
TESIS DOCTORAL
Resilience against Intentional Risk in

Blockchain Implementations
using Complex Networks

Autor:
Alberto Partida Rodríguez

Directores:

Regino Criado Herrero

Miguel Romance del Río

Programa de Doctorado en Ciencias
Escuela Internacional de Doctorado

2022





D. Regino Criado Herrero, PhD

Full Professor of Applied Mathematics, Materials Science and Engineering, and Elec-
tronic Technology at Universidad Rey Juan Carlos and Director of the Institute of
Data Technology, Complex Networks and Cybersecurity Sciences.

D. Miguel Romance del Río, PhD

Full Professor of Applied Mathematics, Materials Science and Engineering, and Elec-
tronic Technology at Universidad Rey Juan Carlos and Deputy Director of the Insti-
tute of Data Technology, Complex Networks and Cybersecurity Sciences.

DECLARE that the present doctoral thesis, titled ‘Resilience against intentional risk
in blockchain implementations using complex networks’, submitted by Alberto Par-
tida Rodríguez to obtain the title of Doctor, was carried out under their supervision
within the PhD programme of Sciences in the International Doctoral School at Uni-
versidad Rey Juan Carlos in Madrid, Spain.

Madrid, May 2022

Signed: Regino Criado Herrero, PhD Miguel Romance del Río, PhD

i



ii



Acknowledgements

Regino Criado, Miguel Romance, Alejandro García del Amo, Jesús Seoane, Javier
Lillo, Sergio Iglesias, Santiago Moral and all colleagues from URJC.

Silvia Cruz and Ainhoa Romero from URJC Healthy University.

Claudio J. Tessone, Francesco de Collibus and Matija Piškorec from Universität
Zürich.

Saki Gerassis, Javier Taboada and Eduardo Giráldez from University of Vigo.

Diego Andina from Universidad Politécnica de Madrid.

Javier Prieto from University of Salamanca.

Osvaldo Aníbal Rosso from Cocinet, Argentina.

Raquel, Javier and Marc, who believed in me.

María Jesús, Pablo y Pablo, who built my values.

Victorina and Pablo, who made me feel loved.

My full gratitude and admiration.

I will continue learning from all of you, just one "baby step" at a time.

iii



iv



Abstract

Background

The title of this doctoral thesis is "Resilience against intentional risk in blockchain
implementations using complex networks". It is based on four pillars of knowledge:

First, the world economy depends on data stored, processed and analysed by in-
formation systems. Keeping these systems secure is of paramount importance. All
computers, from servers to handheld devices, especially those that hold databases, are
valuable targets to actors with malicious intentions. They aim to obtain either some
illicit benefit or to provoke disruptions. The term cybersecurity refers to computer
security. Intentional risk management takes care of analysing attacks on information
systems [21].

Second, complex network theory is a powerful field at the crossroad of mathemat-
ics, physics, computer science, statistics and sociology, among many other disciplines.
It describes systems composed of a multitude of elements that interact with each
other, mostly in a non-linear way [81, 2, 9].

Third, blockchain technology implements a distributed ledger. A ledger is a database
that registers transactions between accounts. A blockchain keeps the history of ex-
changes as a list of records replicated in multiple locations to guarantee its integrity
[116, 110]. A public blockchain allows any participant to join and leave the system
at any time. Private blockchains require prior authorisation to join. This doctoral
thesis studies public blockchain implementations. Bitcoin (BTC) is the pioneer pub-
lic blockchain implementation that inaugurated an entire new way to approach the
transfer of digital value [79]. Ethereum (ETH) is a public blockchain implementation
with an advanced scripting functionality [39]. Within the realm of public distributed
ledger implementations focused on the "Internet of Things" [72], IOTA [63] and Io-
TeX [65] are front-runners that have considerable potential to grow.

Fourth, the definition of resilience in psychology refers to the capacity to confront
adversity and to get out of it reinforced. In engineering, resilience in a material re-
veals the capacity to absorb energy when deformed and to recover when the deforming
force ceases. In this doctoral thesis, I use complex network theory [81, 2, 9] to model
blockchain implementations and analyse their resilience against intentional risk.
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Research objectives

I identify six research drivers in this doctoral work. The first objective of this thesis
is to provide an introduction to blockchain technology to understand its applicability.
The second objective is to describe public blockchain implementations that stand out
in their category such as Bitcoin (BTC), Ethereum (ETH) and IoTeX to land the
concept of a blockchain onto real-life applications [116]. IOTA, although it is a dis-
tributed ledger based on a directed acyclic graph (DAG), completes this description.
Bitcoin [79] and Ethereum [39] are pioneers in the transfer of digital value. IOTA
[63] and IoTeX [65] are two outstanding distributed ledger implementations related
to the Internet of Things (IoT), IOTA is based on a DAG and IoTeX on a blockchain.
The third, and broad, objective is to model blockchain and DAG implementations as
complex networks to further characterise these constructs. The fourth, and specific,
objective consists of modeling, using complex networks, the four implementations
mentioned in the second objective, i.e., three blockchains: BTC, ETH and IoTeX,
and a DAG: IOTA, to understand their growth patterns. The fifth objective is to
link the complex networks that we create, out of the fourth objective, with the three
key components of intentional risk [21], i.e., value, anonymity and accessibility, to
secure the blockchains that these networks represent. Ultimately, the sixth, final,
and highly novel objective is to pose a set of practical recommendations that would
increase the resilience against intentional risk of public blockchains. Table 1 sum-
marises the objectives of this research together with an initial classification of the
type of objective.

Table 1: Research objectives.

Nr. Objective Type

1 Present blockchain technology Theoretical (generic)
2 Describe outstanding public blockchain implementations Theoretical (specific)
3 Model blockchain (and DAG) as a complex network Analytical (generic)
4 Study complex networks in BTC, ETH, IOTA and IoTeX Analytical (specific)
5 Link these complex networks to intentional risk parameters Multi-disciplinary
6 Recommend actions to increase resilience against intentional risk Practical (and novel)

Methods

This thesis uses complementary methods to achieve the proposed objectives. With
regard to BTC and ETH, the first method models Bitcoin plus Ethereum as an open
system of systems (SoS) of public blockchains to explain how they work. This step
provides insights on how to improve their resilience against intentional risk. Second,
in the case of IOTA and IoTeX, this thesis models their transactions by using com-
plex networks. The nodes in these networks are the blockchain participants and the
edges represent the transactions between them. The objective of these networks is the
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study of Identity and Access Management (IAM) resilience against intentional risk in
blockchain-based IoT platforms. It also models BTC and ETH transactions by using
complex networks to compare them with the IOTA and IoTeX networks. Equally, in
this case, the nodes are blockchain participants and the edges represent transactions
between them. The complex networks created from the value transactions happening
in each blockchain implementation, although they are limited to brief time windows,
provide insightful results.

I round up this doctoral research studying the visibility graphs (VG) of the com-
plete IOTA and IoTeX price volatility time series. I analyse the complex networks
that these series create and propose an intentional risk-based strategy to introduce
5G [51], the fifth-generation technology standard for mobile communications, whose
deployment started in 2019-2021, on IoT blockchain implementations. Table 2 links
the methods used in this research with the blockchain implementations that are the
object of study, with the set objectives and with the research articles published in a
JCR journal focused on these topics, as listed in Table 5.

Table 2: Research methods, including the blockchain implementation that is the
object of study, the article in which they are applied (see Table 5) and the objectives
that they cover.

Blockchain Method Objective

Article 1
BTC, ETH Model public blockchains as open SoS 1-4
BTC, ETH Use the SoS model to improve resilience against intentional risk 5,6
Article 2
IOTA, IoTeX Model transactions in blockchain (and DAG) using complex networks 1-4
IOTA, IoTeX Use these complex networks models to improve 5,6

IAM resilience against intentional risk
BTC, ETH Model transactions using complex networks 1-4

to compare them with IOTA and IoTeX
Article 3
IOTA, IoTeX Create daily price volatility VG 1-4
IOTA, IoTeX Use VG to analyse the impact of a technology: 5G 5,6

Results

The study of the SoS of public blockchains shows how blockchain implementations
create networks that grow in complexity. In the case of BTC and ETH, they comple-
ment each other within this SoS. With regard to distributed ledger implementations
in the IoT world, IOTA and IoTeX transaction networks tend to display a scale-free
behaviour, although weaker than in BTC and ETH transaction networks. In math-
ematical terms, the degree distribution of a scale-free network follows a power law
function [2, 9].
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The structural analysis of IOTA and IoTeX VGs produces degree distributions that
resemble a power law function for a specific range of degrees. Additionally, the plot
of the average clustering coefficient per degree produces a slightly better power law
fit. This result reveals a fractal, more concretely, hierarchical structure in the com-
munities created within these VG networks. Table 3 summarises the results of this
doctoral research.

Table 3: Summary of the results.

Object of study Results

Open SoS of public blockchains Blockchain implementations grow in complexity
BTC, ETH They complement each other within this SoS
IOTA, IoTeX transaction networks Weak power law fit in degree distribution
BTC, ETH transaction networks Stronger signs of power law fit in degree distribution
IOTA, IoTeX daily price VGs Signs of power law fit for some ranges in degree distribution

Fractality in the originating time series
Possible power law fit in average clustering coefficient per degree
Communities in a hierarchical structure

Conclusions

The novelty of this doctoral work resides in the link that the author proposes be-
tween the results of the research and practical measures to increase the resilience
against intentional risk of blockchain implementations. First, regarding the SoS of
public blockchains, we conclude that this SoS is composed of BTC, a non-inflationary
money system, and ETH, a world, financial computer system. This SoS transfers
digital value and it aspires to position itself as a distributed alternative to the fiat-
currency based financial system. Mass adoption of this SoS depends on its resilience
against intentional risk. Value, anonymity and accessibility are useful dimensions to
improve this resilience.

Second, resilience against intentional risk in blockchain requires an IAM concept
that transcends a single blockchain implementation. The interplay of edge and global
ledgers running on edge and cloud servers can contribute to achieve data integrity.
Generally, blockchain can answer some security requirements in the IoT world.

Third, the structural analysis of the VGs of IOTA and IoTeX price series shows how
both distributed ledger-based IoT platforms, being IOTA direct acyclic graph-based
(DAG) and IoTeX blockchain-based, are still at an initial development stage and
their VGs display a hierarchical structure. The arrival of the 5G mobile technology
can accelerate the development of blockchain-based IoT platforms and contribute to
improve their resilience against intentional risk. Table 4 compiles the key conclusions
of this doctoral work and refers to the corresponding articles published during this
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Table 4: Key conclusions.

Article Conclusions

1 BTC and ETH in the open SoS of public blockchains: a SoS to transfer digital value
This SoS aspires to be an alternative to the fiat-currency based financial system
Resilience against intentional risk contributes to mass adoption

2 Blockchain answers partially IoT information security requirements
A resilient blockchain requires a multi-level IAM concept
based on multiple local and global ledgers running on edge and cloud servers

3 Blockchain-based IoT platforms are still in early development phases
IOTA and IoTeX time series display a hierarchical structure
5G can speed up IoT related blockchain development
5G can improve resilience against intentional risk

research.

Published articles

This doctoral thesis consists of a compilation of three research articles, listed in Table
5. They all use intentional risk as the common thread. During this doctoral work, the
author of this thesis has published these articles as the first author in Electronics, a
journal indexed by JCR that, in 2020, reached an impact factor of 2.397 and a 5-year
impact factor of 2.408.

Table 5: Articles that I have published, as first author, during my doctoral work, in
Electronics, a JCR-indexed journal.

Nr. Article title

1 Modeling Bitcoin plus Ethereum as an open System of Systems of public blockchains
to improve their resilience against intentional risk [87].

2 Identity and Access Management resilience against intentional risk
for Blockchain-based IoT platforms [85].

3 Visibility graph analysis of IOTA and IoTeX price series:
an intentional risk-based strategy to use 5G for IoT [86].

According to the Journal Citation Indicator (JCI), the rank of this peer-reviewed
journal in 2020 was the following:

• Q3 (126/223) in Computer Science, Information Systems.

• Q2 (158/319) in Engineering, Electrical and Electronic.

• Q2 (73/171) in Physics, Applied.
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Similarly, with regard to the Journal Impact Factor (JIF), the rank of this peer-
reviewed journal in 2020 was the following:

• Q3 (93/161) in Computer Science, Information Systems.

• Q3 (145/273) in Engineering, Electrical and Electronic.

• Q3 (88/160) in Physics, Applied.
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Resumen

Antecedentes

El título de esta tesis doctoral es Resiliencia frente al riesgo intencional en redes com-
plejas implementadas con tecnología blockchain". Se fundamenta en cuatro pilares
de conocimiento. Primero, la economía mundial depende de datos que son almace-
nados, procesados y analizados por sistemas de información. Es esencial mantener la
seguridad de estos sistemas. Cualquier computador, desde un servidor a un disposi-
tivo móvil, en especial si alberga una base de datos, es un valioso objetivo para los
cibercriminales: delincuentes informáticos que intentan obtener algún beneficio ilícito
o provocar una denegación de servicio. El término ciberseguridad se refiere genéri-
camente a la seguridad informática, mientras que la gestión del riesgo intencional
analiza los ataques a los sistemas de información [21].

Segundo, la teoría de redes complejas es un área de investigación emergente que
ofrece resultados muy potentes. Se encuentra en la encrucijada entre la matemática,
la física, la computación, la estadística y la sociología, entre muchas otras. Es útil
para describir sistemas formados por una multitud de elementos que interaccionan
entre ellos, principalmente de modo no lineal [81, 2, 9].

Tercero, la tecnología de cadena de bloques, "blockchain.en inglés, implementa un re-
gistro distribuido de operaciones, también llamado libro mayor de contabilidad. Este
libro de operaciones es una base de datos donde se registran todas las transacciones
que suceden entre distintas cuentas. Una cadena de bloques registra, una a una, todas
las transacciones y replica esta lista de transferencias en múltiples localizaciones para
garantizar su integridad [116, 110]. Una cadena de bloques es pública si permite a
cualquier participante entrar y salir del sistema en todo momento. Por el contrario, si
los participantes requieren una autorización externa para unirse a la cadena, entonces
se habla de cadenas de bloques privadas. Las cadenas de bloques investigadas en esta
tesis doctoral son públicas. Bitcoin (BTC), la implementación pionera de una cadena
de bloques pública, inauguró una nueva forma de abordar la transferencia de valor di-
gital [79]. Ethereum (ETH) es una implementación de una cadena de bloques pública
con una funcionalidad avanzada de ejecución de secuencias de comandos, "scripting.en
inglés [39]. Por otro lado, dentro del ámbito de las implementaciones públicas de libros
distribuidos de contabilidad centrados en el Ïnternet de las cosas"[72], IOTA [63] e
IoTeX [65] son proyectos pioneros con un considerable potencial de crecimiento.
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En cuarto lugar, la definición de resiliencia en psicología se refiere a la capacidad
de afrontar la adversidad y salir reforzado de ella. En ingeniería, la resiliencia de un
material revela la capacidad de absorber energía cuando se deforma y de recuperarse
cuando cesa dicha fuerza. En esta tesis doctoral, utilizo la teoría de redes complejas
[81, 2, 9] para modelar las implementaciones de blockchain y analizar su resiliencia
frente al riesgo intencionado.

Objetivos de la investigación

Identifico seis objetivos en esta tesis de doctorado. El primer objetivo es aportar una
introducción a la tecnología blockchain para entender su aplicabilided. El segundo
objetivo es describir las implementaciones públicas de blockchain que destacan en su
categoría como Bitcoin (BTC), Ethereum (ETH) e IoTeX, para explicar el concepto de
blockchain en implementaciones reales [116]. IOTA, aunque es una implementación
basada en un grafo acíclico dirigido ("Directed Acyclic Graph.en inglés, abreviado:
DAG) y no en una cadena de bloques, completa esta descripción. Bitcoin [79] y Ethe-
reum [39] son pioneros en la transferencia de valor digital. IOTA [63] e IoTeX [65]
son dos destacadas implementaciones de regisgtros distribuidos relacionadas con el
Internet de las Cosas (Ïnternet of Things.en inglés, abreviado: IoT). El tercer objeti-
vo es genérico: modelar implementaciones de blockchain como redes complejas para
poder profundizar en su construcción. El cuarto objetivo, más específico, consiste en
modelar, mediante redes complejas, las cuatro implementaciones específicas mencio-
nadas en el segundo objetivo, es decir, tres blockchains: BTC, ETH e IoTeX, y un
DAG: IOTA, para tratar sus patrones de crecimiento. El quinto objetivo es vincular
las redes complejas que creamos a partir del cuarto objetivo con los tres componen-
tes clave del riesgo intencional [21], es decir, el valor, la anonimidad (Chapela et al.
prefirieron esta palabra a la de .anonimato") y la accesibilidad, para asegurar las
blockchains que representan estas redes. Finalmente, el sexto y novedoso objetivo es
plantear un conjunto de recomendaciones prácticas que aumenten la resiliencia contra
el riesgo intencional de las blockchains públicas. La Tabla 6 resume los objetivos de
esta investigación junto con una primera clasificación del tipo de objetivo.

Tabla 6: Objetivos de la investigación.

No. Objectivo Tipo

1 Presentar la tecnología blockchain Teórico (genérico)
2 Describir implementaciones blockchain públicas destacadas Teórico (específico)
3 Modelar blockchain (y DAG) como una red compleja Analítico (genérico)
4 Estudiar las redes complejas de BTC, ETH, IOTA e IoTeX Analítico (específico)
5 Asociar estas redes complejas con los parámetros de riesgo intencional Multi-disciplinar
6 Recomendar acciones para aumentar la resiliencia frente al riesgo intencional Práctico y novedoso
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Metodología

En esta tesis he utilizado métodos complementarios para alcanzar los objetivos pro-
puestos. Con respecto a BTC y ETH, primero modelo Bitcoin más Ethereum como un
sistema de sistemas ("system of systems.en inglés, abreviado: SoS) abierto de block-
chains públicas. Este paso proporciona un marco con el que mejorar su resiliencia
frente al riesgo intencional. En segundo lugar, en el caso de IOTA e IoTeX, modelo
sus transacciones utilizando redes complejas en las que los nodos son cada uno de los
dispositivos que participan en la blockchain y las aristas representan las transacciones
entre los participantes. El objetivo de crear estas redes es implementar una gestión
de identidades y accesos (ïdentity and access management.en inglés, abreviado: IAM)
resiliente al riesgo intencional en plataformas IoT basadas en blockchain. También
modelo las transacciones de BTC y ETH utilizando redes complejas para comparar-
las con las redes de IOTA y IoTeX. En este caso, también los nodos representan a los
participantes en la blockchain y las aristas a las transacciones entre ellos. Las redes
complejas creadas por las transacciones de valor que ocurren en cada implementación
blockchain, aunque representan breves ventanas de tiempo, proporcionan resultados
interesantes.

Concluyo esta tesis con el estudio de los grafos de visibilidad ("visibility graphs.en
inglés, abreviado: VG) de las series temporales completas de volatilidad de precios de
IOTA e IoTeX. Analizo las redes complejas que crean estas series y propongo una es-
trategia, basada en la gestión del riesgo intencional, para introducir 5G [51], la quinta
generación del estándar tecnológico de comunicaciones móviles, cuyo despliegue co-
menzó en 2019-2021, en las plataformas IoT basadas en blockchain. La Tabla 7 enlaza
los métodos que utilizo en esta tesis doctoral con las implementaciones de blockchain
que estudio, los objetivos planteados y los artículos de investigación publicados en
una revista científica JCR enfocada en estos temas. La Tabla 10 lista dichos artículos.

Tabla 7: Métodos de investigación aplicados en esta tesis, junto a la correspondiente
implementación blockchain que es objeto de estudio, el artículo en el que se aplica
dicho método (ver Tabla 10) y los objetivos de la tesis con los que se asocia.

Blockchain Método Objetivo

Artículo 1
BTC, ETH Modelar blockchains públicas como SoS abiertos 1-4
BTC, ETH Usar el modelo de SoS para mejorar la resiliencia frente al riesgo intencional 5,6
Artículo 2
IOTA, IoTeX Modelar las transacciones en blockchain (y DAG) usando redes complejas 1-4
IOTA, IoTeX Usar ese modelo de redes complejas para mejorar 5,6

la resiliencia de IAM frente al riesgo intencional
BTC, ETH Modelar las transacciones en blockchain usando redes complejas 1-4

y comparar con las redes complejas de IOTA e IoTeX
Artículo 3
IOTA, IoTeX Crear el VG de volatilidad de precios diarios 1-4
IOTA, IoTeX Uso de VG para analizar el impacto de una tecnología como 5G 5,6
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Resultados

El estudio del SoS de blockchains públicas muestra cómo las implementaciones block-
chain crean redes que crecen en complejidad. En el caso de BTC y ETH, se com-
plementan dentro de este SoS. En cuanto a las implementaciones de libros mayores
distribuidos en el mundo del IoT, las redes de transacciones de IOTA e IoTeX tienden
a mostrar un comportamiento de escala libre, aunque más débil que en las redes de
transacciones de BTC y ETH. En términos matemáticos, una distribución de grados
de una red de escala libre sigue una función de ley de potencias [2, 9].

El análisis estructural de los VG de IOTA e IoTeX produce distribuciones de gra-
do que se asemejan a una función de ley de potencias para un rango específico de
grados. Asimismo, el gráfico del coeficiente medio de clusterización por grado pro-
duce una mejor aproximación a una ley de potencias. Este resultado revela una es-
tructura fractal, más concretamente, jerárquica, en las comunidades creadas dentro
de estas redes de VG. La Tabla 8 resume los resultados de esta investigación doctoral.

Tabla 8: Resumen de los resultados.

Objecto de estudio Resultados

SoS abierto de blockchains públicas Las implementaciones de blockchain crecen en complejidad
BTC, ETH Se complementan dentro del SoS de blockchains públicas
Redes de transacciones en IOTA e IoTeX Débil ajuste de ley de potencias para la distribución de grado
Redes de transacciones en BTC y ETH Mejor ajuste de ley de potencias para la distribución de grado

que en el caso de IOTA e IoTeX
VGs de precios diarios de IOTA e IoTeX Ajuste de ley de potencias para ciertos rangos de la

distribución de grado
Fractalidad en la serie temporal origen del grafo
Ajuste a ley de potencias para la función de coeficientes de
clusterización por grado
Comunidades con estructura jerárquica

Conclusiones

La originalidad de esta tesis doctoral reside en cómo su autor relaciona los resultados
de la investigación con medidas prácticas para aumentar la resiliencia contra el ries-
go intencional en implementaciones de blockchain. Primero, con respecto al SoS de
blockchains públicas, se concluye que este SoS está compuesto por BTC, un sistema
monetario no inflacionario, y ETH, un sistema informático financiero y mundial. Este
SoS transfiere valor digital y aspira a posicionarse como una alternativa distribuida
al sistema financiero basado en moneda fiduciaria. La adopción masiva de este SoS
depende de su resiliencia frente al riesgo intencional. El valor, la anonimidad y la
accesibilidad son dimensiones útiles para mejorar esta resiliencia.
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Tabla 9: Conclusiones clave.

Artículo Conclusiones

1 BTC y ETH en el SoS abierto de blockchains: un SoS para transferir valor digital
Este SoS aspira a ser una alternativa al sistema financiero basado en moneda fiduciaria
La resiliencia frente al riesgo intencional contribuye a su adopción masiva

2 Blockchain responde parcialmente a los requisitos de seguridad de IoT
Una blockchain resiliente requiere un concepto de IAM multi-nivel
basado en registros locales y globales ejecutados en servidores .edge 2en la nube

3 Las plataformas IoT basadas en blockchain están aún en fases iniciales de desarrollo
Las series temporales de precios en IOTA e IoTeX muestran una estructura jerárquica
5G puede acelerar el desarrollo de blockchains para IoT
5G puede mejorar la resiliencia frente al riesgo intencional

Segundo, la resiliencia contra el riesgo intencional en blockchain requiere un con-
cepto de gestión de identidades (IAM) que trasciende a una única implementación
de blockchain. La interacción de registros de operaciones locales y globales (.edge and
global ledgers.en inglés), que se ejecutan en servidores cercanos al usuario final (.edge
server.en inglés) y en la nube, puede contribuir a conservar la integridad de los datos.
En general, en el mundo del IoT, blockchain puede responder a algunos requisitos de
seguridad.

Tercero, el análisis estructural de los VG de las series de precios de IOTA, que utiliza
un grafo acíclico dirigido (DAG), e IoTeX, que usa una blockchain, muestra cómo
ambas plataformas de IoT se encuentran aún en una fase de desarrollo inicial y mues-
tran una estructura jerárquica. La llegada de la tecnología móvil 5G puede acelerar
el desarrollo de las plataformas de IoT basadas en blockchain y contribuir a mejorar
su resiliencia frente al riesgo intencionado. La Tabla 9 recopila las conclusiones clave
de esta tesis doctoral y hace referencia a los artículos correspondientes publicados
durante este doctorado.
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Artículos publicados

Esta tesis doctoral consiste en la compilación de tres artículos, enumerados en la
Tabla 10. Todo ellos tienen al riesgo intencional como hilo conductor. Durante este
doctorado, estos artículos han sido publicados en Electronics, una revista científica
indexada por JCR que, en 2020, alcanzó un factor de impacto de 2.397 y un factor
medio de impacto de los últimos cinco años de 2.408. Según el indicador de citas de
revistas JCI, la clasificación de Electronics en 2020 fue la siguiente:

• Q3 (126/223) en Computación y Sistemas de Información.

• Q2 (158/319) en Ingeniería eléctrica y electrónica.

• Q2 (73/171) en Física aplicada.

Según el indicador de impacto de revistas (JIF), la clasificación de Electronics en
2020 fue la siguiente:

• Q3 (93/161) Computación y Sistemas de Información.

• Q3 (145/273) en Ingeniería eléctrica y Electrónica.

• Q3 (88/160) en Física aplicada.

Tabla 10: Artículos (en inglés) que he publicado, como primer autor, durante mi
doctorado, en la revista científica Electronics, indexada por JCR.

Nr. Título del artículo

1 Modeling Bitcoin plus Ethereum as an open System of Systems of public blockchains
to improve their resilience against intentional risk [87].

2 Identity and Access Management resilience against intentional risk
for Blockchain-based IOT platforms [85].

3 Visibility graph analysis of IOTA and IoTeX price series:
an intentional risk-based strategy to use 5G for IoT [86].
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Foreword

I have worked in this doctoral thesis during the last years under the guidance of my
PhD directors, Regino Criado and Miguel Romance, both Professors at the Depart-
ment of Applied Mathematics in the URJC. I devoted my research to the study of pub-
lic blockchain implementations by using complex network theory with the ultimate
objective to provide practical recommendations on how to increase their resilience
against intentional risk. For this purpose, I have compiled the results of this doctoral
work in three articles that I have published in Electronics, a JCR-indexed journal.
I first research Bitcoin (BTC) and Ethereum (ETH), the two most relevant public
blockchain implementations, at least up to 2022, as complementary holons within a
System of Systems (SoS). Second, I analyse the transaction networks of BTC and
ETH, together with IOTA and IoTeX, two outstanding distributed ledger-based In-
ternet of Things (IoT) platforms, to focus on Identity and Access Management (IAM)
aspects. Third, I use visibility graphs (VG) to study IOTA and IoTeX price time series
as complex networks and to show how 5G, the mobile technology, could contribute to
their development. In all these three research paths, I link the conclusions that I ob-
tain with the resilience against intentional risk of public blockchain implementations.
This doctoral thesis is structured as follows:

Chapter 1. Introduction

This chapter explains the motivation for this doctoral thesis: how to manage in-
tentional risk in blockchain implementations. First, it outlines its main ingredients.
Second, it presents the objectives that I set for the published articles and how these
pieces of research connect with each other. Third, it describes the structure of this
work and it shares the collection of additional investigation activities that I have per-
formed during this doctoral thesis. Fourth, it includes a section that deals with the
origin of each of the eight main recipe ingredients that constitute my doctoral thesis.

Chapter 2. State of the art

This chapter presents a helicopter view of the current knowledge related to the eight
objects of study of this doctoral thesis and how they are interlinked. They are
blockchain, complex networks analysis, system of systems engineering (SoSE), iden-
tity and access management (IAM), visibility graphs (VG), internet of things (IoT),
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5G and intentional risk.

Chapter 3. Methodology and implementation

The third chapter presents the methodologies used in each of the published articles
and how they are implemented using real data. Additionally, it finds common patterns
in the proposed methodologies and it links all of them as components of a general
framework to study intentional risk in blockchain implementations by using complex
networks.

Chapter 4. Modeling Bitcoin plus Ethereum as an
open System of Systems of public blockchains to im-
prove their resilience against intentional risk

This chapter reproduces verbatim the article on how to model Bitcoin plus Ethereum
as an open System of Systems of public blockchains to improve their resilience against
intentional risk. This article was published in January 2022 in the Special Issue on
the 10𝑡ℎ Anniversary of Electronics: Advances in Networks of the peer-reviewed and
JCR-indexed MDPI journal Electronics [87].

Chapter 5. Identity and access management resilience
against intentional risk for blockchain-based IoT plat-
forms

This chapter displays verbatim the article on identity and access management re-
silience against intentional risk for blockchain-based IoT platforms. This article was
published in February 2021 in the Special Issue on IoT Security and Privacy through
the Blockchain of the peer-reviewed and JCR-indexed MDPI journal Electronics [85].
After publication, the article was declared "Editor’s choice".

Chapter 6. Visibility graph analysis of IOTA and Io-
TeX price series: an intentional risk-based strategy to
use 5G for IoT

This chapter shares verbatim the article on visibility graph analysis of IOTA and
IoTeX price series: an intentional risk-based strategy to use 5G for IoT. This article
was published in September 2021 in the Special Issue on Blockchain for 5G and
IoT: Opportunities and Challenges the peer-reviewed and JCR-indexed MDPI journal
Electronics [86].
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Chapter 7. General discussion

This chapter consolidates all results from the published articles and links them with
the stated objectives.

Chapter 8. Conclusions

This chapter presents the main conclusions of this doctoral thesis.

Chapter 9. Future research

This chapter suggests future research paths.

Chapter 10. References and bibliography

This chapter shares the list of sources referred and consulted for this research work.

Appendix A. Blockchain and information security

This appendix provides, first, a summary with the most relevant complex network
features identified in stable blockchain implementations. Second, it presents a collec-
tion of information security design patterns and good practices that, if implemented,
could have mitigated the impact of the security incidents analysed in the article on
IAM resilience in IoT platforms [85], included in this thesis. Third, it proposes a
brief questionnaire that both technologists and investors could use to create an initial
"business card" for each blockchain project that they need to assess.

Appendix B. A blockchain proposal to answer five key
use cases: Socioblock

This last appendix presents Socioblock: a public but permissioned blockchain imple-
mentation proposal that contributes to a decentralised society. It is based on some of
the security patterns presented in Appendix A. Finally, it describes five specific use
cases of Socioblock: self-sovereign identities, ad-hoc insurance, self-sovereign medical
records, exchange of academic records and mortgage search.
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1. Introduction

This introductory chapter explains the motivation for this research, the objectives of
this doctoral thesis and the organisation of the work that I have carried out.

1.1 Motivation for this research

1.1.1 Weaving together eight study lines

This research starts off a journey towards more informed decisions to increase re-
silience against intentional risk in blockchain implementations with the invaluable
help of complex network analysis. I propose an original way to weave together these
eight lines of research: blockchain-based distributed database implementations, com-
plex network analysis, system of systems engineering (SoSE), identity and access
management (IAM), visibility graphs (VGs), Internet of Things (IoT), 5G and inten-
tional risk management.

1.1.2 A new recipe

This research work focuses on blockchain technology and analyses blockchain imple-
mentations by using complex networks. Particular attention goes to disciplines such
as SoSE, IAM, VGs and intentional risk, and to realms such as IoT and 5G, as well.
Using a gastronomic image, the mission of this PhD dissertation is to create a new
dish based on eight ingredients, each of them as interesting and novel as the other
seven. This new dish is not designed exclusively for haute cuisine "information secu-
rity" chefs but for curious "cybersecurity" cooks at a broad range of locations. These
are the selected ingredients:

• The arrival of a new technology: blockchain. A promising distributed database
construct that guarantees integrity and redundancy through decentralisation
[110]. It changes the way human beings create and keep digital value [116]. It
brings along the unveiling of an Internet of value that is currently powering a
myriad of business cases in fields such as crypto-assets [79, 39], the Internet of
Things (IoT) [63, 65] and financial technology (fintech), i.e., technology firms
that leverage technology to offer novel financial value propositions.

• A powerful mathematical tool: The use of complex networks analysis to model
connected information systems that show non-linear complexity [81, 2, 9]. A
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toolkit at the crossroad of mathematics, statistics and physics to better under-
stand network features and dynamics.

• A complexity management instrument: SoSE. It helps describing "supersys-
tems", i.e., complex systems comprised of elements, named holons, that are
systems themselves and interact between each each other [67, 68, 7].

• A security instrument: Identity and access management is the tool to ensure
that the right entities (authentication) have access to the right systems and
information (authorisation). Most business models and their underlying infor-
mation systems require identification, authentication and authorisation services
for the user entities [82].

• An imaginative algorithm to associate time series with complex networks so that
network theory properties can contribute to describing the initial time series: a
visibility graph (VG) [73, 77].

• A network over the Internet: the Internet of Things (IoT) consists of a multitude
of devices, mostly sensors and actuators, that act as interfaces between the
physical and the digital world, plus their corresponding servers, that process
related data [72].

• A mobile technology: 5G. A fifth-generation technology standard that brings
a higher bandwidth and a lower latency than in previous versions to mobile
networks [51].

• A novel theory, intentional risk management, on how to deal with attacks to
information systems by ill-intentioned actors aiming to obtain benefit, is an
increasingly relevant field [21]. The world economy and human communities
depend on information systems and, ultimately, on their cybersecurity. The
objective of cybersecurity is to protect those systems and hence the information
stored in them from intentional attacks, making them more resilient [82].

With the combination of these eight unique elements, this thesis proposes a modern
cuisine "cybersecurity" dish that brings light to improvements in the resilience against
intentional risk in the complex networks created by blockchain implementations such
as Bitcoin (BTC) [79] and Ethereum (ETH) [39] and by two IoT platforms such as
IOTA [63] and IoTeX [65].

1.2 Objectives

The objectives that I set for this doctoral thesis rotate around the title of this thesis:
resilience against intentional risk in blockchain implementations by using
complex networks. The way I approach this research is from the big picture of an
overall objective, that coincides with this title, to a series of more specific objectives,
focused on particular blockchain implementations. I achieve each of these objectives
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through the publication of three peer-reviewed articles in Electronics, a JCR-indexed
journal with an impact factor in 2020 of 2.397. Table 1.1 lists the research objectives
together with the corresponding published articles.

Table 1.1: Mapping research objectives to published articles.

Nr. Research objective Article

1.2.1 Facilitate understanding of BTC and ETH [87]
1.2.2 Improve IAM resilience against intentional risk in blockchain [85]
1.2.3 Create an intentional risk-based strategy for blockchain [86]

1.2.1 Facilitate understanding of BTC and ETH

To build the big picture, I first formulate a SoS that transfers digital value and
aspires to position itself as a distributed alternative to the traditional fiat currency-
based financial system. More concretely, I focus on modeling BTC and ETH as
system elements in an open SoS of public blockchains. The aim is to better under-
stand the role of public blockchains in society and how they can be resilient against
intentional attacks. BTC and ETH are the most capitalised, at least until March
2022 [23], blockchain-based cryptocurrencies. The paper titled "modeling Bitcoin
plus Ethereum as an open System of Systems of public blockchains to improve their
resilience against intentional risk" [87], published in 2022, achieves this first objective.

1.2.2 Improve IAM resilience against intentional risk

A second, more specific, objective focuses on how identity and access management
(IAM) can stand as a key security requirement to build resilience against intentional
risk in blockchain. To that end, I research blockchain-based IoT platforms. Adjacent
to this, I study how blockchain can answer some of the security requirements on
IoT platforms. The paper titled "identity and access management resilience against
intentional risk for blockchain-based IoT platforms" [85], published in 2021, meets
this second objective.

1.2.3 Create an intentional risk-based strategy

The third objective is to shape a set of security recommendations within an intentional
risk-based strategy. To put this strategy in context, I focus on how 5G, the new mobile
telephony technology, can improve information security in the two most capitalised,
at least until March 2022 [25], IoT platforms that use a distributed ledger, i.e., IOTA
and IoTeX. For this, I research their price series using visibility graphs (VGs). The
paper with the title "visibility graph analysis of IOTA and IoTeX price series: an
intentional risk-Based strategy to use 5G for IoT" [86], published in 2021, fulfils this
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third objective.
Table 1.2 maps the objectives set in the original research plan, and stated in Table
1, with the objectives that I finally undertake in this doctoral work.

Table 1.2: Mapping research plan objectives to undertaken objectives.

Resilience against Intentional Risk in Blockchain implementations using Complex Networks

Nr. Research plan objective Accomplished by

1 Present blockchain technology 1.2.1
2 Describe outstanding public implementations 1.2.1, 1.2.2
3 Model blockchain as a complex network 1.2.1, 1.2.2
4 Study complex networks in BTC, ETH, IOTA and IoTeX 1.2.1, 1.2.2
5 Link these complex networks to intentional risk parameters 1.2.1, 1.2.2, 1.2.3
6 Recommend actions to increase resilience against intentional risk 1.2.1, 1.2.2, 1.2.3

1.3 Research structure

1.3.1 This doctoral thesis

This doctoral thesis leads up to the completion of my PhD research work. I structure
this thesis by compilation of the articles listed in Table 1.3. The common thread
in all of them is the question of how to improve resilience against intentional risk.
After this introduction, Chapter 2 provides an overview of the state of the art in each
of the eight ingredients that I propose in Section 1.1.2. In Chapter 3, I present the
key points of the methodology that I use to achieve each of the objectives and its
implementation. Subsequently, Chapters 4, 5 and 6 reproduce verbatim each of the
published articles. Chapter 7 consolidates the results from the published articles as
learning points while Chapter 8 summarises the key conclusions and Chapter 9 hints
some future research paths. A final chapter lists the references used in this thesis.
Appendix A provide additional information on blockchain and information security,
including security design patterns. Finally, Appendix B suggests a public blockchain
project, including four use cases.

Table 1.3: Articles that I have published as first author in Electronics, a JCR-indexed
journal, for this thesis.

Nr. Article title Journal

1 "Modeling Bitcoin plus Ethereum as an open System of Systems of public blockchains MDPI Electronics
to improve their resilience against intentional risk" [87].

2 "Identity and Access Management resilience against intentional risk MDPI Electronics
for Blockchain-based IoT platforms" [85].

3 "Visibility graph analysis of IOTA and IoTeX price series: MDPI Electronics
an intentional risk-based strategy to use 5G for IoT" [86].
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1.3.2 Additional research activities

In addition to the articles mentioned in Table 1.3, during this doctoral thesis, I
also took active part in other research activities related to blockchain and complex
networks. Table 1.4 summarises them, including the type of academic activity and
date.

Table 1.4: Additional research work during this thesis.

Activity Title Year

Talk "A simulation of a Bitcoin blockchain based on a pseudo-randomly selected block". 2018
15th Experimental Chaos and Complexity conference [83].

Poster "On Identity Management in blockchain implementations". 2020
Manifesting Intelligence Conference 2020 [84].

Poster "Heterogeneous preferential attachment in Ether and key Ethereum-based tokens". 2021
International Conference on Complex Networks [30].

Article "Heterogeneous Preferential Attachment in Key Ethereum-Based Cryptoassets." 2021
Frontiers in Physics Journal [32].
Rank by JIF: Q2 in Physics, JCR impact factor in 2020: 3.560.
Joint work with the Blockchain Center at University of Zurich (UZH).

Chapter "The role of smart contracts in the transaction networks 2022
of four key DeFi-collateral Ethereum-based tokens".
Complex Networks & their applications X.
Conference proceedings, published by Springer [31].

1.4 Origin of the main objects of study

This section presents the roots for each of the eight ingredients listed in Section 1.1.2,
key for the elaboration of this doctoral thesis.

1.4.1 Blockchain

Planet Earth took shape around 4.5 billion years ago [48]. The first humans that
used some stone tools appeared 2.5 million years ago [48]. The oldest evidence of
proto-writing, the use of ideographic and mnemonic symbols to convey information,
appears in the Bronze Age (3300 BCE to 1200 BCE, i.e., Before Christian Era). There
is evidence that human beings have been using writing since then. In fact, the origin of
writing is economic [29]. The will to record events and transactions is a fundamental
human trait. Ancient Mesopotamian pictographic tablets around 3200 BCE already
recorded quantities of items on clay tablets [28], acting as primitive ledgers. A ledger
is a book of transactions documenting incoming and outgoing transfers of an asset.
Typical first assets were, e.g., cereal grains, and, later on, tokens and coins [29].
Throughout History, bookkeeping has been mainly a centralised activity. It is still
pivotal for our economic activities. The data registered in a ledger need to be highly
available for all stakeholders. A typical strategy by human beings to guarantee data
availability is to keep several copies of that data. Blockchain technology achieves this
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availability. It consists of a growing list of records: a distributed database maintained
by nodes that participate in a network [116, 110]. A high number of participant nodes
keep a copy of the growing list of records. These records are mainly transactions
between participants in the network. They confirm sets of transactions organised
in blocks. These blocks are chained, i.e., linked together, via cryptographic means
to guarantee immutability. Therefore the name blockchain: a decentralised way to
keep a ledger. David Chaum’s 1979 vault system can be considered one of the first
proposals of a public distributed record-keeping system [98]. However, the seminal
paper on Bitcoin by Satoshi Nakamoto brings blockchain to the spotlight, although
it does not mention literally the word "blockchain" [79].

1.4.2 Complex networks

Reductionism and the modeling of non-linear phenomena using linear models have
been key strategies in physics to understand many systems of interest [27, p.4]. How-
ever, there are many non-linear systems in the real world that cannot be characterised
by linear approaches. They require newer and more integrating approaches such as
the one that complex network analysis offers. Coming traditionally from mathemat-
ics, complex networks received the name of graphs. Graph theory was born with
the paper written by Leonhard Euler on the Seven Bridges of Königsberg (published
in 1736). By that time, graph theory was dealing with static graphs, i.e., with a
permanent structure.
The study of building graphs with a high number of nodes has led to different models.
Paul Erdős and Alfréd Rényi in 1959 [36, 27, p.4] presented a model to construct
random networks but assuming that the network had a fixed number of nodes, i.e, not
considering growth. In a random network of 𝑁 nodes (or vertices), new connections,
also called edges (or links), are created with uniform probability between any pair
of nodes. Random networks are characterised by a normal degree distribution [12,
section 2], where the degree of a node represents the number of connections that it
has. This type of network is not commonly found in natural structures, as Albert et
al. concluded in 1999 [8] when they created a model to generate scale-free networks
via preferential attachment, i.e., not all edges are equally likely, in network growth
processes. When sociologists and physicists started to use graph theory to represent
social relations, the concepts of small world and scale-free networks started to be
frequently used. They both present a relatively small average shortest path length
[1].

1.4.3 System of systems engineering

Traditionally, systems engineering helps understanding systems. A system is a group
of elements that act as an entity, following some principles, with a specific purpose,
and interacts with the environment. When the components that constitute a system
are systems themselves, then the degree of complexity is greater and "system of sys-
tems" engineering comes into play [67]. These "supersystems", also called "networks
of networks", started to be objects of study in the early 2000s. The US Department of
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Defence, the air transportation network and the continental power grid are examples
of SoS [68]. For instance, the "supersystem" of the US Department of Defence is
composed of different systems such as the Air Operations Center and the Navy Op-
erations Center, all of them independent systems with a common purpose: defending
a nation. Additionally, their interaction among them and with their environment
create emergent properties.

1.4.4 Identity and access management

The concept of identity as any quality to uniquely characterise an individual or com-
munity is closely linked to private property. For a member of a community to claim
ownership of an object, they would need to get the association of their identity with
the right to own that object, accepted by the community. In the digital world, iden-
tities are one of the five elements to secure, i.e., networks, data, systems, applications
and identities [82]. Access to specific data will be a variable depending on the iden-
tity of the user and the access rights they might have. IAM is, consequently, a key
requirement to transfer and hold digital value.

1.4.5 Visibility graphs

The registration of a series of data points ordered along time creates a time series
in mathematics. Time series analysis describes these data points and tries to foresee
their future values. In 2008, Lacasa et al. came up with the idea to use visibility
graphs (VGs) to transform a time series into a complex network [73]. They identified
specific one-to-one relationships between the type of time series and the properties of
complex network [73]. VGs are useful instruments to link time series with complex
networks. In this way, complex network analysis helps identify particular features
present in time series.

1.4.6 Internet of Things

During the 1990s, Internet users started to browse the first web servers and to send
their first emails. Researchers and first-time web publishers exchanged information
using Internet protocols. The growing pervasiveness of the Internet triggered, since
the early 2000s, the connection of a multitude of small devices, such as sensors and
actuators, with their corresponding data servers, via the Internet. Those were the
early days of the Internet of Things (IoT) [85, 86]. Since then, the personal, home and
industrial use of IoT devices grows non-stop, reaching the figure of 50 B connected
devices already in 2018 [72].

1.4.7 5G technology

One of the social characteristics of human beings is our need to communicate. Tech-
nology has played a pivotal role in our remote communications. First, the telegraph
and second, the telephone, changed the way human interactions take place. The
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arrival of the mobile telephony in 1980 multiplied our communication possibilities.
There was no further need to be close to a fixed phone connected to a land line [51].
All successive generations of mobile telephony have introduced a better sound quality
based on a broader bandwidth, a lower latency and a faster transmission speed. 5G
refers to the fifth-generation cellular technology standard whose deployment started
in 2019-2021. 1 Gbps transmission speed and 30 ms latency are real, achievable figures
using 5G [86].

1.4.8 Intentional risk

On one hand, resource scarcity is a constant parameter that has accompanied human
beings since their appearance on planet Earth. On the other hand, free will in human
beings, understood as the capacity to select which action to undertake, provides a
degree of freedom. The combination of these two elements creates the risk of a specific
human actor to start off an activity that could give them access to more resources,
however using illicit or unethical means. This is the origin of intentional risk. Those
ill-intentioned actors are called adversaries. Military defence theory has studied them
profoundly [82]. In 2016, Chapela et al. suggested a novel way to manage information
security based on intentional risk [21].
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2. State of the art

This chapter provides a helicopter view to the body of knowledge existing in each of
the topics present in this doctoral work. Blockchain, complex network analysis and
intentional risk are the three most relevant subjects. Systems of systems engineering,
identity and access management, visibility graphs, internet of things and 5G complete
the list of research fields.

2.1 Blockchain

2.1.1 A distributed database

Blockchain finds its roots in cryptography and distributed systems [116].
It follows a simple motto, i.e., “the longest chain wins”. It is a type of database
that stores a number of records in a block [110, p.17]. Each block is unequivocally
linked to the following block using cryptographic means [110, p.17]. Out of many
other use cases, this technology can create a ledger, i.e., a book consisting of a chain
of linked blocks with records that represent financial transactions or any other event
that is worth registering permanently. Although Catalini et al. mention the cost of
verification and the cost of networking as two fundamental challenges for blockchain
technologies [19], their future, and even their present, is promising. Articles related
to blockchain implementations are numerous. Some of them include use cases related
to finance [33, 37, 89], e-government services [54], digital product, i.e., non-fungible
token, distribution [22], identity management [54, 85], legal contracts [54], health data
[49], land registry [10], car parts logistics [71], cybercrime and illegal marketplaces
[103] and even dating [97], among many others. The list of applications grows almost
daily, as there is a myriad of activities that would benefit from decentralised data
integrity.

2.1.2 Bitcoin and Ethereum

Undoubtedly, the most popular and capitalised [23] blockchain implementation is
the peer-to-peer electronic cash system Bitcoin (BTC), proposed by the pseudonym
Satoshi Nakamoto [79]. After Bitcoin, the second cryptocurrency in terms of market
capitalisation, at least until March 2022 [23], is Ethereum (ETH). Like BTC, ETH is
an open-source, public, permissionless blockchain-based distributed computing plat-
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Figure 2-1: Cryptocurrencies market capitalisation [23]. Date: 9/9/2020

form. Additionally, it features smart contracts, i.e., scripting functionality, and it
provides a decentralised Turing-complete virtual machine [39].

2.1.3 A myriad of cryptocurrencies

The list of available cryptocurrencies continues growing. The creation of a new
blockchain project, together with a new token, making use of open-source software,
is a real possibility, especially for seasoned code developers [115]. Equally, the incep-
tion of a new cryptocurrency as an ERC20 token on top of ETH, using open-source
software, is also feasible. Being still a pretty immature market, the price of cryp-
tocurrencies in fiat currencies, such as USD and EUR, is still highly volatile. Proof
of it is that, apart from the top two cryptocurrencies, BTC and ETH, the list of the
top eight most capitalised coins has changed considerably in only 17 months between
September 2020 and February 2022, both in terms of coins and prices. Figures 2-1
and 2-2 display a snapshot from 9 September 2020 and 11 February 2022 of the top
eight cryptocurrencies according to their market value [23].

2.1.4 The power of the blockchain nodes

The distributed nature of blockchain is funded on the existence of a mul-
titude of nodes that keep a trustworthy copy of the database [74, part 1].
The number of nodes in widely used blockchain implementations, such as Bitcoin and
Ethereum, is high [87] and they interact between each other. These numbers and in-
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Figure 2-2: Cryptocurrencies market capitalisation [23]. Date: 11/2/2022

teractions make the use of complex network techniques to study blockchain advisable.
Typically, nodes are blockchain participants, i.e., Bitcoin and Ethereum addresses,
and edges represent transactions between them [75, 69, 44, 11]. The higher the num-
ber of nodes, i.e., participants, the higher the degree of distribution and, therefore, of
trust on a blockchain implementation. The common interest and, subsequently, the
honesty of the majority of participants play a pivotal role in this type of distributed
networks that lack a central authority. In blockchain, more than 50% of the partic-
ipants would need to collide on an illegitimate intent (collusion) to compromise the
network. However, the more nodes in the network, the higher the computing power
(hash power) required to create (mine) blocks and, consequently, the more hash power
needed to control over 50% of it. Chapela et al. propose a link between intentional
risk [21, p.2] and Game Theory [21, p.5]. References such as Houy [53] suggest as well
a link between mining incentives and Game Theory in large blockchain networks.

2.1.5 Data integrity and double-spending protection. Block
mining

Data integrity in the blockchain database, i.e., the guarantee that transactions are not
fraudulently modified, comes from the use of block content hashing and public key
cryptography. Double-spending avoidance, i.e., the absence of double entries in
the blockchain comes from effective time stamping and consensus-making
algorithms. Only the first transaction reaching the chain is accepted [79, p.2].
Participant blockchain nodes need to agree on a single history of events. Hence
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the importance of reaching an "honest" consensus in the network. Once a block is
finalised and accepted by most market participants, over 50%, it is cryptographically
immutable. This is known as blockchain mining. The word mining can be misleading.
The author or authors behind the pseudonym of Satoshi Nakamoto do not mention it
in their original paper. In the blockchain world, the process followed by the nodes to
keep the network operational can be incentivised both by transaction fees and just-
created block rewards, e.g., in the form of new currency, like in the case of Bitcoin
[41].

2.1.6 Bitcoin

Without mentioning the word blockchain at all, Satoshi Nakamoto in 2008 describes
an ongoing chain of hash-based “proof of work” (PoW) [79, p.1]. This is the heart
of a purely peer to peer version of electronic cash, widely known by the name of
Bitcoin (BTC). It combines three powerful artifacts: the blockchain technology,
a distributed peer-to-peer network and a fully decentralised consensus-
based approach based on “proof of work” [112].

Financial activity on public blockchains grows year on year. Böhme et al. (2015) use
also the word Bitcoin to refer to the online communication protocol that facilitates
the use of the homonimous virtual currency [17, p.213]. However, investor interest is
focusing not only on Bitcoin but also on other blockchain implementations [41, 95].
As a result of that, already in 2016 Q1 blockchain funding overtook Bitcoin funding
[52].

Figure 2-3 shows how the daily closing price of Bitcoin in USD was a single-digit, or
maximum two-digit, integer during its early years. This price first reached a three-
digit integer on 1/4/2013. BTC prices started highly volatile periods in the second
half of 2017 and, even more markedly, in 2021, reaching over USD 61000 on 13/3/2021
and USD 65000 on 14/11/2021. The steep increase in the price of Bitcoin and its
high volatility makes it a highly speculative asset for some investors. This behaviour
contrasts with its initial purpose of being just a coin to facilitate digital transactions
[79].

Nonetheless, Bitcoin is anti-inflationary: the total number of coins that can be mined
is limited to almost 21 million BTC. This fact makes some cryptocurrency owners
consider Bitcoin storage of value, similar to precious metals such as gold, platinum or
silver. Already in 2017, Bouri et al. confirmed that Bitcoin acts as a hedge against
uncertainty in short investment horizons [16]. Those who keep their Bitcoins are called
"hodlers". They hope that Bitcoin unit value, compared with physical currencies such
as USD and EUR, will continue to grow. These investors consider Bitcoin as
a digital value reserve, i.e., "the digital Gold" [87]. In the long term, this
can pose a threat to Bitcoin’s transactional value proposition: Satoshi Nakamoto’s
original Bitcoin paper’s title was "a peer-to-peer electronic cash system" [79].
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Figure 2-3: Bitcoin daily closing price in USD since early days in 2010. Price data
from investing.com [58].

2.1.7 Bitcoin nodes

There are two types of nodes in the Bitcoin network: full nodes and lightweight nodes.
Full nodes mine Bitcoins. Mining consists of keeping the overall transaction
record updated and operational [17, p.217]. In 2017, more than 50% of mining
pools were located in China [106, 45]. In 2020, this percentage was close to 80%.
After China’s BTC mining ban in July 2021, mining pools exited China and in August
2021 U.S reached 35.4% and Kazakhstan 18.1% BTC mining power [106]. Full nodes
receive income via both transaction fees and reward Bitcoins when a new block is
successfully mined [53]. The reward for mining, i.e., the number of coins generated
per block, decreases geometrically, with a 50% reduction (halving), every 210000
blocks, i.e., almost every four years. There is a finite number of BTCs: it almost
reaches 21 million. This amount of BTC will probably be reached around 2140. The
BTC mining rate adapts to the available hash rate so that a block takes around 10
minutes to be mined. Once all coins are mined, full nodes will only receive income to
pay for their computing resources via transaction fees [18]. Computing resources are
devoted to creating the “proof of work” (PoW). Satoshi Nakamoto refers to it as the
need "to determine representation in majority decision making" [79, p.3]. In other
words, the miners signal that they have a vested interest in mining a block
by devoting computing power to it. "Proof of work" is highly energy intensive.
There are alternatives to "proof of work", e.g., Marko Vukolić proposes to replace
“proof of work” with Byzantine Fault Tolerance (BFT) replication [107].
Bitcoin lightweight nodes do not mine blocks nor store the entire transaction history,
however, they can verify transactions following the Simplified Payment Verification
(SPV) based on Merkle trees. A hash tree or Merkle tree is a tree of hashes that links
a transaction to the block in which it is timestamped [79, p.3]. Bitcoin lightweight
nodes require less resources: they just need the chain of block headers to operate [56].
Lightweight nodes participate in the Bitcoin network but they do not receive incen-
tives. Their reliance on an honest network is higher than for full Bitcoin nodes. In
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Figure 2-4: Ethereum daily closing price in USD since early days in 2016. Price data
from investing.com [59].

March 2022, and thanks to its distributed design features, the Bitcoin network has
been permanently available since its inception in January 2009. The forks
performed in the Bitcoin blockchain so far were not due to mitigating a fraudulent
use nor there has been double-spending.

2.1.8 Ethereum

Blockchain technology provides a distributed database that keeps an incontestable
history of transactions or events [78, slide 2]. Industries, such as finance and insur-
ance, are piloting blockchain-based implementations. The potential applicability of
blockchain technologies transcends these two economically relevant sectors. Ethereum
is possibly the clearest example of a public blockchain platform that is being used for
very different use cases.
Conceived in 2013 and launched in 2015, Ethereum has implemented a blockchain-
based “Turing-complete” machine [38]. A programming language is Touring-complete
if it can simulate any Turing machine. A Turing machine is able to recognise and
decide on data manipulation rule sets. In practice, a programming language with
conditional branching and the ability to change an amount in memory is Touring-
complete [91]. Ethereum provides a blockchain-based platform to run decentralised
applications named "smart contracts" [39]. It deals with rule-based states rather than
only with financial transactions. A contract in Ethereum is a programmable
autonomous agent. Figure 2-4 shows ETH price volatility periods starting in the
second half of 2017 and, especially, in 2021, similarly to BTC, as Figure 2-3 indicates.

2.1.9 Ethereum nodes

Any node participating in the Ethereum network can be a miner [38]. On average,
each 10 minutes, Bitcoin solves a block and creates a new one, whereas
Ethereum produces a new block each 15 seconds. This shorter time reduces
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dramatically the possibility to find double-spending in the network, as consensus is
reached more quickly. Ethereum consensus model is based on ”proof of work” as
BTC, although ”proof of stake” has been already announced and the plan is to move
Ethereum to "proof of stake" by H2 2022 [26]. Ethereum nodes are rewarded both
for successful mining but also for "uncle blocks", contrary to the lack of rewards in
BTC for orphaned blocks. When two or more blocks in Ethereum are created almost
simultaneously, only one of them will be mined and reach the ledger in the blockchain.
The rest of the blocks are called "uncle blocks" [62]. Ethereum applies a multi-
currency ecosystem: Ether and gas. Rewards are in the form of Ether. Execution
fees in Ethereum are called gas. This internal currency distinction is meant to keep
execution costs somehow stable even if the value of Ether increases.

2.2 Complex networks analysis

2.2.1 From graph theory to complex network theory

Section 1.4.2 mentions that Euler initiated graph theory in 1736. However, more
recently, the origin of complex network theory dates back to 1999, when Réka Albert
and Albert-László Barabási developed their Barabási-Albert model [8, 27, p.8] to
generate random scale-free networks, i.e., networks that display a power law
function as their degree distribution, in which few nodes display a high degree
compared with the rest of the nodes. The degree of a node corresponds to the
number of edges that link it. Albert and Barabási realised that many observed
natural networks, such as protein interactions, and human-made ones, like Internet
connections or social networks, did not follow the random graph model described
by Paul Erdős and Alfréd Rényi in 1959 [36, 27, p.4], nor the Watts and Strogatz
random small-world model, published in 1998 [111, 27, p.8]. Sections 2.2.2 and 2.2.3
deal with these two frequent and non-exclusive types of complex networks, different
from the Erdős-Rényi model of random networks, presented in Section 1.4.2: small
world networks and scale-free networks.

2.2.2 Small world networks

Small world networks are characterised by small average shortest path
lengths between pairs of nodes and relatively high clustering coefficients
[88, 27, p.4], i.e., most nodes are not linked to each other but they can be reached via
few links. A small average shortest path between nodes means that they are relatively
close to each other in terms of edges that one needs to traverse to link those nodes.
The shortest distance between two nodes is also called the geodesic distance. The
clustering coefficient indicates the number of edges that exist between a set
of nodes connected to a specific node divided by the maximum number
of edges that can exist between any of them. In small-world networks, the
number of nodes increases exponentially with the ‘diameter’ of the network [99], i.e.,
the length between two nodes is proportional to the logarithm of the number of nodes
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in the network. They are high density networks and can create communities if the
nodes that act as "connectors" in the network show different connecting patterns with
different gropus of nodes. A connected community is a cluster, i.e., a collection of
nodes that are "more connected among them" than with the rest of the network. It
is based on the idea of a clique. Small world networks are frequent in social
networks. Watts and Strogatz (1998) studied this type of networks [111, 12, section
2].

2.2.3 Scale-free networks

A next milestone in complex network theory is the characterisation of scale-free net-
works. These networks are very present as well in natural and human-made networks.
Albert and Barabási studied scale-free networks in 1999 [8, 27, p.8]. They focused
on growth, i.e., how the number of nodes in some networks rises over time, and on
preferential attachment, i.e., how new links, interestingly, tend to appear
in more connected nodes. On the latter, they were inspired by the seminal work
of Eggenberger and Pólya in 1923 [34]. These networks contain few large degree
nodes and many small degree nodes [12, section 2] and may show a self-similar
structure [99]. They are usually less highly clustered than small world net-
works, although some scale-free networks can show a small-world structure
as well [100]. The influence of the large nodes, the hubs, is greater than in small
worlds. A typical example of a scale-free network is a hub-and-spoke configuration
in air transportation. Later on, in 2002, Albert and Barabási studied how the topol-
ogy of a network, in this case, a scale-free network influences its robustness against
failures and attacks [1]. Reid and Harrigan, in 2011, studied the pseudo-anonymity
of BTC using complex network analysis. By that year, they did not find much liter-
ature describing the network structure of Bitcoin [93]. They identified two complex
networks in Bitcoin: the transaction network and, alternatively, the user network.
Nodes in the transaction network correspond to transactions and edges to specific
outputs in each transaction. Nodes in the user network represent, initially, BTC ad-
dresses, and, subsequently, users, once origin addresses in a multi-input transaction
are considered belonging to the same user and, therefore, contracted to a unique user.
Reid and Harrigan reached the conclusion that, at that early stage, the BTC network
was not scale-free yet [93, 92]. Finally, with regard to scale-free networks, it is worth
mentioning a specific subtype of scale-free network: the hierarchical model.
While in the three previously mentioned models, i.e., Erdős-Rényi, Watts-Strogatz
and Barabási-Albert, the clustering coefficient of a node does not depend on its degree
𝑘, in hierarchical networks the clustering coefficient 𝐶(𝑘) follows a power
law function as Equation (2.1) shows, with 𝑎𝑙𝑝ℎ𝑎 > 0.

𝐶(𝑘) ∼ 1

𝑘𝛼
. (2.1)
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2.2.4 Degree distribution in scale-free networks

The degree distribution in random networks, i.e., the plot of the number of nodes (𝑦
axis) per degree (𝑥 axis), does not display hub nodes, i.e., highly connected nodes, but
rather a distribution similar to a normal curve. This is the main reason why random
networks respond similarly to a random and to a targeted attack [88]: nodes are
not so distinguishable. The degree distribution in small world networks can display
different topologies. Perera et al. in 2017 [88] mention that they can show a normal
curve, similar to random networks. However, they could also display a fat-tailed
degree distribution, such as a power law, depending on the way their nodes link, e.g.,
whether hubs exist, as Hartmann and Sugár in 2021 [50] show in their study on power
grid networks. The degree distribution of a scale-free network produces a
power law function [8, 88, 81], as Section 2.2.3 states. In the case of scale-free
networks, they are highly sensitive to an attack targeted to one of their hubs [1].
This high attack sensitivity in hubs is a fundamental characteristic for this doctoral
thesis [87, 85, 86]. The name of scale-free refers to the different value that their
exponent can display [15]. Equation (2.2) presents a power law degree k distribution.
Common values of 𝛼 range from 2 to 3 [4, 99, 85]. 𝜎 is just a constant.

𝑃 (𝑘) = 𝜎
1

𝑘𝛼
. (2.2)

2.2.5 Network related terms

A complex network 𝐺 is a mathematical object, 𝐺 = (𝑁,𝐸), defined by a pair of
sets, a set of nodes (also called vertices) 𝑁 and a set of edges (also called links) 𝐸
that link the nodes. An immediate classification for networks is whether their edges
have directions and then the network would be directed or the edges connect nodes
but there is simply a connection between the nodes with no distinction between the
origin and the destination of the edge. These are undirected networks [27, p.5].
This doctoral research works with undirected networks.
A walk in a network is an alternate collection of connected edges and nodes. If the
walk ends in the node where it started, then the walk is closed. A path is a walk in
which each node is only visited once. A cycle is a closed walk in which no edge is
repeated. The diameter of a network is the shortest distance between the two most
distant nodes. A network is connected if it is possible to find a path between any
pair of nodes. If it is not possible, then the network is disconnected. Additionally,
a weighted network adds weights to each of the edges [27, p.5].
The degree correlation in a network shows how nodes with similar degrees are con-
nected. A network is assortative if nodes with similar degrees tend to be connected.
On the contrary, those networks where highly connected nodes are connected with
those with very few edges are called disassortative. Non-assortative or disassor-
tative networks show no correlation between connected nodes and their degrees [27,
p.7].
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2.2.6 Centrality measures

Centrality measures characterise the importance of any given node in a complex net-
work. Degree centrality refers to the number of nodes directly connected, i.e., via one
hop, to a specific node. In directed networks, one can distinguish between in-degree
(the number of arrows reaching a node) and out-degree (the number of arrows going
out from a node) [81, 15]. Betweenness centrality identifies key "bridge" nodes. It
measures the number of times that a node is part of the shortest path between other
pairs of nodes [81, 15]. Closeness centrality is defined as the multiplicative inverse
of the sum of the geodesic distances, i.e., the shortest distance between that node and
all other nodes. Therefore, the closer a node is to the rest of nodes, the smaller the
sum of geodesic distances and the greater its closeness. Equally, the further a node is
to the rest of nodes, the greater the sum of shortest distances to the rest of the nodes
and, consequently, the smallest its closeness [15]. Eigencentrality represents the
advanced version of degree centrality, since it considers not only the number of direct
connections that a node has but, recursively, the number of connections that direct
connections to that node have. Google’s PageRank and Katz centrality measures are
somehow variants of eigencentrality [21].

2.2.7 Complex network analysis of BTC and ETH

The complex networks created from the history of BTC and ETH transactions do not
follow a densification law and do not show a constant average degree [75]. In these
networks, nodes are addresses and edges are transactions. The recommendation to
participants to use different addresses for every transaction explains the existence of
many nodes with very few edges [75]. Exceptionally, some addresses survive day after
day. They normally correspond to payees such as exchanges, miners and donation
receivers. Once they overcome their creation phase and reach a stable stage, Liang
et al. [75] and Javarone et al. [69], both in 2018, and Ferretti and D’Angelo [44], in
2019, observe that the degree distribution of these BTC and ETH transaction
networks, with millions of nodes, i.e., addresses, resemble a power law: a heavy-
tailed distribution with lots of nodes showing very low degrees and a small number
of nodes with high degrees. Both transaction networks are disassortative, i.e., high
degree nodes tend to connect to low degree nodes [75]. Originally, Baumann et al.
in 2014 [11] and Liang et al. in 2018 [75], confirm the scale-free nature of the BTC
transaction network. Interestingly, Baumann et al. identify a small-world network
when they focus on a subgraph containing only the largest transactions [11] and
Liang et al. reach a similar conclusion for BTC when they focus on a monthly
snapshot of the network [75]. However, they do not conclude equally regarding small-
world identification when they consider the entire BTC network given the low average
clustering coefficients [75].
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2.3 System of systems engineering

As Section 2.2 suggests, complex network theory is a useful instrument to treat com-
plexity from mathematics and physics. The latest engineering attempt by Jamshidi
et al. to decompose complexity brings systems engineering up to the next level and
proposes system of systems engineering (SoSE) when the components of the system of
study, also called holons, are complex systems themselves [67, 68]. There is manage-
rial and operational independence in each of the holons or system components while
there is a common purpose for the system of systems (SoS) as a whole [96].

2.3.1 Open systems

The SoS found in Nature are open. Human made SoS can be open or closed. This
research focuses on open human-made SoS. They manage their entropy via open in-
terfaces, through which they exchange energy and information with the environment.
In closed systems, however, entropy grows continuously [7]. Entropy relates to the de-
gree of disorder or randomness of a system. Firt used in thermodynamics, it is linked
to the Third Law of thermodynamics, through which a system reaches a constant
value of entropy, usually zero, when its temperature reaches absolute zero. In Infor-
mation Theory, entropy is linked with the concept of uncertainty. Open systems
interact with the surroundings to manage their complexity, based on a
set of principles: they cooperate (synergy), organise themselves (self-organisation),
create new patterns and properties (emergence) and, finally, they adapt to changes
(reconfiguration) [7]. This thesis uses a related set of open systems properties, pro-
posed by Gorod et al. [47]: autonomy, belonging, connectivity, diversity and evolutive
emergence [87].

2.3.2 Network centricity

Usually, systems that compose an SoS communicate to each other via networks. This
fact is known as network-centricity or net-centricity. In each of these networks, it is
typical to find a service-oriented architecture (SOA). An SOA design includes three
elements: service providers that offer a functionality to network consumers and
make use of service registries to associate providers with consumers [67, 68].

2.3.3 A paradox as a source of innovation

Jamshidi et al. suggest that the existence of paradoxes in a SoS, rather that a source
of confusion, is a real source of innovation [68]. In this research, the focus lies on
how tensions between autonomy and belonging, centralisation and distribution, and,
finally, diversity, develop and evolve [87].
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2.4 Identity and access management

An important aspect of information security is the association of a participant in an
information system with their identification and with the access that they have in
the system. The name of this field is identity and access management (IAM). It is
very rare that an information system does not require to distinguish among its users.
Therefore, most systems require an IAM concept [82]. Public blockchains,
as open networks that transfer digital value among participants, are no exception.
However, the implementation of a resilient IAM concept against intentional attacks
in blockchain implementations is challenging [85].

2.4.1 IAM in distributed systems

Distributed systems usually do not rely on centralised IAM services. They deploy
a service-oriented architecture (SOA) that offers IAM services in multiple and re-
dundant locations. A basic mechanism to manage identities is via data integrity
services, i.e., each participant is linked to an identity and the piece of data related
to that link benefits from a generic data integrity functionality [113]. Open, also
called permissionless, distributed systems pose a bigger identity management chal-
lenge than systems that require future participants to obtain permission to join the
network [113]. This doctoral research discusses how a resilient IAM concept could
have contributed to limit the impact of most of the reported security incidents
suffered by public blockchains [85, 86].

2.4.2 The physical dimension of a digital IAM concept

The W3 Consortium, an international standard-setting community focused on the
growth of the Web, supports the creation of self-sovereign digital identities
based on decentralised identifiers [108] and verifiable credentials [109]. Public
blockchain implementations, such as cryptocurrencies and IoT platforms [42], eventu-
ally require that a digital identity is unequivocally associated with a physical identity
in the brick-and-mortar world. This is especially relevant in those addresses holding
high value. This thesis, through the published articles that it compiles, highlights the
recommendation to apply an effective IAM strategy in public blockchains to increase
their resilience against intentional risk [85, 86]. Appendixes A and B go deeper on
IAM proposals for public blockchains.

2.5 Visibility graphs

The original idea from Lacasa et al. in 2008 [73] of transforming a uni-dimensional
time series into a connected and undirected complex network is presented
in Section 1.4.5. The algorithm that Lacasa et al. propose is uncomplicated but
powerful. For each of the time points in a series, there is a node at a specific "height".
This "height" corresponds to the value of the series for that point in time. There is
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an edge between two nodes if they "see each other", i.e., it is possible to draw a line
between two specific nodes without "crossing" any of the vertical height lines that
"holds" each of the nodes [73]. If the visibility lines are limited only to horizontal
lines, then Lacasa et al. refer to horizontal visibility graphs (HVG). Visibility graphs
that do not have this horizontal line limitation are called natural visibility graphs
or, simply, visibility graphs (VG) [73]. Figure 2-5 depicts two examples of VGs and
HVGs from BTC and ETH daily price time series.

Figure 2-5: Examples of visibility graphs (VGs) in subgraphs 𝑎 and 𝑏 and horizontal
visibility graphs (HVGs) in subgraphs 𝑐 and 𝑑 created from 20 daily price volatility
data points from both Bitcoin (BTC) and Ethereum (ETH) daily price time series.
Price data from investing.com [58, 59]
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2.5.1 Translating data: from time series to graphs

The key contribution from Lacasa et al. is the specific conversion between a structure
in a time series and a structure in a graph. More specifically, periodic series convert
into regular graphs, random series into exponential random graphs and
finally, fractal series produce scale-free networks, i.e., a visibility graph whose
degree distribution is a power law function [73]. Interestingly, although Lacasa et al.
confirm that the network coming from a fractal time series is scale-free, based on Song
et al. [100], Lacasa et al. distinguish different resulting graphs depending on the type
of fractality present in the originating time series: stochastic self-affine fractal series
do not evidence repulsion between hubs and show a VG with a small-world effect, as
it is the case, e.g., with the Brownian motion time series, while deterministic fractal
series show a self-similar VG with hub repulsion [73]. According to how Song et al.
define a self-similar fractal network, only VGs that display hub repulsion, i.e., that
show disassortativity, are fractal networks [100].

2.5.2 VGs analysis in Bitcoin price series

The VG analysis performed in 2018 by Liu et al. serves as inspiration for this doctoral
work [86]. In their search for patterns in the BTC price series, Liu et al. make use of
VG analysis to reach the conclusion that the resulting complex networks are scale-free
and, therefore, their originating price series are fractal [76, 73]. Additionally,
they also study the average clustering coefficient per degree of the resulting VGs
and identify a scale-free behaviour. This result leads them to the conclusion that the
fractality of these networks display a hierarchical structure, consisting of communities
created at different levels but following identical laws [76].

2.5.3 Vulnerability to intentional attacks

It is advisable to define the dual concept of vulnerability before dealing with how
"hub repulsion" contributes to increasing network resilience or making networks more
robust and, therefore, less vulnerable. In information security terms, a vulnerability is
a weakness in a system that can be exploited to perform an intentional attack against
it [82]. In network theory, the exploitation of a vulnerability leads to a structural
change in the network, usually endangering its initial functionality [81]. At this point,
it is key to remember the more constrained definition of a fractal network according
to Song et al. [100], as mentioned by Lacasa et al. [73]. Song et al. state that a fractal
network shows a strong "repulsion", i.e., disassortativity, between the hubs, i.e., the
most connected nodes, on all length scales, do not connect to each other. This renders
them very dispersed. Consequently, Song et al. claim that a robust modular network
requires specifically this self-similar fractal topology displaying "hub repulsion", i.e.,
with hubs not connected between each other. Certainly, this statement confirms that
when nodes are organised around dispersed hubs in self-similar nested communities
with "hub repulsion", they are protected from a systemic failure and they are less
vulnerable to targeted attacks because hubs are not connected to each other. Thus, a
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Figure 2-6: IOTA daily closing price since mid 2017 in USD. Price data from invest-
ing.com [60].

failure in one of those communities will not propagate easily. This is the reason why
fractal, as defined by Song et al., scale-free networks can be more resilient
to attacks than non-fractal scale-free networks [100].

2.6 Internet of things

The first public blockchain implementations, including BTC [79] and ETH [39], aim
at providing a distributed way to transfer digital value from peer to peer, in the form
of cryptocurrencies. However, the use cases for blockchain are broader. Similarly to
transferring value, a blockchain can also transfer any other type of information in
a distributed fashion. Internet of Things (IoT) related data is a relevant use case.
Therefore, this thesis also studies blockchain-based IoT platforms [85, 86]. Data
exchange through the Internet is not a human to human monopoly. In January 2021,
4.66 billion human beings were using the Internet, 92.6% of them via a mobile device
[101]. In 2018, more than 50 billion IoT devices were already connected to the Internet
[72], outnumbering humans. Typical IoT devices are sensors and actuators that use
the Internet as their communication channel to reach the corresponding processing
server and act as digital interfaces to the physical world. Examples of IoT devices are
air quality monitors, thermostats, movement sensors, power switches, cameras, etc.

2.6.1 Blockchain in IoT

IoT devices’ distributed location, their connection to the public Internet and their
limited computing power make them ideal candidates to join a blockchain to accom-
plish their function [85, 86]. Additionally, certain native features of blockchain, such
as its decentralisation and the redundant location of its database, justify the use of
a blockchain, or, more generally, of a distributed ledger, in IoT platforms [43]. In
addition, blockchain technology answers some security requirements of IoT
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Figure 2-7: IoTeX daily closing price since mid 2018 in USD. Price data from invest-
ing.com [61].

platforms, especially those related to data integrity and availability [43]. This thesis
focuses on the two most capitalised, at least until March 2022 [25], IoT platforms that
use a distributed ledger, i.e., IOTA and IoTeX. IOTA, created in 2015, the most capi-
talised one, is an open-source distributed ledger, curiously, implemented in a directed
acyclic graph (DAG), as an alternative to blockchain. There are no transaction fees
and the IOTA token, MIOTA, is traded since 2017 [63]. Figure 2-6 shows IOTA daily
closing prices since mid 2017 and its high volatility periods in 2018 and 2021. IoTeX,
created in 2017, is the second most capitalised IoT platform. It is a multiblockchain
IoT platform that uses permissioned and permissionless subchains. IOTX, the IoTeX
token, started trading as an Ethereum ERC-20 token in 2018 [65]. Figure 2-7 displays
IoTeX daily closing prices since 2018 and how the period with high volatility started
in 2021.
However, IoT still poses some challenges to blockchain such as real-time communi-
cation, limited energy storage capacity per device and transaction costs and speed
[85]. All in all, Fernandez et al. consider that blockchain can impact traditional
cloud-centered IoT applications and disrupt the IoT industry [43]. The analysis
of IAM resilience against intentional risk for blockchain-based IoT platforms [85] and
the intentional risk-based strategy to use 5G for IoT [86], both included in this the-
sis, provide original and actionable content, in alignment with the objectives of this
doctoral work.

2.7 5G technology

Linking the analysis and the conclusions of this thesis with technological challenges
is essential. This way, readers can benefit from applying the discovered learning
points onto real scenarios. For example, as more than 4.32 B people use mobile
technology to connect to the Internet [101], it is worth focusing on the latest mobile
technology generation, named 5G, as a powerful lever to extend the use of DAG
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or blockchain-based IoT platforms and, at the same time, to make them more
resilient against intentional risk.

2.7.1 Higher speed and lower latency

As any new mobile technology generation coming to the market, 5G provides faster
data transmission rates, in the range of up to 1Gbps, and lower latency: around 30
ms [117]. This technology breakthrough contribute undoubtedly to the growth
of the IoT market and the creation of new use cases both in domestic and indus-
trial environments [117], especially in outdoor and remote environments where WiFi
coverage is not economically feasible nor reliable.

2.8 Intentional risk

2.8.1 Security, risk, vulnerability and threat

The concept of security is tightly linked to human beings and their state of being
and feeling protected. The search for protection from any agent that could harm is
a constant activity throughout human history. A concept that is highly coupled with
security is risk. Risk refers to the possibility of something bad happening in
the future. Security measures aim at mitigating risk [21, 82]. A risk materialises
when an agent, a threat, makes use of a weakness, a vulnerability, and causes
harm [82]. The invention of computing and, with it, the processing of data, triggered
the emergence of information security, i.e., all activities involved in protecting
the data and the information systems (IS) that treat them. Using the lens of risk,
information risk management focuses on mitigating the risks to information integrity,
availability and, if required, confidentiality.

2.8.2 Intentional risk in information systems

Traditionally, risk management in information systems inherited actuarial tech-
niques. The insurance industry use heavily these practices, based on historic data
and statistics [21, 82], to quantify the impact and probability of a potential risk
becoming a reality. These tools are adequate to mitigate non-intentional, ac-
cidental risks, present, e.g., in business continuity responses to natural events such
as meteorological catastrophes. However, the benefit of applying reductionist im-
pact and probability studies to mitigate intentional risks, i.e., those risks posed by a
malicious party, is very limited. In 2015, Chapela et al. [21] coined the expression
"intentional risk management" with a special focus on the intention that a threat
agent has to harm an information system to obtain a benefit. Before the work of
Chapela et al., Song et al. referred already to "intentional attacks" [100]. Chapela
et al. state that cybersecurity is the subset of information risk management
that focuses on intentional risk. Any agent that attacks an IS, leveraging on a
high benefit to run risk ratio, renders the two foundational parameters in traditional
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risk management of impact and probability insufficient to manage risks [21, 82]. The
estimations of impact and probability are highly dependant on expert judgement.

2.8.3 Profitability associated to the attacker

The security innovation that Chapela et al. bring forward is to model information
systems as complex networks and to provide clear risk-related values to each of
the nodes. They focus on three dimensions per node: value, anonymity and acces-
sibility and they summarise their contribution in a simple but powerful mathematical
formula [21], presented in Equation (2.3). They define the term profitability asso-
ciated to the attacker (PAR) to quantify intentional risk. Equation (2.3) quantifies
the PAR for a system S as the maximum product of the triplet <value, accessibility,
𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦/𝑙> for each of the nodes, i.e., each of the participant elements in the sys-
tem, named 𝑝. The constant l, called legal robustness, reflects the legal consequences
that an attacker could face in their corresponding jurisdiction. The PAR associated
to a system is a good proxy for intentional risk.

∀ 𝑝 ∈ 𝑆, PARS = max
(︂
𝑣𝑎𝑙𝑢𝑒𝑝 · 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑝 ·

(︂
𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦𝑝

𝑙

)︂)︂
(2.3)

For Chapela et al., this is their entry point to manage intentional risk in information
systems in a more realistic fashion than only relying on the experience of an expert
actuary. The use of complex networks analysis to manage intentional risk is applicable
to any technology implementation and information system susceptible to be modelled
as a complex network. In this doctoral thesis, I analyse the complex networks
created by BTC, ETH, IOTA and IoTeX blockchain implementations based on
network theory references such as Albert et al. [2], Boccaletti et al. [15] and Newman
[81] with the objective to increase their resilience against intentional risk
or, in other words, to reduce their PAR.

2.8.4 Resilience against intentional risk

Material resilience in engineering refers to the capacity to recover its original shape
after the force causing its deformity ceases [70]. In psychology, resilience refers to
the ability to recover from adversity [105]. Taleb goes one step further and pro-
poses the concept of antifragility when an entity gets stronger out of a specific stress
[104]. This research work suggests pragmatic measures to improve resilience of
blockchain systems against intentional risk.
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3. Methodology and implementation

This chapter presents the research methodology applied in this doctoral work. It
focuses on a novel methodology, at the crossroads of SoSE, network theory, visibility
graphs and intentional risk management. It also explains its implementation. The
aim is to answer the question of how to improve the resilience against intentional risk
in blockchain implementations with the help of complex network analysis. For that
purpose, the chapter follows a bottom-up approach to explain the methodology: first,
it describe the methodology applied in each of the published articles and, second, it
finds the common foundations among them and propose a general framework to study
intentional risk in blockchain implementations.

3.1 A three-element methodology to manage inten-
tional risk

The first milestone of this thesis is to facilitate the understanding of public blockchains.
For this, the methodology suggested in Section 3.2 models BTC and ETH, the two
most relevant blockchain implementations, as a System of Systems and uses the com-
ponents proposed by Chapela et al. [21] to reduce profitability associated with at-
tackers. The second milestone is to improve identity and access management (IAM)
resilience against intentional risk in blockchain implementations. The methodology
presented in Section 3.3 accomplishes this task using IOTA and IoTeX as real life
examples and it compares them with BTC and ETH networks. This methodology
builds complex networks from public blockchain transaction data and uses, again,
the parameters proposed by Chapela et al. [21] to refer to IAM. The third milestone
is the creation of an intentional risk-based strategy for blockchain. Section 3.4 de-
scribes the related methodology. It introduces a new element, visibility graphs (VG),
to construct complex networks from time series, and proposes a strategy to manage
intentional risk with the help of the formula proposed by Chapela et al. [21] and
in the realm of 5G, a mobile technology standard. In this occasion, the blockchain
implementations studied are IOTA and IoTeX as well.
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3.2 Methodology to understand BTC and ETH

As Sections 1.2 and 3.1 state, the first objective of this research is to facilitate the
understanding of public blockchains such as BTC and ETH. For that, I model both
blockchain-based cryptocurrencies as an open SoS of public blockchains. More specif-
ically, I propose a five-step methodology to model a system composed of systems, i.e.,
a "supersystem", as an open SoS. This methodology is based on the references used
in Section 2.3 to present the state of the art in SoSE.

3.2.1 Building a System of Sytems

In 2009, Mo Jamshidi edited the book titled "System of Systems Engineering" [68]
and provided a collection of methods to disentangle the complexity present in "super-
systems", i.e., systems composed of systems. The first step to frame a "supersystem"
into a SoS is to identify its overall purpose, i.e., a common goal for the SoS [96]. The
second step is to confirm that the system components are open and that their interac-
tion with the environment is a way to manage their growing complexity [7]. The third
step focuses on the net-centricity of the SoS. The network is the connecting element
for each of the system components and for the SoS. The fourth step consists of the
analysis of the SoS characteristics that propose Gorod et al. [47]: autonomy, belong-
ing, connectivity, diversity and evolutive emergence. For each of these properties, I
build a balance panel to analyse whether they tilt towards a system of highly related
subsystems or towards a fully-fledged SoS. Finally, I complete this methodology with
an analysis of the vulnerabilities that are present in the SoS and the threats that pose
risks to the SoS. Table 3.1 summarises this methodology to analyse a "supersystem"
as a SoS. This thesis uses this methodology to build the SoS of public blockchains
and considers BTC and ETH as two key holons in it.

Table 3.1: 5-step methodology to build a SoS.

Step Focus Rationale

1 Common goal Definition of SoS: Component systems sharing an ultimate goal
2 Open & Complex Continuous evolution: Open systems with growing complexity
3 Network-centric Components use networks to communicate
4 5 Characteristics Autonomy, belonging, connectivity, diversity and evolutive emergence
5 Risk analysis Vulnerability and threat analysis (confirmation of intentional risk)

3.2.2 Reducing the profitability associated to the attacker

Once the identification and the full description of an SoS takes place, I check the re-
sults of the fifth step mentioned in Section 3.2.1, the vulnerability and threat analysis,
to confirm whether intentional risk appears as a plausible threat affecting the SoS.
Table 3.1 includes this detail in step five. In general, if the second step of the method-
ology proposed in Section 3.2.1 validates that the system of study is open, there will
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be interactions with the environment and, almost undoubtedly, there will be threat
agents willing to exploit a vulnerability in the system to obtain a benefit, as explained
in Section 2.8.3. I then use Equation (2.3) to propose a series of generic, although
practicable, measures that would increase the resilience of the system against inten-
tional risk, i.e., reduce the PAR (profitability associated to the attacker) . Section
2.8.3 explains the concept of PAR as a proxy for the intentional risk that a system, or
a SoS, is subject to. These measures target the reduction of the dimensions identified
by Chapela et al. [21]: value, accessibility and anonymity. Additionally, the increase
of 𝑙, the legal robustness, is a complementary measure.

Table 3.2: Strategies to reduce intentional risk.

Dimension Action Mitigating measures Stage

Value Reduction Distribution across many nodes Design and Operations
Accessibility Reduction Improvement of access controls Design, development and operations
Anonymity Reduction Enhance IAM Design,development, operations and governance
Legal robustness Increase International alignment Operations and governance

Table 3.2 lists the portfolio of strategies that are available to reduce intentional risk.
It links each dimension with an action, a high level description of possible mitigating
measures and an initial indication on the most suitable lifecycle stages of the system
for their implementation.

3.2.3 Implementation

Sections 3.2.1 and 3.2.2 propose a methodology that can be applied, first, to explain
any complex system composed of multiple systems and, second, to identify strategies
that would increase its resilience against intentional risk. The article titled "mod-
eling Bitcoin plus Ethereum as an open System of Systems of public blockchains to
improve their resilience against intentional risk" [87], published in 2022, and available
in Chapter 4 of this thesis, implements this methodology, first, to understand the two
most capitalised public blockchain implementations, i.e., BTC and ETH [23] and,
second, to increase their resilience against attacks.

3.2.4 Data collection

The data used to model BTC and ETH as a SoS is public, very diverse and compre-
hensive. Table 3.3 provides examples of the main types of data sources consulted,
related to BTC, ETH and other public blockchain implementations.

3.3 Methodology to improve IAM resilience against
intentional risk

The second objective, as Sections 1.2 and 3.1 present, is to improve IAM resilience
against intentional risk in blockchain. I study this security aspect with real data
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Table 3.3: Data used to model BTC and ETH as a SoS.

Focus Data sources (examples)

Common goal Foundational BTC and ETH papers [79, 39, 38].
Open & Complex Open-source development docs and fora, trading data, transaction data

[14, 39, 58, 59].
Network-centric Network APIs, similar info from other public blockchains

[14, 40, 55, 64, 66].
Autonomy BTC and ETH improvement proposals (BIP and ERC) [13, 35]
Belonging Mining power and governance data [106, 45]
Connectivity Wrapped BTC (WBTC) and interledger protocol (ILP) [87]
Diversity Leadership and control structure, developer activity [87]
Evolutive emergence BTC and ETH market analysis, fungible and non-fungible ETH tokens

[87, 57, 22]
Risk analysis Holistic SWOT, intelligence and incident analysis [82, 87]

extracted from four public blockchain implementations. As mentioned in Section 2.6,
there are even more IoT devices connected to the Internet than human participants.
Therefore, I research two blockchain use cases:

• implementations in which most participants are human beings: the two most
capitalised blockchain-based cryptocurrencies: BTC and ETH [23].

• implementations in which most participants are IoT devices: the two most cap-
italised IoT platforms [25] that are based on a distributed ledger: IOTA, using
a directed acyclic graph (DAG), and IoTeX, using a blockchain, as explained in
Section 2.6.

This doctoral thesis considers market capitalisation as a proxy to identify the most
popular, and hence used, blockchain projects. I design a methodology to characterise
each of these four public blockchain implementations as a complex network. In this
way, I can use network theory, a branch of knowledge that studies complex non-linear
systems, whose state of the art presents Section 2.2, to learn about real blockchain
implementations. This methodology consists of two stages: the creation of the com-
plex networks out of the blockchain transaction data and the extraction of properties
from those networks to propose IAM related improvements.

3.3.1 From public blockchains to complex networks

The methodology stage to create and characterise the complex network consists of
three steps:

• the first step is to collect as much blockchain data as possible to create the
complex network that will be the object of analysis. Public blockchain imple-
mentations usually provide, through an Internet site called explorer, on-chain
search functionalities. These explorers filter through the entire blockchain trans-
action history based on parameters such as address, block number or transaction
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Table 3.4: 9-step methodology to improve IAM resilience via complex networks.

Step Focus Rationale

From public blockchains to complex networks
1 Collection of blockchain data Required input to build the complex network
2 Extract transaction data Create an undirected and non-weighted graph
3 Characterise created networks Calculate degree distribution and basic parameters

From complex networks to IAM
4 Identify hubs Analyse degree distribution
5 Study assortativeness Draw all connections to LCC to identify disassortative networks
6 Signs of small world Using network density and clustering coefficients
7 Scale-free networks Confirm the importance of highly connected nodes (hubs)
8 Heavy-tail distributions Identify power law fits
9 Link with IAM improvements Translate network properties into IAM actions

identifier. The most advanced ones publish even an application programming
interface (API). Blockchain explorers and related APIs are not standardised:
they offer different functionalities and require a specific syntax. The challenge
in this step is to download sufficient on-chain data as possible using these ex-
plorers and their APIs to reach relevant conclusions.

• the second step is to extract, out of the transaction data, the sender and des-
tination addresses of each downloaded transaction. These addresses are the
keystone to build the network: every node represents an address and an edge
between two nodes represents a transaction between two addresses. The re-
sulting complex network is the most basic construct possible: an undirected
and non-weighted graph. At this point, it is worth highlighting the challenge
of having a different syntax in each analysed blockchain implementation. This
fact requires the writing of an ad-hoc piece of code for each blockchain at stake.

• the third step is to calculate basic complex network parameters such as average
degree, average clustering coefficient, density, graph connectivity, graph com-
ponents and, finally, degree distribution. This analysis constitutes the bedrock
for the reached conclusions on IAM resilience against intentional risk. The
challenge in this case is the available computational capacity.

3.3.2 From complex networks to IAM

The methodology stage to connect the complex network analysis with IAM consists
of six steps:

• identification of highly connected addresses: the collection of origin and desti-
nation addresses, extracted out of the available transaction data, gives shape
to the transaction network. The next step of the methodology is to identify,
via the degree distribution, whether there are many nodes, i.e., addresses, with
low degrees and a small number of nodes with high degrees. The existence of
highly connected addresses is an element to consider in IAM recommendations
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as attacks to highly connected nodes, i.e. hubs, impact the network [9, 85, 86].
Consequently, at least those nodes require strong IAM measures.

• study of assortativeness: the plot of the largest connected component (LCC) in
the resulting transaction network and all nodes connected to it through one or
two edges simplifies the task to identify disassortativity, i.e., when low degree
nodes tend to connect with high degree nodes.

• search for small world networks: as Section 2.2.2 explains, small world net-
works show a small average shortest path length between pairs of nodes and a
relatively high clustering coefficient. This methodology uses three parameters
to identify this structure: first, connection or non-connection of the resulting
network, as small worlds happen in connected networks. Second, it calculates
the network density instead of the average shortest path length, as the latter
is computationally intensive. Third, the average clustering coefficient finally
determines whether the resulting network is a small world network.

• search for scale-free networks: Section 2.2.3 mentions that scale-free networks
show lower clustering coefficients than small world networks and confirms that
the influence of large nodes in scale-free networks is greater than in small worlds.
This last point is key for a set of IAM actions. Section 2.2.3 highlights as well
that some scale-free networks can also display a small-world structure.

• analysis of heavy-tailed distributions: the identification of power law fits just
based on the graphical appearance of a degree distribution on log-log axes is not
accurate [4]. Therefore, this methodology not only plots the degree distribution
but it also checks PDF and CCDF and their fits to understand and to assess
the goodness of fit of power law functions.

• link with IAM improvements: finally, identified network properties trigger a set
of IAM related recommendations.

Table 3.4 summarises the methodology proposed to improve IAM resilience against
intentional risk in complex networks created from blockchain implementations.

3.3.3 Implementation

Sections 3.3.1 and 3.3.2 put forward a methodology that, first, allows the study of
transactions occurring in a blockchain implementation through an undirected and
non-weighted network. Second, it looks for signs of highly connected nodes and
studies whether the network adopts the shape of a small world or, alternatively, it
resembles a scale-free network or, even, displays both structures simultaneously. The
article titled "identity and access management resilience against intentional risk for
blockchain-based IoT platforms" [85], published in 2021, and reproduced in Chapter
5 of this thesis, follows this methodology. First, it characterises IOTA and IoTeX as
complex networks and, second, it sheds light on IAM resilience against intentional
risk in blockchains, in this case, related to IoT. The article also briefly analyses BTC
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and ETH network degree distributions to compare them with the ones obtained for
IOTA and IoTeX.

Table 3.5: Transaction data downloaded from IOTA, IoTeX, BTC and ETH public
blockchain explorers. An epoch in IoTeX is 8640 blocks.

Token Time window Duration Addresses Transactions

IOTA 23 December 2020 24 hours 1068 22960
IOTA 25 December 2020 24 hours 1068 23225
IoTeX epoch 13910 (December 2020) 24 hours 3190 10222
IoTeX epoch 14000 (December 2020) 24 hours 3709 13935
BTC 21-23 December 2020 (278 blocks) 46 hours 1241548 1385212
ETH 26 December 2020 (11 blocks) 3 min 1677 1363

3.3.4 Data collection

I use the BTC [14], ETH [40, 55], IOTA [64] and IoTeX [66] explorers and APIs to
download transaction data. Each consulted explorer and API is different and requires
customised pieces of code to create and analyse the resulting complex networks. In the
case of IOTA and IoTeX, the downloaded transaction data involves the 100 and the
500 richest addresses respectively. However, in the case of BTC and ETH, transaction
data come from specific time windows. The reason to use the richest addresses as entry
points to download transaction data in IOTA and IoTeX is twofold: first, it is a simple
way to assess assortativity in the transaction network, i.e., if rich addresses would
transact between each other, the graphical representation of the largest connected
component (LLC) would show assortativity, and second, their APIs facilitate this
data extraction. I use version 3.6 of the Python programming language, including
open source packages such as networkx [80] and the powerlaw library by Alstott et
al. [4] to code the required download and analysis snippets. It is worth mentioning
the challenge to balance the need to obtain sufficient data for this analysis with
the computing power available to the author: the windows of time to download
transaction data are limited compared with the complete timeline of the blockchain,
as Table 3.5 shows. Nevertheless, the results obtained reach insightful conclusions.

3.4 Methodology to create an intentional risk-based
strategy

The third objective, as Section 1.2 and 3.1 present, is to create an intentional risk-
based strategy for blockchain implementations. I explore this goal within the context
of the two most market capitalised IoT platforms, i.e., IOTA and IoTeX [25]. The
methodology includes four elements:
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• the use of a complementary and more accessible data set related to public
blockchains: their daily market price.

• the transformation of a time series into a complex network via visibility graphs.

• the study of the impact of 5G, a mobile technology standard, on these IoT
platforms.

• the application of intentional risk as a lever to understand the mentioned impact
of 5G on IoT.

This methodology expands into three stages: first, the transformation of a time series
into a complex network, second, the structural analysis of the resulting complex
network and, third, the creation of an intentional-risk strategy that, in the context
of a specific technology, would protect from ill-intentioned actors aiming to extract
value out of the network.

3.4.1 From time series to complex networks

The first stage in this novel methodology is to obtain the required blockchain-related
input data. The challenge to retrieve sufficient transaction data from public blockchain
explorers, as explained in Section 3.3.1, plus its intrinsic computational complexity
encourage this author to use alternative input data sets: daily market prices are eas-
ily available and less voluminous than transaction data and they provide insights on
how these IoT-related token markets behave. I therefore create a daily price volatility
time series based on market data using Equation (3.1).

𝑝𝑟𝑖𝑐𝑒 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 = log

(︃
𝑝𝑟𝑖𝑐𝑒𝑚𝑎𝑥

𝑝𝑟𝑖𝑐𝑒𝑚𝑖𝑛

)︃
. (3.1)

As the main research tool of this doctoral thesis is complex network analysis, I use
visibility graphs (VG), the original instrument proposed by Lacasa et al. [73], to
transform uni-dimensional time series into connected and undirected complex net-
works. This imaginative approach from Lacasa et al. facilitates the analysis of a
time series using network analysis techniques, as Section 2.5.1 states. Although there
are other methods to map a time series to a complex network, such as the conver-
sion into nodes of periods extracted from aperiodic time series [76], the most visual
and straightforward way is the one by Lacasa et al. Therefore, I construct both the
natural visibility graph (VG) [73] and the horizontal visibility graph (HVG) [77].

3.4.2 Structural analysis of the resulting complex network

Once the complex network is ready, the second stage of this methodology follows a
four-step analysis process:

• description of the network via the degree distribution and basic network fea-
tures such as number of nodes and edges, average density and transitivity. The
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number of nodes and edges informs about the size of the network. The density
hints at the re-usability of the nodes and the transitivity is a first approximation
towards the existence of communities.

• study of the heterogeneity of the network by comparing their degree distribution
with a power law function. The comparison is not only graph-based but also
founded on the use of non-linear least squares to fit a power law function and,
additionally, on the PDF and CCDF as proposed by [4].

• fractality analysis via the average of clustering coefficients per degree 𝐶(𝑘). If
they display a power law behaviour, this means that the network shows a fractal
behaviour and forms communities at different scales in a similar way, i.e., the
network is hierarchical [76].

• description of the number and location of communities present in the network.

3.4.3 An intentional risk-based strategy

The final stage in this methodology is the production of a strategy to manage in-
tentional risk in the analysed blockchain implementations and it is based on three
elements:

• the analysis performed in Section 3.4.2 on the network defined by a crypto-token
market.

• the functionality that a specific technology can provide to blockchain implemen-
tations (in this case, 5G).

• the intentional risk parameters proposed by Chapela et al. [21].

Table 3.6 summarises this methodology to create a strategy to mitigate intentional
risk in blockchain implementations with the help of complex network analysis.

3.4.4 Implementation

The methodology described in Sections 3.4.1, 3.4.2 and 3.4.3 provides guidance to
come up with an intentional risk-based strategy in a complex system such as a public
IoT blockchain and contributes to understand the impact that a specific technology,
such as, in this case, 5G, can bring to this scenario. The article titled "visibility graph
analysis of IOTA and IoTeX price series: an intentional risk-based strategy to use 5G
for IoT" [86], published in 2021, and included in Chapter 6 of this thesis, implements
this methodology, achieving the third objective of this doctoral work: the creation of
an intentional risk-based strategy, in this case, focused on IOTA and IoTeX as IoT
platforms that can leverage the use of 5G, a mobile technology standard.
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Table 3.6: 9-step methodology to build an intentional risk-based strategy for
blockchain implementations using complex networks.

Step Description

From time series to complex networks
1 Obtain daily price time series of the blockchain token, e.g., IOTA and IoTeX
2 Transform the time series into two complex networks via VG and HVG [73, 77]
3 Analyse the resulting network calculating degree distribution plus basic parameters

Structural analysis of the complex network
4 Compare degree distribution with a power law to explain their linking behaviour
5 Study fractality via average clustering coefficient per degree 𝐶(𝑘)
6 Compare 𝐶(𝑘) with a power law to confirm a hierarchical structure
7 Identify and locate communities in the VG and HVG networks

Creation of an intentional risk-based strategy for a specific technology
8 Analyse how features of a technology impact these blockchain platforms
9 Produce an intentional risk-based strategy for this scenario

Table 3.7: Software used to implement the methodology presented in Section 3.4.

Step Software Purpose

1 web browser Download price time series from data provider [57]
2 visibility_graph [46] Create visibility graph (VG)
2 visibility_algorithms [114] Create horizontal visibility graph (HVG)
3 metaknowledge [94] Basic complex network analysis
3&5 networkx [80] Network analysis & degree distribution & clustering coefficient
4&6 curve_fit [24] Goodness of fit of power law function
4&6 powerlaw [3] PDF and CCDF goodness of fit of power law
7 community_api [5] Community identification
7 cylovain [6] Community identification

3.4.5 Data collection

IOTA and IoTeX market price data comes from investing.com, an Internet-based stock
market data provider [57]. The data analysis setup that implements this methodol-
ogy includes the software elements presented in Section 3.3.4 plus additional Python
modules. Table 3.7 lists these relevant software and Python code modules, together
with the methodology step in which they are employed:

3.5 The resilience triangle

To complete this chapter on methodology and implementation, I propose the "re-
silience triangle" model. The methodologies presented in Sections 3.2, 3.3 and 3.4
do not play in isolation. All three pieces are indispensable and interconnected com-
ponents to solve a greater academic puzzle. A puzzle that provides insight into
how to model blockchain implementations using complex networks to manage, and
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ultimately, to improve, their resilience against intentional risk, which is the main ob-
jective of this doctoral thesis, as Section 1.2 states. Furthermore, this three-element
methodology, the "resilience triangle", can be applied to manage intentional risk, not
only in blockchain, but also in other informational constructs. For that purpose,
the work of Chapela et al. [21] on intentional risk management acts as the guiding
thread throughout the three methodologies presented in this chapter. Their simple
but far-reaching intentional risk formula, represented by Equation (2.3), remains the
keystone of this doctoral thesis.
Figure 3-1 suggests that the set of methodologies proposed in this thesis constitutes
a complete toolkit to answer the research question.

Figure 3-1: Visualisation of the methodologies proposed in this doctoral thesis, the
objectives of this research and the published articles as listed in Table 1.3.
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4. Modeling Bitcoin plus Ethereum as
an open System of Systems of pub-
lic blockchains to improve their re-
silience against intentional risk
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Abstract: In this article, we model the two most market-capitalised public, open and permissionless
blockchain implementations, Bitcoin (BTC) and Ethereum (ETH), as a System of Systems (SoS)
of public blockchains. We study the concepts of blockchain, BTC, ETH, complex networks, SoS
Engineering and intentional risk. We analyse BTC and ETH from an open SoS perspective through the
main properties that seminal System of Systems Engineering (SoSE) references propose. This article
demonstrates that these public blockchain implementations create networks that grow in complexity
and connect with each other. We propose a methodology based on a complexity management lever
such as SoSE to better understand public blockchains such as BTC and ETH and manage their
evolution. Our ultimate objective is to improve the resilience of public blockchains against intentional
risk: a key requirement for their mass adoption. We conclude with specific measures, based on this
novel systems engineering approach, to effectively improve the resilience against intentional risk of
the open SoS of public blockchains, composed of a non-inflationary money system, “sound money”,
such as BTC, and of a world financial computer system, “a financial conduit”, such as ETH. The
goal of this paper is to formulate a SoS that transfers digital value and aspires to position itself as a
distributed alternative to the fiat currency-based financial system.

Keywords: blockchain; Bitcoin; Ethereum; System of Systems; System of Systems Engineering;
complexity; complex networks; emergence; intentional risk

1. Introduction
1.1. Epigraph

The quest to manage complexity has been present in human beings since early days.
Equally, the need to register value transfer and ownership. Throughout History, we have
created and taken part in complex systems with non-linear relations between their compo-
nents. First, we focus on public blockchains, a technology that creates a “supersystem”,
also called a “network of networks” or a “system of systems”, that registers the transfer
of digital value, even with a potential link to physical value. We use complex network
analysis and Systems of Systems Engineering to “digest” its complexity. We identify how
public blockchains, such as Bitcoin and Ethereum, complement each other and emerge as an
alternative to the traditional fiat currencies. Second, we propose a set of multi-disciplinary
measures that, based on recent advances in intentional risk management, hint at how to
improve resilience in this System of Systems of public blockchains.
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1.2. Blockchain

We first explain the concept of blockchain. A blockchain finds its roots in cryptography
and distributed systems [1]. It has a simple motto, i.e., “the longest chain wins”. It is a
type of distributed database that stores records in a linked collection of blocks [2] showing
3 key properties. First, each block is unequivocally linked to the following block by hash-
function cryptography [2]. A hash is a mathematical function that provides data integrity
by transforming an input into a unique encrypted output of a fixed length, i.e., validated
blocks cannot be tampered with. Second, all transactions in a blockchain are accessible,
i.e., they can be read by all users. In every transaction, a participant uses a unique private
key to sign it. Third, the complete register of blocks is kept in all connected full nodes.
This provides a high degree of availability. Sections 1.3 and 1.4 present the two most
market-capitalised, public, open and permissionless blockchain implementations, Bitcoin
(BTC) and Ethereum (ETH) [3].

1.3. Bitcoin

Bitcoin (BTC) is the pioneer of the current public, open and permissionless blockchain
implementations. It is a crypto-currency that was launched in January 2009 following
the seminal paper by Satoshi Nakamoto [4]. This author, or group of authors, decided
to remain anonymous. Nakamoto’s nine-page seed paper talks about a “peer-to-peer
electronic cash system” [4]. It is an open-source and distributed transaction system that
acts as an electronic analogue of cash located in the online world [5]. Its main feature is
decentralisation, since there is no central authority responsible for issuing bitcoins and it
is not necessary to involve a third party to make online transfers. In blockchain terms, a
node (or peer) refers to any machine connected to the blockchain that keeps a full copy of
its distributed ledger. Slowly but surely, Bitcoin is becoming a global digital value reserve,
initially outside the traditional financial system. However, a growing number of players
belonging to the mainstream financial system have started to accept BTC and include it in
their investment portfolio. This digital store of value could replace the gold standard and
become, in the future, the global digital reserve currency [6].

1.4. Ethereum

Ethereum (ETH) is an example of a public blockchain implementation that was created
after BTC. ETH is a public, open and permissionless blockchain platform that runs code, i.e.,
smart contracts [7]. It is a shared global infrastructure that transports digital value. Ether
is its native crypto-currency. The project started in 2014. Vitalik Buterim was one of its
creators [8]. The ETH blockchain provides a decentralised Turing-complete virtual machine,
called the “world computer”, with more advanced scripting functionality than the pioneer
BTC. Programming languages that use conditional branching and arbitrary memory-stored
variables are Turing-complete. ETH and BTC do not compete with each other. They have
different purposes and applications. While BTC plays the role of a digital reserve asset,
ETH acts as the blockchain engine for an ample ecosystem of business cases. All of them
benefit from the properties of a public blockchain with Turing-complete computing power.
Examples are decentralised finance (DeFi), as mentioned in Section 4, Internet of Things
(IoT)-related tokens [9,10] and an extensive variety of other fungible and non-fungible
tokens (NFTs). Fungible tokens are exchangeable, i.e., similar to traditional coins, while
non-fungible tokens are unique and distinguishable.

These complementary use cases for BTC and ETH lead us to research scientific methods
that can jointly study their complexity. We use complex network theory and SoSE to
understand how we can improve their resilience against intentional risk. Keeping BTC and
ETH secure is pivotal for their mass adoption. We assume that these public blockchains
will continue growing: BTC as a global digital store of value and ETH as an engine for
decentralised applications. After introducing the blockchain technology and two of their
most relevant public implementations, we move our focus, in Sections 1.5 and 1.6, to the
tools we use to “digest” the complexity that we find in public blockchains.
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1.5. Complex Networks

Complex networks is a field of study at the crossroad between mathematics, statistics,
physics and sociology. It focuses on networks: systems composed of many interconnected
dynamical units. Networks are composed of nodes, also called vertices (not to confuse this
meaning of node with the one related to a computer that holds a copy of a blockchain, as
explained in Section 4.2), and edges, also called links and arches. Network theory aims to
capture the global properties of such systems by modeling them as graphs whose nodes
represent the dynamical units, and whose links show the interactions between them [11].
Anchored in graph theory, it uses statistical analysis to describe networks with many
nodes and edges between them. It is especially useful to describe systems with non-linear
relations. The degree of a node is the number of edges connected to it. Complex network
theory studies statistical properties of large-scale graphs such as degree distributions to
model the structure and behaviour of these networks [12]. We study the complex networks
that BTC and ETH spawn to understand their behaviour. We consider each of these complex
networks a system within the “supersystem of public blockchains”. This provides us with
the opportunity to use SoSE as a novel approach to model public blockchains such as BTC
and ETH.

1.6. System of Systems Engineering

The meta-definition of SoS used by [13] is a “supersystem” comprised of components
that themselves are independent complex operational systems and interact with each other
to achieve a common goal. Jamshidi specifies the following characteristics for SoS [13]: they
are large-scale integrated systems; heterogeneous systems that can operate independently;
they are networked together for a common goal. Typical real-life examples of Systems
of Systems are the health care SoS, the communication and navigation SoS and the US
Department of Defence SoS [13]. A very common way for these systems to interact and
exchange information is through a network [13]. Notably, if these networks of networks
are interdependent, they become significantly more vulnerable to random failures and
targeted attacks than single networks. Single networks usually exhibit cascading failures
that can rapidly provoke a system collapse. Understanding the system characteristics of
BTC and ETH that could lead to a failure that propagates is a fundamental step in ensuring
that public blockchains could be granted the level of trust required to effectively become
widely recognised assets in the global economy [14]. Once we have identified how we
study complexity in public blockchains, Section 1.7 presents intentional risk management
with the objective of improving resilience in the System of Systems of public blockchains.

1.7. Intentional Risk Management

Risks proceed from accidental (non-intentional) and intentional sources. While non-
intentional risks have been thoroughly studied [15] by traditional risk management method-
ologies, intentional risk management requires a different management approach as actuarial
information does not provide sufficient insight on potential attacks. An attacker will target
a specific asset depending on the value of the asset for the attacker, the risk they run to
launch the attack and the cost they incur to execute it [16]. The most attractive assets to
attack are those with a high value for the attacker. Among these, assets that are highly
accessible for the attacker and tend to keep the attacker’s anonymity will be the most
targeted [16]. Both BTC and ETH fulfil these characteristics and are already becoming
a prime target for cyber-attackers, in particular through crypto-currency exchanges [17].
Intentional risk managers need to identify which assets are the most coveted objectives for
the attackers so that they can protect them more effectively. In this article, we apply the
concept of intentional risk management to BTC and ETH to increase the resilience of this
“supersystem”.
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1.8. Structure of the Paper

We have introduced the concepts upon which we anchor our hypothesis to model
public blockchains such as BTC and ETH as complex networks that create a SoS of public
blockchains to better understand and manage their complexity and, more specifically, their
resilience against intentional risk. The rest of the article is organised as follows. Section 2
describes the state-of-the-art with regard first to blockchain, BTC and ETH as complex
networks, second to SoSE and third to intentional risk management. Section 3 presents our
methodology to model BTC and ETH as SoS. This section enumerates the SoS characteristics
that we study in BTC and ETH. Section 4 describes the results of our analysis. Section 5
draws conclusions on the utility of SoSE to understand public blockchains and on how to
improve resilience in a SoS devoted to transferring digital value and composed of BTC,
a stable non-inflationary money, and ETH, a world financial computer system. Finally,
Section 6 suggests future lines of work.

2. Related Works
2.1. Blockchain: When Technology Changes Society

Blockchain can be used, among many other use cases, to create a ledger, i.e., a chain of
blocks with records representing financial transactions. Some digital ledgers are not based
on chaining blocks but on directed acyclic graphs (DAG), Suciu et al. [18] compare both
design options.

This is the case of IOTA, a public Internet of Things (IoT)-focused distributed ledger.
Different digital ledgers can interact between each other, e.g., Thomas et al. [19] propose a
protocol for interledger payments. Ripple uses the Interledger protocol (ILP) to connect
bank systems across borders. The Ripple token (XRP) provides a standardised settlement
layer across different digital asset ledgers [20]. The potential impact of blockchains in
our society is immense. Blockchain is a politically non-neutral technology close to the
social contract ideas of Hobbes and Rousseau [21]. There are many blockchain use cases in
finance [22–25], governmental processes [2], supply chain management [26], identity man-
agement [9], legal contracts [27], health data [28], land registry [29], transport systems [30]
and even cybercrime trading [31], among many others. Blockchains transcend the field of
technology. Reijers et al. [21] mention that blockchain has implications on sociology and
philosophy and Malone [32] introduces the idea of a potential end to central banking with
the shift from fiat currencies to crypto-currencies. Understanding public blockchains better
and explaining their potential in an unbiased manner to society would lead to broader
adoption [33].

2.2. BTC and ETH: Public Blockchains as Complex Networks

In our quest to model BTC and ETH as a SoS, we first provide a collection of references
that study both BTC and ETH using complex network theory to describe the behaviour
of these networks. A comprehensive taxonomy is an optimal entry point for a systematic
approach to blockchain implementations [34,35]. The existing literature on complex net-
work theory addressing BTC is a valid sign of the complexity of the BTC network. One of
the first complex network analyses of BTC transaction and user networks dates already
from 2011 [5]. Reid and Harrigan [5] treat two networks, one in which BTC transactions
are nodes and links are coin flows, and another one in which users, i.e., a collection of
addresses, are nodes and links are coin flows as well. In the mentioned paper, the objective
was to study anonymity in the BTC network. Later on, in 2014 and 2018, respectively, a new
complex network analysis of BTC focused on preferential attachment confirmed that “the
rich get richer” in BTC [36,37]. From a purely computational standpoint, a big data analysis
framework facilitates the study of the BTC network [38]. The links of BTC with society
in general and with financial markets in particular [39–41] indicate, as well, a degree of
complexity that transcends traditional systems engineering.

In 2018, the degree distribution, degree assortativity, clustering coefficient and largest
connected nodes in both BTC and ETH were both objects of study from a complex network
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viewpoint [42]. These network properties display evolutionary characteristics, i.e., they
vary throughout time: their transaction networks are constantly changing with relatively
low node and edge repetition ratios. According to [42], unlike typical growing networks,
BTC and ETH networks do not always densify over time. This fact confirms the complexity
of both BTC and ETH as systems. Complex networks analysis focused on ETH, similarly to
those rotating around BTC, shows, as well, the system complexity that the ETH network
entails. In 2018, Somin et al. [43] identify power law properties in both in and out degree
distributions of the ETH transaction network. Guo et al. [44] reach similar conclusions in
2019. In 2020, Lin et al., Ferretti and D’Angelo and Somin et al. [45–47] continue this line of
work regarding power law functions in degree distributions in both ETH and ERC20, i.e.,
ETH-based token networks. Collibus et al. [48] confirm this fact in 2021 and conclude that
their transaction networks present super-linear preferential attachment.

A power law behaviour in a degree distribution reveals that there is a low number
of nodes, in this case BTC and ETH addresses, receiving and starting a high number
of edges, in this case BTC and ETH transactions, respectively, and a very high number
of nodes with a very low number of edges. A typical “rich get richer” phenomenon.
Figure 1a,b, inspired by [9] and produced with our own Python code [49], shows two
examples of this degree distribution behaviour for BTC and ETH, present even in very
short windows of time. Table 1, a simulation parameters table, shows the details of these
time slots.

(a) (b)

Figure 1. Typical power-law transaction degree distributions. (a) BTC degree distribution. (b) ETH
degree distribution.

Table 1. Simulation parameters related to BTC and ETH degree distributions.

Blockchain
Name

Window
Duration Date Number of

Blocks

Average
Number of

Transactions per
Block

BTC 48 h 21 December 2020 278 2000
ETH 2 min 26 December 2020 10 144

2.3. Approaching Systems Engineering: Open vs. Closed Systems

The study of complexity in Engineering has been a challenge for the last centuries.
Already in 1956, Schlager [50] qualified The Bell Telephone Laboratories as the first or-
ganisation to use the term systems engineering: “when satisfactory components do not
necessarily combine to produce a satisfactory system”, systems engineering comes into
play. In 2008, Jamshidi [13] edits a collection of articles focused on complex systems whose
elements are complex as well. This new field is called System of Systems (SoS) and the
discipline to design, integrate and manage these systems is System of Systems Engineering
(SoSE).

Traditionally, Systems Engineering (SE) distinguishes between open and closed sys-
tems. SoSE follows a similar approach. We find the first SoS in Nature [51]. Natural SoS
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are continuously developing and evolving. They are self-organised and self-regulated and
respond to evolving needs [51]. These properties are known as open systems characteris-
tics. Examples of these are open interfaces, modular design principles and reconfigurable
architectures. Closed immutable architecture strategies create SoS that are not available
to outsiders or at a very high license cost [51]. Contrary to man-made SoS, there are no
closed natural SoS. Open systems display self-governance principles such as self-control
via “feedforward” and “feedback” mechanisms, self-regulation (homeostasis) to maintain
their operation and self-organisation to allow for growth and complexity management [51].
Openness and evolution capacity are important anchors for our analysis as well.

2.4. Open Systems Principles

Entropy grows continuously in systems with closed interfaces. In contrast, open
interfaces contribute to effectively handling complexity [51] and, consequently, entropy
as well. Open systems use open interfaces to exchange energy, material and information
with the outside world [51], i.e., they interact cooperatively (synergy principle) and they
govern themselves (self-government principle). As a consequence, this self-organisation
brings new structures, patterns and properties that do not exist in each of the components
per se (emergence principle). One of these properties, paradoxically, can be a higher degree
of freedom within the system. In addition, natural open systems aim to conserve energy
by reducing waste as much as possible, blurring the line between waste and resources.
Human-engineered systems still struggle with this conservation principle and with the
reconfiguration principle as well, the latter being the possibility to adapt to changes in the
environment. Finally, the symbiosis principle requires that all component systems, i.e.,
holons, benefit from participating in the system and the modularity principle focus on the
boundaries of each component and on its level of specialisation, independence and variety
of use. In an attempt to describe SoS based on their context, Gorod et al. [52] suggest using
autonomy, belonging, connectivity, diversity and evolutive emergence. These properties
facilitate the distinction between traditional systems and SoS [13].

2.5. Network-Centricity in Systems of Systems

Systems in a SoS interact with each other, exchanging information through a commu-
nications network. Network-centricity [13], or net-centricity [53], usually brings along the
possibility for new holons to join the network and, hence, the SoS [13]. A service-oriented
architecture (SOA) consisting of information service providers, service consumers and
service registries is a typical design option for network-centric engineered SoS. The in-
tegrity and availability, and sometimes the confidentiality as well, of the information flows
within and between network-centric SoS is paramount for their resilience [9]. At the time
of writing, no published scientific study addresses the behaviour of complementary public
blockchain implementations such as BTC and ETH from a network-centric SoS perspective.
Federalism is an alternative way to analyse complex constructs through the political and
managerial lens. Federations of systems usually present a strong sociopolitical dimension
and a geographical dispersion [54].

2.6. Paradoxes in SoS Management

The existence of a paradox in a SoS is an expression of tension and complexity. SoS
engineers see a paradox as a source of innovation rather than as a source of confusion [13].
We find paradoxes in the boundaries, the control and the characteristics of a SoS. In
Section 4, we present a collection of paradoxes present in both BTC and ETH. They are
clear expressions of tension and complexity but, ultimately, signs of innovation and new
ways of thinking brought by these public open blockchain implementations.

2.7. Blockchain as a System of Systems

At the time of writing, few articles study a specific public blockchain implementation
as a SoS; however, they do not suggest that a set of blockchain implementations could
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create a SoS. Roth [55], in 2015, performs a functional analysis of BTC as a SoS using the
Systems Modeling Language (SysML) and considers BTC as a component system within
the “traditional” financial SoS, as the current “sovereign money-based” financial system
works as a SoS as well [55]. Reference to other potential blockchain-based holons is limited
to how alternative coins could make that SoS more robust by adding redundancy to the
SoS [55]. There is no mention of complementary use cases as we suggest it happens with
BTC and ETH. More generally, Mylrea [56], in 2019, refers to how a blockchain-based
distributed energy organisation can contribute to modernising, in an autonomous manner,
a SoS such as the US power grid. The cases that Jamshidi presents as SoS [13], such
as the airline industry, critical infrastructures, wireless sensors, service provision, space
exploration, navigation and transportation networks, motivate our hypothesis to model
public blockchains such as BTC and ETH as a SoS as well.

2.8. Intentional Risk

Given the current rise in public blockchain implementations, it becomes crucial to
understand their characteristics and how we can better secure them, i.e., make them more
resilient. Traditionally, information risk management has been based on an actuarial
approach, using the typical impact vs. probability graphs. A specific risk was quantified
as the product of the probability for that event to happen times the impact of that event
happening [57], anchoring the probability on the frequency of past events. In 2015, a
proposal to break down cybersecurity risks into intentional and non-intentional, the latter
also named accidental, introduced an important element: the existence of ill-intentioned
actors [57] who target information systems to extract value out of them, considering
intentionality as the backbone for cyber-risk management [16].

Intentional risk can be static or dynamic, depending on whether the attacker has
authorised access to the target system or not [16]. Static risk-based attackers make use
of authorised paths to access their objective and dynamic risk-based attackers make use
of any possible but unauthorised path to carry out their plan. The three parameters that
Chapela et al. [16] use in their model to manage intentional risk are value, accessibility and
anonymity. They propose a model to manage intentional risk in non-linear systems based
on complex network analysis [16]. Using network theory, introduced in Section 1.5, the
more connected a node is, i.e., the more accessibility a computer system has, the greater
the risk is for it to be compromised. The study of identity management resilience against
intentional risk in blockchain-based Internet of Things (IoT) platforms is an example of
this [9]. Typical intentional risks against blockchain are the 51% vulnerability, double
spending, private key compromises and smart contract exploitation [58].

Table 2 summarises our research on the current state of art: the description of the
blockchain technology, the complex network analysis of BTC and ETH, the concepts of
SE and SoSE and intentional risk management. Our contribution focuses on modelling
public blockchain implementations as a SoS to better manage their resilience against
intentional risk.
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Table 2. The role that related works play to build our contribution.

Topic Study Main Takeaway References

Blockchain technology Many use cases A driver for change [18–21]
Impacting many sectors [21–25,28–33]

Key implementations: BTC & ETH As complex networks Power law degrees [5,34–41]
“Rich get richer” [9,42–48]

Systems Engineering Complexity Open vs. close systems [51]
SoSE Supersystems 5 SoS properties [13,52]

Network-centricity Info exchange [9,13,53]
Blockchain as SoS Only focus on BTC No complementary roles [13,55,56]
Intentional risk Attacks Static vs. dynamic risk [16,57,58]

Parameters Value, accessibility and
anonymity

[16,57]

Our contribution

Public blockchains Modelled as a SoS To improve resilience [55,56]
against intentional risk

3. Methodology and Implementation
3.1. Research Methodology

Our research question focuses on how to model BTC and ETH as an open SoS of
public blockchains in which they are component systems. This is a novel approach, hardly
explored so far, with the objective of better understanding the role that public blockchains
play and will play in society and how they can be protected from ill-intentioned attacks,
i.e., their resilience against intentional risk.

Generally speaking, we propose a five-step methodology to model a set of systems
as an open SoS. In this particular case, we introduce the hypothesis that the two most
market-capitalised crypto-currencies by the end of 2021 [3], BTC and ETH, can be modelled
as components of an open SoS.

First, following the definition of SoS used in Section 1.6, we identify a common goal
for the SoS of public blockchains. Second, we confirm that BTC and ETH are open systems
with growing complexity. Third, we study net-centricity in BTC and ETH. Fourth, we use
the characteristics proposed by Gorod et al. [52], i.e., autonomy, belonging, connectivity,
diversity and emergence, to model BTC and ETH as a SoS and analyse them based in the
balance panel proposed in [13]. Fifth, out of a vulnerability and threat analysis, we propose
ways to improve the resilience of this particular SoS case study against intentional risk based
on the parameters of value, accessibility and anonymity proposed by Chapela et al. [16].
Table 3 depicts our methodology.

Table 3. SoSE-based methodology to manage complex “supersystems”.

Step Label Description Why?

1 Common goal Component systems share an ultimate goal Definition of SoS
2 Open & Complex Open systems with growing complexity? Continuous evolution
3 Network-centric Components use networks to communicate Information exchange

4 Characteristics
Autonomy, Belonging

SoS Balance panelConnectivity, Diversity
Evolutive emergence

5 Risk analysis Vulnerabilities and threats Future evolution
Resilience against intentional risk

3.2. Methodological Implementation

• Step 1: Identification of a SoS.
A System of Systems (SoS) exists when its components are independent complex
systems that interact with each other to accomplish a common goal [13]. We postulate
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that BTC and ETH are the two most prominent components of the SoS of public
blockchains. They are two different systems, both with the goal of offering a digital
distributed network of value;

• Step 2: Open systems with growing complexity.
Once we identify a SoS of public blockchains, our second step is to determine whether
BTC and ETH are open systems. As we have seen in Section 2.4, openness facilitates
the inclusion of new components into a SoS. Under these premises, Section 4.2 analyses
BTC and ETH as open systems with growing complexity;

• Step 3: Network centricity.
The rapid development of information networks such as the Internet has facilitated
interactions among SoS via network services up to the point that we talk about net-
centric SoS. The existence of a service-oriented arquitecture (SOA) on top of a data
network is a key characteristic for net-centric or network-centric SoS, also named
net-centric enterprise systems [53]. Section 4.3 explores a service-oriented architecture
(SOA) in BTC and ETH. More holistically, elements such as people, organisations,
cultures, activities and interrelationships enable both systems to interact [13];

• Step 4: SoS characteristics.
We characterise a SoS based on its properties as a more optimal way to compre-
hend its complexity instead of just framing it with a definition [52]. Chapter eight
in [13] presents the SoS context based on five characteristics: autonomy, belonging,
connectivity, diversity and evolutive emergence. In Section 4, we analyse these five
characteristics for both BTC and ETH, and use the balance panel for each of them:

(a) Autonomy.
Autonomous systems operate independently [13]. We analyse BTC and ETH
governance models, based on informal consensus. They are both independent.
We describe key stakeholders such as their development and support commu-
nities and how they reach design decisions and try to avoid software forks
while maintaining project legitimacy;

(b) Belonging.
The property of belonging to a system relates to its vision [13]. We explore
BTC and ETH visions and identify opt in and opt out possibilities within the
system and the balance that they strike between centralisation and decentrali-
sation in mining power, community support, number of users and contributing
developers;

(c) Connectivity.
We study how BTC and ETH interact between one another [13], especially in a
scripted manner, and determine their common underlying technical foundation.
We also determine whether the identified network-centricity is growing and
examine the price correlation that both currencies show. From the platform
viewpoint, we focus on their mining reward and supply models;

(d) Diversity.
A SoS achieves diversity if its holons are different to each other. We refer to
leadership structure, range of business cases to answer, appetite for change and
potential reasons to join these networks as proxies to understand the diversity
present in this SoS;

(e) Emergence.
A pivotal feature of any SoS is the appearance of both intended and unintended
properties that are not detectable in the specific component systems, i.e., holons.
Emergence concentrates the added value of using SoSE. We compare the initial
vision of the SoS of public blockchains [4,8] with its current use in two different
levels, i.e., SoS-wide and holon-specific, and we identify properties that emerge
from considering BTC and ETH as part of a more comprehensive system. We
analyse the geopolitical consequences of this new financial SoS;
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• Step 5: Vulnerabilities and threats. Resilience against intentional risk.
We complete this analysis with the vulnerabilities we identify in the SoS and the
threats it is exposed to. We use one of the identified threats, related to intentional risk,
to come up with a series of security measures that would increase resilience against
intentional risk. For this, we use the parameters proposed by Chapela et al. [16], i.e.,
value, accessibility and anonymity.

4. Analysis and Results
4.1. The System of Systems of Public Blockchains

We apply the methodology proposed in this article to understand and better manage
the complexity of public blockchains. We consider that BTC and ETH are the two most
prominent components of the SoS of public blockchains. They are two different open-source
code implementations. They attract a very diverse community of users and proponents,
however, they both share the common goal of transferring digital value. Figure 2 explains,
step by step, how we conduct our methodology with keywords focused on purpose (first
column), brief explanation (second column), main elements analysed (third column) and
eventual conclusions (fourth column). We also add a fifth column to list the main tools that
we use for our analysis. With regard to our complex network analysis code, implemented
in Python, we make it available via github [49].

Figure 2. Experimental setup and tools for the study.

4.2. Openness and Growth

BTC and ETH are two independent public blockchain implementations. Public
blockchain implementations are permissionless, i.e., they pose no obstacle to joining their
network and sending transactions as a user or validating them as a node. Any code-based
artifact using BTC or ETH open-source code, driven by a human being or by a script,
with access to a private cryptographic key, does not require any third-party approval to
participate in the network. In other words, any individual or human-made device with the
possibility of running a BTC or ETH wallet or node can join these networks and perform
transactions. Equally, they can also join the mining community and create new bitcoins or
ether, their corresponding crypto-currencies, while verifying transactions, as long as they
commit to “demonstrate commitment to the system” using proof of work-based consen-
sus. Alternatively, some blockchain implementations propose the use of proof of stake [7].
In addition, BTC and ETH show a distinctive feature of open systems: they exchange
energy and information with the outside world [51]. They exchange information with
social, financial and human environments, and they display mechanisms to adapt to those

49



Electronics 2022, 11, 241 11 of 24

environments and evolve accordingly. We use three dimensions to confirm this point: their
trading market, the network size and their hash rate:

(a) Trading market: It is possible to buy and sell BTC and ETH coins. Both BTC and ETH
are two public blockchain implementations that have attracted growing attention in
the financial markets. Although their daily market price and their hash rate fluctuate
considerably, both dimensions, price and total hash rate, have grown relentlessly
for the last five years.
Figure 3a depicts the daily BTC market price since its start. The upward trend is
patent. BTC market capitalisation as a cryptoasset is growing. Equally, Figure 3b
depicts the daily ETH market price since its start. An upward trend is patent as
well. These steep climbing prices attract new users, both retail and institutional,
generating more transactions. In July 2020, BTC market capitalisation reached USD
170 B; less than a year later, in April 2021, the figure topped USD 1099 B, going up to
USD 1142 B in November 2021 [3], paving the way for an incessant growth during
this decade. The Ethereum cryptoasset had a market capitalisation of USD 26 B
in July 2020. In April 2021, this figure was of USD 222 B. In November 2021, the
market value of ETH led to a capitalisation of USD 505 B [3];

(b) Network size: As price and network size are positively correlated in both BTC [59]
and ETH [48], their networks grow. According to bitnodes [60], there were around
10,540 full active BTC nodes in July 2020 while, surprisingly, there were around
9610 nodes in April 2021. A node is a BTC server that keeps a copy of the entire
blockchain and validates transactions. A miner node is a node that validates blocks.
In November 2021, the number of active BTC nodes reached 13,898. The trend in
ETH is the opposite: according to ethernodes [61], there were close to 7900 active
ETH nodes in July 2020 and over 4250 in April 2021. In November 2021, ref. [62]
counted 3238 nodes. Table 4 summarises the BTC and ETH figures mentioned.

(a) (b)

Figure 3. Daily market price (source: investing.com, accessed on 16 November 2021). (a) Bitcoin
(BTC). (b) Ethereum (ETH).

Table 4. Key Bitcoin and Ethereum figures.

Blockchain Start Active Nodes Market Cap (USD B)

Name Date 7/2020 4/2021 11/2021 7/2020 4/2021 11/2021

BTC 2009 10,540 9610 13,898 170 1099 1142
ETH 2014 7900 4250 3238 26 222 505

Network growth is visible in the address space. A node in each of these networks is
an address (see Section 2.2). By design, based on the recommendation not to re-use
addresses in transactions, address spaces continue growing in BTC and ETH since
their inception. This continuous growth contributes to their distributed nature and
to their complexity as addresses do not expire. Equally, block validation, i.e., mining,
generates new coins as well, bitcoins and ether, respectively, increasing the number
of coins circulating in the systems;

(c) Hash rate: Third, hash rate measures the computing power, i.e., calculation complex-
ity, required to mine BTC and ETH blocks. Figure 4a,b shows how, especially since
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2020, hash rates also increase. Both dimensions, market price and hash rate, indicate
that the complexity of these systems, consequently, grow with time. They find
themselves in a causality dilemma, and this is an inherent signal of complexity [63].

(a) (b)
Figure 4. Total Hash Rate. (a) Bitcoin (TH/s) (source: blockchain.com, accessed on 18 November
2021). (b) Ethereum (GH/s) (source: etherscan.io, accessed on 18 November 2021).

We can broaden our focus and infer that a SoS of public blockchains is therefore an
open system that can potentially grow in complexity.

4.3. Network Centricity

BTC and ETH are network-based protocols. Network participants exchange infor-
mation via open-source application programming interfaces (APIs). Typical actions are,
e.g., creating an address, sending an amount to an address, validating a transaction and
requesting information on a transaction or on a block. Examples of these APIs are the
BTC remote procedure call (RPC) and the ETH javascript (js) APIs [64,65]. Functionality
is then bundled into services provided by nodes and consumed by clients. These APIs
are examples of a basic distributed service-oriented architecture (SOA). They confirm the
network-centricity of BTC and ETH. Table 5 summarises the network-centricity of the SoS
itself using the elements suggested by Jamshidi [13] together with a forecast on how their
relevance will change in the near future:

Table 5. Network-centricity in public blockchain SoS.

Interaction via Description Relevance

People Holders of crypto keep BTC and ETH in their portfolio Increasing
Organisations Crypto exchanges offer swaps between BTC and ETH and other coins Increasing
Culture BTC and ETH share decentralised principles Stable
Activities Coin wrapping, e.g., WBTC: an ERC20 token in ETH Increasing
Relationships Both subject to additional financial regulation Increasing

We find similar interactions between other public blockchains running on their own
platforms, i.e., mainnets, present in this SoS. Solana (SOL) and Algorand (ALGO) are two
examples, the 5th and 20th most capitalised crypto-currencies in November 2021 [3]. In
general, they interact with each other via common users, crypto-exchanges, basic design
principles and wrapping techniques. Coin wrapping enables cryptoassets to be used on
another blockchain, different to the native one. For example, wrapped BTC (WBTC) is
an ERC20 (ETH-based) token that represents BTC 1:1 in the ETH network. Finally, as all
of them are public blockchains, they are subject to any financial regulation that might
potentially impact all public blockchain implementations.

4.4. Autonomy

BTC and ETH operate independently. They both run a separate off-chain governance
model based on informal consensus. The role of Lead System Integrator [66] is crowd-
sourced to a reduced number of developers supported by a large community. The seminal
BTC paper by Nakamoto [4] defines, at a high level, the first BTC design decisions. The first
open-source BTC client was made public on 9 January 2009. Once Nakamoto left the project
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in 2011, the so-called “Bitcoin core developers”, Gavin Andresen, Pieter Wuille, Wladimir
van der Laan, Gregory Maxwell and Jeff Garzik, took over the BTC protocol development
and software maintenance. The number of developers able to commit code to “Bitcoin core”
remains stable: 37 in April 2021 and 39 in November 2021 [67]. Changes to BTC require
ample consensus [68]. Anyone in the community can launch a BTC improvement proposal
(BIP) [69]. The search for consensus among key stakeholders, i.e., developers, miners
(node operators) and users, is a top priority. Their aim is to avoid the threat of forking the
protocol [68], either in a soft or hard way. Soft forks guarantee backward compatibility and
hard forks do not. A software fork introduces changes in the code from a specific point
in time. Similarly, the ETH protocol [70] works with Ethereum Requests for Comments
(ERC). They eventually translate into Ethereum Improvement Proposals (EIPs) that need to
reach sufficient consensus [71]. The number of ETH developers who can commit code is
growing slightly: from 69 in April 2021 to 81 in November 2021 [72], as Table 6 displays.
On independence, every BTC and ETH stakeholder can decide independently from each
other. Ultimately, anyone in BTC or ETH could fork the protocols and start a new project.
It would be up to their ability to entice users to use the new forked code. A key concept
in both BTC and ETH is legitimacy, or a pattern of higher-order acceptance [73]. Already,
through the study of autonomy in public blockchains, we distinguish at least two of the
three typical paradoxes identified in chapter eight of [13], i.e., control and team paradoxes.
There is tension present regarding where decision power resides and the balance between
individuality or autonomy and team membership or belonging. Broadening our focus
to a SoS of public blockchains, and based on these results, we infer that it consists of
independent blockchain implementations.

4.5. Belonging

The original vision of BTC is the creation of a “purely peer-to-peer version of elec-
tronic cash” [4]. BTC and ETH are digital assets with no intrinsic value and no centralised
issuer [8]. The vision of ETH is to build “a blockchain with a built-in Turing-complete
programming language, allowing anyone to write smart contracts and decentralised appli-
cations where they can create their own arbitrary rules for ownership, transaction formats
and state transition functions” [8]. In both blockchains, the three main related communities,
i.e., developers, miners and users, can opt in and out of the SoS at any moment. This is
a sign of an open system. The first paradox mentioned in chapter eight of [13], i.e. the
boundary paradox, or the need to keep some things in the systems and some things out of
the system simultaneously, is patent as well in public blockchains, e.g., in the on-chain vs.
off-chain information storage dilemma.

On centralisation, the three main sources of critiques are: the very reduced number of
developers with commit privileges in both blockchains, see Section 4.4, the location of most
of the BTC mining power and the location of most of the BTC nodes. With regard to miners,
China hosted over 65% of BTC mining power until October 2020. The main reason was
the electricity oversupply and corresponding reduced prices of hydroelectricity in areas
such as Sichuan. The price of electricity is a key driver for miners to interact [74]. After
the nation-wide ban in July 2021, China abandoned BTC mining [75]. In November 2021,
the USA (35.1%), Russia (11.9%) and Kazakhstan (13.8%) account for the top three mining
countries. With regard to full active BTC nodes, the USA and Germany host close to 13% of
them, although this figure is less than the 20% of nodes that each of these two countries
had in April 2021 [60]. Regarding ETH, 34% of active nodes resided in the USA and 22%
in Germany on April 2021, while, in November 2021, the US hosted 35% and Germany
decreased to 15% [61]. See Table 6.

Regarding decentralisation, the Ethereum foundation ethereum.org (accessed on 1
December 2021) organises most of the support to the ETH community. A similar foundation
project exists for BTC bitcoin.org (accessed on 1 December 2021). However, none of these
foundations own the ETH or the BTC networks. Both networks are public like the Internet.
With over 13,000 active BTC nodes and over 3200 active ETH nodes (see Table 4), the
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degree of active node decentralisation is higher in BTC than in ETH, where we identify that
the number of active nodes is reducing. The decrease in ETH nodes is a worrying trend,
particularly given the big drop in September 2021 [76]. Estimations in February 2021 set the
number of BTC users over 71 million and the number of ETH users over 14 million, with
25% of them owning both crypto-currencies [77]. Both the BTC and ETH user communities
are growing. Although the number of core developers for both BTC and ETH is rather
limited, see Section 4.4, the number of active contributing developers has reached close to
500 members in BTC and more than 1000 in ETH [78]. Based on these figures, we still see
more evidence tilting the belonging feature towards decentralisation than to centralisation
in the SoS of public blockchains.

Table 6. BTC and ETH autonomy and belonging related figures.

Blockchain Users Contrib. Core Developers Active Node Location (%)

Name (M) Devs. 4/2021 11/2021 4/2021 11/2021

BTC 71 500 37 39 CN (65) US (35), KZ (14),
RU (12)

ETH 14 1000 69 81 US (34), DE (22) US (35), DE (15)

4.6. Connectivity

All BTC and ETH active nodes and clients can enjoy the same power of connectivity.
Both BTC and ETH networks are permissionless, i.e., provided that they run the corre-
sponding committed open-source protocol, any compatible running code can join both
networks. The study of the connectivity property confirms the network-centricity of the
SoS of public blockchains [13,53]. BTC and ETH active nodes are connected to the BTC and
ETH networks, respectively. Both networks run on top of the public Internet. Table 5 lists
the means through which they are interconnected. We focus on the scripted interaction, i.e.,
coin wrapping. In November 2021, around 249,000 BTC [79], out of the 18.8 million BTC
already mined by end November 2021, are tokenised in ETH via wrapped BTC (WBTC), an
ERC20 token [80]. They are mostly deployed in ETH-based Decentralised Finance (DeFi)
projects. This figure is growing. On July 2020, there were only 15,000 tokenised BTC [81]
and, on April 2021, there were 141,000 BTC. In terms of price, BTC–ETH correlation has
been permanently positive since 2018, close to 0.8 during 2019 and 2020. During November
2021, BTC–ETH price correlation was over 0.75 [82].

From the platform-centric viewpoint, BTC and ETH miners verify transactions and
receive a reward for it. These transactions fill up a BTC block. Miners receive newly created
bitcoins and ether, respectively, when they finalise a block, i.e., they “mine” a block. In
the case of BTC, this block mining reward is halved after 210,000 blocks. The current
reward of 6.25 BTC started on 11 May 2020. Those miners with a higher hash rate, i.e.,
computing power, enjoy a higher probability of mining a block. Once all 21 million BTCs
are mined, and this will happen around the year 2140, the question of whether transaction
verification income, based only on transaction fees, will be still profitable for miners remains
open. Taproot, the latest BTC upgrade, performed in November 2021, aims to scale up
the number of transactions that the network can cope with and to increase privacy by
complicating the identification of participants in a transaction [83]. With regard to their
monetary policy, while BTC supply is deflationary, i.e., limited to 21 million, ETH supply is
inflationary, i.e., there is a maximum yearly new supply of 18 million ETH. Both networks
show an increased connectivity. However, they have been criticised for demanding high
transaction fees during times of heavy use and overall network growth. BTC aims to solve
this challenge with BTC Lightning Network (BLN) and ETH with ETH 2.0. BLN collects
transactions first off-chain and uses scripting to guarantee integrity [84]. ETH 2.0 promises
scalability based on a multi-chain concept (sharding) [85].

In general, interledger communications such as Interledger Protocol (ILP) enable the
possibility of connecting different public blockchain implementations through code-based
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connectors, between BTC and ETH as well. This means that a BTC transfer can end up as
an ETH sum via an ILP connector in an ETH address.

4.7. Diversity

First, we identify basic differences between BTC and ETH that make them even
more complementary: BTC appears as a leaderless public blockchain with a broad user
population and decentralised governance. Although its degree distribution approximates
a power law function [36,37], its control structure is highly decentralised. ETH degree
distribution resembles a power law function [48] and its leadership structure is more precise.
ETH attracts more experimentation and innovation and it is more multi-faceted than BTC.
Second, we focus on the diversity existing in the three main stakeholder communities for
BTC and ETH: miners, developers and users, to understand the current balance between
homogeneity and heterogeneity. Mining pools are groups of miners that share computing
power, i.e., hash rate. None of them reaches 51% of the total BTC hash rate [86]. Only if
the five biggest BTC pools would collude, they could opt to attempt a 51% blockchain
control attack to modify a transaction. A similar situation applies to ETH [87]. Regarding
development, there is more activity in ETH than in BTC: there are more than 300 BIPs [69]
but more than 3300 EIPs [88]. As mentioned in Section 4.4, the number of core developers
in both networks is reduced, although ETH attracts more developers than BTC. From the
user perspective, the increase in users is initially a good proxy for heterogeneity growth.
Early adopters of BTC were libertarians and techno-anarchists [89]. In 2021, many other
profiles join both networks, partially disgruntled by the highly expansionary monetary
policies followed by key central banks.

4.8. Emergence

We first refer to the intended emergent properties and second to the unintended ones.
Table 7 provides a summary of the emergent properties that we identify in this SoS and its
components.

Table 7. Intended and unintended emergent properties.

Realm Emergent Property Intended

SoS Decentralised network of digital value Yes
SoS Alternative to fiat-based financial system No
BTC Peer to peer electronic cash system Yes
BTC Digital global reserve asset (“digital gold”) No
ETH The world distributed computer Yes
ETH Main DeFi platform (“alternative financial conduit”) No
ETH Platform to transfer “unique” digital value No

4.8.1. Intended Emergent Properties

The intended emergent property of the SoS of public blockchains is to provide a
decentralised network to transfer value: in the case of BTC, via a digital asset that has no
intrinsic value in itself. In the case of ETH, via a Turing-complete protocol able to implement
decentralised applications. Public blockchain implementations use a digital asset with
no intrinsic value. This digital asset represents digital private property in three different
ways: as native crypto-currencies, such as bitcoin and ether, and, in the case of ETH, as
fungible tokens (ERC20 tokens) and as non-fungible tokens (ERC721 and ERC1155 tokens).
Public blockchains offer a channel through which to transfer digital private property, i.e.,
digital value.

4.8.2. High-Level Unintended Emergent Property

Considering our analysis of the SoS of public blockchains, we estimate that the high-
level unintended emergent property of a SoS of public blockchains is to stand as an
alternative to the financial system based on fiat currencies, established in 1971 with the
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cancellation of the direct convertibility of the USD into gold. We find two competing and
distinct SoS, the traditional centralised financial SoS and the open SoS of public blockchains.
Neither BTC nor ETH included this key property of aspiring to become an alternative
financial system in their seminal white papers [4,8]. Figure 5 depicts the results of our SoS
characteristics-based analysis [13].

Figure 5. Public blockchains. SoS characteristics balance panel.

4.8.3. Holon-Specific Unintended Emergent Properties

More specifically, BTCs unintended emergent property is to become a global reserve
asset, i.e., the “digital gold”. The expanding fiat currency monetary policy since 2008, plus
the performance difficulty for BTC to achieve high transaction speeds, in contrast to other
blockchain implementations [90], transforms BTC into a digital value reserve more than
into an instant peer to peer payment system. However, initiatives such as BLN [84] and the
taproot upgrade [83] aim to increase transaction rate. An initially unintended emergent
property of ETH is to act as main underlying blockchain implementation for Decentralised
Finance (DeFi). DeFi translates, via smart contracts, most of the financial activities present
in the traditional centralised financial system such as lending, borrowing, trading, using
derivatives and depositing funds. We define it as the “alternative financial conduit” system.
ETH’s “distributed world computer” is the distributed platform in which an entire financial
system, based on fungible tokens, is beginning to run. Stablecoins constitute the means
of settlement in this distributed financial system. The total capitalisation of stablecoins
in November 2021 is USD 145 B, from USD 60 B on April 2021 [91]. A stablecoin is a
crypto-currency whose value is pegged to either a fiat currency, mostly the USD, or to a
basket of assets.

Traditionally, the US dollar (USD) plays a dominant role in the world financial sys-
tem [92]. The fundamental role that the USD plays in finance provides a geopolitical
advantage to the US and leverage to apply economic sanctions to other non-allied countries.
The arrival of the public blockchain-based SoS impacts this USD dominance. The fact
that the most capitalised stablecoins are pegged to the USD [91] confirms the growing
geopolitical importance of this new SoS. Other competing geopolitical powers such as
China entered the digital coin scenario via their “digital yuan”. Central banks around the
globe are piloting central bank digital currencies (CBDCs) in an attempt to preserve the
“status quo”.
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With regard to non-fungible tokens, the unintended emergent property of ETH is to
act as a platform to transfer “unique” digital private property. NFTs offer a distributed
and non-intermediated creativity market. Examples are “Cryptokitties” and “Mutant
Apes” [93].

Additionally, a myriad of public permissionless blockchain implementations have
launched their own networks, i.e., mainnets, to compete with ETH and to save ETH
transaction fees. The appearance of multiple blockchain implementations to answer specific
business cases [22] complements the roles of BTC and ETH within this overarching SoS
of public blockchains. All these sidechains are also components, holons, in this SoS.
Table 8 lists four of the top market capitalised projects in November 2021 according to
coinmarketcap [3].

Table 8. Public blockchain projects within the SoS.

Project Origin Business Case Market Cap Consensus(B USD)

Binance Coin (BNB) 2017 Biggest crypto exchange’s blockchain 111 Proof of authority
Solana (SOL) 2020 DeFi solution with short processing times 61 Proof of history
Cardano (ADA) 2017 Decentralised app engine 54 Proof of stake
Polkadot (DOT) 2017 Multi-chain focused on cross-chain transfers 37 Nominated proof of stake

We have modelled BTC and ETH as holons of the open SoS of public blockchains and
we have identified the emergent property that creates a new distributed "supersystem"
of digital private property, i.e., digital value. We present now the result of a threat and
vulnerability analysis. One of the threats we identify is precisely intentional risk.

4.8.4. Vulnerabilities and Threats of the SoS of Public Blockchains

We complement the previous results with a vulnerability and threat analysis of the
public blokchain SoS. We identify five vulnerabilities:

• Adoption requires understanding.
The knowledge-based barrier to entry is considerable. Participants in this public
blockchain-based SoS require understanding of the underlying mathematical, cryp-
tographic and economic concepts upon which both BTC and ETH are built. There is
hardly any abstraction layer between users and the internal complex functioning of
these blockchains;

• Adoption requires hiding complexity. The user-friendliness of the software tools that
interface with this SoS is still very low;

• Early stage of evolution. Even with high rates of adoption and rising market capitali-
sation, public blockchains are still at a very early development phase. The industry is
flourishing and growing fast; however, it has not yet reached any consolidation phase;

• Signs of centralisation. Complex network theory-based literature identifies lin-
ear and super-linear preferential attachment in BTC and ETH in their transaction
networks [36,37,48,59]. This reveals the higher degree of dependence on specific
super-hub nodes in these networks. An additional sign of initial centralisation is the
decrease in the number of active ETH nodes [76].

• Governance exclusively dependent on code. The smart exploitation of any program-
ming error in the code that implements elements such as mining rewards, smart
contracts and distributed autonomous organisations (DAO, a distributed governance
engine) can siphon out funds and make any public blockchain project fail. A real
example of this already happened in Ethereum in 2016 [94].

Equally, we observe five threats:

• Regulation. The overall impact that financial regulation will have on the future of this
SoS is still unknown. Taxation, legal jurisdiction, cross-border implications and know
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your customer requirements are just some examples of key regulatory aspects that are
still not fully defined for the distributed SoS of public blockchains;

• Privacy vs. Traceability Trade off. One of the first business cases for the use of BTC
was the online black market “Silk Road” [95]. Identities behind BTC addresses were
not known. However, anonymity is not a design feature in BTC but, rather, pseudo-
anonymity [5]. Ethereum does not offer transaction anonymity either. The lack of
auditable and regulated know your customer procedures could hamper the mass
growth of public blockchains;

• Future developments in encryption. Bitcoin uses SHA-256 as its hashing algorithm [96]
and the Elliptic Curve Digital Signature Algorithm (ECDSA) with the elliptic curve
secp256k1 to sign transactions [97]. The taproot BTC upgrade introduces Schnorr
signatures [83]. Ethereum uses Keccak-256 [98] to hash transactions and ECDSA
to sign them [99]. Future developments in quantum computing [100] could render
current cryptographic algorithms used in public blockchains insecure. Should this
happen, then the core development communities mentioned in Section 4.4 should
react quickly with the corresponding cryptographic upgrade by proposing new key
lengths or, alternatively, new algorithms;

• Missing co-operation. The permanent interaction between the SoS of traditional
finance with the SoS of public blockchains is not yet defined. The governance frame-
works in both systems need to find a common ground to allow for future-proof
interactions between both financial proposals;

• Intentional risk. The economic value locked in the SoS of public blockchains is grow-
ing. Consequently, the interest of ill-intentioned actors to extract value out of it is
also increasing [101]. The future of this SoS will depend on its resilience against
intentional risk.

These vulnerabilities and threats pose the risk of impeding mass adoption of this SoS.

4.9. Resilience against Intentional Risk

We start from the definition of profitability associated to the attacker (PAR) proposed
by Chapela et al. [16] to quantify intentional risk (Equation (1)). The level of intentional risk
IntRisk to which a system SoS is exposed to corresponds to the maximum product of the
<value, accessibility, anonymity/k> triplets of their participant elements e, being k a standard
constant we name legal robustness, related to the legal consequences that an attacker could
face. We propose to optimise as many factors as possible in Equation (1) to reduce the
intentional risk that the SoS of public blockchains is exposed to. The reduction in the
exposure to intentional risk increases the resilience of the system against it.

PAR = max
(

valuee · accessibilitye ·
(

anonymitye

k

))
(1)

As participant element in Equation (1), we select the most fine-grained possible com-
ponent of the open public blockchains we study, i.e., an address. An address in a public
blockchain consists of a unique identifier that refers to a public–private cryptographic key
pair involved in a transaction either as the origin or destination. We use complex network
notation to mathematically state our analysis: for each of the blockchain implementations
present in the SoS of public blockchains bi, we consider a transaction network Tbi

in which
every address Nbi

used is a node and every transaction between addresses is an edge
Tbi

denoted by Tbi
= (Nbi

, Ebi
) being its nodes Nbi

and Ebi
its edges. We identify three

attributes for each Nbi
:

• Va(Nbi
): the value as the quantity of cryptocurrency or fungible tokens held by the

address Nbi
. By design, this is public information. As an example, in the case of NFTs,

this attribute simply refers to the value assigned by the market to it;
• Ac(Nbi

): the accessibility of Nbi
. This is a function of the accessibility to its private

cryptographic key. Having access to the private key gives the possibility to claim
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ownership of Va(Nbi
). A high Ac(Nbi

) implies poor protection measures to keep the
private key secure;

• An(Nbi
): the anonymity of Nbi

. This measures the degree of uncertainty to link Nbi
with a screened identity in the physical world. A high An(Nbi

) implies that Nbi
cannot

be associated to a confirmed physical identity. Attackers of a public blockchain imple-
mentation bi use a collection of Nbi

with a high An(Nbi
) as consecutive destinations of

their fraudulent transactions to make tracking unfeasible.

Regarding the legal robustness k constant, its value indicates how dissuasive legal
measures are for attackers to embark on plans to compromise public blockchains.

We increase the resilience of the SoS of public blockchains by minimising the inten-
tional risk that each participating address runs as Equation (2) defines:

∀ bi ∈ SoS, IntRiskSoS = max
(

Va(Nbi
) · Ac(Nbi

) ·
(

An(Nbi
)

k

))
(2)

Table 9 lists our proposed security measures to increase this SoS’s resilience against in-
tentional risk. Their implementation requires a multidisciplinary, i.e., technical, procedural
and cultural approach, especially during design, development and operations of the holons
of this SoS. The scope of these proposals corresponds to the SoS of public blockchains.
Only a SoS-overarching approach, or, at least, a specific focus on BTC and ETH as the two
main public blockchain implementations, can increase the resilience of a SoS whose main
emergent property is to become a real distributed alternative to the traditional finance
system. If we would only focus on one holon, then, following Equation (1), the overall
resilience of the SoS would not improve and its adoption would not increase.

Table 9. Measures to increase intentional risk resilience.

Action Principle Phase

Reduce asset value Distribute value across many addresses Design/Operations
Avoid very rich hubs Operations

Decrease accessibility Maintain the use of strong crypto Design
Improve code security Development
Simplify interfaces Development
Improve private key security Design/Dev/Operations
Extend use of cold storage Operations
Enhance security awareness in users Communications

Decrease anonymity Improve identity management Operations
Link with physical identities Governance
Achieve global legal coverage Governance
Extend blockchain monitoring Operations

Increase legal measures Extend know your customer processes Operations

5. Conclusions

We conclude that:

(a) Our proposed methodology, based on SoSE, is a valid and replicable tool to under-
stand and to manage complex “supersystems” or “networks of networks”.
We apply this methodology to the complexity present in public blockchains: we
model BTC and ETH, two public open and permissionless blockchain implemen-
tations, as holons that complement each other within a SoS of public blockchains.
Public blockchains enable the transfer of digital private property with a link, or
not, to physical private property. Thanks to the use of SoSE, we identify that BTC
aspires to become “sound money”, i.e., stable non-inflationary money, a digital
global reserve asset. ETH, the “distributed world computer”, aims to become the
“alternative financial conduit” system to run decentralised finance;

(b) The unintended emergent property of the SoS of public blockchains is to stand as an
alternative to the traditional centralised financial system based on fiat currencies.
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This emergent property only appears when we focus on BTC and ETH, and, more
generally, on public blockchain implementations, as a unique “supersystem”. This
SoS transfers digital value and competes with the traditional financial system as a
potentially future-proof and disruptive alternative to the way the world conducts
finance, especially since the Nixon shock in 1971 [102] with the cancellation of the
direct convertibility of the USD into gold;

(c) One of the threats to the future of the SoS of public blockchains is its exposure to
intentional risk. The materialisation of this risk could impact its mass adoption;

(d) The parameters proposed by Chapela et al. [16] in their intentional risk equation,
i.e., value, accessibility and anonymity, are useful to suggest a series of security
measures that would increase the resilience against intentional risk of the SoS of
public blockchains.
These measures apply to the governance, design, development, operation and
communication phases present in the implementation of this SoS;

(e) The optimisation of these intentional risk parameters, i.e., value, accessibility and
anonymity, in the SoS of public blockchains, will impact positively on the evolution
of the emergent property of this SoS.

6. Future Work

We suggest four paths to further research on the use of SoSE in the study of pub-
lic blockchains and to improve the resilience against intentional risk of the SoS of pub-
lic blockchains:

(a) To analyse how the SoS of public blockchains links with the SoS of traditional
centralised fiat currency-based finance;

(b) To explore whether the modeling of the Decentralised Finance (DeFi) ecosystem is a
SoS in itself;

(c) To build a complete application programming interface (API) that would facilitate
the implementation of security measures in public blockchains with the objective of
increasing their resilience against intentional risk;

(d) To explore the potential applications of machine learning and artificial intelligence
(ML/AI) techniques, as described by Xu et al. [103], in the prevention, detection
and mitigation of intentional risks against public blockchains.
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Abstract: Some Internet of Things (IoT) platforms use blockchain to transport data. The value
proposition of IoT is the connection to the Internet of a myriad of devices that provide and exchange
data to improve people’s lives and add value to industries. The blockchain technology transfers data
and value in an immutable and decentralised fashion. Security, composed of both non-intentional
and intentional risk management, is a fundamental design requirement for both IoT and blockchain.
We study how blockchain answers some of the IoT security requirements with a focus on intentional
risk. The review of a sample of security incidents impacting public blockchains confirm that identity
and access management (IAM) is a key security requirement to build resilience against intentional
risk. This fact is also applicable to IoT solutions built on a blockchain. We compare the two IoT
platforms based on public permissionless distributed ledgers with the highest market capitalisation:
IOTA, run on an alternative to a blockchain, which is a directed acyclic graph (DAG); and IoTeX, its
contender, built on a blockchain. Our objective is to discover how we can create IAM resilience against
intentional risk in these IoT platforms. For that, we turn to complex network theory: a tool to describe
and compare systems with many participants. We conclude that IoTeX and possibly IOTA transaction
networks are scale-free. As both platforms are vulnerable to attacks, they require resilience against
intentional risk. In the case of IoTeX, DIoTA provides a resilient IAM solution. Furthermore, we
suggest that resilience against intentional risk requires an IAM concept that transcends a single
blockchain. Only with the interplay of edge and global ledgers can we obtain data integrity in a
multi-vendor and multi-purpose IoT network.

Keywords: IoT; blockchain; decentralised ledger; complex networks; identity and access manage-
ment; data authentication; data integrity; intentional risk

1. Introduction
1.1. Internet of Things

Since the last years of the past 20th century, the Internet has contributed greatly to the
connection between human beings. In October 2020, 59% of the world’s population was
active on the Internet, i.e., 4.66 billion people. Ninety-one percent of those Internet users
do it via mobile devices [1]. The former US Vice-President Al Gore referred to the Internet
as the information superhighway.

Connecting things with other things and servers via the Internet is the next big
step taking place in these first decades of the 21st century. The Internet of Things (IoT)
enables the connection to the Internet of a multitude of small electronic devices to facilitate
their use, handling, data exchange and management. By the end of 2018, the number
of IoT-connected devices surpassed the 20 billion mark [2] with a forecast of 30 billion
IoT-connected devices for 2030 [3]. This information superhighway is now being extended
with many additional lanes that carry information from, among many other things, sensors,
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actuators, personal health devices and geolocation trackers. Reference [4] defines an IoT
device as one having at least one transducer (sensor or actuator) to interact directly with the
physical world and at least one network interface (Ethernet, Wi-Fi, Bluetooth) to interface
with the digital world.

1.2. Blockchain Can Contribute to a Secure IoT World

Some IoT projects use a blockchain to transport data. We study how blockchain can
add security to the IoT world. A blockchain is a type of distributed ledger. The blockchain
technology can answer a considerable subset of the cybersecurity requirements for IoT
mentioned by ETSI [5] and NIST [6] (see Section 2.1), i.e., integrity, secure communication
and resilience. Simultaneously, a blockchain could add additional security properties such
as availability and accessibility together with a reliable micropayment functionality. Given
the large number of things connected via the Internet, the blockchain implementation that
could fit the needs of the IoT would need to have no or very low transaction fees, real
growth possibilities and a scalable identity management process. Blockchain technology
transfers data and value in an immutable and decentralised fashion. These two properties
are valuable for implementing resilient IoT platforms. However, blockchain does not
answer all IoT security requirements: confidentiality and protection of personal data would
require encryption on top of the blockchain.

1.3. Complex Networks Analysis: A Useful Tool to Feature Systems

The analysis of systems with many participant nodes via complex networks can
provide useful information to better understand the system and draw useful conclusions.
Newman (2009) ([7] p. 2) defines a network (also named a graph) as a set of vertices
(or nodes) and connections (or edges) between them. The complexity comes when the
number of elements in the network is high and the use of advanced mathematical and
statistical tools enters into play [8–10]. The value of this multidisciplinary field comes from
the possibility to describe complex interactions [11], some of them dynamic ([12] p. 177),
happening in the real world (social networks, disease spreading, traffic control, etc.) with
models based on complex networks ([13] p. 179). We study two blockchain-based IoT
networks with complex network theory. This complex network analysis provides us with
their network profiles.

1.4. Intentional Risk Management Via Complex Networks Analysis

Intentional risk management is one of the two effective pillars in cybersecurity accord-
ing to Chapela et al. (2016) ([11] pp. 2–3). The other pillar is non-intentional (traditional,
mostly accidental) risk management. Non-intentional risk has already been the subject of
thorough study ([14] pp. 27–36). Typically, risk management methodologies were focused
on non-intentional risks and were based on an actuarial approach, using the well-known
equation risk = probability x impact. The probability is based on observation of the frequency
of past events.

Intentional risks are effected by an active agent—a threat agent ([15] p. 2) that is
looking for a specific profit ([11] p. 2) while running a limited risk. Chapela et al. (2016)
([11] p. 11) stated that complex-network-based intentional risk management can be applied
to any information system if it can be modelled as a complex network, especially when the
relations among their nodes are not linear ([11] p. 11). Once we obtain the network profiles
of the two IoT platforms we study, we apply the equations proposed by [11] to increase
their resilience against intentional risk.

1.4.1. Intentional Risk Management in IoT

The deployment of IoT devices is taking off exponentially: logistics, health, leisure,
mobility and supply chains are just a few use cases where the exchange of sensor and
actuator data brings value to society. This value can only materialise long term with a suffi-
cient degree of data security in IoT. Simultaneously, blockchain technology is continuously

67



Electronics 2021, 10, 378 3 of 26

improving and it can be an appropriate platform to provide data integrity, immutability
and scalability to IoT implementations. The high number of IoT devices and related infor-
mation technology (IT) elements (e.g., edge and cloud servers) compose a complex system
subject to be studied as a complex network, where the nodes are IoT devices and other IT
elements and the edges the communications between them. This complex-network-based
characterisation contributes to explaining the resilience of different IoT implementations
against intentional risk and possible improvement paths.

1.4.2. Structure of the Paper

This paper is structured as follows. We first present the current developments on secu-
rity requirements for IoT devices. Second, we describe how blockchain can answer some
of those IoT security requirements. Third, we explain IOTA (a distributed ledger-based
IoT implementation) with its present and future design decisions together with its main
known security incidents. Fourth, we introduce IoTeX (a blockchain based IoT solution)
and a collection of security incidents in public blockchains. Fifth, we link identity and
access management (IAM) in IoT with edge and cloud computing and we analyse a data
authenticity protection framework for IoT systems. Sixth, we highlight how complex net-
work analysis can contribute to intentional risk management; and finally, we complete this
paper with empirical results based on complex network analysis and provide conclusions
on how to improve IAM resilience against intentional risk in IoT platforms.

2. Related Works
2.1. Security Requirements for IoT

The communication of data to and from a digital gadget via the public Internet
facilitates remote management and real-time data transfer, both frequent user requirements
in many use cases within different industries. One of the challenges for IoT is how to satisfy
these requirements in a secure manner. The global standards development organisation
ETSI has released a security baseline for Internet-connected consumer products [5] that
provides a basis for future IoT certification schemes [16]. A large number of IoT devices
do not display a minimum set of security features, endangering consumers’ privacy and
rendering these connected products as a formidable platform from where to launch massive
distributed denial of services attacks, like the Mirai botnet already in 2016 [17]. Table 1
summarises the key requirements of this baseline.

Table 1. ETSI technical specifications. Cybersecurity for consumer IoT.

Provision Key Topic

1 No universal default passwords
2 Report vulnerabilities
3 Keep software updated

4 Securely store credentials and
security-sensitive data

5 Communicate securely
6 Minimised exposed attack surfaces
7 Ensure software integrity
8 Protect personal data
9 Make systems resilient to outages

10 Examine system telemetry data
11 Make deletion of personal data easy
12 Facilitate installation and maintenance
13 Validate input data

The National Institute of Standards and Technology from the U.S. Department of
Commerce (NIST) acknowledges the evolution of IoT technology and its integration into
US federal information systems [18], and the requirement to add security at the device-level
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to cope with the increasing scale, heterogeneity and pace of IoT deployment [18]. NIST
proposed a list of device cybersecurity capabilities [6]. See Table 2.

Table 2. Device cybersecurity capabilities. NIST-IR 8259D.

Capability Key Abilities

Device identity Unique physical and digital device identifier
Device configuration Display and device configuration control

Data protection Cryptographic capabilities and secure storage
Logical access to interfaces Authentication, authentication, use and interface control

Software update Possibility to update code
Cybersecurity state awareness Event logging and monitoring, audit trail protection

Device security Secure operation and communication

In addition to the technical capabilities, NIST [6] also proposed non-technical support-
ing capabilities for IoT. See Table 3.

Table 3. Non-technical supporting capabilities for IoT providers. NIST-IR 8259D.

Capability Key Abilities

Documentation Device acquisition and maintenance description
during device lifetime

Information and query reception Cybersecurity reports and queries
Information dissemination Software maintenance and cybersecurity alerts
Education and awareness Device and cybersecurity awareness

2.2. Blockchain. The Internet of Value Applied to IoT

When something is highly valuable it needs to be wholeheartedly protected. An an-
cient strategy is to distribute it, as we infer from [11]. The Internet was born in the 1960s
out of the United States Department of Defence with the aim of avoiding centralised gov-
ernance. This innate approach was embraced by the cyberpunk community in the early
Internet days. The absence of a centralised entity that would orchestrate the governance
of the network was also highly appreciated by this pioneer community as being close to
their egalitarian and libertarian identity. Blockchain in essence is a distributed system
as well. The interplay of many nodes, each with a trustworthy copy of the database,
makes it a distributed system ([19] part 1). Sharing transactions of data and value in a
common distributed database (a common ledger in a blockchain), agreed by consensus
(i.e., “the longest block wins”) and replicated multiple times across participating nodes
without a central governance element acting as a trust provider is an attractive concept with
many potential use cases. Public blockchains constitute the Internet of value. Bitcoin [20]
and Ethereum [21] are by far the two most popular public permissionless blockchain
implementations in terms of market capitalisation [22].

Proposed IoT implementations based on Ethereum using smart contracts yet present
some challenges: incurred costs [23,24] and transaction confirmation delays [23] are still
obstacles for their industry-wide implementation. Currently, the number of transactions
per second (tps) that public permissionless blockchain implementations cope with cannot
compete with traditional centralised payment solutions. Transaction figures are controver-
sial and highly dependant on the source: [25] mentions that Visa averaged 5000 transactions
per second during 2H2018. Bitcoin executes on average 3 to 4 tps with pikes of 7 tps [26].
Ethereum copes with an average of 12 tps [27]. On blocktivity.info, EOS, a public permis-
sionless blockchain that aspires to compete with Ethereum, leads the tps ranking with over
61 million operations (equivalent to over 36 tps) [28]. The EOS web site itself has even
reported a new record of 9656 tps in its jungle testnet [29]. Regardless of the precise figures,
it is a fact that the current centralised payment systems process numbers of transactions
that are two orders of magnitude higher (see Table 4). In addition to the number of transac-
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tions, both Bitcoin and Ethereum carry fees per transaction, which renders their use for
IoT devices questionable, as a high number of communications per device would increase
operational costs considerably.

Table 4. Typical transactions per second (tps).

Processor Architecture Tps

Visa Centralised 5000
Bitcoin Distributed 3 to 4, pikes of 7

Ethereum Distributed 12 on average
IOTA Distributed below 10
IoTeX Distributed f(chain)
EOS Distributed 36

We select the two most capitalised IOT related blockchain implementations: IOTA and
IoTeX. See Figure 1. We use market capitalisation as a proxy for potential user adoption
and future growth. In January 2021, the market capitalisation of MIOTA, IOTA’s coin,
surpassed USD 1.3 B with a 24 h trading volume of USD 179 M, and the market value of
IOTX, IoTeX’s coin, reached USD 81 M with a 24 h trading volume of USD 4.5 M [22,30].
In December 2020, MIOTA had a market capitalisation of USD 800 M with a 24 h trading
volume of USD 34 M, and the market value of IOTX reached USD 37 M with a 24 h trading
volume of USD 6 M. The gap in both capitalisation and daily trading volume between
both IoT coins is considerable but they rank in position 1 and 2 considering these two
parameters as the ranking criteria.

Figure 1. Market capitalisation of IoT coins on 18 January 2021.

2.3. IOTA

IOTA was created in 2015 by David Sønstebø, Dominik Schiener, Sergey Ivancheglo
and Serguei Popov. It is a public, permissionless, open-source distributed ledger with no
transaction fees that exchanges value between humans and machines [31]. There are no
blocks nor miners, and the creators claim that it requires very low resources. It uses a
directed acyclic graph (DAG) instead of a blockchain. Every participant needs to validate
two other transactions when they send an IOTA transaction. Nodes in IOTA use the balance
model, in contrast with the unspent transaction output (UTXO); i.e., the balance of a user is
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simply a list of unspent transactions in different addresses. The balance model, i.e., keeping
track of the account balance as a unique global state, is simpler and more efficient but
prone to double-spending attacks [32]. The average number of transactions per second is
below 10 tps most of the time [33]. There are around 291 active public IOTA nodes [34],
many of them in servers located in Germany.

2.3.1. IOTA DAG. The Tangle

IOTA designers decided not to use a chain of blocks to guarantee scalability but
a directed acyclic graph (DAG) called the tangle, allowing for a theoretically infinite
throughput as the network grows. Every participant that issues a transaction needs
to approve two previous transactions (a trunk transaction and a branch transaction, as
depicted in Figure 2), thereby contributing to the integrity of the tangle. A bundle is a
collection of transactions validated simultaneously. A typical transfer in IOTA is a bundle
consisting of four transactions. The genesis transaction consists of an address containing
all the tokens existing in IOTA and sending them to other founder addresses [35]. Most
of the attacks on the tangle foreseen in its white paper [35] are related to identity; e.g.,
an attacker could have a myriad of Sybil identities. In a Sybil attack, the attacker tries to
subvert a reputation system creating multiple identities [36]. To prevent that, reference [35]
suggests using statistical Markov chain Monte Carlo (MCMC) algorithms for the nodes to
create “random walks” through non-confirmed transactions (called “tips”) and to provide
weights to each of those tips. These weights are related to the numbers of direct and indirect
approvers a transaction has. The preference for using MCMC compared to uniform random
tip selection (URTS) has been confirmed in a computer simulation of the tangle [37].

Figure 2. Ideal IOTA tangle representation.

2.3.2. The Coordinator of the Tangle

The theoretical mathematical foundation laid in [35] has a lot of potential in a suffi-
ciently meshed and sized network; however, the tangle still makes use of a “bootstrapping”
security measure to avoid attacks: a confirmed transaction needs to be referenced, di-
rectly or indirectly, by a signed transaction issued by a unique node: the coordinator
(Coo). Those signed transactions are called milestones. This Coo constitutes an element of
centralisation [38] that allows IOTA to create a consensus on accepting transactions. The
IOTA design team confirmed that this is a temporary measure. Since its inception, IOTA
has embarked on a continuous algorithm and protocol improvement effort [39–41]. They
are working on eliminating the figure of the coordinator in a project called “Coordicide.”

2.3.3. The Coordicide Preparing IOTA Consolidation

This complex project consists of technical workstreams [38], most of them rotating
around the concept of identity management:
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1. Global node identities: Using off-tangle non-post-quantum public key cryptography
to identify nodes. Every node would then add its public key to every signed message.

2. Sybil attack protection via a reputation system: Providing a reputation value (called
mana) to every node, equivalent to the total number of funds transferred by that
node. This is a specific kind of proof of ownership. They distinguish between pending
mana (based on the tokens the node holds) and mana (spent tokens by that node in its
transactions). Both pending mana and mana decay at a rate proportional to the stake
they hold.

3. Autopeering: Nodes in IOTA keep a copy of the ledger state, i.e., the tangle. Nodes
share information on transactions with the neighbour nodes. This is called peering.
This process is currently done manually by the node operator, and hence, could be
subject to an ill-intentioned actor controlling all peering neighbours of a node. This is
called the eclipse attack. IOTA designers propose the use of public-key-based cryp-
tography to automate this node information exchange process (called autopeering).
In order to do that, a regular transfer of nodes’ public keys will be required.

4. Rate control: Many blockchain implementations, Bitcoin and Ethereum included, use
proof of work. Proof of work is a consensus mechanism that act as a built-in network
congestion limitation mechanism and deters attacks to a network by requiring the
execution of a computationally demanding process for a network participant to get
the service it requests confirmed. In the case of blockchains, the service is mainly trans-
action confirmation. A proof of work consensus mechanism favours the blockchain
that has taken the most energy to be built (chainwork), in other words, “the longest
chain wins.” This is measured by the number of hashes required to produce the
current chain [42]. For a blockchain to be trustful, honest participants in the network
need to control the majority of the network’s hashing power. The challenge of proof
of work in IOTA is the limited computing capacity of most of their participants since
IOTA positions itself as the distributed ledger for IoT devices. IOTA designers of
Coordicide are studying adaptive (to the computing power of the device) proof of
work (POW) algorithms.

5. Decoupling of conflict resolution and transaction validation: These are the two hardest
actions to solve. Regarding the consensus mechanism, the Coordicide proposes the
use of a mana-based fast probabilistic consensus (FPC) [39–41] or “cellular automata”
(CA, also known as majority dynamics). On tip selection, the initial biased random
walk used to select transactions to validate transforms into an “almost” uniformly
random tip selection among non-lazy, i.e., active nodes.

2.3.4. The Path to Coordicide

This architectural re-design is complex and requires changes in the node software, the
wallets, the infrastructure and most libraries. The IOTA design team planned a transitional
step to drive IOTA 1.0 (with a coordinator) to the new IOTA 2.0 (with no coordinator):
IOTA 1.5 (also known as Chrysalis). One of the changes included in Chrysalis is the formal
introduction of reusable addresses, facilitating the integration into new exchanges, wallets
and payments [43].

2.3.5. Reuse or Not of Addresses

The initial architectural decision of IOTA designers to build the tangle quantum com-
puting proof required the use of post-quantum computing encryption to sign
transactions [44]. This meant that the use of the same paying address was not secure
anymore, so the remainder needs to be sent to a new address of the payee. IOTA designers
advise users not to spend from the same address more than once [45]. Chrysalis includes the
logical detachment of the address from the public key used to sign the transaction. It also
enables the change of the public key linked to an address for every purchase. Consequently,
IOTA will be in a position to offer reusable addresses to their users [46]. Having reusable
addresses facilitates the implementation of a more robust identity management concept.

72



Electronics 2021, 10, 378 8 of 26

2.3.6. IOTA Use Cases

There are currently initiatives to use IOTA in seven sectors: mobility and automotive,
global trade and supply chains, industrial IoT, ehealth, smart cities, customs and border
management and digital identity [47]. Companies such as Bosch and Jaguar Land Rover
have piloted projects using IOTA. Transaction confirmation delays in the IOTA production
network are still challenging [48]. Most transactions take around 10 min, and 5% of
transactions experience longer confirmation times ([48] p. 1). This is one of the reasons
why the IOTA project has come up with a very ambitious improvement roadmap [38].

2.4. Security Incidents in IOTA

In January 2018 IOTA users lost close to USD 4 million via an attack that blended
social engineering with a design possibility related to identity management. The identity
of any user in a blockchain is generated via a private–public key pair. This key pair resides
in a cryptocurrency wallet. To facilitate the creation and recovery of the private key, since
the arrival of Bitcoin and Ethereum, it is common to use a seed to create the master private
key of the cryptowallet. Seeds in Bitcoin are 12 word phrases. Seeds in Ethereum consist
of 24 words. Seeds in IOTA contain 81 trytes (i.e., a capital letter or a base-three number).
Hackers published or owned websites that facilitated the task to create IOTA seeds. They
just needed to wait until they gathered a sufficient number of operational seeds and later
they syphoned out their balances. Strictly speaking, this compromise did not exploit a
design flaw in IOTA but an insecure user practice to create seeds via ad hoc sites on the
Internet [49].

In February 2020 IOTA stopped the tangle in production after identifying a theft of
seeds in their Trinity wallet up to a sum higher than USD 2 million. The Trinity wallet is
the official mobile and desktop wallet for MIOTA tokens. Hackers compromised the code
delivery network of a third party that had access to the code of the Trinity wallet since
November 2019 [50]. In this case, the flaw was a human error, i.e., allowing to a third party
access to the core code of the wallet without performing the required continuous security
due diligence [14].

2.5. IoTeX

IoTeX was built from scratch in 2017 and launched its coin IOTX in February 2018.
Raullen Chai, Qevan Guo and Jing Sun founded this project. Xinxin Fan is the head
of cryptography [51]. It is a decentralised network for IoT based on a privacy-centric
blockchain [52]. It uses different blockchains, permissioned or permissionless, within
blockchains; it provides privacy on blockchain; and it uses fast consensus with instant final-
ity. The IoTeX team summarised the ways blockchain benefits IoT with Table 5 ([52] p. 9):

Table 5. How blockchain benefits IoT.

Blockchain Property IoT Requirement

Decentralization Scalability, privacy
Byzantine fault tolerance Availability, security

Transparency & Immutability Trust
Programmability Extensibility

IoTeX considers that no unique blockchain implementation can answer all their IoT
requirements ([52] p. 12). Following the principle of separation of duties, specific types
of blockchains will interact with specific types of IoT devices. A certain degree of com-
plexity in IoT can only be handled by a blockchain with the corresponding degree of
complexity [53].
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2.5.1. IoTeX Rootchain and Subchains Fast Consensus with Instant Finality

IoTeX runs a public permissionless rootchain and multiple subchains. Subchains
support smart contracts and they can be permissioned or permissionless blockchains. The
IoTeX rootchain uses the UTXO model to facilitate transaction ordering. It also provides
privacy and orchestrates subchains. IoTex rootchain consensus achieves instant block
immutability ([52,54] p. 16). Public blockchains such as Bitcoin provide only probabilistic
assurance via proof of work that a transaction has been confirmed. IoTeX rootchain
uses Roll-DPoS (a randomised delegated proof of stake): Token holders vote for their
delegates; these delegates are rank-ordered by the number of votes they receive. The top
voted delegates are the “consensus delegates” for the current epoch (a specific length of
time). From there, a sub-committee is randomly selected by a randomization algorithm to
maintain consensus and produce new blocks for every new epoch [55]. The achievement
of block finality is key for IoTeX cross-blockchain communications. These communications
rely on simplified payment verification (SPV) [20], a technique to allow a lightweight node
to verify a transaction via a Merkle tree using block headers without downloading the
entire blockchain. To enable the transferral of tokens to and from subchains, IoTeX uses a
two-way pegging (TWP) ([52] p. 16).

2.5.2. Privacy in IoTeX Rootchain

IoTeX preserves privacy in three focus areas: sender privacy, receiver privacy and
transaction privacy.

(a) The relayable payment code (on top of the stealth address technique) uses hashed
timelock contracts (HTLCs) to offer receiver privacy [56].

(b) The use of a secure multi-party computation protocol (SMCP) among bootstrapping
blockchain nodes facilitates the use of a ring signature to preserve sender privacy [51].

(c) The use of Pedersen cryptographic commitments provides transaction value
privacy [51].

2.5.3. IoTeX Use Cases

The IoTeX team has released a proposal for an end-to-end secure blockchain-based
home IP camera system [57] that could be implemented on top of IoTex. This project
includes data integrity, live streaming video sharing and blockchain-based device owner-
ship management.

In the mobile payments arena, Xinxin Fan et al. have published a proposal for
cryptocurrency mobile payments, including a solution to meet know your customer (KYC)
anti-money laundering (AML) requirements [58].

These two examples already show how the IoT blockchain is an element within a
broader technical construct that includes cloud servers (both edge and core) and peer to
peer networks.

2.5.4. IOTA vs. IoTeX

This concludes a comprehensive review of two promising IoT platforms. They are
the two biggest IoT projects in terms of market capitalisation and they are both open
source initiatives backed by relevant industry players. All in all, the multichain proposal
of IoTeX, while being more complex both in terms of design and implementation than
IOTA, provides more versatility and adaptability, and potentially more speed thanks to
its consensus design and smart contracts, especially in environments with IoT devices
with very limited computing capacity. IOTA, however, without fees and mining nodes
and with its DAG design, is a less sophisticated solution that benefits from the first-mover
advantage. Table 6 compares IOTA against IoTeX in terms of design choices and summary
figures. Finally, no known security incidents have impacted IoTex so far.
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Table 6. IOTA vs IoTeX.

Criteria IOTA IoTeX

Year of creation 2015 2017
Market cap (USD) 1.3 B 81 M

Technology public permissionless DAG public permissionless root
blockchain

Subchains No Yes (permissioned possible)
Balance model UTXO Balance

Transaction fees No Low
Consensus protocol Proof of work Proof of stake

Privacy Not in the DAG Possible in the rootchain
Known security incidents 2 0

2.6. Security Incidents in Public Blockchains

Table 7 presents the known root cause of several security incidents affecting pub-
lic blockchain (BLK) implementations (Bitcoin, BTC; Ethereum, ETH) leading to loss of
funds [59]. The main conclusion is that attackers took advantage of security flaws in layers
different from the architecture of the blockchain implementation. In most cases a better
identity management solution could have prevented the real loss of funds before they were
converted into real-world fiat money.

Table 7. Security incidents affecting public blockchains.

Date BLK Incident Root Cause

2011 BTC Mt.Gox exchange hack1 Admin laptop compromised

2014 BTC Mt.Gox exchange hack2 Leak in hot wallet and no
security monitoring

2016 ETH In a DAO. One Distributed
Autonomous Organisation Code errors in smart contract

2016 BTC Bitfinex exchange Flaw in multi-signature
accounts and Bitgo wallet

2017 ETH CoinDash Initial Coin
Offering

Website hacked (ICO address
changed)

2017 ETH Parity wallet breach 1 and 2 Vulnerable contract code

2017 ETH Enigma project scam Website, slack channel and
mailing list compromised

2017 ETH and BTC Tether tokens stolen Vulnerable wallet

2018 NEM Coincheck exchange hacked Vulnerable hot non-multi
signature wallet

In all these incidents, hackers deviated funds in the form of tokens to addresses they
controlled. From those addresses, their next step was to convert it into fiat money to use
those funds as they pleased. The addresses, in Bitcoin, Ethereum and IOTA, to which these
funds were transferred are known, as they appear in the respective public blockchain (or
DAG ledger in the case of IOTA). The key will be to identify the owners of those addresses
without building any centralised element in the blockchain architecture. This calls for the
use of permissioned blockchains and resilient identity management applied at least to
addresses holding considerable value.
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2.7. Identity and Access Management in IoT
2.7.1. A Set of Technologies to Solve a Complex Security Problem: Cloud and
Edge Computing

The need for a resilient IAM framework to avoid intentional risks, i.e., security inci-
dents in blockchains, as stated in Section 2.6, is of paramount importance in IoT as well.
In the IoT blockchain world, these requirements are even more challenging to satisfy due
to the high number of IoT devices to manage [2,3] and the limited computing resources
available in those devices (mostly digital sensors).

The solution to this problem does not lie in specific and unique technology but in a
smart combination of current available technologies, such as blockchain, edge computing,
cloud computing and cryptography.

Cloud servers provide on-demand storage and computing power over the Internet. In
those scenarios where bandwidth is scarce and quick response times are essential, cloud
computing is complemented by edge computing. Edge computing places computation
and storage closer to the end user, mostly via mobile networks and optical fibre lines.
IoT devices are heavy users of this dual cloud/edge computing Internet architecture.
For example, secure storage management in IoT networks typically requires both cloud
and edge computing [60]. The concept of mobile edge computing (MEC) refers to the
provision of cloud computing capabilities at the edge of a cellular network. These MEC
nodes can be used to offload computing tasks from IoT devices. Reference [61] proposes a
noncooperative game-theoretic strategy selection to distribute work among MEC nodes.

Blockchain and edge computing architectures find applications in smart energy envi-
ronments as well [62]. It is normal to find a three-layered architecture—i.e., IoT devices
(mainly sensors) in layer 1, edge nodes as layer 2 and cloud services as layer 3. This
type of architecture allows for the use of decentralised identifiers (DIDs) and verifiable
credentials (VCs): useful artefacts to create verifiable self-sovereign digital identities for
people, organisations and IoTs [63]. DIoTA, the data integrity framework proposed by
Xinxin Fan et al. [64] is a representative example.

To round up this complex ecosystem, the role of smart contracts is also indispensable.
They tap into the processing power provided by edge computing to implement, e.g.,
authentication methods in blockchain-based IoT networks via whitelisting and security
scoring [65,66].

Computational intelligence (CI) models can also contribute to solving complex secu-
rity problems such as identity management. The use of deep fully conventional neural
networks (DFCNN), as proposed by [67], to assess the risk of embedded motion sensor-
based private information inference in IoT devices could contribute to detecting fraudulent
transaction initiators.

We can use additional technologies and models to improve security in IoT networks.
For example, in mobile sensor IoT platforms, the use of private car trajectory data to
study the aggregation effects [68] and the use of a range-free cooperative localization
algorithm [69] or positioning schemes [70] could help with detecting anomalous traffic
patterns in fraudulent IoT network participants.

2.7.2. DIoTA: A Decentralised Ledger-Based Framework for Data Authenticity Protection
in IoT Systems

Xinxin Fan et al. [64] in 2020 proposed a way to maintain data integrity, including
identity related data for IoT systems, which requires very little computing resources and
just one public–private key pair per IoT device. The system is comprised of a collection of
decentralised ledgers: as many edge ledgers as required and a global ledger. These ledgers
run on a system of cloud and edge computing servers.

The DIoTA framework rotates around a collection of key points for this article [64]:

(a) The ledgers in DIoTA are permissioned and decentralised. Reading data could be
granted to the public, but any node running ledgers supporting IoT data-producing
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devices need to hold a public key certificate from a trusted public key infrastruc-
ture (PKI).

(b) Device authentication is a prerequisite for data authenticity protection.
(c) The edge ledger maintains the data authenticity protection schema rather than the

IoT devices.
(d) The IoT device only needs to store a private key, crypto parameters such as a certificate

and a list of edge ledger nodes.
(e) IoT data authenticity protection is based on a number of cryptographic keys. Those

keys are stored in blocks within a blockchain, a distributed edge or global ledger,
which runs on top of the corresponding edge or cloud servers.

(f) Reading blockchain data to look for keys and certificates is not resource-intensive.
Low energy consumption in IoT devices is a functional requirement. Proposals
on caching and scheduling policies to reduce transmission delays and power con-
sumption, such as [71] and a dynamic routing algorithm based on energy-efficient
relay selection [72], confirm the need to keep computing operations in the IoT de-
vice lightweight.

Xinxin Fan et al. ([64] p. 45) compared DIoTA to other data integrity solutions that
could also be used to manage identities in IoT blockchains. Scalability appears as the main
competitive advantage for DIoTA.

2.8. Complex Network Analysis: From Graphs to Networks

Reductionism and modelling non-linear phenomena using linear models has been a
key strategy in physics to understand many systems of interest ([73] p. 4). However, many
non-linear systems in the real world cannot be characterised by linear models. They require
newer and more integrated approaches such as the one offered by complex networks.
Coming traditionally from mathematics, complex networks received the name of graphs.
Graph theory was born with the paper written by Leonhard Euler on the Seven Bridges of
Königsberg (published in 1736). Graph theory in the 18th century dealt with static graphs,
i.e., those with a permanent structure.

The addition of dynamism to graphs to create dynamic networks was first addressed
by Paul Erdős and Alfred Rényi in 1959 ([73] p. 4) with their random networks. In a
random network of N nodes (or vertices), new connections (or edges) are created with
uniform probability between any pair of nodes. Random networks are characterised by a
normal degree distribution ([74] Section 2). This type of network is not commonly found
in natural structures. The degree of a node represents the number of connections it has.
When sociologists started to use graph theory to represent social relations, the concepts of
small-world and scale-free networks started to be frequently used. They both present a
relatively small average shortest path length.

Small-world networks are characterised by small average shortest path lengths be-
tween pairs of nodes and relatively high clustering coefficients ([73] p. 4). A small average
shortest path between nodes means that they are relatively close to each other in terms of
edges that are required to traverse to link those nodes. The clustering coefficient indicates
the number of edges that exist between a set of nodes connected to a specific node divided
by the maximum number of edges that can exist between any of them. They are high
density networks, creating communities. A connected community is a cluster. It is based
on the idea of a clique. Small-world networks are frequent in social networks. Watts and
Strogatz (1998) studied this type of network ([74] Section 2).

A next milestone in complex network theory was the characterisation of scale-free
networks. These networks are very present as well in natural and human-made networks.
Barabási and Albert studied scale-free networks in 1999. These networks contain a few
large degree nodes and many small degree nodes ([74] Section 2). They are less highly
clustered than small-world networks. The influence of the large nodes is greater than in
small-world networks. Scale-free networks prove to be surprisingly resistant to failures
but shockingly sensitive to attacks [75]. A typical example of a scale-free network is a
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hub-and-spoke configuration in air transport. In that case, a targeted attack to the most
connected node, the hub, could be catastrophic.

2.9. Intentional Risk Management
2.9.1. Static Risk and Dynamic Risk

The proposal to model information systems as nodes (the systems) and edges (their
communication lines between them) to manage intentional risk ([11] p. 75) is a security
innovation. Using complex network theory, the more connected a node is (or the more
accessibility a computer system has), the greater the risk for it to be compromised. The
calculation of risk scores of source and destination hosts based on the risk scores of network
flows [76] is also an example of using graph theory in security risk management. The three
key dimensions proposed to model the complex information system network are value,
anonymity and accessibility ([11] pp. 6–7). Reference [11] considers intentionality as the
backbone for cyber-risk management and close to game theory, specifically to the stability
analysis of John Nash’s equilibrium.

An intentional risk materialises when a threat exploits a vulnerability and produces
an undesired effect ([15] p. 2) that brings a benefit to the threat actor. System failures
and environmental disasters are not events falling within the scope of intentional risk.
Chapela et al. (2016) [11] distinguish between static and dynamic risks in intentional risk.
They state that static risk measures the “probability for a user who has authorised access
to a specific application to choose to abuse his access for personal gain” ([11] p. 7). They
also add a different type of risk, dynamic risk, that measures the probability that an
attacker (it does not need to be a registered user) tries to get the most valuable node (of a
complex network) via the least number of hops through both authorised or unauthorised
but possible accesses ([11] p. 7). In dynamic risk, anonymity does not play any role as
a variable to manage risk: when a threat actor exploits a vulnerability in a system, they
always do it with the maximum possible level of anonymity [11].

Chapela et al. ([11] p. 99) propose the following formula for static risk:

Static Riske = Valuee · (Acce) · (
Anone

k
) (1)

where

Acce = Accessibilityelement, (2)

Valuee = Valueelement, (3)

Anone = Anonymityelement, (4)

k = standard constant related to the (legal) consequences the attacker could f ace. (5)

In a network G, the static risk is defined as:

Static RiskG = max({Static Riske|e ∈ G}). (6)

Equally, for dynamic risk ([11] p. 102):

Dynamic Riske = Valuee · Accessibilitye. (7)

The dynamic risk of a network G is defined as the maximum of the dynamic risk of its
elements, i.e.,

Dynamic RiskG = max({(Dynamic Risk)e|e ∈ G}). (8)
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A user that attempts to double-spend their cryptocurrency is an example of static risk.
In public blockchains such as Bitcoin and Ethereum, static risk is supposedly contained by
design. The “proof of work” consensus proposed by Satoshi Nakamoto ([20] p. 3) prevents
by design double-spends from propagating. A typical user approaches the network via a
ready-to-use wallet. The code within those wallets does not allow double-spends. A user
attempting to create a double-spend would need to code their own wallet.

An ill-intentioned actor that exploits a vulnerability in a crypto wallet and siphons
out funds from it is an example of dynamic risk. This actor makes use of an anonymous
non-authorised unknown path in the system to extract value from it.

2.9.2. Attackers’ Expected Profit

Intentional risk management differs from traditional risk management in its main
focus of attention: the attacker’s function of profit [11]. It depends on these three elements:

- Expected income, i.e., the value for them.
- The expenses they run (depending on the accessibility).
- Risk to the attacker (related to the degree of anonymity they can have and applicable

deterrent legal, economic and social consequences). Calculated risk values should be
intrinsic to the attributes of the network and require no expert estimates.

3. Methodology

First, we have highlighted the main IoT security challenges and corresponding re-
quirements [4–6,16,18]. Second, we have introduced current works on IoT implemen-
tations that use distributed ledgers such as those related to IOTA [31,35,38,43–46] and
IoTex [51,52,54,55]. Third, we have presented complex networks as a means to describe
complex non-linear systems [7–10,12,13,73] and even to manage intentional risk [11,76].
Now we describe both IOTA and IoTeX transactions as complex networks as a required
step to make their IAM more resilient.

3.1. Transaction Data Collection

Most public blockchain implementations make block explorers available via the In-
ternet. A block explorer is a web tool that queries blocks, addresses, transactions and
hashes in a blockchain. There are explorers for Bitcoin [77] and Ethereum [78] but also for
IOTA [79] and IoTeX [80]. These explorer sites publish an open application programming
interface (API) to facilitate data collection. Instead of running simulations to collect data,
we use these four block explorers to obtain real transaction data. We code a set of Python
scripts to extract data from the IOTA and IoTeX public explorers [79,80]. See Figure 3.
First, we download the list of addresses holding the highest amounts of MIOTA and IoTeX
tokens respectively: the top 100 richest addresses in the case of IOTA and 500 addresses for
IoTeX. Second, we use the mentioned APIs to collect transactions linked to those addresses
for the longest computationally feasible time window and within the API public usage
limits. Calls to these public APIs are usually data and computational-intensive. Explorers
consequently limit public queries in the form of data volume caps per API call and per
time unit to avoid misuse. As each API has different calls, we write a Python script for each
token using the requests Python library. Table 8 details the transaction data we download
per token and per time window.

Table 8. Transaction data downloaded for IOTA and IoTeX complex network analysis.

Token Time Window Addresses Transactions #Rich
Addresses

IOTA 23-December-2020 1068 22,960 100
IOTA 25-December-2020 1068 23,225 100
IoTeX endepoch = 13,910 (in December-2020) 3190 10,222 500
IoTeX endepoch = 14,000 (in December-2020) 3709 13,935 500
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(a) IOTA explorer. The richest IOTA addresses

(b) IoTeX explorer. The richest IoTeX addresses

Figure 3. IOTA and IoTeX ledger explorers.

We perform a similar data collection exercise with the Bitcoin and Ethereum
explorers [77,78] to compare their transaction networks with those coming from IOTA
and IoTeX. We use public APIs both for BTC [77] and ETH [81]. In this case, we collect
all transaction data within specific time slots in December 2020. Table 9 describes the
downloaded data.

Table 9. Transaction data downloaded for BTC and ETH complex network analysis.

Token Time Window Blocks (Number) Addresses Transactions

BTC 21–23-December-2020 662,276–662,554 (278) 1,241,548 1,385,212
ETH 26-December-2020 11,531,960–11,531,970 (11) 1677 1363
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3.2. Transaction Data Preparation: Sender, Destination Pairs

Once we collect the transaction data, we extract the sender and destination fields from
the JSON-formatted transaction files. The challenge in this phase is that every analysed
ledger has a different structure. We therefore need to parse different JSON schemas for
MIOTA, IOTX, Bitcoin and Ethereum. We use the pandas Python library to create a text
file with a pair of addresses, sender and destination, per line. This file is the input for our
complex network analysis.

3.3. Complex Network Analysis

Each address in the input file constitutes a node, and each pair of sender and desti-
nation creates an edge of an undirected complex network of transactions per token, i.e.,
IOTA, IoTeX, BTC and ETH. We use the networkx Python library to calculate the average
degree, the average clustering coefficient, the density, the connectivity, the number of
components present in the network and finally the degree distribution. We conclude by
plotting the degree distribution using a logarithmic axis with the matplotlib Python library.
Figures 4–6 show the corresponding degree distributions. The outcome of this complex
network analysis provides us with the network profiles for IOTA and IoTeX. The network
profile of a system shows how its elements connect. This profile will be pivotal to conclude
on their IAM resilience against intentional risk.

We carry out this computational analysis in a dual-processor Intel Xeon CPU @
2.30 GHz with 13 GB RAM memory. Figure 7 summarises the methodology followed to
describe IOTA and IoTeX as complex networks.

(a) Tx degree distribution in t0

(b) Tx degree distribution in t0 + 48 h

Figure 4. Degree distribution of 1068 IOTA addresses.
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(a) Tx degree distribution with top 500 addr. Epoch 13,910 (b) Tx degree distribution with top 500 addr. Epoch 14,000

Figure 5. Degree distribution of IoTeX addresses in December 2020.

(a) BTC Tx degree distribution (b) ETH Tx degree distribution

Figure 6. Tx degree distribution in BTC and ETH.

Figure 7. Steps taken to perform the IOTA and IoTeX transaction network analysis.

4. Analysis and Results
4.1. IOTA Complex Network Analysis

We follow the methodology explained in Figure 7 with the IOTA transaction data
presented in Table 8 to generate a complex network. We depict the degree distribution in
two-time slots in December 2020 and can see a similar pattern: a weak similarity with a
power-law distribution. Although the IOTA dataset used is not sufficient to draw further
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conclusions, a majority of nodes have low degrees and a small number of nodes (addresses)
show high degrees. See Figure 4. Coincidentally, we detect an interesting anomaly looking
in both graphs: there are around 100 addresses with a degree also close to 100. The fact that
we use the list of the 100 richest addresses to extract transaction data could be a potential
explanation for this anomaly.

The very low density and average clustering coefficient in these non-connected graphs
described in Figure 8 provide no sign of small-world properties (see Section 2.8). These
results are in line with the fact that every IOTA address with a positive balance initiating a
transaction requires a new address to keep the remainder. As mentioned in Section 2.3.5,
addresses sending a transaction are only used once for security reasons. Consequently, most
of the highly connected (high degree) reused addresses are only transaction destinations.
Those addresses can remain active for a long time. If we could verify the real-life identities
behind those destination addresses holding large amounts of MIOTAs, we could increase
the resilience against intentional risk in this IoT platform.

The empirical in-degree distributions of IOTA mainnet snapshots calculated by
([48] p. 5, Figure 4b) show a power-law distribution in contrast with the Poisson degree dis-
tribution extracted from simulated tangles ([48] p. 5). Compared to our dataset, Guo et al. [48]
use a 13 month-long IOTA tangle dataset ranging from November 2016 to April 2019. Unfor-
tunately, the IOTA Foundation has not published mainnet tangle datasets since April 2019.

(a) IOTA transaction network. Sample 1

(b) IOTA transaction network. Sample 2

Figure 8. Complex network analysis for IOTA transactions.
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4.2. IoTeX Complex Network Analysis

Equally, we follow the methodology explained in Figure 7 with the IoTeX transaction
data presented in Table 8 to generate a complex network. We select two time-slots: epoch
13,910 and epoch 14,000 happening in December 2020. An epoch in IoTeX in 2020 tended
to last less than 30 min. For both epochs we start with the top 500 richest addresses. Once
we collect those addresses we gather up to 1000 transactions per address (as per the limit
of the public IoTeX explorer API [80]).

Figure 5 shows the degree distribution of IoTeX addresses present in the analysed
transactions. It resembles a power-law function. There is a very high number of addresses
with a very low number of connections, and conversely, a very low number of addresses
with a very high number of transactions. This is an indication of a scale-free network. The
network is composed of non-connected graphs with lesser numbers of components than in
the case of IOTA and a lower average degree. This indicates that rich addresses in IoTeX
are more connected with other nodes than rich IOTA addresses. Similarly to IOTA, if we
could verify the real-life identities behind those high-degree addresses, potentially holding
high amounts of IOTXs, we could increase the resilience against intentional risk in this IoT
platform. As in IOTA, with such a low average clustering coefficient, we find no sign of
small-world network properties based on the data displayed in Figure 9.

(a) IoTeX transaction network. Sample 1 (b) IoTeX transaction network. Sample 2

Figure 9. Complex network analysis for IoTeX transactions.

4.3. Largest Connected Components in IOTA and IoTeX

We identify the largest connected component (LCC) in both transaction networks and
we draw all nodes connected to it without displaying the edges between those nodes and
the LCC to ease interpretation. The appearances of the graphs showing nodes connected to
the LCC in IOTA and IoTeX are similar. Figures 10 and 11 show that the disassortativity is
patent; i.e., nodes do not tend to link with nodes of a similar level. On the contrary, low
degree nodes tend to connect with very high degree nodes.

Figures 10 and 11 represent all nodes connected to the largest one in the network with
a distance equal to or less than 3. Nodes (addresses) connected to high degree nodes do not
tend to connect with each other. If we consider that most of those nodes in the IoT world
are sensors or any other IoT devices, it is a plausible scenario that they connect with their
assigned data collecting server. Sensors do not tend to transact with each other.
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(a) IOTA nodes connected to LCC in t0 (b) IOTA nodes connected to LCC in t0 + 48 h

Figure 10. Nodes connected to IOTA LCC. Edges to LCC not displayed.

(a) Nodes connected to IoTeX LCC up to epoch 13,910 (b) Nodes connected to IoTeX LCC up to epoch 14,000

Figure 11. Nodes connected to IoTeX LCC. Edges to LCC not displayed.

4.4. Comparison with Bitcoin and Ethereum Complex Network Analysis

As mentioned in Section 3.1, we also collect transaction data from Bitcoin and Ethereum
to build the degree distributions of their transaction networks and compare them with
those obtained with IOTA and IoTeX networks. We use public APIs both for BTC [77]
and ETH [81] and we follow a methodology similar to Figure 7 with the BTC and ETH
transaction data presented in Table 9 to generate a complex network.

We identify power-law degree distributions as well. See Figure 6. This indicates that
the transaction networks of these two public blockchain implementations display scale-free
characteristics. We also obtain clustering coefficients very close to 0 indicating that neither
BTC nor ETH display small-world properties. Reference [82] reaches a similar conclusion.

Reference [82] suggests that successful cryptocurrencies, such as Bitcoin and Ethereum,
once they pass their creation phase and reach a stable stage with millions of transaction
addresses, show a power-law degree distribution. References [83,84] reaches a similar
conclusion: the Bitcoin network out-degree distribution might be fitted by a power-law.
Our empirical results are aligned. Reference [85], however, does not reach the same power-
law fit as they analyse BTC data during the early days of the BTC network, i.e., from
January 2009 up to July 2011.

We also observe a very low density in these two networks. This is due to the very
short periods of time observed; i.e., not many addresses are reused within adjacent blocks.
Our extracted data for BTC (2 days) covers a longer time than the extracted data for ETH
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(some minutes). This is the reason why the power-law degree distributions are clearer to
identify in the BTC graph than in the ETH graph.

4.5. Analysis of Heavy-Tailed Distributions

The identification of power-law fits on a log–log axis and only graphically is biased
and inaccurate [86]. We use the powerlaw Python library developed by Alstott et al. [87] with
our IOTA degree distribution dataset to assess our results. The plot from the IOTA network
shows a good fit by the power-law to the complementary cumulative distribution function
(CCDF). See Figure 12a. The probability density function (PDF) is, however, limited and far
from a power-law fit. This is in line with our previous IOTA results presented in Section 4.1;
i.e., the power-law fit is questionable. In our IoTeX degree distribution dataset, the network
displays a good fit by the power-law to the PDF, with a limited range of possible degrees
starting at x = 949 though. See Figure 12b. The power-law fit with the CCDF still shows a
very heavy tail deviating from the power-law fit, probably due to it being young. This is in
line with our previous IoTeX results presented in Section 4.2; i.e., the power-law fit is more
present in IoTeX than in IOTA.

(a) IOTA power-law fit (b) IoTeX power-law fit

Figure 12. Power-law fit using Python powerlaw library by Alstott et al. IOTA and IoTeX datasets.

We also use this powerlaw library by Alstott et al. [87] with our BTC and ETH degree dis-
tribution datasets to confirm our results and the references mentioned in Section 4.4, i.e., [82]
for both BTC and ETH and ([83,84] pp. 23–26) for BTC. The power-law fits in Figure 13a,b
are evident, although with a bigger gap in ETH due to the shorter period of analysis.

(a) BTC power-law fit (b) ETH power-law fit

Figure 13. Power-law fit using Python powerlaw library by Alstott et al. BTC and ETH datasets.
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5. Conclusions
5.1. Blockchain Answers a Subset of IoT Security Requirements

The blockchain technology can implement a number of IoT cybersecurity requirements
based on its distributed and immutable nature. However, a single blockchain implemen-
tation with no additional means to manage complexity, such as smart contracts, edge
and cloud computing, cannot fulfil all security requirements that IoT platforms need to
implement. See Section 2.7.

5.2. Identity and Access Management is a Key Security Requirement to Build Resilience against
Intentional Risk

Intentional risk focuses on attacks performed by actors with a defined intention to
obtain a benefit (value). Intentional risks can be static and dynamic. Using the static
and dynamic risk formulas proposed by Chapela et al. and presented in Section 2.9, we
conclude that in IoT implementations with nodes holding large amounts of value, we can
only reduce both static and dynamic risk if we control access to those nodes (mostly IoT
devices and IT components). In distributed environments such as IoT, an IAM framework
that uses decentralised identifiers (DIDs) and verifiable credentials (VCs), as presented in
Section 2.7, can control the accessibility to those devices. DIoTA uses artefacts of this type.

5.3. IoTeX and Possibly IOTA Networks Are Scale-Free. They Require Resilience against
Intentional Risk

IOTA and IoTeX are two examples of IoT platforms built on distributed ledgers. They
are both in production and they both are actively improving their scalability and security.
The IoTeX network displays a power-law degree distribution as scale-free networks do.
Our IOTA dataset could not confirm it for the IOTA network as Guo et al. did [48], possibly
due to the limited time slot analysed. In both networks there is a small set of highly
connected-nodes. As mentioned in Section 2.8, in scale-free networks the influence of
the large nodes is greater than in small-world networks. Scale-free networks prove to be
surprisingly resistant to failures but shockingly sensitive to targeted attacks. A way to
make these IoT networks less sensitive to attacks, or in other words, a way to improve their
resilience against intentional risk is to implement a distributed IAM concept.

5.4. DIoTA Provides IoTex with Resilient Identity and Access Management

DIoTA, the decentralised ledger-based framework for data authenticity protection in
IoT systems proposed by Xinxin Fan et al. in 2020 (see Section 2.7.2) is well-positioned
to bring IoTeX into the front line of IoT blockchain-based implementations that manage
intentional risk effectively. Both IOTA and IoTeX projects are immersed in promising
design improvements. We consider IoTeX a more complex platform, but at the same
time, better positioned to implement resilient IAM frameworks such as DIoTA. A key
requirement for IoTex to achieve this aspiration is to hold all worth-protecting value in
permissioned blockchains.

5.5. Resilience against Intentional Risk Requires an IAM Concept That Transcends a
Single Blockchain

Based on our results for IOTA and IoTeX, we conclude that resilience against inten-
tional risk requires an IAM concept that transcends the possibilities of a single blockchain
implementation. Only with the interplay of edge and global ledgers running on edge
and cloud servers we can obtain data integrity in a multi-vendor and multi-purpose
IoT network.

6. Future Work

We see three main lines of future work stemming from this paper:
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(a) Transforming the time series created by IOTA and IoTeX transactions into complex
networks to go deeper into their analysis using the visibility graph proposed by
Lacasa et al. [88].

(b) Studying whether DIoTA can be further extended using any of the artificial intelli-
gence (AI) solutions to secure IoT services in edge computing surveyed by Xu et
al. [89].

(c) Assessing the possibility of applying generative adversarial nets (GANs) to improve
the speed and accuracy in consensus protocols based on proof-of-stake (PoS), such
as the one used by IoTeX [90,91].
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6. Visibility graph analysis of IOTA
and IoTeX price series: an inten-
tional risk-based strategy to use 5G
for IoT

Errata: Section 4.4 in this published article contains two errata:

• Instead of "the values of 𝛼 are very close to 2 for both HVGs", it should say
"the values of 𝛼 are below 2 for both HVGs".

• Instead of "the fit observe with curve_fit shows a less heavy-tailed distribution
than in the degree graphs", it should say "the fit observe with curve_fit shows
a more heavy-tailed distribution than in the degree graphs".
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Abstract: The transformation of time series into complex networks through visibility graphs is an
innovative way to study time-based events. In this work, we use visibility graphs to transform IOTA
and IoTeX price volatility time series into complex networks. Our aim is twofold: first, to better
understand the markets of the two most capitalised Internet of Things (IoT) platforms at the time of
writing. IOTA runs on a public directed acyclic graph (DAG) and IoTeX on a blockchain. Second,
to suggest how 5G can improve information security in these two key IoT platforms. The analysis
of the networks created by the natural and horizontal visibility graphs shows, first, that both IOTA
and IoTeX are still at their infancy in their development, with IoTex seemingly developing faster.
Second, both IoT tokens form communities in a hierarchical structure, and third, 5G can accelerate
their development. We use intentional risk management as a lever to understand the impact of 5G on
IOTA and IoTeX. Our results lead us to provide a set of design recommendations that contribute to
improving information security in future 5G-based IoT implementations.

Keywords: IoT; IOTA; IoTeX; blockchain; decentralised ledger; cryptocurrencies; complex networks;
visibility graph; powerlaw; data integrity; intentional risk; resilience

1. Introduction
1.1. Foundations of This Study: From Time Series to Complex Networks

In mathematics, a time series is a succession of events ordered by time. Time series
analysis aims to describe the statistical characteristics of the data. Time series forecasting
aims to use a model to predict future values [1]. Network science is a scientific discipline at
the crossroad of mathematics, statistics and physics [2]. It characterises systems composed
of a collection of nodes and edges between them. They constitute a network. The nodes
represent the members of the system and the edges certain relations or transfers between
them. When the number of nodes and edges is high, i.e., thousands to millions, these
systems create a complex network. Complex network analysis provides insights into how
these systems grow, evolve and interact with their members. It is possible to transform
a time series into a complex network thanks to an easy-to-implement algorithm, i.e., a
visibility graph [3]. This conversion facilitates the study of the system whose events create
a time series with the powerful analysis toolkit that complex network science provides.
In our case, we transform the time series created from the daily prices of the two most
capitalised Internet of Things (IoT) tokens into their corresponding complex networks.
These visibility networks help us understand how these two IoT platforms behave and
grow: IOTA and IoTeX, the former implemented on a directed acyclic graph (DAG) and
the latter on a blockchain. We apply our findings to a real life scenario, i.e., the deployment
of 5G mobile networks, and we use concepts stemming from intentional risk management
to suggest specific 5G design choices that can potentially improve the resilience against
intentional risk of both IoT platforms.
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1.2. The Value Proposition of 5G
1.2.1. Mobile Networks

Mobile networks answer the need human beings have to communicate remotely while
not being at home or anywhere close to a wireless local area network (LAN) access point
(Wi-Fi). Since their first release in 1980 [4] until now, a series of consecutive generations has
provided continuous technology improvements. Table 1 summarises data transmission
(Tx) speed, technologies and some details of each generation [5] (refer to [5–7] on protocol
acronyms used in Table 1):

1.2.2. 5G: Higher Speed and Lower Latency

Speeds displayed in Table 1 are only approximate. However, they show a continuous
drive towards providing customers with faster speed rates. The mobile network generation
that is currently being deployed is 5G, although there are still many GSM (2nd Generation)
networks in production with a switch-off date beyond 2024 [8]. The 3rd Generation
Partnership Project (3GPP) industry consortium [9] develops the communication protocol
specifications for 5G. Telecommunication providers have measured in real life a 5G data
transmission speed of 3 Gbps (3000 million bits per second) with a 3 milliseconds (ms) air
latency. More habitual figures are in the range of 500 Mbps and 30 ms latency (including
both air and edge server connection time gaps). As an example, the reaction time for the
human brain on an image perceived by the eye is around 10 ms [10]. 5G providers expect
to improve these figures in the coming years.

Table 1. Mobile networks history in generations.

Generation Tx Speed Technology Period Details

1 14.4 kbps Analog Tx 1970–1990 Voice only
2 up to 14.4 kbps CDMA/TDMA 1990–2000 Digital Tx, SMS, GSM Standard
2.5 20–170 kbps GPRS 2000–2003 First basic Internet browsing
2.75 up to 236 kbps EDGE 2003 ×3 GSM data capacity
3 144 kbps–3 Mbps UMTS, CDMA2000 2004–2005 First streamings
3.5 1–10 Mbps HSPA 2006–2010 Higher speed over UMTS
4 144 kbps–100 Mbps LTE 2010–2020 First streamings
5 1 Gbps 3GPP Standards 2021– Starting deployment

1.3. Internet of Things

The pervasiveness of Internet among human beings reaches already more than 50% of
the world population, i.e., almost 4 billion people [11]. A total of 90% of those Internet users
access it via mobile phones [12]. The connection of things with other things and people via
Internet, known as the Internet of Things (IoT), is also growing in economic importance
(USD 17 billion in 2021 [13]). The number of IoT connected devices reached the 20 billion
mark in 2018 [14]. The forecast is that this figure will reach USD 30 billion by 2030 [15].
An IoT device has at least one transducer (sensor or actuator) to interact directly with the
physical world and at least one network interface (e.g., 5G, Ethernet, Wi-Fi, Bluetooth)
to interface with the digital world [16]. They bridge the physical with the digital world.
Oracles play a similar role in distributed blockchains.

5G and Internet of Things

Already in 2016, the 3GPP consortium agreed to further develop IoT protocols like
NarrowBand Internet of Things (NB-IoT) and Long Term Evolution Machine Type Commu-
nication (LTE-M). 4G mobile networks already use them within the suite of standardised
low power, wide area (LPWA) technologies [17,18]. These two IoT protocols aim to meet
low-cost, low-current, wide coverage and high capacity requirements. 5G is also being
deployed in private networks, e.g., in industrial IoT [19]. Market analysts forecast a USD
3.6 trillion value generated in massive IoT developments up to 2035 [20].
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1.4. Blockchain

The publication of the seminal Bitcoin (BTC) paper in 2008 by the pseudonym Satoshi
Nakamoto [21] brought the spotlight on the blockchain, a distributed database that stores
records in blocks. Each block is permanently linked to the chain of blocks by cryptographic
means. The community accepts the longest chain of blocks. This technology provides data
integrity as validated blocks cannot be tampered with. It also provides transparency as the
chain of validated records is accessible to all participants and, finally, availability, as valida-
tors keep a copy of the blockchain [4]. Blockchain is a useful technology to register events
requiring integrity, transparency and availability such as financial transactions [22–25].

Blockchain for IoT

IoT networks can benefit from the blockchain technology to answer their integrity,
availability and, if required, transparency requirements [4,26]. The distributed nature of
blockchain is an optimal design component for IoT implementations. As of September
2021, the market capitalisation of four IoT projects based on blockchains or directed acyclic
graphs (DAG) exceeds USD 70 million: IOTA, IoTeX, MXC and Waltonchain [27]. In July
2021, their value surpassed USD 40 million.

1.5. Structure of the Paper

This paper is structured as follows. First, we introduce the foundations of our research
and summarise the opportunities that 5G brings to blockchain-based IoT implementations.
Second, we describe the current state-of-the-art with regard to 5G, IoT platforms and
blockchain. Third, we present complex network analysis and the proxy role of price
volatility. Fourth, we explain how visibility graphs bridge between time series and complex
network analysis, and we briefly refer to power law functions and to intentional risk. Fifth,
we share the methodology that we have followed to study IOTA and IoTeX price volatility,
its implementation and the corresponding results of the analysis. Sixth, we draw several
conclusions related to visibility graphs, IOTA and IoTeX markets and 5G using intentional
risk concepts. Seventh, we suggest design options for 5G to improve information security
in IOTA and IoTeX. Finally, we present our future work proposals.

2. Related Works
2.1. 5G Services and Their Economic Value

The International Telecommunication Union (ITU) Radio-communication sector de-
fines the minimum standards for 5G within three main services, i.e., enhanced Mobile
BroadBand (eMBB), massive Machine Type Communication (mMTC) and URLLC (Ultra
Reliable and Low Latency Communications) [4]. The most deployed service continues
to be eMBB [28], focused on improving data transmission rates for smartphone users.
Although in 2021 5G enabled smartphones already constitute 43% of new shipped units
worldwide [29], they still represent a tiny segment within the current deployed stock of
smartphones. The other two services, mMTC and URLLC, are yet in their infancy. The
economic value that 5G is expected to provide to the world economy is in the order of USD
12 trillion [30]. Table 2 introduces the technologies that 5G uses [4,31,32]:
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Table 2. Technologies used in 5G mobile networks.

Name Acronym Function

Network Slicing NS Virtual networks in parallel to answer different
speed and latency requirements.

Software-Defined Networking SDN Centralised programmatical network configuration.
It decouples forwarding and routing.

Multi-Access Edge Computing MEC Cloud computing at the network edge to tap into
data with local access conditions.

Network Function Virtualisation NFV Router as SW in off-the-shelf hardware. Key for
Network Slicing.

Millimeter Wave communications mmWC Higher data rates than microwaves. Key for band-
width increase.

Massive MIMO MIMO Wireless access technology. Multiple Input Multiple
Output enabled by mmWaves.

Device to device connectivity D2D User equipment (UE) communicates with UE. It
leads to micro clouds in base stations.

2.1.1. 5G as Optimal Communication Channel for IoT

5G mobile technology will enable new value chains in many economic sectors. Those
using machine-to-machine communications are among them [4]. 5G networks will provide
performance enhancements, a high degree of reliability and very low latency communica-
tions [33]. The IoT segment with the heaviest economic weight is Smart Home Technologies
with a projected market volume of USD 17 billion in 2021 [13]. Smart Home IoT devices
are mostly connected to the Internet via Wi-Fi connections with mobile as a redundant
backup communication channel. However, IoT devices in remote places and in places with
no Wi-Fi coverage make use of mobile links to exchange data with their edge and cloud
servers. The arrival of 5G, although at a later stage than, e.g., person-to-person mobile
communications [20], will bring better energy efficiency, reliability and performance.

2.2. Blockchain or Directed Acyclic Graph-Based IoT Platforms

The two most capitalised IoT implementations based on distributed databases, i.e.,
distributed ledgers, are IOTA and IoTeX [27]. IOTA’s market capitalisation in July 2021
reached values such as USD 1.93 and USD 2.42 billion and IoTeX USD 181 and 188 million.
In September 2021 they exceeded USD 4.3 billion and USD 633 million respectively [27].
We consider market capitalisation as a proxy for potential future economic value that these
two IoT platforms can produce in IoT projects aimed to solve specific business cases, e.g.,
in healthcare [34] and transportation [35]. A relevant set of those projects will be using 5G
mobile networks to allow for remote non-WiFi communications between sensors and edge
and cloud servers.

2.2.1. IOTA

Created in 2015, IOTA is by far the most capitalised IoT platform [27]. It is an inno-
vative solution based on a directed acyclic graph (DAG): Every participant launching a
transaction in IOTA needs to validate two prior transactions, replacing the need for blocks
and miners. It is a public, permissionless, open-source, and feeless distributed ledger.
It enables the exchange of value between humans and machines [26]. IOTA is currently
testing improvements to achieve a greater degree of decentralisation as it still requires the
participation of a coordinator to validate transactions [26]. Energy, industrial communi-
cations and mobility are some of the fields where there are IOTA-based projects [36]. The
IOTA token is tradeable since 2017.
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2.2.2. IoTeX

Created in 2017, IoTeX allows for the use of multiple blockchains. It claims that no
unique blockchain can satisfy all IoT requirements. The rootchain is a public permissionless
blockchain that uses a randomised delegated proof of stake (Roll-DPoS). There are different
permissioned and permissionless subchains according to their functionality [26,37]. Home
domotics [38] and mobile payments [39] are two areas with promising IoTeX projects. The
IoTex token started trading as an Ethereum-based token (ERC-20 IOTX token) in 2018.
Table 3 presents a quick introductory summary of both IoT platforms:

Table 3. IOTA and IoTeX.

IOTA IoTeX

Start year 2015 2017
Distributed Yes Yes
Ledger type DAG Blockchain
Public Yes Yes
Permissionless Yes Yes
Multiblockchain No Yes
Fees No Low

2.2.3. Blockchain as Additional Security Value in 5G-Enabled IoT Networks

Blockchain technology brings additional security properties to the very high data
transmission speed and the ultra low latency that 5G adds to IoT implementations, i.e.,
data integrity and non-repudiation [4,26,40]. Many blockchain-based IoT implementations
can benefit from a reliable and fast 5G network, such as the use of IOTA in electric vehicle
charging facilities [41] and IoTex in smart cities [42]. Nevertheless, a single blockchain im-
plementation with no additional tools to manage the complexity of an IoT implementation,
e.g., in edge and cloud computing, cannot provide all security requirements [26].

2.3. Complex Networks

Network analysis describes systems composed of many elements that interact with
each other. Their relations create a graph. Nodes, also called vertices, connect between
them via edges, also called links [2] (p. 2). The complexity appears when the number
of nodes and links is high, and we need advanced mathematical and statistical tools to
characterise those systems [43–45]. Complex network analysis is a useful tool to understand
non-linear interactions [46], some of them dynamic [47] (p. 177), between network nodes.
They provide a plausible behavioural model to real world examples such as social networks,
contagious diseases, transportation networks and crypto-token networks [48,49] (p. 179).
In our case, we use visibility graphs to transform the daily price volatility time series of
IOTA and IoTeX tokens into complex networks. The study of these networks helps us
understand IOTA and IoTeX markets and how 5G technology can have an impact on them.

2.4. Volatility as a Proxy Measure

The study of the relation between asset price volatility and asset trading volume is a
common proposal to study markets [50]. Similarly, in crypto-currencies, the correlation
coefficient between the volatility and volume is positive and statistically significant [51].
Yamak et al., studying bitcoin (BTC) from 2013 to 2019, found a bidirectional causal
relationship between price volatility and trading volume being the one from volume to
price volatility the strongest [51]. Equally, the number of addresses in BTC has a significant
impact on the BTC price with variations over time [52], i.e., crypto-token markets relate
to their networks. In Section 3, we explain how we study price volatility as a proxy to
understand both IOTA and IoTex cryptocurrency markets and, ultimately, their networks
and their link to a potential 5G deployment.
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2.5. Visibility Graphs

Lacasa et al. propose two fast computational methods to convert a time series into
a graph, the natural (in 2008, [3]) and the horizontal (in 2009, [53]) visibility graphs. The
resulting graphs inherit and display structural properties of the time series. Complex
network analysis helps identifying some of those properties [54]. Table 4 summarises the
links between time series and visibility graphs (VG) [3]:

Table 4. Correspondence between time series and complex networks.

Time Series Type Complex Network Type

Periodic Regular
Random Random (exponential degree function)
Fractal Scale-free (power law degree function)

Visibility Graph of Bitcoin

In 2019, Liu et al. perform a visibility graph analysis of Bitcoin (BTC), Ethereum
(ETH) and Litecoin (LTC) price volatility series to understand their markets [54]. They
confirm that the three VGs are scale-free and they display a hierarchical structure, i.e., they
cluster similarly at different levels. A power law behaviour in the function of the average
clustering coefficient of each node with a specific degree confirms that each community
clusters into sub-communities. These results, based on 5 years of daily prices (from April
2013 to May 2018), facilitate the construction of dynamic models of BTC, ETH and LTC
markets and, in general, of any rare item market. With only 5 years of daily data, results
for these three cryptocurrencies reproduce the price volatility series of the gold market
throughout hundreds of years.

2.6. Power Laws

When the right tail of a probability distribution still contains a considerable amount
of probability, its study is pivotal to understand that specific distribution. This is the case
for power law functions. Mathematically, they behave as Equation (1):

p(x) = σ
1
xα

. (1)

If α < 3, the standard deviation of the distribution is not defined. If α < 2, the mean of
the distribution is not defined. A scale-free, i.e., all values can occur, network has a power
law function as a degree distribution, at least asymptotically. The value of α for easy to
identify power law functions goes goes from 2 to 3. Alstott et al. in 2014 provided a Python
library to facilitate the study of the fit of empirical data with power law functions [55].
They use three typical functions to show potential power law fits, as Table 5 shows:

Table 5. Functions to study heavy-tailed distribution functions.

Function X Axis Y Axis

Probability density function (PDF) Variable x Probability p(X = x)
Cumulative distribution function (CDF) Variable x Probability p(X < x)
Complementary cumulative distribution (CCDF) Variable x Probability p(X ≥ x)

2.7. Intentional Risk

Traditional risk management deals with system failures and environmental disas-
ters [56]. Intentional risk management is a security innovation proposed by Chapela et al. [46].
They perform a complex network analysis on information systems using value, anonymity
and accessibility as the three key dimensions to manage attacks to the system by actors in
search of a benefit. They distinguish between static and dynamic risk. The former relates
to actors with access to the system and the latter to actors with no initial legitimate access
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to the system, i.e., with a maximum possible level of anonymity. We use for our analysis
the concept of dynamic risk of an element e presented in Equation (2):

Dynamic Riske = Valuee · Accessibilitye. (2)

We link the concept of value with the daily price of the tokens we study and the
concept of accessibility with the potential functionalities that 5G can provide to these IoT
networks, as we explain in Section 3.

3. Methodology and Implementation
3.1. A Complex Network from a Visibility Graph

The first future work path mentioned in [26] is the transformation of the time series
created by IOTA and IoTeX transactions, i.e., the value transacted at each point of time,
into complex networks using the visibility graph technique proposed by Lacasa et al. [3].
The ultimate objective is to further analyse both IoT implementations. The number of
transactions taking place in both networks since their inception render this proposal
unrealistic if we consider a time series indexed per second as a time unit. A look at the
IOTA explorer (Mainnet feed Section) [57] reveals time slots with several transactions, with
zero and non-zero value IOTA token transfers, per second. Equally, in IoTeX explorer (right
hand side column in its interface) [58], we see how there is a new block, including a handful
of actions with zero and non-zero IoTeX token transfers, every few seconds. Alternatively,
in this study, we analyse the visibility graphs created from IOTA and IoTeX tokens’ daily
price volatility information since day one of trading. Daily token price information is
accessible and regularly and accurately registered. It acts as a valid proxy to describe
how these two IoT markets behave. We analyse the complex network stemming from the
volatility visibility graphs. Our conclusions carry several implications for blockchain-based
IoT implementations using 5G mobile networks.

3.2. Price Volatility Data Collection

We base our analysis on daily maximum and minimum prices for both IOTA and
IoTeX tokens obtained from investing.com [59,60] (accessed on 24 July 2021). Investing.com
(accessed on 24 July 2021) is a stock market quote and financial news provider. We calculate
daily volatility values using Equation (3):

price volatility = ln
(

pricemax

pricemin

)
. (3)

Table 6 presents the data items we use in our analysis, i.e., 4 years of daily volatility
data for IOTA and 3 years of daily volatility data for IoTeX.

Table 6. Data points analysed in this study.

Token Data Items Frequency From To # Datapoints

IOTA Highest and lowest price Daily 14 June 2017 15 July 2021 1493
IoTeX Highest and lowest price Daily 20 June 2018 15 July 2021 1122

Figure 1 displays the lowest and highest daily price time series and the resulting price
volatility time series.
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Figure 1. Daily price volatility data for IOTA and IoTeX. Subplots (a,b) display the daily volatility
time series for IOTA and IoTeX, respectively. Subplots (c,d) display their components: highest and
lowest prices in USD per day for IOTA and IoTeX.

3.3. Creation of the Natural Visibility Graph

Visibility_graph [61] is a Python module that implements the visibility graph proposed
by Lacasa et al. [3]. We run this code to create the complex network. As input, we deploy
the time series introduced in Section 3.2. The nodes correspond to each daily volatility
measure, and the edges link those nodes that are “visible” to each other.

3.4. Creation of the Horizontal Visibility Graph

Visibility_algorithms [62] is a Python piece of code that implements the original proposal
to create horizontal visibility graphs in Fortran 90/94 by Lacasa. Equally, we use as
input the volatility time series presented in Section 3.2. The nodes correspond to each
daily volatility measure, and the edges link those nodes that are “horizontally visible” to
each other.

Figure 2 shows the appearance of the natural visibility graph (VG) and the horizontal
visibility graph (HVG) for the 20 most recent days in our data collection.
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Figure 2. Visibility and horizontal visibility graphs for IOTA and IoTeX price volatility. Subplots
(a,b) display the visibility graph derived from the daily volatility time series for IOTA and IoTeX,
respectively (last 20 days of the dataset). Subplots (c,d) display the horizontal visibility graph derived
from the daily volatility time series for IOTA and IoTeX, respectively (last 20 days of the dataset).
The depiction of these graphs is the outcome of our own Python code.

3.5. Complex Network Analysis of the IOTA and IoTeX VG and HVG

Once we have these four complex networks at our disposal, i.e., the VGs and HVGs
for both IOTA and IoTeX price volatilities, first, we obtain the degree for each node using
the Python module networkx [63] and the basic network features, i.e., number of nodes and
edges, number of isolated elements and self loops, average density and transitivity using
the Python module metaknowledge [64]. Second, we proceed to measure the heterogeneity
of the networks by plotting their degree functions and comparing them with potential
power law fits using two methods:

3.5.1. Curve_Fit

First, we use the traditional curve_fit Python module from scipy.optimize [65]. It uses
non-linear least squares to fit a function, in our case a power law, to the degree function of
our IOTA and IoTeX volatility visibility graph-based complex network.

3.5.2. Power Law Fit Using the Powerlaw Module by Alstott et al.

Second, we assess the fit of the mentioned degree functions to a power law using
the powerlaw Python module developed by Alstott et al. [55] and explained in Section 2.6.
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Following [55], we plot the probability density function (PDF) and the complementary cu-
mulative distribution function (CCDF) for each of the four degree functions in our analysis.

3.6. Average of Clustering Coefficients per Degree and Fit

Inspired by [54], we study the linking possibility between neighbouring nodes by
calculating the clustering coefficient of every node in these four networks. We plot the
average of the clustering coefficients per degree. After that, we assess their fit with a power
law function with the curve_fit Python module.

3.7. Communities in the Network

Understanding the community structure of a network contributes to describing the
heterogeneity of a network. We complete our study by calculating the number and location
of communities in the analysed IOTA and IoTeX networks. We use the community API
for community detection in networkx [66]. An alternative will be the use of the cylovain
code [67]. We run both pieces of code, and the resulting number of communities are very
similar (see Table 7):

Table 7. Community searching Python modules.

Module Name Implemented Algorithm IOTA Communities (VG and HVG) IoTeX Communities (VG and HVG)

Community API Louvain 19 and 29 15 and 23
Cylouvain Louvain 18 and 30 15 and 23

3.8. Link with Intentional Risk and Application to 5G

First, the results we obtain in terms of how close degree functions and average
clustering coefficients per degree are to a power law provide insights on the heterogeneity
of the network stemming from the daily price volatility visibility graph. We link our results
with the two dimensions that compose dynamic risk, i.e., value and accessibility. Second,
the arrival of 5G to both IoT platforms can play an important role in increasing their
accessibility and in broadening the services that both IOTA and IoTeX can provide, e.g., in
terms of lower-cost, lower-energy, wider coverage and higher capacity. Table 8 summarises
the steps followed in our methodology, their main objective and the tools we use:

Table 8. Summary of the methodology with steps, objectives and tools.

Step Main Objective Tools Used

1 Download daily maximum and minimum prices from investing.com web browser
2 Production of daily price volatility time series logarithm
3 Creation of natural visibility graphs for IOTA and IoTeX visibility_graph
4 Creation of horizontal visibility graphs for IOTA and IoTeX visibility_algorithms
5 Basic characterisation of the 4 networks (VG and HVG in IOTA and IoTeX) metaknowledge
6 Production of the degree functions for the 4 networks networkx
7 Power law fit for degree functions curve_fit
8 Power law fit for degree functions (as proposed by Alstott) powerlaw
9 Average of clustering coefficients per degree (as in [54]) networkx
10 Power law fit for average clustering (as in [54]) curve_fit
11 Identification of communities community_api
12 Link with dynamic risk (as defined by [46]) literature review
13 Strategy to use 5G for IoT literature review
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4. Analysis and Results
4.1. The Visibility Graph Creates Four Networks

We apply the visibility graph and horizontal visibility graph algorithms to the IOTA and
IoTeX daily price volatility series and we obtain four complex networks: IOTA VG, IoTeX
VG, IOTA HVG and IoTex HVG. The metaknowledge module provides a first approximation
to the properties of these four networks (see Table 9):

Table 9. Initial description of the visibility graph-based networks.

Network Nodes Edges Isolates Self Loops Density Transitivity

IOTA VG 1493 5715 0 0 0.005 0.300
IoTeX VG 1122 4472 0 0 0.007 0.312
IOTA HVG 1493 2969 0 0 0.003 0.344
IoTeX HVG 1122 2225 0 0 0.004 0.354

The VG networks have a higher number of edges and, consequently, still low but
higher values of density than HVGs. The four networks have a very low density and a
low transitivity.

4.2. Power Law Fit Using Curve_Fit

Figure 3 shows the power law fits we obtain using curve_fit. We see how the fit for the
IoTeX VG network provides a value of α = 2.61 in accordance with Equation (1), hinting
at the existence of a scale-free network. The IOTA VG, with an α = 1.93 does not reach a
value of two. When we focus on the HVG, we see an α = 2.03 and 2.01 for IOTA and IoTeX
networks, respectively. We can even talk of incipient scale-free networks in both HVG
cases. We highlight as well how in the four subplots the power law fit has a maximum
degree from which there is no power law fit.
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Figure 3. Number of nodes for each degree in the networks stemming from the visibility and
horizontal visibility graphs for IOTA and IoTeX price volatility. Subplots (a,b) display the degree of
the network stemming from the visibility graph and the best power law fit that the function curve_fit
provides together with the corresponding best α and σ. Subplots (c,d) display the degree of the
network stemming from the horizontal visibility graph and the best power law fit that the function
curve_fit provides and the corresponding best α and σ.

4.3. Power Law Fit Using the Powerlaw Module by Alstott

We use a second, more stringent, technique to assess the power law fit of the degrees in
both the visibility graph and horizontal visibility graph networks: the Python module by Alstott
powerlaw [55]. Figure 4 shows both the empirical and the fit probability density function
(PDF) and the complementary cumulative distribution (CCDF) for the four networks. We
identify a good fit with the power law CCDF for the four networks. However, the PDF fit
can only be partially observed in the IoTeX VG. All four values of α are well below two. In
the remaining three networks, i.e., IOTA VG and IOTA and IoTeX HVG, the power law fits
we obtain are quite limited in the range of degrees for IOTA VG and extremely limited for
both HVGs.
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Figure 4. Both empirical and fit probability density functions (PDF) and complementary cumulative
distribution functions (CCDF) using the powerlaw module by Alstott et al. [55].

4.4. Communities Formation Criteria within the Networks

We calculate the average of clustering coefficients per degree [54] with our own Python
code. We plot this curve and fit it to a power law using curve_fit. We use the same scale as
the degree function, although, here, the y axis’ range is one order of magnitude smaller.
Figure 5 reveals that the power law fit is greater than in the previous cases when we plotted
the degree. This means that communities at different levels are formed according to an
identical law showing a fractal behaviour, i.e., a hierarchical network [54]. The values of α
are very close to 2 for both HVGs, where we identify an initial scale-free behaviour and
around 1.85 for the VGs. In this case, we do not plot this fit using the powerlaw module by
Alstott since the fit we observe with curve_fit shows a less heavy-tailed distribution than in
the degree graphs.
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Figure 5. Best power law fit using curve_fit with the average of clustering coefficients per degree for
(a) IOTA VG, (b) IoTeX VG, (c) IOTA HVG and (d) IoTeX HVG.

4.5. Communities Identified in the IOTA and IoTeX Networks

We obtain the existing communities in these networks using Community API [66], a
Python module that implements the Louvain algorithm [68]. We identify a number of
communities, as Table 7 shows. The presence of a community of nodes in a visibility graph
is inherent to its creation. Community participant nodes tend to cluster together with a
small value of the average shortest path along the timeline [54].

Figure 7 provides both volatility information as subplots in Figure 1 plus community
information along IOTA and IoTeX timelines.

5. Conclusions
5.1. Visibility Graphs Are a Helpful Tool to Leverage Time Series with Network Analysis

This study confirms the usefulness of the proposal by Lacasa et al. [3] to transform
time series into complex networks using visibility graphs. It is a novel way to incorporate
the time dimension as an object of study within a complex network. Visibility graphs, as
also confirmed by Liu et al. [54], preserve useful information present in the time series onto
the resulting complex network.
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5.2. IOTA and IoTeX Markets Are Still at Their Infancy in Terms of Development—IoTex Appears
to Develop Faster

The number of data points studied in these networks is reduced. The history of both
IoT tokens is still short. The density and transitivity figures obtained in Section 4.1 confirm
this point. Similar VGs in Bitcoin, Ethereum and Litecoin [54] display stronger powerlaw
fits. Their time series are 5 years long compared to the 4 and 3 year-long time series history
for IOTA and IoTeX, respectively. IoTex VG, although one year younger than IOTA, seems
to display a slightly better power law fit than IOTA. Figure 4 confirms this point. This
could hint a faster path to maturity for IoTeX. In terms of HVG, given that the number of
edges is more limited, we do not draw conclusions on maturity based on Figures 3 and 4.

5.3. IOTA and IoTeX Visibility Networks form Communities in a Hierarchical Structure

Figure 5 confirms power law fits when we plot the average of clustering coefficients
per degree in the four visibility networks, i.e., IOTA VG and HVG and IoTeX VG and HVG.
This leads to a hierarchical structure, similar to the findings proposed by Liu et al. in the
case of Bitcoin, Ethereum and Litecoin [54]. This means that the creation of communities of
nodes, as Figures 6 and 7 display, follow an identical law at different levels of time sampling.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Communities in price volatility VG and HVG

(a) IOTA VG
 19 communities

(b) IOTA HVG
 29 communities

(c) IoTeX VG
 15 communities

(d) IoTeX HVG
 23 communities

Figure 6. Communities identified by the networkx module community API in (a) IOTA VG, (b) IoTeX
VG, (c) IOTA HVG and (d) IoTeX HVG throughout the timeline in network graph format.
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Figure 7. Communities identified by the networkx module community API in IOTA, (a,c), and Io-
TeX, (b,d). Graphs (a,b) use a coloured-coded continuous line and graphs (c,d) a coloured-coded
scattered plot.

5.4. 5G Can Accelerate IOTA and IoTeX Development

The move into production of 5G mobile networks, with the added value explained in
Section 2.1.1, will trigger the further rollout of multiple IoT implementations and increase
their adoption rates. As IOTA and IoTeX are the two most capitalised platforms [27], both
are optimally positioned to become worldwide references in IoT deployments.

5.5. Intentional Risk: A Lever to Understand the Impact of 5G on IOTA and IoTeX

Within intentional risk, dynamic risk measures the impact of anonymous actors on
information systems [46]. Value and accessibility are the two components of dynamic risk.
The use of 5G in IoT platforms such as IoTeX and IOTA can increase their dynamic risk
and, consequently:

(a) The value at stake in the respective networks.
(b) The accessibility of the participants.

We suggest several strategies to mitigate the growth of these two dimensions:

(a) Distribute the new value generated across all platform participants. This will require
a reduction of highly connected nodes, i.e., hubs that have a tendency to accumulate
value. However, this strategy is not aligned with typical power law degree functions
identified in IOTA and IoTeX. High-value hubs seem to remain and even grow in more
mature crypto-networks (e.g., BTC and ETH [26]). We therefore recommend to:
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(b) Improve accessibility controls, especially to those nodes holding high value. An
effective identity and access management (IAM) system, as mentioned in [26], is a
potential improvement path.

(c) Apply a multi-layered IAM system at different levels of scale considering the hierar-
chical structure observed in IOTA and IoTeX communities.

5.6. 5G Can Improve Information Security in IOTA and IoTeX

Considering the findings of our study and our prior conclusions, we state that 5G is
well positioned to contribute to the security of IOTA and IoTeX platforms. The three main
5G services, i.e., enhanced Mobile BroadBand (eMBB), massive Machine Type Communica-
tion (mMTC) and URLLC (Ultra Reliable and Low Latency Communications) can:

(a) Enable faster communications between IoT nodes so that high-value nodes can dis-
tribute their wealth more securely and quickly.

(b) Allow for the implementation of more comprehensive, more fine-grained and faster
identity and access management systems that would serve IOTA and IoTeX nodes.

(c) Apply these 5G improvements not only at the edge level to tackle communications
with IoT nodes but also between edge and cloud servers participating in the IoT
platform, also known as “fog computing” or “fog networking”, as it is the case in
IoTeX [26]. This would mean that IoTeX could have the potential to quickly reap
benefits from 5G given its edge and cloud design.

We use app.diagrams.net in Figure 8 to summarise in an infographic the main points of
this study.

Figure 8. Infographic summary of “Visibility graph analysis of IOTA and IoTeX price series: An
intentional risk-based strategy to use 5G for IoT”.
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6. Future Work

We suggest three paths for further research related to the role IOTA and IoTeX plat-
forms will play in the IoT arena:

(a) Contribute to the creation of public DAG and blockchain explorers with more ad-
vanced functionalities than the currently available ones for IOTA, thetangle.org [69],
and IoTeX, IoTeXscan.io [58] (both accessed on 30 July 2021). As an example, the
extraction of the transactions happening in real-time from the current explorers so that
they can be easily analysed is still challenging. We would also like to contribute to an
academic study focused on the standardisation of blockchain explorer functionalities
and on the creation of the corresponding code modules that would implement them.

(b) Once our first future work point is accomplished, we would like to perform a study
similar to this one based on IOTA and IoTeX transaction data, i.e., creating the visibility
graph from the transaction time series. We would complement this analysis with a
time series clustering proposal that combines multiplex networks and time series
attributes [1].

(c) Finally, we would like to perform a similar volatility-based visibility graph analysis on
other crypto-tokens such as the three currently most capitalised ones [70], i.e., Bitcoin,
ETH and USDT with their entire price time series history.
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7. Results and discussion

This chapter presents the main results of the articles published for this doctoral work
and included in Chapters 4, 5 and 6, respectively. It also includes a discussion on these
results and some actionable proposals to protect these blokchain implementations
from intentional risk.

7.1 On facilitating understanding of public blockchains:
BTC and ETH

7.1.1 The SoS of public blockchains

BTC and ETH are the two most relevant components of the SoS of public blockchains.
Both permissionless implementations transfer digital value and they are independent
of each other. Besides, ETH and BTC are open to their environment, e.g., there is
an open trading market, where their crypto assets can be bought and sold. More
generally, they exchange value and energy with the environment outside the SoS,
and, ultimately, their networks keep on growing in size and complexity. The following
sections summarise the results published in Article 1 [87], available in Chapter 4 of
this thesis.

7.1.2 Network centricity

BTC and ETH are network-based systems. They interact with the elements men-
tioned by Jamshidi et al. [68]: people, organisations, culture, e.g., they share princi-
ples on decentralisation, activities, such as coin wrapping, and relationships, as public
blockchains are subject to financial regulation.

7.1.3 Autonomy, belonging, connectivity and diversity

Regarding autonomy, both public blockchain implementations are independent. BTC
open source code evolves through BTC improvement proposals (BIP) and ETH,
equally, via ETH improvement proposals (EIP). The search for consensus among
development, user and mining communities appears as a fundamental governance
principle. Regarding belonging, any participant in any of those communities can
opt in and out of the SoS at any time. In these open systems, no participant in
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these communities owns these networks in its entirety. Therefore, consensus-driven
governance is pivotal. Concerning connectivity, as the SoS of public blockchains is
network-centric and both BTC and ETH are permissionless, any piece of code that
implements the corresponding BTC or ETH open-source protocol can join the net-
works. Additionally, the connection of different public blockchain implementations
via code is possible with interledger communication protocols such as the Interledger
Protocol (ILP). With respect to diversity, although the transaction networks of both
blockchain implementations display a power law degree distribution function, their
use cases make them partners rather than competitors.

7.1.4 Emergence

This is arguably the most relevant property out of the set of properties proposed by
Jamshidi et al. [68]. The intended emergent property of the SoS of public blockchains
is the creation of a decentralised network to transfer digital value in the form of digital
private property. More concretely, the original vision for BTC was the creation of a
"purely peer-to-peer version of electronic cash" [79]. In the case of ETH, their vision
is to become the "distributed world computer". This research leads to postulate that
the initially unintended emergent property of this SoS is to act as an alternative to
the current fiat currency based financial system. Within this alternative decentralised
SoS, the unintended emergent property of BTC is to play the role of a global digital
reserve asset, i.e, the "digital gold". Regarding ETH, its unintended emergent prop-
erty is to facilitate decentralised finance (DeFi), i.e., to stand out as the "alternative
financial conduit".

7.1.5 Vulnerability and threat analysis

The main vulnerabilities identified in BTC and ETH through this research are the
knowledge-based and usability barriers to entry as a user, the early stage of evolution
in terms of adoption, several signs of centralisation in terms of the prominent role that
super-hubs play in their transaction networks and, finally, the exclusive dependence
on code for on-chain governance. Simultaneously, the main threats identified are the
uncertain regulatory scenario, the still to be decided trade off between privacy and
traceability, future developments in encryption, e.g., related to quantum computing,
lack of co-operation between the SoS of traditional finance and the SoS of public
blockchains and, finally, the interest of diverse actors to intentionally attack this SoS
to extract value out of it.

7.1.6 Resilience against intentional risk

Based on the intentional risk parameters proposed by Chapela et al. [21], there is
a series of measures that can increase resilience against intentional risk, such as the
distribution of value among addresses, avoidance of rich hubs, enhancement in code
security, especially the off-chain pieces of code, subject to less scrutiny than the on-
chain open source protocols, increase of security awareness among users, better IAM
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techniques, probably associating digital identities with physical ones to the detriment
of privacy, better global legal coverage, extension of blockchain transaction monitoring
and, finally, adoption of robust know your customer procedures.

7.1.7 Discussion and link with Article 2

The implementation in existing public blockchains of some of the security measures
listed in Section 7.1.6 can be initiated with relative low cost and potentially high
benefits. First, in-chain and off-chain code security can be improved if any piece of
code added to the production environment is audited by development communities.
An incentive-based security testing scheme, popularly known as a "bug bounty" pro-
gramme, can trigger the interest of many stakeholders. Second, the fact that the
blockchain database is publicly available makes a further development in transaction
monitoring easily implementable, with a special focus on "rich hubs". Third, with
regard to better IAM techniques, Article 2 in this thesis focuses on this key secu-
rity concept and provides some insight on how to improve IAM resilience against
intentional risk.

7.2 On improving IAM resilience against intentional
risk: IOTA and IoTeX

The following sections summarise the results published in Article 2 [85], available in
Chapter 5 of this thesis.

7.2.1 IOTA and IoTeX complex network analysis

The complex networks created out of IOTA and IoTeX transaction data produce non-
connected graphs and display degree distributions that evoke a power law function.
The very low density of edges and the very low average clustering coefficient confirm
the absence of a small-world structure. These two parameters are lower in the IoTeX
network than in the IOTA network. The plot of the largest connected components
in both networks shows high disassortativity. This is aligned with traditional IoT
architectures in which all sensors and actuators communicate with a specific server.

7.2.2 Comparison with the BTC and ETH complex networks

The complex networks built out of the BTC and ETH transaction data produce
similar results. The degree distributions resemble a power law function and the low
clustering coefficient and edge density values suggest that there are no signs of a small
world structure. Overall, the longer the time window of the transaction data studied,
the more accurate the results are and the closer the degree distribution fits a power
law function.
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7.2.3 Goodness of fit test of a power law function

The powerlaw library by Alstott et al. [4] is useful to test the goodness of fit of IOTA,
IoTeX, BTC and ETH degree distributions of a power law function. BTC scores best,
with ETH second, then IoTeX and finally, far from a good fit, IOTA.

7.2.4 Discussion and link with Article 3

It is interesting to highlight how two different IoT platforms in terms of architecture,
balance models and use of sidechains [85] produce similar complex networks and
degree distributions and how they start to resemble "older" implementations such as
BTC and ETH. In addition, it is also worth noting how these networks do not show
small-world structure once they reach a certain size, specially due to the very low
density in their nodes. Additionally, the existence and the need to protect "rich hubs"
in these networks appear again as a recommendable security measure. Considering the
results of Article 2 in the context of IAM and the typical security incidents occurring
in public blockchains [85], the link of digital identities with physical identities seems
to be somehow required to increase resilience against intentional risk. Appendixes A
and B discuss this point. Finally, while Article 2 focuses on IAM aspects, it would be
advisable to zoom out, making one step further and propose a intentional risk-based
protection strategy, certainly including IAM as an element of it. That is the purpose
of Article 3 of this thesis. However, given the challenge to obtain transaction data
from both IOTA and IoTeX, the research for Article 3 makes use of a different source
of information: daily price time series.

7.3 On creating an intentional risk-based strategy:
IOTA and IoTeX

The following sections summarise the results published in Article 3 [86], available in
Chapter 6 of this thesis.

7.3.1 Complex networks out of visibility graphs

The complex networks that stem out of the natural visibility graphs (VG) of the
IOTA and IoTeX daily price volatility time series contain almost double number of
edges than the complex networks built from the horizontal visibility graphs (HVG) of
the same IOTA and IoTeX time series. This fact comes from the definition of VG and
HVG, as the way to draw edges in HVGs is more restricted than in VGs. Equally,
due to the way visibility graphs are constructed, these networks are connected, they
show low density values, their transitivity figures are close to 0.3 and lack self loops.
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7.3.2 Power law fits for the degree distributions

The plot of the degree distributions for the IOTA and IoTeX natural and horizontal
visibility graphs signals a fit with their corresponding power law functions, restricted
to a specific maximum degree value. The PDFs and CCDFs plots complement this
result. The fit with the CCDF plot, given its cumulative nature, is patent, however,
the fit with the PDF plot is only existent in the IOTA and IoTeX VG networks for
very specific degree ranges. Regarding the HVG networks, the fit with the PDF plot
is hardly existent.

7.3.3 Communities in IOTA and IoTeX VGs and HVGs

The plot of the average clustering coefficient per degree for each of the four studied
networks reveals a better power law fit than with the degree distributions, explained in
Section 7.3.2. This means that the networks form communities that follow an identical
law at different scales [76]. This type of fractality is known as a hierarchical structure.
The rules to construct visibility graphs favour the appearance of communities in the
resulting networks. Nodes participating in a community tend to cluster and connect
to each other. The researched networks proceed from IOTA and IoTeX VGs and
HVGs. These visibility graphs stem from a daily price volatility time series that, in
the case of IOTA, ranges from 2017 to 2021, and, in the case of IoTeX, from 2018
to 2021. This research identifies 19, 15, 29 and 23 communities in IOTA and IoTeX
VGs and HVGs, respectively.

7.3.4 Discussion

In tune with the discussion in Article 2, the similarity between the results obtained
for both IOTA and IoTeX is remarkable. The hierarchical structure, especially in the
HVG networks, first confirms the usefulness of techniques such as the visibility graphs
to study time series through complex networks, and second, it seems reasonable to
think that lower volatility values would produce a higher number of communities in
the graph. In terms of potential security measures, the proposal to further secure
"rich hubs" as an effective action to increase resilience appears as well in Article
3. In fact, the idea to reduce and, or further protect these hubs with high value,
e.g., by improving accessibility controls to these nodes, is present in the three arti-
cles. Similarly, Song et al. [100] talk about "hub compartmentalisation". Ultimately,
throughout these three articles, it is visible how the intentional risk parameters pro-
posed by Chapela et al. [21] glue together, through Equation (2.3), this doctoral
work.
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8. Conclusions

These are the main conclusions of this doctoral thesis:

• System of Systems Engineering (SoSE) is a valid tool to increase the under-
standing of complex "supersystems" or "networks of networks" such as public
blockchains. In the case of BTC and ETH, they are the two most revelant
holons of the SoS of public blockchains. Public blockchains enable the transfer
of digital value, that could potentially be linked to physical value. BTC aspires
to become a "digital reserve asset" and ETH an "alternative financial conduit".

• The emergent property of the SoS of public blockchains is to become a dis-
tributed alternative to the traditional fiat currency based financial system.

• A key threat to the mass adoption of this SoS is the risk of intentional attacks
that aim to extract value out of the SoS.

• Value, accessibility and anonymity, the parameters proposed by Chapela et
al. [21] to manage intentional risk, are instrumental to suggest and categorise
security measures that can increase the resilience against intentional risk of the
SoS of public blockchains.

• The implementation of the suggested security measures impacts positively in
the mentioned emergent property of the SoS of public blockchains, i.e., building
a real alternative to the fiat currency based financial system.

• Blockchain fulfils some IoT security requirements. The decentralised and im-
mutable nature of the blockchain technology, constructed as a multi-location
distributed database, formed by a collection of blocks that register data and
are linked together via cryptographic means, is a useful platform to provide
IoT solutions with data integrity and redundancy. However, a single blockchain
implementation alone cannot answer all IoT security requirements.

• An Identity and Access Management (IAM) framework based on decentralised
identifiers (DIDs) and verifiable credentials (VCs) is a useful artefact to create
verifiable self-sovereign digital identities on a blockchain and, consequently, to
increase resilience against intentional risk.

• BTC and ETH, together with IOTA and IoTeX, display degree distributions
that resemble a power law function. This means that transaction networks in
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these key blockchain (or DAG, in the case of IOTA) implementations contain
a small set of highly connected nodes (hubs). The protection of those hubs
against targeted attacks increases the resilience of those networks.

• A distributed IAM concept that would protect nodes, especially hubs, would
make these blockchains more resilient against intentional risk. This IAM con-
cept transcends a single blockchain. It requires the interplay of edge and global
ledgers, that could be implemented on blockchains, running on edge and cloud
servers.

• Keeping all worth-protecting value in permissioned blockchains, linked to a
distributed IAM framework is an option to increase resilience.

• Visibility graphs, as proposed by Lacasa et al. [73], allow the study of uni-
dimensional time series with the extensive toolkit that complex network theory
offers. VGs are instrumental to add the time dimension within a complex net-
work.

• The power law fits of the degree distributions in networks stemming from price
volatility VGs of public blockchain implementations with a longer history, such
as BTC and ETH, are better than those found in IOTA and IoTeX VGs and
HVGs. Additionally, although both IOTA and IoTeX markets are still at early
development stages, IoTeX appears to develop faster than IOTA.

• The deployment of 5G, the new mobile technology, can accelerate the develop-
ment, rollout and adoption of IoT platforms. IOTA and IoTeX, as two relevant
IoT platforms based on distributed ledgers, are optimally positioned for it.

• The use of 5G for IoT platforms, e.g., IOTA and IoTeX, can increase inten-
tional risk parameters such as value and accessibility. A suggested intentional
risk-based strategy to mitigate this growing risk consists of: first, avoiding the
proliferation of rich hubs, i.e., distributing value across platform participants
and, second, improving accessibility controls. This is tightly linked to multi-
layered IAM systems.

• The improvements provided by 5G in mobile data transmission, in areas such
as speed, latency and bandwidth, can facilitate the implementation of the sug-
gested intentional risk-based strategy. Ultimately, 5G can improve information
security in IoT platforms such as IOTA and IoTeX.
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9. Future research

This chapter presents worth exploring research paths that appear out of this doctoral
work. Each of them is a plausible candidate to devote resources and effort. They can
expand current knowledge in the field of blockchain.

9.1 On facilitating understanding of public blockchains:
BTC and ETH

A system of systems (SoS) itself can be an element of a more complex system of
systems. Therefore, zooming out, the joint analysis of the SoS of public blockchains
and the traditional financial system, which can also be considered a SoS, together
with the links between them, is a future research path: the overall SoS of value.
Equally, zooming in, the decentralised finance (DeFi) ecosystem can also benefit from
being modelled as a SoS. From a more operational perspective, I suggest to create an
application programming interface (API) that would implement the security measures
suggested in [87] for public blockchains. Finally, the study of the potential application
of machine learning (ML) and artificial intelligence (AI) techniques to implement
the measures proposed to increase the resilience against intentional risk in public
blockcains is also a promising research topic.

9.2 On improving IAM resilience against intentional
risk: IOTA and IoTeX

Given the challenge to obtain and process a complete dataset of transactions happen-
ing in a blockchain, it is worth exploring the use of visibility graphs, as proposed by
Lacasa et al. [73] and Luque et al. [77], to transform the time series of the values of
all performed transactions, into a complex network. This proposal would complement
the study of the time series of prices, which is included in the second published article
for this thesis [85]. Additionally, the role of artificial intelligence (AI) in distributed
IAM concepts for blockchain is an innovative research path. Finally, the use of gen-
erative adversarial nets (GANs) to optimise proof of stake-based consensus protocols
is a future research proposal as well.
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9.3 On creating an intentional risk-based strategy:
IOTA and IoTeX

The design and implementation of public blockchain explorers with better data search,
filter and download possibilities is one future research path. Especially interesting
would be the standardisation of blockchain explorer functionalities and the subsequent
creation of the corresponding APIs and modules. Should this proposal to improve
blockchain explorers succeed, then I would suggest to create the visibility graph for the
complete IOTA and IoTeX transaction networks. Finally, I highlight the possibility
to perform a similar visibility graph-related research using daily price volatility data
from BTC and ETH.
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A. Blockchain and information
security

A.1 Complex network features in long-standing
blockchains

The following is a brief portrayal, based on Liang et al. [75] and Javarone et al. [69],
of the main complex network characteristics present in the transaction networks of
pioneering public blockchain implementations such as BTC and ETH:

• Densification law is not followed.

• Constant average degree assumption is not valid.

• A user is represented by many nodes, i.e., as many as transaction addresses
they have.

• The lifetime of many nodes is ephemeral, as most addresses are not reused.

• Exceptionally, some nodes survive almost permanently given their function of
public recipients or initiators of transactions, e.g. those used by NGOs to receive
funds [92].

• The degree distribution follows a heavy-tailed distribution with a majority of
nodes having low degrees and a small but not negligible number of nodes (ad-
dresses) having relatively high degrees.

• The out-degree distribution might be fitted by a power law.

• Transaction networks are disassortative, i.e., high degree nodes tend to connect
with low degree nodes.

• The small-world network effect is not demonstrated. However, a largest con-
nected component is present.
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Information security design patterns for blockchain

A.2 Information security design patterns
for blockchain

An analysis of security incidents affecting blockchain implementations, performed to
write the article on IAM resilience in IoT platforms [85], gives origin to a collection
of information security design patterns and good practices for blockchain implemen-
tations, proposed in the following subsections.

A.2.1 A multi-layered approach

The construction of security properties in each of the layers connected with the trans-
action network, such as hardware, firmware, operating systems, middleware and dis-
tributed apps, contributes to increasing the overall level of security in a blockchain
network. By contrast, the absence of security properties in each of the layers compos-
ing any information system contributes to the possibility to extract value fraudulently
out of it.

A.2.2 De-constructing anonymity

Anonymity does not contribute to increasing information security. Anonymity in-
creases the attractiveness for attackers to target blockchain implementations. Block-
chain, as a powerful tool to move digital value, requires a reliable identity management
component, especially in their interfaces with the physical world. Blockchain users
have a unique identity in the physical world and, potentially, a set of digital identities.
Section B.2.4 in Appendix B suggests a dual digital identity scheme that aspires to
answer the challenge of finding the right balance between security and personal data
privacy.

A.2.3 Human readable node addresses

As the incidents described in article 2 of this thesis show [85], see its title in Table
1.3, a blockchain implementation can be impacted if an entity, via a traditional web
defacement, simply modifies the off-chain announcement of the address of a node
that is expected to receive funds via multiple transactions. There have been multiple
security incidents in which funds did not reach intended nodes as attackers smartly
modified the Internet website announcing the address of the node, inserting a dif-
ferent address that they control. A possible way to mitigate this simple attack is
the construction of an immutable and public one-to-one association between a node
address and a human readable and verifiable identity. This could be implemented
as a multi-layer network composed by two different layers, the transaction network
and the identity network. The identity network will play a pivotal role in the secu-
rity of the blockchain implementation. Similarly to a secure domain name service, it
will provide identity traceability in every transaction. This identity service will be
essential to create a secure blockchain implementation.
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A.2.4 Security audits in on-chain code

Some blockchain implementations allow the execution of code in their nodes. This
is the case of smart contracts in Ethereum. Those pieces of code need to audited,
security verified and tested by different stakeholders within the network before going
live. These audits should also check the way the code interacts with identities in
the network. The governance, automation and distribution of these suggested code
audits is a research field with a high degree of business potential.

A.2.5 Basic blockchain transaction monitoring practices

An idea worth exploring is monitoring blockchain security based on changes on degree
distributions. For example, a basic event to detect would be the shift in a blockchain
transaction network from being disassortative to showing recent assortative features.
This event could hint that the network has been compromised and value is being
quickly extracted out of the network, e.g., a high degree node starts transacting with
other high degree nodes. This could potentially mean that one of those hubs is
collecting value to subsequently channel it via an interface to a different network. A
second example of a worth-monitoring event could be a sudden increase in the value
held by a low degree node. In general, the suggestion will be to facilitate a swift
incident detection with a set of indicators of compromise (IOC) based on sudden
changes in the complex network parameters, such as node degree and node value,
present in every blockchain implementation.

A.3 Blockchain investment questionnaire

A.3.1 Basic guidance to technologists and investors

Investment in blockchain grows year on year [102]. Already in 2016, as mentioned in
Section 2.1.6, blockchain funding surpassed BTC funding. The decentralised nature
of blockchain, together with its data immutability, makes this technology a promis-
ing platform to use in very different industries, as Appendix B puts forward. The
following brief questionnaire could help investors building an initial coarse-grained
"business card" for each blockchain-based project that they need to quickly assess
before going deeper in the analysis required for investing.

• Analysis of the business process that this blokchain will answer. What is the
added value expected to be provided by this blockchain?

• Number of entities participating in the blockchain and growth rate. Potential
user population.

• Governance around the identity of every participant.

• Degree of openness. Will it be a permissioned or a permissionless blockchain?

• Lifetime value for every blockchain participant.
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• Technology choices. Transaction speed. Will it escalate with a higher number
of users?

• Possibility to apply security patterns such as the ones proposed in Section A.2.

• Development and operational resources available.

• Interfaces with related digital and physical environments.

• Political, economic, social, technology, legal and environmental analysis.
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B. A blockchain proposal to answer
five key use cases: Socioblock

B.1 A blockchain that contributes to a decentralised
society

This appendix presents Socioblock, a blockchain project that answers five use cases:
self-sovereign identities, ad-hoc insurance, self-sovereign medical records, exchange
of academic records and mortgage search. The underlying technology for these five
examples is a public blockchain. On top of it, decentralised applications (DApp)
implement each use case. DApps run on top of a blockchain and they are based
on smart contracts. This appendix serves as the high-level blueprint of Socioblock.
This blockchain project inherits the learning points collected throughout this doctoral
thesis with regard to resilience against intentional risk in blockchain implementations.
Additionally, Socioblock also benefits from decades of experience regarding digital
certificate management in public key infrastructures (PKI).

B.1.1 A key foundation: data ownership and sovereignty

Blockchain can implement the basic principle that data ownership resides on the origi-
nator of the data. Privacy legislation, such as the General Data Protection Regulation
(GDPR) in the EU, aims to protect the real data owner from corporations that store
and use their data. Currently, most personal data are centralised in databases owned
by those big corporations and not by the originator. This data centralisation makes
the implementation of GDPR dependant only on the initiative of those companies.
In this proposed blockchain implementation, called Socioblock, the real owner of the
data, i.e., the originator, keeps control of their data at any time. The mechanism to
exert this control is simple. The data owner decides which data is shared with the
different ecosystem participants.

B.1.2 A channel-enabled layer-based architecture

On top of a layer-1 blockchain such as Ethereum, there are multiple DApps that create
their own layer-2 blockchains, such as Polygon [90] and xDAI [20]. Every DApp has a
unique contract identifier that is included in every transaction. Socioblock implements
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a layer-based architecture similar to Ethereum. The underlying layer in Socioblock
consists of a layer-1 public blockchain that receives services from a distributed identity
provider as explained in Appendix A.2.2. This layer-1 blockchain implementation
caters for the creation of different channels. Channels provide a secure way, using
cryptographic means, to exchange data among subsets of participants without the rest
of participants being able to read the data. The Quorum implementation in Alastria
is an example [54]. On top of Socioblock, similarly to the way a Lego construction is
assembled, DApps interact between them or just remain isolated, depending on the
use case that they implement.

B.1.3 In-chain vs. off-chain

A usual source of confusion is the belief that a blockchain should not only regis-
ter transactions, i.e., value exchanges, but also store data as if it were a traditional
relational database. There are services in this blockchain that do not require any
additional database to function, e.g., changes of ownership in value. This way, the
blockchain is able to confirm the ownership of an asset by itself without the partic-
ipation of any off-chain element. However, context data pertaining to transactions
is stored off-chain due to their volume and only a reference to that data resides in-
chain. While in-chain data is available to all participants, off-chain data is stored in
traditional databases and it is only available via off-chain means on a "business need
to know" basis. Most use cases implemented on a blockchain require both in-chain
elements as well as off-chain data processing and storage. For instance, decentralised
applications (DApps) require in-chain, i.e., smart contracts, and off-chain, i.e., tradi-
tional databases, capabilities.

B.2 Self-sovereign identities

The first building block in this blockchain implementation is the identity manage-
ment component, a challenging element as presented in Section A.2.2 of Appendix
A. This component acts as the guarantor of each participant’s identity. This implies
that this blockchain implementation needs to be permissioned. The identity of every
ecosystem participant, be it a service provider or a service customer, needs to be
confirmed. This is what Public Key Infrastructures (PKI) do with the identity of
their users. Certificate Authorities (CA), since the 1990s, have collected a wealth of
experience in issuing digital certificates that link a digital identity to a physical en-
tity. A nationwide example is the PKI deployed by the Fábrica Nacional de Moneda
y Timbre (FNMT) in Spain. Citizens can use FNMT certificates to interact with
their national administration digitally. A more recent European example is the PKI
deployed in 2020 with root CAs in all EU countries is the digital Covid certificate
scheme. The issuance of a personal digital certificate only takes place after successful
verification of the physical identity of the participant. Going towards a permissioned
public blockchain is a key design decision and it contrasts with all public blockchain
implementations studied in this thesis, which are permissionless.
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B.2.1 Encryption

PKIs use cryptography to link digital with physical identities. Every entity owns an
asymmetric key pair composed of a public key, published to be known by every par-
ticipant, and a private key, that is kept confidential. Both keys maintain a one to one
relationship. A digital certificate associates a public key to an identity. Information
is usually encrypted via symmetric key encryption, much faster in processing than
the asymmetric one. The information sender encrypts with the recipient’s public key
the symmetric key for that specific communications and sends it to the recipient.
This way, only the holder of the corresponding private key, i.e., the recipient, can
decrypt the symmetric key and decipher the sent data. Alternatively, if the goal is
to guarantee integrity and not confidentiality, then the sender of the data signs their
message using their private key and everyone with access to the sender’s public key
can attest the sender’s identity. This decades-long used mechanism is not exclusive
to blockchain implementations, however blockchain can benefit as well from this ef-
fective way to link brick and mortar identities with digital constructs. There is one
initial requirement to observe: new developments in computing speed threat the un-
breakability of the current encryption algorithms. Therefore, the implementation of
cryptography in the blockchain should be modular: it should cater for a change in
algorithms should the current ones be vulnerable, e.g., to quantum computing-based
cryptoanalysis.

B.2.2 A decentralised PKI within a blockchain

Every Socioblock participant owns a unique identity. This identity is confirmed by a
set of authorised CAs, aided by a set of registration authorities (RAs), as it happens in
a public key infrastructure (PKI). Socioblock is a public but permissioned blockchain,
i.e., everyone can join but each participant is unequivocally identified. Suggested use
cases require a confirmed physical identity for each participant. Neither pseudo-
anonymous nor anonymous users are allowed in the system.

B.2.3 The network of identity certification authorities

A set of nodes performs the identity confirmation function. Following the segregation
of duties principle, these nodes cannot play additional services in the system. Identity,
as the fundamental link between the digital and the physical world, is the cornerstone
of all Socioblock use cases. The suggestion is to use CAs that are already established
in the non-blockchain certificate management ecosystem. To avoid centralisation,
there is a network of CAs, all cleared to issue digital certificates. Every Socioblock
user obtains a digital certificate either physically visiting a local government or law
enforcement facility or through an approved digital know your customer process. The
network of CAs keeps a database off-chain, redundantly located, of all issued digital
certificates. The network of CAs confirms validity of public keys upon request and
they perform typical certificate renewal and revocation processes.
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B.2.4 A dual digital identity scheme

There is a novel element in Socioblock, not contemplated in current non-blockchain-
related PKIs: CAs issue two non-related certificates, each of them linked to a different
identity:

• The digital identity that reflects their physical identity, e.g., first name and
family name plus national ID number. This certificate could have additional
fields. The owner of the certificate decides, at all times, what to share with
whom.

• Additionally, a proxy digital identity label, consisting of a string of alpha-
numeric characters, e.g. 12, that would act as their identity proxy for some
blockchain transactions. Any user could have multiple randomised digital iden-
tities at any time. These "proxy identities" preserve the participant’s privacy in
specific use cases. Socioblock participants have the possibility to change their
proxy digital identity label at any time using any of the ways described in Sec-
tion B.2.3. This corresponds to a partial exercise of the right to be digitally
forgotten. Only authorised CAs keep the mapping table between proxy digital
identities and physical identities. This table is stored redundantly but off-chain.

This dual digital identity scheme improves personal data privacy and digital identity
self-sovereignty. The participants in the system, when approaching different services,
decide whether and when they will reveal their real identity to the service provider.
This is not possible in most of the current Internet services: corporations collect a
vast amount of personal data even if they do not really need it for their unique value
proposition. Socioblock participants can use their proxy digital identity for basic
services. More complex services, e.g., banking solutions, bound to comply with know
your customer regulations, require a certificate linked to the physical identity of the
customer but only on a real "need to know" basis. Initial prospective queries from
customers could be performed using proxy digital identities.

B.2.5 Identity of service providers

The legal identity of companies participating in Socioblock needs to be anchored to
a digital certificate and confirmed by the corresponding CA. These companies are
already registered with a national tax authority. Subsequently, a legal representative
requests a digital certificate to any authorised CA for the digital identity that reflects
their physical identity. Service providers in Socioblock do not use a proxy digital
identity.

B.2.6 Communication between identities

Communication between Socioblock participants requires that they can identify each
other first. Their certificates facilitate this process. For first-time communications,
the network of CAs and RAs, presented in Section B.2.2, provides a yellow-page
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service. Communication between participants could be between "real digital" and
"digital proxy" identities. In any of these cases, communication can be encrypted,
preserving end-to-end confidentiality. A strong security requirement for the network of
CAs associated to the Socioblock ecosystem is to keep the integrity and confidentiality
of all their root keys.

B.2.7 Open challenges

This is a high-level blueprint for a public and permissioned blockchain implementa-
tion. Several design questions remain unanswered. They require further research. I
identify three main open challenges:

• Certificate management practices in a decentralised environment such as block-
chain.

• Governance of a network of CAs and RAs providing their services within a
blockchain ecosystem.

• Guaranteeing certificate management services availability in a blockchain im-
plementation.

B.3 Ad-hoc insurance

The objective of this case study is to provide a blockchain-based time-based insurance
scheme for physical purchases in the luxury market, e.g., a pair of highly-priced,
branded sunglasses.

B.3.1 Tokenisation of a physical item

Each pair of branded sunglasses has a unique code attached to it. That code is en-
graved on the sunglasses’ frame or physically associated to it using any other means.
Each good is represented, i.e., tokenised in the blockchain. The legal company produc-
ing or distributing the good signs this token. The signed token contains the engraved
code. The token acts as a lifetime digital tracker for the good. It includes ownership
data: from the moment of its inception to its decommissioning. Ownership in a token
is signalled by a digital signature, from the seller, of a digital file composed of the
token itself and the public key of the buyer. This ownership signal can be applied
recursively. Digital tokenisation is currently helping luxury brands to fight against
counterfeiting.

B.3.2 Insurance acquisition

The added value of this blockchain-based insurance service is that it is fully automated
and decentralised. The digital token of a good can contain smart contracts. In this
case, the token includes a smart contract that contacts an insurance provider with
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the details of the good to ensure. This piece of code could be executed after every
ownership change happening to the token. The buyer is offered the possibility to
insure the good for a specific period of time and a fee. If the customer agrees, a
payment from the customer’s on-chain wallet to the insurer takes place. Right after
that, the smart contract includes in the token the insurance details and additional
contracts that would be called in case of a claim.

B.3.3 Insurance claim

During the validity period of the insurance, the insured customer can make a claim
via an insurance application that interacts with the related smart contract present
in the token, added when the insurance was acquired. This insurance application
reads the details of the insurance from the tokenised good and process the claim.
Additional steps could also be coded, e.g., the insurer could engage a surveyor service
that, based on pictures, would evaluate the damage and foreseen cost of repair.

B.4 Self-sovereign medical records

This use case implements, using a blockchain, the right of every patient to own
their medical records and to decide who has access to them. Currently medical
providers create and store medical records of their patients in different repositories.
An alternative to this is the creation of a unique medical history for every patient that
would accompany them throughout their lifetime regardless of the medical providers
that they would use. A self-sovereign lifetime medical record can be implemented
as a collection of digital certificates that contain the medical lifetime history of a
Socioblock participant. The data immutability and decentralisation that blockchain
provides makes it an appropriate vehicle to transport those health-related certificates
between patients and health providers.

B.4.1 Medical providers

Hospitals, clinics and any health provider with diagnostic capabilities are able to join
Socioblock and its respective health-related channels. The following is a high level
description of how records could be used and secured:

From the health provider to the patient:

• The health provider digitally encrypts each medical record that they produce
with the corresponding public key of the patient and signs it with the health
provider’s private key to guarantee its authenticity.

• The patient adds this medical record to their list of medical records. As this
list is encrypted with the patient’s digital identity’s public key, only the patient
is able to decrypt it. For every new record that the patient receives, their list
of medical records will grow.
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From the patient to the health provider:

• The patient also signs a note of receipt with their private key to signal accep-
tance and ownership. This signed note goes back to the medical provider.

• The patient decides whether the medical records that remain in the centralised
database of a medical service provider will be linked to the identity of the patient
or whether they are the only custodians of such information. This information
is present in the note of receipt mentioned in the previous step. If the patient
decides to detach the record from their identity, then the health provider will
keep the medical report but with no reference to any patient’s identity.

• The patient decides which sections of that lifetime history shares with which
providers via the blockchain by decrypting only the items they would like to
share with a medical provider.

• The patient finally encrypts the medical record with the public key of the med-
ical provider that is about to receive the record via the blockchain.

B.4.2 Ownership of medical records

This proposal guarantees that patients own their medical records. Patients can re-
quest to the medical provider the deletion of the link of the medical record with their
identity. This way, medical providers can count on the information provided by that
record for research purposes, but the record itself is not linked to the patient’s iden-
tity. The added value of this proposal is that it can be fully automated using code
in blockchain-enabled DApps. A pre-requisite for this proposal is the standardisation
of the process to create and sign medical records and the participation of medical
providers in this blockchain implementation.

B.5 Academic records

Blockchain can not only contribute to fight against luxury goods counterfeiting, but it
can also help sharing the authenticity of academic degrees. In this case, the suggestion
is to link an academic degree to a digital certificate and to use blockchain as a public
communication channel.

B.5.1 Attestation process

Every student participating in this blockchain use case receives their academic results
via a digital certificate. The educational institution signs digitally the degree to guar-
antee its authenticity, using their private signing key, similarly to what Section B.4.1
describes for medical records. The integrity of every digitally signed degree is kept via
the signature checksum. The student receives the signed academic attestation and
adds it to their academic records. In this case, confidentiality is not a requirement
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but data integrity. Socioblock participants are able to send evidence of their aca-
demic records via the blockchain. Once educational providers agree on a standard to
digitalise academic degrees and join this blockchain implementation and its specific
corresponding DApp channel, the possibility to forge a degree would be minimal.

B.6 Mortgage search

This case study shows how code-based contract automation in a blockchain can speed
up the search of a real estate mortgage. In the brick and mortar world, searching for
a mortgage can still be a cumbersome and highly paper-based process. Blockchain
can bring a higher degree of transparency to it. The players at stake in this scenario
are: a blockchain participant looking for a mortgage, a broker between the search-
ing participant and mortgage providers and those financial institutions interested in
offering a mortgage.

B.6.1 A set of smart contracts to match offer and demand

The logic behind this process of searching for the best mortgage can be broken down
into three pieces of code within the umbrella of a decentralised blockchain-based
application (DApp):

• Creation of a mortgage search: A participant looking for a mortgage interacts
with the mortgage DApp by filling in a request with standardised fields that
describe the desired mortgage. This mortgage request is linked to a digital
identity. In a first iteration of the mortgage searching process, the requester
can decide to share only the proxy digital identity, described in Section B.2.4.
Later on, close to the final agreement, the selected mortgage provider requires
the real digital identity linked to the physical one. The participant shares the
request with a mortgage broker service that would contact mortgage providers
registered in this mortgage-related DApp.

• Collection of relevant mortgage offers: A mortgage broker service gathers, via a
standardised API in the blockchain, mortgage offers that match demands, from
banks present in this blockchain-based ecosystem. It builds a list of all offers
with their conditions. This list is available to the mortgage requester.

• Mortgage selection and signature: The mortgage requester, via the DApp, de-
cides which of the offers, presented by the broker service, they sign. Once a
specific mortgage offer is signed by the private key of the requester, the code
contacts the offering bank and present to it all the required data so that the
payment can be made to the real estate owner and instalments can commence.

The added value of this three-component DApp is that most of the steps are au-
tomated via smart-contracts that interact with off-chain elements such as the user
interface (via an application) and the required back-end servers that produce the
different mortgage offers. This reduces greatly customer friction.
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