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Abstract

Using k-Selection in Radio Networks as an example of unique-resource dispute among k un-

known contenders, the conflict-resolution protocol presented in this paper shows that, for any sen-

sible probability of error ε, all of them get access to such resource in asymptotically optimal time

(e+1+ ξ)k+O(log2(1/ε)), where ξ > 0 is any constant arbitrarily close to 0. This protocol works

under a model where not even an upper bound on k is known and conflicts can not be detected by all

the contenders.

1 Introduction

A recurrent question, in settings where a resource must be shared among many contenders, is how to

make that resource available to all of them. The problem is particularly challenging if not even an upper

bound on the number of contenders is known. The broad spectrum of settings where answers to such

a question are useful makes its study a fundamental task. In Radio Networks, one of the instances of

such a question is the problem known in the literature [3] as Selection1. In its general version, the k-

Selection problem, also known as all-broadcast, is solved when an unknown size-k subset of network

nodes have been able to access a unique shared channel of communication, each of them at least once.

The k-Selection problem in Radio Networks and related problems have been well-studied for settings

where an upper bound on k is known (e.g., the size n of the whole network). In this paper, a randomized
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MEC grant TIN2005-09198-C02-01, TIN2008–06735-C02-01; and EU Marie Curie International Reintegration Grant IRG
210021.
†LADyR, GSyC, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain. anto@gsyc.es.
‡Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA. mosteiro@cs.rutgers.edu.
1As pointed out in [3], the historical developments justify the use of Radio Network to refer to any communication network

where the channel is contended, even if radio communication is not actually used.
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adaptive protocol for k-Selection in Radio Networks is presented, assuming that such a knowledge is not

available, the arrival of messages is batched, and conflicts to access the channel cannot be detected by all

nodes. To our knowledge, this is the first k-Selection protocol in the Radio Networks literature that works

in such conditions, and improves over previous work in adversarial packet contention-resolution thanks

to the adaptive nature of the protocol. Given that the error probability is parametrized, this protocol can

be also applied to solve k-Selection in multiple neighborhoods of a multi-hop Radio Network. For any

sensible error-probability bound (up to inverse exponential), the protocol is optimal.

Notation and Model. Most of the following assumptions and notation are folklore in the Radio Net-

works literature. For details and motivation, see the survey of Chlebus [3]. We study the k-Selection

problem in a Radio Network comprised of an unknown number of labeled stations called nodes. Each

node is assumed to be potentially reachable from any other node in one communication step, hence, the

network is characterized as single-hop or one-hop indistinctively. Before running the protocol, nodes

have no information besides their own label, which is assumed to be unique but arbitrary. Time is as-

sumed to be slotted in communication steps. Assuming that the computation time-cost is negligible in

comparison with the communication time-cost, time efficiency is studied in terms of communication

steps only. The piece of information assigned to a node in order to deliver it to other nodes is called a

message. The assignment of a message is due to an external agent and such an event is called a mes-

sage arrival. Communication among nodes is through radio broadcast on a shared channel. If exactly

one node transmits at a communication step, such a transmission is called successful or non-colliding,

we say that the message was delivered, and all other nodes receive such a message. If more than one

message is transmitted at the same time, a collision occurs, the messages are garbled, and nodes only

receive interference noise. If no message is transmitted in a communication step, nodes receive only

background noise. In this work, nodes can not distinguish between interference noise and background

noise, thus, the channel is called without collision detection. Each node is in one of two states, active

if it holds a message to deliver, or idle otherwise. In contrast with oblivious protocols, where the se-

quence of transmissions of a node does not depend on the transmissions received, the adaptive protocol

presented in this paper exploits the information implicit on the occurrence of a successful transmission.

The randomized protocol presented here is fair, i.e., all active nodes use the same probability in the

same communication step. Therefore, it is also a uniform protocol, i.e., all active nodes use the same

protocol. As in for instance [1, 7, 11], we assume that all the k messages arrive in a batch, i.e. in the
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same communication step, a problem usually called static k-Selection, and that each node becomes idle

upon delivering its message.

Problem Definition. Given a Radio Network where an unknown subset K of network nodes, such that

|K| = k, are activated by message arrivals, the k-Selection problem is solved when each node in K has

delivered its message.

Related Work. In the following results, availability of collision detection and knowledge of the size n

of the network are assumed. Martel presented in [13] a randomized adaptive protocol for k-Selection

that works in O(k + log n) time in expectation2. As argued by Kowalski in [11], this protocol can be

improved to O(k + log log n) in expectation using Willard’s expected O(log log n) selection protocol

of [17]. In the same paper, Willard shows that, for any given protocol, there exists a choice of k ≤ n

such that selection takes Ω(log log n) expected time for the class of fair selection protocols. For the case

in which n is not known, in the same paper a O(log log k) expected time selection protocol is described,

again, making use of collision detection.

If collision detection is not available, using the techniques of Kushilevitz and Mansour in [12], it can

be shown that, for any given protocol, there exists a choice of k ≤ n such that Ω(log n) is a lower bound

in the expected time to get even the first message delivered.

Regarding deterministic solutions, the k-Selection problem was shown to be in O(k log(n/k)) al-

ready in the 70’s by giving adaptive protocols that make use of collision detection [2, 8, 14]. In all these

results the algorithmic technique, known as tree algorithms, relies on modeling the protocol as a com-

plete binary tree where the messages are placed at the leaves. Later, Greenberg and Winograd [6] showed

a lower bound for that class of protocols of Ω(k logk n). Regarding oblivious algorithms, Greenberg and

Komlòs [10] showed the existence of O(k log(n/k)) solutions even without collision detection but re-

quiring knowledge of k and n. More recently, Clementi, Monti, and Silvestri [4] showed a matching

lower bound, which also holds for adaptive algorithms if collision detection is not available. In [11],

Kowalski presented the construction of an oblivious deterministic protocol that, using the explicit selec-

tors of Indyk [9], gives a O(k polylog n) upper bound without collision detection.

Regarding related problems, extending previous work on tree algorithms, Greenberg and Leiser-

son [7] presented randomized routing strategies in fat-trees for bounded number of messages. Choosing

appropriate constant capacities for the edges of the fat-tree, the problem could be seen as k-Selection.

However, that choice implies a logarithmic congestion parameter which yields an overallO(k polylog n)

2Througout this paper, log means log2 unless otherwise stated.
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time. In [5], Gerèb-Graus and Tsantilas presented an algorithm that solves the problem of realizing arbi-

trary h-relations in an n-node network, with probability at least 1−1/nc, c > 0, in Θ(h+log n log logn)

steps. In a h-relation, each processor is the source as well as the destination of h messages. Making

h = k this protocol can be used to solve k-Selection. However, it requires that nodes know h. Mono-

tonic back-off strategies for contention resolution of batched arrivals of k packets on simple multiple

access channels, a problem that can be seen as k-Selection, have been analyzed in [1]. The best strategy

shown is the so-called loglog-iterated back-off with a makespan in Θ(k log log k/ log log log k) with

probability at least 1− 1/kc, c > 0, which does not use any knowledge of k.

Results and Outline. In this paper, a randomized adaptive protocol for k-Selection, in a one-hop Radio

Network, that does not require knowledge of the size of the network n or the number of contenders

k, is presented. Assuming that ε2 + kε ≤ 1, the protocol is shown to solve the problem in (e + 1 +

ξ)k + O(log2(1/ε)) communication steps, where ξ > 0 is any constant arbitrarily close to 0 with

probability at least 1 − ε. Given that the error probability is parametric, this protocol can be applied to

multiple neighborhoods of a multi-hop Radio Network, adjusting the error probability in each one-hop

neighborhood appropriately. To our knowledge, loglog-iterated back-off [1] is the only protocol in the

literature suitable to solve k-Selection in Radio Networks (although they propose it for packet contention

resolution), that works without knowledge of n, under batched arrivals, and without collision detection.

By exploiting back-on/back-off, our protocol improves their time complexity. Given that k is a lower

bound for this problem, the protocol is optimal (modulo a small constant factor) if ε ∈ Ω(2−
√
k). Given

the lower bound of Ω(k log log k/ log log log k) shown in [1] for monotonic back-off strategies, our

protocol shows that back-on/back-off strategies perform better. In Section 2 the details of the protocol

are presented and they are analyzed in Section 3.

2 Protocol

The protocol comprises two different algorithms. Each of them is particularly suited for one of two

scenarios, depending on the number of messages left to deliver. The algorithm called BT solves the

problem for the case when that number is below a threshold (that will be defined later). The algorithm

called AT is suited to reduce that number from the initial k to a value below that threshold. The BT

algorithm uses the well-known technique of repeating transmissions with the same appropriately-suited

probability until the problem is solved. The AT algorithm on the other hand is adaptive by repeatedly
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increasing an estimation of the messages left and decreasing such an estimation by roughly one each

time a message is delivered. (Even if that successful transmission is due to the BT algorithm.) Further

details can be seen in Algorithm 1. Both algorithms are executed interleaving their communication steps

(see Task 1 in Algorithm 1). For clarity, each communication step is referred to by using the name of

the algorithm executed at that step. The following notation used in the algorithm is defined for clarity:

β , e + ξβ , δ , 1 + ξδ, τ , 300β ln(1/ε), ε , error probability, 0 < ξδ < 1, 0 < ξβ < 0.27 and

0 < ξt ≤ 1/2 are constants arbitrarily close to 0, and 1/ξt ∈ N.

Algorithm 1: Pseudocode for node x.
upon message arrival do1

t← τ2
κ̃← τ3
start tasks 1, 2 and 34

Task 15
foreach communication-step = 1, 2, . . . do6

if communication-step ≡ 1 (mod 1/ξt) then // BT-step7
transmit 〈x,message〉 with probability 1/τ8

else // AT-step9
transmit 〈x,message〉 with probability 1/κ̃10
t← t− 111
if t ≤ 0 then12

t← τ13
κ̃← κ̃+ τ14

Task 215
upon reception from other node do16

κ̃← max{κ̃− δ, τ}17
t← t+ β18

Task 319
upon message delivery stop20

3 Analysis

For clarity, each of the algorithms comprising the protocol are first analyzed separately and later put

together in the main theorem. Consider first the AT algorithm. (Refer to Algorithm 1.) Let κ̃ be called

the density estimator. Let a round be the sequence of AT-steps between increasings of the density

estimator (Line 14). Let the rounds be numbered as r ∈ {1, 2, . . . } and the AT-steps within a round

as t ∈ {1, 2, . . . }. (E.g., round 1 is the sequence of AT-steps from initialization until Line 14 of the

algorithm is executed for the first time.) Let κr,t, called the density, be the number of messages not

delivered yet (i.e., the number of active nodes) at the beginning of AT-step t of round r. Let κ̃r,t be

the density estimator used at the AT-step t of round r. Let Xr,t be an indicator random variable such
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that, Xr,t = 1 if a message is delivered at the AT-step t of round r, and Xr,t = 0 otherwise. Then,

Pr(Xr,t = 1) = (κr,t/κ̃r,t)(1−1/κ̃r,t)κr,t−1. Also, for a round r, let the number of messages delivered

in the interval of AT-steps [1, t) of r, including those delivered in BT steps, be σr,t. The following

intermediate results will be useful. First, we state the following useful fact.

Fact 1. [15, §2.68] ex/(1+x) ≤ 1 + x ≤ ex, 0 < |x| < 1.

Lemma 2. For any round r where κ̃r,1 ≤ κr,1 − γ, γ ≥ δ(2 − δ)/(δ − 1) ≥ 0, Pr(Xr,t = 1) is

monotonically non-increasing with respect to t for δ + 1 < κ̃r,t ≤ κr,t, and δ < (κr,t − γ)(κr,t − γ −

1)/(κr,t − γ + 1).

Proof. We want to show conditions such that for any t in round r, Pr(Xr,t = 1) ≥ Pr(Xr,t+1 = 1). If

κr,t = κr,t+1 the claim holds trivially. Then, let us assume instead that κr,t > κr,t+1. We want to show

that

κr,t
κ̃r,t

(
1− 1

κ̃r,t

)κr,t−1

≥ κr,t+1

κ̃r,t+1

(
1− 1

κ̃r,t+1

)κr,t+1−1

. (1)

Due to the BT-step between two consecutive AT-steps, at most two messages are delivered in the interval

[t, t+ 1) of r. Thus, replacing appropriately, we want to show

κr,t
κ̃r,t

(
1− 1

κ̃r,t

)κr,t−1

≥ κr,t − 1
κ̃r,t − δ

(
1− 1

κ̃r,t − δ

)κr,t−2

(2)

κr,t
κ̃r,t

(
1− 1

κ̃r,t

)κr,t−1

≥ κr,t − 2
κ̃r,t − 2δ

(
1− 1

κ̃r,t − 2δ

)κr,t−3

. (3)

Reordering 2,

κ̃r,t − δ − 1
κ̃r,t

(
κ̃r,t − 1
κ̃r,t

κ̃r,t − δ
κ̃r,t − δ − 1

)κr,t−1

≥ κr,t − 1
κr,t

.

Using calculus, it can be seen that the left-hand side is monotonically non-increasing for δ+ 1 < κ̃r,t ≤

6



κr,t. The details follow. The derivative with respect to κ̃r,t is,

δ + 1
κ̃2
r,t

(
κ̃r,t − 1
κ̃r,t

κ̃r,t − δ
κ̃r,t − δ − 1

)κr,t−1

+
κ̃r,t − δ − 1

κ̃r,t
(κr,t − 1)

(
κ̃r,t − 1
κ̃r,t

κ̃r,t − δ
κ̃r,t − δ − 1

)κr,t−2

·

·

(
1
κ̃2
r,t

κ̃r,t − δ
κ̃r,t − δ − 1

− κ̃r,t − 1
κ̃r,t

1
(κ̃r,t − δ − 1)2

)
=

=
(
κ̃r,t − 1
κ̃r,t

κ̃r,t − δ
κ̃r,t − δ − 1

)κr,t−2 κ̃r,t(δ(κ̃r,t − δ) + (κ̃r,t − 1))− κr,t(δ(κ̃r,t − δ) + δ(κ̃r,t − 1))
κ̃3
r,t(κ̃r,t − δ − 1)

.

Which is not positive for δ + 1 < κ̃r,t ≤ κr,t. Then, given that κ̃r,t = κ̃r,1 − σr,t ≤ κr,1 − σr,t − γ ≤

κr,t − γ, it is enough to show

κr,t
κr,t − 1

κr,t − γ − δ − 1
κr,t − γ

(
κr,t − γ − 1
κr,t − γ

κr,t − γ − δ
κr,t − γ − δ − 1

)κr,t−1

≥ 1. (4)

Again using calculus, it can be seen that the left-hand side of Inequality 4 is monotonically non-

increasing on κr,t for γ ≥ δ(2− δ)/(δ− 1) and δ < (κr,t− γ)(κr,t− γ− 1)/(κr,t− γ+ 1). The details

follow. Since

δ

δκr,t

(
κr,t

κr,t − 1

)
=

−1
(κr,t − 1)2

δ

δκr,t

(
κr,t − γ − δ − 1

κr,t − γ

)
=

δ + 1
(κr,t − γ)2

δ

δκr,t

(
κr,t − γ − 1
κr,t − γ

)
=

1
(κr,t − γ)2

δ

δκr,t

(
κr,t − γ − δ

κr,t − γ − δ − 1

)
=

−1
(κr,t − γ − δ − 1)2

,

then,

δ

δκr,t

(
κr,t

κr,t − 1
κr,t − γ − δ − 1

κr,t − γ

(
κr,t − γ − 1
κr,t − γ

κr,t − γ − δ
κr,t − γ − δ − 1

)κr,t−1
)

=

=
(

−1
(κr,t − 1)2

κr,t − γ − δ − 1
κr,t − γ

+
κr,t

κr,t − 1
δ + 1

(κr,t − γ)2

)(
κr,t − γ − 1
κr,t − γ

κr,t − γ − δ
κr,t − γ − δ − 1

)κr,t−1

+

+
κr,t

κr,t − 1
κr,t − γ − δ − 1

κr,t − γ

(
κr,t − γ − 1
κr,t − γ

κr,t − γ − δ
κr,t − γ − δ − 1

)κr,t−1

·

·
(

ln
(
κr,t − γ − 1
κr,t − γ

κr,t − γ − δ
κr,t − γ − δ − 1

)
+ (κr,t − 1)

κr,t − γ
κr,t − γ − 1

κr,t − γ − δ − 1
κr,t − γ − δ

·

·
(

1
(κr,t − γ)2

κr,t − γ − δ
κr,t − γ − δ − 1

+
κr,t − γ − 1
κr,t − γ

−1
(κr,t − γ − δ − 1)2

))
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Therefore, given that κr,t > γ+δ+1, in order to show that the derivative is not positive, it is enough

to show

δ + 1
(κr,t − γ)(κr,t − γ − δ − 1)

+ ln
(

1 +
δ

(κr,t − γ)(κr,t − γ − δ − 1)

)
+

κr,t − 1
(κr,t − γ)(κr,t − γ − 1)

≤

≤ κr,t − 1
(κr,t − γ − δ)(κr,t − γ − δ − 1)

+
1

κr,t(κr,t − 1)
.

Using that ln(1 + y) ≤ y for any 0 < y < 1, for δ < (κr,t − γ)(κr,t − γ − 1)/(κr,t − γ + 1), it is

enough to show

2δ + 1
(κr,t − γ)(κr,t − γ − δ − 1)

+
κr,t − 1

(κr,t − γ)(κr,t − γ − 1)
≤

≤ κr,t − 1
(κr,t − γ − δ)(κr,t − γ − δ − 1)

+
1

κr,t(κr,t − 1)

(2δ+ 1)(κr,t− γ− 1)(κr,t− γ− δ)κr,t(κr,t− 1) + (κr,t− 1)2(κr,t− γ− δ− 1)(κr,t− γ− δ)κr,t ≤

≤ (κr,t − 1)2(κr,t − γ)κr,t(κr,t − γ − 1) + (κr,t − γ − δ)(κr,t − γ − δ − 1)(κr,t − γ)(κr,t − γ − 1)

κr,t(κr,t − 1)2((κr,t − γ − δ − 1)(κr,t − γ − δ)− (κr,t − γ)(κr,t − γ − 1)) ≤

≤ (κr,t − γ − 1)(κr,t − γ − δ)((κr,t − γ)(κr,t − γ − δ − 1)− (2δ + 1)κr,t(κr,t − 1))

− δκr,t(κr,t − 1)2(κr,t − γ − 1)− δκr,t(κr,t − 1)2(κr,t − γ − δ) ≤

≤ (κr,t − γ − 1)(κr,t − γ − δ)((κr,t − γ)(κr,t − γ − δ − 1)− (2δ + 1)κr,t(κr,t − 1))

− δκr,t(κr,t − 1)2(κr,t − γ − 1)− δκr,t(κr,t − 1)2(κr,t − γ − δ) ≤

≤ (κr,t − γ)(κr,t − γ − δ − 1)(κr,t − γ − 1)(κr,t − γ − δ)− δκr,t(κr,t − 1)2(κr,t − γ − δ)+

+ γδκr,t(κr,t − 1)(κr,t − γ − δ)− δκr,t(κr,t − 1)2(κr,t − γ − 1)+

+ (γ + δ − 1)δκr,t(κr,t − 1)(κr,t − γ − 1)− κr,t(κr,t − 1)(κr,t − γ − 1)(κr,t − γ − δ)
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0 ≤ κr,t(κr,t − 1)(κr,t − γ − 1)(κr,t − γ − δ)− (γ + δ)κr,t(κr,t − γ − 1)(κr,t − γ − δ)−

− γ(κr,t − γ − δ − 1)(κr,t − γ − 1)(κr,t − γ − δ) + γδκr,t(κr,t − 1)(κr,t − γ − δ)+

+ (γ + δ − 1)δκr,t(κr,t − 1)(κr,t − γ − 1)− κr,t(κr,t − 1)(κr,t − γ − 1)(κr,t − γ − δ)

0 ≤ (κr,t − γ − 1)((γ + δ − 1)δκr,t(κr,t − 1)− (γ + δ)κr,t(κr,t − γ − δ))

+ γδ(κr,t − γ − δ)(κr,t(κr,t − 1)− (κr,t − γ − δ − 1)(κr,t − γ − 1))

(γ + δ − 1)δ(κr,t − 1)− (γ + δ)(κr,t − γ − δ) ≥ 0

((γ + δ − 1)δ − (γ + δ))κr,t − (γ + δ − 1)δ + (γ + δ)2 ≥ 0

((γ + δ)(δ − 1)− δ)κr,t + γ2 + γδ + δ ≥ 0

Then, it is enough to show (γ+δ)(δ−1)−δ ≥ 0, which is true for γ ≥ δ(2−δ)/(δ−1). Therefore,

the left-hand side of Inequality 4 is monotonically non-increasing. Then, it is enough to show that, in

the limit, tends to 1.

lim
κr,t→∞

κr,t
κr,t − 1

κr,t − γ − δ − 1
κr,t − γ

(
κr,t − γ − 1
κr,t − γ

κr,t − γ − δ
κr,t − γ − δ − 1

)κr,t−1

=

= lim
κr,t→∞

κr,t
κr,t − 1

lim
κr,t→∞

κr,t − γ − δ − 1
κr,t − γ

lim
κr,t→∞

(
κr,t − γ − 1
κr,t − γ

κr,t − γ − δ
κr,t − γ − δ − 1

)κr,t−1

=

= lim
κr,t→∞

κr,t
κr,t − 1

lim
κr,t→∞

κr,t − γ − δ − 1
κr,t − γ

exp
(

lim
κr,t→∞

(
(κr,t − 1) ln

κr,t − γ − 1
κr,t − γ

κr,t − γ − δ
κr,t − γ − δ − 1

))
=

= lim
κr,t→∞

κr,t
κr,t − 1

lim
κr,t→∞

κr,t − γ − δ − 1
κr,t − γ

·

· exp
(

lim
κr,t→∞

(
ln(((κr,t − γ − 1)(κr,t − γ − δ))/((κr,t − γ)(κr,t − γ − δ − 1)))

1/(κr,t − 1)

))
, using L’Hopital,

= exp
(

lim
κr,t→∞

(
δ(κr,t − 1)2(2κr,t − 2γ − 1− δ)

(κr,t − γ − δ)(κr,t − γ − δ − 1)(κr,t − γ − 1)(κr,t − γ)

))
= 1.

Which can be verified using standard calculus techniques. Using the same techniques, Inequality 3 can

be shown to hold.
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Lemma 3. For any round r where κr,1 − γ − τ ≤ κ̃r,1 < κr,1 − γ, γ ≥ 0 and for any AT-step t in

r such that σr,t ≤ κr,1
lnβ−1
δ lnβ−1 −

(γ+τ+1) lnβ−1
δ lnβ−1 , the probability of a successful transmission is at least

Pr(Xr,t = 1) ≥ 1/β.

Proof. We want to show (κr,t/κ̃r,t)(1 − 1/κ̃r,t)κr,t−1 ≥ 1/β. Given that nodes are active until their

message is delivered, it is enough to show

κr,1 − σr,t
κ̃r,1 − δσr,t

(
1− 1

κ̃r,1 − δσr,t

)κr,1−1−σr,t

≥ 1/β. (5)

Using calculus, it can be seen that the left hand side of Inequality 5 is monotonically non-decreasing

with restpect to κ̃r,1 under the conditions of the Lemma. The details follow.

d

dκ̃r,1

(
κr,1 − σr,t
κ̃r,1 − δσr,t

(
1− 1

κ̃r,1 − δσr,t

)κr,1−1−σr,t
)

=

= − κr,1 − σr,t
(κ̃r,1 − δσr,t)2

(
1− 1

κ̃r,1 − δσr,t

)κr,1−σr,t−1

+

+
κr,1 − σr,t
κ̃r,1 − δσr,t

· κr,1 − σr,t − 1
(κ̃r,1 − δσr,t)2

·
(

1− 1
κ̃r,1 − δσr,t

)κr,1−σr,t−2

=
κr,1 − σr,t

(κ̃r,1 − δσr,t)2

(
1− 1

κ̃r,1 − δσr,t

)κr,1−σr,t−1(
−1 +

κr,1 − σr,t − 1
κ̃r,1 − δσr,t − 1

)
=

κr,1 − σr,t
(κ̃r,1 − δσr,t)2

(
1− 1

κ̃r,1 − δσr,t

)κr,1−σr,t−1(κr,1 − κ̃r,1 + σr,t(δ − 1)
κ̃r,1 − δσr,t − 1

)
.

Given that κ̃r,1 < κr,1 − γ ≤ κr,1 + σr,t(δ − 1) and σr,t ≤ κr,1 lnβ−1
δ lnβ−1 −

(γ+τ+1) lnβ−1
δ lnβ−1 < (κ̃r,1 − 1)/δ

because δ ≥ 1 and κr,1 ≤ κ̃r,1 + γ + τ , the last expression is non-negative. Then, it is enough to prove

Inequality 5 for κ̃r,1 = κr,1 − γ − τ .

κr,1 − σr,t
κr,1 − γ − τ − δσr,t

(
1− 1

κr,1 − γ − τ − δσr,t

)κr,1−1−σr,t

≥ 1/β(
1− 1

κr,1 − γ − τ − δσr,t

)κr,1−1−σr,t

≥ 1/β.
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Given that σr,t ≤ κr,1 lnβ−1
δ lnβ−1 −

(γ+τ+1) lnβ−1
δ lnβ−1 < (κ̃r,1 − (γ + τ + 1))/δ, using Fact 1, we want

exp
(

κr,1 − σr,t − 1
κr,1 − γ − τ − δσr,t − 1

)
≤ β

κr,1 − σr,t − 1
κr,1 − γ − τ − δσr,t − 1

≤ lnβ

κr,1 − σr,t − 1 ≤ (κr,1 − γ − τ − δσr,t − 1) lnβ

δσr,t lnβ − σr,t ≤ (κr,1 − γ − τ − 1) lnβ − κr,1 + 1

σr,t(δ lnβ − 1) ≤ κr,1(lnβ − 1)− (γ + τ + 1) lnβ + 1

σr,t ≤ κr,1
lnβ − 1
δ lnβ − 1

− (γ + τ + 1) lnβ − 1
δ lnβ − 1

.

The following lemma, shows the efficiency and correctness of the AT-algorithm.

Lemma 4. If the number of messages to deliver is more than M = 2 δ lnβ−1
lnβ−1 (

∑5
j=1(5/6)j−1τ) +

((δ(2−δ)/(δ−1))+τ+1) lnβ−1
lnβ−1 ∈ O(log(1/ε)), after running the AT-algorithm for (e + ξβ + 1 + ξδ)k − τ

steps, where ξ > 0 is any constant arbitrarily close to 0, the number of messages left to deliver is

reduced to at most M with probability at least 1− ε, for ε2 + kε ≤ 1.

Proof. Consider the first round r such that κr,1 − γ − τ ≤ κ̃r,1 < κr,1 − γ, γ = δ(2 − δ)/(δ − 1).

By definition of the AT algorithm, unless the number of messages left to deliver is reduced to at most

M before, such a round exists. To see why, notice in Algorithm 1 that the density estimator is either

increased by τ in Line 14, or decreased by δ in Line 17, or assigned τ in Line 3 or 17. After the first

assignment, we have κ̃1,1 = τ < κ1,1 − γ − τ , because κ1,1 > M > 2τ + γ. We show now that

the condition of r can not be satisfied right after decreasing the density estimator in Line 17. Consider

two consecutive steps t′, t′ + 1 of some round r′ such that still κ̃r′,t′ < κr′,t′ − γ − τ . If, upon a

success at step t′ of r′, κ̃r′,t′+1 = τ by the assignment in Line 17, and κr′,t′+1 − γ − τ ≤ κ̃r′,t′+1, then

κr′,t′+1 ≤ τ + γ + τ < M and we are done. If on the other hand κ̃r′,t′+1 = κ̃r′,t′ − δ by the assignment

in Line 17, then κ̃r′,t′+1 = κ̃r′,t′ − δ < κr′,t′ − γ − τ − δ < κr′,t′+1 − γ − τ . Thus, the only way

in which the density estimator gets inside the aforementioned range is by the increase in Line 14 and

therefore round r exists.

We show now that, before leaving round r, at least τ messages are delivered with high probability

so that in some future round r′′ > r the condition κr′′,1 − γ − τ ≤ κ̃r′′,1 < κr′′,1 − γ holds again.
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In order to do that, we divide round r in consecutive sub-rounds of size τ, 5/6τ, (5/6)2τ, . . . (The fact

that a number of steps is an integer is omitted throughout for clarity.) More specifically, the sub-round

S1 is the set of AT-steps in the interval (0, τ ] and, for i ≥ 2, the sub-round Si is the set of steps in the

interval ((5/6)i−2τ, (5/6)i−1τ ]. Thus, denoting |Si| = τi for all i ≥ 1, it is τ1 = τ and τi = (5/6)τi−1

for i ≥ 2. For each i ≥ 1, let Yi be a random variable such that Yi =
∑

t∈Si
Xr,t. Even if no message

is delivered, round r still has at least the sub-round S1 by definition of the algorithm. Given that each

message delivered delays the end of round r in β = e + ξβ AT-steps, for i ≥ 2, the existence of sub-

round Si is conditioned on Yi−1 ≥ 5τi−1/(6β). We show now that with big enough probability round

r has 5 sub-rounds and at least τ messages are delivered. Even if messages are delivered in every step

of the 5 sub-rounds (including messages delivered in BT-steps), given that κr,1 > M , the total number

of messages delivered is less than κr,1 lnβ−1
δ lnβ−1 −

(γ+τ+1) lnβ−1
δ lnβ−1 because γ = δ(2 − δ)/(δ − 1). Thus,

Lemma 3 can be applied and the expected number of messages delivered in Si is E[Yi] ≥ τi/beta.

In order to use Lemma 2, we verify first its preconditions. If, at any step t, κr,t ≤ M , we are done.

Otherwise, we know that κr,t ≥ κ̃r,t > δ + 1 and (κr,t − γ)(κr,t − γ − 1)/(κr,t − γ + 1) > δ.

Given that γ = δ(2− δ)/(δ − 1), by Lemma 2, the random variables Xr,i are not positively correlated,

therefore, in order to bound from below the number of successful transmissions we can use the following

Chernoff-Hoeffding bound [16]. For 0 < ϕ < 1,

 Pr(Y1 ≤ (1− ϕ)τ1/β) ≤ e−ϕ2τ1/(2β)

Pr(Yi ≤ (1− ϕ)τi/β|Yi−1 ≥ 5τi−1/(6β)) ≤ e−ϕ2τi/(2β) ∀i : 2 ≤ i ≤ 5.

Taking ϕ = 1/6,

 Pr(Y1 ≤ 5τ1/(6β)) ≤ e−ϕ2300 ln(1/ε)/2

Pr(Yi ≤ 5τi/(6β)|Yi−1 ≥ 5τi−1/(6β)) ≤ e−ϕ2(5/6)i−1300 ln(1/ε)/2 ∀i : 2 ≤ i ≤ 5.

 Pr(Y1 ≤ 5τ1/(6β)) < e−2 ln(1/ε)

Pr(Yi ≤ 5τi/(6β)|Yi−1 ≥ 5τi−1/(6β)) < e−2 ln(1/ε) ∀i : 2 ≤ i ≤ 5.

Given that ε2 + kε ≤ 1, then it holds that ln(1/ε) ≥ ln(ε + k), therefore e−2 ln(1/ε) ≤

e− ln(ε+k)−ln(1/ε) = ε/(ε + k). So, more than (5/(6(e + ξβ)))τi messages are delivered in any sub-

round Si with probability at least 1 − ε/(ε + k). Given that each success delays the end of round r
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in β = e + ξβ AT-steps, we know that, for 1 ≤ i ≤ 4, sub-round Si+1 exists with probability at least

1− ε/(ε+k). If, after any sub-round, the number of messages left to deliver is at most M , we are done.

Otherwise, conditioned on these events, the total number of messages delivered over the 5 sub-rounds

is at least
∑5

j=1 Yj >
∑5

j=1(5/(6(e + ξβ)))j(e + ξβ)j−1τ = (τ/(e + ξβ))
∑5

j=1(5/6)j > τ because

ξβ < 0.27.

Thus, the same analysis can be repeated over the next round r′′ such that κr′′,1 − γ − τ ≤ κ̃r′′,1 <

κr′′,1 − γ. Unless the number of messages left to deliver is reduced to at most M before, such a round

r′′ exists by the same argument used to prove the existence of round r. The same analysis is repeated

over various rounds until all messages have been delivered or the number of messages left is at most M .

Then, using conditional probability, the overall probability of success is at least (1− ε/(ε+k))k. Using

Fact 1 twice, that probability is at least 1− ε.

It remains to be shown the time complexity of the AT algorithm. The difference between the number

of messages to deliver and the density estimator right after initialization is at most k−τ . This difference

is increased with each message delivered by at most δ − 1 and reduced at the end of each round by τ .

Therefore, the total number of rounds is at most (k − τ + (δ − 1)k)/τ = δk/τ − 1. Each message

delivered adds only a constant factor β to the total time, whereas the other steps in each round add up to

τ . Therefore, the total time is at most (β + δ)k − τ = (e+ ξβ + 1 + ξδ)k − τ .

The time efficiency and correctness of the BT algorithm is established in the following lemma. The

proof, omitted for brevity, is a straightforward computation of the probability of some message not being

delivered.

Lemma 5. If the number of messages left to deliver is at most M = 2 δ lnβ−1
lnβ−1 (

∑5
j=1(5/6)j−1τ) +

((δ(2−δ)/(δ−1))+τ+1) lnβ−1
lnβ−1 , there exists a constant c > 0 such that, after running the BT-algorithm for

c log2(1/ε) steps, all messages are delivered with probability at least 1− ε.

The following theorem establishes the main result.

Theorem 6. For any one-hop Radio Network, under the model detailed in Section 1, Algorithm 1 solves

the k-selection problem within (e+ 1 + ξ)k + O(log2(1/ε)) communication steps, where ξ > 0 is any

constant arbitrarily close to 0, with probability at least 1− ε, for ε2 + kε ≤ 1.

Proof. From Lemmas 4 and 5, and the definition of the algorithm, the total time is (e + 1 + ξδ +

ξβ)k/(1− ξt) +O(log2(1/ε)). Given that ξβ , ξδ, and ξt are positive constants arbitrarily close to 0, the
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claim follows.
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