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Abstract—In this paper we propose an efficient energy-aware
routing algorithm based on learning patterns. Energy and mes-
sage importance are considered in a Bavesian model in order
to establish intelligent decision rules that make the network
economize in crucial resources.

I. INTRODUCTION

Recent advances in sensor technology and wireless com-
munications have enabled the development of dense wireless
networks of small, low cost, low-power and multifunctional
sensor nodes which communicate in short distances either
directly or through other nodes by a wireless medium [1].
Sensor nodes are constrained by resources such as energy
consumption (which limits the network lifetime [2]), storage
capacity and processing power [3]. Network topology may
change and suffer from connectivity failures, and needs to be
built and updated in real time.

When deploying sensor nodes, survivability and adaptation
to the environment should be assured via redundant paths and
efficient routing algorithms [4]. Several diffusion methods, that
only use information coming from neighbor nodes, can be used
for this purpose [5]. The position of the sensor nodes is not
required to be predetermined in advance [1], which makes
deployment feasible where there is no infrastructure at all.
A considerable number of sensor network routing algorithms
require location techniques to know its accurate position to set
up the connectivity graph, without needing global knowledge.

Routing is one of the challenging open issues in sensor
networks (SN) [3]. According to the forwarding method, they
are classified into two groups. In the algorithms which belong
to the first group, packets are replicated and sent along all
possible neighboring nodes. When a node receives more than
a copy, it discards it to reduce power consumption [6]. In
selective forwarding, only some nodes keep the responsibil-
ity of forwarding the message depending on the conditions.
Probabilistic forwarding, included in this group, is chosen
to fight against exposed restrictions and to assure reliable
routing. Considerable research has been focused on the design
of power-aware protocols and efficient algorithms for SN to
prolong sensor lifetime [1] [3].

In this paper, we propose an efficient energy-aware routing
model based on learning paftterns. Sensor nodes learn from
past routing decisions depending on the success or failure
of their transmissions. Each node observes if neighboring
nodes forward their messages in order to improve routing
performance in later chances by doing probahilistic routing,
as it is also suggested in [7] [8]. The node decisions are
based not only on the available energy in nodes but also on
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the importance of the message to be transmitted. Probabilistic
estimation of distributed parameters in the network will reduce
the amount of information stored, transmitted and updated
trough the network.

The rest of the paper is structured as follows. Section II
details our probabilistic decision model and in Section III,
simulations with synthetic data are proposed and results are
analyzed. Finally, in section IV, the conclusions and future
works are exposed.

II. DECISION MODEL

Consider a network of N sensor nodes {5;¢ =1,..., N}
All nodes are assumed to be homogeneous and non hierarchi-
cally organized, having similar resources, and all of them are
assumed to behave according to the same rules. These nodes
are spread along a geographical area, and can send information
packets among themselves. Due to power limitations, each
node can only transmit messages to nodes inside its coverage
area. We will denote ¢(z) as the set of all nodes in the
coverage area of node ¢, so that any message sent by node
i will be received by all nodes in ¢(7). Reciprocity between
coverage areas is assumed (i.e. if § € ¢(2) then ¢ € #(3)),
which is a natural assumption if the nodes have a single
antenna. We analyze two different variants: in model 1, we
assume that nodes have no idea about its (absolute or relative)
geographical location. In model 2, we assume that node
knows its geographical position, z;, and can find out the
geographical coordinates of all its respective neighbors in ¢ (i)
(eg. [9], [10]).

All messages should be addressed to a special node called
sink (a.k.a. access point), whose geographical location is also
known by all nodes in model 2 because it is connected to the
external structure to further processing, but not in model 1.
Without loosing generality, let N be the sink node and zjy its
geographical position. Each time a node generates or receives
a message it must make a decision about sending it to other
nodes, or not (see Fig. 1).

Determining to how many nodes a cerfain message is
delivered is an important issue. In order to avoid spreading
messages in the opposite direction, node ¢ in model 2 first
checks if the message is being forwarded in the adequate
direction, even if a higher delay is incurred. If node ¢ has
received the message from node § and ||z;—zy|| > ||2;—2zn],
the message will not be forwarded by node . On the contrary,
if node ||z; — zn|| < ||z; — 2w ||, node ¢ proceeds to analyze
the state of all neighbors that are closer to the sink than itself.
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Fig. 1. A network of sensor nodes. The shaded circle shows the coverage
area of node ¢ (if no obstacles are considered and sensor antennas are
omnidirectional the coverage area of ¢ will be represented by a circle whose
center is the node ¢). All nodes inside the circle (unless ¢) is the set of
neighbors, ¢(%). Each time node ¢ receives a message, it should make a
decision about forwarding it to other nodes or not. To do so, it analyzes
the state of all neighbors that are closer to the sink (the right double circle in
the figure), namely, nodes g, & and c.

We will denote ¢, () as the set of all nodes in ¢(Z) whose
distance to node N is smaller than ||z; — x|
Decisions at node ¢ will be based on the following variables:

+ An estimation of the available energy at neighboring
nodes, {£5;,7 € ¢4 (4)}.

s The importance of the message to be transmitted, I. The
evaluation of the importance of a message is a responsi-
bility of the source node (different importance values are
selected when going beyond different thresholds), and it
should be transmitted along with the message.

Since nodes in model 1 do not know which of their
respective neighbors are closer to the sink, the decisions at
node ¢ in this model will be based on the energy estimation
at any of the neighboring nodes.

Asgsuming that most energy consumption is caused by
transmissions, the estimation

Egi(k +1) = Ey; (k) — ny(k) By (1)

where n; is the rumber of messages transmitted by node j
at time & and Fp is the energy consumed per transmission.
Note that our model assumes that the energy consumptions
are the same at each transmission (which is a reasonable
approximation if information is sent in packets of equal size),
and that node ¢ 'listens’ all transmissions done by its neighbor,
7.

All these variables are grouped into observation vector x.
Each node with a message to transmit states the decision as
a result of solving a hypothesis testing problem with two
hypothesis, 7' = 0 or T' = 1, where:

o T =1 if at least one neighbor will forward the message.

o T =0 if no neighbor will forward the message

Depending on its belief about the value of T', node ¢ will make
decision D7 (the message is transmitted) or Dy {the message
is not transmitted).

To do so, we define cost O(P;,d) = ¢y as the cost of
deciding I}; when the true hypothesis is T' = d {(where ¢,d ¢
{0,1}) so that: Lo = 0, c10 = ET, Cgl = 0 and €11 =
Er — I. The importance of the messages contributes to the

reduction of the cost only if the message is forwarded by
some of the neighboring nodes. According to this, the mean
cost of deciding Dy and Dy become

C(Dolx) = 0
C(Dyx) = Ep— IPH{T =1[x} @

so that the final decision is given by D if Pr{T = 1|x} > &2
and D)y otherwise.
In order to estimate the posterior probability of each hy-
pothesis, node ¢ makes two simplifying assumptions:
al) The probability of node 5 forwarding a message is
independent of the forward decision made by any other
nodes.
a2) The probability of node 5 forwarding a message is
independent on the state of any other nodes.
As a consequence of al), and defining the random variable
T; equal to 1 if node § will forward the message and 0
otherwise, we can write

b

yy = Pr{T=1x}=1-JJA-Pr{Ty =1x}) @)
j=1

As a consequence of a2), we have Pr{I;, = 1l|x} =

N

Pr{T; = 1|x;} where x; = (E;; I 1)T. Note that the last
component (equal to unity) has been included for mathematical
convenience.
We assume a truncated logistic model
1
1+ exp (—W?xj

vy = PriTy = 1|x;} = )U(Ez'j —Er) @
where wu is the Heaviside step function. Note that node ¢
assigns a zero probability of retransmission to any node
that (according to its estimates) does not have energy for
transmitting the message.

The probabilistic dependencies which define the decision
process at each node are illustrated in Fig. 2. Each transmitting
node “builds™ a graphical model including the most relevant
variables in the node decision: namely, the importance of the
message and the energy of the neighbering nodes. Though
each node makes the simplifying assumption that the neighbor
decision will not depend on the energy at other nodes, it tries
to learn some probabilistic dependencies through the logistic
model.

Notice that according to the forwarding method, our work
can be classified into both groups of algorithms discussed in
Section 1. We use probabilistic forwarding to select nodes but
we do not choose a unique path. We also make use of packet
replication to guarantee that the termination node receives the
message.

A. Learning

When node ¢ sends an information packet, it keeps 'listen-
ing’ the channel. Due to the reciprocity between the coverage
areas of neighboring nodes, if an element of ¢(7) forwards the
message, node ¢ can detect the retransmission, and use this
feedback information to update its profile of the neighboring
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Fig. 2. The graphical model build by a transmitting node including the
importance of the message and the energy of the neighboring nodes. Each
node makes the simplifying assumption that the neighbor decision will not
depend on the energy at other nodes (thus omitting dependencies given by the
dashed arrows, that could appear if node neighbors are neighbors themselves.

nodes. Let d; a binary variable equal to 1 if node j forwards a
message received from ¢ (or, more precisely, if node ¢ listens
node 7 forwarding its message) and 0 otherwise. Parameters
w; are estimated in order to minimize cross entropy loss
function [11] given by

Lysy dy) = —djInyy; — (1 — dy) In(l — yy5) (5)

For computational simplicity, we use stochastic gradient learn-
ing rules, so that, after transmitting any message, node ¢
updates all parameters as

Wil 1) = wi (k) + puld (k) — ys; (k))u(Es; — Er)x (k) (6)

It is important to emphasize that sensor nodes do not need
to exchange any specific information among nodes to carry
out the leamning phase, since they just use the information
associated to forwarded transmissions. Proceeding in this way
we enable a total decentralized routing design which at the
same time takes into account non-local information.

III. EXPERIMENTS WITH SYNTHETIC DATA

We have carried out an extensive number of experiments
with the routing algorithm presented in this paper. Simulations
have been implemented in order to evaluate the proposed
algorithm performance and to analyze the influence of the
different design variables taken into account. Since our model
tries to represent a real sensor network, several nodes have
been deployed in a test scenario to reflect a realistic system.
Furthermore, it is noteworthy that the implemented model only
focuses on the routing algorithm and does not go into details
of the underlying layers. Additional constraints due to nodes
connectivity are not considered to simplify the model and
analyze results independently. Nevertheless, network topology
may present obstacles that limit the nodes conmectivity apart
from the restrictions imposed by the propagation.

A communication session starts when a node needs to
transmit a message with relevant information to the sink in
model 2 or to all the nodes in model 1.

In addition, as a result of the broadcast nature of the wire-
less channels, neighboring nodes of the sender node receive
messages to be forwarded to the sink, even if they are placed
in a path that moves further away from it. In this case, they
will not forward the message as a way of saving energy.

In our simulation example, 100 homogeneous nodes of
equal capabilities (equal initial values of energy) have been
randomly deployed in a test 10 x 10 m? area (the choice of
a square field is made in order to simplify the experiments).
Sensor nodes deployment associated to one of the simulation
runs is showed in the network topology of Fig. 3. Origin nodes
are randomly chosen whereas the sink is the right most node in
the field. Position information is also taken into account when
implementing model 2. Considering a random importance for
each generated message, we compute in which transmission
the network "dies’ due to absent of energy (scenario 1). After
calculating the average importance value of the transmitted
messages, we simulate scenario 2, where all the messages have
the same importance value.

Topology of the Sensor Network
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Fig. 3. Network topology associated to one of the simulation runs, where
sensor nodes are deployed in a 10 x 10 m? field

Parameters such as g (the adaptive step of the weight
vector in (6)), the maximum distance to consider a sensor
node as a neighbor and the consumed energy performing a
transmission have been set from preliminary simulations and
remain constant during all the simulation process. The results
presented here were averaged over 10 simulations runs.

We compare our proposed Bayesian routing model (both
versions, the location-aware routing algorithm and the in-
telligent routing model without location knowledge) to the
flooding algorithm. We chose the flooding model because its
simplicity and as far as we know, there is no other model that
considers the importance value of a message to minimize the
energy consumption.

The parameters under study are the different levels of the
importance of the generated messages and the last transmission
that produces the network’s death (none of the nodes receives
the transmitted message). Fig. 4 shows the evolution of the
last transmission value when the importance of the messages
is not the same considering the location-aware routing model.

We can see from the curves corresponding to the first
scenario that when the value of the importance is low, some
messages are not sent and consequently the last transmission
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Fig. 4. Evolution of the last transmissions carried out in the sensor network
considering different values of the importance of the messages in the location-
aware routing algorithm

is produced later than in the second scenario. This is due
to the decision criterium and the leaming techniques of the
nodes. This implies that sensor network lifetime is increased
and batteries in sensor nodes last longer. In high importance
messages, the last transmission value is practically the same
{both networks try to send all messages avoiding discarding
messages of high importance). When the importance varies
from 1 to 10, an intermediate situation is reached given that
low importance packets may not be forwarded in favor of
sending top priority messages. Table I reflects the extracted
conclusions from Fig. 4 calculating the average value of the
importance and the last transmissions.

TABLE I
LAST PRODUCED TRANSMISSION FOR DIFFERENT LEVELS OF
IMPORTANCE (AVERAGED OVER 10 RUNS) CORRESPONDING TO THE
LOCATION-AWARE MODEL

I | Average [ Tast tx Tast tx
scenario 1 | scenario 2

low (0-5) 3.01131 388.7 2307

variable (0-10) 5.5059 300.7 2405

high (5-10) 7.4720 241.1 2409

The analysis is complemented with Fig. 5. As example, we
show the expected forwarding probability (i.e. a neighboring
node retransmits a message generated in an origin node).
We also represent the expectations that some neighbors also
refransmit the message. Notice that both curves tend to con-
verge since the importance of each generated packet remains
constant when transmitting through the network (nodes are not
allow to modify the importance of the messages originated
at other nodes) and the transmission energy is constant, too.
The more the neighboring nodes retransmit the messages, the
more reliance get the nodes connected to it. Depending of the
selected g value, the convergence speed varies.

Varying the importance of the messages Fig. 6 shows the
evolution of the last produced transmission in a flooding
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Fig. 5. Example showing the expectations of collaboration that a neighboring
node (19} retransmits the message generated by node 35. It also shows the
expectations that some neighboring node of 35 retransmit the message

routing model, and Table II summarizes the obtained results.
As the importance is not considered when routing, all packets
are handled in the same way so that the network time life is
approximately the same.

Last attempts of transm issien in aflocding
medel
284
262
Se260 ez
w
Bosg \- N -
=Y — w * EEE w"“‘\\,> x %
%244
=
242
240
12 34 5 [ 78 g 0
# simulation
—=—Iast t_scenariol(varible | —a— kst b_ssenaro2ivarable ) st tx_scerariol (low 1)
——last t_scenario2{ow [ —a— pstbe_scenariol (high ) —+— st tx_scenaria2 Chigh [

Fig. 6. Ewvolution of the last transmissions carried out in the sensor network
considering different values of the importance of the messages in the flooding
routing algorithm

Comparing both routing algorithms, our intelligent model
outperforms the flooding algorithm since the last transmission
is produced later. This effect is clearly observed when low
importance packets are transmitted. These are expected results
since our routing algorithm saves energy sending messages to
nodes with high probability of forwarding them towards the
sink, according to the available energy and the importance
level of the messages. However, in the flooding algorithm all
messages are sent to all possible nodes, without any special
consideration, and consequently power resources are faster
used up.

When comparing two models of the selective routing model
(see Table IIT for model 1), there are not excessive differences
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TABLE 11
LAST PRODUCED TRANSMISSION FOR DIFFERENT LEVELS OF IMPORTANCE
(AVERAGED OVER 10 RUNS) CORRESPONDING TO THE FLOODING MODEL

I | Average I last tx last tx
scenario 1 | scenario 2
low (0-5) 2.95024 2478 2459
variable (0-10) 5.5711 248.3 246.6
high (5-10) 7.5463 2472 247

related to the previous explained results. The main difference
is that in the location aware algorithm, sensor nodes know their
geographical positions and they may exclude those nodes that
do not progress the message in the right direction towards
the sink. In this way, energy remains longer at nodes and
it can be used for other transmissions. This is a reason for
having a slight better performance compared to the model
without location knowledge, and reducts the system overhead.
Instead, we have to provide sensor nodes with the capability
of discovering its actual position.

TABLE III
LAST PRODUCED TRANSMISSION FOR DIFFERENT LEVELS OF
IMPORTANCE (AVERAGED OVER 10 RUNS) CORRESPONDING TO THE
INTELLIGENT MODEL WITHOUT LOCATION ENOWLEDGE

I | Average [ last tx last tx
scenario 1 | scenario 2

low (0-5) 3.02602 387.6 239.9

variable (0-10) 5.5192 297 240.6

high (5-10) 7.53181 240.9 2408

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new efficient energy-aware
routing algorithm based on learning patterns for SN that
minimizes the main constraints imposed by this kind of
networks. Our probabilistic decision model both considered
the estimation of the available energy at the neighboring
nodes and the importance of the messages to make intelligent
decisions. The idea came from the fact that if the estimation of
the available energy and the importance of the messages are
high, the reliability is increased and nodes trend to forward
messages. In order to achieve these objectives, it was necessary
to apply the ideas exposed in the paper in a test scenario. We
studied its behavior carrying out a set of experiments, propos-
ing two different variants of the intelligent routing algorithm:
a location-aware scenario and another having no idea about
this information. We both compared to the flooding algorithm
and our routing algorithms had clearly better performance
making the network last longer saving energy used to transmit
messages, specially if they have high importance. The success
in the results of the proposed Bayesian model means being
considered as an alternative to other existing routing protocols.

After these initial results, some open questions are left
to explore in a future work. A more general model can be
accomplished, where energy consumption is not only due to

transmissions. Reception, idle modes and active mode (without
transmitting) should not be rejected both in the formulation
and in the evaluation. A variable energy of transmission can
also be considered since energy consumption depends on
the distance between communicating nodes. In addition, a
lossy model can be studied. Link loss is another parameter
whose effect can be reflected in the network performance
since not all the nodes are the most appropriate to have a
reliable transmission, thus some nodes can be excluded of
being selected as a next hop in transmissions. We can also
extend the proposed model to mobile SN, making our routing
protocol appropriate for another application scenarios. The
effects of spreading more sensor nodes after doing the first
deployment to prolong sensor lifetime or adding new sinks can
be some other modifications for the purposes of study. The
overhead of the scheme can be discussed too. The location
aware routing protocol is quite close to the GPSR protocol
in the sense that both exploit the correspondence between
geographic position and connectivity by using the positions
of nodes to make packet forwarding decisions [12]. A way of
enlarge this work can be comparing these two models.
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