anngry(V) = (1 —¢€)C(R), the annihilator in
R of the ideal generated by V is Anng(Idg(V')) = (1—€)R, and the ideal generated by
V' is essential in eR. Moreover, when R has an involution x and V C H or V C K,

then e € H(C(R), *).

Proof. The first part of the proof follows as in [7, Theorem 2.3.9(i)] with the obvious
changes. Let V' C H or V C K, and consider the unique idempotent ¢ € C(R) such
that ev = v for all v € V, the annihilator in C(R) of V' is Anne ) (V) = (1 —€)C(R)
and the annihilator in R of the ideal generated by V' is Anng(Idg(V)) = (1 — ¢)R.
When R has an involution we can decompose € = ¢, + €, with ¢, € Skew(C(R), )
and ¢, € H(C(R),*). We have that ev = v implies v = 0. Therefore, ¢, €
Anngr) (V) = (1 — €)C(R), ie., epe = 0 and € = €xe, = 0 and therefore € = ¢* =
(4 + ) = & € H(C(R), %), .

Lemma 2.0.5. Let R be a centrally closed semiprime associative algebra and let
{vitier be a family of idempotent elements in C(R). Suppose there ezists a family
{Ni}ier of elements in C'(R) such that for everyi,j € I, \ivv; = A\jvvj. Then there
exists A € C(R) such that A\v; = \iv; for every i € I. Moreover, if the ideal generated

by the family {v;}icr is essential in R, such X\ is unique.

Proof. Let us consider the ideal S = ) Ry; generated by the family of idempotents
{Vi}ier and the essential ideal T'= S @ Anng(S). Define A : T'— R by

Let us prove that A is well defined and an element in C'(R). If Y z;1; + 2z = 0 then

> xv; = 0 = z and for every v, we have

(Z )\ﬂ?il/i) vV = Z AT ViV = A <Z I¢Vi> v, = 0.
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Therefore > \a;v; € S N Anng(S) = 0 which proves that A\ is well defined. By
construction [T, A\] € C(R). Moreover, if the ideal S generated by the family {v; }ics
is essential, Anng(S) = 0 and [S, A\] € C'(R) is uniquely defined. O

2.1 Pure ad-nilpotent elements

Recall that an element a in a Lie algebra L is ad-nilpotent of index n if ad,L = 0

and ad” 'L # 0.

2.1.1. (i) Let us consider R~: we say that an element «a is a pure ad-nilpotent element
of R~ of index n if for every A € C(R) with Aa # 0, Aa is ad-nilpotent in R~ of index
n, where R is the central closure of R.

(ii) Let us consider K: we say that an element a is a pure ad-nilpotent element of K
of index n if for every A € H(C(R)), *) with Aa # 0, Aa is ad-nilpotent in Skew (R, *)

of index n, where R is the central closure of R.

Lemma 2.1.2. If R is a semiprime associative algebra and a is an ad-nilpotent

element of R of index n, the following conditions are equivalent:
(i) a is a pure ad-nilpotent element of R™.

(ii) 1dg(ad” ' (R)) is an essential ideal of Idg(a).

(i4i) Anng(Idg(ad? ' (R))) = Anng(Idg(a)).

Proof. Suppose that R is semiprime and centrally closed (otherwise, substitute R by
its central closure R).

(i) = (ii). Let us consider V = {ad” 'z | € R}. By Proposition 2.0.4 there
exists e € C(R) such that ev = v for every v € V and Anng(Idg(V)) = (1 —€)R.
Suppose that (1 — e)a # 0. By hypothesis (1 — e)a is ad-nilpotent of index n,
hence 0 # ad?l__le)a(R) = (1 —e)ad” *(R) = 0, a contradiction. So ea = a and
Annyay ey (Idr(ad ' (R))) € Anng(Idg(ad) '(R))) = (1 — e)R must be zero, i.c.,
Idg(ad” *(R)) is essential in Idg(ea).
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(ii)= (iii). This holds in general if I and J are ideals of R with I essential in .J:
0= Anny(/) = Anng (/) N J implies Anng(I)J =0, so Anng(/) C Anng(J).

(iii) = (i). Let A € C(R) be such that Aa # 0. Clearly ad},(R) = 0. Suppose
that ad},'(R) = 0: then A" 'ad” '(R) = 0, so \»"! € Anng(Idg(ad’ '(R))) =
Anng(Idg(a)), which is not possible because R is semiprime and Aa # 0. O

Lemma 2.1.3. Let R be a centrally closed semiprime associative algebra with invo-
lution *, and let a € K be a pure ad-nilpotent element of K of index n. If there
exists \ € H(C(R), *) such that Aa is ad-nilpotent of R of index n, then \a is a pure

ad-nilpotent element of R of index n.

Proof. Let us see that for every u € C'(R) with uXa # 0, the element pAa has index of
ad-nilpotency in R equal to n. Suppose that there exists p € C'(R) with adZ;alR =0,
and let us prove that pia = 0:

We have that p"tad}, 'R = adZ;;R = 0, so pady, ' R = 0 because C(R) is regular
von Neumann. In particular, pady, ' H = pady, 'K = 0. Since p = uy, + i, we have
that pupady, 'R = prady, 'R = 0.

From 0 = p} 'ad}, 'R = adZ;/\laR we get that p,Aa index of ad-nilpotency in K
lower than n, implying ppAa = 0 because a is a pure ad-nilpotent element of K.

From 0 = (p?)"'ad}, 'R = adZﬁ_ /\1aR we get that u2Aa has index of ad-nilpotency
in K lower than n, so again p2\a = 0 (because a is a pure ad-nilpotent element of
K), and by regularity of C(R), uxAa = 0.

This implies pAa = 0. [

The next proposition shows that every ad-nilpotent of R~ or of K can be expressed

as an orthogonal sum of pure ad-nilpotent elements of decreasing indices.

Proposition 2.1.4. Let R be a centrally closed semiprime associative algebra and
let a € R be an ad-nilpotent element of R~ of index n. There exists a family of
orthogonal idempotents {e;}*_, C C(R) such that a = Zle €;a with €;a a pure ad-
nilpotent element of index n; in ;R forn =mny > ng > -+ > ny.

Similarly, if R has an involution x and a is an ad-nilpotent element of K of index

n, then there exists a family of orthogonal idempotents {e;}¥_, C H(C(R),*) such
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that a = Zf L €a; with €;a a pure ad-nilpotent element of index n; in Skew(&;R, *)

form=mny >mng > - > ny.

Proof. Let us prove the result for Lie algebras of skew-symmetric elements. We will
proceed by induction on n. If n = 1 there is nothing to prove. Let us suppose that
the result is true for every ad-nilpotent element of index less than n and let a € K
be an ad-nilpotent element of index n > 2. Let us consider V = {ad” 'z | z € K}.
By Proposition 2.0.4 there exists € € H(C(R),*) such that ev = v for every v € V
and Anng(Idg(V)) = (1 — €)R. Then a = ea + (1 — €)a.

Clearly, by construction (1 — €)a is ad-nilpotent of index less than n in K: for
every x € K, ad?l_}e)ax =(1-ead" 'z =ad" 'z —ead" 'z = 0.

Let us prove that ea is pure ad-nilpotent of index n in Skew(eR, *). For any \ €
H(C(R), %) such that Aea # 0, Aea is ad-nilpotent of index n: clearly ady.,(Skew(eR, )) =
0 and if ad}. ! (Skew(eR, %)) = 0 then A\"~'e € Anng(Idg(V)) = (1 — €) R, which leads
to a nilpotent ideal generated by the nonzero element \ea, a contradiction with the

semiprimeness of R.

Apply now the induction hypothesis to (1 — €)a and the Lie algebra of skew-

symmetric elements Skew((1 — €)R, *). O

2.2 Ad-nilpotent elements of R~

In this section we are going to prove that every nilpotent inner derivation is induced by
a nilpotent element, generalizing to semiprime algebras Herstein’s result [42, Theorem
in p.84] for simple algebras. This result was already proved by Grzeszczuk ([38,
Corollary 8]). Our techniques are rather elementary and, by adding the hypothesis of
pure ad-nilpotence, we can describe such elements with less restrictions on the torsion

of the algebra.

Lemma 2.2.1. Let R be a semiprime associative algebra and let a € R be a nilpotent
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element. Suppose that there exist some \; € Z, i =0, ...,n, such that
Z Na'[z,yla" =0
i=0

for all z,y € R. Then for everyi=0,...,n we have N0 = 0. In particular,

each term in the identity above is zero.

Proof. First, let us suppose that R is prime and suppose that a # 0 has index of
nilpotence s. If the lemma is not satisfied, there exists some k with \za™>En=k) £ 0,
In particular, max(k,n — k) < s. Let us multiply the expression Y ;" \a’[z, yla™ ™

by a*~'~* on the left and by a*~'=(=%) on the right, so that

0= asflfk <Z )\iai[x,y]a"i> asflf(nfk) — )\kasfl[x,y]as’l
=0

sTlyya®~! = \ya® lyza®~! for every x,y € R. Since

for every x,y € R. Hence \ia
a*~! # 0 for every z € R we have by Theorem 2.0.1 that there exists o, € C(R) such

that M\ya®*tx = ayA\a®'. Multiplying this last expression by @ on the right we get

s 1

Mwa®lza = 0 for every x € R. By primeness of R we get that either a*~! = 0 or
Mxa = 0, leading to a contradiction.

If R is semiprime then R is a subdirect product of prime quotients R/I, with
M., Io = 0. For any a and any i, by the prime case \;a™>*n=0 € [, 5o \;am*x(n=d) =

0. [l

Lemma 2.2.2. Every nilpotent element of an associative algebra R is ad-nilpotent.
If a has index of nilpotence t and index of ad-nilpotence n then n < 2t —1. If R is
semiprime then n > t, and if in addition R is free of (Z) -torsion for s := [”T“], then

t=sandn=2t—1.

Proof. Since a' = 0, for every x € R we have

s (21 2—1—i i 2—1—i
ad; x:Z (=1 a'za =0

- 2
=0
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because if ¢ < ¢ then 2t — 1 — ¢ > s. Therefore n < 2t — 1.

Suppose now that R is semiprime and let us see that n > ¢: if on the contrary

t—1 —(t-1 t—1—i i t—1—i
ad, 'z = E ) (=1) a'za =0
: i

for every x € R, focusing on the first summand of this expression ((—1)""'za'™!) we
get that a’~! = 0 by Lemma 2.2.1, a contradiction.
Moreover, since for every z € R we have 0 = ad}}(z) = Y1 (7)(=1)""a'za™",

again by Lemma 2.2.1 (’;) a® =0 for s := [”TH] If R is free of (Z)—torsion then a®* =0

so s >t,ie.,n>2t— 1, and therefore n = 2t — 1 (equivalently, ¢ = s). ]

The next example shows that all possible cases in the lemma above can be realized:

Let p be an odd prime number and R a prime associative algebra with characteristic

p+1

5= ---,p}f then a is ad-nilpotent of

p. If a € R is a nilpotent element of index ¢ € {
index p. In particular there are no ad-nilpotent elements of index between p + 1 and

2p — 1, and a nilpotent element of index p is ad-nilpotent of the same index p.

Proposition 2.2.3. Let R be a prime associative algebra and let a € R be an ad-
nilpotent element of R~ of index n. Let F denote the algebraic closure of the field
F:=C(R) and R:= R®TF. Then:

1. There exists i € F such that a — 1 is a nilpotent element of R.

2. If R is free of (Z) -torsion for s 1= [”TH] then n is odd and the index of nilpotence
of a — p is ”TH If in addition R is free of s-torsion then u € C(R).

Proof. (1) Since R is prime, F = C(R) is a field and R is a centrally closed prime
algebra (see [7, pp.445-446]). From

0=ad)z = E (n) (=) "a’xa™"
i
i=0

for every x € R we have, by Theorem 2.0.1, that a seen as an element of R is an

algebraic element over [F of degree not greater than n. Let us consider the minimal
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polynomial p(X) € F[X] of a. Let F be the algebraic closure of F and let 1, ..., u, €
F be the roots of p(X) in F, i.e., p(X) = (X — pp)* -+ - (X — )" € F[X].

Let us prove that p(X) has only one root in F and therefore p(X) = (X — u)* €
F[X], whence a— 1 is nilpotent in R: Suppose on the contrary that p(X) has different
roots fi1,. .., pr, v > 1, and define ¢;(X) := p(X)/(X — ;) for every i. Since p(X)
is the minimal polynomial of a, ¢;(a) # 0 in R. Note that (a — u;)q;(a) = p(a) = 0
and therefore ag;(a) = p;qi(a). Now, since we are in the prime case, there exists
y € R such that ¢1(a)yga(a) # 0 and therefore ad,(q1(a)yg(a)) = aqi(a)yg(a) —
q1(a)yga(a)a = (1 —p2)qi(a)yge(a) # 0. This means that ¢;(a)yge(a) is an eigenvector
of the linear map ad, associated to the eigenvalue 1 — ps, hence it is an eigenvector
of ad? associated to (1 — p2)?, etc. This is a contradiction because both ¢;(a)ygs(a)
and each power of (u; — p2) are nonzero, while ad, is nilpotent. Therefore r = 1,
p(X) = (X — )t € FIX] and (a— ) =0.

(2) Let us consider b := a — u € R, which is ad-nilpotent of index n. Let us see

that n is odd: Suppose on the contrary that n = 2m. Then

0=adjz =adyz = Z (n) (=)™

1
1=0

implies by Lemma 2.2.1 that (T"n) b™ = 0 and, since R is free of (;) -torsion, that ™ =
0. Substituting in ady 'z = S0 (") (1) w1 we get that ady e = 0

for every x € R, a contradiction.

Therefore n is odd and a — y is nilpotent of R of index s := "T“ by Lemma 2.2.2.
Moreover, since the coefficient of degree s — 1 of p(X) = (X —pu)® € F[X] is —su € F,
if R is free of s-torsion then p € F, i.e., there exists p € C(R) such that a — p is

nilpotent of index s = ”TH O]

In the following theorem we get the description of the pure ad-nilpotent elements
of R™. In its proof, Proposition 2.2.3 is primarily used to find that any ad-nilpotent
element a € R of index n forces [a, [ad? 'z, [ad” "2, y]]] = 0 for every x,y € R. If
2,3,...,r were invertible in R for » > n 4 [§] + 1, this identity would directly follow
from the proof of [29, Theorem 2.3].
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Theorem 2.2.4. Let R be a semiprime associative algebra, let R be its central closure,
and let a € R be a pure ad-nilpotent element of R~ of index n. Put s := [”TH], and
suppose that R is free of (’;) -torsion and s-torsion. Then n s odd and there exists

A € C(R) such that a — \ € R is nilpotent of index ol

Proof. Let us suppose that R is a prime associative algebra and, without loss of
generality, that it is centrally closed. Consider ; € C(R) as given by Proposition
2.2.3. Putting b := a — u, we know that 6* =0 for s := "TH, hence for every x,y € R

we have

(ad” ') (ad” 'x) = (ad) 'z)(ad} 'z) = 0, and

la, [ady ™ 2, [ady ™ e, y]]] = (b, [ady ™ 2, [ady e, y]]
n—1\/n—1

= -9 s—1_.ps—1,7s—1_.1s—11 _ )
(s—l) (5—1)[b’b xb*yb T  =0

If R is semiprime, R is a subdirect product of prime associative algebras (without

(2) and s-torsion) and in any of these prime quotients

(ad ") (adz1z) = 0 and [a, [ad2 ', [ad2 Lz, y]]] = O,
which imply that
(ady™"w)(ady™'2) = 0, and [a, [ad ™'z, [ady ™2, y]]] = 0
for every x,y € R. For every z € R, let 2, := ad” 'z. By the identity above,
1
0= §[a, (22, |22, V]]] = —azyze + 22yze0.

Therefore, since Idg(z,a) C Idg(z,), by Corollary 2.0.3 there exists A, € C'(R) such
that z,a = A\;z, and by Proposition 2.0.4 there exists e, € C'(R) such that e,z, = z,
and Anng(Idg(z,)) = (1 — €;)R. Therefore
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0= zxadZy = Z ( E (n) (_1)n—iaiyan—i) — (n) (_1)n—izxaiyan—i
1 ]
0

=0

_ é (?) ()" iz ya™ = 2y (i (7;) (—1)”iA;a”i> — Zy(a—\,)"

1=0

for every y € R, whence (a — A\;)" € Anng(Idg(z,)). So €(a — A;)" = 0. Now,
for every x,2’ € R there exist A;, Ay € C(R) and idempotents ¢,, e, € C(R)
such that 0 = (€60 — €260 A)" = (€2€a — €2€Ny)™, SO €€ Ay = €€ Ay by
Lemma 1.3.3. By Lemma 2.0.5 there exists A € C(R) such that e,A = €\, for
every x € R. Then for every x € R we have z,(a — \)" = €.2.(a — A\;)" = 0,
so 0 = e;z;ad,y = z,y(a — \)" for every y € R thus (a — \)" € Anng(Idg(z.))
(see 1.2.1). Moreover [, . Anng(Idz(2,)) = Anng(Idg(ad? ' (R))) by definition of
2, and Anng(Idg(ad” ' (R))) = Anng(Idg(a)) because a is pure (Lemma 2.1.2(iii)).
Finally, let ¢ € C(R) be such that ea = a and Anng(Idg(a)) = (1 — €)R. Then

TER

e(a— A)" = (a — e\)"” = 0 because it is contained in (1 — €)R.

Hence a — € is nilpotent in addition to being ad-nilpotent of index n. Put s :=
[244] and take any prime quotient without s and (Z) ~torsion in which a — e\ is still ad-
nilpotent, of index n. By Proposition 2.2.3(2) we get that n must be odd and a — e\
is nilpotent of index s. Since in any prime quotient (@ — e\)® = 0 by Proposition

2.2.3(2), we have that s is the index of nilpotence of a — €. O

Lee’s description of ad-nilpotent elements of R~ is recovered when the hypothesis

of being pure is removed.

Corollary 2.2.5. ([54, Theorem 1.3]) Let R be a semiprime associative algebra, let
R be its central closure, let a € R be an ad-nilpotent element of R~ of index n, and
suppose that R is free of nl-torsion. Then n is odd and there exists A\ € C(R) such
thata — X € R is nilpotent of index ”T“
Proof. Suppose without loss of generality that R is centrally closed, i.e., R = R.

By Proposition 2.1.4 there exists a family of orthogonal idempotents {¢;}¥_, C

C(R) such that a = Zle e;a with €;a a pure ad-nilpotent element of index n; (n =
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ny > ng > ---) of Re;. Then by Theorem 2.2.4 there exists \; C C(Re;) C C(R)
such that (e;a — A\;)* =0 for s; := ["] and for all i = 1,...,k. Hence A =Y 1" | &\,

satisfies the claim. O

Interesting Lie algebras associated to simple associative algebras R are the quo-
tient algebras [R, R]/([R, R] N Z(R)), which are simple unless R has 2-torsion and is
4-dimensional over its center ([44, Theorem 1.13]). Let us study ad-nilpotent elements

in these associative algebras.

Lemma 2.2.6. (|23, Lemma 4.6]) Let R be a semiprime associative algebra and let

a € R be such that ad](R) C Z(R). Then ad}(R) = 0.

Proof. For every x € R we have
0 = [adg(za), 2] = [(adgx)a, 2] = (adgz)[a, z].

Therefore 0 = ad” ' ((ad”x)[a, z]) = (ad”z)? which implies, since R is semiprime and
adlx € Z(R), that ad]z = 0. O
Lemma 2.2.7. Let R be a semiprime associative algebra, let L := [R, R]/([R, R] N
Z(R)) and leta = a+ ([R,R|N Z(R)) € L be an ad-nilpotent element of L of index
n. Then a is an ad-nilpotent element of index n in R™.
Proof. For every x € R, ad"™z = ad”([a,z]) € ad’([R, R]) C Z(R) so, by Lemma
2.2.6, ad” 'z = 0 for every x € R, i.e., a is ad-nilpotent in R~ of index n or n + 1.
Let us suppose that R is prime. Then, by Proposition 2.2.3, there exists u € F,

the algebraic closure of F := C(R), such that a — u is nilpotent in R ® F of some
index s. Moreover, by Lemma 2.2.2, s <n+ 1. Put b := a — u. Then

n

O — dn — dn — _1 TL—'LbZ bTL—Z

il =adfeal) = 3 () 1

for every z,y € R. By Lemma 2.2.1, for every k € {0, 1,..., [%}]} we have (})pmax(kn=h) —
0, so

adllz = adjx = Z (n) (=)™ "p'ab" " =0,

- 1
=0
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i.e., a is an ad-nilpotent element of R~ of index n.
Finally, since @ is ad-nilpotent of index not greater than n in any prime quotient,

a is an ad-nilpotent element of R~ of index n when R is semiprime. m

In particular, from these last two lemmas we get that if R is semiprime then
(R, R]/([R, RINZ(R)) and R/Z(R) are nondegenerate Lie algebras (see [44, Sublemma
in p.5)).

Corollary 2.2.8. Let R be a semiprime associative algebra, let R be its central clo-
sure, and let L := [R, R]/([R, RINZ(R)) or L := R/Z(R). Ifa € L is an ad-nilpotent
element of L of index n and R is free of n!-torsion, then n is odd and there exists

A € C(R) such that a — X € R is nilpotent of index "+

Proof. If L = R, R|/([R, RN Z(R)) the result follows by Lemma 2.2.7 and Corollary
2.2.5. If L = R/Z(R) the result follows by Lemma 2.2.6 and Corollary 2.2.5. O

2.3 Ad-nilpotent elements of K

In this section we focus on semiprime algebras R with involution * and their set of
skew-symmetric elements K. As in the previous section, we will first describe the
pure ad-nilpotent elements of K, and then remove the hypothesis of being pure by
decomposing each ad-nilpotent element into a sum of pure ad-nilpotent elements of
decreasing indices.

The following lemma collects some results about x-identities. Item (1) is [44,
Remark on p.43] (with a different proof), item (2) is a generalization of [56, Lemma

5], and item (3) is a generalization of [13, Lemma 5.2].

Lemma 2.3.1. Let R be a semiprime associative algebra with involution x. Letk € K

and h € H. Then:

1. kKk =0 implies k = 0.

2. hKh = 0 implies hRh C H(C(R),*)h. In particular, R satisfies

hxhyh = hyhxh  for every x,y € R,
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and if Idg(h) is essential then Skew(C(R),*) = 0.

3. hKh = 0 and hKk = 0 imply hRk = 0. In particular, if Idg(h) is essential
then k = 0, while if h € Idg(k) then h =0 (resp. if k € Idg(h) then k =0).

4. kK, K]k =0 and k* = 0 imply k = 0.

Proof. We can suppose without loss of generality that R = Ii’, i.e., R is centrally
closed.

(1) Take x € R. Note that k(x — 2*)k = 0, so that kxk = ka*k. Then

k(zkx)k = k(zkz)'k = —ka*kz*k = —(ka*k)x*k = —kxkx™k
= —kx(kx*k) = —kxkak

and so we have kxkzk = 0 since R is free of 2-torsion. Therefore kxkxkyk = 0 for

every y € R, hence
0 = —kak(zky)k = —kzk(xky)*k = kxky kx*k = kxkykak,

so (kxk)R(kxk) = 0 and kzk = 0 since R is semiprime. Now kRk = 0 implies, again
by semiprimeness, that £ = 0.

(2) If h = 0 then the claim is trivially fulfilled, so assume h # 0. Take z,y € R.
Note that h(z — x*)h = 0 and therefore hazh = hz*h. Then

0 = h(zhy — (zhy)*)h = hxhyh — hy*ha*h = haxhyh — (hy*h)z*h =

= haxhyh — hy(hx*h) = hahyh — hyhxh = (hah)yh — hy(hxh),

i.e., hxhyh = hyhxh. By Corollary 2.0.3, since h # 0 and Idg(hzh) C Idg(h), for
each x € R there exists p, € C(R) such that hzh = p,h. Hence 0 # hRh C C(R)h.
Moreover, since ha*h = hah, 2hah = haxh + ha*h = (u, + p)h € H(C(R),*)h, so
hRh C H(C(R),*)h.

Let us suppose that Idg(h) is essential in R and let us show that Skew(C(R),*) =
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0: Take A € Skew(C(R),*) and y € R. Then (Ah)y(Ah) = Ah(yA)h = Ayyh € K
for some uy, € H(C(R),*). On the other hand (Ah)y(Ah) = Nhyh = Nu,h € H
for some p, € H(C(R),*). Therefore (Ah)y(Ah) = 0 for every y € R, and by
semiprimeness of R, Ah = 0, so A = 0 because Idg(h) is essential.

(3) Suppose first that R is x-prime and, without loss of generality, that it is
centrally closed. If R is not prime then there is A € Skew(C(R), %) such that R =
K+ MK (see 1.3.2), hence hKh = 0 implies hRh = 0 and h = 0 since R is semiprime,
so trivially hRk = 0. Now assume R is prime. Since R = H + K we only need to
show that hHk = 0. Let x € H and y € R. Then

0 = h(zky — (xky)*)h = hakyh + hy*kxh = hakyh + hykxh

since h(y* — y)k = 0 for every y € R. By Corollary 2.0.3, since Idg(hzk) C Idg(h),
for each x € R there exists p, € C(R) such that hak = p,h. If g, =0 then hxk =0
and we are done. Otherwise, 0 = hxkzk = u hxk = u2h, hence h = 0 and we are
also done.

Suppose now that R is semiprime. Then there exists a family of x-prime ideals
{I.}aca such that (),ca Jo = 0. In each *-prime quotient R/I, we have hR/Ik =0,
so hRk C 1, for all o, hence hRk = 0.

(4) Since k* = 0 and k[K, K]k =0, for all z,y € K we get

0 = k[[z, k], y|k = kxkyk + kykak, (a)

thus kxkyk = —kykxk and 2kxkxk = 0 for all x € K, hence kxkxk = 0 since R is
free of 2-torsion. Now, by (a),

0 = (kxkak)yk = kx(kxkyk) = —kakykxk

for all z,y € K. Thus (kzk)K (kxk) =0 for all z € K, kKk = 0 and k = 0 by item
(1) applied twice. O

Remark 2.3.2. Let R be a semiprime associative algebra with involution. If a € K is
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an ad-nilpotent element of K of index n, then for every x = x), + 2, € R with x, € H

and z;, € K:

ad}, (ax + za) = ad} (azy + zia) + ady (ax), + 2pa)

= aad] (xy) + ad] (x)a + ad, (azx), + xpa) = 0,

since axy, + xpa € K. On the other hand, expanding this expression,

0= o ) = (1Pt Y ()~ (")) otz o

Observe that a nilpotent element in K is ad-nilpotent of both K and R, but its
index of ad-nilpotence in R may be higher than the one found in K.

In the following proposition we describe the ad-nilpotent elements of K of index
n that are already nilpotent of certain index s. The description depends on the
equivalence class of the index of ad-nilpotence modulo 4 and relates the index of

nilpotence to the index of ad-nilpotence.

Proposition 2.3.3. Let R be a semiprime associative algebra with involution x, let
R be its central closure, and let a € K be a nilpotent element of index of nilpotence
t. Then a is ad-nilpotent in R. If the index of ad-nilpotence of a in K isn and R s

free of (2) -torsion for s := [*E], then:
1. Ifn=40thent=s+1 and a’Ka* = 0.
2. Ifn=41 thent = s and the index of ad-nilpotence of a in R is also n.
3. The case n =4 2 1s not possible.

4. If n =4 3 then there exists an idempotent ¢ € C(R) such that ea® = a®. More-

over, when we write a = ea + (1 — €)a, we have:

(4.1) If 0 # ea € R then ea is nilpotent of indexr s + 1, ea® = a® generates
an essential ideal in eR and (ea)* 'k(ea)® = (ea)*k(ea)*™" for every k

Skew (R, *).
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(4.2) If0 # (1 —€)a € R, then the index of ad-nilpotence of (1 —€)a in R is not

greater than n, and (1 — €)a® = 0.

Furthermore, if a is a pure ad-nilpotent element of K then in (2) and in (4.2) we
obtain pure ad-nilpotent elements of R (respectively of _ﬁi) of index n.

Proof. Let us suppose without loss of generality that R = R,ie, Ris centrally closed.

Let a € K be a nilpotent element of index of nilpotence ¢. Then a is ad-nilpotent
of K of a certain index n. If we apply Lemma 2.2.1 to the second formula obtained
in Remark 2.3.2 we get that all the monomials appearing in it are zero. We will now
focus on certain monomials depending on the parity of n.

o [f n is even, n = 2s. Let us see that ¢ = s + 1: on the one hand, for any x € R

((7)-(,"))) vrama =0

and, since (Z) — (Sfl) is a divisor of 2(2) and R is free of 2(2)—torsion, we have that

we know that

a‘ra**t! = 0 for all x. Therefore a*™! = 0 by semiprimeness, hence t < s+ 1. On the
other hand, if t = s then a® = 0 and ad>*"'(R) = 0, a contradiction.
Let us see that n =4 0: For any k € K,
2 (25 2s
0= dQs k) = -1 25—1 zk 2s—1 _ —1a’ka’
) =3 (%) ket = () ok
so a’ka® = 0 for every k € K, which implies that s has to be even, since otherwise
a® € K and a*Ka® = 0 imply a®* = 0 by Lemma 2.3.1(1), a contradiction. We have

shown that, if n is even, n =4 2 is not possible.

e If nis odd, n =2s — 1, and for any = € R,

() ()

Since (sfl) — (sfz) is a divisor of 2(2) and R is free of 2(:)—torsion7 we have that

a*1za*t! = 0 for all z. Therefore a**' = 0 by semiprimeness, hence t < s + 1. On

the other hand t > s — 1 since otherwise ad>* *(R) = 0, a contradiction.
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If a®* = 0 then a is already an ad-nilpotent element of R of index n. In this case
n =4 1 or n =4 3 by Proposition 2.2.3(2). Furthermore, if a is pure in K then a is
pure in R by Lemma 2.1.3.

Suppose from now on that a® # 0. Let us show that n =4 3. By Proposition 2.0.4
there exists an idempotent € € H(C(R), *) such that ea® = a® and Anng(Idg(a®)) =
(1—€)R (so a® = ea® generates an essential ideal in €R). Notice that ea # 0 (otherwise

0 = (ea)® = ea® = a®, a contradiction). For every k € K we have

0=ad”k = n —1)"eatka™ "t =
€ea 7/

i=1

_ n _1\s,.,5—17..8 n Vsl 8,51
—(3—1)( 1)’ea® "ka —i—(S)( 1) “ea’ka

= (n) (—1)* Y —ea*ka® + ea’ka*").

S

Since R has no (")-torsion, ea®'ka® = ea*ka*~! for every k € K. Moreover, multi-
plying by a on the right we get ea®*ka® = a’ka® = 0, so a®*Ka® = 0, which by Lemma
2.3.1(1) is only possible if a® # 0 is symmetric, hence s is even and n =4 3.

If (1 —€)a # 0 then ad?f;l)a(R) =0 and (1 — €)a is an ad-nilpotent element of R
of index not greater than 2s — 1.

If a is a pure ad-nilpotent element of index n in K then (1 — ¢€)a is ad-nilpotent of
K of index n and therefore (1 — €)a*~! # 0. From this the index of ad-nilpotence of
(1—€)a in R must be n = 2s—1. Then by Lemma 2.1.3 (1 —¢)a is a pure ad-nilpotent

element of R of index n. O

Remark 2.3.4. Let a € K be a nilpotent element of index ¢. If we denote its index
of ad-nilpotence in K by n, we obtain from Proposition 2.3.3 that, under the right

torsion hypothesis, 2t —3 <n <2t — 1 and ”T“ <t< ”TJ“?’

The next two results can be joint in one, but in order to clarify our proof we
have decided split them in two. Firstly, in the next proposition we prove that a pure
ad-nilpotent element of K can be descomposed into two parts, where one part is

ad-nilpotent of R and the other part is nilpotent. After that, in Theorem 2.3.6, we
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apply Proposition 2.3.3 to obtain the classification of a pure ad-nilpotent element of

K depending on its index of ad-nilpotence modulo 4.

Proposition 2.3.5. Let R be a semiprime associative algebra with involution x, let
R be its central closure, and let a € K be a pure ad-nilpotent element of K of index

n > 1. Then:

(1) There ezists an idempotent e € H(C(R),*) such that (1 —€)a is an ad-nilpotent
element of R of index < n and ea is nilpotent with adzea(fx’) # 0 for every
€ C(R) such that pea # 0.

(2) Moreover, if a is pure ad-nilpotent in K and R is free of (Z) -torsion and t-

torsion for s := [“}], when we write a = ea + (1 — €)a we have:

(2.1) If ea # 0 then ea is nilpotent of index s + 1.

(2.2) If (1—€)a # 0 then (1—€)a is pure ad-nilpotent in R of index n. In this case
n is odd and there exists A € Skew(C(R), *) such that ((1 —e)a— \)* = 0.

Proof. Notice that n > 3 since ad?(K) = 0 implies a € Z(R) by [27, Corollary 4.8]
and so ad,(K) = 0, which is not possible because n > 1 by hypothesis.

(1) Let us suppose first that R is a *-prime associative algebra and, without loss of
generality, that it is centrally closed.

(l.a) Case 1: ad](R) = 0 and we get the claim for the idempotent € = 0.

(1.b) Case 2: ad};(R) # 0 implies that there are no nonzero skew elements \ in C(R),
since otherwise (by 1.3.2) R = K + AK would imply ad](R) = 0; in particular R
is prime. Since ad)(K) = 0, by the second formula of Remark 2.3.2 and Corollary
2.0.3, a is an algebraic element of R over the field F := C(R). Let us consider
the minimal polynomial p(X) € F[X] of a. Let F be the algebraic closure of C(R)
and let p,...,p; € F such that p(X) = (X — )" -+ (X — pg)k. Let q1(X) =
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p(X)/(X = m), 0 @1(a)a = pugi(a). Now, for any 2 € R T,

0 = ad(ax + za)q(a)

—q zn: (”) (1) iaiza™ g (a) + :O (”) (1) aiza" g (a)

1=0

4 Z (0) - 0ratat (o) + Z (7)1t ata)
—a Z (7)ot ato + (1) vttt
= a(a — m)"zq(a) + (a — )" mrq(a) = (@ — )" (a + p)rq(a)

and therefore, since R ® F is a centrally closed prime algebra (see [7, pp. 445-446]),
(a—p1)"(a+ p1) = 0. If gy = 0 then a is nilpotent of index at most n + 1. If g # 0,
since the involution is the identity over C'(R) because Skew(C(R),*) = 0, it extends
to ROF via (r®@ A\)* :=r*® A, hence 0 = ((a — p1)")*(a + pu1)* = (a* — p1)"(a* +
1) = (—a — p)"(—a + pq) implies (a + p1)"(a — p1) = 0. From the conditions
(@ —p1)™"(a+p1) =0and (a+ pu1)"(a—p1) = 0 we obtain p(X) = (X — 1) (X + ).
Thus a®> = x4, but then ad?(k) = 442[a, k] for every k € K, a contradiction with

n > 3.

Let us study the semiprime case, and suppose without loss of generality that R
is centrally closed: If a is already ad-nilpotent in R of index n, take ¢ = 0 and
the claim holds. Suppose from now on that ad)(R) # 0. By Proposition 2.0.4
let ¢ € H(C(R),*) be an idempotent such that ead](z) = ad](x) for every z €
R, Anng(Idg(ad;(R))) = (1 — €)R and Anngp(ad;(R)) = (1 — €)C(R). Then
ad(j_o,(R) = (1 — e)ad;(R) = 0.

Let us study the element ea: First notice that adj, ,R # 0 for every p such that

pea # 0, since otherwise peady;(R) = ad;, R = 0 implies pe € Anng(r)(ad, (R)) =
(1—€)C(R) and hence pe = 0, a contradiction. Let us see that ea is nilpotent. Since R
is semiprime, the intersection of all *-prime ideals of R is zero. Consider the essential

x-ideal S := Idg(ad}(R)) & Anng(Idg(ad)(R))) = Idg(ad}(R)) & (1 — €)R. Let us
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consider the families
Ay :={I<"R| R/I is x-prime and S ¢ I}

and

Ay :={I<"R| R/I is *-prime and S C [}.

Since S C (V;ea, I and S is essential, ()., I = 0 and R is a subdirect product of
R/I with I € A;. Let us see that in any *-prime quotient ea is nilpotent of index not

greater than n + 1. Take I € A; and consider R := R/I. We may have two cases:

e If € =0 then ea = 0.

elfe #0thene =1¢€ R/I and 1—¢ = 0, so (1 —€)R C I. Moreover,
adZ(R/I) # 0 since otherwise adZ(R/I) = 0 would imply S C I, a contra-
diction. Let us see that R/I is prime: if R/I is *-prime and not prime there
would exist a nonzero skew element A in C'(R/I), which implies that R/I =
Skew(R/1,*) @ ASkew(R/I, ) (see 1.3.2), so adZ(R/I) = ad(Skew(R/I,*) &
ASkew(R/I,*)) = 0, a contradiction. So R/I is a prime algebra with involution
and adZ(R/I)) # 0 which implies, by the case (1.b), that € is nilpotent of

index not greater than n + 1.

In conclusion, for any I € A; we have ea™*! € I and therefore ea™! = 0.

(2) Suppose now that a is a pure element of K of index n and R is free of 2(;‘)—
torsion and free of s-torsion for s := [%}]. If a is already ad-nilpotent of R of index
n then a is pure in R by Lemma 2.1.3 and we can use Theorem 2.2.4 to find that
n is odd and there exists A € Skew(C(R),*) such that (a — A)* = 0. Otherwise
write a = ea + (1 — €)a as before. Since ea is nilpotent and ad-nilpotent of K of
index n (because we are assuming that a is pure in K), ea is nilpotent of index
s + 1 (it has index s or s + 1 by Proposition 2.3.3, but ad_, (R) # 0). Moreover,
(1 — €)a is a pure ad-nilpotent element of R of index n (if it is nonzero, its index of
ad-nilpotence cannot be lower than n since (1 — €)a is ad-nilpotent in K of index n),

and we can apply Theorem 2.2.4 and Lemma 1.3.3 to get that n is odd and there
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exists A € Skew(C'(R), *) such that ((1 —€)a — \)* =0. O

Theorem 2.3.6. Let R be a semiprime associative algebra with involution x, let R be
its central closure, and let a € K be a pure ad-nilpotent element of K of indexn > 1.

If R is free of (’;) -torsion and s-torsion for s := [”TH] then:

1. If n =4 0 then a**' = 0, a®* # 0 and a®*Ka® = 0. Moreover, there exists an
idempotent € € H(C(R),*) such that ea = a and the ideal generated by a® is
essential in eR. In addition eR satisfies the GPI a’ra’ya® = a*ya’xa’® for every

x,yee}?.

2. If n =4 1 then there exists A € Skew(C(R),*) such that (a — A\)* =0 (a is an

ad-nilpotent element of R of index n).
3. It is not possible that n =4 2.

4. If n =4 3 then there exists an idempotent ¢ € H(C(R),*) making a = ea + (1 —
€)a € R such that:

(4.1) If ea # 0 then ea®™ = 0, ea® # 0 and ea’kea’ ' = ea®* 'kea® for every
k e Skew(f%, x). The ideal generated by ea® is essential in €R and R
satisfies the GPI a*za*ya® = a*ya*za’® for every ©,y € eR.

(4.2) If (1 — €)a # O then there exists A € Skew(C(R), *) such that ((1 — €)a —
A)* =0 ((1—€)a is a pure ad-nilpotent element of R of index n).

In particular, for alln > 1 there exists A € Skew(C(R), %) such that (a — \)*™' = 0,
(a— N1 #£0.

Proof. We can suppose without loss of generality that R = Ii’, i.e., R is centrally
closed. By Proposition 2.3.5 there exists an idempotent € € H(C(R),x*) such that

cad,z = ad]x for every x € R and Anng(Idg(ad(R))) = (1 — €)R, and moreover:

e If ea # 0, it is nilpotent of index s + 1 and ad-nilpotent of K of index n. By
Proposition 2.3.3 this may happen if either n =, 0, in which case a**! = 0,

a® #0,a°Ka®* =0 and (1 — €)a = 0 (because (1 — €)a is ad-nilpotent of R and
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its index cannot be even), or n =4 3. The case n =4 1 is not possible because

ea® # 0.

o If (1 —€)a # 0 then (1 — €)a is a pure ad-nilpotent element of R, n is odd and
there exists A € Skew(R, %) with ((1 — €)a — \)* = 0. By Proposition 2.3.3 this
may happen if either n =, 1 (in this case ea = 0) or n =4 3. The decomposition
(1 —€)a — A = ay + ay given by Proposition 2.3.3(4) occurs with a; = 0 since

otherwise the index s+ 1 of a; would contradict ((1 —€)a — A)* = 0.

In the particular case of n =4 3 with ea # 0, the idempotent €; produced in Propo-
sition 2.3.3(4) for the nilpotent element ea satisfies €1ea® = ea®, so (1 — €)e €
Anng(Idg(ad(R))) = (1 — €)R, thus €;¢ = € and ea® = €1ea® generates an essential
ideal in €R. On the other hand, we know from Proposition 2.3.5 that (ea)*'k(ea)® =
(ea)*k(ea)*~! for every k € K in particular (ea)*K (ea)® = 0. Therefore, by Lemma
2.3.1(2) the identity

a’ra’ya® = a’ya’ra’

holds in €eR.

In the particular case of n =4 0 the idempotent ¢ produced in Proposition 2.3.5
satisfies ea®ra® = ea® for every x € R and Anngldg(a®*Ra®) = (1 —€)R. On the other
hand, (1 — €)a must be zero because ad(;_,),(R) = 0 and a is a pure ad-nilpotent
element (so a = ea). Therefore, the ideal generated by a® in €R is essential in eR and

the identity a®*za*ya® = a®ya®xra® holds in €R by Lemma 2.3.1(2). H

Remark 2.3.7. Tt is worth noting that in the semiprime case, when n =4 3 there can
exist elements a with two nonzero parts ea and (1 — €)a behaving as in Theorem
2.3.6(4.1) and Theorem 2.3.6(4.2). This is no longer true in the prime case, see [56,

Main Theorem].

In the next corollary we recover T.K. Lee’s main result by taking into account that
every ad-nilpotent element can be expressed as a sum of pure ad-nilpotent elements

of decreasing indices.
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Corollary 2.3.8. ([54, Theorem 1.5]) Let R be a semiprime associative algebra with
involution x and free of n!-torsion, let R be its central closure, and let a € K be
an ad-nilpotent element of K of index n. Then there exist A € Skew(C(R),*) and
an idempotent ¢ € H(C(R),*) such that (ea — \)**t = 0 and (ea — \)*"! # 0 for

s = [”T“], and (1 — e)}? is a Pl-algebra satisfying the standard identity Sy.

Proof. We can suppose without loss of generality that R = R, ie., R is centrally
closed. By Proposition 2.1.4 there exists a family of orthogonal symmetric idem-
potents {¢;}¥ | of the extended centroid such that a = Y%  €a, with ga a pure
ad-nilpotent element of index n; (n =ny > ny > ...) of Skew(&;R, ). If ny =1 then
exa can be decomposed as €xa = ex1a+ (1 —€x1)a, where ex1a € Z(R) and (1 —¢1) R is
a Pl-algebra satisfying the standard identity Sy by [13, Theorem 4.2(i),(ii) and (*)].

The claim follows now from Theorem 2.3.6. O

Let us extend this last result to Lie algebras of the form K/(K N Z(R)) and
(K, K]/([K, K]N Z(R)).

Corollary 2.3.9. Let R be a semiprime associative algebra with involution free of n!-
torsion, let R be its central closure, and consider the Lie algebra L := K /(KN Z(R)).
If a is an ad-nilpotent element of L of index n then there exist A € Skew(C(R), %)
and an idempotent e € H(C(R), %) such that (ea — \)*™ =0 and (ea — \)*~' # 0 for
s = ["], and (1 — €)R is a Pl-algebra that satisfying the standard identity Sy.

Proof. Let us prove that ad),(K) C Z(R) implies ad (K) = 0: Suppose first that R is
x-prime and, without loss of generality, centrally closed. If ad))(K) # 0, there would
exist 0 # A € ad, (K)N Z(R), so R = K + AK by 1.3.2 and hence ad};(R) C Z(R),
which implies by Lemma 2.2.6 that ad)(R) = 0, a contradiction. The same result
follows for semiprime algebras because they can be expressed as subdirects product
of x-prime quotients.

The claim follows now from Corollary 2.3.8. O

Now we turn to Lie algebras of the form [K, K]/([K, K] N Z(R)). We first need a

technical lemma.
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Lemma 2.3.10. Let R be a semiprime associative algebra with involution * and
a € K be such that ad] ([K, K]) C Z(R), n > 1. If R is free of (n + 1)!-torsion then
ad] (K) = 0.

Proof. Let us first suppose that R is a x-prime associative algebra and, without loss
of generality, that it is centrally closed. If Skew(C(R),*) # 0 then R = K + AK
for any 0 # X € Skew(C(R), %) (see 1.3.2); thus ad)([R, R]) C Z(R), and by Lemma
2.2.7 a is an ad-nilpotent element of R of index n. Otherwise Skew(C(R),*) = 0,
in which case R must be prime and K N Z(R) = 0, so ad))([K,K]) = 0. From
ad”™ K C ad’(|[K,K]) = 0 and Skew(C(R),*) = 0 we get from Proposition 2.3.5
that a is a nilpotent element of R. Let ¢ be its index of nilpotence. If ad, K = 0 we
are done; suppose it is not and let us compare the index of ad-nilpotence of a in K
with its index of nilpotence t (see Proposition 2.3.3) to get a contradiction:

(a) If n+ 1 =4 0 then ¢t = 22 and «"'Ka™" = 0. From (,",) = (,"",) we get,
for every z € R, that adjz = (—=1)""'(,",) (¢’ ?za’! — a’'za’"?). Then, for every

t—2
kK € K,

2(adk)K (adlk) =

_9 (t n 2) (t n 2> (at_Qkat—lk/at—zkat—l + at—lkat—Qk/at—lkat—2)
_9 (t ﬁ 2) (t il 2) at—Qk(at—lk/at—2 . at_Qk:’at_l)kat_1+

a'?ad} (adk)a' ! — o' tadi(ad 'k )a'"?) =
= adg (adj(adgk')) € ady([K, K]) = 0
because aadlk = 0 = (adlk)a, o' 'Ka'™' = 0 and ¢ > 3 implies a''a’"2 = 0.

Therefore (adk)K (adk) = 0 and hence ad)k = 0 for every k € K by Lemma
2.3.1(1).
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(b) If n+1=41thent =2+ 1. Forevery z € R, adjz = (—1)""'(,",)a" za'"".
Then, for every k, k' € K,

2(ad”k)K (ad"k) = 2(]f " 1) (t " 1) at ka1 ot kat ! =

(™ n =1, 32¢ t—17/ t—1y t—1 _
_<t—1)(t—1>a ady (¢ K'a)a" =

= ad”(ad} (ad”k’)) € ad([K, K]) =0

because a'~!a’™! = 0. Therefore (adk)K (ad’k) = 0 and hence ad'k = 0 for every
k € K by Lemma 2.3.1(1).

(c) The case n 4+ 1 =4 2 is not possible.

(d) If n 41 =4 3 then, by primeness of R, either ¢t = 2 +2 and o' ?ka’! = o' 'ka'™?
for every k € K (case (4.1) in Theorem 2.3.6) or ¢ < % + 1 (case (4.2) in Theorem
2.3.6).

(d.1) Suppose t = % 4 2 and o' ?ka'"! = a'"'ka'? (1) for every k € K. For
convenience write o := (tfg), b= (th) and observe that a # 8 (since n # 2t — 5).

For every k, k' € K we have
= ad”([k, ¥'])) = aa'3[k, Ka'™ — Ba' %[k, K]0 "% + aa' [k, K]a' 3. (2)
Multiplying on the left by a and applying (1) to the second term afterwards,

0 = aad([k,K']) = aa' [k, Ka"" — Ba' [k, K]a" 2 =
— OfatiQ[k, k/]atfl o ﬁat72[k’ k/]atfl — (O[ . /B)a/t72[k,’ k/]atfl’

which gives a'2[k, k'la®~! = 0 (3) since R is free of (a — 3)-torsion. Now we study
two separate cases:

If n =2 then t = 3 and a € K satisfies ad?(K) = 0 and a® # 0,a®> = 0, so it is
a Clifford element (see [10]). Since R is free of 2, 3-torsion there is a twin element

b € K of a such that aba = a and a*b*a® = a* ([10, p.289 and Proposition 3.7(6)]).
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Then, by (3),
0 = a[[b, a], bla* = 2(aba)ba® — a*bv*a® — ab*a® = 2aba® — a* = a?,

a contradiction.

Ifn>2thenn>6andt>5,s02t —4>tand (a'2)* = 0. We see that
a2k, K))a' [k, ky)a'2[k1, k}]a"™* = 0 (4)

for every ki, k}, ko, ki € K: from (2) we can write Ba'2[ky, kh]a’™2 as a linear combi-
nation of @[k, ¥'la’3 and a'3[k, ¥'Ja’!, so (4) follows since R is free of -torsion
and a'2[ky, Kj]a™! = 0 = a'" [k, k}]a’? by (3) and (1). Since for each ki, k] € K
we have that b := a' %[k, k}]a'? € K is such that b* = 0 and b[K, Kb = 0 by (4), by
Lemma 2.3.1(4) we get b = 0 for each ky, k] € K, so ' ?[K, K]a'™? =0, and a' 2 = 0
again by Lemma 2.3.1(4), a contradiction.
(d.2) Suppose t < 2Z+1. In this case, the proof follows as in (b): adjz = (—1)2 (g)a%za%
for every x € R, (ad)k)K (adk) = 0 and hence ad]'k = 0 for every k € K by Lemma
2.3.1(1).

In any case ad,(K) = 0. Finally, the semiprime case follows because R is a

subdirect product of *-prime associative algebras. O

From this lemma and Corollary 2.3.8 we get:

Corollary 2.3.11. Let R be a semiprime associative algebra with involution x, let
R be its central closure, and consider the Lie algebra L = [K,K]/(Z(R) N [K, K]).
If a is an ad-nilpotent element of L of index n > 1 and R is free of (n + 1)!-torsion
then there exist A € Skew(C(R),*) and an idempotent ¢ € H(C(R),*) such that
(ea — A)**t =0 and (ea — X\)*' # 0 for s := [%F], and (1 — €)R is a Pl-algebra

satisfying the standard identity Sy.
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Chapter 3

Ad-nilpotent elements in a prime

associative superalgebra

This chapter is part of an article that has been published in the journal Linear and
Multilinear Algebra [28).

In this chapter we are going to study nilpotent inner superderivations in prime
associative superalgebras with and without involution.

The goal is to extend the results of the previous chapter to the prime super setting.
In the first section we will give a detailed description of a homogeneous ad-nilpotent
element a of index n in a prime associative superalgebra R free of (’;) and s-torsion,
where s = [”THL depending on the degree of the element and the equivalence class of
n modulo 4. If a belongs to Ry we can adjust the techniques and use the results from
the previous chapter because Ry is an algebra. On the other hand, if a € Ry we will
work with a? € Ry and we will show that the only possible indexes of ad-nilpotency of
a are n =4 1,2. These two cases correspond to a nilpotent element of index "TH, when
n =4 1, or to an element a for which there exists A € C(R)y with (a® — )™ = 0,
when n =4 2.

In the second section we will study ad-nilpotent elements of the skew-symmetric
elements K of a prime superalgebra with superinvolution and characteristic p > n ,

i.e., elements a € Ky U K, such that ad”K = 0 and ad” 'K # 0. The key point is

the fact proven in Proposition 3.2.3 that any ad-nilpotent element a of K of index

43



n is either nilpotent or ad-nilpotent of the whole R with the same index n. When
a € K is an ad-nilpotent homogeneous even element, it will be classified depending
on its index of ad-nilpotency modulo 4 (see Theorem 3.2.4), and when a € K is ad-
nilpotent of index n, its description will depend on the congruence class of n modulo
8 (see Theorem 3.2.5): if n =g 1,2,5,6 then a behaves as an ad-nilpotent element of
R and if n =5 0,7 then a is nilpotent of index s + 1 for s = [*], and a*Ka* = 0,

implying that ¢’ Ra® is commutative as a local superalgebra at a®. We will also show

that the indexes of ad-nilpotency n =g 3,4 are not possible.

3.0.1. Let R be an associative superalgebra. We recall that a homogeneous 0-degree
linear map * : R — R is a superinvolution in R if (a*)* = a and (ab)* = (—1)llPlp*q*

for every homogeneous a,b € Ry U R;. In particular
(abc)* = (—1)lelblHellehtblel e g
for homogeneous a,b,c € Ry U Ry and and
(aba)* = (_1)|a||b|+|a|\a|+\blla\a*b*a* - (—1)|“|a*b*a*.

the set of skew-symmetric elements K := {a € R | a* = —a} and the set of symmetric

clements H := {a € R | a* = a} are graded submodules of R. Since ; € &,

R=H® K. We will denote H; = HN R; and K; = K N R;, 1 =0, 1. Notice that

a® € Hy, when s is even,

a€ Ky =
a® € Ky, when s is odd,
(
a® € Hy, when s =40,
a® € Ky, when s =41,
a €Ki =

a® € Ky, when s =4 2,

\ a® € Hy, when s =4 3.

Moreover, if R is a prime superalgebra and Skew(C(R), *) # 0, then R = K + uK

for any nonzero homogeneous p € Skew(C(R),*) (indeed, u* € C(R)g is invertible
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because C'(R)j is field, and therefore R C K + y?H C K + uK C R).

3.0.2. Let a € R;. Taking into account that adz = ad,z2, it is convenient to compute

the adjoint map depending on n modulo 4 and focus in the central terms because if

a is nilpotent these will remain:

TLE4O

S
S Py Y
adXz = adl.r = E (,)(—1)5 ‘a*'ra® T =
i

=0

TLE4]_

s—1
—1 o .
ad?’ 'z = ad,ad’’ *z = ad, (ad’; 'z) = ad, ( (S , ) (—l)s_zamxa%_m_Q) =
=0

i 1 S—
= ad, ( + (581 )(—1)21a5_1$a8_1 + ) =
2
- ]_ S— - ]_ S—
= ...+ (851 >(—1) T atzat ! — (381 )(—1) o
2

7’L542

a*tra® + ...

S
S Py Y
ad®r = ad®,x = E (,)(—1)S Lapa® T =
i

1=0

=..+ (i)(_l)sglas—lxas-i-l + (Si)(_l)s;lasﬂxas—l + .
2

TLE43

s—1
-1 . .
ad2* 'z = ad,ad’’ *z = ad, (ad’; 'z) = ad, (Z (S , )(—1)S_la21xa25_21_2> =
=0
- 1 S— - 1 s
= ad, ( + (882 )(—1)22618295@5 + (S . )(—1)2asxa52 + ) =
=2 s
-1 s -1 s
.+ (f ) ot ra® + (S . )(—1)2a5+1xa52—
2 2
( = ;

)( 1)7—1+|m| 5— Q.I'CL s+1 <3 ] 1) (_1)%+|m\asxas—1+'”
2

N|» Cr_)
—_
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Throughout all this chapter we will use these calculations without mentioning

them.

3.1 Ad-nilpotent elements of R~

In the following result we will relate the index of nilpotence of a homogeneous element
of R with its index of ad-nilpotence in R. It will be useful in our study of ad-nilpotent

elements of K.

Proposition 3.1.1. Let R = Ry ® Ry be a semiprime associative superalgebra. If

a € R is a homogeneous nilpotent element of index s and

(1) a € Ry and R is free of (2;__12) -torsion, then a is ad-nilpotent of R (and of Ry)

of indexn = 2s — 1,

(2a) a € Ry, s is even and R is free of (‘Zig) -torsion, then a is ad-nilpotent of R of
2
indexn =2s—2 (n=42),

(2b) a € Ry, s is odd and R is free of (‘Z:ll) -torsion, then a is ad-nilpotent of R of
2

indexn =2s—1 (n=41).

Proof. (1) Since a € Ry, the operator ad, behaves as the adjoint map in the non-super
setting. From a® = 0 we get that ad>* ' (R) = 0. On the other hand, a*~' # 0, so by
semiprimeness of R (and of Ry) (see Lemma 1.1.6) there exists x € R (respectively,
x € Ry) such that a*'za*~! # 0 and, since R has no (*~7)-torsion, (> ?)a*"taa*~t #
0. Thus

25 — 2
ad®?(z) = ( y ) ) (1) ta*tza*t #£0.
S —

We have shown that a is ad-nilpotent of R (and of Ry) of index n = 2s — 1.
(2a) Suppose that a € R; is a nilpotent element of even index s. Since ad? = ad,»
and a® € Ry is nilpotent of index £, we have by (1) that a* is ad-nilpotent of R of

index 2(3) —1 = s — 1. Hence the index of ad-nilpotence of a is less or equal to 25— 2.
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Let = be any element in Ry U Ry:

ad2’ () = ad>* *ad,(z) = ad’; *ad,(z) =

2

- 2 s— —_— 2 S—
2 2

2

—9 .
ad*?(r)a = (882 )(—1) = q" lpas .

2

1

Therefore ad?* *(R) cannot be zero, since otherwise a®~' = 0 because R is free of

(i;g)-torsion and semiprime, a contradiction. We have shown that a is ad-nilpotent
2

of index n = 2s — 2.

(2b) Suppose that a € R; is a nilpotent element of odd index s. For any homoge-

neous r € Ry U Ry:

ad2*!(z) = ad,ad? ?(z) = ad,ad’; ' (z) = ad, ((S B 1) (—1)521a51xa51> =

s—1
2

2

= ()0 e = o) =

so ad>* ' (R) = 0. Let us see that ad?* *(R) # 0: a*~! # 0, so there exists v € R

such that
S — 1 s—1

ad2?’*(z) = ad’; (z) = ( o1 )(—1)2@3_1:15@3_1 #0

because R is semiprime and free of (ss;})—torsion. We have shown that a is ad-nilpotent
2

of index n = 2s — 1. O

In the following theorem we describe the homogeneous ad-nilpotent elements of

R, depending on the equivalence class of their indexes of ad-nilpotence modulo 4.

Theorem 3.1.2. Let us consider a prime associative superalgebra R = Rq ® Ry, let
R denote the central closure of R, and let a € RyU Ry be a homogeneous ad-nilpotent
element of index n. If R is free of (7;) -torsion and free of s-torsion, for s = [”TH],

then:
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1. If a € Ry, n is odd and exists \ € C(R)y such that a — X € R is nilpotent of

index "
2. If a € Ry, then

(a) if n =41 and R is free of (ngl) torsion, then a is nilpotent of index ”“
2

(b) if n =4 2 then there is A € C(R)o such that (a*> — \) € R is nilpotent of

index ”+2

(c) the cases n =4 0 and n =4 3 do not occur.

Proof. We will suppose without loss of generality that R is centrally closed.

(1) Let @ € Ry be an ad-nilpotent element of index n. By Lemma 1.1.6, R is semiprime
as an algebra. Moreover, the element a is a pure ad-nilpotent element of R because
every graded ideal of R is essential (see 2.1.2). Therefore, we can use Theorem 2.2.4
to obtain that n is odd and there exists A € C'(R) such that a — A is nilpotent of
index ”—H Moreover, a € Ry, R is prime and has no ”+ -torsion, so A € C'(R), by
Lemma 1.2.5.

(2) Let a € R; be an ad-nilpotent element of index n. Let us split our argument in
two cases:

(2a) If n is odd, n = 2s — 1 for some s. Then 0 = ad”*'(R) = ad**(R) =
ad?2(R), and a? € Ry is ad-nilpotent of index s (notice that ad®;'(R) = ad2**(R) =
ad” '(R) # 0). Therefore, by (1), s is odd (equivalently, n =4 1) and there exists
A € C(R) such that a® — X is nilpotent of index ﬂ Let us see prove that A = 0:
Let us denote b = (a®> — \)“2 . Then, for every z € Ry U Ry,

0 = ad?(z) = ady(ad 7 (2)) = ad(ad 2, () =
S M G [ e e




n—1
Since R is free of (331 )—torsion, we get that
2

abzb = (=1)®lbzba,  for every z € Ry U Ry.

Take any x € Ry. Multiplying this last equality by a on the left and taking into
account that ab = ba we have a?bzb = a(abxb) = a(bxba) = abwab; but a?bxb =
ab(az)b = —b(ax)ba = —abrab because axr € R;. Then a*bRyb = abRyab = 0.
Similarly, for any € R; we have that a?bxb = a(abxrb) = —a(bzab), and we also have
that a?bxb = ab(ax)b = b(ax)ba = abrab because ax € Ry. Then a*bR1b = abRjab =
0. We have obtained

a’bRb = abRab = 0.

From the definition of b we have that (a? — \)b = 0, i.e., a®b = \b, so 0 = a*bRb =
ADRD. If A # 0, we would have that bRb = 0 (notice that A € C(R)y and C(R)y is
a field (Lemma 1.2.6)), leading to a contradiction with the semiprimeness of R and
b # 0.

Thus A = 0,50 0 # b = a*"', ab = a* and 0 = abRab = a®*Ra’® implies a® = 0 by
semiprimeness of R.

(2b) If n is even, then n = 2s for some s, so a*> € Ry is ad-nilpotent of index s
(ads2(R) = ad(R) = 0 and ad’;'(R) = ad>* *(R) = ad} *(R) # 0). Then by (1)
we obtain that s is odd (equivalently, n =4 2) and there exists A € C'(R), such that
(a> = A)F =0.

Notice that the cases n =4 0 and n =4 3 do not occur. O

3.2 Ad-nilpotent elements of K

As in the non-super setting, the associative local superalgebra at the ad-nilpotent ele-
ment give us extra information about the structure. In non-super setting for example
we get that the GPI a'za'ya’ = a'ya’xza® holds for an ad-nilpotent element a of index

n =4 0 of K for every x,y € K.
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3.2.1. Let R be an associative superalgebra over ® and take an element a € RyU R;.
Then R, := aRa with (aRa); := aR;yjqa, i € {0,1}, is a Zs-graded ®-module.
Moreover, the product (azxa)(aya) := axaya for any x,y € R induces an associative
superalgebra structure in R,, which is called the local superalgebra of R at a. When
R is an associative superalgebra with superinvolution *, the superinvolution induces

a superinvolution x in R, given by (aza)* := (—1)l?az*a, for every x € R.

We start with a technical lemma, which is also interesting by itself. For example,
it claims that every semiprime superalgebra with superinvolution and no nonzero

skew even elements is a trivial superalgebra, i.e., the odd part is zero.

Lemma 3.2.2. Let R = Ry ® Ry be a semiprime associative superalgebra with super-

involution *.
(i) If Ko =0 then Ry =0 and R = Ry = Hy is commutative.

(i) Let us consider hgy € Hy. If hoKoho = 0 then hoRihg = 0 and hoRhy =
hoRoho = hoHohg is commutative as the (trivial) local superalgebra of R at hy.

Proof. (i) Take any ki, k] € Ky and hy, b} € Hy. Then, since Ry = Hy, we have that
kihi = (kihy)* = hiky, kikl = (kiky)" = —k k1, hih} = (hih})* = —h}h.

In particular, k3 = h? = 0.

We claim that K; = 0. Take any k; € K;. Then for every hg € Hy, kihok; =
(k1hoky1)* = —kihoky implies kihok; = 0, so ky Hoky = 0; similarly, for every h; € Hy,
(kihy)ky = hik? = 0, so kyH k, = 0, and, for every k] € Ky, (kik))k, = —kik? = 0,
so k1 K1k, = 0. We have shown that ki Rk; = 0, so by semiprimeness of R, k1 = 0.

Let us show that H; = 0. Take any hy € Hy. For every hy € Hy, since hihoh, =
(hihoh1)* = —hyhohy, we have that hihohy = 0, so hyHohy = 0. Similarly, for
every hy € Hy, hih\hy = —h\h? = 0, so hyH h; = 0, and, finally, for every k; €
Ky, hikihy = kih? = 0, so hyKihy = 0. We have shown that hyRh; = 0, so by

semiprimeness of R, h; = 0.
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Therefore, R = H; + K; = 0.

Finally, H, is commutative because for every hg, hy € Hy,

(ii) Take hg € Hy and let us consider the local algebra R, = hoRhg as defined in
3.2.1, which is an associative superalgebra with induced superinvolution (hoxhg)* :=
hox*hg, for every x € R. Clearly Skew(hqRhg,*x) = hoKhy and Sym(hoRhg,*) =
hoH hy. If we suppose that hgKohg = 0 then Skew(hoRhg,*)o = 0 and by (i) we have

(Rh0>1 = hOthO =0 and Rho = hoRhO = (RhO)O = hoRohO = hoHoho.

Proposition 3.2.3. Let R be a prime associative superalgebra with superinvolution
and let a € K be a homogeneous ad-nilpotent element of K of index n > 2. Suppose
that R is free of (%)-torsion and free of s-torsion, for s = [“$1]. If Skew(C(R), *) # 0

then a is ad-nilpotent of R of index n. Otherwise, a is nilpotent.

Proof. If there exists a homogeneous 0 # X € Skew(C(R), *) then A\? is invertible in
the field C'(R)o, and R = K + A\*H C K + AK so ad}(R) = 0. Suppose from now on
that Skew(C(R),*) = 0. We split our proof in two cases, depending on the parity of

a:
(I) Suppose that a € K. Let us see that a is nilpotent. Every x € R can be

expressed as x = xj + xy, so for every x € R

ad] (ax + za) = ad] (axy + za) + ad) (ax, + xpa) = aad, (v;) + ad) (zx)a

+ ad (axp + zpa) =0

because azj, + zpa € K and aad’ (z) = ad(az) for every 2 € R and any i € N.
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Expanding this expression

0= ) = (1Pt Y (1)~ (")) otz o

Since R is semiprime as an algebra, by Lemma 2.0.3, a is an algebraic element of R
over C'(R).

(L.a) Let us suppose that R is prime as an algebra. The calculations of (1.b) in
the proof of Proposition 2.3.5 [12, Proposition 5.5] show that a is nilpotent.

(Lb) If R is prime as a superalgebra but not prime as an algebra, Ry is prime by
1.1.7, C(R)o = C(Ryp) by 1.2.4, the superinvolution * restricted to Ry is an involution
and Skew(C'(Rp),*) = 0 because we are assuming that Skew(C(R),*) = 0. The
element a is a pure ad-nilpotent element of Ky because C'(Ry) is a field, so we can
apply Proposition 2.3.5(2) to the prime associative algebra Ry to obtain that a is
nilpotent.

(IT) If @ € K, consider a? € Ky and by (I), a? is nilpotent, i.e., a is nilpotent. [

In the following two theorems we will describe the homogeneous ad-nilpotent
elements of K. Our goal is to relate the index of ad-nilpotence of a homogeneous
element of K with its index of ad-nilpotence in R (and in Ry and in Ky when the
element is even). Moreover, when these indexes in K and in R do not coincide, we
will show that the element is nilpotent of an explicit index.

We begin with the description of even ad-nilpotent elements of K.

Theorem 3.2.4. Let R be a prime associative superalgebra of characteristic p > n
with superinvolution *, let R be its central closure, let a € Ky := Skew (R, *)y be an

ad-nilpotent element of K of indexn > 1 and let s = [”TH] Then

(1) If n =4 0 then a is nilpotent of index s+ 1, ad-nilpotent of R and of Ry of index
n+ 1 and satisfies a®* Ka® = 0. Moreover, the index of ad-nilpotence of a in K

can ben —1 orn.

(2) If n =4 1 then there exists A € Skew(C(R), *)o such that a — X € R is nilpotent
of index s and a is ad-nilpotent of R, of Ry and of Ky of index n.

52



(8) The case n =4 2 is not possible.
(4) If n =4 3 then either:

(4.1) a 1is nilpotent of index s+ 1, ad-nilpotent of Ky of index n, ad-nilpotent of
R and of Ry of index n + 2 and satisfies a’ka*~! — a* ‘ka® = 0 for every
k € K. In particular R satisfies a*Ka®* =0, or

(4.2) there exists A € Skew(C(R),*)o such that a — X € R is nilpotent of index
s and a s ad-nilpotent of R, of Ry and of Ky of index n.

Proof. Suppose without loss of generality that R is centrally closed. Let a € Ky be
an ad-nilpotent element of K of index n.

— If Skew(C(R),*) # 0, by Proposition 3.2.3, a is ad-nilpotent of index n of R and
by Theorem 3.1.2 n has to be odd (n =4 1 or n =4 3) and there exists A € C(R)g
such that a — A is nilpotent of index s, so a is ad-nilpotent of R and of Ry of the same
index n = 2s — 1, see Proposition 3.1.1(1). Moreover, A € Skew(C(R), *)o by Lemma
1.3.4 and since Skew(C(R), x)o C Skew(C(Ry), *), the index of ad-nilpotence of a — A
in K, is again n = 2s — 1 (notice that, by Lemma 1.3.4, X is the unique element of
C(Rp) such that a — A is nilpotent). These are the cases (2) and (4.1).

— If Skew(C(R), ) = 0, by Proposition 3.2.3, a is nilpotent. We are going to approach
this case considering the index of ad-nilpotence of a in Ky and comparing it with its
index of ad-nilpotence in K and in R. Let us suppose that a is ad-nilpotent of
Ky of index m < n and let r = [T“] Since Ry is a semiprime algebra and the
superinvolution * restricted to Ry is an involution, by Proposition 2.3.3 we have four
possibilities:

e m =4 0 then a is nilpotent of index r + 1 and a"Kya" = 0, which, by Lemma
3.2.2(ii), implies that a"Rja” = 0, so a is also ad-nilpotent of index m of K, i.e.,
m = n and a is nilpotent of index s+ 1 with s = § = r. Now, since s+ 1 is the index
of nilpotence of a, by Proposition 3.1.1(1) a is ad-nilpotent of index n + 1 of R and
of Ry. This is the case (1) (n =4 0) with the index of ad-nilpotence of a in K equal

to the index of ad-nilpotence of a in K.
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e m =, 1 then a is nilpotent of index r. This implies, by Proposition 3.1.1(1),

that a is ad-nilpotent of R and of Ry of index m. So n has to be equal to m and

n+1

a— = r. This is the case (2),i.e.,n =4 1.

therefore the index of nilpotence of a is s =
e m =, 2 does not occur.
e m =, 3 then there exists an idempotent € € C'(Ry) such that ea” = a” and a
decomposes as a = ea+ (1 —€)a (although the elements ea and (1 — €)a do not belong

to R but in central closure of Ry, this decomposition will be useful for our purposes):

o If ea = 0 then a = (1 — €)a is nilpotent of index r. By Proposition 3.1.1(1),
this implies that a is ad-nilpotent of R and of Ry of index m, so n = m and the

index of nilpotence of a is s = - = 7. This is the case (4.2), i.e., n =4 3.

o If ea # 0 then a is nilpotent of index r+1 and a"koa"~*—a"koa" = (ea)"ko(ea) ' —
(ea)" " ko(ea)” = 0 for every kg € Ky. Since a™™' = 0, a"Kpa" = 0 and, by
Lemma 3.2.2(ii), a"Ria” = 0, so a"Ka” = 0 and therefore ad” ™' K = 0. There

are two possibilities:

— Either a"ka"! — a" 'ka" = 0 for every homogeneous k € K and therefore

n+1
2

= 5,50 a’ka’ ! —

a is ad-nilpotent of index m of K. Thenn =m, r =
a*'ka® = 0 and a is nilpotent of index s+1 which, by Proposition 3.1.1(1),
implies that a is ad-nilpotent of R and of Ry of index n + 2 and fits with

the case (4.1), i.e., n =4 3,

— or there exists k € K such that a"ka" ™' —a""'ka" # 0, so a is ad-nilpotent
of K of index m + 1. Hence n =m + 1, r = § = s, and a is nilpotent of
index s+ 1. Therefore, by Proposition 3.1.1(1), a is ad-nilpotent of R and
of Ry of index n+ 1. This is again case (1) with the index of ad-nilpotence

of a in Ky equal ton — 1 and n =4 0.

]

In the following theorem we describe the odd ad-nilpotent elements of K. We will
first distinguish whether C'(R) has skew-symmetric elements, in which case a is ad-

nilpotent of R of the same index, or Skew(C(R), *) = 0, which implies by Proposition
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3.2.3 that a is nilpotent. In this second case, we will consider a®> € K, and use

Theorem 3.2.4 applied to a? to obtain the description of a.

Theorem 3.2.5. Let R be a prime associative superalgebra of characteristic p > n
with superinvolution *, let R be its central closure, let a € Ky := Skew(R, %); be an

ad-nilpotent element of K of indexn > 1 and let s =[]

(1) If n =5 0 then a is nilpotent of index s+ 1, ad-nilpotent of R of indexn+1 and

a*Ka®* =0 (so a®Ra’ is a commutative trivial local superalgebra).

(2) If n =g 1 then a*~' € Hy, and a is nilpotent of index s and ad-nilpotent of R of

index n.

(3) If n =g 2 then there exists A € Skew(C/(R), *)o such that > — X € R is nilpotent

of index % and a 1s ad-nilpotent of R of index n.

(4) If n =g 5 then a*~ ' € Ky, and a is nilpotent of index s and ad-nilpotent of R of

ndez n.

(5) If n =5 6 then there exists A € Skew(C(R),*)o such that a — X € R is nilpotent

of index % and a is ad-nilpotent of R of index n.

(6) If n =5 7 then a is nilpotent of index s + 1, ad-nilpotent of R of index n + 2

and a*ka*™t + (=1)*a*=ka® = 0 for every homogeneous k € K (so a®*Ra® is a

commutative trivial local superalgebra).

(7) The cases n =g 3 and n =g 4 do not occur.

Proof. Suppose without loss of generality that R is centrally closed.
Let a € K; be an ad-nilpotent element of K of index n. If Skew(C(R), *) # 0, by
Proposition 3.2.3, a is ad-nilpotent of R of index n. By Theorem 3.1.2 n can be:

e n =, 1 and therefore a is nilpotent of index s (cases (2) and (4)), or

e n =, 2 and therefore there exists A € Skew(C(R)o,*) such that a* — X is

nilpotent of index 5 (cases (3) and (5)).
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Let us suppose that Skew(C'(R),*) = 0. By Proposition 3.2.3, a is nilpotent.

Then, since a? € Ky and ad?(x) = ad,2(x), a® is an ad-nilpotent element of K. Let
P

us denote by m the index of ad-nilpotence of a? in K and let r = ["2]. By Theorem

3.2.4 applied to the element a? we have:
oelfm=,0and r =2, (a*)" #0, (a®)""' =0 and a® Ka* = 0. We are going to
= 0: let # be any homogeneous element in R, so az + (—1)*lz*a €

show that o271

K1+\LE|7

Il a)a™)a =

I3

% q)a = @) (—1)% (@™ (az + (—1)

0= ad’(azx + (—1)
m) (—1)" a2 +lgar+!

mn (=1)"a® (az + (=1)lz*a)a®+! =
(") ¢
m) (1) a* za® .

r
* 242 (

+ (T)(—w(—wla% a

r
ince R is semiprime and free o -torsion, a = 0. Moreover, since ad’s~
S R d f f T t ,a¥t=0. M , d;” YUK

0, we have two possibilities:
o If ad? '(K) # 0, then a is an ad-nilpotent element of K of index n = 2m.
In this case n =g 0 and for s = 5 we have that a*™ =0, a®* # 0 and a*Ka®* = 0.
Moreover, by Proposition 3.1.1, a is ad-nilpotent of R of index n + 1, case (1).
e If ad”" '(K) = 0, then a is an ad-nilpotent element of K of index n =

2m — 1. So in this case we have got n =g 7 and for s = ”;1 we have that a*™! = 0,

a® # 0. Moreover, for every homogeneous k € K,
—1 m

0=ad’ (k) = (mm )(—I)Z(amkam_l + (=1)Fgm=lgqm) =
2

1 s

)(—1)2(a5k‘a5_1 + (=1)*a*~1ka?)

S

("

2
and since R is free of (" ')-torsion we have that a*ka*~! + (—1)*a*~1ka* = 0. In

2
addition, by Proposition 3.1.1, a is ad-nilpotent element of R of index n + 2, case (6).
we have that (a?)" = 0, (a?)"' # 0 and ad3(R) = 0.

oIme41and7’:mT+1

Since ads ' (K) # 0, we have two possibilities:
o If ad?” (K # 0, then a is an ad-nilpotent element of K of index n = 2m
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and there exists a homogeneous k in K such that:

0 # ad™ (k) = ad}y ' ad,(k) =
1 .
- <771n_1 )(_1) 2 (a"ka™t — (_1)|k|am—1kam) _
-1
= (m )(—I)T(CLQT_lk/‘GQT_Q . (_1)|k|a2r—2ka2r—1)‘

r

Therefore, since R is free of (mgl)—torsion, a*~! £ 0. In this case n =g 2 and for

s = 5 we have that a*™ =0, a®* # 0. By Proposition 3.1.1, a is ad-nilpotent of index

n, case (3).

e If ad®™ ' (K) = 0, then a is ad-nilpotent of K of index n = 2m — 1. Let x

be any homogeneous element in R and let us consider az + (—1)1*la*a € Ky p,:

0 = ad?™ (az + (—1)"lz*a) = ad®™2ad,(az + (=1)"lz*a) =

= ad” ad,(az + (—1 1l#le*a) =
m—1
m—1

2
m—1
S\r-1
-1

_(m
C\r—1

mTflam_l(a% + (=DPlaz*a — (=) (aza + (—1) "z a?))a™ ! =

)i
> (=) a* 2 (a*r + (-1)laz*a — (—1)M (aza + (- 1)1*12*a?))a? 2 =
>( 1)%+|x\a2r—l(m* + x>a2r—1

and

0 =ad?" Yz — 2*)a = ad>™ 2ad,(z — 2*)a = ad;’;_lada(x —z")a =

< 11

Jon=
- (17— -

= <T_1)( )"l @ — a*)a?

Therefore, since R is free of ("~ ')-torsion, a* ' Ra*~! = 0, and by semiprimeness

“Yaz — az* — (1) (za — z%a))a™ =

of R, a®* ! = 0 and a is an ad-nilpotent element of R of index n =2m —1. Son =g 1

and for s = ”T“ we have that a® = 0, a®~! # 0. By Proposition 3.1.1, a is ad-nilpotent
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of R of index n, case (2).

e m =, 2 is not possible.

elfm=,3andr = mT“, let us first see that (a?)” = 0. Suppose otherwise that
(a®)" # 0. Then (a®)"™ = 0 and a* ka* 2 — a®*2ka®" = 0 for every k € K. Let x be

any homogeneous element in R and let us consider ax + (—1)1*la*a € Ky p:

0 = ad%(ax + (—1)lz*a)d® = (mml) (—1)"7 ™ (az + (—1)"z*a)a™ 2+

n <mﬂzl) (_1)mT+lam71aSL‘am+4 + (mni) (_1>’"T+1am71(_1)\:v|x*aam+4 =
=5 T2

_ ( m 1) (_1)7«_1(121"(@3: + (_1)\m|x*a)a2r+1 + <mﬂZ1> (_1)’”7"'1(12r—2axa2r+3
r—

2

n (&)<—1>’"z“a%*(—l)'f'x*aa%” - (mm)<—1>
2

and therefore, since R is free of (TTl)—torSion and semiprime, a®*! = 0. Then for

every homogeneous x € R

0 = aad™(az + (—1)1*lz*a) = < 77}1) (—1)mT_1am+2(ax + (=1)lz*a)a™ 1+
2
+ (mrfl)(—l)"@lamamm“ + ( m
T2
— (r Tib 1) (_1)r—1a2r+1(a$ + (_1)\x|x*a)a2r—2+

# (M) vt () et Heta = () 1y

and therefore, since R is free of (T) -torsion and semiprime, a®" = 0, a contradiction.

Thus (a?)" =0, (a®)"' # 0 and ad3(R) = 0.

+
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N——
—~
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‘3
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Q
3
—~
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~
Bl
8
*
Q
S
3
+
—
|

o If ad>™ !(K) # 0, then a is ad-nilpotent of K of index n = 2m and there
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exists k € K homogeneous such that

0 7£ adzm_l(k) — adim—Qada(k> — adzé—lada(k) _
1 -
- (77;_1 )(_1)2(amkam_1 — (_1)\k\am—1kam) _

-1
_ (m X ) (_1)7~_1(a2r—1ka2r—2 _ (_1)|k|a2r—2ka27‘—1)'
r—

Therefore, since R is free of ("~ )-torsion, a*~! # 0 so a is nilpotent of index 2r. So

n =g 6 and with s = 7, a’™ =0, a® # 0 and by Proposition 3.1.1 a is ad-nilpotent

of R of index n, case (5).

e If ad®™ ' (K) = 0, then a is ad-nilpotent of K of index n = 2m — 1. Let x

be any homogeneous element in R and let us consider ax + (—1)lz*a € Ko

0 = ad?Y(az + (—1)*z*a) = ad?™2ad,(az + (—1)1"2*a) =
= ad” 'ad,(ax + (—=1)"l2%a) =

= (m__l) (_1)7”771am_1(a2.’17 + (_1)|I‘CL.’13*CL — (_1)1+|x|(axa + (_1)\x|x*a2))am_1 _

) (m . 1) (=1)a* 2 (a*r + (—1)az*a — (=1) " aza + (=1)"a"a?))a® =

r—1
—1
_ (m 1 > (— 1) el 21 (o g ),
r —
and
0=ad? (z — 2")a = ad)™ *ad,(z — 2*)a = ad”y ad,(r — 2%)a =

e L R T
N (7‘— 1)
- (7))

. . 1 . _
Therefore, since R is free of ("~}')-torsion, a*~'Ra

r 1 27“ 2 CL.I—(ZZE* . (_1)|m|(xa_x*a))a2r—1 _

o —a*)a®

2r=1 — (), and by semiprimeness of
R, a*~* = 0. So in this case n =g 5. For s = 2! we have that a* = 0, a*' # 0 and,

by Proposition 3.1.1, a is an ad-nilpotent element of R of index n, case (4). O
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Chapter 4

Examples of ad-nilpotent elements

In this chapter we are going to construct examples of all types of ad-nilpotent ele-
ments appearing in Theorems 2.3.6 and 2.2.4 (non-super setting), and all types of
ad-nilpotent homogeneous elements appearing in Theorem 3.1.2, and in Theorems
3.2.4 and 3.2.5. The examples of even ad-nilpotent elements of R and of K are based
on the examples of ad-nilpotent elements in the non-super setting, see [11]; here we
have rewritten those examples to have one example for both non-super and super

setting.

4.0.1. Let ® be a ring of scalars and let r,s be natural numbers. Following the

notation of [46], the matrix algebra M, (®) with

v . -
M(r|s)o := A e M. (P),D € My(P) p and
0 D
- - :
M(r|s); == :Be M, (P),C e M, (P)
C 0

becomes an Zs-graded associative algebra. It will be denoted M(r|s) = M(r|s)o +
M(r|s)1. We will use the notation M(r) = M(r|r).

4.0.2. Let r and s be two natural numbers with odd » > 1 and even s, let F be a field

with involution (a second-order automorphism) denoted by @ for any a € F, and let
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R be the superalgebra M(r|s) over F. Let {e;;} denote the matrix units, and define

H = 22:1(_1)i@i,r+1_i € M, (F) (notice H= H' = H*l)
J=>"0 (=1)es1-i € M(F) (notice J' =—J =J1).
The map * : R — R given by

* 1=t

A B H 0 A —-B H 0
¢ D 0 J ¢ D 0 J

defines a superinvolution in R. In particular

6:7]- = (—1)j7i67n,j+177~,i+1 for every Z,j S {1, Ce ,T},
€:+i,r+j = (_1)j7ier+sfj+1,r+sfi+1 for every 4,j € {1,...,s} and
€l = (=) e, gi1jry1i for every i € {1,...,r} and j € {1,...,s}.

Notice the superinvolution restricted to Ry is an involution x such that K, =
Skew (R, *)o = Skew(Ry, x).

The associative superalgebra R is a simple superalgebra with superinvolution, and
its extended centroid C'(R), which coincides with Z(R), is isomorphic to [F. Moreover,

the restriction of the superinvolution * to Z(R) is isomorphic to the involution — of

F.

4.1 Examples in the non-super setting and of even

ad-nilpotent elements of R~ and of K.

Let k be an even number( k > 2), let r = 3k + 3 and s = 2k, and let us consider the
associative superalgebra R = M(r|s) over F with the superinvolution defined in 4.0.2.

Let us denote by K the skew-symmetric elements of R with respect to . Consider
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the following nilpotent matrices:

2k+1
T := Z €;ir1 € Ry (nilpotent of index k + 1)
i=k+2
k—1
S = Z(6i7i+1 +e—ir—it1) € Ry (nilpotent of index k)

=1

k-1 2k—1
U:= Z Crtirtit1 + Z ertirtit1 € Ro (nilpotent of index k).
i=1 i=k+1

By Proposition 3.1.1(1), 7" is ad-nilpotent of R and of Ry of index 2k + 1, and S and
U are ad-nilpotent elements of R and of Ry of index 2k — 1.

Notice that T* = =T, S* = =S and U* = —U so T,S,U € K,. Let us calculate

their indexes of ad-nilpotence in K:

(a) If Skew(F,—) # 0, by Proposition 3.2.3 the index of ad-nilpotence of 7" in K

coincides with its index of ad-nilpotence in R, i.e., 2k + 1.

(b) If Skew(FF, —) = 0, for any B = Z -\ jei; € K we have that Aogyo 42 = 0 and

)\2k+1,k+2 = )\2k+2,k+37 S0

d2k 1(B> <2k ) (Tk 1BTk TkBkal) —

-1
< ((ert+2.2k+1 + €rt326+2)B(Erraokia))—

N

(A2kt1.h+2 Cht2,26+2 + A2kt k2 €ht3 2k+2) —

2k —1

2k — 1
(€kt2.26+2)B(€kt2.2k+1 + €htsokt2)) =
)l

(2k-1
N k
( A2k+2 k42 €kt2.2k+1 + A2k+2. kot 3 Ekt2,26+2) = 0.

Furthermore,

2k—2 * 2k—2
ad7 " (eakt1,k+2 — €opp1pye) = ad7 (€2k41 k12 + €2kt2,k+3) 7 0.

Thus T is ad-nilpotent of K of index 2k — 1.
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(c) S is ad-nilpotent of K of index 2k — 1: by its ad-nilpotence in R, we have
ad?gk_l(K) = 0. Moreover, 0 # C' =ep1 — €} = €x1+ €rpp1 € K and

_ 2k — 2\ gr -
adg"*(C) —_<k—1>5k Yera + erpis) S =

2k — 2
=11 (e1k + er—itir)(ent + erptri)(e1n + €r—pi1y) =

2k — 2
= - < E—1 ) (el,k + er—k—i—l,r) 7& 0,

so S is also ad-nilpotent of K of index 2k — 1.

(d) U is ad-nilpotent of K of index 2k — 1: by its ad-nilpotence in R, we have
adrgjk_l(K) = 0. Moreover, 0 # C' = Crtk,rt+1 —€;+k7r+1 = Crikyr+1 T Cry2kr+k+1 €

K and

ad2Uk72(C) = adZUk*Z(ewk,m + €rtokrthil) =

2k — 2 _ _
= - ( k1 )Uk 1(€r+k,r+1 + €r+2k7r+k’+1)Uk b=

= - (Qkk_—12) (€rs1 4k + Erphrirton) 7 0.
Let us use these matrices 7', S and U to get examples of any of models of ad-
nilpotent elements in Theorems 2.3.6 and 2.2.4 from non-super setting and of even
ad-nilpotent elements in Theorems 3.1.2 and 3.2.4. Here is important to point out
in Theorems 3.1.2 and 3.2.4 we gave the index of ad-nilpotency of Ry and K, aswell,
therefore if an even element is ad-nilpotent of R or K it will be always ad-nilpotent of
the same index of Ry and K but in the case n =4 0 and ad-nilpotent of K then could
be of index n — 1 of K. Thus, we will give examples of even homogeneous elements
ad-nilpotent of R and K and will give examples for non-super setting ad-nilpotent of
Ry and K.
(i). Suppose Skew(F,—) # 0. For any A € Skew(F,—), the element 7"+ Aid is
ad-nilpotent of R of index 2k + 1, and by Proposition 3.2.3 its index in K is again
n = 2k + 1. This is an example that fits case (2) of Theorem 3.2.4 and of Theorem
2.3.6 (a skew element a in K with nilpotent (¢ — A) of index k + 1 such that a is
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ad-nilpotent of index n =4 1 in K, K, and the same index in R). It also provides an
example of case (1) in Theorem 3.1.2 and of Theorem 2.2.4.

(ii). Suppose Skew(FF, —) # 0. For any A € Skew(FF, —), S + Aid is an ad-nilpotent
element of R and of K of index n = 2k — 1. This is an example that fits case (1) of
Theorem 3.1.2 and case (4.2) of Theorem 3.2.4 and of Theorem 2.3.6 (a skew element
in Ky, which is ad-nilpotent of index n =4 3 in Ky and in K, and ad-nilpotent of the
same index in R and Ry).

(iii). Suppose Skew(F,—) = 0. T is an element of K, which is ad-nilpotent of K
of index n = 2k — 1. This is an example that fits case (4.1) of Theorem 3.2.4 (an
element in Ky which is ad-nilpotent of index n =4 3 in K and in K, and ad-nilpotent
of index n+ 2 in R and Ry).

(iv). Suppose Skew(F, —) = 0. The matrix A = T'+ S, which is an orthogonal sum
of T and S, is nilpotent of index ¢t+ 1 and ad-nilpotent of R and of R of index 2k +1.
Let us see that it is ad-nilpotent of K of index 2k: from the indexes of nilpotence of
T and S, their indexes of ad-nilpotence in K and the fact that T'S = 0 = ST we get
that ad?f(K) = 0. Moreover, C' = ey 42 — €} 10 = Chht2 — C2rt22k+4 € K and one
can check that adikil((?) = — (Zkk_l) (€12k+2 + €rt23k+3) # 0. This is an example that
fits case (1) of Theorem 3.2.4 (a skew element in K, which is ad-nilpotent of index
n =4 0in Ky and in K, and ad-nilpotent of index n + 1 in R and Ry).

(v). Suppose Skew(FF,—) = 0. Let us consider A = T' + U, which is an orthogonal
sum of 7" and U. The nilpotence of T'+ U implies that the index of ad-nilpotence
of Ain R (and in Ry) is 2k + 1 (by Proposition 3.1.1(1)). Since both T" and U are
ad-nilpotent elements of K of indexes 2k — 1, A is ad-nilpotent of K of index 2k — 1.
Nevertheless, its index of ad-nilpotence in K is higher: for any B = )"\, je;; € K

we have that

2k 2k
ad}’(B) = (k: )AkBAk = < I )€k+2,2k+2 Begioopio =

2k
= ( I ))\2k+27k+2€k+272k+2 =0

because Agopior+2 = 0. Moreover, if we consider the element C' = egpi9,41 —
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€312, 11 = €2k+2,+1 — Erysk2 € K one can check that

ady 1 (C) = <2k k_ 1) (AF1CAR — AFCAMT) =

2k —1
= —( i )(er+k+1,2k+2 + eprortk) # 0

because
k—1 k—1 k—1
A =T +U = €k+2,2k+1 T €k+32k+2 T €rtlr+k T €riktlrts-

This means that the index of ad-nilpotence of A in K is n = 2k. This gives an
example of an element in the conditions of Theorem 3.2.4 (1) and a case, again, (4.1)
of Theorem 2.3.6 (a skew element in Ky, which ad-nilpotent of K of index n =4 0,

ad-nilpotent of Ky of index n — 1, and ad-nilpotent of R index n + 1).

4.2 Examples of odd ad-nilpotent elements of R~
and of K.

Let F be a field with identity involution, let » > 1 be an odd number, let s = r — 1,
and consider the superalgebra R = M(r|s) with the superinvolution given in 4.0.2.
Again, let us denote by K the skew-symmetric elements of R with respect to *.

Let us consider T := Z:;ll €ir+i € 1. Then

r—1 T
A=T-T"= Z €irti+ Z eryi—1; € K1 (nilpotent of index 2r — 1).

=1 =2
We have that
A? = 2::_11 €iir1 + Z::_Ql Crti—1,r+is
A2r=T — €12r—3 t €29 9+ e€32- 1+ €12+ €gor1+ €13y,

2r—6 __
A =e1y—2te,1te3,+Er12—2+ €rp20r1,
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2w—3 _
AT = e 91 + i,
A*"% = ¢, and

Al =g,

By Proposition 3.1.1(2b) A is ad-nilpotent in R of index m = 4r — 3. For every
B = Zi,j )‘i,jei,j € Ko U Kl:

ad)y 7°(B) = ad’; *ada(B) =

= (2 aaamry = - (a2 =

r—1
2r—3 2r—3 > A2r—2 [B| g2r—2 p 42r—3
= ) (A" °BA + (=1)PIAT2BAT7) =
r —
2r—3
= < r_ 1 ) ((e1,20—1 + €rq10)Ber, + (_1>|B|61,7'B(€1,2r71 +erg1r)) =
2r—3 15| 15|
=\, (Aor—11€1 + Ar€rirr + (=1)PIN1e10,21 + (—1)7'\, 1 p1e1,,) =0

because when B € K, we always have that \o,_17 = A.,41 = 0 (by grading) and
Ara =0, and when B € K3, A\,.; =0 (by grading) and Ao,—11 = A.,11. Moreover, by
Theorem 3.2.5, the index of ad-nilpotence of A in K can be m, m — 1 or m — 2, so it
ism—2=4r — 5.
(i). The element A € K, is an example of an element in the conditions of Theorem
3.2.5(6) (a nilpotent element of index 2r — 1, which is ad-nilpotent of index n =
4r —5 =g 7in K and ad-nilpotent of index n + 2 in R, and such that A 3BA*~2 4
(—1)IBIA?=2B A2 =3 = ( for every B € Ko U K).

To produce examples for the rest of the cases of Theorem 3.2.5, let us consider
A’ € K, for some particular cases of odd r > 1.

(ii). Fix r = 10t + 1 for some ¢ € N. Then
(A5)4t+1 — A2r+3 — 07
(A5)4t — A2r72 c HO,
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(A5)4t71 — A2r77.

In particular, A® is nilpotent of index 4t + 1 and ad-nilpotent of R of index 8t + 1.
Notice that for every B = Z Nijeij € K

(A5)4tB(A5)4t = 617TB€177‘ = /\7‘7161’7, =0

because every B € K has A.; = 0. Therefore, for every B € K we have

4t

ad®s (B) = ad}io(B) = (2t) (A1) B(AYN)? = 0.

Furthermore, considering C'=¢€,,11 — €, 1 = €p11 + €211 € K3

adifg,_l(C) = adifs_Q(adAS(@r,rH +egr11)) =

= ad AlO adA5 (67« r41 + €orq 1))
< ) AIO 2t— l(adA5(er,r+1 + 6271_1’1))(1410)%—
( ) AlO Qt(adA5(€rr+1 + Cor_1 1))(A10)2t_1 —

( ) (A2 (eppir + €2r-1,1) A%) — (A% (e i1 + €2011) A7) =
t—1
—( )(€3r e1r—2) # 0.

2t

The element A® gives an example of an element in the conditions of Theorem 3.2.5(1)
(a nilpotent element of index 4¢ + 1, ad-nilpotent element in K7 of index n = 8t =g 0,
ad-nilpotent in R of index n + 1 = 8¢ + 1 and such that (A%)*K(A%)* = 0).

(iii). Fix r = 10t + 3 for some ¢ € N. Then

(A5)4t+1 — A2r—1 _ O
(A5)4t — A2r76'

In particular, A° is nilpotent of index 4t + 1 and ad-nilpotent of R of index 8t + 1
(see Proposition 3.1.1(2b)). In this case the index of ad-nilpotence of A° in K is the
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same as in [? because for C' = e, ,41 — € i1 = Errr1 211 € Ky we have

adA58t(C) = aditlo(er,r-i-l + €2r—1,1) =

_ (475) (A2 (e, 1+ 627«_171)(1410)% _

4t
= (2t> (e32r—2 + €r2,—2) # 0.

The element A® gives an example of an element in the conditions of Theorem 3.2.5(2)
(a nilpotent element in K of index 4t + 1, ad-nilpotent of K and of R of the same
index n =8t+1 =g 1).

(iv). Fix r = 10t + 5 for some ¢t € N. Then A® is nilpotent of index 4t + 2. Since
the index of nilpotence of A® is even, we know by Proposition 3.1.1(2a) that A° is
ad-nilpotent of R of index 2(4t + 2) — 2 = 8t + 2. Moreover, from the fact that A®
is ad-nilpotent of R of index 8t + 2 =g 2 we get from Theorem 3.2.5 that its index
of ad-nilpotence in K is the same as in R. The element A°® gives an example of an
element in the conditions of Theorem 3.2.5(3) with A = 0 (a nilpotent element of K
of index 4t+2 which is ad-nilpotent of K and of R of the same index n = 8t+2 =g 2.)

(v). Fix r = 10t + 7 for some ¢t € N. Then A® is nilpotent of index 4t + 3. Since
the index of nilpotence of A® is odd, we know by Proposition 3.1.1(2a) that A® is
ad-nilpotent of R of index 2(4t + 3) — 1 = 8t + 5. Moreover, from the fact that A°
is ad-nilpotent of R of index 8t + 5 =g 5 we get from Theorem 3.2.5 that its index
of ad-nilpotence in K is the same as in R. The element A® gives an example of an
element in the conditions of Theorem 3.2.5(4) (a nilpotent element of K; of index

4t 4+ 3 which is ad-nilpotent of K and of R of the same index n = 8t + 5 =g 5).

(vi). Fix r = 10t +9 for some ¢t € N. Then A® is nilpotent of 4¢ + 4. Since the index
of nilpotence of A° is even, we know by Proposition 3.1.1(2a) that A® is ad-nilpotent
of R of index 2(4t + 4) — 2 = 8t + 6. Moreover, from the fact that A% is ad-nilpotent
of R of index 8t + 6 =g 6 we get from Theorem 3.2.5 that its index of ad-nilpotence
in K is the same as in R. The element A® gives an example of an element in the

conditions of Theorem 3.2.5(5) with A = 0 (a nilpotent element of K; of index 4t + 4
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which is ad-nilpotent of K and of R of the same index n = 8¢ + 6 =g 6).

The matrices given in (i), (ii), (iii) and (v) provide examples of (2.a) in Theorem
3.1.2. Moreover, the matrices of (iv) and (vi) fit in case (2.b) of Theorem 3.1.2 with
A=0.

4.2.1. Some other examples of odd ad-nilpotent elements of K and of R.
The examples (iv) and (vi) in the previous section are ad-nilpotent elements of
K of indexes n =g 2 and n =g 6, and fit in Theorem 3.2.5(3) and (5) with A = 0. To
get examples of such types of elements with nonzero \’'s, we will work with matrices
over a field with nontrivial involution.
Let r be a natural number, let C be the field of complex numbers with involution
given by conjugation, and let us consider the simple superalgebra R = M(r) over C.

The map trp given by
trp

A B Dt Bt
C D ct A
where A, B,C, D € M,(C) and ( )" denotes the usual matrix transposition, defines
a superinvolution in R known as the transpose superperinvolution (see [36, Example
2.2]).
Let us denote by K the set of skew-symmetric elements of M (r) with respect trp.

Note that any element of K has the form where B is a symmetric matrix
c 0

and C' is a skew-symmetric matrix in M,.(C) with respect to the usual transposition.

Let us consider a symmetric matrix B € M, (C) with B" =0 and B"~! # 0 (it is
shown in [51, Corollary 5] that for every r there exist symmetric nilpotent matrices
in M, (C) of rank r — 1). Let 0 # A € R and let ¢ denote the square root of -1. Then

0 B+id ) (M) B + (Xi)id 0
a= € K; and a° =
(Ai)id 0 0 (M) B + (\i)id

i.e., (a*> — \i) is nilpotent of index r.

When 7 is odd a is an example for Theorem 3.2.5 (3), and when r is even a is

an example for Theorem 3.2.5 (5). Both cases are examples of elements of the form
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(2.b) of Theorem 3.1.2.
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Chapter 5

Local superalgebra of Lie
superalgebras at ad-nilpotent

elements

This chapter is part of an article that has been published in the journal Communica-
tions in Algebra and can be found in [30].

In this chapter we extend the ideas of local algebras of Jordan algebras to the super
setting, and Jordan superstructures are attached to Lie superalgebras at ad-nilpotent
homogeneous elements.

We also generalize in the section 6.3 the notion of subquotient to the Lie superal-
gebra. It comes attached to an abelian Lie inner ideal of a Lie superalgebra, and it is
indeed a Jordan superpair. Moreover, in the particular case of an abelian inner ideal
of the form [a, [a, L]], the subquotient agrees with the Jordan superobject obtained
in the section 6.2.

The chapter is organized as follows. When a is even, we easily obtain a Jordan
superalgebra by using the Grassmann envelope. But when we deal with an odd ad-
nilpotent element a of index less than or equal to 4 we first define a triple product in
la, [a, L]], and then we double this triple and change a sign in one of the associated
triple products to get a Jordan superpair. We introduce subquotients associated to

abelian inner ideals of Lie superalgebras and show that they are Jordan superpairs.

73



Finally, we show that the Jordan superalgebras/superpairs obtained in the previous
section agree with the subquotients associated to abelian inner ideals of the form
la, [a, L]].

In addition, we will assume that % € P.

5.0.1. Let M = My & M; be a supermodule over ®. Then the associative algebra
End(M) is provided with the induced Zs-grading End(M) = End(M)y @ End(M);,
in which

End(M); = {f € End(M) | f(M;) € My},

Let L = Ly @ Ly be a Lie superalgebra over ® then End(L) becomes an associative
superalgebra and (End(L))~ with product [f, g] = fg — (—=1)l9lg f for homogeneous
elements f,g € End(L) becomes a Lie superalgebra. The set ad L of adjoint maps is
a Lie superideal of (End(L))~, so if we denote by capital letters the adjoint maps as-
sociated to elements, i.e., A = ad,, B = ad,, etc., we have [4, B] = AB—(—1)ldl!IBA
for homogeneous elements a,b € Ly U L;. This notation will be useful because it

allows us to think in an associative way when we are doing calculations.

5.1 A Jordan superalgebra at an even homoge-

neous ad-nilpotent element

5.1.1. Let L = Ly + Ly be a Lie superalgebra, and let a € Ly such that adzL = 0.
Such an element will be called Jordan element of L. In the ®-module [a, [a, L]] we

can define a new product

[a, [, 2]] - [a, [a, y]] = %[m [a, [, [a, y]1]].

The (nonassociative) algebra ([a, [a, L]],-) is Zs-graded with homogeneous parts
la,[a, L]0 = |a,[a, Lo]] and [a, [a, L]]; = [a, [a, L1]]. The parity of an homogeneous
element = coincides with the parity of x as an element in the Lie superalgebra L, i.e.,

|z| = |x| for every homogeneous element z € Ly U L;. In the next proposition we
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prove that this superalgebra is in fact a Jordan superalgebra.

Proposition 5.1.2. Let L = Lo+ Ly be a Lie superalgebra and a € Ly be a Jordan

element. Then ([a,[a, L]],-) is a Jordan superalgebra.

Proof. Let us check that the Grassmann envelope of [a,[a, L]] is a Jordan algebra
with the induced product. Let us consider @ = a ® 1 € G(L), which is a Jordan
element of the Lie algebra G(L). By Theorem [24, 2.4(ii)] and Remark [24, 2.44] we
can consider the Jordan algebra [a, [a, G(L)]] of G(L) at a with product

[, [a, 1] - [a, [a, g]] = %[5% [a, [z, [a, g]]]]

for any 7,7 € G(L).
The map ¢ : [EL7 [EL7 G(L)]] - G([(l, [CL, L]]) given by ()0([&7 [aa z® €i1£i2 s glk“) =
a, [a, z]] ® &,&, - . . &, is an isomorphism, so G([a, [a, L]]) is a Jordan algebra, giving

that [a, [a, L]] is a Jordan superalgebra. O

Remark 5.1.3. The induced triple product on [a, [a, L]] is given by
1
{ja Y, Z} = <_1)|y|‘Z|ZLA2XZA2(y>
for homogeneous 7,7, Z € [a, [a, L]]. Indeed,

4{z,g,2} =4 (2 (7 2) + ()M (@ g) — (-1)lVlg - (2 2)) =
= Az, [a, [y, la, 2]]] + (=)Ao, [2, [a, y]]) -
— (=)F Ay, [a, [, [a, 2]]]] =
= [z, a], [ly, ], =[] + (= 1)L o] [, a], y]] = (—1)W) [y, o], [[, a], 2]] =

= A*([[w, a], [y, al], 2] + (= D)lWHEHAEA o, [[y, o], 2] =

= Az, [a, [y, alll, 2] = (=1)FTIDA 2 [, [a, [a, )] = (=1)MHAZX ZA%(y).

Remark 5.1.4. An equivalent construction of the Jordan superalgebra (|a,[a,L]],-)
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is the following: in L define a new product by z e y = 1z, [a,y]] for any z,y € L,
and denote L® the (nonassociative) Zo-graded algebra (L, e), with L(()a) = Ly and
L§“) = L. If we define Kery (a) := {x € L|[a, [a, z]] = 0}, then Kery(a) is the kernel of
the Zy-graded algebra homomorphism ¢ : L — [a, [a, L]] given by ¢(x) = [a, [a, z]],

so L9 /Kery(a) and [a, [a, L]] are isomorphic as Jordan superalgebras.

5.2 Jordan superalgebras at odd homogeneous ad-
nilpotent elements

Now we turn to odd ad-nilpotent elements. Notice that for every homogeneous el-
ement a € L; we have adj,, = 2adz. When dealing with ad-nilpotent elements

of Ly we will require ad:L = 0. In this case the element b = [a,a] € Lo verifies

ady = ad[zaja] = 4ad? = 0.

Remark 5.2.1. Given such an element a € L; with ad! = 0, if we consider the ®-
module [a, [a, L]] and we define the bilinear product as in 5.1.1 ([a, [a, z]] - [a, [a, y]] =
sla, [a, [z, [a, y]]]] for every xz,y € L) then [a,[a, L]] is Zy-graded with [a,[a, L]y =

la, [a, L1]] and |a,[a, L]} = [a, |a, Lo]]. The parity of the homogeneous elements of
la, [a, L]] changes and |[a, [a, z]]| = |z| 4+ 1 for any homogeneous element x € Ly U Lj.
Moreover,

for homogeneous = = [a, [a,z]],y = [a,[a,y]] € [a,][a, L]], i.e., ([a,[a, L]],) is super-
anticommutative. To avoid this situation and get a Jordan superstructure, we define

a trilinear product on [a, [a, L].

5.2.2. For an element a € L; with ad? = 0, we consider the trilinear map { , , } on

la, [a, L]] defined by
{z,y,z} = i[[a, la, z], [y, [a, [a, 2]]]] = iAQXYAQ(z) (5.2.1)

for every homogeneous = = [q, [a, z]], ¥ = [a, [a,y]] and Z = [a, [a, 2]] € [a, [a, L]] (no-
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tice that [[a,[a, ], [, [a, [a, 2] = 1(lle,al, 2], [y, la-al, 2]]] = A2XY A%(2) because
adjg qadyady, e = 0). The ®-module [a, [a, L]] is Z,-graded with respect to this trilin-

ear product and |a, [a, L]|; = [a, [a, L;]], i € {0, 1}.

We have that

[[a [a, 21, [y, [a; [a, 2]1]] = [[a, |a, 2]}, 4], [a, [a, =]]]

for every z,y,z € Lo U Ly because [[a,[a,z]],[a,[a,z]] = 1[[[a,al,z],[[a,d], 2] =

0 since [a,a] is an absolute zero divisor. This implies that the triple product is

supersymmetric in the outer variables:
{j’7 g7 2} — (_1)|x\|y|+|sz|+|sz|{2, g) j} (522)

Moreover,

{z,7,2} = (-D)VIEz 2, 7} (5.2.3)

because 4{z,7,z} = [[a,[a, 2]}, [y, [a, [a, 2]]]] = (1) [[a, [a, 2]}, [[a, [a, 2]}, y]] =
= 1 (=1)¥F([a,a], 2], [[[a, a], 2}, y]] = 3(=1)¥"[[a, a], [z, [2, [[a, a], y]]]] =

= (=1)WIFA2X 7 A%(y) = 4(-1)WIZ{z, Z, 7}. From equations (5.2.2) and (5.2.3) we
get that the triple product defined in (5.2.1) is supercommutative on its three vari-

ables.

Lemma 5.2.3. For a homogeneous element a € Ly with adi = 0, the trilinear map

given in (5.2.1) satisfies

{z.9.{z,0.0}} = ({2, 9.2}, 0 + (1) WHEEEL g2, 4}, 0}

+ (_1)Ix\\2|+Ifcllu|+|y\\ZI+|yHUI{57 u,{zZ,7,0}} (%)

for every x,y, z,u,v € Lo U L.
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Proof. For every x,y, z,u,v € LogU Ly,

8{z,9,{z,u,0}} = [lla, [a, 2]}, yl, [l[a, [a, 2]], ul, [a, [a, v]]]] =
[[lla, [a, 21}, ], [la, [a, 2]], u]l, [a, [a, v]]]+
(= 1) DD a, [a, 2], ), [[la, [a, 1], o], [a, [a, v]]]] =
= [lllla, [a, 21}, ). [a, |a, 2]], ul, |a, [a, o]}]+
(=1) D= la, [a, 2], [[la, [a, 2]], ], ], [a, [a, 0]+
(

— )b la, [a, 2], u], [[[a, a, 2]), 1), [a, [a, 0] =

=8{{z, 5.2}, u,0} + (=)W=, [a, 2], [[[a, [a, 1), 4], u], la, [a, o]+

Let us see that (—1)=+WDI=l[[[q, [a, 2], [[[a, [a, 2]], ], u]], [a, [a, v]] coincides with the

second term on the right side of equality (x): from the definition of the triple product,

[lla, [a, 2]], [[la, [a, 2], 4], ull. [a, [a, v]]] = 4{z [[[a, [a, 2]}, y], u], v}

and

(M, la, 2], 9], u] = [a. [a, [[la, [a, 2], ], W] = (1) M [a, [a, 2], [a, y]], la, u]]+
+ (=1)"[[a, [a, 2], [a,y]], [0, u]] + [[[a, [a, ], y], [a [a, u]]) =

= 4{*%’@7 ﬂ} = (_1)|$Hy|4{g7j’a}

(=)D [fa, [a, 211, [lla, [0, 1), 9], ul], [a, [a, o]]] =
— (_1)Irl\y|+IZI\ZI+\yIIZ\8 {z,{y,7,a},7}

and we have shown (x). O
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5.2.4. A pair of Zs-graded ®-modules V' = (V, V™) is a (linear) Jordan superpair
if there exist two trilinear maps { , ,}? : Vo x V77 x V7 — V7 ¢ = &£, both

supersymmetric in the outer variables, and that satisfy (JSP15):

{a,b,{c.d,e}"}* = {{a,b,c}",d, e}” — (=1)llPlHlellcttllelfe (b q d}= e}”

4 (_1)\a||0|+|a|\d\+|b\\C\Jrlb\\d\{C7 d,{a,bel’}, o=+

for homogeneous a, c,e € V7 and homogeneous b,d € V™7, 0 = +.

We have just shown that when a € Ly has ad} = 0, [a, [a, L]] with the trilinear
map {,, } given in (5.2.1) is a (1,1)-Jordan supertriple in the sense of [47, §3], which
are a particular case (e, d)-Freudenthal-Kantor supertriple systems, e = £1, § = +1
[47, §83]. We say that a Zs-graded ®-module M = My + M; with a graded triple
product {, , } : M x M x M — M is a (1,1)-Jordan supertriple if

e {a,b,c} = (_1)Iallbl+|a|\c\+|b|\c\{c’ b,a} and
o {a,b,{c,d,e}} ={{a,b,c},d e} + (—1)‘al|b|+|"“c‘+|b“c‘{c, {b,a,d}, e}
(< 1)llleb+lalld-bleb g g £q b b}

for homogeneous elements a,b,c,d,e € M. The second identity resembles (JSP15)
but there is a change of sign in the second summand of its right side. Notice that
every (1,1)-Jordan supertriple M with triple product { , , } gives rise to a Jor-
dan superpair V. = (VT V™) = (M, M) with products {a,b,c}* := {a,b,¢} and
{b,c,d}~ = —{b,c,d} for every a,c € VT and b,d € V~. In our case we have
shown that if we double [a, [a, L]] and twist one of the triple products we have that
([a, [a, L]], |a, [a, L]]) is a Jordan superpair.

5.2.5. Another Jordan structure can be defined from an ad-nilpotent element a €
Ly: suppose that a € L; has ad® = 0. Then b = [a,a] € Ly is a Jordan element

(ad} = (2ad?)® = 0), and we can define a Jordan superalgebra on the ®-module
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[b, b, L]] = ad}L as in 5.1.2. The product is now given by

[b, [b, x]] - [b, [, y]] = %[b, [b, [, [b, y]]]]

or, equivalently,

adiz - adly = 2ad?i[z, ad?y].

a

5.3 Subquotients associated to abelian inner ideals
of Lie superalgebras

5.3.1. Let L = Ly + Ly be a Lie superalgebra. We say that B = By + B; C L is an
inner ideal of L if [B,[B, L]] C B, and B is abelian if [B, B] = 0. Inner ideals can be

easily produced from homogeneous ad-nilpotent elements.

Example 5.3.2. Let L = Ly + L, a Lie superalgebra and let a € Ly with adz =0or
a € Ly with ad} = 0. Then

la] := a, [a, L]] (a) := ®a+ [a, |a, L]]

are inner ideals of L. Moreover, [a] is an abelian inner ideal.
Conversely, given an abelian inner ideal B = By + B;, any homogeneous b € By
is a Jordan element and gives rise to the inner ideals [b] and (b) contained in B. If

b € By then 0 = [b,b] implies 0 = adp = 2ad; so [b] = 0 and (b) = Pb.

Proposition 5.3.3. Let L be a Lie superalgebra and B an abelian inner ideal of L.
Let us consider KerB := {x € L | [B,[B,z]] = 0}. Then (B, L/KerB) is a Jordan

superpair with products:

{a,Z,b} : = [a, [z,b]] = [[a, x], b]

{f,a,y} - = [xv [avy]] = Hxva]v?/]

for a,b € B and x,y € L (here &, g, [z,[a,y]] and [[z,a],y] denote equivalence
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classes in the quotient L/KerB). This Jordan superpair is called the subquotient of
L associated to B.

Proof. First notice that [a, [z, b]] = [[a, z],b] and [z, [a,y]|] = [[z, a], y] for every a,b €
B and every x,y € L because B is abelian and the definition of KerB.

The products are well defined: clearly {a,0,b} = 0, and if we take homogeneous

7,7 € L/KerB with T = 0 or 7 = 0 then for homogeneous a, b, c € L we have that

b, [e, [, [a, )] = [b, [[e, 2], a, y)]] + (= 1) b, [, [e, [a, y]]]] =
= (=1 (b, 2], [e, [a, yl)] + (=), b, [e, [a, y]))] = O

Let us see that the triple products are supersymmetric in the outer variables:

{a757 b} = [a’ [I‘, b]] = (_1)1+|$Hb‘[a’ [b7 :L‘]] = (_1)|b”$‘+‘a|(lb‘+|z‘)[[bv ZL’], a“ =

= (_1)\bHZ|+|aHb|+\allw\[b, [z,a]] = (_1)IbllffC\JrIOLI|b|+|a|\fv|{[)7T7 a}

{7, 0,7} = [2,[a,y]] = [z, al, 9] + (=1)"[a, [z, y] =
— (_1)\xlly\+\xlla\+|yllal[y7 la, z]] = (_1)|wl\y|+lml\a|+\yl\al{y’aj}

Let us prove (JSP15). For homogeneous a, b, ¢ € B and homogeneous z,y, z € L,

e {a,7,{b,y,c}} = [la, 2], [[b,y], o] =
= [[[la. 2], 8], y], ] + (=1)1H D (b, [[a, 2], y]], ] + (—1)CHPIHED, g, [[a, 2], c]]
= {{a,7,b},7,c} — (_1)Ia\IbIJr\ﬂvl|b|+|a\|ﬂﬁl{b7 {Z,a,7}, c}+
+ (_1)(\b\+|y|)(\a|+|x|){b, 7.{a,7,c}}.

o {7,a,{y,b,z}} = [[,a], [y, b], 2]] =
= [z, al, 41,0, 2] + (=)D y Tlz, o] B]], 2] + (= 1) DDy b], [z, a], 2]]
= {{Z,a,7},b, 7} — (_1)|yllx|+|y\|al+|a\lw|{y, {a,Z,b},Z}+

+ (_1)(\y|+|bl)(\36|+|a|){y7 b, {T,a,7}}
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Therefore, (B, L/KerB) is a Jordan superpair. O

Remark 5.3.4. Let a € Ly be a Jordan element or a € L; with ad} = 0. Then
B = [a] = a,[a,L]] is an abelian inner ideal and we can build the subquotient

([a], L/Ker[a]). In this particular case, for homogeneous x,y, z € L the triple product

{[av [a’ ZL‘H, Y+ Ker[a]7 [CL, [CL, Z]]} = Hav [av IH? [y7 [a7 [a7 Z]m =
_ (_1)\y||z\+1+|a|A2XZA2(y)

coincides, up to a scalar, with the triple product we have already defined in [z], see
Remark 5.1.3 when [a] is even and 5.2.2 when a is odd. In the following result we are
going to prove that the Jordan superpair structures defined in this section and in the

previous ones coincide.

Corollary 5.3.5. Let L be a Lie superalgebra, take a € Lo with ad®> = 0 ora € L,

with adi =0, and let us consider the subquotient associated to the abelian inner ideal

a].

(a) When a € Lg, if we consider the Jordan superpair structure induced on

([a, [a, L]], |a,[a, L]]) by Remark 5.1.3, then the pair of maps
(W1, Wy) : ([a, [a, L]}, [a, [a, L]]) = (la], L/Ker[a])

given by
1 1
U, = —§id and  Yy([a,la,z]]) = 3% + Kerl[a]

s an isomorphism of Jordan superpairs.
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(b) When a € Ly, if we consider the Jordan superpair structure defined on
([a, [a, L]], a, [a, L]]) by5.2.3, then the pair of maps

(W1, Wy) : (la, [a, L]}, [a, [a, L]]) = ([a], L/Ker[a])

given by
1 1
U, = §id and  Yy([a, [a,x]]) = 3% + Ker[a]

s an isomorphism of Jordan superpairs.

Proof. In both cases, the pair of maps given by

U ([a, [a, 2]]) = (—1)'““%[% [a, 2]] € [a], and

Uy (la, [a, z]]) = %ZE + Ker[a] € L/Kerlal,

for every x € L, are well defined (if [a, [a, z]] = [q, [a, y]], then [q, [a, z —y]] = 0 implies
x —1y € Ker[a]). They are clearly bijective. Let us see that they are Jordan superpair

homomorphisms.

(a) Suppose that a € Ly and take homogeneous z,y,z € L.

i \Ijl({[% [a,x]], [(l, [(l, y”? [CL, [CL, Z]]}) = qjl((_l)lyzliAQXZA%y)) =
= (-1 S 42X 24 y) = {0, o 2], 5y + Kerlal, ~3 o, [a, 2]} =
= {\Ijl([au [CL, QJH), ‘112([@7 [aa y]])a \Ijl([@a [CL, Z]D}

o 1112({[% [av .I'H, [a’ [aa y”? [CL, [CL, Z]]}) = \112((_1)|yz|iA2XZA2<y>> =
= (- X Z4%) + Kerfa) = [ o [0, ], 2] + Kerla] =
= {%a: + Kerlal, —%[a, [a,y]], %z + Kerla]} =
= {\112([@’ [a’ IEH), \Ijl([a7 [av y]])v qj?([aa [aa ZH)}
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(b) Suppose that a € L; and take homogeneous z,y, z € L.
d \Ijl({[% [CL, ZL’H, [(l, [(l, y]]? [CL, [CL, Z]]}) = \P1<<_1)|yz|%A2XZA2<y)) =
= (—1)MELLAPX ZA42(y) = (a0, a]) 3+ Kerlal, 3o, o 2]} =
= {¥1([a, [a, z])), Ya([a, [a, y]]), ¥:(la, [, 2]]) }-

d 1112({[a7 [a7 ZL’H, [a’ [a,y]], [CL, [CL, Z]]}) = \P?(_i“[a’ [a’ x“7 y]7 [CL, [CL, Zm) =
= —JUa((—)PHARX Z4%(y)) = (1LY Z4%(y) + Kerla] =
= <o, [l o, 9]} #1) + Kerla] = { 3o + Kenlal, 3o, [a, ], 32 + Kerla]} =

= {Va([a, [a, 2]]), W1 ([a, [a, yl]), Wa([a, [a, 2]]) }-
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Results and discussion

In this thesis we have studied ad-nilpotent elements belonging to semiprime associa-
tive algebras with involution or prime associative superalgebras with superinvolution,
and ad-nilpotent elements in Lie superalgebras. First, we have dealt with semiprime
associative algebras with involution. In these algebras we have defined the notion of
pure ad-nilpotent element; this notion will be a relevant definition throughout Chap-
ter 2 because it will allow us to give a more precise description of such elements, and
to weaken the torsion conditions required to the whole algebra.

We have described the pure ad-nilpotent elements belonging to a semiprime asso-
ciative algebra R with involution * and belonging to K := Skew(R, ). Indeed, if a

is a pure ad-nilpotent element in R of index n, with R free of (Z) and s-torsion, with

n+1

-], then there exists A in the extended centroid of R such that a— A is nilpotent

s =
of index s. On the other hand, if a is a pure ad-nilpotent element in K of index n, the
description of a depends on the equivalence class of n modulo 4, and there are three
posibilities: If n =4 0 then the index of ad-nilpotence of a in R is greater than n and
there exists a corner of R that satisfies a PI. If n =4 0 then the index of ad-nilpotence
of a in R is n and we can conclude that there exists A in the extended centroid such
that a — A is nilpotent. If n =4 3 then a can be descomposed as an orthogonal sum
of an ad-nilpotent element of R of index n and another ad-nilpotent element of R of
index greater than n. It is important to note that in semiprime associative algebras
the extended centroid is not a field, but it is a von Neumann regular ring.

In the next chapter, we have studied homogeneous ad-nilpotent elements in prime

associative algebras R = Ry+ R; with superinvolution *. We have started by studying

the homogeneous ad-nilpotent elements a of index n in R. If a is even, since Ry is
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an algebra, we can use the above description of ad-nilpotent elements in associative
algebras. Although it is an almost direct implication of the previous chapter, we have
to deepen into the structure of the extended centroid C'(R) to ensure that a — X is
nilpotent with A\ an even element in the extended centroid. On the other hand, if
a € Ry , we have focused on a?. Thus, unlike the descriptions of even elements, two
different cases appear: If n is even then a? € Ry is ad-nilpotent of R of index 5 which

implies that there exists A € C'(R)o such that a® — X is nilpotent of index 2. If n is

n+1
2

and hence a is nilpotent of index 2t

odd then a is ad-nilpotent of R of index 5

Continuing in the super setting, we have described the homogeneous ad-nilpotent
elements a € K := Skew(R,x) of index n of K. Once we have shown that any
homogeneous ad-nilpotent element of K is either an ad-nilpotent element of R of the
same index or nilpotent, we can describe these elements in depth. This description
depends on the parity of the element: In the even case, the proof and the description
is strongly supported by the non-super case. While, in the odd case, we will focus
on a? and thus use the description of even ad-nilpotent elements. More precisely, if
a € K; is an ad-nilpotent element of K of index n and R has characteristic p > n,

there are seven possibilities depending on the equivalence class of n modulo 8:

(1) If n =g 0 then a is nilpotent of index § + 1, ad-nilpotent of R of index n + 1

and a2 Ka2 =0 (so a> Ra? is a commutative trivial local superalgebra).
(2) If n =g 1 then a7 € Hy, and a is nilpotent of index "TH and ad-nilpotent of

R of index n.

(3) If n =g 2 then there exists A, a skew-symmetric element in the extended cen-

n+2

+- and a is ad-nilpotent of R of

troid, such that a® — X is nilpotent of index

index n.
(4) If n =g 5 then = Ky, and a is nilpotent of index ”T“ and ad-nilpotent of

R of index n.

(5) If n =g 6 then there exists A, a skew-symmetric element in the extended cen-

n+2

troid, such that a*> — A is nilpotent of index

and a is ad-nilpotent of R of
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index n.

(6) If n =g 7 then a is nilpotent of index 2 +1, ad-nilpotent of R of index n+2 and

-1 n+1

a"s ka"z + (—1)"““|0LHTI<:anT+1 = 0 for every homogeneous k € K (so a"* Ra"

is a commutative trivial local superalgebra).
(7) The cases n =g 3 and n =g 4 do not occur.

Afterwards, we have given examples of elements fitting these descriptions. Our
examples are matrices considered in the superalgebra M(r|s) over a field with a
nontrivial superinvolution. Although these examples are considered in superalgebras,
restricting to the even part yields examples in the non-super setting. These examples
allow us to ensure that all the cases appearing in our descriptions hold.

Finally, in Chapter 5, given any Lie superalgebra over & with % € &, we have
studied the even ad-nilpotent elements of index 3 and the odd ad-nilpotent elements
of index 4. For the even elements it is possible to associate a Jordan superalgebra
to the initial Lie superalgebra by transferring to super setting the existing result in
Lie and Jordan algebras due to A. Fernandez, E. Garcia and M. Gémez Lozano in
[24]. However, for odd ad-nilpotent elements of index 4 we have obtained a Jordan
superpair. We have also introduced the notion of subquotient of a Lie superalgebra
associated to an abelian inner ideal. Furthermore, the subquotient of a Lie super-
algebra associated to an abelian inner ideal is a Jordan superpair, generalizing the

structure defined above by the homogeneous ad-nilpotent elements.

Future work

We have studied homogeneous ad-nilpotent elements in prime associative superalge-
bras but we can also study these descriptions in semiprime associative superalgebras.
We note that the main difficulty of working on semiprime superalgebras is that the
extended centroid drops the property of its elements being invertible with all that this
entails. Another possibility could be to study these descriptions for non-homogeneous

ad-nilpotent elements.
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On the other hand, the subquotients of a Lie superalgebra associated to an abelian
inner ideal could be a starting point to study the concept of socle and a Wedderburn-
Artin theory for Lie superalgebras following the ideas of C. Draper, A. Fernandez, E.
Garcfa, and M. Gémez Lozano [22]. Some other future research could be to study
the relationship between Jordan superstructures and Leibniz superalgebras, as R.

Velasquez and R. Felipe have done in the algebra settings [65].

88



General conclusions

The main conclusions of this thesis can be summarized as follows:

e We have defined the notion of pure ad-nilpotent element in Chapter 2. The
extended centroid plays an important role in this definition. It is a technical
condition, since every ad-nilpotent element can be expressed as an orthogonal
sum of pure ad-nilpotent elements of decreasing indices. Furthermore, this
definition allows us to give a more precise description of such elements, and to
weaken the torsion conditions required to the whole algebra. For more details

we refer the reader to Section 2.1.

e We have proved that for any pure ad-nilpotent element a in a semiprime asso-

ciative algebra R of index n with R free of (") and s-torsion, where s = [2],
there exists A in the extended centroid such that a — A is nilpotent of index s.
This fact is proved in the Theorem 2.2.4. We have weakened the conditions of

Theorem [54, Theorem 1.3].

e Considering a semiprime associative algebra R with involution * we have de-
scribed any skew-symmetric pure ad-nilpotent element a of index n depending
on n modulo 4: If n =4 0 then the indexes of ad-nilpotence of a in R and K
do not coincide and there exists a corner of R satisfying a PI. If n =4 1 then
the indexes of ad-nilpotence of a in R and K coincide and there exists A in the
extended centroid such that a — A is nilpotent. If n =4 3 then we can decompose
a in an orthogonal sum a = a; + as such that, if a; # 0, a; is ad-nilpotent of
R of index n (so there exists A in the extended centroid such that a; — A is

nilpotent) and, if ay # 0, as is ad-nilpotent of R of index n + 2 (therefore there
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exists a corner of R that satisfies a PI). The case n =4 2 cannot occur. This

description has been proved in Theorem 2.3.6.

In the same spirit as in the non-super setting, we have given descriptions of
ad-nilpotent elements in prime associative superalgebras with superinvolution.
These descriptions relate the index of ad-nilpotence of a homogeneous element
with its nilpotence index. An important remark related with these descriptions
is that every ad-nilpotent element has a minimal polinomial in the central clo-
sure with one root in the extended centroid. We refer readers to Theorems

3.1.2, 3.2.4, 3.2.5 for more details.

To conclude our study about ad-nilpotent elements in associative algebras and
superalgebras, in Chapter 4, we have given examples of elements appearing in
these descriptions. The examples are matrices considered in the associative
superalgebra M(r|s) over a field with a nontrivial superinvolution. Although
we have considered a superalgebra, we also provide examples for descriptions of
ad-nilpotent elements in associative algebras when we restrict the examples to

the even part of the matrices M(r|s).

For a Lie superalgebra L with an even ad-nilpotent element a of index 3 we have
shown that ([a, [a, L], -) with a new product - defined by [a, [a, z]] - [a, [a,y]] ==
sla,[a, [z, [a,y]] is a Jordan superalgebra isomorphic to L, = L*/Ker(a)
where L(®) = (L, o) with 7 ey := [, [a,y]] and Kery(a) := {z € L | [a, [a,2]] =

0}. This result has been proved in Proposition 5.1.2.

However, for a Lie superalgebra with an odd ad-nilpotent element the same
construction gives a super anticommutative superalgebra, hence it cannot be a
Jordan superalgebra. Instead, we have proved that it is possible to construct a

Jordan superpair, see 5.2.3.

Finally, we have defined the subquotient of a Lie superalgebra associated to an
abelian inner ideal and we have proved that it is a Jordan superpair (Proposi-

tion 5.3.3). Moreover, we have shown that the subquotient corresponds to the
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construction made before (Corollary 5.3.5).
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Resumen de la tesis en castellano

Esta tesis se enmarca en el estudio de los elementos ad-nilpotentes en &lgebras y
superalgebras asociativas con involucién y superinvolucion y elementos ad-nilpotentes
en superalgebras de Lie. La primera parte encaja con la rama de teoria de Herstein
que estudia las derivaciones internas nilpotentes en algebras. Son muchos los estudios
sobre este area, destacando para nuestro trabajo los articulos de W. S. Martindale
y C. R. Miers [55], [56] y de T. K. Lee [54]. Posteriormente, en la segunda parte,
estudiamos como asociar estructuras Jordan a una superalgebra de Lie, siguiendo la

idea del articulo de A. Ferndndez, E. Garcia y M. Gémez Lozano [24].

Objetivos

Se han desarrollado tres objetivos a lo largo de esta tesis, todos con la misma premisa,
trabajar con elementos ad-nilpotentes. En primera instancia buscamos describir de-
talladamente los elementos ad-nilpotentes en algebras asociativas semiprimas con in-
volucién. En el segundo objetivo, trasladamos el estudio que hemos realizado previa-
mente sobre algebras asociativas semiprimas a las superalgebras asociativas primas,
es decir, se pretende dar una descripcion con detalle andloga para los elementos ad-
nilpotentes homogéneos. Y por iltimo, asociamos a una superalgebra de Lie con un

elemento ad-nilpotente de cierto indice una super estructura de Jordan.

Metodologia

Para desarrollar los dos primeros objetivos hemos trabajado en el marco de las

algebras semiprimas con involucién y en las superalgebras asociativas primas con
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superinvolucién. Ademds, el centroide extendido tendra una importancia esencial en
esta tesis. Para el dltimo de los objetivos, hemos trabajado con super estructuras no
asociativas como las superdlgebras de Jordan y Lie, que se definen mediante la envol-
vente de Grassmann, y super pares de Jordan. Podemos destacar el alto contenido

combinatorio a lo largo de toda la tesis.

Resultados

Hemos abarcado con éxito los tres objetivos iniciales. En primer lugar, hemos des
crito con detalle los elementos ad-nilpotentes pertenecientes a un algebra asociativa
semiprima. Ademads, se ha conseguido reducir la torsion en la clasificacion de los
elementos ad-nilpotentes en dlgebras asociativas semiprimas con involuciéon gracias
al nuevo concepto de elemento ad-nilpotente puro, introducido en esta tesis. Se ha

pasado de pedir libre de n! torsién para un elemento ad-nilpotente de indice n a

n+1

+=]. Por otra parte, para los elementos ad-

pedir libre de (7;) y § torsién con s = |
nilpotentes antisimétricos de una algebra asociativa semiprima, R, con involucién, x,
hemos dado una descripcion que depende de su indice de ad-nilpotencia modulo 4.
En esta descripcion podemos destacar lo siguiente: Si un elemento antisimétrico, a,
es ad-nilpotente tal que su indice de ad-nilpotencia sobre K := Skew(R,*) y R no
coinciden, es decir, ad; K = 0 pero ad,, R # 0, (sélo puede ocurrir para los indices de
ad-nilpotencia sobre K congruentes con 0 6 3 médulo 4) entonces un cierto corner
del algebra verifica una PI y por tanto el dlgebra inicial satisface una GPI. Estos
resultados se han desarrollado a lo largo del capitulo 2 y han originado un articulo
que ya esta publicado en la revista Bulletin of the Malaysian Mathematical Sciences
Society ([12]). El segundo objetivo, describir en superalgebras asociativas primas con
superinvolucion las derivaciones internas nilpotentes, también se ha resuelto positiva-
mente en el capitulo 3. Esta descripcién depende a su vez de la paridad del elemento
homogéneo: Si el elemento es par se rescata en gran medida lo desarrollado en el
capitulo anterior sobre dlgebras asociativas ([12]). Sin embargo, si el elemento es
impar se trabajard sobre el cuadrado del elemento, que es un elemento ad-nilpotente

par, y se le aplicara la descripcién de los elementos ad-nilpotentes pares. Este capitulo
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ha dado lugar a un articulo que esta publicado on-line en la revista Linear and Mul-
tilinear Algebra ([28]). En el capitulo 4, se han dado ejemplos para cada uno de los
casos que aparecen en las descripciones de los elementos, tanto en dlgebras como en
superalgebras, demostrando asi que estas descripciones no son triviales. Por 1ltimo,
en el capitulo 5, hemos asociado una superestructura Jordan a una superalgebra de
Lie con un elemento ad-nilpotente homogéneo, a, de indice 3 6 4, segin su paridad.
Ademas, el super par de Jordan que construimos siguiendo la filosofia del articulo de
A. Fernandez, E. Garcia y M. Gémez Lozano [24] coincide con el subcociente de la su-
peralgebra de Lie asociado a un ideal interno abeliano [a, [a, L]]. Este tltimo capitulo

ha sido publicado y puede consultarse en la revista Commaunications in Algebra ([30]).

Conclusiones

Las principales conclusiones de esta tesis se pueden resumir de la siguiente manera:

e Hemos definido la nocién de elemento ad-nilpotente puro en el capitulo 2. El
centroide extendido juega un papel muy importante en esta definicién. Es una
condicién técnica, ya que todo elemento ad-nilpotente puede ser expresado como
una suma ortogonal de elementos ad-nilpotentes puros de indices decrecientes.
Ademas, esta definicion nos permite dar una descripciéon mas precisa de dichos
elementos, y debilitar las condiciones de torsién del algebra. Para més detalles

consultar la seccion 2.1.

e Hemos probado que para cualquier elemento ad-nilpotente puro a en un algebra
asociativa semiprima R de indice n con R libre de (Z) y s-torsiéon, donde s =
["T“], existe A en el centroide extendido tal que a — A es nilpotente de indice s.
Este hecho se demuestra en el Teorema 2.2.4. Hemos debilitado las condiciones

del Teorema [54, Theorem 1.3].

e Considerando un algebra asociativa semiprima R con involucién *, hemos des-
crito cualquier elemento antisimétrico ad-nilpotente puro a de indice n depen-

diendo de n en moédulo 4. Si n =4 0 entonces los indices de ad-nilpotencia de a
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en Ry en K no coinciden y existe un corner de R que satisface una PI. Sin =4 1
entonces los indices de ad-nilpotencia de a en R y K coinciden y existe A en el
centroide extendido tal que a — A es nilpotente. Si n =, 3 entonces podemos
descomponer a en una suma ortogonal a = a; + as tal que, si a; # 0, a; es
ad-nilpotente de R de indice n (y por tanto existe A en el centroide extendido
tal que a; — A es nilpotente) y, si as # 0, ay es ad-nilpotente de R de indice
n + 2 (y entonces existe un corner de R que satisface una PI). El caso n =4 2

no puede ocurrir. Esta descripciéon se ha demostrado en el Teorema 2.3.6.

Siguiendo la misma idea que en el ambiente no super, hemos dado una des-
cripcion de elementos ad-nilpotentes en superalgebras asociativas primas con
superinvolucion. Estas descripciones relacionan el indice de ad-nilpotencia de un
elemento homogéneo con su indice de nilpotencia. Una observacién importante
sobre estas descripciones es que todo elemento ad-nilpotente tiene un polinomio
minimal en la clausura central con una tunica raiz perteneciente al centroide

extendido. Para mas detalles ver los teoremas 3.1.2, 3.2.4 y 3.2.5.

Para terminar nuestro estudio sobre elementos ad-nilpotentes en algebras y su-
peralgebras asociativas, en el capitulo 4, hemos dado ejemplos de cada uno
de los casos que aparecen en estas descripciones. Los ejemplos son matrices
consideradas en la superalgebra asociativa M(r|s) sobre un cuerpo con una su-
perinvolucién no trivial. Aunque hemos considerado una superdlgebra, también
se construyen ejemplos para las descripciones de los elementos ad-nilpotentes
en algebras asociativas cuando restringimos los ejemploes a la parte par de las

matrices M(r|s).

Para una superalgebra de Lie L con un elemento ad-nilpotente par a de indice
3 hemos demostrado que (la,[a, L]],) con un nuevo producto - definido por
la,[a,z]] - [a, [a,y]] := 3la, [a, [z, [a, y]] es una superdlgebra de Jordan isomorfa a
Lo = L@ /Kery(a) donde L(®) = (L, e) con x ey := [z, [a, y]] y Kery(a) := {x €

L | [a,[a,z]] = 0}. Este resultado se ha demostrado en la Proposicién 5.1.2.
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e Sin embargo, para una superalgebra de Lie con un elemento ad-nilpotente impar,
la misma construccion genera una superalgebra anticonmutativa, y por tanto
no puede ser una superalgebra de Jordan. Se demuestra que esta construccién

es un superpar de Jordan, ver 5.2.3.

e Finalmente, hemos definido el subcociente de una superalgebra de Lie asociada
a un ideal interno abeliano y hemos probado que es un superpar de Jordan
(Proposicién 5.3.3). Ademés, hemos demostrado que el subcociente coincide

con la construccion realizada anteriormente (Corolario 5.3.5).
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