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PREFACE 

This thesis is the result of a four-year PhD project based at the National 

Museum of Natural Sciences (MNCN-CSIC) and University Rey Juan 

Carlos (URJC) in Madrid, Spain. The project was supervised by Prof Dr 

Miguel B. Araújo. The work was funded by the Ministry of Economy 

and Competitiveness through research projects CGL2015-68438-P and 

PGC2018–099363-B-I00. 

The thesis consists of four chapters, a General Introduction and a 

Synthesis. The general introduction describes the background and aims 

of the thesis, and the Synthesis summarises the main findings and 

discusses the work presented from a broader perspective. 

Four other chapters are the core of the thesis. The first one is a synthesis 

paper (Chapter I), two analytical papers (Chapter II & Chapter IV) and 

one software note (climetrics R package – Chapter III) to measure 

multiple dimensions of climate change. At the time of submission, two 

papers were published as scientific articles, one is near submission and 

the fourth is in preparation. 

Shirin Taheri 

Madrid, June 2022 
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SUMMARY 

 

Background 

Evidence is mounting that ongoing climate change is leading to a globally 

consistent fingerprint of systematic shifts in species distributions, and they are 

estimated to be 2.5 times greater than previously anticipated. In particular, a 

series of commonly articulated hypotheses have emerged that species are 

expected to shift their distributions to higher latitudes or elevations, and deeper 

depths in response to climate change, reflecting an underlying assumption that 

species will move to cooler locations to track spatial changes in the 

temperature. However, many species are not demonstrating range shifts 

consistent with these hypotheses, because species do not necessarily move 

along the linear temperature gradients. Their distributions are influenced by 

many interconnected factors, such as precipitation, land-use change, physical 

barriers, species trait, population dynamics, invasive species, interspecific 

species interactions and microclimate conditions.  

Understanding how species distribution changes in response to climate change 

is enormously complex. Providing effective explanations for the observed 

variability in species’ range shifts requires, firstly, that method used for 

detection of distributional changes are able to distinguish between directional 

and non-directional changes and secondly, that they are able to distinguish 

distributional changes driven by natural population dynamics from changes 

driven by external forcing (climatic or non-climatic). 



SUMMARY 

Objectives  

Considering carefully all the known challenges, this thesis asks how 

appropriate are methods commonly used to detect shifts in species distribution 

and provides an updated synthesis of climate-related range shift studies. The 

main objective of this thesis is to explore uncertainties associated with data 

and methods used to measure species range dynamics. The specific objectives 

are as follows: first, to evaluate the climate-related range shifts studies to 

identify the robustness of the inferences linking distributional changes tightly 

with climate changes (Chapter I). Second, to explore the role of climate, land 

cover and random effect in the different sections of the species distribution 

(Chapter II). Third, to develop a platform to quantify multiple dimensions of 

climate change (Chapter III). Forth, to quantify the exposure of global 

threatened species distribution to multiple dimensions of climate and land-use 

change (Chapter IV).   

Methodology 

To evaluate the robustness of the methods linking distributional shifts with 

climate, 240 scientific reports were reviewed and classified based on simple 

criteria related to the minimum standards that should be required to attribute 

range shifts to climate change. The criteria asked whether observed 

distributional shifts are compared against random expectations, whether 

multicausal factors are examined on equal footing, and whether studies 

provide sufficient documentation to enable replication.  
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For the second objective and to explore the mechanisms behind species range 

shift, I used historical range dynamics among data from the observed 

distribution of 82 breeding birds in Great Britain against three alternative 

models; climate change models, assuming that distributions changed 

following climate changes; land-cover change model, assuming that species 

distributions changed following land-cover changes; and a null model that, 

while keeping the same quantities of observed distributional changes 

(expansions and contractions), randomized the direction of the changes.  

To facilitate modelling the complexity of climate changes, this thesis 

developed the “Climetrics” R package to uncover multiple dimensions of 

climate change. Six widely used metrics of climate change were implemented 

in this R package using the methods in published articles. The six climate 

change metrics were developed in this thesis are 1) Standardized local 

anomalies; 2) Changes in probability of local climate extremes; 3) Change in 

area of analogous climates; 4) Novel climates; 5) Change in the distance to 

analogous climates, and 6) Climate change velocity. 

To quantify the exposure of threatened species distribution to climate and 

land-use change, this thesis mapped ten risks from five climate change 

dimensions and five land-use transitions and compared the ensuing patterns 

with diversity patterns among threatened amphibians, birds, mammals, 

reptiles, and plants species. Then the proportion of threatened species that 

were impacted by multiple dimensions of climate and land-use change were 

calculated.  
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Results 

The results of Chapter (I) found that only ~12.1% of studies compare 

distributional shifts across multiple directions, ~1.6% distinguish observed 

patterns from random expectations, ~19.66% examine multi-causal factors 

and 25% not provided sufficient data and results to allow replication. The 

comparison of observed range shifts with projections arising from the three 

alternative models in Chapter (2) revealed that determinants of species range 

shifts were seemingly variable across each one of the four predefined sections 

of the range. While rear edges of northerly distributed species have shifted 

consistently with projections from a climate-driven model, shifts at the leading 

edge of southerly distributed species carry a stronger imprint of land-cover 

change. In contrast, shifts at the leading edges of northerly distributed species 

and the rear edges of southerly distributed species that is, distributions at both 

the northern and southern tips of Great Britain were no different from that 

expected by chance. Mapping risks from multiple dimensions of climate and 

land-use shows (Chapter 4) shows that 10% of globally threatened species face 

an extremely high risk for both climate and land-use change over the last 

century. In general, the threatened species in the Caribbean and Latin America, 

as well as Southeast and South Asia, were exposed to the greatest amount of 

co-occurring threats.  

Conclusion  

Despite repeated calls for better integrations of multiple drivers, studies on 

climate-related range shifts are mostly univariate and unidirectional. In 

general, the findings demonstrate substantial improvements should be 

considered in biodiversity assessments under climate change. The chapters of 
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this thesis encourage study designs that account for multiple drivers on equal 

footing and appropriate pattern detection methods in range shift studies. The 

thesis also discusses the exposure of global threatened species distribution to 

multiple risks associated with climate change complexity and historical land-

use change over the past century, with unequal spatial pattern around the 

world.  

This thesis provides a hint of the best-practice standard needed for assessments 

of climate-related range shifts. Future investigations should seek to expand the 

facets of biodiversity change considered in quality assessments and strive to 

build consensus on the standards required to increase the strength of evidence 

of climate change impacts on biodiversity while developing detailed 

guidelines to help increase the robustness, transparency, and reproducibility 

of the climate -related range shifts assessments. 



 

RESUMEN  

Antecedentes 

Cada vez hay más pruebas de que el cambio climático en curso está dando 

lugar a una huella global de cambios sistemáticos en la distribución de las 

especies, y se estima que son 2,5 veces mayores de lo previsto anteriormente. 

En particular, han surgido una serie de hipótesis comúnmente articuladas 

según las cuales se espera que las especies desplacen sus distribuciones a 

latitudes o elevaciones más altas y a profundidades mayores en respuesta al 

cambio climático, lo que refleja una suposición subyacente de que las especies 

se desplazarán a lugares más fríos para seguir los cambios espaciales de la 

temperatura. Sin embargo, muchas especies no están demostrando 

desplazamientos del área de distribución coherentes con estas hipótesis, 

porque las especies no se mueven necesariamente a lo largo de los gradientes 

lineales de temperatura. Sus distribuciones están influidas por muchos factores 

interconectados, como las precipitaciones, los cambios en el uso del suelo, las 

barreras físicas, los rasgos de las especies, la dinámica de las poblaciones, las 

especies invasoras, las interacciones entre especies y las condiciones 

microclimáticas.  

Entender cómo cambia la distribución de las especies en respuesta al cambio 

climático es enormemente complejo. Para explicar eficazmente la variabilidad 

observada en los cambios del área de distribución de las especies es necesario, 

en primer lugar, que el método utilizado para detectar los cambios de 

distribución impulsados por la dinámica natural de la población de los cambios 

impulsados por fuerzas externas (climáticas o no climáticas).  
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Objetivos  

Considerando detenidamente todos los retos conocidos, esta tesis se pregunta 

hasta qué punto son apropiados los métodos que se utilizan habitualmente para 

detectar los cambios en la distribución de las especies y ofrece una síntesis 

actualizada de los estudios sobre cambios en el área de distribución 

relacionados con el clima. El objetivo principal de esta tesis es explorar las 

incertidumbres asociadas a los datos y métodos utilizados para medir la 

dinámica del área de distribución de las especies. 

Los objetivos específicos son los siguientes: en primer lugar, evaluar los 

estudios sobre cambios de distribución relacionados con el clima para 

identificar la solidez de las inferencias que vinculan estrechamente los 

cambios de distribución con los cambios climáticos (capítulo I). En segundo 

lugar, explorar el papel del clima, la cobertura del suelo y el efecto aleatorio 

en los distintos tramos de la distribución de las especies (capítulo II). En tercer 

lugar, desarrollar una plataforma para cuantificar las múltiples dimensiones 

del cambio climático (capítulo II). En cuarto lugar, cuantificar la exposición 

de la distribución global de las especies amenazadas a las múltiples 

dimensiones del cambio climático y del uso del suelo (Capítulo IV).   

 

Metodología 

Para evaluar la solidez de los métodos que relacionan los cambios de 

distribución con el clima, se revisaron 240 informes científicos y se 

clasificaron en función de criterios sencillos relacionados con las normas 

mínimas que deberían exigirse para atribuir los cambios de distribución al 

cambio climático. Los criterios se referían a si los cambios de distribución 

observados se comparaban con expectativas aleatorias, si los factores 
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multicausales se examinaban en igualdad de condiciones y si los estudios 

proporcionaban suficiente documentación para permitir su repetición.  

Para el segundo objetivo, y con el fin de explorar los mecanismos que 

subyacen a los cambios de distribución de las especies, utilicé la dinámica 

histórica del área de distribución entre los datos de la distribución observada 

de 82 aves reproductoras en Gran Bretaña frente a tres modelos alternativos: 

modelos de cambio climático, en los que se asumía que las distribuciones 

cambiaban tras los cambios climáticos; modelo de cambio de la cobertura del 

suelo, en el que se asumía que las distribuciones de las especies cambiaban 

tras los cambios de la cobertura del suelo; y un modelo nulo que, manteniendo 

las mismas cantidades de cambios de distribución observados (expansiones y 

contracciones), aleatorizaba la dirección de los cambios.  

Para facilitar la modelización de la complejidad de los cambios climáticos, 

esta tesis desarrolló el paquete R "Climetrics" para descubrir múltiples 

dimensiones del cambio climático. En este paquete R se implementaron seis 

métricas de cambio climático ampliamente utilizadas utilizando los métodos 

de los artículos publicados. Las seis métricas del cambio climático 

desarrolladas en esta tesis son: 1) Anomalías locales estandarizadas; 2) 

Cambios en la probabilidad de extremos climáticos locales; 3) Cambio en el 

área de climas análogos; 4) Climas nuevos; 5) Cambio en la distancia a climas 

análogos, y 6) Velocidad del cambio climático. 

Para cuantificar la exposición de la distribución de las especies amenazadas al 

cambio climático y de uso del suelo Para cuantificar la exposición de la 

distribución de las especies amenazadas al cambio climático y de uso del 

suelo, en esta tesis se trazaron diez riesgos a partir de cinco dimensiones del 

cambio climático y cinco transiciones de uso del suelo y se compararon los 
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patrones resultantes con los patrones de diversidad entre las especies 

amenazadas de anfibios, aves, mamíferos, reptiles y plantas. A continuación, 

se calculó la proporción de especies amenazadas que se vieron afectadas por 

las múltiples dimensiones del cambio climático y de uso del suelo.  

Resultados 

Los resultados del capítulo (I) revelaron que sólo el ~12,1% de los estudios 

comparan los cambios de distribución en múltiples direcciones, el ~1,6% 

distinguen los patrones observados de las expectativas aleatorias, el ~19,66% 

examinan los factores multicausales y el 25% no proporcionaron suficientes 

datos y resultados para permitir su replicación. La comparación de los 

desplazamientos del área de distribución observados con las proyecciones 

derivadas de los tres modelos alternativos del capítulo (II) reveló que los 

determinantes de los desplazamientos del área de distribución de las especies 

eran aparentemente variables en cada una de las cuatro secciones predefinidas 

del área de distribución. Mientras que los bordes posteriores de las especies de 

distribución septentrional se han desplazado de forma coherente con las 

proyecciones de un modelo basado en el clima, los desplazamientos en el 

borde anterior de las especies de distribución meridional llevan una huella más 

fuerte del cambio de la cubierta vegetal. Por el contrario, los cambios en los 

bordes de ataque de las especies de distribución septentrional y en los bordes 

posteriores de las especies de distribución meridional, es decir, las 

distribuciones en los extremos norte y sur de Gran Bretaña, no difieren de lo 

esperado por el azar. La cartografía de los riesgos derivados de las múltiples 

dimensiones del clima y del uso del suelo (capítulo IV) muestra que el 10% 

de las especies amenazadas a nivel mundial se enfrentan a un riesgo 

extremadamente alto tanto por el cambio climático como por el de uso del 
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suelo durante el último siglo. En general, las especies amenazadas en el Caribe 

y América Latina, así como en el sudeste y el sur de Asia, fueron las más 

expuestas a las amenazas concurrentes.  

Conclusión  

A pesar de los reiterados llamamientos a una mejor integración de los 

múltiples impulsores, los estudios sobre los cambios de área de distribución 

relacionados con el clima son en su mayoría univariantes y unidireccionales. 

En general, los resultados demuestran que deberían considerarse mejoras 

sustanciales en las evaluaciones de la biodiversidad bajo el cambio climático. 

En los capítulos de esta tesis se fomenta el diseño de estudios que tengan en 

cuenta los múltiples impulsores en igualdad de condiciones y los métodos 

adecuados de detección de patrones en los estudios sobre los cambios del área 

de distribución. La tesis también analiza la exposición de la distribución global 

de las especies amenazadas a múltiples riesgos asociados a la complejidad del 

cambio climático y al cambio histórico del uso del suelo en el último siglo, 

con un patrón espacial desigual en todo el mundo.  

Esta tesis ofrece un indicio del estándar de buenas prácticas necesario para 

evaluar los cambios de distribución relacionados con el clima. Las 

investigaciones futuras deberían tratar de ampliar las facetas del cambio de la 

biodiversidad que se tienen en cuenta en las evaluaciones de calidad y 

esforzarse por llegar a un consenso sobre las normas necesarias para aumentar 

la solidez de las pruebas de los impactos del cambio climático en la 

biodiversidad, al tiempo que se desarrollan directrices detalladas que ayuden 

a aumentar la solidez, la transparencia y la reproducibilidad de las 

evaluaciones.



 

GENERAL INTRODUCTION 

Species are highly mobile in their distributional range, often shifting, 

expanding and contracting over time and space (MacArthur, 1972). 

Understanding the factors determining the distributional shifts has been a 

major focus throughout the history of ecology (Grinnell, 1917; MacArthur, 

1972; Gaston, 2003; Sexton et al., 2009; McCaslin & Heath, 2020).  

 In recent years, there has been an upsurge of interest in analysing dynamics 

in species’ ranges. Shifts in species distributions toward traditionally cooler 

climes are attributed to recent climate warming (e.g., Parmesan et al., 1999; 

Thomas & Lennon, 1999; Breed et al., 2013; Morueta-Holme et al., 2015).  

A recent meta-analysis (I.-C. Chen et al., 2011) found that latitudinal and 

altitudinal shifts of species ranges have been 2.5 times greater than previously 

reported (Parmesan & Yohe, 2003), although to great levels of variation within 

and across taxonomic groups. While many studies have reportedly shown non-

random shifts in latitude and altitudinal changes toward pole or higher 

elevation (Parmesan et al., 1999; Pounds et al., 1999; Thomas & Lennon, 

1999; Delava et al., 2014), some provide evidence that species lag behind 

climate change (Devictor et al., 2008; Ash et al., 2016; Alexander et al., 2018), 

and that distributional shifts can be seemingly idiosyncratic (VanDerWal et 

al., 2013; Gillings et al., 2014; Taheri et al., 2016), or some species have not 

shifted their range at all (Zhu et al., 2012). 
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The complexities in species responses to climate change can obscure patterns, 

making it difficult to infer the effects of climate change on species 

distributions. We do not, for example, have a clear understanding of the 

inferred species responses to the stochastic changes in dynamics of 

populations or the responses to unaccounted factors.   

The a priori expectation and commonly-held hypothesis is that species should 

shift poleward or upward in response to rising temperature or isotherm shifts 

(Tingley et al., 2009; Nicastro et al., 2013). However, an increase in 

temperature is likely to have a directional impact on species range shifts 

because temperature changes with latitude (cooler conditions in higher 

latitude/elevation and warmer conditions in lower latitude/elevation). 

Therefore, one expects isothermal and mostly unidirectional poleward or 

upward shifts as the climate warms. Indeed, the unidirectional 

(poleward/upward) and univariate (temperature only) perspectives on climate-

driven range shifts ignore the fact that climate isotherm in some areas may be 

shifting in the opposite direction than expected (Pinsky et al., 2013; 

VanDerWal et al., 2013; Lenoir & Svenning, 2014; Taheri et al., 2021) or in 

longitudes instead of simple latitude. A consideration of the multidimensional 

nature of climate change is also recommended (Garcia et al., 2014) because 

different dimensions of climate change affect biodiversity in different ways; 

for example, not all species are at equal risk of climate change velocity (Davies 

et al., 2009). Strong disperses should be most able to maintain distributional 

equilibrium with climate conditions and are therefore likely to occupy more 

of their potential range and avoid extinction (Sandel et al., 2011). Local 

climate extremes such as extreme events or standardized local anomalies are 

expected to alter the distribution of the population of individual species or 
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community responses such as changes to species richness, composition or 

dominance (Smale & Wernberg, 2013; I. Harris et al., 2020).  

In addition, measuring climate-induced range shifts is sensitive to methods 

and data. For example, analysing the southernmost or northernmost marginal 

cells of breeding British birds suggested northward shifts by ~18 km during 

the 20th century (Thomas & Lennon, 1999). The analysis of CTI (Community 

Temperature Index) showed that birds lag 182±53 km behind changes in 

climate (Devictor et al., 2008), and the use of climate velocity (the temporal 

and spatial trend in temperature and precipitation) showed range shifts among 

Australian birds were idiosyncratic and followed climate velocity 

(VanDerWal et al., 2013).  

An accurate diagnosis of the effects of climate change on the distributions of 

species requires, firstly, that methods used for detection of distributional 

changes can distinguish between directional and non-directional changes and, 

secondly, that they can tease apart distributional changes driven by  natural 

population dynamics from changes driven by external forcing (climatic or 

non- climatic) (Taheri et al., 2016) 
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Fig 1.Schematic diagram of possible drivers of species ranges shifts on the location 

of range boundary. (a) Illustrates climate as a complex phenomenon; the climate cube 

shows multiple parameters across multiple geographic and temporal scales and 

different dimensions of climate change (e.g., magnitude of climate change, novel 

climates, velocity etc.). (b) Shows land degradation due to the human influence that 

also impacts species ranges. (c) Represent some other types of pressures that may 

cause range shifts, including: population dynamic, interspecific species interaction, 

physical barriers and species trait (e.g., dispersal ability, body size etc.). (d) the 

possible interaction of driving forces on species range shifts. (e) Examples of four 

possible changes in range margins of species, edge expansion and trailing edge 

contraction (i); expansion in both trailing and leading edge (ii); or contraction in both 

leading leading and trailing edge (iii); no significant change in range margins (iv).  

The overall objective of this thesis is to investigate some of the above 

challenges and discusses uncertainties associated with data and methods in 

climate-induced range shifts. In addition, this thesis suggests a comprehensive 

assessment for the detection and attribution of observed biological changes 

caused by multifaceted drivers (Fig .1).  
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In particular, in this thesis the following objectives are addressed: 

I. To evaluate the climate-related range shifts reports and identify the 

robustness of the inferences linking distributional changes tightly with 

climate changes.  

II. Discriminating climate, land-cover and random effects on species range 

dynamics. 

III. To develop a platform to quantify multiple dimensions of climate 

change.  

IV. To quantify the exposure of global threatened species distribution to 

multiple dimensions of climate and land-use change.   

Chapter (I) (Taheri et al., 2021) evaluates 240 climate-related range shift 

studies using simple criteria related to the minimum standards that should be 

required to attribute range shifts to contemporary climate change. The three 

main criteria revolve around the detection and attribution of climate-related 

range shifts and the reproducibility of studies.  

For pattern detection and attribution, the focus is on the methodological 

aspects of the studies, and to explore how the species' distributional shifts are 

measured. In particular, the question for pattern detection is whether 

distribution shifts are analysed across all potential directions (e.g., latitude, 

longitude, and elevation), and whether the null expectation regarding 

distributional changes (likelihood of changes derived from patterns shifted by 

chance because of internal variability) is determined. 

The question for attribution is whether studies examined potential causal links 

between observed distributional changes and environmental predictors (e.g., 
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climate, precipitation, and land use). For this question, all studies are reviewed 

to assess how (if at all) they attributed observed shifts in species distributions 

to climate change and what approaches are used to perform the task. The 

papers that investigated multiple alternative causal factors on equal footing, 

rather than simply examining patterns against a single predictor (e.g., 

temperature), receive a maximum score for the attribution criteria. 

For reproducibility, the focus is on results. A study receives the full score for 

this group if the results are available for each individual species analysed and 

if the divergence responses among species are fairly reported. 

The updated synthesis provided in this chapter helped to understand the 

current state of the art on knowledge gap and methodological shortfalls in the 

fast-moving research on climate-related range shifts. The experiences from 

Chapter (I) aided in developing Chapter (II).  

 

In Chapter (II) (Taheri et al., 2020) the focus turns to the range dynamics and 

their underlying causes. This chapter examines historical range dynamics 

among 82 bird’s species in Great Britain against three alternative models: 

climate change model, assuming that distributions changed following climate 

changes; land-cover change model, assuming that species distributions 

changed following land-cover changes; and a null model that, while keeping 

the same quantities of observed distributional changes (expansions and 

contractions), randomized the direction of the changes.  

 

In particular, the chapter examines whether observed range shifts in the 

distribution of birds are best explained by climate and historical land‐cover 

change, or whether they are not distinguishable from what would be expected 

by chance (stochasticity in population dynamics). This chapter independently 

examines four sections of species distributions: leading and rear edges of the 
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southern and northernmost edges of southerly and northerly-distributed 

species. The analysis is repeated across a twenty-year period (1968-72 vs. 

1988-91) and a forty-year period (1968-72 vs. 2007-11).  

 

Climate is a multivariate and multidimensional phenomenon. Adequately 

capturing the wealth of climate change manifestations and the different ways 

it interacts with the living systems requires that its multiple dimensions be 

appropriately characterised through alternative, metrics.  

 

Chapter (III) Presents a platform to quantify different dimensions (metrics) of 

climate change. This chapter gathers six common climate change metrics as 

an extensible, reproducible and user-friendly R Package called “Climetrics”. 

The package should provide a set of useful tools to map the complexity in 

climate change using multivariate climate parameters and more sophisticated 

methods.  

  

Chapter (IV) quantifies the exposure of global threatened species 

distribution to multiple dimensions of climate change (using the “Climetrics” 

R package) and historical land-use change over the past century. This chapter 

illustrates the global distribution of risks, using multiple dimensions of climate 

change (temporal slope of temperature & precipitation; standardized local 

anomalies; velocity of climate change & extreme events) and historical land 

dynamics (forest loss, crop gain, land frequency change and pasture gain) as 

well as urbanization as threats to global’s threatened reptiles, plants, 

mammals, birds and amphibians over the past century. Then provides a global 

estimation of high-risk areas for threatened species due to the concurrent 

impact of climate and land-use change over the 20th century and calculated the 

proportion of threatened species in areas with extremely high to low risk of 
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climate and land-use change in isolation and combination in each Köppen-

Geiger climate classification.
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Abstract 

Studies have documented climate-change-induced shifts in species 

distributions but uncertainties associated with data and methods are typically 

unexplored. We reviewed 240 reports of climate-related multiple-species 

range shifts and classified them based on three criteria. We ask if observed 

distributional shifts are compared against random expectations; if multi-causal 

factors are examined on equal footing; and if studies provide sufficient 

documentation to enable replication. We found that only ~12.1% of studies 

compare distributional shifts across multiple directions, ~1.6% distinguish 

observed patterns from random expectations and ~19.66% examined multi-

causal factors in equal footing. Finally, ~75.5% of studies report sufficient 
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data and results to allow replication. We show that despite gradual 

improvements over time, reports of climate-induced change in species 

distributions require substantial scope for raising standards in data and 

methods. Accurate reporting is important because policy responses depend on 

them. Flawed assessments can fuel criticism and divert scarce resources for 

biodiversity to competing uses and priorities. 

Introduction 

As climate changes, so do species distributions. Evidence is mounting that 

ongoing climate changes are causing species to redistribute globally 

(Parmesan, 2006; I.-C. Chen et al., 2011). The magnitude of distributional 

shifts is now estimated to be 2.5 times greater than originally thought 

(Parmesan & Yohe, 2003). While many studies have uncovered the existence 

of non-random latitudinal or altitudinal shifts in species distributions 

(Parmesan et al., 1999; Thomas & Lennon, 1999; Parmesan & Yohe, 2003), 

consistent with the hypothesis that climate change is driving them, others 

found that shifts can lag behind climate change owing to physiological 

plasticity, microclimate buffering, and delayed responses (Pounds et al., 1999; 

Devictor et al., 2008; Forero-Medina et al., 2011). Such lags can lead to non-

detection of ongoing distributional changes as well as failures to detect the 

mechanisms underpinning them. Observational studies have also detected 

species redistributions not following clear climatic gradients (Archaux, 2003; 

Bedford et al., 2012; VanDerWal et al., 2013). Such seemingly idiosyncratic 

responses to climate change could be related to complex interactions among 

temperature, precipitation (Tingley et al., 2012), land-use change (Crimmins 

et al., 2011), species climatic tolerances(Warren et al., 2001), and biotic 

interactions (M. B. Araújo et al., 2013). Complex non-linear species responses 

to climate change can also limit the ability to detect distributional changes. 
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This is particularly true with approaches assuming simple, often linear, 

relationships between temperature and species distributions (VanDerWal et 

al., 2013). Measuring range dynamics along spatial gradients, such as latitude 

or altitude, can also mask complex biological responses to climate change 

because such gradients are not precise surrogates for temperature gradients let 

alone for multiple climate dimensions (Hersteinsson & MacDonald, 1992; 

Hawkins & Felizola Diniz-Filho, 2004). Unlike the literature involving 

modelling of future climate change effects on species distributions, where 

several studies  have examined uncertainties and addressed questions related 

to the minimum standards that should be required to make statements about 

modelled patterns (M. B. Araújo et al., 2019; Zurell et al., 2020), there is a 

surprising lack of analyses evaluating the quality of observational inferences 

regarding climate change effects on past species distributions. As a first step 

towards weighting the strength of the observational evidence provided by such 

studies, we review the literature involving the analysis of multiple species 

responses to climate change (see methods; Fig. A 1.1) in light of three 

important criteria: 1) pattern detection, or the ability to discern signal from 

noise in patterns of species distributional shifts; 2) causality, or the ability to 

attribute climate change as the most plausible driver of observed distributional 

shifts given alternative mechanisms; and 3) reproducibility, or the ability to 

replicate studies given the information provided.  

Each one of these criteria is assessed by simple ‘yes’ or ‘no’ answer to six 

questions linked with the three criteria (Box 1). Stronger support to the 

conclusions in the reviewed studies is expected for those comparing 

distributional changes across multiple geographical directions, investigating 

multiple alternative causal mechanisms potentially driving distributional 

changes, and describing results with enough detail so as to enable replication 

and reanalysis. 
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Box 1. Checklist used to measure the strength of evidence about species distributional 

shifts and their link with climate.  

 

 

 

Results 

Using extensive search of the literature (see methods), we identified 240 

studies examining the effects of climate change on the distributions of multiple 

species. Existing research is strongly biased towards the northern hemisphere 

(78.9%) and terrestrial ecosystems (80.4%) (Fig.I.1a). Specifically, studies 

                  Evaluation Criteria 

Question of interest: Are distributional changes different from that expected in the 

absence of major external drivers, that is, by chance? 

  I.  Pattern detection 

a. Are range changes analyzed simultaneously across all possible directions 

of change?  

Yes =1, No =0 

b. If so, are the obtained results compared against a null model expectation 

enabling distinguishing the observed patterns from chance expectation? 

Yes =1, No =0 

 Question of interest: Are potential causal factors rather than temperature 

examined in equal footing? 

   II.  Attribution 

a. Are explanatory causes of range changes investigated? Yes =1, No =0 

b. If so, are alternative causal explanations compared on equal footing?  

Yes =1, No =0 

Question of interest: Are distributional changes described with sufficient details to 

enable replication and reanalysis of the results? 

III.  Reproducibility 

a. Are results presented for each individual species? Yes =1, No =0 

b. If not, is variation among range dynamics of different sets of species 

described? Yes =1, No =0 
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predominate in North America and Europe, mainly western Europe and within 

it the UK, with significant knowledge gaps emerging in South America, 

Africa, Asia and the Middle East (See also Lenoir & Svenning, 2014). 

We also found that evidence of climate change effects on species distribution 

has been examined for ≤ 2 % of Reptiles, Insects, Plants, Algae, Crustacean 

and Mollusca, 2.9 % Mammals 2.3 % Fishes and 23.47 % of bird species 

(Fig.I.1b).  
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Fig I.1. Geographic and taxonomic coverage of climate related range shifts studies. 

a) geographical coverage across terrestrial and marine realms with 82% of the studies 

being in the northern hemisphere while 80.4% covering terrestrial ecosystems; b) 

taxonomic coverage with ≤ 2% including studies with amphibians, insects, reptiles, 

algae, crustaceans, and mollusca, 2.3% including fish, 2.9 % mammals, and 23.47% 

birds.  

 

When examining how the different studies characterize the direction of species 

distributional shifts, we found that just ~12.1% (n=29) compare shifts 

simultaneously across all possible geographical directions (Hockey et al., 

2011; Gillings et al., 2014; Taheri et al., 2016). That is, they generally 

investigate the species range changes across the expected direction of climate 

change (typically temperature change) while ignoring comparison with 
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distributional changes across alternative directions (Fig I. 2a & Fig I.2b). Of 

the 29 studies that examine distributional changes across multiple directions 

just four tested if observed distribution shifts could have arisen by chance by 

comparison with a suitable null model (Forero-Medina et al., 2011; Wolf et 

al., 2016; Boisvert‐Marsh et al., 2019; Taheri et al., 2020). Analyses of species 

distributional shifts across multiple directions were mostly conducted with 

animals (n=25). Plants feature in just four assessments(Groom, 2013; 

Hanberry & Hansen, 2015; Fei et al., 2017; Rumpf et al., 2018). Unlike studies 

addressing distributional changes in a single dimension (e.g., latitude or 

altitude), studies examining range shifts in multiple directions typically found 

shifts to be idiosyncratic while being difficult to ascribe a clear direction of 

change (e.g., Tingley et al., 2012; Rowe et al., 2015; Santos et al., 2015).  
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Fig I.2.The quality assessment in climate-related range shifts reports.  a) The 

proportion of reports for six sub-criteria. The plot shows the proportion of each 

studies met each criterion. (C.1&C.2 Pattern detection, C.3&C.4 Attribution, and 

C.5&C.6 Reproducibility. b) Assessed quality of the reports of species redistribution 

under climate change across marine and terrestrial ecosystems. Shows the 

geographical distribution of studies investigating climate change effects on species 

distributions ranked by the overall (median) benchmark score achieved through 

summation of individual ranks in the three evaluation criteria. Values in the map 

range from 1 (only one of the evaluation sub-criteria met) to 4 (four of the evaluation 

sub-criteria met).  Higher scores are colored green and lower scores are colored violet. 

c) Sum of the evaluation sub-criteria in each continent. Shows the number of 

evaluation sub-criteria met by each study across continents. 

 

When investigating links between species distributions and climate change, 

~59% (n=142) of the studies explicitly examine how temperature change 
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covaries with species distributional changes. However, most studies disregard 

other environmental drivers, such as precipitation change, land-use change, or 

the interactions among them. Of the reviewed studies investigating causes of 

distribution shifts other than temperature change (36.4%; n=87), only 19.66% 

(n=47) have tested alternative causal factors on equal footing (Fig I.2a). 

Complex interactions among temperature and precipitation change, and 

species-specific tolerances intervening on species responses to climate 

changes, were examined in a few studies so far (Pinsky et al., 2013; 

VanDerWal et al., 2013). 

When examining the reproducibility of studies, we found that ~25.5% (n=59) 

did not report data at the individual species level; a requirement for full 

reanalysis and replication of the studies (Fig I.2a).  

The degree to which studies met our criteria also varied among regions: 

Australia, northern Europe, and a few studies in North America were generally 

more proficient (Fig I.2b & 2c). For example, among 40 papers that received 

score= 4 in our criteria scoring, 42.5 % (n=17) are in Europe and 37.5% (n=15) 

in North America.  In total only six studies out of 240 received score = 5, in 

which two of them are in Europe, three of them in North America and one in 

Africa. Great Britain, although with the highest number of species 

distributional change studies (n=37), had an average (median) of just two sub-

criteria met. China with three studies reviewed averaged 4 sub-criteria met, 

(Wu, 2015, 2016; Wu & Shi, 2016), all reporting heterogeneous and diverse 

responses of species to climate change (Fig I.2b & 2c). 
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Fig I.3. Cross-examination of the sub-criteria used to evaluate reports of 

species redistribution under climate change. Shows the multiple overlapping 

among the three main criteria. Each circle corresponds to one of the main 

evaluation criteria. The size of the circles represents the number of reports 

met each main criterion (pattern detection, causality and reproducibility). The 

reuleaux triangle in the centre shows the intersection between three circles 

and it means only 4.5% (n=11) of studies met these three main criteria. 

 

Overall, studies performed poorly against the three criteria (six sub-criteria) 

utilized (see box 11). Of the 240 papers reviewed, only 11 (4.5%) met the three 

criteria, i.e., detected changes in all possible directions, considered at least one 

other causal factor rather than temperature, and presented the results for 

individual species meeting all the three main criteria (Fig. I.3). Just 16.6% 

(n=40) met 4 sub-criteria, and only 2.5% (n=6) met 5 sub-criteria (e.g., 

Hockey et al., 2011; Wu, 2016).  
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In general, studies conducted for terrestrial ecosystems achieved greater 

performance according to the sub-criteria used (FigI.3b), although the sample 

size of studies in terrestrial ecosystems (n=193; 80.4%) is much larger than in 

marine ones (n=47).  

We analyzed how the different aspects reflecting the quality of studies evolved 

through time given the criteria. We found that studies’ performances had a 

tendency to increase across all criteria (Fig I.5). For example, among studies 

that measured multi-directionality of range shifts (n=29), 26 were published 

from 2011 onwards. Likewise, in this period, 60 studies out of 87 investigated 

multiple causal factors, while 116 out of 181 met our criteria for 

reproducibility. 

 

 

 

 

 

 

 

Fig I.4. Distribution of studies by evaluation sub-criteria over time. Shows a general 

trend of improvement of reports of climate-related range shifts over time across six 

sub-criteria. Higher values in y-axis means that more of the established evaluation 

criteria were met.  
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Discussion  

Species adapt to changes in climate by moving to more suitable locations (M. 

Araújo & Rahbek, 2006). Alternatively, some species might be able to persist 

throughout their known distributions due to phenotypic plasticity or adaptive 

genetic modification (Valladares et al., 2014; King et al., 2018). When neither 

of these options are available, species perish (Urban, 2015). The combined 

adaptive responses of species to climate change leads to changes in species 

ranges. Detecting changes using fragmented samples of data and identifying 

potential causes for those changes is particular challenging.  

There are considerable uncertainties regarding the speed of distributional 

shifts (Svenning & Skov, 2004; M. B. Araújo & Pearson, 2005; García-Valdés 

et al., 2013), particularly along rear (contracting) edges(Wilson et al., 2005; 

Anderson et al., 2009), the accelerating or mitigating effects of biotic 

interactions(Callaway et al., 2002; Hughes, 2012), the capacity to adapt in situ 

associated with expressions of phenotypic plasticity(Valladares et al., 2014; 

King et al., 2018) or genetic modification(Franks & Hoffmann, 2012), and the 

effects of interactions among multiple climate drivers of change (Yalcin & 

Leroux, 2018). The tolerances of species to climate extremes are generally 

inferred with statistical approaches(Diniz-Filho et al., 2009; Garcia et al., 

2012; Dullinger et al., 2012). However, circumstantial evidence suggests that 

inferred tolerances are narrower than real ones(M. B. Araújo et al., 2013; 

Herrando-Pérez et al., 2019). Combined, these biological and environmental 

effects can truncate the pace and direction of biological responses to climate 

change. Delayed responses are common (Essl et al., 2015), resilience to 

changes(Bernhardt & Leslie, 2013) has been observed, and the unknown 

consequences of novel climates are hard to anticipate (Pearson et al., 2006).  
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Additionally, current estimates of climate change effects on species 

distributions are severely hampered by geographic and taxonomic biases in 

the underlying data (Fig I.1) (see also Lenoir & Svenning, 2014) . Most data 

come from species-poor, mostly temperate, regions. In sharp contrast, the 

tropics hosting the vast majority the planet’s biological diversity(Brown, 

2014) scarcely have any study assessing climate change effects on species. A 

range of factors affects the availability of biodiversity-related information. 

The knowledge gap in tropics, for example, is related to insufficient funding, 

inadequate infrastructure, and scarce local expertise for data collection and 

identification, inaccessibility to research sites due to the political upheaval, 

and difficulties in getting data published or public (Collen et al., 2008).  In 

addition, geopolitics (Trimble & van Aarde, 2012), regional democracy 

(Rydén et al., 2020), socio-economic, history, culture, scientific interest 

(Amano et al., 2016) and unwillingness of sharing the data, play an important 

role in biodiversity data collections and publishing bias. 

 While the impact of climate change on the future of biodiversity has been 

assessed for a wide range of taxonomic groups, the total number of empirical 

studies remains relatively low. One important reason for this is the lack of 

replicable historical surveys (but see (Morueta-Holme et al., 2015)) that limit 

the reliability of the assessed empirical relationships between species 

distributional changes and environmental changes (Hortal et al., 2008).   

Studied clades also represent an extremely small fraction of the world’s life 

forms: insects, by far the most specious group in the world, are almost not 

covered by assessments, and most studies are based on trees and vertebrates 

with 23% conducted on birds alone. Any conclusion drawn from existing data 
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is thereby regional, taxonomically biased, and hardly transferable globally. 

Possible generalizations are, therefore, limited.  

Adding to limitations of the data, we found that most studies underperform on 

the methodological standards of analysis. These are, however, more easily 

circumvented than the limitations of data. To ascertain if a distributional shift 

occurs in response to a given environmental driver, one needs to assess not 

just changes along the expected gradient but also along alternative 

gradients(Taheri et al., 2016). That is, if species are expected to change along 

a south to north gradient, for example, one needs to measure if the changes 

along latitude are significantly different from the changes along longitude. If 

not, it will be difficult to ascertain that changes are not a consequence of 

natural population dynamics of range expansion and contraction (Bradshaw et 

al., 2014). Even when distributional changes are examined across multiple 

directions, one might still ask if observed patterns could not have arisen by 

chance given geometrical constrains for dispersal or alternative environmental 

driver dynamics (Taheri et al., 2020). Addressing these questions requires the 

use of null models of distributional change, but although null models have 

made their way into ecology (Gotelli & Graves, 1996; Colwell et al., 2004) 

and biogeography(Hubbell, 2001), they are still hard to find in studies of 

climate change effects on biodiversity.  

That correlation does not imply causation is well known. Nevertheless, when 

a good mechanistic hypothesis exists linking a pattern and the potential 

underlying mechanisms, and when expected relationships are observed 

repeatedly across different regions and times, accumulation of evidence can 

be interpreted as supporting hypothesized causal links between pattern and 

mechanism (M. B. Araújo et al., 2019) This is the logic linking elevation and 

latitudinal shifts with climate change: as temperature increases, higher 
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latitudes and elevations are expected to warm, hence receiving more warm 

tolerant species while losing cold tolerant ones. Such is an observation dating 

as far as the classic observations of Alexander von Humboldt in the 

Chimborazo Mountain of Ecuador(Humboldt, 1838; Morueta-Holme et al., 

2015). However, climatic gradients do not always follow geographical 

gradients linearly(Tingley et al., 2012), and most often there are feedbacks 

between temperature and other climatic variables (e.g.,  humidity and wind) 

that further affect the expected relationship between temperature and 

geographic gradients(Rapacciuolo et al., 2014). Seeking to attribute climate 

change to a given distributional shift is thus better achieved by relating species 

range changes with climate variables instead of geographical proxies, such as 

latitude and elevation. This point has been made several times for studies 

examining diversity gradients along elevation gradients(Körner, 2007) and 

latitude(Hawkins & Felizola Diniz-Filho, 2004) but, as our review shows, it 

has not been fully appreciated and integrated in assessments of climate change 

effects on biodiversity.  

Additionally, even when climate change variables are used, instead of 

geographical proxies, to examine relationships with species distributional 

shifts, there are occasions when distributional shifts respond not just to climate 

but to other environmental changes, such as spread of disease (Hof et al., 2011) 

or land use change (Ameztegui et al., 2016; Yalcin & Leroux, 2018; Guo et 

al., 2018). Attributing a mechanism to an observed pattern thus benefits from 

examination of multiple alternative hypotheses on equal footing. Nevertheless, 

multimodal inference(Sirami et al., 2017) was found to be extremely rare in 

the reviewed literature.     

Finally, a critical feature of science-based assessments is the ability to 

reproduce and build upon each other’s published results. Unfortunately, many 
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findings cannot be reproduced. Our review reveals, ~25 % of the reports on 

distributional changes under climate change do not provide full access to the 

data and detailed results. Reproducibility contains several elements such as 

selective reporting, methods and availability of codes, statistical power, 

experimental design and availability of raw data. In this review, we focused 

on selective reporting. However, we notice that considering other factors of 

reproducibility could dramatically affect our assessment of published studies. 

Recently, a study (Baker, 2016) carried out by 1500 scientists from different 

disciplines (e.g., chemistry, physics, medicine and biology) showed that most 

of the scientific articles are not fully reproducible;, our review corroborates 

their findings in the subfield of climate change ecology and biogeography.  

Moving forward in the capacity to assess the where, when, and why of climate 

change effects on biodiversity is crucial to guide the timing and magnitude of 

human adaptation strategies for biodiversity. In our scan of the literature, we 

asked very simple questions that enable establishing inferences about the 

quality of the underlying data and methods. We demonstrate that substantial 

improvements should be considered in assessments. Most of them do not 

require reinventing concepts or methods. Questions about the need for null 

models to discriminate expected directional patterns from stochastic (or more 

complex) ones(Harvey et al., 1983; Gotelli & Graves, 1996), or the 

disadvantages of using indirect proxies as opposed to direct variables with 

proven mechanistic links to the patterns (Hawkins & Felizola Diniz-Filho, 

2004; Körner, 2007), are well established in the ecological literature. 

Somehow, these debates and the associated recommendations have not 

percolated through studies examining climate change effects on species 

distributions.  
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Our study provides a hint of the best-practice standards needed for assessments 

of climate change effects on a specific facet of biodiversity change: species 

range change. Other biodiversity change facets, such as local patterns of 

colonization and extinction, or abundance changes, or changes in community 

composition are not covered by our analysis, partly because very few of such 

studies exist across multiple species. Future investigations should seek to 

expand the facets of biodiversity change considered in quality assessments and 

strive to build consensus on the standards required to increase the strength of 

evidence of climate change impacts on biodiversity while developing detailed 

guidelines to help increasing the robustness, transparency, and reproducibility 

of the assessments.  

Methods and Materials 

 

Literature review  

We identified papers by screening published reviews(Lenoir & Svenning, 

2014) and meta-analyses(Parmesan, 2006; I.-C. Chen et al., 2011), and by 

searching the primary literature using engines such as Google Scholar, ISI 

Web of Science, Scopus, Wiley Online Library. We used a combination of the 

following keywords in our search: “climate change” or “climate warming”, 

and “range” or “distribution”, and “poleward/ northward shift” or “upslope/ 

altitudinal shift” or expansion/contraction (Supplementary material Fig A 1.1). 

We then filtered the records by using some inclusion and exclusion criteria. 

These criteria comprised references that assessed distributional changes based 

on species occurrence data over at least two historical periods. Since our focus 

was on the empirically observed distributional shifts, we excluded papers that 

used abundance or richness data alone or those that used modelling and/or 
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predictions to quantify “future” or “potential” changes. Our search criteria 

provided a set of 240 publications.  

 Data mining  

Following the literature search, we extracted the relevant data to be structured 

in a suitable database (Table S1). For each publication, we recorded the 

following information: (i) study year; (ii) spatial scale (e.g., local, regional, 

and continental); (iii) geographic region as reported in the study; (iv) 

ecosystem type (terrestrial versus marine); (v) climate zone; (vi) magnitude 

and direction of distributional shifts; (iv) total number of taxa and their identity 

(taxonomic group, species names); (vi) time period; (vii); and (viii) the general 

methodology used by the study (Supplementary material Table S1).  

In the database, a unique code was assigned to each article reviewed and its 

geographic location was also recorded. In order to effectively visualize the 

spatial coverage of the reports, we digitized the geographical boundaries of all 

the studies reviewed either as a set of spatial polygons or points depending on 

the geographical extent of the study. We then used a regular two-degree 

(~2×69 miles) grid cells covering the world’s land and sea areas in ArcMap 

software (version 10.1) to aggregate the digitized points and polygons into the 

grid cells and quantify the frequency of the studies at each cell.  

We used the Köppen climate classification(Peel et al., 2007) to group the 

studies into the climate zones. In addition, we aggregated the spatial 

boundaries of the studies within the five major climatic zones defined by the 

Köppen climate classification based on seasonal temperature and precipitation 
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patterns. The five climatic zones are (i) tropical, (ii) dry, (iii) temperate, (iv) 

continental/cold, and (v) polar. 

In order to sort the taxonomic coverage of the data used in the studies, we first 

extracted the number of species and their scientific names for the given 

taxonomic group in each article (Supplementary Material Table S3). We 

added the names of species to the database and after removing duplicate 

records we calculated the proportion of species considered in studies (Table 

A2.1).   

Assessment criteria 

The assessment of published studies was made following a simple set of 

criteria as described in Box 1. For pattern detection, we focused on the 

methodological aspects of the studies. We explored how the species 

distributional shifts were measured. Specifically, we asked if distribution 

shifts were analysed across all potential directions (e.g., latitude, longitude, 

and elevation), and whether the null expectation regarding distributional 

changes (likelihood of changes derived from patterns shifted by chance due to 

internal variability) was determined. Therefore, scientific publications that 

assessed distributional shifts within all the possible directions, rather than only 

along a single elevation or latitudinal axis, and also compared the results 

against the patterns expected by chance (null distribution), received the 

maximum score for the pattern detection group benchmark.  

For attribution, we asked if studies examined potential causal links between 

observed distributional changes and environmental predictors (e.g., climate, 

precipitation, land use). We carefully reviewed the studies methods sections 
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to assess how (if at all) they attributed observed shifts in species distributions 

to climate change and what approaches were used to perform the task. The 

papers that investigated multiple alternative causal factors on equal footing, 

rather than simply examining patterns against a single predictor (e.g., 

temperature), received maximum score for the attribution criteria.  

For reproducibility, we examined the results sections of the studies. A study 

received the full score for this group if the results were available for each 

individual species analysed and if the divergence responses among species 

were fairly reported.
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Abstract  

Species are reportedly shifting their distributions poleward and upward in 

several parts of the world in response to climate change. The extent to which 

other factors might play a role driving these changes is still unclear. Land-

cover change is a major cause of distributional changes, but it cannot be 

discarded that distributional dynamics might be at times caused by other 

mechanisms (e.g., dispersal, ecological drift). Using observed changes in the 

distribution of 82 breeding birds in Great Britain between three time periods 

1968-72 (t1), 1988-91 (t2) and 2007-2011 (t3), we examine whether observed 

bird range shifts between t1-t2 and t1-t3 are best explained by climate change 

or land-cover change, or whether they are not distinguishable from what would 

https://onlinelibrary.wiley.com/toc/13652486/2021/27/6
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be expected by chance. We found that range shifts across the rear edge of 

northerly-distributed species in Great Britain are best explained by climate 

change, while shifts across the leading edge of southerly-distributed species 

are best explained by changes in land-cover. In contrast, at the northern and 

southern edges of Great Britain, range dynamics could not be distinguished 

from that expected by chance. The latter observation could be a consequence 

of boundary effects limiting the direction and magnitude of range changes, 

stochastic demographic mechanisms neither associated with climate nor land 

cover change, or with complex interactions among factors. Our results 

reinforce the view that comprehensive assessments of climate change effects 

on species range shifts need to examine alternative drivers of change on equal 

footing and that null models can help assess whether observed patterns could 

have arisen by chance alone.   

Introduction 

Assessments of climate change effects on biogeography are largely driven by 

observational studies relating changes in species distributional shifts with 

geographic or climatic gradients (I.-C. Chen et al., 2011; Pecl et al., 2017). 

When distributional shifts match expected gradients, it is assumed that climate 

change is the likely driver of such shifts. Besides issues with data quality, 

which often pervade under-replicated studies across spatial and temporal 

dimensions, there are two potential problems with such an approach. The first 

is one of pattern detection. How can one be sure that the observed patterns 

would not have arisen by chance? The second is one of attribution. How can 

one be sure that the hypothesized drivers are the ones driving the observed 

pattern? 
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These are classical problems of inference based on correlations, and no easy 

solutions exist. Nevertheless, problems of pattern detection can often be 

handled within a null modelling framework that seeks to assess whether 

observed patterns in any given response variable (e.g., a species distributional 

change) could have arisen by chance (Gotelli & Graves, 1996). Null models 

are commonly used for testing ecological theory, but they are notoriously 

uncommon in studies assessing species distributional shifts and their 

underlying drivers (Taheri et al., 2021). Such models typically involve the use 

of randomized ecological data subject to sets of constraints and are designed 

to produce a pattern expected in the absence of a particular ecological 

mechanism. The generated (random) pattern can be compared with the real 

pattern of interest (Gotelli & McGill, 2006). Conceptually, null models help 

discerning patterns in the data but they do not necessarily reveal  the 

underlying causal mechanisms (Peres-Neto et al., 2001). 

Problems of attribution are also inherent to the use of correlations for inferring 

causation. Confidence in the inferences with correlative methods comes from 

accumulation of evidence and, ideally, from accumulation of evidence arising 

from multiple (and diverse) sources (e.g., Araújo et al. 2019). For any 

particular analysis, the problem is particularly challenging when multiple 

candidate predictors covary, which limits the ability to discern the variables 

truly driving observed patterns or, more subtly, how they interact to conform 

the observed pattern (Dormann, 2007). Testing model inferences requires 

independent replication but empirical data in many ecological problems is 

notoriously under-replicated (Lemoine et al., 2016). One approach to deal with 

uncertainty brought by covarying candidate predictors is to compare, on equal 

footing, inferences made with alternative sets of predictors (Burnham & 

Anderson, 1998). While such an approach is familiar in ecology (e.g, Araújo 
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et al., 2008; Eglington & Pearce-Higgins, 2012; Rangel et al., 2018), it is 

seldom used for studying mechanisms driving observed species distributional 

dynamics (e.g, Rich & Currie, 2018). For example, a recent study 

demonstrated that previous analysis examining climate change signals on the 

distributional shift of British birds (Thomas & Lennon, 1999), overestimated 

these signals by failing to examine distributional changes across multiple 

dimensions (Taheri et al., 2016). 

The matter of fact is that shifts in range edges toward higher latitude or 

elevation are often interpreted as a response of species to warming climate 

(e.g., Chen et al., 2011; Hickling et al., 2006; Parmesan et al., 1999). However, 

variation in magnitude and direction of such range shifts suggests that climate, 

particularly temperature, might not be the sole driver (e.g., Fei et al., 2017; 

Taheri et al., 2016). Shifts in geographic distributions of species may also 

reflect natural population dynamics (Bradshaw et al., 2014), or complex 

interactions with other factors such as human-mediated land-use change (e.g., 

Guo, Lenoir, & Bonebrake, 2018; Lehikoinen et al., 2013), dispersal 

limitations (Anderson et al., 2009) competition (Marion & Bergerot, 2018), 

biological invasions (Sax & Gaines, 2008), disease (Hof et al., 2011) and 

interactions among several factors (e.g., Vicente et al., 2019).  

Understanding range dynamics and their underlying causes thus requires more 

sophisticated analysis than is typically performed. In this study, we illustrate 

these issues by examination of historical range dynamics among 82 bird 

species in Great Britain against three alternative models: climate change 

model, assuming that distributions changed following climate changes; land-

cover change model, assuming that species distributions changed following 

land-cover changes; and a null model that, while keeping the same quantities 

of observed distributional changes (expansions and contractions), randomized 



CHAPTER II 

47 

 

the direction of the changes. Because drivers of species range shifts are 

unlikely to be equally important across different sections of species ranges and 

following previous studies of range shifts in Great Britain (e.g., Hickling et 

al., 2006; Thomas & Lennon, 1999), we independently examine four sections 

of species distributions: leading and rear edges of the southern and 

northernmost edges of southerly and northerly-distributed species (Fig I.1e). 

Methods and materials  
 

Species data 

We used species distributional data from three Atlas of breeding Bird surveys 

compiled for Great Britain, providing presence and absence records at 10 × 10 

km spatial resolution. The first atlas covered the period of 1968-72 (t1) 

(Sharrock, 1976). The second covered the period of 1988-91 (t2) (Gibbons et 

al., 1993). The third included records from 2007-11 (t3) (Balmer et al., 2013). 

The Atlases used the Ordnance Survey National Grid as a means of identifying 

location of bird records. This standard inventory‐type surveys aimed at 

generating ‘hectad’ (10 × 10 km) resolution distribution maps, and 

incorporated fixed‐effort data using timed visits to a sample of ‘tetrads’ 

(2 × 2 km squares) in each hectads (Gillings et al., 2019).  

We digitized the distribution data from online-published sources 

(https://www.bto.org/). We excluded marine species and restricted-range 

species with less than twenty records in the first atlas data since small range 

changes in restricted range species can have a great relative effect even if 

driven by stochastic factors. We also excluded wide-ranging species with 

more than 2000 records (ubiquitous species) in the first atlas (t1) (Britain 

includes 2280 10-km grid cells), since the capacity to shift ranges biased 

towards range reduction. Using these criteria, we selected 82 species for 
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analysis, involving species range comparisons between t1 and t2 (twenty 

years) and t1 and t3 (forty years).  

 

 Climate  

We used a time series of changes in maximum and minimum temperatures and 

annual precipitation at a spatial resolution of 0.5 degrees from the updated 

version of the Climate Research Unit’s database (http://www.cru.uea.ac.uk). 

The baseline covered the period of 1958-2011, and then we sliced climate data 

for a 15 years interval before the last census in each period. The climate slices 

are as follows:  For the t1 period, we used climate time series from 1958 to 

1972; for t2, from 1977 to 1991; and for t3, from 1997 to 2011.  We used 

fifteen years of climate data for each atlas on the assumption that species’ 

ranges respond to the long-term average of climate conditions.  

The climatic variables were processed using R BioCalc function (Ramirez 

2009). They included Maximum Temperature of Warmest Month, Minimum 

Temperature of Coldest Month, and Annual Precipitation. Our choice of 

variables reflects those known to impose general constraints on bird 

distributions in Europe (Lennon et al., 2000; Whittaker et al., 2007). We then 

downscaled climate data using Inverse Distance Weighting (IDW) following 

(Shepard, 1968) in raster package R (Hijmans et al., 2018). Inverse distance 

weighting (IDW) is a method of interpolation that estimates cell values by 

averaging the values of sample data points in the neighbourhood of each 

processing cell. The closer a point is to the centre of the cell being estimated, 

the more influence, or weight it has in the averaging process (Zhou & Zhang, 

2014). The output cell size and other parameters of the new raster layers were 

matched to the 10 * 10 km of bird’s atlas dataset. 

To examine the climate-based prediction, we developed ensemble species 

distribution models using the sdm package in R (Naimi & Araújo, 2016). We 

http://www.cru.uea.ac.uk/
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modelled each species presence/absence as a function of the three climate 

variables. We ran five different algorithms for modelling the presence/absence 

of birds using an ensemble modelling framework (Araújo & New 2007): 

generalized linear models (GLM; McCullagh & Nelder, 1989), generalized 

additive models (GAM; Hastie & Tibshirani, 1990), random forest (RF; 

Breiman, 2001), mixed effect modelling (FDA; Hastie et al., 1994), boosted 

regression tree (BRT; Friedman, 2001) Fig 6a). In order to avoid biases to the 

parameter estimation, we used a bootstrapping method (Fielding & Bell, 1997; 

Hastie et al., 2009) with 100 random replication for each species and 

modelling technique. Bootstrapping repeats a sampling with replacement, 

each time a sample with equal size as the original data is drawn and used for 

training data. The observations that are not selected are used for the evaluation 

at each run. Then we generated a consensus model, using weighted average 

probability for each species, where weights were obtained from the AUC in 

evaluation data (Marmion et al., 2009; Garcia et al., 2012).  

To assess habitat suitability based on climate constraints, we converted 

probabilistic output to presence/absence using one of the recommended 

threshold techniques: Max (Sensitivity +Specificity) (Liu et al., 2005). Values 

above or equal to the threshold are classified as predicted species presences, 

while values below the threshold are classified as predicted absences. When 

the presence/absence map was provided for each species, we measured the 

range shift and compared the results of climate related range shifts with 

observed range shifts.  

 

Land cover  

We used land-cover change estimates from the Laboratory of Geo-information 

Sciences and Remote Sensing at the University of Wageningen (HILDA 

version 2.0). The HILDA dataset is available at a 1km spatial resolution from 
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1900-2010 for the whole Europe (Fuchs et al., 2012, 2015). The temporal 

resolution of the dataset is decadal (10 years) and contains six land-cover 

classes: 

1- Settlement (incl. green urban areas); 

2- Cropland (incl. orchards and agroforestry); 

3- Forest (incl. transitional shrub and woodlands, tree nurseries, 

reforested areas for forestry purposes); 

4- Grassland (incl. natural grassland, wetlands, pasture and 

Mediterranean shrub vegetation); 

5- Other land (incl. glaciers, sparsely vegetated areas, beaches, bare soil); 

6- Water (incl. water bodies, sea, streams).  

We considered three decadal land-cover survey periods approximately 

matching species atlas surveys: 1960; 1980; and 2000. The proportion of 

individual land-cover classes present within each 10 km Bird Atlas grid cell 

(Fig 6b) was then calculated. In order to determine the signal of land-cover 

changes on species range shifts, we run the same species modelling techniques 

used for climate but with land-cover variables instead (Thuiller et al., 2004). 

Specifically, we modelled each species presence/absence as a function of the 

six land-cover predictors. Following the procedure used with climate 

variables, we ran five different algorithms to model the presence and absence 

of bird species within an ensemble-modelling framework. We used the land-

cover predictors for the 1960s (t1) as baseline. Then, we projected 

distributions using land-cover predictors in 1980s (1960 vs. 1980, Twenty 

years) and 2000s (1960 vs. 2000, Forty years). Like with the climate models, 

we generated 100 random replication using bootstrapping (sampling with 

replacement) for each species and modelling technique. We used AUC in 

evaluation data, to obtain the probability of distribution for each species and 

used the same threshold method implemented with the climate model to 
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convert the probabilities generated from the land-cover model into presence 

and absences.  

To address the link between the magnitude of the land-cover change and 

species range shifts, we first selected all persistence cells (cells where species 

remained present from the first to the second survey (Presence in t1 ∩ Presence 

in t2 or t3). Then, we treated all persistence cells as static, while randomizing 

newly occupied cells in t2 or t3 within the potential cells that had a high 

probability of occurrence as projected by the ensemble models using the land-

cover predictors. Here, the constrained randomization ensures that each novel 

presence has an equal chance of occupying any of the suitable sites predicted 

by the land-cover model. In order to estimate the variability of the results, we 

replicate the randomization process 100 times for each species. We used the 

average of these replications to measure the range shifts constrained by land-

cover and compared the results with observed range shifts.  

 

Null model    

We developed a patch-occupancy null model to infer expected range shifts in 

the absence of climate change or land-cover change but with the geographical 

constraints imposed by the geometry of Great Britain, while maintaining the 

observed rates of expansion or contraction of the 82 species in the intervals t1-

t2 and t1-t3. In a given interval, the model computes the null expected range 

shift of each species as follows. 

First, denote as Pt1 the set of cells in which the species is present at the first 

atlas. Likewise, Pt2 is the set of cells with presence of the species in the second 

census (either time t1 or t2). Further, denote as Ps the set of cells in which the 

species persists from the first to the second census, and with Pc the set of cells 

newly colonized by the species in the second census. Thus, the number of 

occupied cells in the second census is simply |Pt2| = |Ps| + |Pc| where the 
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double bars indicate the cardinality of a set, i.e., the number of elements it 

contains. If the species has expanded its distribution, |Pt2| > |Pt1|, which 

implies |Pc| > 0 but allows for |Ps| to reach 0, in the limit case in which a 

species changes its whole range between censuses. On the other hand, if the 

species has suffered a contraction between censuses, it means |Pt2| < |Pt1|, this 

case implying |Ps| < |Pt1|. 

The null model keeps the number of persisting occurrences and colonized cells 

of each species fixed, and simply distributes stochastically these quantities 

(|Ps| and |Pc|) across the appropriate sets of cells. In particular, for each 

realization of the model for a given species, the first step is to assign the cells 

in which the species persist. Since we assume that all cells are equivalent, we 

expect species to persist with equal probability in any of the cells occupied in 

the first census. Therefore, we randomize the number of persisting cells, |Ps|, 

among the set of occupied cells at T1, Pt1. Using set operations, the 

randomized Ps ⊆  Pt1 (panel i) of Fig 1c). The second step is assigning the 

colonized cells, Pc. Again, as we assume no other constraints, any cell of the 

whole territory can be assigned a presence. Thus, if T is the set of cells of the 

whole territory, in each realization we randomize Pc ⊆ T (panel ii) of Fig 1c).  

This approach accounts for expansions and contractions in the number of cells 

with persistent occurrences (t1 = 0, t2 = 1) or colonized cells (t1=0, t2=1), thus 

including the whole variability of range shifts observed. In this study, we 

generated 1000 draws of the null model for each one of the 82-bird species 

considered, totalizing 82000 null model distributions. The final analysis of 

range shifts was carried out with averaged shifts across these 1000 replicates 

for each species. 
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Analysis of range shifts   

To relate observed species range shifts to our three alternative modelled shifts 

(constrained by climate, by land-cover, or random dynamics), and following 

Thomas and Lennon (1999), we first split species into northerly- and 

southerly-distributed depending on whether their distributional core lies to the 

north or to the south of the mean position of the all 100 km2 grid cells in Great 

Britain, respectively (Fig 1e; Table S4). Overall, we obtained 47 and 35 

southerly and northerly-distributed species, respectively.   

We then examined range changes along leading and rear edges. Shifts in range 

margins between two atlases were calculated as the mean distance of 20 most 

marginal records in the southern and northern margins in t2 or t3 minus t1; 

positive values indicate a move toward the boundary (expansion) and negative 

values indicate a move toward the core of the distribution (contraction) Figure 

1d). Then we provided Presence/Absence map for three alternative models 

(climate, land-cover, null) and compared shifts at the leading and rear edge 

with observed data using the Wilcoxon signed-rank test. 
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Fig II.1.Methodological framework. a) Climate model, (b) Land-cover model, 

c) Null model, d) Analysis of range shifts. Presence/Absence map was generated for 

each species based on the three alternative models. The pattern of range shifts was 

compared with the observed data using the Wilcoxon signed-rank test. e) Sections of 

the species ranges. Shows the different sections of the distributions. Leading and rear 

edges of southerly-distributed species (n=47), and rear and leading edge of northerly-

distributed species (n=35).   

 

Results 

Comparison of observed range shifts with projections arising from the three 

alternative models revealed that determinants of species range shifts were 

seemingly variable across each one of the four predefined sections of the range 

(Fig II.1 e).  
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At both the southern and northern tips of Great Britain (i.e., the rear edge of 

southerly-distributed species and the leading edge of northerly distributed-

species), observed range shifts were no different from expected by chance; this 

being true for both the t1 vs t2 and t1 vs t3 comparisons (Fig II.2 c, d and c, d). 

Observed trends were also no different than expected by chance with respect 

to both the climate and land cover change models, making it difficult to 

attribute observed changes to any specific driver. 

At the rear edge of northern distribution, observed range shifts, were 

inconsistent with range changes obtained with the null model (Wilcoxon 

signed-rank test P<0.001; Figure 2b and Figure 3b) as well as with the land 

cover model (P<0.01 and P<0.001 for the 20 years and 40 years comparison 

respectively; Figure 2b and Figure 3b), which predicted a shift of opposite 

direction as observed. Observed range shifts were, in turn, consistent with that 

estimated with the climate model (Figure 2b and Figure 3b). Such consistency 

between observation and modelled shifts can be interpreted as indicating the 

existence of a climate change signal in species distributional dynamics in this 

geographical section of the range.  
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Fig II.2.Violin plots depicting the frequency distribution of range shifts between 

(1968-72 and 2007-11) among leading (a) and rear (c) edges of southerly distributed 

species (n=47), and rear (b) and leading edge (d) of northerly distributed species 

(n=35). The degree of mismatch between observed shifts (yellow) and range shifts 

predicted by the null model (blue), land cover model (green), and climate model (red). 

The black dots inside the violin plots show the median and the vertical line shows the 

deviation from the mean.  *** and * indicate if there is any significant difference 

from observed shifts p < 10-3   and p < 0.05 respectively using (Wilcoxon sign rank 

test). Maps in the different sections of the distribution and are an example of leading 

and rear edges of southerly and northerly-distributed species.  
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Fig II.3.Violin plots depicting the frequency distribution of range shifts between 

(1968-72 and 1988-91) among leading (a) and rear (c) edges of southerly distributed 

species (n=47), and rear (b) and leading edge (d) of northerly distributed species 

(n=35). The degree of mismatch between observed shifts (yellow) and range shifts 

predicted by the null model (blue), land cover model (green), and climate model (red). 

The black dots inside the violin plots show the median and the vertical line shows the 

deviation from the mean.  *** and * indicate if there is any significant difference 

from observed shifts p < 10-3   and p < 0.05 respectively using (Wilcoxon sign rank 

test). Maps in the center show different sections of the distribution and are an example 

of leading and rear edges of southerly and northerly-distributed species.  

 

More specifically, observed data showed a general tendency for northward 

shift with a mean of 14 km (median = -1.5) during the 20 years comparison 

and a mean of 30.8 km (median = 5.5) during the 40 years comparison. Climate 

models projected a northward range shift of greater magnitude with a mean of 

23 Km (median= 44.5; Figure 2b) during the 20 years and a mean of ~72.9 km 

(median = 52.5; Figure 3b) during the 40 years.  

P.value Null Land-cover Climate

Observed vs. 6.9×10−8 0.008573 1.09×10−8

Leading edge of southerly-distributed species Rear edge of southerly-distributed species 

Rear edge of northerly-distributed species Leading edge of northerly-distributed species 

N

R
a

n
g

e
 s

h
if

ts
 (

km
)

N

S

S

R
a

n
g

e
 s

h
if

ts
 (

km
)

P.value Null Land-cover Climate

Observed vs. 0.11 0.23 0.98

P.value Null Land-cover Climate

Observed vs. 2.35×10−5 0.04 0.1

P.value Null Land-cover Climate

Observed vs. 0.74 0.1 0.08

Northerly Distributed 

Species 

Southerly Distributed 

Species 

a)

b)

c) 

d)

Wilcoxon signed-rank test

Wilcoxon signed-rank test

Wilcoxon signed-rank test

Wilcoxon signed-rank test

Observed Null Land-Cover Climate



CHAPTER II 

58 

 

At the leading edges of southerly-distributed species, range dynamics were 

again inconsistent with the null model (P<0.001; see Figure 2a and Figure 3a) 

and with the climate model projections (P<0.001; Figure 2a and Figure 3a), 

which predicted shifts of opposite direction as observed. The land land-cover 

model generated, in contrast, projections that were consistent with observed 

range shifts (Figure 2a and Figure 3a). Specifically, observed trends indicate 

a northward shift by average of 14.4 km (median = 7.5) during the 20 years 

and 45.6 km (median = 35) during the 40 years. The land-cover model inferred 

the same trend of northward expansion by 52.9 km (median= 67.5; Wilcoxon 

signed-rank test, P = 0.008 Figure 2a) during the 20 years and 85 km during 

the 40 years (median= 86.5; Wilcoxon signed-rank test, P = 0.1; Figure 3a) 

respectively.  

 

Discussion 
 

We show that different mechanisms are likely implicated in shaping bird range 

dynamics across Great Britain and that the importance of such mechanisms 

(e.g., climate change versus land cover change) varies across sections of 

species ranges. While rear edges of northerly-distributed species have shifted 

in a way consistent to projections from a climate driven model, shifts at the 

leading edge of southerly-distributed species, carry a stronger imprint of land-

cover change. In contrast, shifts at the leading edges of northerly-distributed 

species and rear the edges of southerly-distributed species—that is, 

distributions at both the northern and southern tips of Great Britain--were no 

different from that expected by chance. 

One question arising when interpreting range shifts in a geographically 

bounded area, such as Great Britain, is the extent to which the magnitude and 

direction of range changes are constrained by the geometry of the region (see 
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Gillings et al., 2014; Groom, 2013). For example, suppose that a species is 

distributed in the easternmost corner of the Island and that climate change 

would drive species to expand north. Since north of that region there is 

boundary with the sea, the species would be blocked from moving north 

having to first move west and then north. Such constraints could have played 

a role in species distributional dynamics at the leading margins of northerly-

distributed species and rear margins of southerly-distributed species, where 

the northern and southern terrestrial boundary of Great Britain restricts 

movement. In addition to the shape of the boundary, there can be other natural 

boundaries (e.g., mountain ranges, rivers, fragmented habitats) that prevent 

dispersal and reduce the rate of species adaptation to climate change through 

shifting ranges.   

Geometric constraints on the spatial distribution of species is not an entirely 

new topic (see Colwell & Lees, 2000). For example, Keith et al (2011) showed 

that physical barriers have restricted  dispersal of pelagic  larvae in the south 

coast of England.  Another study showed that the absence of Mecistogaster 

modesa in south America is strongly related to physical barrier such as Andes 

mountain range and oceanic barriers (Amundrud et al., 2018).  

Despite previous insights on geometrical constraints, only a few studies have 

compared observed species distributional changes with null models to 

discriminate between directional patterns of range change and non-directional 

ones (e.g., potentially arising from stochastic processes). One of such 

examples involves the use of Monte Carlo simulations to generate 

distributions of species across elevation under the null hypothesis (Forero-

Medina et al., 2011). In that study, the authors found that by chance alone, 55 

birds in Peruvian mountains could have moved on average ~40 m upward in 

elevation during 40 years.  
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Although a great deal of research on species range shifts has focused on 

climate change and its signals (e.g, Hanberry et al., 2011; Hickling et al., 2005; 

Parmesan et al., 1999; Thomas & Lennon, 1999) population declines have also 

been linked to agricultural intensification and fragmentation, fertilizer 

application, or pesticide use through time (Chamberlain et al., 2000; Eglington 

& Pearce-Higgins, 2012; Reino et al., 2018). There is also evidence that land-

cover or agricultural practices can cause varying types of range shifts 

depending on behavioural and trophic characteristics of the species (e.g, 

Gaüzère et al., 2020; Reino et al., 2018). For example, Spiza americana, a 

grassland bird from North America, displayed northward expansions during 

1960-1980 owing to changes in winter food supply associated with changing 

agricultural practices from rice growing to cattle raising (MacArthur, 1972).   

 

In our study, we had no detailed information on agricultural practices at the 

cell level and analyses were based on patterns of change across six broad types 

of land-cover classes. Including more detailed information on agricultural 

practices can provide more reliable estimation of the magnitude of species 

range shifts under land-use (rather than coarse land cover) change. Our results 

are consistent with previous studies showing that expansions at leading edges 

of species ranges can arise as a consequence of land-cover change (Lima et 

al., 2007; Groom, 2013). In the Italian Alps, for example, the upward shifts of 

21 bird species between 1982-2017 have been attributed to shrub and forest 

cover expansion (Bani et al., 2019), and range expansion among 10 out of 23 

birds in the Czech Republic seems to be affected by habitat change (Reif et 

al., 2010).  

We have considered the independent role of individual models (climate, land 

cover and null) by comparing their outputs against observed trends, on equal 

footing. However, global change drivers do not act independently from each 
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other. Indeed, some recent studies  detected these synergistic and antagonistic 

interactions between climate change and human disturbances or land-use 

change (e.g., Dainese et al., 2017; Elsen et al., 2020; Guo et al., 2018). 

Although a detailed analysis of the synergistic effects among different drivers 

is beyond the scope of this paper, we examined the presence of potential 

interactions between climate and land-cover change using an ANOVA 

framework and found significant interactions effects (Supplementary 

material). At the rear edge of northerly-distributed species, for example, 

maximum temperature interacts with forest loss and may be underlie 

northward shifts, while maximum temperature in interaction with forest gain 

covaries with southward shifts (Figure S2 c). Another example of interaction 

effect was between open-lands and minimum temperature at the leading edge 

of southerly-distributed species. The results show that minimum temperature 

interacts with open-lands loss and potentially drive species to move further to 

the north with higher magnitude (Figure S2 a, S3 a). Such post hoc analysis of 

the interactions among drivers of range change reveals that although we could 

successfully identify variation in the main drivers contributing to range shifts 

of birds in Great Britain, however the interaction among the independent 

variables should be also taken into account when possible.  

To our knowledge, we provide the first empirical assessment of alternative 

mechanisms underlying range changes in different sections of the species 

ranges, on equal footing. Moving forward to assess the where and when of 

climate change effects on biodiversity is crucial to guide the timing and 

magnitude of human adaptation strategies for biodiversity. We highlight the 

substantial need for methods that are able to distinguish between directional 

and non-directional changes, thus being able to help tease apart distributional 
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changes driven by natural population dynamics from changes driven by 

external forcing (climatic or non-climatic). 
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Abstract 

Different dimensions of climate change affect biodiversity in different ways. 

To begin understanding such differences, one needs to explore different facets 

of climate change using convenient standard measurements (metrics). 

However, methods to quantify them are scattered and no tools currently exist 

to quantify alternative climate change metrics within a unified and 

standardized framework. To fill the gap, we developed “climetrics” which is 

an extensible and reproducible R package to spatially quantify and explore 

multiple dimensions of climate change. Six widely used metrics of climate 

change are implemented in the package including: 1) Standardized local 

anomalies; 2) Changes in probability of local climate extremes; 3) Change in 

area of analogous climates; 4) Novel climates; 5) Change in the distance to 

analogous climates; and 6) Climate change velocity. climetrics measures the 

velocity of climate change using three different algorithms; a) distanced-based 
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velocity (“dVe”); b) threshold-based velocity (“ve”); and c) gradient-based 

velocity (“gVe”). The package also provides additional tools, e.g., to calculate 

monthly mean climate over a period of time; to quantify and map temporal 

trend (slope) of a given climate parameter at the pixel level; and to classify 

and map Koeppen-Geiger (KG) climate zones. The climetrics R package is 

linked to the rts package to efficiently handle raster time-series datasets. The 

functions in “climetrics” are designed to be user-friendly to less experienced 

R users, while being thoroughly commented upon to facilitate further 

customization by advanced users. The climetrics R package is a useful tool to 

explore the spatiotemporal patterns across multiple dimensions of climate 

change.  

Background 

Climate is a multivariate phenomenon. Not only it involves different 

parameters, like temperature, precipitation and wind, but it also expresses 

itself at different geographical extent and temporal scales. Adequately 

capturing the wealth of climate change manifestations and the ways it interacts 

with the living systems requires that its multiple dimensions to appropriately 

be characterised through alternative, often orthogonal, metrics (Garcia et al., 

2014).  

Conceptually, the metrics of climate change can be quantified at the local 

(based on a single cell or pixel) or regional (that involves multiple cells) level 

(Garcia et al., 2014). The former has a temporal dimension, while the latter 

involves both spatial and temporal (i.e., spatiotemporal) dimensions. For 

example, the local metrics, such as anomalies (e.g., Araújo et al., 2008), 

standardized anomalies (e.g., Williams & Jackson, 2007), probability of 

extreme events (e.g., Jiménez et al., 2011), and changes in seasonality (e.g., 
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Lane et al., 2012), characterize the magnitude of changes by quantifying how 

average or extreme values in the frequency distribution of climate change data 

series are altered in a given locality (a cell or pixel in a raster layer) over time. 

In turn, regional metrics such as the emergence of novel climates (Williams et 

al., 2001), changes in area of analogous climate (Ohlemller et al., 2008), 

changes in a distance to analogous climate (Nogués-Bravo et al., 2010), and 

climate change velocity (Loarie et al., 2009; VanDerWal et al., 2013), first 

characterize a climate facet across a given region and then measure local 

changes in the availability of climate relative to the regional pattern.  

Climate change metrics can be used as a proxy for more detailed climate 

change impact assessments on biodiversity, such as those using species 

distribution modelling (Garcia et al., 2016). They have also been related to 

past extinctions (Nogués-Bravo et al., 2010) and species restricted range sizes 

(Ohlemller et al., 2008; Sandel et al., 2011), demonstrating the usefulness of 

manipulating climate change data to explore relationships and infer biological 

phenomena.  

Despite the abundance of climate change metrics and their hypothesized links 

to biodiversity (Garcia et al. 2014), empirical research linking climate change 

metrics to biodiversity dynamics is still limited. Most often, metric-based 

explorations of climate change effects on biodiversity use a limited number of 

variables (e.g., anomalies) despite evidences that suggest single metrics would 

not capture the wilder range  of effects captured by multiple metrics (e.g., 

Garcia et al., 2014).  

One reason for limited exploration of climate change manifestations in 

climate-change-induced biodiversity impact assessments is that no convenient 
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platform exists where all commonly used metrics are implemented on equal 

footing. Moreover, the existing tools to quantify the metrics are scattered, 

substantially different in the way they handle spatiotemporal data, their input 

and output, and the degree of being user friendly. For example, the velocity of 

climate change is offered by the “VoCC” R  package (García Molinos et al., 

2019), while the “analogues” (Hooker et al. 2011) and “extRemes” (Eric 

Gilleland, 2021) R packages can measure novel climates and extreme value 

analysis, respectively, each using a different interface. We used a unified 

interface in the climetrics R package to quantify six different climate change 

metrics including: 1) Standardized local anomalies; 2) Changes in probability 

of local climate extremes; 3) Changes in area of analogous climates; 4) Novel 

climates; 5) Change in the distance to analogous climates; and 6) Climate 

change velocity.  

We have also provided three supporting functions (apply.month, kgc and 

temporalTrend) to aggregate the time series of climate data over months (i.e., 

generate 12 outcomes corresponding to 12 months), to classify Köppen 

climate zones, and to measure the temporal trend at each pixel for a given 

climate parameter (slope of changes over time), respectively. We attempted to 

design the functions in the climetrics R package to be user-friendly as they are 

flexible to handle multiple data formats (e.g., raster or raster time series) while 

all generating outputs as raster maps. In addition, the package is linked to the 

“rts”  R package (Naimi, 2021) for handling raster time series data. The “rts” 

package uses the new R package “terra” (Hijmans, 2021b), for manipulating 

raster data in a very efficient way (i.e., it is substantially faster than many other 

R packages as its functionalities have been implemented using the C++ 

programming language). Therefore, climetrics can quantify climate change 

metrics with high computational performance. 
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Description of metrics  
 

Standardized local anomalies 

The standardized anomalies metric, also referred to normalized anomalies, 

quantifies the magnitude of climate change at a pixel level, using a distance 

measurement in standard units between a data value and its mean. The metric 

can be calculated by dividing anomalies (the difference from an average or 

baseline; t2 - t1) to the standard deviation of the interannual variability of the 

baseline (t1) (Williams et al., 2007).  

The Standardized local anomalies metric measures the similarity and 

dissimilarity between the baseline and a second-time slice (future or past) 

using the Standardized Euclidean Distance (SED) (Equation 1).  Where t1 and 

t2 are the first and second periods of the climate data, respectively, and St1 is 

the standard deviation of the interannual variability for the first period (t1).  

The standardized local anomalies equally weight all variables, and emphasizes 

more on the baseline (t1) trends that are larger relative to the second time slice 

(t2) interannual variability. A higher SED score (Standardized Euclidean 

Distance; Equation 1) corresponds to a larger local climate changes that is 

based on the integration of changes in all climate variables involved in the 

calculation (e.g., minimum and maximum temperature, precipitation). 
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𝑺𝑬𝑫 =  √∑
(𝒕𝟐−  𝒕𝟏)𝟐

𝒔𝒕𝟏

𝒏

𝒌=𝟏

 

 

Changes in probability of local climate extremes 

The extreme value theory provides the statistical framework to make 

inferences about the probability of very rare or extreme events. 

Based on the theory of extreme values that derives the Generalized Extreme 

Value (GEV) distribution, we can fit a sample of extremes to the GEV 

distribution to obtain the parameters that best explain the probability 

distribution of the extremes. 

 The GEV has three parameters: shape, scale, and location (Gaines & Denny, 

1993; Katz et al., 2005). The shape of the GEV distribution assumes three 

possible types: i) a light-tailed (Gumbel), heavy-tailed (Frerchet), and iii) 

bounded (Weubull) (see Katz et al., 2005). The location parameter specifies 

where the distribution is “centred”, and the scale parameter is its “spread”. 

The climetrics R package applies the statistics of extremes presented by Katz 

et al., (2005). In this method the algorithm calculates the 95th and 5th 

percentiles of the distributions of the temperature and precipitation, 

respectively, for each grid cell in the baseline (t1). Then, the percentiles of the 

future distributions in the second time slice (t2), corresponds to the extreme 

baseline values, will be calculated. These percentiles correspond to the 

probability that the historical extremes will be exceeded. 
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In order to obtain a measure of the probability of extreme events for both 

temperature and precipitation, and for each grid cell, the algorithm sums the 

two probabilities and subtracts the product of the two probabilities to avoid 

counting probabilities twice. The probability of the second time period (t2) is 

then subtracted from the probability of the first time period (t1). Positive values 

indicated increased probability of extremes in the second time and negative 

values indicated a decrease. These calculations capture one single aspect of 

extreme climates (hot and dry), but other aspects could be calculated in a 

similar manner. 

Changes in area of analogous climates 

The algorithm measures different aspects of a risk arising from climate change 

by quantifying changes in the spatial distribution of future climate conditions 

compared with the recent past. To do so, first, the algorithm identifies and 

maps the updated version of Köppen-Geiger climate classification (Peel et al., 

2007) for the baseline (t1) and the second time slice (t2) using temperature and 

precipitation. The Köppen-Geiger climate classification is based on annual 

temperature and precipitation after being subjected to a sufficiently large time 

or ensemble average.  

The climetrics R package applies the method developed by Ohlemüller et al., 

(2006) and quantifies climate similarity between areas in both time slices. The 

algorithm, calculates the changes in areas occupied by a given class between 

the baseline (t1) and the second time slice (t2) using the ratio (in percentage) 

of the difference between every grid cell j at t2 (second time slice) and the 

baseline (t1).   
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Positive values in a cell indicate gain in area, negative values indicate losses 

and zero values reflect no changes.  

𝜟𝑪𝒊𝒋  =  √(𝑪𝒕𝟐𝒋 − 𝑪𝒕𝟏𝒊)
𝟐
 

 

 

Ct1i = Raster of Climate classification in t1 

 Ct2j = Raster of Climate classification in t2 

ΔCij  = Area of Analogues climate 

 

Novel climates 

Novel climates are defined as climate environments with no-analogue 

conditions in the recorded past (Saxon et al., 2005; Ackerly et al., 2010).  

The climetrics R package uses the  method proposed by Williams et al., (2007) 

to quantify dissimilarities between the baseline (t1) and future/past time slice 

(t2) using the standardized Euclidean distance (SED; see the Standardized 

Local Anomalies section). 

The algorithm measures the SED for each grid cell between the first (t1) and 

second time slices (t2). Novel climate is identified by comparing the climate 

realization of the second time slice (t2) for each grid cell with climate 

realization of the baseline (t1) for all grid cells, and retaining the minimum 

SED (SEDmin).  

SEDmin will be equal to or less than the indices of local climate change. The 

pool of potential climatic analogues is global, so that a high SEDmin indicates 

that the second time (t2) has no good analogue anywhere in the baseline (t1). 
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The larger the score, the more dissimilar the future climate is regarding the 

global pool of potential climate analogues.  

Change in distance to analogous climates 

The climetrics R package uses the method developed by Ohlemüller et al., 

(2006) to quantify climatic similarities between areas.  

For a grid cell i in the baseline (t1), the algorithm calculates the geographic 

distance to all other cells j that belong to the same climate classification as the 

grid cell i, using great-circle distance following (Zar, 1989). The great-circle 

distance or orthodromic distance is the shortest distance between two points 

on the surface of a sphere, measured along the surface of the sphere. 

Then for each cell i, the algorithm computes the median of the great-circle 

distance below the 10th percentile of the distribution of all values, for both 

baseline (t1) and the second time slice (t2), and then maps changes over time. 

To illustrate the changes in distance between baseline (t1) and second period 

(t2) at the given climate change level, the algorithm calculates the difference 

in distance between these times (Δkm = kmt2 – kmt1). A negative value 

indicates a temporal decrease in the distance, whereas a positive value 

indicates an increase.  
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Climate change velocity  

Climate-change velocity is a measure of the local rate of displacement of 

climatic conditions over Earth’s surface (Loarie et al., 2009; Sandel et al., 

2011). The climetrics R package uses three different algorithms to measure 

climate change velocity. The first velocity algorithm (“dVe”) is a distanced-

based velocity, developed by Sandel et al., (2011). Conceptually, this method 

for calculating velocity is equal to the temporal gradients divided by spatial 

gradients, and is expressed in units of distance per time (km/year). The 

algorithm, first, calculates temporal gradient by measuring the local difference 

between baseline (t1) and second period (t2). Then, it calculates spatial 

gradients as the slope of the given climate parameter for the baseline (t1) using 

a 3*3 grid cell neighbourhood.   

𝒅𝑽𝒆 (𝒌𝒎 /𝒚𝒆𝒂𝒓−𝟏 ) =
𝑻𝒆𝒎𝒑𝒐𝒓𝒂𝒍

𝑺𝒑𝒂𝒕𝒊𝒂𝒍
=

(𝒕𝟏 − 𝒕𝟐 )𝒚𝒆𝒂𝒓−𝟏

(𝑺𝒍𝒐𝒑𝒆 𝟑 ∗ 𝟑)𝒌𝒎−𝟏
 

 

t1= raster of baseline  

t2 = raster of second time period future/past  

The second velocity algorithm (“ve”) in climetrics, is implemented based on 

the method and code developed by Hamman et al., (2015). Since no two grid 

cells have the same climate value, the algorithm uses a user-defined threshold 

to find a climate match for the baseline climate surface in a climate surface 

representing a second period (t2). Then, it calculates the geographic distance 

of all matching t2 climate cells to the baseline cell and finds the shortest 

geographic distance. This distance is divided by the number of years between 

the t1 and t2 climate providing the metric of velocity (see Hamann et al., 2015).  
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The third algorithm of climate change velocity (“gVe”) is a gradient-based 

method that follows the method presented by (Burrows et al., 2011). In this 

approach, the velocity is calculated by dividing long term trend of climate 

parameters by the spatial gradient along that direction. For an angle, θ, with 

0° as North and 180° as South, the velocity of climate change along that angle, 

Vθ, is given by: 

𝑽𝛉 =
𝑻𝒆𝒎𝒑𝒐𝒓𝒂𝒍 𝒕𝒓𝒆𝒏𝒅

𝑺𝑵𝑺 𝒄𝒐𝒔𝛉  + 𝑺𝑬𝑾  𝒔𝒊𝒏𝛉
 

 

where SNS is the North-South spatial gradient and SEW is the East-West spatial 

gradient. When θ is perpendicular to the angle of the velocity of climate 

change, the velocity of climate change in that direction is infinite, since the 

denominator in equation 8 becomes zero. 
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Package overview and features  

The climatrics R package contains a separate function to quantify each climate 

change metric, also a function (“ccm”) to quantify some or all the six metrics 

together. In addition, some other functions are provided by the package 

including “apply.months”, “kgc”, and “temporalTrend” (Figure 1). The 

“apply.months” is an auxiliary function that calculates monthly statistics from 

time series of climate data. The output of apply.months contains twelve raster 

layers (from January to December). For instance, a user can choose the mean 

function as the input to calculate the monthly mean climate data for the 12 

months. The kgc is another auxiliary function to calculate Köppen-Geiger (see 

Köppen, 1900; Peel et al., 2007) classification of climate data in a given 

location and time. The Köppen-Geiger system classifies the climate zones of 

the world into five main classes and 30 sub-classes (D. Chen & Chen, 2013; 

Beck et al., 2018) and is based on threshold values (See table S1 for criteria 

and legend) and seasonality of monthly temperature and precipitation. The KG 

is the main element for calculating the Changes in Distance to Analogous 

Climates (dac) metrics in the “climetrics” function. The “temporalTrend” 

functions quantifies the trend and pattern of climate parameters over time. A 

higher positive slope of the given climate parameter means increas over time 

and negative values shows temporal decline over time. 

The climetrics is an open-source package hosted on GitHub 

(https://github.com/Shirin-t/climetrics) and CRAN that is freely accessible for 

all R users.  
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The climetrics package works with raster time series data and depends on 

series of R packages: “rts” (Naimi, 2021), “raster”(Robert J. Hijmans, 2021a), 

and “terra” (Robert J. Hijmans, 2021b) to be installed and loaded.  

To illustrate the use of climetrics package, we created a few examples of input, 

process and outputs of the package that can be easily reproduced and used by 

users. 

As an example, we used a time series of global climate data from the updated 

version of the Climate Research Unit’s database (http://www.cru.uea.ac.uk). 

The temporal resolution of the data is 120 years from 1901 to 2020, and the 

spatial resolution 0.5 degrees. We sliced climate data for a 30-year interval. 

The baseline (t1) covered 30 years from 1901 to 1930, and the second period 

(t2) from 1991 to 2020. Figure 2 provides a simple example on interfacing 

climetrics through command line and some outputs. Further examples are 

provided in the tutorial.  

 

 

 

http://www.cru.uea.ac.uk/
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Fig III.1.A schematic representation of the “climetrics” R package. The six climate 

change metrics (green table) and three auxiliary function (yellow table) are available 

in “climetrics” R package. The name, reference and short description of each function 

and statistics are shown. The number of parameters for each metrics depends on the 

aim of the user, however, for some functions like (kgc) both precipitation (P) and 

temperature (T) should be provided. 
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Fig III.2.An example of using ‘climetrics’ package in R that demonstrates loading 

data and necessary packages, read data and use some of the functions. The yellow 

panel shows loading necessary packages and converting data to time series format. a) 

illustrates the codes and output of the “apply.month” auxiliary function. The function 

uses a raster stack or raster time-series to generate the statistics monthly average, 

standard deviation, median on the statistics used (e.g., mean, standard deviation) 

calculates the monthly average of the time series data. b) shows the kgc function, 

which calculates Köppen climate classification and uses outputs of “apply.month”. 

Pannes c&d show examples of functions used to calculate two metrics of climate 

change; c) Standardized local anomalies and d) changes in probabilities of local 

extremes. High values in both maps correspond to large changes in temperature and 

precipitation and high probability of local extremes respectively.   
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Conclusion 
 

The univariate climate change attribution and simple anomalies have been 

widely documented in biodiversity conservation and other sectors. However, 

climate is intrinsically multivariate and many organisms and socio-ecological 

systems are adapted to or impacted by multiple variables and their interactions 

(Dobrowski et al., 2013; Mora et al., 2018; Abatzoglou et al., 2020). This 

highlights the need for a set of appropriate and standard measurements to 

capture the complexity of climate change. The development of “climetrics” R 

package provides an easy-to-use comprehensive set of functions for capturing 

different dimensions of climate change and apply them in modelling and 

monitoring the biodiversity. The package should provide a set of useful tools 

to map the complexity in climate change using multivariate climate parameters 

and more sophisticated methods rather than simple anomalies used in most of 

studies.
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Abstract 
 

According to IUCN, 28.5% of vertebrates and plants are currently threatened 

with extinction. Underlying causes are varied but changes in climate and land 

use figure among the suspected culprits. Quantifying exposure of threatened 

species to environmental drivers is critical for conservation management, but 

such a process has been hampered by limited consideration of multiple 

dimensions of change, namely climate. Using a comprehensive 

characterization of historical climate and land-use changes during the 20th 

century, we mapped ten risks from five climate change dimensions and five 

land-use transitions and compared the ensuing patterns with diversity patterns 

among threatened amphibians, birds, mammals, reptiles, and plants species. 

We then calculated the proportion of threatened species that were impacted by 

multiple dimensions of climate and land-use change in isolation and 
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combination. We show that threatened species in the Caribbean and Latin 

America, as well as Southeast and South Asia, were exposed to the greatest 

amount of co-occurring threats. 10% of globally threatened species face an 

extremely high risk for both climate and land-use change. Understanding the 

Spatio-temporal patterns of threats could significantly enhance our ability to 

direct efforts to areas where the greatest conservation outcomes can be 

delivered.  

Introduction 

Conversion of natural habitats to crop, pasture, and infrastructure together 

with climate change, are among the major threats to biodiversity (WWF, 

2020), threatening to drive tens of thousands of species to extinction (IUCN, 

2021).  

Despite this, we still have limited information about the spatial pattern and 

intensity of the threats of this crisis (e.g., Allan et al., 2019; Harfoot et al., 

2021). This is particularly true for pressures such as multiple risks of climate 

change (e.g., frequency and magnitude of extreme events or speed and 

direction of climate change, etc.). Because, each dimension of climate change 

affects biodiversity in different ways (Garcia et al., 2014); for example, not all 

species are at equal risk of climate change velocity (Davies et al., 2009). 

Strong disperses should be most able to maintain distributional equilibrium 

with climate conditions and are therefore likely to occupy more of their 

potential range and avoid extinction (Sandel et al., 2011). Extreme climate 

events and standardized anomalies are expected to alter the distribution of the 

population of individual species or community responses such as changes in 

species richness, composition or dominance (R. M. B. Harris et al., 2020) and 

Novel climates have been suggested to be associated with species assemblages 

(Williams et al., 2007).  
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Evidence suggests that there is a strong spatial variation in the intensity of 

anthropogenic pressures and threats are not evenly distributed across the Earth 

(e.g., Allan et al. 2019). This implies that some of the threatened species in 

different regions of the world have been exposed to complex and co-occurring 

drivers (e.g., Bowler et al., 2020).  

Understanding and quantifying spatial patterns of where land-use activities 

such as deforestation, agricultural intensification, grass-land expansion and 

human settlement overlap with local and regional climate change metrics, will 

improve our ability to prioritise actions to manage and mitigate threats to 

biodiversity.  

To our knowledge, no efforts undertaken at either regional or global extents 

have accounted for the spatial heterogeneity and alternative dimensions of 

climate and land-use change on the distribution of threatened species.   

Past efforts that provided spatial patterns of threats focused on some human 

impacts (Allan et al., 2019; Harfoot et al., 2021) and simple climate change 

anomalies (e.g., Howard, Flather, and Stephens 2020) and failed to account 

for the multidimensional nature of climate and land-use change.  

Here, we mapped the global distribution of risks associated with the five 

climate change metrics (temporal slope of temperature & 

precipitation; standardized local anomalies; velocity of climate change & 

extreme events) and historical land dynamics (forest loss, crop gain, land 

frequency change and pasture gain) as well as urban spread as threats to the 

globally threatened species of reptiles, plants, mammals, birds and amphibians 

over the past century (1900-2020). We then provided a global estimation of 

high-risk areas for threatened species due to the concurrent impact of climate 

and land-use change over the 20th century and calculated the proportion of 

threatened species in areas with extremely high to low risk of climate and land-

use change in isolation and combination.  
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Methods and materials  

 

Species occurrence records 

Species range maps of threatened species of mammals, amphibians, reptiles 

and plants were derived from (IUCN, 2021), whilst distributions data from 

bird species were obtained from BirdLife International (BirdLife, 2017). The 

list of threatened species were those classified as either “vulnerable”, 

“endangered” or “critically endangered” by the IUCN. Using these categories, 

we selected (n = 19333) occurrences of threatened species for our analysis.  

Data were available as spatial polygons of distribution boundaries, which were 

projected onto the Latitude/Longitude projection-WGS 84 and converted to a 

grid with a cells size of 0.5 degrees (the same cell size as climate data). Where 

a species’ range polygon intersected with a grid cell, the species was treated 

as present within the entire cell. The total species richness was calculated as 

the total number of species present in a grid cell. Total species richness and 

total threatened species richness were also calculated for the five individual 

taxonomic groups (mammals, amphibians, reptiles, plants and birds). Since 

the distribution of threatened species strictly follows the simple formula that 

“the higher species richness, the higher the number of threatened taxa”, we 

reduced this effect by using the residuals of threatened species richness when 

explained by total species richness.  

 

Climate data 

We obtained the global time series (1901-2020) of maximum and minimum 

temperature and annual precipitation at a spatial resolution of 0.5 degrees from 

the updated version of the Climate Research Unit’s database (I. Harris et al., 

2020). The baseline covered the period (from 1901-to 1930) and the second 

time (from 1990-to 2020).  
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Conceptually, the existing metrics of climate change can be aggregated into 

local or regional (Garcia et al., 2014). Local climate change metrics such as 

anomalies (M. B. Araújo et al., 2008), standardized local anomalies (Williams 

& Jackson, 2007), probability of extreme events (Jiménez et al., 2011) and 

seasonality (Lane et al., 2012), characterize the magnitude of changes by 

quantifying how average or extreme values in the frequency distribution of 

climate change data series are altered in a given locality (cell or pixel in a 

raster layer) over time. In turn, regional metrics such as climate change 

velocity (Loarie et al., 2009; VanDerWal et al., 2013), novel climates 

(Williams et al., 2001), changes in the area of analogous climate (Ohlemller 

et al., 2008) and changes in distance to analogous climate (Nogués-Bravo et 

al., 2010), first characterize a climate facet across a given region and then 

measure local changes in the availability of climate relative to the regional 

pattern.  

In order to quantify and map the complexity of climate change, we chose three 

local (temporal trend temperature & precipitation, standardized local 

anomalies & probability of extreme events) and one regional (velocity) 

climate change metric. The five metrics were chosen because they showed the 

most notable changes in climate parameters during the last century. To 

determine the intensity of climate change, we combined these four metrics as 

a single raster layer.  The higher the values of pixels in the output raster, the 

more complex climate change was experienced in these cells (areas) during 

the last century. 

However, since the raster outputs of each metric have different scales and 

values, we rescaled all the outputs of metrics, ranging from 0 to 1, before 

combining them.  Because, when an analysis calls for multiple rasters to be 

combined mathematically, it is often recommended to have the values in each 

raster converted to a standard scale. Then we classified the intensity of climate 
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change as extremely high if the value of a pixel in the output raster was (x > 

0.75), high if the value of pixel was (0.55< x <0.75), moderate risk if the values 

lie (0.30< x <0.55) and low risk if the value was (x <0.30). We then calculated 

the proportion of threatened species in extremely high to low risk of climate 

change.  

 Calculations of metrics were performed using “Climetrics” R package 

version 1.3 (Chapter III) and the rest of the analysis in R version 1.2.5019. 

 

Land-use change  

We used the global dataset of historic land dynamic assessments between 

(1960-2019) at 1km spatial resolution (Winkler et al., 2021). HILDA (Historic 

Land Dynamics Assessment) is based on a data-driven reconstruction 

approach and integrates multiple open data streams from high-resolution 

remote sensing, long term land-use reconstructions and statistical analysis. 

HILDA data set presents the gains and losses in major land use categories 

during the last sixty years. Here we used the change dynamics of forest, 

croplands and pasture/rangeland as well as land change frequency (number of 

times that a pixel has changed). 

The global human settlement layer (GHSL) was obtained from the official 

website of the European Union (https://ghsl.jrc.ec.europa.eu) at 1km spatial 

resolution. The GHSL is open access and free data, offering global spatial 

information, evidence-based analytics, and knowledge describing the human 

presence on the planet in the past: 1975, 1990, 2000 and 2014 extracted from 

Landsat images (Marcello et al., 2019). Human settlements and build-up areas 

are characterized by constructed, man-made objects including buildings and 

associated structures and civil works.  

https://ghsl.jrc.ec.europa.eu/
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The proportion of individual land-use categories was calculated within each 

0.5 degree as climate dataset. We then classified the percentage of each land-

use category as extremely high if the value of a pixel shows high land change 

(x > 0.75); high risk if the value of a pixel is (0.55< x <0.75); medium risk if 

the value of a pixel is (0.30< x <0.55) and low risk if the value is (x < 0.30). 

We then calculated the proportion of threatened species in high to low-risk 

areas of land-use change.  

Data analysis 

To explore the association between individual variables and global patterns in 

threatened species richness, we fitted a polynomial linear model and used an 

analysis of variance (ANOVA). This was performed for all threatened species 

richness (when explained by total species richness) in thirty subclasses of the 

Köppen-Geiger climate classification. The Köppen climate classification 

divides the earth’s climate into five main classes and thirty subclasses based 

on precipitation and heat (Köppen, 1900; Peel et al., 2007). We then 

partitioned the variation of each variable in each subclass of Köppen-Geiger 

climate classification. To calculate the proportion of variance explained, we 

divided the sum of squares between groups by the total sum of squares. A 

higher percentage of explained variance indicates the strength of association.  

We then used Random Forest to assess the potential impacts of the climate and 

land-use change on the distribution of threatened species. A random forest is 

a machine learning technique that is made from multiple decision trees, each 

tree individually predicts the new data and the output of the random forest is  

 

 

the class selected by most trees. Random forests are recognized to be robust 

and produce good predictive models (Breiman, 2001).  
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Here, we used 2000 trees and 50 replications of Random Forest to find the 

importance of each climate and land-use variable using the Mean Decrease 

Accuracy table. This importance is a measure of how much removing a 

variable decreases the accuracy. We perform Random Forest in each main 

class of Köppen-Geiger climate classification (tropic, temperate, arid, 

continental and polar). We applied Variance Inflation Factor (VIF) and 

absolute correlation coefficient to test multicollinearity between predictor 

variables in each main class of Köppen-Geiger climate zones. 

Multicollinearity test between variables showed that in Tropic, the temporal 

trend in temperature (Trendtem) was highly correlated with Extreme climate 

events (VIF value > 10 & absolute correlation coefficient of > 0.9) and was 

removed from the model. We found another collinearity between variables in 

the Temperate climate zone, in which temporal trend in temperature, 

standardized local anomalies and Extreme climate events were highly 

correlated (VIF value > 10 & absolute correlation coefficient > 0.7). 

Therefore, we removed temporal changes in temperature and standardized 

anomalies and applied the model with the rest of the variables. Models were 

fitted using the “randomForest” package in R (Liaw & Wiener, 2002).  

In both methods we first, modelled threatened species richness in relation to 

the total species richness alone. Second, we used the residuals of this model to 

fit the random forest and find the importance of each climate and land-use 

variable.  All analyses were carried out in R 3.3.1 (R Core Team 2019).  

 

Results  

The combination of five climate change metrics revealed the spatially 

heterogeneous risks of climate change over the past century.   
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Countries in Southern and Eastern Asia, the Caribbean, a large part of the 

United States, Central Europe, and both Eastern and Southern Africa have 

been among the most exposed to high rates and complex climate change 

patterns in the last hundred years (Fig IV.1a). These regions have experienced, 

the multiple dimensions of climate change. Southeast Asia (e.g., Indonesia, 

Malaysia, Philippines) for example, apart from high local standardized 

anomalies, have been exposed to high extreme events and high temporal 

changes in temperature and precipitation. In addition to the climate, land-use 

change such as forest loss, and crop/pasture gains also showed a spatially 

divergent pattern (Fig IV.1-b) which in some areas coincides with a high rate 

of climate change (Fig IV.1-c).  

The map shows large parts of India, China, Southern Russia, The Caribbean, 

Brazil, and a large part of Australia is among regions with a high level of both 

climate and land-use change.  
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Fig IV.1. Geographic distribution of risks from multiple dimensions of climate and 

land-use change over the past century. (a) The combination of five climate change 

metrics (temporal slope of temperature & precipitation; standardized local anomalies; 

velocity of climate change & extreme events (from 1901 to 2020). A value of 0 

indicates no or low risk in climate, and 1 indicates areas with an extremely high risk 

of climate change. (b) The combination of land-use changes (forest loss, crop gain & 

pasture gain from 1960-2020 and human settlement (1975-2014). A value of 0 

indicates no or low level of land change, and 1 indicates areas with an extremely high 

risk of land change. (c) Bivariate choropleth map overlapped climate change and 

land-use change. The dark red colour indicates areas that experienced an extremely 

high level of both climate and land change during the last century and can be 

considered as extremely high risk for biodiversity. The risk classification of joint 

climate and land-use change is as follows: extremely high risk (x > 75%); high risk 

if the value of a pixel is (0.55< x <0.75); medium risk if the value of a pixel is (0.30< 

x <0.55) and low risk if the value is (x < 30%).  
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Assessing the risk of climate change alone shows that over the past century, 

threatened species in the Caribbean, the Amazon, Southeast Asia and East 

Africa have been exposed to multiple dimensions of climate change (Fig IV.2 

a, b, c, d, e).  

Threatened species in Southeast Asia (e.g., Malaysia, Indonesia), Caribbean 

counties, a large part of Brazil, southern India and Eastern Africa (e.g., Kenya, 

Uganda, Tanzania and Rwanda) have been exposed to the high probability of 

extreme events, standardized local anomalies and high rate of warming (trend 

change) over the past century. While, threatened species in North America, a 

large part of Russia, Eastern Europe, central Australia and Southern & 

Northern Africa have been exposed to the high level of climate change 

velocity (speed and direction of climate change).  

We found that over the past century (7 - 23.2) % of threatened reptiles; (5.3 - 

24) % of plants; (5.2 - 26.1) % of mammals; (5.1 - 24.7) % of birds and (11 - 

30) % of amphibians have been exposed to extremely high or high risk of 

multiple dimensions of climate change respectively (Fig IV.2 f).  
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Fig IV.2. The exposure of threatened species richness to multiple dimensions of 

climate change over the past century (1901-2020). Bivariate choropleth maps 

combine risk of climate change and threatened species richness when explained by 

total species richness for (a) reptiles, (b) plants, (c) mammals, (d) birds and (e) 

amphibians. Dark areas show the extremely or high risk of climate change with high 

number of threatened species. (f) The proportion of threatened species in extremely 

high to low risk of climate change. The risk classification of climate change is as 

follows: extremely high risk if the value of a pixel is (x > 75%); high risk if the value 

of a pixel is (0.55< x <0.75); medium risk if the value of a pixel is (0.30< x <0.55) 

and low risk if the value is (<30).  
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Exploring the risk of land-use on threatened species richness shows that land 

change has a complex and divergent pattern. For example, threatened species 

in Southern and Central Russia, Madagascar, Brazil, the Caribbean, Paraguay, 

Bolivia, Northern Argentina, Southeastern Asia and central Africa were 

impacted by high deforestation rates. While, species in India, Eastern China, 

the USA and Europe were impacted by agriculture intensification (crop gain). 

Grazing expansion is affecting species in Australia, Brazil, a large part of 

China and western and southern Africa.  

Overall threatened species in southeast Asia (e.g., Myanmar, Indonesia, 

Cambodia), a great part of China, Australia, the Caribbean, western and central 

Africa, Brazil, Amazonia and southern Russia have been affected by multiple 

drivers associated with land-use changes (e.g., deforestation, agricultural 

intensification, urbanization or grassland expansion) (Fig IV -3 a, b, c, d, 

e). We found that in the last six decades, (4.7 - 7.4) % of reptiles, (6 - 8.3) % 

of plants, (3 - 4.7) % of mammals, (3.3 - 5.2) % of birds and (4.4 - 9) % of 

amphibians have been exposed to an extremely high or high level of land-use 

intensification respectively (Fig IV-3 f).  
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Fig IV.3. The exposure of threatened species richness to the historical land-use 

change (1960-2020). Bivariate choropleth maps combine risk of land-use change and 

threatened species richness when explained by total species richness for (a) reptiles, 

(b) plants, (c) mammals, (d) birds and (e) amphibians. Dark areas show the extremely 

high risk of land-use change with high number of threatened species. (f) The 

proportion of threatened species in extremely high to low risk of land-use changes 

over the past sixty years. The risk classification of land-use are as follows: extremely 

high if the value of a pixel is (x>75%); high risk if the value of a pixel is (0.55< x 

<0.75); medium risk if the value of a pixel is (0.30< x <0.55) and low risk if the value 

is (x<30%).  
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The combined forces of climate and land-use change showed that over the past 

century, threatened species in South-eastern Asia (e.g., Indonesia, Malesia, 

Thailand), eastern and central Africa, Madagascar, the Caribbean and southern 

India are exposed to a high risk of both climate and land-use change (Fig IV-

4 a). Our results revealed that (3 - 14.3) % of threatened reptiles, (2 - 8.8) % 

of plants; (1.3 - 6.1) % of mammals; (1.3 - 6.3) % of birds and (2.6 - 10.5) % 

of amphibians have been exposed to extremely high to high risk of both 

climate and land-use change respectively (Fig IV-4 b). It means threatened 

species in these regions, in addition to the major land-use change (>75% of 

changes in the land), faced a high rate of climate change.  
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Fig IV.4.Global footprint of climate and land change on threatened species 

distribution over the past century. (a) The bivariate choropleth map shows the areas 

with extremely high to low levels of risks from climate and land change overlapped 

with threatened species richness when explained by total species richness. Dark areas 

indicate a high level of risks from both climate and land change and a high number 

of threatened species. (b) The barplot shows the proportion of species that 

experienced extremely high to low risk of climate change and land change. The risk 

classification of joint climate and land change is as follows: extremely high if the 

value of a pixel is (x>75%); high risk if the value of a pixel is (0.55< x <0.75); 

medium risk if the value of a pixel is (0.30< x <0.55) and low risk if the value is 

(x<30%).  

 

 

 

The global assessment of climate and land-use change revealed that threatened 

species are affected by multiple co-occurring threats (Fig IV-5 a, b, c, d, e). 
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Threatened species in the Tropics, for example, have been exposed to high risk 

of both climate (e.g., extreme climate events & temporal trends in 

temperature) and land-use change (e.g., agricultural expansion and land 

frequency change) (Fig IV-5 a). In the Continental climate zone, after crop-

rising, extreme climate events and trends in precipitation change were in 

second and third place respectively (Fig IV-5 b).  

Threatened species richness in temperate zones have been exposed to high 

extreme climate events, velocity, land frequency change and deforestation rate 

(Fig IV-5 c). The arid climate zone has been affected by the high risk of 

standardized local anomalies, trends in precipitation, land frequency change 

and forest loss (Fig IV-5 d), and threatened species in the Polar zone, have 

been affected by the high rate of temporal trend in both temperature and 

precipitation over the last century (Fig IV-5 e).  
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Fig IV.5.Variable importance obtained from Random Forest in each main Köppen-

Geiger climate classification. The panels illustrate the importance of multiple 

dimensions of climate and land-use change on threatened species richness when 

explained by total species richness in (a) Tropics, (b) Continental, (c) Temperate, (d) 

Arid and (e) polar climate zones. The X-axis shows the mean decrease accuracy 

(mean decrease in Gini coefficient) and measures how variables contribute to the 

model. The higher the value of mean decrease accuracy or mean decrease Gini score, 

the higher the importance of the variable in the model.    

 

The association between threatened species richness and multiple threats 

determined the strong spatial variation in the intensity and magnitude of 
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climate and land-use change. Overall, extreme climate events, standardized 

local anomalies, temperature and precipitation trends were the top four drivers 

for globally threatened species richness over the past century (Fig IV-6). When 

aggregated climate and land-use change in thirty Köppen-Geiger 

classifications, we found that the high climate change impacts are in almost 

all subclasses of Temperate and Continental climate zones. The exposure of 

threatened species richness to land use was also high in both regions. In the 

CwC subdivision of the Köppen-Geiger climate (Temperate winter-dry & 

cool-summer), for example, urbanization and forest loss explained (15.8) % 

and (9.5) % of the distribution of threatened species richness, respectively after 

the precipitation trend. In the Csc subdivision of the Köppen-Geiger climate 

(Temperate summer-dry & cool-summer), most of the variations of threatened 

species were explained by multiple threats from climate change.  

Other examples could be the Dwa subdivision of the Köppen-Geiger climate, 

which is (Continental winter-dry & hot-summer) which is located in eastern 

China, North and South Korea that showed high exposure of threatened 

species to standardized local anomalies (Fig 5-6).   
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Fig IV.6.Partitioning of the variation in threatened species distribution in response to 

climate and land-use change. The variation is partitioned by each individual variable 

(X- axis) and in each subdivision of Köppen-Geiger climate classification (Y-axis) 

for all threatened species of reptiles, plants, mammals, amphibians and birds when 

explained by total species richness. Dark colors show higher variance explained by 

each variable. Cells with 0 show no threatened species exists in that particular 

subdivision of Köppen-Geiger climate zones.  
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Discussion  
 

We show that risks to threatened species distribution are widespread and are 

unlikely to act alone; but rather are spatially overlapped and jointly impact 

biological communities. Moreover, the importance of individual variables 

varies in each Köppen-Geiger climate classification, suggesting drivers of 

threatened species are not evenly distributed.  

 

Among the ten threats we mapped, extreme climate events, standardized local 

anomalies and trends in temperature and precipitation are among four 

influential variables in almost all classes of Köppen-Geiger, suggesting the 

interactions of events and trends in the large part of the world. Intensification 

of extremes events can be a threat for individuals with life histories more 

sensitive to the duration and magnitude of climate events (Jentsch et al., 2007) 

and increase mortality in species (Coleman & Wernberg, 2020). Rising 

temperature (temperature trend) however, do not directly reduce niche 

availability for most of species but do trigger poleward or upward shifts for 

species living in their lower thermal limits and threaten the extinction of those 

living close to their upper climatic tolerance limit. However, little is known 

about the biodiversity response to climate trends when coupled with other 

associated drivers such as extreme events or high velocity of climate change 

(see Malhi et al., 2020).  

 

In addition, climate has different parameters (e.g., temperature, precipitation, 

evapotranspiration, direction and speed of wind, etc.) and each parameters of 

climate change may also affect species in different way (Tingley et al., 2009); 

for example, our results show the precipitation in southern Chile, Myanmar, 

East India, Northern Philippines, and some west African countries have been 
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substantially decreased over the last century. Experiments can casually link 

precipitation change to plant diversity change (Korell et al., 2021). However, 

how precipitation change, interacts with temperature and other threats such as 

land-use, requires more examination on a local and regional scale.   

We also show, that climate is not acting in isolation, but rather interact with 

other human threats. For example, threatened species in Southeast Asia, in 

addition to the sever climate change (high extreme events, high standardized 

anomalies and trend), have been exposed to extremely high rate of 

deforestation and agricultural intensification. A recent study showed that the 

total mean annual forest cover loss during 2001-2019 was 3.22 Mha yr−1, with 

31% occurring in the mountains (Feng et al., 2021).  

 

In general, our findings confirm previous findings (see Waldron et al., 2017) 

that high-risk areas of both climate and land-use change are among areas with 

a substantial decline in total global biodiversity (BDS score).  

Tropics for example, is a known global hotspot of biodiversity and endemism, 

however, is also one of the hotspots of the highest risks from both climate and 

land-use change. Drivers that tend to be simultaneously present in the region 

are associated with extreme events, standardized local anomalies, gradual 

warming (trend), agricultural intensification and land frequency change.  

 

It is important to note that our data are not comprehensive of all threats to all 

species. For example, our analysis does not take into account all human 

pressures (e.g., hunting, logging, industrial activities, pollution, etc) or 

invasive species and infectious diseases that  have already impacted 

biodiversity worldwide (Allan et al., 2019; Harfoot et al., 2021). Our results 

are therefore conservative, and more species might be impacted than our maps 

indicates.  
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Quantifying the exposure of threatened species distribution and risks, does not 

necessarily imply that the threat is impacting all species in the same level. For 

example, not all species are at equal risk of climate change velocity (Davies et 

al., 2009). Strong disperses should be most able to maintain distributional 

equilibrium with climate condition and are therefore likely to occupy more of 

their potential range and avoid extinction (Sandel et al., 2011). Species with 

small ranges are at particular risk of extinction (Davies et al., 2009), because 

they often have small population sizes and densities and are less likely to 

occupy refuges that remain suitable during climate oscillations (Jansson, 2003; 

Ohlemller et al., 2008). However, when multiple stressors from climate, co-

occur with sever land-use change (e.g., deforestation, unsustainable 

agriculture, logging, etc.) and cause fragmentation or reduction in quality of 

key habitat that would be a real challenge for species (WWF, 2020).  

To our knowledge, we provide the first global assessment of multiple 

dimensions of climate change and land-use change as threats for biodiversity. 

The sum of these individual impacts is then mapped to show the cumulative 

anthropogenic influence, allowing visualization of the total impact of threats, 

which are often compounded by synergies and interactions (e.g., Evans et al., 

2011).  

Visualization of the spatial distribution of threats to species (threat maps) is 

highly recommended in systematic conservation planning for deciding which 

actions to take where and to prioritise limited resources (Margules & Pressey, 

2000). Conservation planning is an inherently spatial process; therefore, 

explicitly considering the spatial dimension of threats could significantly 

enhance our ability to direct efforts to areas where the greatest conservation 

outcomes can be delivered.  
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Here we suggest that a far greater focus be placed on mapping the spatial 

distribution of different threats and considering how the cumulative impacts 

of threats to species vary across different locations and multiple spatial scales. 

Incorporating such a spatial context into future research will advance our 

understanding toward determining what mitigating actions we should take in 

a given location. In particular, disentangling Spatio-temporal threatening 

processes, and predictions of future threats to biodiversity should be a high 

priority for future research.  
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SYNTHESIS   

 

Species are on the move, often shifting, shrinking and expanding. The 

global reshuffling of biodiversity may provide opportunities for some 

species to spread but threaten others with extinction. Anthropogenic 

climate change, particularly warming temperature, is unequivocally 

known as the main culprit for these shifts. The reason is that historical 

range shifts are often correlated with geographic or climate gradients. 

When distributional shifts match expected gradients, it is assumed that 

climate change is the likely driver of such shifts. But there are classical 

problems of inference based on correlations because correlations do not 

necessarily imply causations. There are two potential problems with such 

an approach: i) pattern detection (how can one be sure that the observed 

patterns would not have arisen by chance?); ii) attribution (how can one 

be sure that the hypothesized drivers are the ones driving the observed 

pattern?).  

Although, climate-driven range shifts are well documented (e.g., 

Parmesan et al., 1999; Thomas & Lennon, 1999; Virkkala & Lehikoinen, 

2014) however, uncertainties associated with data and methods are 

typically unexplored. 

This thesis explored these uncertainties and addressed questions related 

to the minimum standards that should be required to assess species range 

shifts under contemporary climate change.  

In this final chapter, the most important results from the thesis are 

summarized together in order to better understand the key aspects of this 

thesis and to highlight the inter-relationship between them.
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One of the key questions of this thesis is, how robust are data and 

methods associated with climate-related range shifts and whether these 

studies took in 

account the full complexity of environmental changes? To answer this 

question, we reviewed 240 reports of climate-induced range shifts and 

evaluated the data, method and results using simple scoring criteria. The 

criteria revolved around i) pattern detection, ii) attribution and iii) 

reproducibility of the reports Chapter (I) (Box 1).  

The results revealed that only a minority of the studies matched the 

scientific criteria we proposed here. The findings showed that most of 

the reports are univariate (focusing on temperature) and unidirectional 

(focusing on poleward or upward shifts).  

This chapter proved that data documenting climate change effects on 

species distribution is geographically biased and mainly restricted to the 

northern hemisphere, almost no empirical data exists for the tropics, and 

data for the ocean is largely missing. Despite some improvements in the 

data and methods used in reports of climate-induced range shifts, 

substantial scope exists for raising standards. This chapter provided a 

hint of the best practice-standards needed to assess the impact of 

anthropogenic climate change on species range shifts.  

We used the minimum standards (scoring criteria) proposed in the 

Chapter (I) to detect range shifts in 85 British Breeding Bird and attribute 

these shifts to climate and land-use change Chapter (II).  

This chapter particularly asked whether observed range shifts in bird 

species were best explained by climate or land-cover change; or whether 



SYNTHESIS 

109 

 

they are not distinguishable from what would be expected by chance 

(null model)? 

Our findings implied that different mechanisms were likely to shape 

bird’s species range dynamics in Great Britain and the importance of 

such mechanisms are not evenly distributed across sections of species 

range.   

For example, range shifts in the southern margins (rear edge) of northerly 

distributed species in Great Britain were best explained by climate 

change, while shifts across the northern margins (leading edge) of 

southerly distributed species were best explained by land-use change. In 

contrast, at the northern and southern edges of Great Britain range 

dynamics could not be distinguished from that expected by chance, 

suggesting the effect of boundary limiting the direction and magnitude 

of range shifts.  

These results reinforce the view that comprehensive assessments of 

climate change effects on species range shifts needs to examine 

alternative drivers of change in equal footing.  

As stated earlier in Chapter (I) the empirical research linking climate 

change to biodiversity dynamics is univariate and using single metrics of 

climate change (e.g., simple anomalies). However, evidence suggests 

single metrics would not capture the wider range of effects captured by 

multiple metrics (e.g., Garcia et al., 2014) and may underestimate the 

true level of climate change (e.g., VanDerWal et al., 2013).  
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One reason for limited exploration of climate change manifestations in 

climate-change-induced biodiversity impact assessments is that no 

convenient platform exists where all commonly used metrics are 

implemented. Moreover, the existing tools to quantify the metrics are 

scattered, substantially different in the way they handle spatio-temporal 

data, their input and output, and the degree of being user friendly. 

To fill this gap, “Climetrics” R package (Chapter III) was developed. The 

“Climetrics” package can handle large spatio-temporal raster datasets 

and contains six commonly used climate change metrics including: 1) 

Standardized local anomalies; 2) Changes in probability of local climate 

extremes; 3) Change in area of analogous climates; 4) Novel climates; 5) 

Change in the distance to analogous climates; and 6) Climate change 

velocity. 

The “Climetrics” R package should provide a set of useful tools to map 

the complexity in climate change using multivariate climate parameters 

and more sophisticated methods rather than simple anomalies used in 

most of studies.  

Chapter (IV) was inspired by Chapter (I), Chapter (II) and Chapter (III) 

and delved deeper into the environmental complexity that may increase 

extraction risk for threatened species. It should be pointed out, that this 

chapter did not aim to detect changes in species distribution or find 

correlations and causations, but to map the global distribution of risks 

associated with complexity in climate and land-use change. The Chapter 

used a comprehensive characterization of historical climate and land-use 

changes during the 20th century and mapped ten risks from five climate 

change metrics and five land-use transitions. Then compared the ensuing 

patterns with diversity patterns among the global distribution of 
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threatened amphibians, birds, mammals, reptiles, and plant species. The 

maps for multiple dimensions of climate change were generated using 

the “Climetrics” R package which was developed in Chapter (III). The 

results showed risks associated with multiple dimensions of climate and 

land-use change are widespread and are unlikely to act alone; rather are 

spatially overlapped and jointly impact biological communities. In 

addition, risks of both climate and land use are not evenly distributed 

across the different climatic zones. The founding of Chapter (II) also 

confirmed that different mechanisms are affecting species in different 

sections of the distribution.  

Explaining the idiosyncratic nature of range shifts is an urgent question 

that we cannot fully assess using these existing methods. In order to 

formally detect and attribute a biological response to anthropogenic 

drivers, first, one needs to demonstrate that the system affected has 

changed in some significant statistical sense (change detection); or 

whether observed patterns in any given response variable could have 

arisen by chance, and secondly, determine the relative contribution of 

multiple causal factors to the change with an assignment of statistical 

confidence (attribution)(see Taheri et al., 2016).  

Despite the remarkable number of climate-related range shift studies, no 

best practice standards exist for these assessments. The lack of standard 

measurements, causes considerable uncertainties regarding the 

magnitude, direction and drivers of distributional shifts (e.g., 

VanDerWal et al., 2013; Yalcin & Leroux, 2018).  

Without understanding the fundamental drivers of range edges, it is 

impossible to reliably predict how they will respond to future climate 

change (La Sorte & Jetz, 2012). 



 

 

CONCLUSIONS  

 

This thesis offers some key perspectives in which are highlighted as 

follows:  

 Understanding range dynamics and their underlying causes thus 

require a more sophisticated analysis than is typically per- 

formed. This thesis highlights the need for best-practice 

standards for assessments of climate-related range shift studies.  

 Seeking to attribute climate change to given distributional shifts 

is thus better achieved by relating species range change with 

climate variables instead of geographical proxies, such as latitude 

and elevation. 

 

 Moreover, Climate is a multivariate phenomenon. Not only it 

involves different parameters, like temperature, precipitation, 

and wind, but it also expresses itself at different geographical 

extent and temporal scales. Adequately capturing the wealth of 

climate change manifestations and the different ways it interacts 

with the living systems requires that its multiple dimensions be 

appropriately characterised through alternative, often orthogonal, 

metrics 

 In addition, even when climate change variables are used, instead 

of geographical proxies, to examine relationships with species  
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distributional shifts, there are occasions when distributional 

shifts respond not only to climate but also to other environmental  

 

changes, such as spread of disease or land-use change. 

Attributing a mechanism to an observed pattern thus benefits 

from examination of multiple alternative hypotheses on equal 

footing. However, multifaceted inference was found to be 

extremely rare in the reviewed literature. 

 

 The thesis also reinforces the use of null models to assess whether 

observed pat- terns could have arisen by chance alone.  

 

 

 The thesis also showed different mechanisms are likely 

implicated in shaping species range dynamics and the importance 

of different variables varies across sections of species ranges.  

 

 The thesis also provides evidence that threats to biodiversity are 

widespread and are unlikely to act alone; but rather are spatially 

overlapped and jointly impact biological communities. 

Suggesting a far greater focus should be placed on mapping the 

spatial distribution of different threats and considering how the 

cumulative impacts of threats to species vary across different 

locations and multiple spatial scales.
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APPENDIX A.  CHAPTER I 

 

Fig A-2 1.General methodological framework. Shows the overall process in 

reviewing climate- related range shifts studies.  

 

Table A-1 1.Detailed information about articles (e.g., Time period, Magnitude 

of range shifts duration, Ecosystem and Climate zone of study area, 

Temperature change during the study period, Causal factors tested, Type of 

specie strait, etc.) and detailed criteria scoring for all 240 articles. Available in 

GitHub repository  

(https://github.com/Shirin-t/SciAdv-2/blob/main/abe1110_table_s1.xlsx). 

 

Table A-1 2.List of species from published articles (Duplicated names are 

removed). Available in GitHub repository 

(https://github.com/Shirin-t/SciAdv-2/blob/main/abe1110_table_s2.xl
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APPENDIX B.  CHAPTER II 

 

Discriminating climate, land-cover and random effects on 

species range dynamics 

 

Method:  

Interaction effect of climate and land-cover change  

 

We used linear regression to measure the relative importance of all 

hypothesized predictors of range shifts (climate and land cover) and their 

possible interactions at the leading of southerly distributed (n=47), and rear 

edges of northerly distributed and northerly distributed species (n=35). We 

considered species range shifts as the response variable (Y) and land-

cover/climate change as predictor variables (X) (Figure S1).  

First, we selected the 20 most marginal records in the northern and southern 

boundary of the distribution and then calculated the average latitudinal shifts 

in the species ranges between these marginal cells in t 2 or t3 minus t1 (baseline). 

In order to determine the strength of the signals from land-cover and climate 

in observed range shifts across the margins of species distributions, we first, 

extracted and averaged the values of each land-cover and climate variables in 

the 20 most marginal records at the leading and rear edge for each species and 

in the two time slices considered (t1 and t2 or t3). Then, we subtracted the 

average value of climate or land-cover in the second time t2 or t3) from the 

same variable in the baseline (t1). After applying this, we obtained a table 

which contains the observed magnitude of range shifts and the average 

magnitude of three climates (Maximum Temperature of the Warmest Month, 
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Minimum Temperature of the Coldest Month, Total Annual Precipitation) and 

six land-cover variables (proportion of Settlements, crop-lands, forest-cover, 

grasslands, other-lands and water within each cell) for each species. We ran 

the linear regression to assess if interaction effects are detected between 

climate and land-cover variables in explaining latitudinal range shifts. Prior to 

analyzing the data, we checked for data collinearity by calculating the variance 

inflation factor (VIF). We repeated this procedure for each geographical 

section of the distributions and removed collinear variables (VIF >10). The 

multicollinearity test detected a high inverse correlation between croplands 

and grasslands in the species ranges, and due to the high value of the Variance 

Inflation Factor (VIF), cropland was excluded from the regression model in 

both time slices (t1 vs. t2 and t1 vs. t3). 

In order to find the possible interaction effects between climate and land-cover 

variables, we did a factorial design in which we regressed only one variable of 

climate at a time and crossed with land-cover variables, so there are results for 

each of the 3*6 combinations of levels (Figure S1). All analysis were 

performed in RStudio Version 1.2.5019.  

 

Results 

The analysis of variance (ANOVA) showed the importance of both climate 

and land-cover change to determine range shifts across different sections of 

the species range. Among the different linear models, we tested, we also found 

four significant interactions in which land-cover change interact with climate 

change variables to determine the latitudinal species range shifts.  

At the leading edge of the southerly-distributed species between t1 and t2, the 

analysis of variance (ANOVA) showed that the range shifts are better 
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explained by grasslands and Maximum temperature during the breeding 

season (P < 0.001). Open-lands (e.g., pasture and bare soil) (P < 0.01) and 

water bodies (e.g., Sea, streams) (P < 0.05) also showed a significant 

contribution (P < 0.05) (Table B.3.1). The analysis of ANOVA in the second 

time slice (t1 vs. t3) showed that maximum temperature remained important 

variable (P < 0.01), followed by grasslands, forest-cover (p <0.001) and urban 

areas (p <0.05) explained some variation in shifts in this section of the 

distribution (Table B-3 1).  

In this section of the distribution, we found evidence for the interaction effect 

between land-cover change (open-lands and grasslands) and climate change 

conditions (minimum and maximum temperature) on species range shifts 

(Figure S2 a,b). The interaction plot shows that the relationship between range 

shifts and minimum temperature depends on the loss (-) and gain (+) of open-

lands (p < 0.001). Meaning, when the open-land value is at its low (-) the 

magnitude of range shifts caused by minimum temperature is higher than when 

open-land is at its high (+), this interaction effect was consistent during the 20 

years (P < 0.001; Fig B-3 2.a) and 40 years (P < 0.001; Fig B-3 2.a).   

At the leading edge of southerly-distributed species, we found another 

significant interaction effect between maximum temperature and grasslands 

during the 20 years (t1 vs. t2). The interaction plot shows that grassland loss 

(-) interacts with maximum temperature and accelerate the northward 

movement (Fig B-3.2b). Conversely, gaining grasslands (+) in interaction with 

maximum temperature cause southward shifts (Fig B-3.2b). The interaction 

plot in the second time slice (t1 vs. t3), suggests a significant interaction effect 

between maximum temperature and forest-cover (P = 0.002; Figure S2.b). 

Meaning, forest loss (-) interacts with maximum temperature and move the 

leading edge of southerly-distributed species further to the north. Conversely, 
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forest gain (+) in interaction with maximum temperature cause southward 

shifts in this section of the distribution.   

At the rear edge of northerly-distributed species, rang shifts significantly 

explains by minimum temperature (p < 0.001) (Table B-3 1).   

At this section of the distribution, we found a significant interaction between 

minimum temperature and forest cover (Figure B-3 2.c, B-3 3.c), for both time 

slices (t1 vs t2 & t1 vs. t3). The interaction plot suggests forest loss (-) interacts 

with maximum temperature and cause shifts toward higher latitude, while 

gaining forest (+) in interaction with maximum temperature causes shifts 

toward south (Fig B-3 2.c).  

Our analysis detected another interaction effect between maximum 

temperature and urban area (P < 0.001). The interaction plot shows, gaining 

urban areas, interact positively with precipitation and cause that the rear edge 

of northerly distributed species moves toward north during the breeding 

season, while loss urbanization between two times cause shifts toward south 

(Fig B-3.2 b. d) .  

In the second time slice (t1 vs t3) we detected a significant interaction effect 

between precipitation and open lands (P = 0.003).  The interaction plot 

suggests that when open lands is at its high (+) maximum temperature cause 

that rear edge of northerly distributed species move toward south, while open-

lands loss in interaction with maximum temperature cause northward shifts.  
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Fig B-3 1. Flowchart showing the methodological steps used for analysis of finding 

interaction between predictors  
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Fig B-3 2. Interaction effect between climate and land-cover predictors among 

leading (a,b) edges of southerly distributed species (n=47), and rear edges (c,d) of 

northerly distributed species(n=35). The crossed line on the graph suggest the 

interaction effect among two predictors between (1968-72 and 1988-91). The 

significant interaction detected between, a) minimum temperature and open-lands, b) 

maximum temperature and Grasslands at the leading edge of southerly-distributed 

species, c) minimum temperature and forest-cover and d) precipitation and urban are 

at the rear edge of northerly-distributed species. The response variable on the vertical 

y-axis (range shifts) and a response variable in the x-axis (minimum/ maximum 

temperature). The three lines in the legend shows mean of the moderator in red and 

standard deviation below and above the mean (+/- SD).   
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Fig B-3 3. Interaction effect between climate and land-cover predictors among 

leading (a,b) edges of southerly distributed species (n=47), and rear edges (c,d) of 

northerly distributed species(n=35). The crossed line on the graph suggest the 

interaction effect among two predictors between (1968-72 and 2007-11). The 

significant interaction detected between, a) minimum temperature and open-lands, b) 

maximum temperature and Grasslands at the leading edge of southerly distributed 

species, c) minimum temperature and forest cover and d) maximum temperature and 

open lands at the rear edge of northerly distributed species. The response variable on 

the vertical y-axis (range shifts) and a response variable in the x-axis (minimum/ 

maximum temperature). The three lines in the legend shows mean of the moderator 

in red and standard deviation below and above the mean (+/- SD).   
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Fig B-3 4. Overlay histograms compare the distribution of observed latitudinal range 

shifts (yellow) with null model (blue), range shifts predicted by land-cover (green) 

and predicted by climate (red) between (1968-72 and 1988-91), among leading (a,b,c) 

and rear (d,e,f) edges of southerly distributed species (n=47), and rear (g,h,i) and 

leading edges (j,k,l) of northerly distributed species (n=35). The X-axis are intervals 

that show the range shifts, positive values means shifts toward north and negative 

values shows shifts toward south. The Y-axis implies the frequency of distribution 

within the interval set by the X-axis.  The vertical dashed lines show the (5 & 95) % 

quantiles and the solid vertical lines show the median for observe and three alternative 

models. The y-axis shows the frequency of range shifts (distribution of latitudinal 

shifts by individual species along the different sections of the species distribution) 

and x-axis shows shifts in mean latitude for observed vs. three alternative models. 

Positive values in the x-axis indelicate northward shifts and negative values indicate 

the southward shifts.  
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Fig B-3 5. Overlay histograms compare the distribution of observed latitudinal range 

shifts (yellow) with null model (blue), range shifts predicted by land-cover (green) 

and predicted by climate (red) between (1968-72 and 2007-11) among leading (a,b,c) 

and rear (d,e,f) edges of southerly distributed species (n=47), and rear (g,h,i) and 

leading edges (j,k,l) of northerly distributed species (n=35). The X-axis are intervals 

that show the range shifts, positive values means shifts toward north and negative 

values shows shifts toward south. The Y-axis implies the frequency of distribution 

within the interval set by the X-axis. The vertical dashed lines show the (5 & 95) % 

quantiles and the solid vertical lines show the median for observe and three alternative 

models. The y-axis shows the frequency of range shifts (distribution of latitudinal 

shifts by individual species along the different sections of the species distribution) 

and x-axis shows shifts in mean latitude for observed vs. three alternative models. 

Positive values in the x-axis indelicate northward shifts and negative values indicate 

the southward shifts.  
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Table B-3 1. Analysis of variance using all variables but cropland.  The response 

variable is the average of range shifts at the leading edge of southerly-distributed 

species (t1 vs. t2 & t1 vs. t3) and predictor variables are the difference between the 

northern most marginal cells. Predictor variables included are as following: urban 

area, forest, grasslands, open spaces (e.g., glaciers, sparsely vegetated areas bare 

soil), maximum temperature in the warmest month, and minimum temperature in the 

coldest month and precipitation during the breeding season. ***, ** and * indicates 

if there is any significance difference and shows (p<0.001), (p<0.01) and (0.05) 

respectively. And shows (p<0.001), (p<0.01) and (0.05) respectively.  

 

Leading edge of Southerly distributed species  

t
1 vs. t

2
 t

1 vs. t
3
 

  Estimate Std. 

Error 

t 

value 

Pr(>|t|)   Estimate Std. 

Error 

t value Pr(>|t|)   

(Intercept) -7.649 15.560 -

0.492 

0.205   151.330 22.329 6.777 0.000 *** 

Urban area 15.811 306.147 0.052 0.011 * 800.272 267.112 2.996 0.005 ** 

Grasslands -62.420 85.474 -

0.730 

0.000 *** 242.697 69.100 3.512 0.001 ** 

Open-lands 296.414 620.554 0.478 0.003 ** -78.468 352.309 -0.223 0.825   

Water-

bodies 

-26.038 312.584 -

0.083 

0.019 * -

714.069 

278.691 -2.562 0.014 * 

Forest-cover 130.189 181.294 0.718 0.004 ** 353.715 128.418 2.754 0.009 ** 

Min.temp -34.556 30.108 -

1.148 

0.36648   -19.692 25.554 -0.771 0.446   

Max.temp -

141.575 

25.691 -

5.511 

1.68E-

07 

*** -

214.155 

19.674 -

10.885 

0.000 *** 

Precipitation -1.639 0.942 -

1.741 

0.033   -2.116 0.798 -2.652 0.012   

Residual standard error: 48.97 on 38 degrees of freedom. 

Multiple R-squared:  0.6723, Adjusted R-squared:  0.6033 F-

statistic: 9.744 on 8 and 38 DF, p-value: 3.139e-07 

Residual standard error: 48.54 on 38 degrees 

of freedom, Multiple R-squared:  0.8977,   

Adjusted R-squared:  0.8761, F-statistic: 

41.66 on 8 and 38 DF, p-value: < 2.2e-16 
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Table B-3 2. Analysis of variance using all variables but cropland. The response 

variable is the average of range shifts at the leading edge of southerly-distributed 

species (t1 vs. t2 & t1 vs. t3) and predictor variables are the difference between the 

northern most marginal cells. Predictor variables included are as following: urban 

area, forest, grasslands, open spaces (e.g., glaciers, sparsely vegetated areas bare soil), 

maximum temperature in the warmest month, and minimum temperature in the 

coldest month and precipitation during the breeding season. ***, ** and * indicates 

if there is any significance difference and shows (p<0.001), (p<0.01) and (0.05) 

respectively. And shows (p<0.001), (p<0.01) and (0.05) respectively.  

 

Rear edge of northerly-distributed species  

t1 vs. t2 t1 vs. t3 

  Estimate Std.  

Error 

t.value Pr(>|t|)   Estimate Std.  

Error 

t 

value 

Pr(>|t|)   
  

(Intercept) 38.257 17.040 2.25 0.03 * 135.211 35.731 3.78 0.00 ***   

Urban area -67.718 262.267 -0.26 0.80   243.330 208.850 1.17 0.25     

Grasslands -80.618 110.445 -0.73 0.47   -72.526 51.927 -1.40 0.17     

Open-lands -

359.409 

766.632 -0.47 0.64   -

623.430 

432.016 -1.44 0.16   
  

Forest-cover -

417.778 

357.400 -1.17 0.25   -

155.852 

212.492 -0.73 0.47   
  

Water-

bodies 

-

188.460 

289.150 -0.65 0.52   -88.483 206.068 -0.43 0.67   
  

Max.temp 9.075 37.415 0.24 0.81   3.743 26.312 0.14 0.89     

Min.temp -

144.921 

23.716 -6.11 0.00 *** -

151.773 

17.682 -8.58 0.00 *** 
  

Precipitation 0.397 0.921 0.43 0.67   0.007 0.991 0.01 0.99     

Residual standard error: 42.69 on 26 degrees of freedom, 

Multiple R-squared:  0.8342,    Adjusted R-squared:  0.7832, 

F-statistic: 16.35 on 8 and 26 DF, p-value: 2.43e-08  

Residual standard error: 39.35 on 25 

degrees of  

freedom, Multiple R-squared:  0.8449,    

Adjusted R-squared:  0.7891, F-statistic: 

15.14 on 9 and 25 DF, p-value: 4.658e-08 
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Table B-3 2. Statistical results for the observed range shifts and range shifts modelled 

by three alternative models between (1967-72 and 1988-91) for leading and rear edge 

of northerly and southerly-distributed species. The table shows the mean of range 

shifts, quantile 5%, quantile 95%, minimum and maximum value of range shifts and 

the p-value (Wilcoxon signed-rank test compares observed range shifts with three 

alternative models). 
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Table B-3 3.  Statistical results for the observed range shifts and range shifts modeled 

by three alternative models between (1968-72 and 2007-11) for leading and rear edge 

of northerly and southerly-distributed species. The table shows the mean of range 

shifts, quantile 5%, quantile 95%, minimum and maximum value of range shifts and 

the p-value (Wilcoxon signed-rank test compares observed range shifts with three 

alternative models).  

 

Table B-3 4& Table B-3 5. show shifts in species ranges based on observe, climate 

model, land-cover-based and null model, for each individual species and first (Table 

S5; t1 vs t2) and second time (Table S6; t1 vs. t3) slice respectively. Both table 

contains, scientific name of species, number of occupied cells in the first time 

(Occ.t1), number of occupied cells in the second time (Occ.2), Occupancy change 

between two times (Log10 (occupancy-t2/occupancy-t1), distributional range of 

species (N=Northerly vs. S=southerly), observed range shifts in leading and trailing 

edge (Obs-Leading edge & Obs-Rear edge),  shifts modelled by null (Null-Leading 

edge & Null-Rear edge), land-cover(Lnd-Leading edge & Lnd-Rear edge) and 

climate (Clim-Leading edge & Clim-Rear edge) for both leading and rear edges. 

(Tables are in the next page). 
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Species-Name Occ.t1 Occ.t2 Occupancy ChangeRange Obs-Leading edgeObs-Rear edgeNull-Leading edgeNull-Rear edgeLnd-Leading edgeLnd-Rear edgeClim-Leading edgeClim-Rear edge

Accipiter_nisus 1823 2178 0.077271 S 22 1 211.54 5.94 69.5 12.5 -59.5 18

Acrocephalus_palustris 21 15 -0.14613 S -1 11.5 227.81 98.31 55.34 150.84 47.67 61.17

Acrocephalus_scirpaceus 775 790 0.008325 S 100.5 -5.5 492.28 -2.26 161.5 3.5 -7.5 -21.5

Actitis_hypoleucus 1406 1424 0.005525 N 42 -59.5 43.28 -63.52 90.5 -57 -97.5 73

Alcedo_athis 1305 1224 -0.02783 S 53.5 1.5 295.91 -2.14 85 -9 -164 2.5

Alectoris_rufa 919 1214 0.120903 S 97.5 -13 312.59 -21.41 26.5 -39.5 -243.5 -7.5

Anas_acuta 86 85 -0.00508 N -33.5 -8 -52.38 -30.67 -45 1.5 -42 -22.5

Anas_clypeata 520 454 -0.05895 S 91.5 -5.5 57 -9.82 -73 -23 -105 -57

Anas_crecca 1376 1146 -0.07943 N 52 19 22.13 -17.01 44.5 18.5 -130 189.5

Anas_penelope 283 360 0.104516 N 45 -39.5 24.47 -66.25 62.5 20 3.5 -89.5

Anas_querquedula 136 138 0.00634 S 167 35 349.25 22.62 59 12.5 -33 -25.5

Anas_strepera 158 357 0.354011 S 113.5 -30.5 239.36 -41.33 68.5 -56 -63.5 -75

Anser_anser 200 718 0.555094 N 91.5 -64 139.52 -126.46 112 -31.5 205 -123

Anthus_trivialis 1793 1524 -0.0706 S -3 -5 104.38 -6.62 41 -1 -26 25.5

Ardea_cinerea 1686 2335 0.141429 N 97 -14.5 208.68 -21.24 84 7.5 -38 37

Asio_flammeus 800 679 -0.07122 N -5.5 -8 26.6 -91.82 92.5 -87.5 11.5 123

Asio_otus 590 445 -0.12249 N -55 8.5 36.17 -22.15 -52 -17 -87 4.5

Athene_noctua 1381 1228 -0.051 S -19.5 21 341.99 16.28 119 3.5 -102.5 18.5

Aythya_ferina 512 511 -0.00085 S 29.5 -2 142.73 -9.23 11 -19.5 -83 -8

Aythya_fuligula 1290 1484 0.060844 S 22.5 -21 72.45 -30.65 -121.5 -28.5 -207.5 3.5

Caprimulgus_europeaeus 562 274 -0.31199 S -161.5 15 122.33 15.4 -35 21.5 -228 -14.5

Carduelis_cabaret 1979 1754 -0.05242 N 8.5 -4.5 92.47 -23.95 53 -9.5 -22 85.5

Carduelis_flavirostris 656 651 -0.00332 N 1.5 -26 -6.1 -278.37 -13.5 -277 -0.5 191

Carduelis_spinus 625 1158 0.267829 N 22.5 -39.5 166.02 -74.06 90.5 -34.5 10.5 59

Charadrius_dubius 288 420 0.163857 S 34.5 -47 450.53 -60.48 98.5 -74.5 51 -46

Cinclus_cinclus 1434 1309 -0.03961 N -2 -1.5 46.24 -4.14 70.5 20 -8.5 44.5

Coccothraustes_coccothraustes 459 315 -0.1635 S 7 4 241.25 -2.25 54.5 -27 -231 -8

Columba_livia 1498 2085 0.143594 N -2 -5 -0.02 -6.74 -1.5 13.5 3 -12

Columba_orenas 1956 1821 -0.03106 S -16 6 151.88 -2.15 35 8.5 -29.5 2.5

Corvus_corax 1243 1130 -0.04139 N 2 0.5 -5.41 -0.16 4 24 -0.5 -6.5

Coturnix_coturnix 405 804 0.297801 S 200 0 225.38 -1.38 50.5 0 -433.5 -22.5

Crex_crex 659 161 -0.61206 N -65 302 -109.71 64.81 -32.5 154 -97.5 232

Dendrocopus_minor 889 790 -0.05127 S -3.5 21 471.61 13.23 209.5 0 -95.5 18

Emberiza_calandra 1357 921 -0.16832 S -131.5 29 -13.14 18.71 -176.5 9.01 -206 46

Emberiza_cirlus 173 29 -0.77565 S -129.5 8.5 51.2 50.12 115 162.5 -9.5 75.5

Falco_collumbarius 597 691 0.063504 N 21 41.5 -19.42 -83.26 11.1 -0.5 19.5 75.5

Ficedula_hypoleuca 546 732 0.127318 S -57 -22.5 151.49 -28.39 130.5 -10 -77.5 73

Fulica_atra 1690 1603 -0.02295 S 17.5 6 62.26 -1.04 -85 2.5 -150 39.5

Garrulus_glandarius 1744 1713 -0.00779 S 41 4 226.94 -0.36 98.5 6.5 -180 16

Jynx_torquilla 48 6 -0.90309 S 5 533.5 -207.32 471.18 -199 202.5 -520 8.5

Lagopus_lagopus 1082 944 -0.05926 N 14.5 44.5 2.84 -32.99 95.5 -25.5 -17.5 118.5

Lagopus_mutus 195 173 -0.05199 N 1 -1.5 1.13 -343.05 2.5 -433.5 0.5 -36

Lanius_collurio 111 15 -0.86923 S 184.83 429.54 38.36 390.6 91.5 121.5 -139.83 105.17

Larus_canus 848 612 -0.14164 N -0.5 -89.5 -11.17 -207.58 -7.5 -214 -9 131

Larus_ridibundus 842 700 -0.08021 N 4 -9.5 -26.99 -34.37 -47 -15 -11 -59

Loxia_curvirostra 302 709 0.370639 N 90 -10 178.05 -42.68 75.5 -16.5 -6 -10

Loxia_scotica 162 59 -0.43866 N -54.5 275.5 -62.52 -274.64 -75.5 -65.5 -29 211

Lucustella_naevia 1881 1188 -0.19957 S -12 12 67.81 7.51 34 19.5 -219 4

Lullula_arborea 196 73 -0.42893 S -54 35 184.99 24.28 110 94 -89 11.5

Luscinia_megarhynchos 639 457 -0.14558 S -29 -3.5 421.51 -1.83 217.5 -35.5 4.5 2.5

Mergs_serrator 665 674 0.005838 N -11.5 -23 -7.12 -210.37 -1 -205 5 140

Motacila_cinerea 1845 1979 0.030449 S 41.5 9.5 164.61 -1.88 99 16.5 -11.5 16.5

Motacilla_flava 1155 1047 -0.04264 S -10 7.5 304.99 -12.24 73.5 -33.5 -43.5 0

Numenius_arquata 1945 1892 -0.012 N -0.5 -14.5 -2.09 -15.65 3.5 2 3.5 84.5

Oenanthe_oenanthe 1862 1737 -0.03018 N 0 15 -3.31 -0.41 3 45.5 3 140

Panurus_biarmicus 45 60 0.124939 S 2 -44.5 295.21 -35.62 61.1 -28.5 123 -25.5

Parus_cristatus 46 51 0.044812 N 2.5 5.5 6.14 -400.6 -36 -415.5 -57 -578

Parus_montanus 1220 1100 -0.04497 S -55 6 317.33 -0.43 120.5 -28 -115.5 11

Parus_palustris 1366 1133 -0.08122 S 8 5.5 281.62 1.22 102.5 5.5 -43 -13.5

Passer_montanus 1675 1346 -0.09497 S -86.5 13.5 36.27 -2.82 -76 -30 -128 4.5

Phoenicurus_ochrurus 68 103 0.180328 S 104.5 -20 535.3 -13.78 180.5 -23 251 -52

Phoenicurus_phoenicurus 1661 1327 -0.0975 S 6 11 78.96 8.21 81.5 -4.5 -10.5 32

Phylloscopus_sibilatrix 1230 1270 0.013899 S 0.5 3 146.54 -6.04 54 -9 -41.5 -4

Pica_pica 1940 1958 0.004011 S 15 3 161.06 -2.92 41 11.5 -295 -3

Picus_viridis 1622 1555 -0.01832 S 69.5 6 254.26 -2.3 118.5 13 -125.5 -7

Pluvialis_apricaria 849 784 -0.03459 N 0.5 19.5 -7.75 -123.86 -24.5 -115 -5 85.5

Podiceps_cristatus 762 892 0.06841 S 9 -16 260.26 -15.64 66.5 -45.5 -40.5 -18

Porzana_porzana 39 26 -0.17609 N -180 215.5 -256.3 124.54 -145.5 221.5 -416.5 -60

Rallus_aquaticus 632 420 -0.17747 S 26.5 1 101.76 8.6 6 5 -450 0.5

Saxicola_torquata 1215 1034 -0.07006 N 11 7 62.76 4.83 206 17.5 49 0.5

Scolopax_rusticola 1693 1204 -0.14803 S 7.5 10 65.1 -15.14 74 -7 -54.5 17.5

Silvia_curruca 1094 1271 0.065128 S 115 -7.5 362.83 -10.66 130.5 -16 -213.5 13

Streptopelia_turtur 1252 940 -0.12448 S -162.5 9 96.73 5.14 67.5 -5.5 -234 12.5

Sylvia_borin 1833 1867 0.007982 S 14 1.5 185.66 -4.86 86 2.5 -201.5 10

Tachybaptus_ruficollis 1366 1275 -0.02994 S 6 17.5 104.32 6.95 -61.5 -2 -217 30

Tetrao_tetrix 603 432 -0.14483 N -15 88.5 24.3 -63.58 50.5 -30.5 -13 53.5

Tetrao_urogallus 182 66 -0.44053 N -25.5 40 -13.42 -67.4 19 -217.5 -3 -23

Tringa_nebularia 253 243 -0.01751 N 43 0.5 13.62 -559.1 110.5 -290.5 188 -29

Tringa_totanus 1671 1472 -0.05507 N 10 -23 -5.45 -24.42 -3 -1.5 -140 -4

Turdus_iliacus 111 136 0.088216 N 40 -203 10.81 -551.97 49.5 -323 155 -341

Turdus_torquatus 745 544 -0.13656 N -8 48 6.21 -15.43 61 21.5 -30.5 125.5

Tyto_alba 1777 1109 -0.20476 S -0.5 10.5 112.74 4.41 10.5 8.5 -174 3.5
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Species-Name Occ.t1 Occ.t2 Occupancy ChangeRange Obs-Leading edgeObs-Rear edgeNull-Leading edgeNull-Rear edgeLnd-Leading edgeLnd-Rear edgeClim-Leading edgeClim-Rear edge

Accipiter_nisus 1823 2339 0.077271 S 41.00 1.50 222.45 -5.58 37.50 7.50 -21.00 -9.50

Acrocephalus_palustris 21 45 -0.14613 S 540.00 61.50 570.69 43.60 126.34 138.84 -33.66 -21.16

Acrocephalus_scirpaceus 775 1087 0.008325 S 169.00 -17.50 570.68 -7.15 312.00 -5.00 -11.50 11.50

Actitis_hypoleucus 1406 1211 0.005525 N -7.50 5.00 8.99 -44.18 104.50 -68.00 -118.00 87.00

Alcedo_athis 1305 1331 -0.02783 S 94.00 -2.50 331.75 -7.88 167.00 -11.50 -153.50 2.00

Alectoris_rufa 919 1636 0.120903 S 169.50 -48.50 398.46 -50.12 75.00 -46.00 -228.50 -7.00

Anas_acuta 86 65 -0.00508 N 1.00 24.50 -82.26 4.27 -36.50 -23.50 41.50 -19.00

Anas_clypeata 520 511 -0.05895 S 81.50 -2.50 71.57 -23.17 -106.50 -43.50 -39.00 8.00

Anas_crecca 1376 1184 -0.07943 N 84.50 -1.50 32.48 -18.18 -78.00 20.00 -56.50 142.50

Anas_penelope 283 352 0.104516 N 88.00 -33.50 23.91 -96.88 53.00 -52.50 22.00 -1.00

Anas_querquedula 136 197 0.00634 S 239.00 1.50 415.69 -8.75 85.50 10.50 -83.00 18.00

Anas_strepera 158 713 0.354011 S 191.00 -62.50 322.53 -70.06 56.50 -57.50 -32.00 -5.50

Anser_anser 200 1665 0.555094 N 235.50 -90.50 223.94 -148.23 170.00 -71.50 12.00 -21.00

Anthus_trivialis 1793 1268 -0.0706 S -6.00 9.00 66.26 -2.31 20.00 -3.50 -28.50 16.50

Ardea_cinerea 1686 1931 0.141429 N -13.50 -9.50 187.44 -15.03 13.00 -3.00 -38.00 38.50

Asio_flammeus 800 413 -0.07122 N -15.50 -5.00 -14.79 -61.45 87.50 -88.00 1.50 111.00

Asio_otus 590 491 -0.12249 N -33.50 1.00 44.64 -25.97 -63.00 -22.00 -87.00 52.50

Athene_noctua 1381 1236 -0.051 S -18.50 29.50 330.84 1.20 210.00 10.00 -90.00 5.50

Aythya_ferina 512 317 -0.00085 S -58.50 0.00 91.14 -4.90 -1.50 -35.50 -50.00 10.50

Aythya_fuligula 1290 1715 0.060844 S 87.00 -28.50 93.66 -38.88 -157.00 -32.50 -160.00 3.00

Caprimulgus_europeaeus 562 326 -0.31199 S -136.50 2.50 157.94 9.89 11.00 15.00 -328.50 11.50

Carduelis_cabaret 1979 1543 -0.05242 N 32.50 -9.00 89.85 -23.56 14.50 -32.00 -9.00 90.00

Carduelis_flavirostris 656 534 -0.00332 N 1.50 10.50 -11.06 -260.90 -6.00 -257.00 -9.50 0.00

Carduelis_spinus 625 1778 0.267829 N 65.00 -70.00 223.14 -87.23 18.00 -52.50 12.50 261.00

Charadrius_dubius 288 595 0.163857 S 221.50 -49.50 508.12 -80.82 118.00 -63.00 1.00 9.50

Cinclus_cinclus 1434 1297 -0.03961 N -9.00 -2.00 50.34 -2.60 123.50 3.50 -2.00 4.50

Coccothraustes_coccothraustes 459 113 -0.1635 S -122.50 13.50 104.03 21.95 97.50 -31.00 -118.50 -8.00

Columba_livia 1498 2218 0.143594 N 0.00 -4.50 1.25 -8.09 7.00 16.00 3.00 4.00

Columba_orenas 1956 1918 -0.03106 S 9.50 3.00 174.25 -1.33 114.50 7.00 -195.00 12.50

Corvus_corax 1243 1985 -0.04139 N 2.00 -1.50 2.32 -4.15 9.00 25.00 1.00 -5.50

Coturnix_coturnix 405 858 0.297801 S 247.50 24.00 231.27 6.77 26.00 -3.00 -103.00 -15.00

Crex_crex 659 184 -0.61206 N -29.50 374.50 -100.33 48.59 -46.00 110.50 -118.00 220.50

Dendrocopus_minor 889 559 -0.05127 S -33.00 32.00 424.52 13.67 340.00 -1.50 -44.50 0.50

Emberiza_calandra 1357 592 -0.16832 S -203.00 49.00 -69.77 23.36 -164.00 9.00 -182.50 16.00

Emberiza_cirlus 173 26 -0.77565 S -161.50 9.00 -0.21 55.11 174.50 180.00 -66.00 66.50

Falco_collumbarius 597 663 0.063504 N 21.00 44.00 -22.37 -78.92 -14.00 -48.50 13.00 84.50

Ficedula_hypoleuca 546 534 0.127318 S -59.00 -15.00 105.39 -16.64 167.00 -20.50 -38.50 28.00

Fulica_atra 1690 1625 -0.02295 S 6.00 -4.50 69.40 -2.87 -95.50 -0.50 -153.00 41.50

Garrulus_glandarius 1744 1987 -0.00779 S 77.00 1.00 338.73 -3.71 139.50 7.00 -192.00 5.50

Jynx_torquilla 48 13 -0.90309 S 46.15 574.65 -218.69 379.81 -105.00 313.50 -290.00 238.50

Lagopus_lagopus 1082 847 -0.05926 N 63.00 66.50 -5.67 -21.59 75.00 -35.50 -73.50 115.50

Lagopus_mutus 195 175 -0.05199 N -2.00 5.50 0.87 -233.37 -10.50 -416.00 -3.00 -11.50

Lanius_collurio 111 22 -0.86923 S 173.00 336.00 126.40 295.88 -38.50 206.50 -167.16 77.84

Larus_canus 848 757 -0.14164 N 0.00 4.00 -7.21 -241.22 -13.50 -230.50 1.50 207.00

Larus_ridibundus 842 997 -0.08021 N 0.50 -18.00 -8.30 -58.18 -12.50 -21.50 7.00 146.00

Loxia_curvirostra 302 1017 0.370639 N 39.50 -17.50 215.62 -55.38 25.50 -26.50 19.00 -3.00

Loxia_scotica 162 49 -0.43866 N -74.00 273.50 -77.06 -190.59 -114.00 -208.50 -62.00 183.50

Lucustella_naevia 1881 1660 -0.19957 S 38.00 6.50 157.62 2.03 -20.50 16.50 -415.00 8.00

Lullula_arborea 196 155 -0.42893 S 92.50 36.00 568.54 18.52 329.00 67.50 -79.00 15.00

Luscinia_megarhynchos 639 363 -0.14558 S -16.50 9.00 405.27 3.55 350.00 -19.50 -4.50 0.00

Mergs_serrator 665 535 0.005838 N -8.50 -10.00 -22.06 -192.21 -4.00 -181.50 8.00 27.50

Motacila_cinerea 1845 2188 0.030449 S 71.00 1.00 209.84 -2.47 23.50 13.00 4.00 3.50

Motacilla_flava 1155 782 -0.04264 S -26.00 35.00 271.06 -5.16 210.00 -31.00 -45.50 1.50

Numenius_arquata 1945 1620 -0.012 N 0.50 26.00 -5.39 -6.56 3.50 -9.50 0.00 83.50

Oenanthe_oenanthe 1862 1606 -0.03018 N 0.00 7.00 -5.25 2.34 3.00 42.00 3.00 130.50

Panurus_biarmicus 45 80 0.124939 S 130.50 -48.50 440.69 -32.90 205.50 21.50 37.50 -26.50

Parus_cristatus 46 59 0.044812 N 2.50 -2.50 12.25 -402.15 -51.00 -549.00 -11.50 -33.50

Parus_montanus 1220 557 -0.04497 S -80.00 24.00 211.10 8.05 176.00 -24.00 -95.50 12.50

Parus_palustris 1366 1067 -0.08122 S -12.50 9.50 255.36 3.10 213.50 7.50 -64.50 -2.50

Passer_montanus 1675 999 -0.09497 S -98.00 52.50 8.17 30.37 -82.50 -32.50 -192.00 10.00

Phoenicurus_ochrurus 68 128 0.180328 S 252.50 -31.50 576.25 -22.44 312.50 -15.00 -27.00 4.50

Phoenicurus_phoenicurus 1661 1142 -0.0975 S -15.00 3.50 47.31 -0.37 19.00 -19.50 -10.00 27.50

Phylloscopus_sibilatrix 1230 800 0.013899 S -31.50 9.50 65.70 1.30 21.50 -16.50 -43.00 -12.50

Pica_pica 1940 2079 0.004011 S 26.00 0.00 223.65 -1.23 106.00 11.50 -251.00 0.00

Picus_viridis 1622 1638 -0.01832 S 42.50 7.00 286.36 -0.13 161.50 9.50 -189.00 -7.00

Pluvialis_apricaria 849 681 -0.03459 N 1.50 28.50 -11.22 -106.55 -26.00 -123.50 -9.00 54.00

Podiceps_cristatus 762 1001 0.06841 S -8.00 -37.00 292.51 -43.98 105.50 -50.50 -54.50 -10.50

Porzana_porzana 39 40 -0.17609 N -22.50 28.00 -107.07 -0.86 -184.50 166.50 117.50 439.00

Rallus_aquaticus 632 676 -0.17747 S 147.50 -4.50 163.08 -5.57 -24.00 15.00 -403.50 31.00

Saxicola_torquata 1215 878 -0.07006 N -31.50 67.50 74.97 9.29 183.00 17.50 -25.50 3.50

Scolopax_rusticola 1693 850 -0.14803 S -4.50 19.00 31.46 3.21 25.50 -27.00 -35.50 22.00

Silvia_curruca 1094 1451 0.065128 S 175.00 -18.50 399.18 -18.41 165.50 -19.00 -113.50 2.50

Streptopelia_turtur 1252 613 -0.12448 S -262.00 30.00 -34.45 15.70 105.00 -7.50 -198.50 9.50

Sylvia_borin 1833 2057 0.007982 S 0.00 -1.00 227.58 -6.20 15.50 2.50 -229.50 9.00

Tachybaptus_ruficollis 1366 1683 -0.02994 S 35.00 -8.50 172.90 -12.15 -56.50 -1.00 -195.00 33.00

Tetrao_tetrix 603 432 -0.14483 N -14.50 151.50 27.40 -73.84 5.00 -86.50 4.00 69.50

Tetrao_urogallus 182 51 -0.44053 N -14.00 84.00 -21.50 -60.20 -44.50 -236.50 5.00 26.50

Tringa_nebularia 253 257 -0.01751 N 33.00 20.00 14.26 -564.45 72.50 -387.50 199.00 -60.00

Tringa_totanus 1671 961 -0.05507 N 8.00 8.50 -42.26 -8.07 -9.50 -11.00 -140.00 12.50

Turdus_iliacus 111 74 0.088216 N 80.00 78.50 -18.58 -434.06 -3.50 -335.00 157.50 7.50

Turdus_torquatus 745 424 -0.13656 N -38.00 44.50 -2.57 8.06 -6.00 3.00 -21.00 105.00

Tyto_alba 1777 1892 -0.20476 S 93.50 -1.50 264.96 -3.33 27.00 8.50 -274.50 16.50
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Fig D-5 1. Multiple dimensions of climate and land-use change over the last century. 

Panel (A) shows the historical land change for (i) forest loss; (ii) pasture gain; (iii) 

crop-gain; (iv) land frequency change; (v) human settlements. Dark colours on the 

Forest loss

Land Frequency Change

Crop Gain

Human settlement

Pasture gain

Velocity of climate change

Extreme events

Standardized local Anomalies

Temperature trend

Precipitation trend

Historical land-use change 1960-2019 Multiple dimensions of climate change 1900-2020

(A) (B)

(i)

(ii)

(iii)

(iv)

(v)

(i)

(ii)

(iii)

(iv)

(v)



 

152 

 

map correspond to the high level of change. Panel (B) shows five metrics of climate 

change, (i) velocity; (ii) extreme events; (iii) standardized local anomalies; (iv) 

temperature trend and (v) precipitation trend. Dark brown colours correspond to the 

high level of climate change. For precipitation trend, dark brown corresponds to 

decreased precipitation and dark blue indicates increased precipitation over the past 

century.



 

 

 


