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Abstract. We use the invariance of the triangle T2 = {(x, y) ∈ R
2 : 0 �

x, y, 1−x−y} under the permutations of {x, y, 1−x−y} to construct and study
two-variable orthogonal polynomial systems with respect to several distinct
Sobolev inner products defined on T2. These orthogonal polynomials can
be constructed from two sequences of univariate orthogonal polynomials. In
particular, one of the two univariate sequences of polynomials is orthogonal
with respect to a Sobolev inner product and the other is a sequence of classical
Jacobi polynomials.

1. Introduction

The purpose of this paper is to study bivariate orthogonal polynomials associated
with several Sobolev inner products, that is, inner products involving partial deriva-
tives of polynomials, defined on the triangle T2 = {(x, y) ∈ R

2 : 0 � x, y, 1−x−y}.
Sobolev orthogonal polynomials have been widely studied for the last few decades.

We refer the reader to [13] for a detailed survey on the topic. However, the study of
Sobolev orthogonal polynomials in several variables is most recent. Some references
include studies on the unit ball and the unit sphere [3–5, 11, 12, 15, 16, 18, 19], the
simplex [1, 20], product domains [6, 7, 9] and other interesting domains [14]. We
remark that some Sobolev orthogonal polynomials are eigenfunctions of second or-
der linear ordinary differential equations (see, for instance, [10] and the references
therein) and second order linear partial differential equations [2].

Sobolev orthogonal polynomials in one and several variables have been used in
the implementation of spectral methods for boundary value problems for elliptic
differential operators. For instance, in the univariate case, generalized Jacobi spec-
tral schemes are proposed in [21] for second- and fourth-order elliptic boundary
value problems with Dirichlet or Robin boundary conditions. These schemes con-
sist in the construction of Jacobi–Sobolev orthogonal polynomials which allows the
diagonalization of the involved discrete systems. The corresponding error estimates
and numerical results illustrate the effectiveness and the spectral accuracy of the
method. In several variables, Sobolev orthogonal polynomials on the unit ball have
been considered in [18] in the numerical solution of boundary value problems for
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elliptic partial differential operators. For details, we refer again to the survey paper
[13] and the references therein.

Orthogonal polynomials associated with the classical weight function W (x, y)
defined on the triangle have been studied extensively (see for instance, [8]). Con-
trary to the univariate case, there are several bivariate orthogonal polynomial bases
associated with W (x, y). Of special interest for us is the fact that there are orthog-
onal bases that can be obtained by using the invariance of T2 under permutations
of {x, y, 1−x−y} (see Subsection 2.2). We aim to exploit this invariance to extend
the study of orthogonal structures on the triangle to the Sobolev realm.

Our work is motivated by the results presented in [14], where the so-calledKoorn-
winder method for generating bivariate orthogonal polynomials from univariate or-
thogonal polynomials was extended to the Sobolev case. In the particular case
of the triangle, this extended Koornwinder method can be used to construct an
orthogonal polynomial basis associated with a Sobolev inner product:

(P,Q) =

∫ ∫
T2

[
P Q+ λ (∇P )�M ∇Q

]
W (x, y) dydx, λ > 0,

defined for all polynomials P and Q, where M is a 2 × 2 positive semidefinite
polynomial matrix of a special form. However, the invariance of the triangle under
permutations of {x, y, 1−x−y} allows for (·, ·) to admit more matricesM than those
presented in [14] that can be used to study orthogonal structures on the triangle. In
the sequel, we explore several Sobolev inner products and the associated orthogonal
polynomial bases obtained from such invariance. We must remark that in this
paper, we restrict our study to λ > 0 to ensure that (·, ·) is an inner product.
However, the study presented here is also valid for values λ ∈ R such that (·, ·)
admits an associated orthogonal polynomial basis. Moreover, when λ = 0 we
recover the results about the classical orthogonal polynomials on the triangle.

The paper is organized as follows. Section 2 contains the basic background on
bivariate orthogonal polynomials needed to present our results. In Section 3, we
present the Sobolev inner products explored in this work, and in Section 4 we
construct orthogonal polynomial bases associated with these inner products. Last,
we present a comparison of the Sobolev inner products and orthogonal polynomials
in Section 5.

2. Bivariate orthogonal polynomials

In this section, we recall the basic tools and results about bivariate orthogonal
polynomials needed throughout this work. Our main reference for the basic theory
is [8].

2.1. Basic tools. We denote by Π2 the linear space of real bivariate polynomials.
For n � 0, let Π2

n denote the linear space of real bivariate polynomials of total
degree at most n. Evidently,

dimΠ2
n =

(
n+ 2

2

)
and Π2 =

⋃
n�0

Π2
n.

We say that a sequence P = {Pn,m(x, y) : n � 0, 0 � m � n} of polynomials in
Π2 is a polynomial system (PS) if for all n � 0, the set Pn = {Pn,m(x, y) : 0 �
m � n} consists of n + 1 linearly independent polynomials of total degree n, that
is, degPn,m = n, 0 � m � n. In this way, a PS P is a basis of Π2.
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Let 〈·, ·〉 : Π2×Π2 → R be a bilinear form defined on polynomials. A polynomial
P of degree n is called an orthogonal polynomial with respect to the bilinear form
if

〈P,Q〉 = 0, ∀Q ∈ Π2
n−1.

Given a bilinear form 〈·, ·〉 and a PS P = {Pn,m(x, y) : n � 0, 0 � m � n}, we
will say that P is orthogonal with respect to the bilinear form if

〈Pn,m, Q〉 = 0, ∀Q ∈ Π2
n−1,

for all n � 0 and 0 � m � n. Moreover, if

〈Pn,m, Pi,j〉 = Hn,m δn,i δm,j ,

where Hn,m �= 0 for n � 0, then we say that P is a mutually orthogonal polynomial
system. Here, δn,k denotes the Kronecker delta.

Let W (x, y) be a weight function defined on a domain Ω ⊆ R
2. That is,

W (x, y) > 0 for all (x, y) ∈ Ω, and Ω has a nonempty interior. If a bilinear
form is given by

〈P,Q〉 =

∫ ∫
Ω

P (x, y)Q(x, y)W (x, y) dxdy, ∀P,Q ∈ Π2,

we say that the orthogonal polynomials, whenever they exist, are orthogonal with
respect to the weight function W .

2.2. Orthogonal polynomials on a triangle. Let

T2 = {(x, y) ∈ R
2 : 0 � x, y, 1− x− y}

denote a triangle in R
2. For α, β, γ > −1, define the weight function

Wα,β,γ(x, y) = xα yβ (1− x− y)γ , (x, y) ∈ T2,

and the bilinear form

〈P,Q〉α,β,γ = bα,β,γ

∫ ∫
T2

P (x, y)Q(x, y)Wα,β,γ(x, y) dxdy,

where

bα,β,γ =

(∫ ∫
T2

Wα,β,γ(x, y) dxdy

)−1

=
Γ(α+ β + γ + 3)

Γ(α+ 1) Γ(β + 1) Γ(γ + 1)
.

A mutually orthogonal polynomial system on the triangle can be given in terms

of the Jacobi polynomials. Hence, let P
(α,β)
n (t) denote the Jacobi polynomial of

degree n, which is orthogonal with respect to the univariate weight function

wα,β(t) = (1− t)α(1 + t)β, α, β > −1, t ∈ [−1, 1].

Proposition 2.1 ([8]). For n � 0, define the polynomials

P (α,β,γ)
n,m (x, y) = P

(βm,α)
n−m (2x− 1) (1− x)m P (γ,β)

m

(
2y

1− x
− 1

)
, 0 � m � n,

where βm = β + γ +2m+1. Then {P (α,β,γ)
n,m (x, y) : n � 0, 0 � m � n} constitutes

a mutually orthogonal polynomial system with respect to 〈·, ·〉α,β,γ . Moreover,

〈P (α,β,γ)
n,m , P

(α,β,γ)
k,j 〉α,β,γ = H(α,β,γ)

n,m δn,k δm,j ,
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where

H(α,β,γ)
n,m =

(α+ 1)n−m (β + 1)m (γ + 1)m (β + γ + 2)n+m

(n−m)! k! (β + γ + 2)m (α+ β + γ + 3)n+m

× (n+m+ α+ β + γ + 2) (m+ β + γ + 1)

(2n+ α+ β + γ + 2) (2m+ β + γ + 1)
.

Here, as usual,

(ν)0 = 1, (ν)k = ν (ν + 1) · · · (ν + k − 1), k = 1, 2, . . . ,

denotes the Pochhammer symbol.

The bilinear form 〈·, ·〉α,β,γ can be expressed in different ways as two interated
integrals. In particular, the invariance of the triangle T2 with respect to permuta-
tions of {x, y, 1−x−y} leads to two other mutually orthogonal polynomial systems.

Proposition 2.2 ([8]). Define the polynomials

Q(α,β,γ)
n,m (x, y) = P (β,α,γ)

n,m (y, x) and R(α,β,γ)
n,m (x, y) = P (γ,β,α)

n,m (1− x− y, y).

Then, {Q(α,β,γ)
n,m (x, y) : n � 0, 0 � m � n} and {R(α,β,γ)

n,m (x, y) : n � 0, 0 � m �
n} are also mutually orthogonal systems with respect to 〈·, ·〉α,β,γ. Furthermore,

〈Q(α,β,γ)
n,m , Q(α,β,γ)

n,m 〉α,β,γ = H(β,α,γ)
n,m and 〈R(α,β,γ)

n,m , R(α,β,γ)
n,m 〉α,β,γ = H(γ,β,α)

n,m .

We note that in Proposition 2.2, each permutation of {x, y, 1− x− y} induces a
corresponding permutation of the parameters {α, β, γ}.

3. Sobolev inner products on the triangle

The triangle polynomials Q
(α,β,γ)
n,m (x, y) and R

(α,β,γ)
n,m (x, y) in Proposition 2.2 are

obtained from P
(α,β,γ)
n,m (x, y) by taking advantage of the invariance of T2 with re-

spect to the permutations of {x, y, 1−x−y}. In this section, we use this invariance
of T2 to extend the study of orthogonal polynomial bases to the Sobolev realm.

Here, we introduce the Sobolev inner products that we explore throughout this
paper. First, we need some notation. Let x1 = x, x2 = y, and x3 = 1− x− y. We
denote by S3 the permutation group on the set (1, 2, 3) (i.e., the set of bijections
defined on (1, 2, 3)).

For each σ ∈ S3, we define the variables (s, t) as follows:

(1) (s, t (1− s), (1− t) (1− s)) = (xσ(1), xσ(2), xσ(3)).

Explicitly, using the cyclic notation, we have:

σ0 := (1) : s = x, t (1−s) = y, (1− t) (1− s) = 1−x−y,
σ1 := (2 3) : s = x, t (1−s) = 1− x− y, (1− t) (1− s) = y,
σ2 := (1 2) : s = y, t (1−s) = x, (1− t) (1− s) = 1−x−y,
σ3 := (1 2 3) : s = y, t (1−s) = 1− x− y, (1− t) (1− s) = x,
σ4 := (1 3 2) : s = 1− x− y, t (1−s) = x, (1− t) (1− s) = y,
σ5 := (1 3) : s = 1− x− y, t (1−s) = y, (1− t) (1− s) = x.

Moreover, denote by ∂1 = ∂x and ∂2 = ∂y the partial derivatives with respect to
x and y, respectively, and define

∂3 = ∂y − ∂x.

We organize the expression of partial derivatives ∂s and ∂t corresponding to each
σ ∈ S3 in Lemma 3.1.
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Lemma 3.1. We have:

σ0 : ∂s = ∂x − t ∂y = ∂1 − t ∂2, ∂t = (1− s)∂y = (1− s) ∂2,
σ1 : ∂s = ∂x − (1− t) ∂y = −∂3 + t ∂2, ∂t = −(1− s) ∂y = −(1− s) ∂2,
σ2 : ∂s = −t ∂x + ∂y = ∂2 − t ∂1, ∂t = (1− s) ∂x = (1− s) ∂1,
σ3 : ∂s = −(1− t) ∂x + ∂y = ∂3 + t ∂1, ∂t = −(1− s) ∂x = −(1− s) ∂1,
σ4 : ∂s=−t ∂x−(1−t) ∂y=−∂2+t ∂3, ∂t=(1−s) ∂x−(1−s) ∂y=−(1−s) ∂3,
σ5 : ∂s=−(1−t) ∂x−t ∂y=−∂1+t ∂3, ∂t=−(1−s) ∂x+(1−s) ∂y=−(1−s) ∂3.

Motivated by Lemma 3.1, we define the following differential operators.

Definition 3.2. We define the gradient-type differential operators

∇σ0
= (∂1 ∂2)

�, ∇σ1
= (−∂3 − ∂2)

�, ∇σ2
= (∂2 ∂1)

�,

∇σ3
= (∂3 − ∂1)

�, ∇σ4
= (−∂2 − ∂3)

�, ∇σ5
= (−∂1 − ∂3)

�,

where 
 denotes matrix transpose.

We are ready to introduce the Sobolev inner products that we will study in this
paper.

Definition 3.3. For α, β, γ > −1, let Wα,β,γ(x, y) be the weight function on T2

and bα,β,γ be the corresponding normalization constant as defined in Subsection
2.2. Let λ > 0 be a real number. For each σ ∈ S3 and all P,Q ∈ Π2, we define two
types of Sobolev inner products on the triangle:

Type I:

(2) 〈P,Q〉Iσ = bα,β,γ

∫ ∫
T2

[
P Q+ λ(∇σP )�Mσ∇σQ

]
Wα,β,γ(x, y) dydx,

where

Mσ =

(
(1− xσ(1))

2 −xσ(2)(1− xσ(1))
−xσ(2)(1− xσ(1)) x2

σ(2)

)
.

Type II:

(3) 〈P,Q〉IIσ = bα,β,γ

∫ ∫
T2

[
P Q+ λ(∇σP )�Nσ∇σQ

]
Wα,β,γ(x, y) dydx,

where

Nσ =

(
0 0
0 (1− xσ(1))

2

)
.

4. Sobolev orthogonal polynomials on the triangle

Now we focus on studying orthogonal polynomial bases associated with (2) and
(3). The strategy that we will use for constructing these orthogonal bases is moti-
vated by the construction in Proposition 2.2. More concretely, for each σ ∈ S3, we
will consider two sequences of univariate orthogonal polynomials associated with
some bilinear forms, and use them to construct mutually orthogonal polynomial
systems, analogous to the polynomials in Proposition 2.2, associated with (2) and
(3). Here, we will determine the involved univariate orthogonal polynomials.

To this end, we will consider the Type I and Type II Sobolev inner products
separately.
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4.1. Type I Sobolev orthogonal polynomials. Let α, β, γ > −1, and let α1 =
α, α2 = β, α3 = γ. For σ ∈ S3 and m � 0, let us define the univariate Sobolev
inner product
(4)

(f, g)σm =

∫ 1

0

[
f g + λ (f f ′)

(
m2 −m (1− s)

−m (1− s) (1− s)2

) (
g
g′

)]
wσ

m(s) ds, λ > 0,

where

wσ
m(s) = (1− s)ασ(2)+ασ(3)+2m+1 sασ(1) ,

or, equivalently,

(f, g)σm =

∫ 1

0

f(s) g(s)wσ
m(s) ds

+ λ

∫ 1

0

((1− s)m f)′ ((1− s)m g)′ (1− s)ασ(2)+ασ(3)+3 sασ(1) ds.

For m � 0, let {p(m)
n,σ (s)}n�0 be a univariate Sobolev orthogonal polynomial

sequence associated with the inner product (·, ·)σm. In addition, we define

(p(m)
n,σ , p

(m)
n,σ )

σ
m = h(m)

n,σ ,(5)

with h
(m)
n,σ = h

(m)
n,σ (λ) > 0, n,m � 0.

Since {p(m)
n,σ (s)}n�0 is unique up to a constant factor, we choose it such that,

for n � 0, p
(m)
n,σ (s) has the same leading coefficient as the Jacobi polynomial

P
(βσ

m,ασ(1))
n (2s − 1) with βσ

m = ασ(2) + ασ(3) + 2m + 1, and therefore, p
(m)
0,σ (s) =

P
(βσ

m,ασ(1))
0 (2s− 1).
Now, we present the first type of Sobolev orthogonal polynomials.

Theorem 4.1. For σ ∈ S3, the two-variable polynomials defined as

Sσ
n,m(x, y) = p

(m)
n−m,σ(xσ(1)) (1−xσ(1))

m P
(ασ(3),ασ(2))
m

(
2xσ(2)

1− xσ(1)
− 1

)
, 0�m�n,

constitute a mutually orthogonal polynomial system associated with the Sobolev in-
ner product 〈·, ·〉Iσ defined in (2).

Moreover,

Hσ
n,m = 〈Sσ

n,m, Sσ
n,m〉Iσ = bα,β,γ h

(m)
n−m,σ hm,

where h
(m)
n−m,σ is defined in (5) and

hm =

∫ 1

0

(
P

(ασ(3),ασ(2))
m (2t− 1)

)2

(1− t)ασ(3) tασ(2) dt.

Proof. By (1), we have

Wα,β,γ(x, y) dydx = (1− s)ασ(2)+ασ(3)+1 sασ(1) (1− t)ασ(3) tασ(2) dsdt.
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Using Lemma 3.1 and Definition 3.2, we get

〈Sσ
n,m, Sσ

i,j〉Iσ

= bα,β,γ

∫ ∫
T2

[
Sσ
n,m Sσ

i,j + λ(∇σS
σ
n,m)�Mσ∇σS

σ
i,j

]
Wα,β,γ(x, y) dydx

= bα,β,γ

[ ∫ 1

0

p
(m)
n−m,σ(s) p

(j)
i−j,σ(s) (1− s)ασ(2)+ασ(3)+m+j+1sασ(1)ds

+ λ

∫ 1

0

(
(1− s)m p

(m)
n−m,σ(s)

)′ (
(1− s)j p

(j)
i−j,σ(s)

)′
(1− s)ασ(2)+ασ(3)+3 sασ(1) ds

]

×
∫ 1

0

P
(ασ(3),ασ(2))
m (2t− 1)P

(ασ(3),ασ(2))

j (2t− 1) (1− t)ασ(3) tασ(2) dt

= bα,β,γ (p
(m)
n−m,σ, p

(m)
i−m,σ)m hm δm,j .

Since {p(m)
n,σ }n�0 is orthogonal with respect to (·, ·)σm, the theorem is proved. �

The univariate Sobolev inner product (4) is a particular case of a univariate
bilinear form studied in [14], where relations between the univariate Sobolev and
classical orthogonal polynomials involving up to three consecutive terms of each
family were obtained. In our case, from [14, Corollary 4.3], we get the following
result.

Proposition 4.2. For σ ∈ S3 and n � 1, there are constants a
(m)
n,1 = a

(m)
n,1 (σ),a

(m)
n,2

= a
(m)
n,2 (σ), b

(m)
n,1 = b

(m)
n,1 (σ), b

(m)
n,2 = b

(m)
n,2 (σ), depending on σ, such that the following

relation holds:

(6)
P

(βσ
m,ασ(1))

n (2s− 1) + a
(m)
n,1 P

(βσ
m,ασ(1))

n−1 (2s− 1) + a
(m)
n,2 P

(βσ
m,ασ(1))

n−2 (2s− 1)

= p(m)
n,σ (s) + b

(m)
n,1 p

(m)
n−1,σ(s) + b

(m)
n,2 p

(m)
n−2,σ(s),

where P
(βσ

m,ασ(1))
−1 (2s− 1) = p

(m)
−1,σ(s) = 0 and p

(m)
0,σ (s) = P

(βσ
m,ασ(1))

0 (2s− 1).

Observe that although P
(βσ

m,ασ(1))
0 (s) is a nonzero constant, the value of this

constant depends on the standardization of the Jacobi polynomials P
(βσ

m,ασ(1))
n (s).

Using the expression for Sσ
n,m(x, y), relation (6) can be extended to the bivariate

case by multiplying both sides by (1− xσ(1))
m P

(ασ(3),ασ(2))
m

(
2xσ(2)

1−xσ(1)
− 1

)
.

Proposition 4.3. For n � 0 and 0 � m � n, define the bivariate Jacobi polyno-
mials

P σ
n,m(x, y) = P

(βσ
m,ασ(1))

n−m (2xσ(1) − 1) (1− xσ(1))
m P

(ασ(3),ασ(2))
m

(
2xσ(2)

1− xσ(1)
− 1

)
.

The following relation holds:

P σ
n,m(x, y)+a

(m)
n−m−1,1P

σ
n−1,m(x, y) + a

(m)
n−m−1,2P

σ
n−2,m(x, y)

= Sσ
n,m(x, y) + b

(m)
n−m−1,1S

σ
n−1,m(x, y) + b

(m)
n−m−1,2S

σ
n−2,m(x, y),

and Sσ
0,0(x, y) = P σ

0,0(x, y).

We note that the case when σ = σ0 was studied in [14, Section 6.4].
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4.2. Type II Sobolev orthogonal polynomials. For σ ∈ S3, let us define the
univariate Sobolev inner product

(7) (f, g)σ =

∫ 1

0

[f(t) g(t) + λ f ′(t) g′(t)] (1− t)ασ(3) tασ(2) dt, λ > 0.

Let {qn,σ(t)}n�0 be the corresponding sequence of univariate orthogonal polyno-
mials, standardized in such a way that the leading coefficient of qn,σ(t) is the same

as the leading coefficient of the Jacobi polynomial P
(ασ(3),ασ(2))
n (2t− 1). Therefore,

q0,σ(t) = P
(ασ(3),ασ(2))
0 (2t− 1). In addition, let

(8) h(q)
n,σ = h(q)

n,σ(λ) = (qn,σ, qn,σ)
σ > 0, n � 0.

We can construct Sobolev orthogonal polynomials as follows:

Theorem 4.4. For σ ∈ S3, the two-variable polynomials

S̃σ
n,m(x, y) = P

(βσ
m,ασ(1))

n−m (2xσ(1) − 1) (1− xσ(1))
m qm,σ

(
xσ(2)

1− xσ(1)

)
, 0 � m � n,

with βσ
m = ασ(2) + ασ(3) + 2m + 1, constitute a mutually orthogonal polynomial

system with respect to the Sobolev inner product 〈·, ·〉IIσ defined in (3).
Moreover,

H̃σ
n,m = 〈S̃σ

n,m, S̃σ
n,m〉IIσ = bα,β,γ h̃

(m)
n−m h(q)

m,σ,

where h
(q)
m,σ is defined in (8), and

h̃
(m)
n−m =

∫ 1

0

(
P

(βσ
m,ασ(1))

n−m (2s− 1)
)2

(1− s)β
σ
m sασ(1)ds.

Proof. We compute

〈S̃σ
n,m, S̃σ

i,j〉IIσ

= bα,β,γ

∫ ∫
T2

[
S̃σ
n,m S̃σ

i,j + λ(∇σS̃
σ
n,m)�Nσ∇σS̃

σ
i,j

]
Wα,β,γ(x, y) dydx.

Using (1), Lemma 3.1, and Definition 3.2, we get∫ ∫
T2

S̃σ
n,m S̃σ

i,j Wα,β,γ(x, y) dydx

=

∫ 1

0

P
(βσ

m,ασ(1))
n−m (2s− 1)P

(βσ
j ,ασ(1))

i−j (2s− 1) (1− s)ασ(2)+ασ(3)+m+j+1 sασ(1)ds

×
∫ 1

0

qm,σ(t) qj,σ(t) (1− t)ασ(3) tασ(2) dt,

and∫ ∫
T2

(∇σS̃
σ
n,m)�Nσ∇σS̃

σ
i,j Wα,β,γ(x, y) dydx

=

∫ 1

0

P
(βσ

m,ασ(1))
n−m (2s− 1)P

(βσ
j ,ασ(1))

i−j (2s− 1) (1− s)ασ(2)+ασ(3)+m+j+1 sασ(1)ds

×
∫ 1

0

q′m,σ(t) q
′
j,σ(t) (1− t)ασ(3) tασ(2) dt.
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Putting both terms together, we get∫ ∫
T2

[
S̃σ
n,m S̃σ

i,j + λ(∇σS̃
σ
n,m)�Nσ∇σS̃

σ
i,j

]
Wα,β,γ(x, y) dydx

=

∫ 1

0

P
(βσ

m,ασ(1))
n−m (2s− 1)P

(βσ
j ,ασ(1))

i−j (2s− 1) (1− s)ασ(2)+ασ(3)+m+j+1 sασ(1)ds

×
∫ 1

0

[
qm,σ(t) qj,σ(t) + λ q′m,σ(t) q

′
j,σ(t)

]
(1− t)ασ(3) tασ(2) dt.

Therefore, 〈S̃σ
n,m, S̃σ

i,j〉IIσ = bα,β,γ h̃
(m)
n−m h

(q)
m,σ δn,i δm,j . �

The Sobolev inner product (7) is also a particular case of a univariate bilinear
form studied in [14]. From [14, Corollary 5.3], we deduce the following result.

Proposition 4.5. For σ ∈ S3 and n � 1, there are constants cσn,1, c
σ
n,2, d

σ
n,1, d

σ
n,2,

such that the following relation holds:

(9)
P

(ασ(3),ασ(2))
n (2t− 1) + cσn,1 P

(ασ(3),ασ(2))
n−1 (2t− 1) + cσn,2 P

(ασ(3),ασ(2))
n−2 (2t− 1)

= qn,σ(t) + dσn,1 qn−1,σ(t) + dσn,2 qn−2,σ(t),

with P
(ασ(3),ασ(2))
−1 (2t− 1) = q−1,σ(t) = 0 and q0,σ(t) = P

(ασ(3),ασ(2))
0 (2t− 1).

We can extend relation (9) to the bivariate case by following the proof of [14,
Theorem 5.5].

Proposition 4.6. For n � 1 and 0 � m � n, there are real numbers depending on
σ, such that the following relation holds:

4∑
i=0

[
η
(m)
n−i P

σ
n+2−i,m + cσm,1 θ

(m)
n−i P

σ
n+2−i,m−1 + cσm,2 ϑ

(m)
n−i P

σ
n+2−i,m−2

]
=

4∑
i=0

[
η
(m)
n−i S̃

σ
n+2−i,m + dσm,1 θ

(m)
n−i S̃

σ
n+2−i,m−1 + dσm,2 ϑ

(m)
n−i S̃

σ
n+2−i,m−2

]
,

with S̃σ
0,0(x, y) = P σ

0,0(x, y) and S̃σ
i,j(x, y) = 0 for i < j.

Proof. The result follows from the proof of [14, Theorem 5.5] by taking um and
v as the moment functionals associated with the Jacobi weight functions w1(s) =
(1 − s)β

σ
m sασ(1) and w2(t) = (1 − t)ασ(2) tασ(3) , respectively, and ρ(s) = (1 − s) =

(1− xσ(1)). �

5. Comparison of Sobolev inner products

In Definition 3.3, we have introduced a type I and a type II Sobolev inner prod-
uct for each σ ∈ S3. Hence, there are six inner products of each type. Moreover,
in Theorem 4.1 (respectively, Theorem 4.4), we constructed a polynomial system
orthogonal with respect to each type I (resp., type II) Sobolev inner product cor-
responding to σ.

In this section, we compare the Sobolev inner products of type I (resp., type II).
We do this by writing all the inner products in terms of the usual gradient operator
∇ = (∂x ∂y)

�. Recasting the inner products in this way shows that there are only
three distinct Sobolev inner products of type I (resp., type II).

We organize these results in the following propositions.
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Proposition 5.1. For all P,Q ∈ Π2,

〈P,Q〉Iσ0
= 〈P,Q〉Iσ1

= bα,β,γ

∫ ∫
T2

[
P Q+ λ(∇P )�

(
(1− x)2 −y (1− x)

−y (1− x) y2

)
∇Q

]
Wα,β,γ(x, y) dydx.

Moreover, let Sσ0
n,m(x, y) and Sσ1

n,m(x, y) be the polynomials defined in Theorem 4.1.
Then

Sσ1
n,m(x, y) = (−1)mSσ0

n,m(x, y), n � 0, 0 � m � n.

Proof. Using Lemma 3.1 and Definition 3.2, it is easy to check that 〈P,Q〉Iσ0
=

〈P,Q〉Iσ1
for all P,Q ∈ Π2.

Now, recall that

Sσ0
n,m(x, y) = p

(m)
n−m,σ0

(x) (1− x)m P (γ,β)
m

(
2 y

1− x
− 1

)
, 0 � m � n,

and

Sσ1
n,m(x, y) = p

(m)
n−m,σ1

(x) (1− x)m P (β,γ)
m

(
2 (1− x− y)

1− x
− 1

)
, 0 � m � n.

On one hand, for wσ
m(s) defined in (4), we have wσ0

m (s) = wσ1
m (s) for m � 0. Since

we have standardized p
(m)
n,σ (s) as having the same leading coefficient as the Jacobi

polynomial P
(βσ

m,ασ(1))
n (2s− 1) with βσ

m = ασ(2) + ασ(3) + 2m+ 1, we have that for

n,m � 0, p
(m)
n,σ0(s) = p

(m)
n,σ1(s).

On the other hand, the Jacobi polynomials satisfy ([17, p. 59])

P (a,b)
n (x) = (−1)nP (b,a)

n (−x).

Therefore,

P (β,γ)
m

(
2 (1− x− y)

1− x
− 1

)
= P (β,γ)

m

(
1− 2 y

1− x

)
= (−1)mP (γ,β)

m

(
2 y

1− x
− 1

)
.

It follows that Sσ1
n,m(x, y) = (−1)mSσ0

n,m(x, y). �

The following auxiliary lemma is used to prove the analogous result for type II
Sobolev inner product with σ0 and σ1.

Lemma 5.2. Let {qn,σ0
(t)}n�0 and {qn,σ1

(t)}n�0 be the sequences of orthogonal
polynomials associated with the bilinear form defined in (7) with σ0 and σ1. Then,

qn,σ1
(t) = (−1)nqn,σ0

(1− t), n � 0.

Proof. Recall that (7) with σ0 and σ1 reads

(f, g)σ0 =

∫ 1

0

[f(t) g(t) + λ f ′(t) g′(t)] (1− t)γtβdt,

and

(f, g)σ1 =

∫ 1

0

[f(t) g(t) + λ f ′(t) g′(t)] (1− t)βtγdt.

We can write

qn,σ0
(1− t) =

n∑
k=0

cn,k qk,σ1
(t), n � 0,
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where

cn,k =
(qn,σ0

(1− t), qk,σ1
(t))σ1

(qk,σ1
(t), qk,σ1

(t))σ1
, 0 � k � n.

We compute

(qn,σ0
(1− t),qk,σ1

(t))σ1

=

∫ 1

0

[
qn,σ0

(1− t) qk,σ1
(t) + λ q′n,σ0

(1− t) q′k,σ1
(t)

]
(1− t)βtγdt.

Setting y = 1− t, we obtain

(qn,σ0
(1− t), qk,σ1

(t))σ1

=

∫ 1

0

[
qn,σ0

(y) qk,σ1
(1− y) + λ q′n,σ0

(y) q′k,σ1
(1− y)

]
yβ(1− y)γdy

= (qn,σ0
(y), qk,σ1

(1− y))σ0 .

Since qn,σ0
(y) is orthogonal with respect to (·, ·)σ0 , we get

cn,k = 0, 0 � k � n− 1.

Since the leading coefficients of qn,σ0
(1− t) and qn,σ1

(t) are the same as the leading

coefficients of P
(γ,β)
n (1− 2t) and P

(β,γ)
n (2t− 1), respectively, we have cn,n = (−1)n,

and the result follows. �

We are ready to state the analogous result of Proposition 5.1 for the type II
Sobolev inner product with σ0 and σ1.

Proposition 5.3. For all P,Q ∈ Π2,

〈P,Q〉IIσ0
= 〈P,Q〉IIσ1

= bα,β,γ

∫ ∫
T2

[
P Q+ λ (1− x)2 ∂yP ∂yQ

]
Wα,β,γ(x, y) dydx.

Moreover, let S̃σ0
n,m(x, y) and S̃σ1

n,m(x, y) be the polynomials defined in Theorem 4.4.
Then

S̃σ1
n,m(x, y) = (−1)mS̃σ0

n,m(x, y), n � 0, 0 � m � n.

Proof. As in Proposition 5.1, it is easy to check that 〈P,Q〉IIσ0
= 〈P,Q〉IIσ1

for all

P,Q ∈ Π2.
Recall that

S̃σ0
n,m(x, y) = P

(β+γ+2m+1,α)
n−m (2x− 1) (1− x)m qm,σ0

(
y

1− x

)
, 0 � m � n,

and

S̃σ1
n,m(x, y) = P

(β+γ+2m+1,α)
n−m (2x− 1) (1− x)m qm,σ1

(
1− x− y

1− x

)
, 0 � m � n.

By Lemma 5.2, we have that

qm,σ1

(
1− x− y

1− x

)
= (−1)m qm,σ0

(
y

1− x

)
.

Hence, S̃σ1
n,m(x, y) = (−1)mS̃σ0

n,m(x, y). �

Propositions 5.4 and 5.5 state the analogous results for the remaining cases, and
they can be proved similarly to Proposition 5.1 and Proposition 5.3.
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Proposition 5.4. For all P,Q ∈ Π2,

〈P,Q〉Iσ2
= 〈P,Q〉Iσ3

= bα,β,γ

∫ ∫
T2

[
P Q+ λ(∇P )�

(
(1− y)2 −x (1− y)

−x (1− y) x2

)
∇Q

]
Wα,β,γ(x, y) dydx.

Moreover, let Sσ2
n,m(x, y) and Sσ3

n,m(x, y) be the polynomials defined in Theorem 4.1.
Then

Sσ2
n,m(x, y) = (−1)mSσ3

n,m(x, y), n � 0, 0 � m � n.

Similarly,

〈P,Q〉IIσ2
= 〈P,Q〉IIσ3

= bα,β,γ

∫ ∫
T2

[
P Q+ λ (1− y)2 ∂xP ∂xQ

]
Wα,β,γ(x, y) dydx.

Moreover, let S̃σ2
n,m(x, y) and S̃σ3

n,m(x, y) be the polynomials defined in Theorem 4.4.
Then

S̃σ2
n,m(x, y) = (−1)mS̃σ3

n,m(x, y), n � 0, 0 � m � n.

Proposition 5.5. For all P,Q ∈ Π2,

〈P,Q〉Iσ4
=〈P,Q〉Iσ5

=bα,β,γ

∫ ∫
T2

[
P Q+λ(∇P )�

(
x2 x y
x y y2

)
∇Q

]
Wα,β,γ(x, y) dydx.

Moreover, let Sσ4
n,m(x, y) and Sσ5

n,m(x, y) be the polynomials defined in Theorem 4.1.
Then

Sσ4
n,m(x, y) = (−1)mSσ5

n,m(x, y), n � 0, 0 � m � n.

Similarly,

〈P,Q〉IIσ2
= 〈P,Q〉IIσ3

= bα,β,γ

∫ ∫
T2

[
P Q+ λ (x+ y)2 (∇P )�

(
1 −1
−1 1

)
∇Q

]
Wα,β,γ(x, y) dydx.

Moreover, let S̃σ4
n,m(x, y) and S̃σ5

n,m(x, y) be the polynomials defined in Theorem 4.4.
Then

S̃σ4
n,m(x, y) = (−1)mS̃σ5

n,m(x, y), n � 0, 0 � m � n.
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A. Piñar, New steps on Sobolev orthogonality in two variables, J. Comput. Appl. Math. 235
(2010), no. 4, 916–926, DOI 10.1016/j.cam.2010.07.006. MR2727629

[3] Feng Dai and Yuan Xu, Polynomial approximation in Sobolev spaces on the unit
sphere and the unit ball, J. Approx. Theory 163 (2011), no. 10, 1400–1418, DOI
10.1016/j.jat.2011.05.001. MR2832732

[4] Antonia M. Delgado, Lidia Fernández, Doron S. Lubinsky, Teresa E. Pérez, and Miguel A.
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[17] Gabor Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Pub-

lications, Vol. 23, American Mathematical Society, Providence, R.I., 1959. Revised ed.
MR0106295

[18] Yuan Xu, A family of Sobolev orthogonal polynomials on the unit ball, J. Approx. Theory
138 (2006), no. 2, 232–241, DOI 10.1016/j.jat.2005.11.009. MR2201161

[19] Yuan Xu, Sobolev orthogonal polynomials defined via gradient on the unit ball, J. Approx.
Theory 152 (2008), no. 1, 52–65, DOI 10.1016/j.jat.2007.11.001. MR2419297

[20] Yuan Xu, Approximation and orthogonality in Sobolev spaces on a triangle, Constr. Approx.
46 (2017), no. 2, 349–434, DOI 10.1007/s00365-017-9377-3. MR3691233

[21] Xuhong Yu, Zhongqing Wang, and Huiyuan Li, Jacobi-Sobolev orthogonal polynomials and
spectral methods for elliptic boundary value problems, Commun. Appl. Math. Comput. 1
(2019), no. 2, 283–308, DOI 10.1007/s42967-019-00016-x. MR4022334
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