
Linear Recursion II: Tail Recursion � 159

f(x)

ra b

ǫ ǫ

∣ẑ − r∣ ≤ ǫ

ẑ

Figure 5.10 Base case of the bisection algorithm (b − a ≤ 2ǫ).

Listing 5.15 Bisection algorithm.
1 def f(x):

2 return x * x - 2

3

4

5 def bisection(a, b, f, epsilon):

6 z = (a + b) / 2

7

8 if f(z) == 0 or b - a <= 2 * epsilon:

9 return z

10 elif (f(a) > 0 and f(z) < 0) or (f(a) < 0 and f(z) > 0):

11 return bisection(a, z, f, epsilon)

12 else:

13 return bisection(z, b, f, epsilon)

14

15

16 # Print an approximation of the square root of 2

17 print(bisection(0, 4, f, 10**(-10)))

trees, where the tallest tree has height H = 12. If the goal is to collect 10
units of wood, then the woodcutter should set the height of the cutting
machine to h = 8, where the total wood collected would be exactly 10
units. If the goal were to collect 7, 8, or 9 units of wood the optimal
height h would also be 8. Even though the woodcutter would obtain
more wood than initially required, h cannot be higher since cutting at
height 9 only provides 6 units of wood.

The problem is interesting from an algorithmic point of view since
it can be solved in several ways. For example, the trees can be initially
sorted in decreasing order by their height, and subsequently processed
from the highest to the lowest until obtaining the optimal height. This

