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Abstract- The process of routing in large ad-hoc mobile
networks is theoretically analyzed as the capacity of a packet
to be directed form a source to a destination. The equivalence
between directivity and an effective radius, which represents
the actual knowledge of any node of its neighbourhood, is
demonstrated. The mobility of the network is modelled as that
resulting from the most probable distribution of mobile nodes.
The results are conclusive: mobility reduces the throughput and
delay performance of any routing algorithm with a finite effective
radius.

I. INTRODUCTION

The need for efficient routing in wireless ad-hoc networks,
has given birth to a plethora of routing protocols [1]. Due to
the particular characteristics of those networks, the criteria fol-
lowed to design the routing algorithms are somewhat different
from the ones used in traditional, wired or wireless, networks
with infrastructure [2]. The optimisation criteria range from
the minimisation of the number of hops to reach destination,
number of retransmissions, energy efficiency [3] or topological
considerations [4]. With the advent of "large-scale" wireless
ad-hoc networks, those routing strategies have to be revisited
with new constraints in mind, such as the scalability [5] and
the capability for self-organization [6].

In this work we develop a theoretical framework that is
oriented to evaluate the efficiency of routing protocols in a
dense wireless ad-hoc networks. We characterise the routing
strategies by means of the capability of directing the route
from source to destination. To this end we define an energy of
the route where this directivity is implied. This energy ranges
from zero value in a random routing strategy to infinity for
a routing strategy capable of resolving the shortest path from
any source node to any destination node. We will focus in
the study of the distribution of the distances, relative to the
length of the routing path, for any source-destination pair of
nodes, a distribution defined as the End-to-End distribution.
We investigate the characteristics of any routing algorithm
based on a universal measure which we define as the effective
radius of the routing protocol.

A. Organization and Summary of Results
The network model and the description of the theoretical

techniques used in this work are described in Section II. In
Section III we obtain analytically the End-to-End distribution
for a routing strategy which is entirely described by a direc-
tivity function. The results for the specific cases of random
walk routing and optimal routing are also described in Section
III. The case of Large-Scale Ad-Hoc Wireless Networks is
treated in Section IV where the moments of the End-to-End

distribution are analyzed for each of the three routing strategies
defined in this work. A definition of the effective radius is
also found in this section. We finally present the conclusions
of this work, future directions and the limit of applicability of
our results in Section V.

II. PROBLEM STATEMENT

A. Network Model
The network model that we will use is summarized graph-

ically in Figure 1. The nodes of a wireless ad-hoc network
are randomly distributed in a three-dimensional space. For
the sake of clarity, graphical representations are shown in two
dimensions even all the theoretical framework is formulated
in three dimensions. The separation between the nodes fluc-
tuates around a with a mean square (Axn)2) = a2/3. We
formulate the routing process in terms of a chain of N hops
Ax, between node 0 (source) and node N (destination). The
density of nodes is such that the radio coverage for each
of the nodes allows the communications with neighboring
nodes within the limitations of distances previously described.
We will show later that, asymptotically, whether the distance
between neighbouring nodes is fixed or fluctuating, the results
are equal.

Fig. 1. Routing path in a wireless ad-hoc networks which is composed of
N links Ax, of length a connecting xo and XN.

We assumed a perfect MAC in which every transmission
is successful. This is done to establish a baseline comparison
with respect to other works [7] and to obtain an absolute upper
limit in the expected performance of the system.

B. Path Integral Method
In order to obtain the aforementioned End-to-End distribu-

tion, we will use the path integral method [8]. In a very simpli-
fied way, this method was developed in the realm of quantum
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mechanics in order to obtain the probability amplitude that a
quantum particle went from position xa at time Ta to position
Xb at time Tb. The nature of quantum mechanics is such that, to
calculate correctly such probability amplitude, it is necessary
to sum aver all the possible histories. We take advantage of
this method to calculate the End-to-End distribution of all the
possible routes with N hops from node 0 to node N

C. Mobility Model

We consider an arbitrary distribution function of nodes
which are enclosed in a physical volume V. We define a phase
space (,u-space) defined by the position (x) and the speed (v)
of the nodes. A node is confined to a finite region of this phase-
space, because the values of speed and position are restricted
(no infinite speed or volume). Cover this finite region of ,u-
space with volume elements of volume w = d3X d3v and
number them from 1 to K being K a very large number. We
specify a number ni of nodes found in the i-th cell to satisfy
the following conditions

K

Eni
i=l

K

li
i=l

N

E (2)

where gi is a number we will put equal to unity at the end
of the calculation but which is introduced for mathematical
convenience. Taking the logarithm of previous equation, we
obtain

log Q{nil}
K K

log N! - log ni! + S ni loggi + constant
i=l i=l

(7)
If we assume each ni is a very large integer, we can use
Stirling's approximation

log ni ! r ni log ni-1 (8)
We then have

K K

log Q {nil} = N logN-5 ni log nir+E ni loggi+constant
i=l i=l

(9)
To find the equilibrium distribution we vary the set of integers
{ni} subject to Equations 1 and 2 until log Q attains a
maximum. Let {ni} denote the set of integers that maximizes
log Q. If we use the method of the Lagrange multipliers, we
have

K

6 [logQ{ni}]- o E ni +
i=w

If we substitute 9 in 10, we obtain

K )

i3 E cini)
i=l

0 (10)

where Ej is the kinetic energy of a node in the i-th cell

v2
(i =

It (3)

where vi os the speed of the node. An arbitrary set of
integers {ni} satisfying Equations 1 and 2 defines an arbitrary
distribution function. The value of the distribution function in
the i-th cell, denoted by fi, is

fi - wo (4)

K

E[-(logni + 1) + loggi- a -Ei] ni = 0
i=l

(1 1)

Since 6ni are independent variations, we obtain the equi-
librium condition by setting the summand equal to zero at
ni = ni

log ni = -1 + log gi-a -3E
- -gOcB- 1 (12)

The most probable distribution is, by Equations 12 and 4

This is the distribution function for one member of the
ensemble. The equilibrium distribution function is the above
averaged over the whole ensemble, which, for lack of further
assumptions, assigns equal weight to all systems satisfying
Equations 1 and 2

(5)ft
So we will choose an arbitrary distribution function by choos-
ing an arbitrary set of {ni}, calculate the volume it occupies
by counting the number of systems in the ensemble that have
these occupation numbers and then, vary the distribution to
maximize volume. Let us denote by Q {ni} the volume in
F-space (which characterizes the whole ensemble of nodes)
occupied by the distribution function corresponding to the
numbers {ni}. It is proportional to the number of ways of
distributing N distinguishable nodes among K cells so that
there are ni of them in the i-th cell (i = 1, 2,. . ., K).Therefore

Q{ni}= n1!n2!N! n! n2 nK
'i1 nili3.=.iK!1 92 ..YK (6)

fi Ce= e (13)

where C is a constant. If the nodes are uniformly distributed
in space, so that f is independent of x

J (x,v,t)=
N

it can be shown that

If we define the density of the nodes as ,u
have

f ( /3 32

(14)

(15)

N/V, we finally

(16)

This is the Maxwell-Boltzmann distribution. Using this distri-
bution, we calculate the most probable speed of any node and
results in d ,

23 (17)f[fd3 Vf(V) I 12
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and the root mean squared speed vrms is equal to

V

Ff d3v . v2f(V)1 1/2
V[fd3vf (v) /3 (18)

III. END-TO-END DISTRIBUTION OF ROUTING
STRATEGIES

A. Directed Routing

We formulate now the directionality of the hop from one
node to the following in a simple expression that we will
define as the energy of the direction. This energy will address
the difference between the RRS (where the directionality
was random) and the Directed Routing Strategy (DRS). To
construct this functional, let us define a given route described
by the one-parameter continuous function r(s). The tangent to
that trajectory is given by by u(s) = &r(s)/0s. The variation
of this tangent vector through the partial differential &u(s) /&s.
If we construct a quadratic functional from this variation of
the "direction" of the route, we will be able to calculate the
energy stored by a particular route of length L as

EL jL (du(s))2 (19)

where i is defined as the elastic constant.
The actual route is not continuous, &u(s)/0s being substi-

tuted by the difference of the vectors that link two consecutive
pair of nodes n and n+ 1. The actual form of the energy should
be

N

EDRS -E (Un -Un-1)
n=l

(20)

With that functional of the directivity defined, the end-to-
end distribution of the DRS over a distance

N

R=Xb -Xa =a Eun (21)
n=l

is obtained from the path integral with specific directions of
the initial and final pieces

quite difficult to obtain analytically. Therefore, we shall work
with the moments of the distribution instead of the distribution
itself, which are found more easily. Thus, the moments of the
distributions can be written as

§R212 Id2Ub f dutR2PN(Ub, ua; R) (25)
47F

We will take care only of the even moments of the distribu-
tion, as its dependence on the actual distance is rotationally
invariant. Therefore, odd moments vanish.

If we introduce the angular distribution of a random chain
of length L = Na as

PN(Ub, Ua L)
I N- 1 -J d2un

27raN
x exp A2 E (unn=l -Un_1)2 (26)

We will be able to calculate the trivial moment 1 = 0
(which will provide us with the proper normalization of the
distribution) as

(1) = Jd2ubJb 4 PN(Ub, UaL) 1 (27)

Equation 26 can be solved analytically

PN(Ub,Ua L) =Zexp -LL L21ZYlm(Ub)Ylm (Ua)
1=0 Lm

(28)
where L2 = 1(1 + 1) and Ylm(un) represent the harmonic
polynomials. Using the orthogonality properties of the har-
monic polynomials and rewriting the former integral in terms
of Gegenbauer polynomials [9] and using their recursion
relations, we are able to obtain the first nontrivial moment
of the End-to-End distribution (details of the exact calculation
will be published elsewhere). Before writing the expression of
(R21) let us define the following quantity

IINj -d2Unh 3(R N
f (R -aE:Un)n=l-n=l

x exp [- A2a E (Un - Un-1)2 (22)
n=l n

i{=K3 (29)
which we call the persistence radius. The exact expression of
the first nontrivial moment of the End-to-End distribution can

be written as

where A is a measure factor given by

A= 2wa
I{/3

(RDRS2 2 [L -2 (1

(23)

To obtain the desired end-to-end distribution, we integrate
22 over all initial directions and average over the initial ones

to obtain is given by

PN (R) = Jd ubJ 4 PN(Ub,ua;R) (24)

The former equation is quite difficult to evaluate and, in
general, the expressions of the End-to-End distributions are

e-L/( ] (30)

Additional moments are increasingly difficult to calculate.

B. Random Routing
For Random Routing Strategy, we have previously calcu-

lated the End-to-End distribution with the path integral, but
to validate such approach and to give further insight on the
results, we will calculate it with a different approach. Let us

have the route that we defined in Section II, but instead of
fluctuating, we will have a fixed distance between a between
consecutive nodes. If we have no preferred angle of direction
to hop from one node to the following, we will have a

PN(Ub, ua; R)
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Random Routing Strategy. In three dimensions, the probal
distribution of the end-to-end distance vector xb- Xa of
an route is given by

PN(R) fi d3AX, 47a2 (Ax2 -a)]
N

x 63(R -Axn)
n=l

bility
such

If we look at equation 31 in terms of the Fourier transform
of the one-link probabilities P1 (k), we will obtain the desired
integral as

IV. ROUTING IN LARGE-SCALE AD-Hoc WIRELESS
NETWORKS

A. Effective Radius of RS and the Large-Scale Limit

Let us now revisit the moments of the End-to-End distri-
bution for the three different routing strategies examined here
(DRS, RRS and ORS) in the limit of a large number of nodes
N at finite a2N.

(31) We first take this limit in Equation 35, where we find

R21S)_ (21 +)+(aL)1 (38)

If we continue with Equation 30, we can see that, in the limit
for large L/( we have

(273) [Pk] N ikR

1I sinkaN
2w72R ]o dkk sin kR L ka

If we solve the previous integral, we should find that

PRRS(R) = e3R2/2La
2wa

(RDRS)= 2L (I

(32) We can pursue a tedious calculation of the fourth moment
(32) of the DRS End-to-End distribution and, after the limits are

taken, we have

(RDRS) 4%2L (1

(33)

as found in the previous Section (we changed N subscript by
L = Na).

If we express the Fourier transform of PN(R) in terms of
the moments of the end-to-end distribution of the RRP, we
obtain

(1)'(k)2' 1
21

PN (k) = (21)! 21 + 1 (34)

where the moments are

(RRR1S) =a21 ( 1)1(21 + 1)! E I 1 N2 (- 1);B27,
(35)

where the sum over mi obeys the constraint I = . i.
and Bi are the Bernouilli numbers.

C. Optimal Routing

In a Optimal Routing Strategy (ORS), the packet is able
to find the shortest path from source to destination, thus
establishing a straight line between source and destination.
Its End-to-End distribution is trivial to find as

PORS(R) = 1 -L) (36)PL ~ 4WR2~(

from which is straightforward to find that the moments of the
ORS are

d3RRnP?ORS(R)

d3RRn5(R -L) = Ln (37)

We can observe that the first term in both the second and the
fourth moment are in accord with Equation 38 but, instead of
a distance between nodes of a, we have an effective radius of
the DRS

aeff 24

Please acknowledge that, as the persistence radius ( in Equa-
tion 29 in only dependent in the directivity (i) and the mobility
(Q) parameters, the effective radius will shrink or expand only
due incremental/decremental speed and/or knowledge of its
surroundings. So, in the large-scale limit, we can see that the
Directed Routing Strategy can be seen as a Random Routing
Strategy with a greater extent of influence. As a consequence,
we can rewrite the general expression for the moments of the
DRP as, approximately

Finally we rewrite the Optimal Routing Strategy moments
of the End-to-End Distribution as

ORRS)= L21

So we can see a transition from a Random Routing Strategy
whose influence extends only to its nearest neighbours, to
a Random Routing Strategy but with a greater topological
influence to, finally, an Optimal Routing Strategy whose
influence extends to the whole of the network. To illustrate
the distribution of the End-to-End distances with respect to the
actual length of the routes, we have calculated numerically the
End-to-End distribution for Routing Strategies with different
effective radii.
We can summarize the behaviour of the routing strategies

as a whole by building the following moments function

R21) xo (aL)21" (44)

PN(R) L ...) (39)

215 L (40)

(41)

RDRS2 (21 + 1)" (DRS"' 31 (aeffL) (42)

(43)

RnORSi

Authorized licensed use limited to: Univ Rey Juan Carlos. Downloaded on February 19, 2009 at 06:48 from IEEE Xplore.  Restrictions apply.



We will define v as the critical exponent. This critical exponent
would range from v = 1/2 (Random Walk) to v = 1 (Shortest
Path).
One of the weaknesses of the method describe until now

is that, except for Proactive (Table-Driven) Protocols, no a-
priori determination of the effective radius can be done. For
Reactive or Mixed Protocols one can only make educated
guesses. We propose the use of the distributions above to fit
measured (through simulation or measurement) distributions
of path lengths in networks using a given routing protocol.
Through this fit, we would be able to determine its effective
radius and determine the optimality of its deployment in a
given network.

B. Efficiency vs. Flooding: Experimental Results with DSR

If we use a routing strategy with constant finite effective
radius aeff (e.g. a table-driven routing protocol), as we go to
the large-scale limit is easy to see that

lrm (RD1RS) = (RRRS ) (45)

It is obvious, therefore, from the quantitative analysis above,
that routing protocols with finite effective radius will be
completely inefficient in large networks, so the solution is
clearly in the side of hierarchical algorithms.
We proceed now to show the results of simulations with

the ns-2 network simulator. Two face-centered hexagonally-
distributed two-dimensional networks with sizes of 91 and 217
nodes are simulated. We use the IEEE 802.11 MAC and free-
space loss propagation model. The selected routing algorithm
is the Dynamic Source Routing (DSR) algorithm. A message

is generated from any node of the network with any other node
as destination. This procedure is repeated for any node of the
network. The path is extracted from the trace files generated
by ns-2 and the length of the path L for any source-detination
pair is computed. The euclidean distance between source and
destination (R) is also computed. From the ratio of these
two quantities of all the generated paths (R/L) a normalized
histogram is extracted, thus resulting in the experimental End-
to-End distributions plotted in Figure 2.
We can see that, due to the geometrical effect of the face-

centered hexagonal 2D lattice, numerous peaks appear as some

route configurations are favoured over others. We opted for a

regular lattice rather than a random one, due to the added cost
that would be supported as averaging through different spatial
configurations would be needed.

It is evident the reduction in effectiveness of 55% (as
measured by the effective radius) with the increase in size
of the network as predicted by our theory. Apart from the
almost perfect fitting of the theoretical distributions to the
experimental ones in the long-route regime, the most striking
feature of the results for the 217-node network, is that it is to
be fitted to a 3D distribution, not to bidimensional one. Thus,
although a 2D network is simulated, 3D features arise in larger
networks.

R/L

Fig. 2. Experimental End-to-End Distributions (histograms) obtained from
simulations in ns-2 with the DSR algorithm. Two different network sizes are
evaluated, 91 and 217 nodes. Alongside, theoretical End-to-End Distributions
for 3D networks respectively,with = 1 and ( = 0.45 are plotted.

V. CONCLUSIONS

In this work we introduced a novel method to analyze
theoretically the routing strategies that are to be used in Large-
Scale Wireless Ad-Hoc Networks.We have shown that in the
large-scale limit, any routing strategy with finite effective
radius will behave as a Random Walk. We have shown theo-
retically that mobility impacts negatively on the performance
of the network for large-scale networks and large number of
hops. We have shown results of simulations for networks of
different sizes and have shown the decrease of the effective
radius as the size of the network increases. We have also shown
that 3D features arise in the experimental distributions of 2D
networks.
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