
TESIS DOCTORAL

Robust Network Topology Inference and
Processing of Graph Signals

Autor:
Samuel Rey Escudero

Director:
Prof. Dr. Antonio García Marqués

Programa de Doctorado Interuniversitario
en Multimedia y Comunicaciones

Escuela Internacional de Doctorado

2022





Resumen

En los últimos años, la creciente presencia de sistemas vastos y heterogéneos está causando que
los datos sean cada vez más abundantes y con estructuras más complejas, motivando así el rápido
desarrollo de nuevos modelos y herramientas capaces de lidiar con el dominio irregular (no Euclídeo)
donde están definidas las señales. Un método particularmente interesante consiste en representar
la estructura subyacente de las señales mediante un grafo e interpretar las señales como señales
definidas en el grafo. Precisamente, este es el mecanismo empleado en el procesado de señales
definidas en grafos o graph signal processing (GSP), un área relativamente nueva que encapsula
la topología del grafo en una matriz conocida como el graph-shift operator (GSO), y aprovecha
la relación entre las señales y el grafo para desarrollar herramientas que lidien eficazmente con el
dominio irregular de las señales.

Además de la estructura irregular de las señales, otra limitación fundamental es que los datos
observados son propensos a presentar imperfecciones o perturbaciones, muchas veces inherentes al
propio proceso de recolección de los mismos. La naturaleza de estas perturbaciones es muy variada
y, si se ignoran, pueden perjudicar significativamente el rendimiento de los algoritmos que utilicen
los datos perturbados. En GSP, las perturbaciones pueden clasificarse atendiendo a si afectan a las
señales observadas o a la topología del grafo, y la atención recibida en trabajos previos depende,
entre otros factores, del tipo de perturbación y de la complejidad resultante de su modelado.

Antecedentes

El desarrollo de métodos robustos a perturbaciones en las señales suele desembocar en proble-
mas tratables que, además, han sido estudiados en otras áreas relacionadas con GSP, propulsando
la aparición de una considerable cantidad de trabajos. En este ámbito, la presencia de ruido en
las señales constituye un problema omnipresente y ampliamente tratado en la literatura que puede
combatirse eficazmente mediante métodos que separen la señal del ruido, una tarea conocida
como signal denoising. Existe una gran variedad de métodos tradicionales basados en problemas
de optimización convexa [1–4], y también alternativas más recientes enfocadas en modelos no lin-
eales [5–7]. Otro tipo de perturbación relevante en las señales es la presencia de valores perdidos
o missing values, lo que implica que solo un subconjunto de los valores de la señal son observados.
Esto hace que sea necesario reconstruir la señal original, un problema ampliamente tratado en
trabajos de muestreo e interpolación bajo el supuesto de que las observaciones pertenecen a nodos
distintos [8–11], o se corresponden a agregaciones sucesivas de los valores de la señal en nodos
vecinos [12,13].

Por otro lado, las perturbaciones en la topología del grafo originan problemas particularmente
desafiantes y cuentan con menos trabajos previos en otras áreas, siendo estos algunos de los mo-
tivos por los que han sido menos estudiadas en la literatura de GSP. En esta clase de perturbaciones
destacan los errores en los enlaces del grafo, lo que se refleja en errores en el GSO y perjudica
gravemente a la mayoría de las herramientas dentro de GSP basadas en el espectro o en polinomios
del GSO. Inicialmente, [14,15] modelaron la influencia de estas perturbaciones bajo algunas suposi-
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ciones simplificadoras y, posteriormente, [16, 17] introdujeron métodos que tenían en cuenta las
imperfecciones en los enlaces para la estimación de filtros definidos en grafos o graph filters (GFs).
Por último, en el contexto de inferencia de topología, la presencia de nodos ocultos supone una
perturbación crítica. En este escenario solo se dispone de observaciones de un subconjunto de los
nodos y, aunque típicamente se busca inferir el subgrafo correspondiente a los nodos observados,
es imperativo tener en cuenta la influencia ejercida por los nodos ocultos. Este relevante problema
se ha comenzado a abordar en el contexto de selección de modelos gráficos Gaussianos [18, 19],
inferencia lineal de redes Bayesianas [20], o regresión no lineal [20].

Objetivos

El objetivo final de esta tesis es avanzar hacia un modelado robusto dentro de GSP en el que
los algoritmos sean cuidadosamente diseñados para incorporar la influencia de las perturbaciones
en los datos. Para conseguirlo, nos proponemos analizar y comprender el impacto de diferentes
tipos de perturbaciones en problemas fundamentales dentro del marco de GSP y, después, diseñar
una formulación robusta capaz de aliviar los efectos perjudiciales producidos por estas perturba-
ciones. Como este objetivo es bastante amplio, para ayudarnos a delimitar la extensión de la tesis
planteamos los siguientes objetivos específicos.

(O1) Eliminación de ruido en señales definidas en grafos. Cuando las señales observadas
presenten ruido, nuestro objetivo será diseñar arquitecturas no lineales capaces de separar el ruido
de la señal. Investigaremos distintas alternativas para incorporar la información codificada en
la topología del grafo en la arquitectura y desarrollaremos garantías teóricas que evidencien la
capacidad de eliminar ruido de las arquitecturas propuestas.

(O2) Interpolación de señales. Cuando las señales observadas contengan valores perdidos, nos
centraremos en reconstruir la señal a partir de las muestras observadas. Para esto, asumiremos que
las observaciones pueden representarse como muestras tomadas mediante un esquema de muestreo
de agregación local sucesiva y que la señal original es una señal sparse difundida en el grafo.

(O3) Identificación robusta de GFs. Nuestro objetivo será proponer un algoritmo capaz de
estimar un filtro a partir de pares de señales de entrada y salida que tenga en cuenta la presencia
de perturbaciones en los enlaces del grafo. Además, trataremos con un escenario relacionado
donde el objetivo será estimar simultáneamente varios filtros definidos sobre el mismo grafo y
propondremos una implementación eficiente del algoritmo resultante.

(O4) Inferencia de topología robusta y conjunta. Enfocaremos el problema clásico de inferencia
de topología de una red mediante un enfoque robusto a la presencia de nodos ocultos y considerando
que hay varias redes relacionadas que deben ser estimadas. En primer lugar, asumiremos que las
señales observadas son estacionarias en el grafo y, después, platearemos un modelo de inferencia
conjunta que aproveche la similitud de distintos grafos para inferirlos simultáneamente, mejorando
así la calidad de la estimación.

Aunque el carácter de esta tesis es principalmente teórico, además de estos objetivos dedicados
a un tipo de perturbación específica, también consideramos como objetivo transversal la evaluación
de los algoritmos desarrollados mediante datos reales para ilustrar su potencial aplicabilidad.

Metodología

En el desarrollo de esta tesis hemos seguido un planteamiento sistemático que busca la obten-
ción de soluciones óptimas. Para cada problema específico, nos hemos centrado en la obtención
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de modelos matemáticos capaces de capturar toda la estructura inherente al problema para poste-
riormente aprovecharlos en el desarrollo de problemas de optimización rigurosamente formulados.
Debido a la complejidad de las tareas abordadas, los problemas de optimización resultantes suelen
ser no convexos, por lo que el siguiente paso se centra en proponer relajaciones convexas y/o algo-
ritmos iterativos capaces de encontrar una solución (sub)óptima, demostrando matemáticamente
la convergencia de los algoritmos iterativos a un punto estacionario cuando sea necesario.

Tras el desarrollo de los algoritmos pertinentes, es imprescindible evaluar su rendimiento numéri-
camente y compararlos con distintas alternativas existentes. En este aspecto, además de la evalu-
ación mediante datos sintéticos, es una parte fundamental la aplicación de los algoritmos a datos
reales para estimar la potencial aplicación de las herramientas desarrolladas en escenarios prácti-
cos. Finalmente, todo el código desarrollado se ha subido a repositorios online en GitHub para
incrementar la visibilidad y difusión de los resultados obtenidos.

Resultados

El trabajo realizado en esta tesis se ha visto reflejado en la escritura de 4 artículos de re-
vista JCR (3 de ellos actualmente en proceso de revisión), y 7 publicaciones en conferencias
internacionales.

La tarea de eliminación de ruido descrita en el objetivo (O1) se ha llevado a cabo en [21,22].
Hemos desarrollado dos arquitecturas sobreparametrizadas y no entrenables que incorporan la
topología del grafo de maneras distintas. La primera se basa en GFs no entrenables que generalizan
la operación de convolución, y la segunda se basa unos operadores de sobremuestreo construidos
mediante esquemas de clustering jerárquico. Por otro lado, se ha realizado un análisis matemático
de ambas arquitecturas obteniendo garantías teóricas sobre su rendimiento, mejorando así nuestro
entendimiento sobre arquitecturas no lineales y la influencia de incorporar la topología del grafo.
Finalmente, las arquitecturas propuestas han servido como elemento clave en otros problemas
ajenos a la eliminación del ruido [23,24].

Los resultados derivados del objetivo (O2) se reflejan en [25]. En este trabajo hemos general-
izado los resultados del esquema de muestreo de agregación local sucesiva a escenarios donde la
señal original es una señal sparse difundida a través de la red en lugar de ser una señal de banda
limitada. Después de definir el modelo de observaciones para las señales perturbadas, hemos
propuesto un algoritmo de interpolación definido en el dominio espectral, y hemos generalizamos
resultados existentes sobre deconvolución ciega a este esquema de muestreo de agregación local
sucesiva con señales sparse difundidas en el grafo.

La solución propuesta al objetivo (O3) se ha traducido en las publicaciones [26,27]. El método
desarrollado está formulado en el dominio de los vértices, evitando problemas de inestabilidad
numérica y las dificultades asociadas con la influencia de perturbaciones en el espectro del grafo.
La identificación robusta del filtro se ha reformulado como un problema de optimización conjunto
en el que el objetivo de identificación del filtro ha sido aumentado con un regularizador que remueve
el ruido de la topología del grafo. De esta forma, además de estimar el filtro deseado también
se proporciona una estimación mejorada del grafo subyacente. Por otro lado, hemos generalizado
este problema a escenarios donde el objetivo es estimar simultáneamente múltiples GFs, todos
definidos sobre el mismo grafo. También en relación con este tipo de perturbaciones, en [28]
hemos desarrollamos una definición alternativa de GFs menos sensible a los errores en la topología.

Finalmente, la inferencia de topología en presencia de nodos ocultos planteada en (O4) se
ha abordado en [29, 30]. Inicialmente, hemos revisitado la definición clásica de estacionariedad
para que refleje la influencia de los nodos ocultos y la hemos empleado en la formulación de un
problema de optimización con restricciones adicionales que aprovechan la estructura resultante de
la presencia de nodos ocultos. Después, hemos presentado un método de inferencia de topología
conjunta que estimaba la topología de varios grafos simultáneamente para explotar la similitud
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entre los distintos grafos. Clave para este método robusto fue emplear la estructura por bloques
resultante de la presencia de variables ocultas. Adicionalmente, íntimamente relacionado con este
objetivo está el trabajo desarrollado en [31], donde proponemos un algoritmo de inferencia de
topología basado en información previa sobre la densidad de motivos (o motifs) del grafo objetivo.
Esta novedosa prior sobre la estructura del grafo tiene un carácter local y puede emplearse, por
ejemplo, para medir la distancia entre grafos de distinto tamaño, un problema no trivial que es
clave en los modelos de inferencia conjunta.

Conclusiones

En esta tesis se ha contribuido a construir los cimientos de un paradigma robusto en el que
abordar problemas clásicos de GSP mientras se modela la influencia de perturbaciones en los datos
observados. Con esta finalidad, se han considerado varios tipos de perturbaciones clasificados en
dos amplias clases: (i) perturbaciones en las señales; y (ii) perturbaciones en la topología del grafo.
La primera clase de perturbaciones está asociada con los objetivos (O1) y (O2) y suele originar
problemas tratables que han sido estudiados en mayor profundidad. Por otro lado, la segunda clase
de perturbaciones aparece en los objetivos (O3) y (O4) y origina problemas más desafiantes, por
lo que cuenta con un menor número de trabajos previos.

En primer lugar, en el capítulo 3 se han presentado distintas redes neuronales no lineales y
no entrenables que incluyen la topología del grafo mediante dos estrategias distintas y, además,
se ha caracterizado matemáticamente su capacidad para separar las señales del ruido asumiendo
algunas simplificaciones, avanzando así en la comprensión sobre este tipo de arquitecturas. El
capítulo 4 ha lidiado con la presencia de valores perdidos en las señales mediante la interpretación
de las observaciones como muestras recogidas a través de un esquema de muestreo de agregaciones
locales para, posteriormente, proponer un método espectral para su interpolación asumiendo se
trataba de señales sparse difundidas en el grafo. Después, en el capítulo 5 hemos presentado un
algoritmo robusto a perturbaciones en los enlaces del grafo capaz de identificar uno o varios GFs
a partir de un conjunto de observaciones de entrada y salida. Como el problema de optimización
era no convexo, hemos desarrollado un algoritmo iterativo basado en la resolución secuencial de
varios problemas convexos, hemos demostrado su convergencia a un punto estacionario y, además
de estimar los filtros de interés, hemos comprobado que elimina las perturbaciones existentes en
la topología del grafo. Finalmente, en el capítulo 6 se ha presentado un método de inferencia de
topología conjunta que tiene en cuenta la influencia de los nodos ocultos. Este algoritmo lidia
con la inferencia de varios grafos a partir de señales estacionarias y tiene en cuenta la particular
estructura del problema para aprovechar la similitud entre nodos no observados.

Adicionalmente, los algoritmos desarrollados en cada capítulo han sido evaluados mediante una
extensiva batería de experimentos empleando datos sintéticos y reales. En estos experimentos se
han comparado los métodos propuestos en esta tesis con otras alternativas del estado del arte.
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Abstract

The abundance of large and heterogeneous systems is rendering contemporary data more per-
vasive, intricate, and with a non-regular structure. With classical techniques facing troubles to
deal with the irregular (non-Euclidean) domain where the signals are defined, a popular approach
at the heart of graph signal processing (GSP) is to: (i) represent the underlying support via a
graph and (ii) exploit the topology of this graph to process the signals at hand. In addition to the
irregular structure of the signals, another critical limitation is that the observed data is prone to the
presence of perturbations, which, in the context of GSP, may affect not only the observed signals
but also the topology of the supporting graph. Ignoring the presence of perturbations, along with
the couplings between the errors in the signal and the errors in their support, can drastically hinder
estimation performance. While many GSP works have looked at the presence of perturbations in
the signals, much fewer have looked at the presence of perturbations in the graph, and almost
none at their joint effect. While this is not surprising (GSP is a relatively new field), we expect this
to change in the upcoming years. Motivated by the previous discussion, the goal of this thesis is to
advance toward a robust GSP paradigm where the algorithms are carefully designed to incorporate
the influence of perturbations in the graph signals, the graph support, and both. To do so, we
consider different types of perturbations, evaluate their disruptive impact on fundamental GSP
tasks, and design robust algorithms to address them.

The first part of the thesis addresses the presence of perturbations in the graph signals, which
typically lead to more tractable problems. When the observed signals are corrupted by additive
noise, we introduce two untrained nonlinear graph neural network architectures to remove the
noise from the observations, develop theoretical guarantees for their denoising capabilities in a
simple setup, and provide empirical evidence in more general scenarios. Each of the architectures
incorporates the information encoded by the graph in a different manner: one relying on graph
convolutions, and the other employing graph upsampling operators based on hierarchical clustering.
Intuitively, each architecture implements a different prior over the targeted signals. Then, we
move on to a setting where perturbations appear in the form of missing values. In this case,
we assume that the original signal is a diffused sparse graph signal, interpret the missing values
as samples gathered through a successive aggregation sample scheme, and study the recovery
(interpolation) of the original signal. Depending on the particular application, the goal is to
use the local observations to recover the diffused signal or (the location and values of) the seeds.
Different sampling configurations are investigated, including those of known and unknown locations
of the sources as well as that of the diffusing filter being unknown.

The second part of the thesis deals with perturbations in the topology of the graph, which
give rise to more challenging formulations. In this sense, we propose a novel approach for han-
dling perturbations in the links of the graph and apply it to the problem of robust graph filter
(GF) identification from input-output observations. Different from existing works, we formulate
a non-convex optimization problem that operates in the vertex domain and jointly performs GF
identification and graph denoising, and hence, on top of learning the desired GF, an estimate
of the graph is obtained as a byproduct. To handle the resulting bi-convex problem, we design
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an algorithm that blends techniques from alternating optimization and majorization minimization,
showing its convergence to a stationary point. Then, moving on to the last type of perturbation, we
investigate the problem of learning a graph from nodal observations for setups where only a subset
of the nodes are observed, with the others remaining unobserved or hidden. Our schemes assume
the number of observed nodes is considerably larger than the number of hidden nodes, and build
on recent GSP models to relate the signals and the underlying graph. Specifically, we go beyond
classical correlation and partial correlation approaches and assume that the signals are stationary in
the sought graph, and moreover, we propose a joint network topology inference framework where
several related graphs are estimated together. The underlying idea is to exploit the similarity of
the different graphs to enhance the quality of the estimation. Since the resulting problems are ill-
conditioned and non-convex, the block matrix structure of the proposed formulations is leveraged
and suitable convex-regularized relaxations are presented.

Although the methodology and focus of this thesis are more theoretical (defining an estimation
problem, stating the considered assumptions, obtaining the estimates as solutions to rigorously
formulated optimization problems, designing computationally efficient provably convergent algo-
rithms and, whenever possible, characterizing the performance of those), the experimental results
will also play an important role. To that end, we evaluate the performance of our algorithms
over synthetic and real-world datasets and compare their results with state-of-the-art alternatives.
These experiments reflect the impact of ignoring the presence of perturbations, show the strengths
and weaknesses of the proposed methods, demonstrate that in a number of settings our methods
outperform current alternatives, and assess the applicability of our schemes to real-world problems.
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Chapter 1

Introduction

We begin by providing a short overview of the research environment surrounding this thesis,
motivating the relevance of graph-based methods and highlighting the impact of the presence
of perturbations in the data. After that, the chapter: (i) states the main objectives sought by
this work; (ii) lists the resulting contributions; and (iii) presents a brief outline of the remaining
chapters.

1.1 Motivation and context

In the last two decades, we have been experiencing a data deluge largely propelled by the per-
vasive deployment of networks of sensing devices, the massive use of online social media, and the
unstoppable digitalization of our daily tasks. At the same time, as contemporary interconnected
systems grow in size and importance, the data generated by such systems becomes more complex
and heterogeneous, motivating the fast development of new methods and techniques to process
datasets de�ned over irregular (non-Euclidean) domains [32�35]. Among the novel approaches
that emerged to handle contemporary data, one particularly tractable and fruitful consists in mod-
eling the underlying irregular structure by means of agraph, and then, interpreting the data as
signals de�ned on the graph, which are commonly referred to asgraph signals. This graph-based
perspective has rapidly grown in popularity and it has been successfully applied to data obtained
from power, communication, social, geographical, �nancial, or biological networks, to name a
few [36�38]. Moreover, it has attracted the attention of researchers from di�erent areas, including
statistics, machine learning, and signal processing.

Precisely, interpreting signals with irregular support as graph signals and then exploiting the
topology of the underlying graph to process the signals is at the core of graph signal processing
(GSP), a relatively new �eld that is developing swiftly [39�42]. GSP is devoted to developing new
models and algorithms for processing graph signals, oftentimes by generalizing classical tools origi-
nally conceived to process signals with regular support (time or space). Based on the fundamental
assumption that there exists a close relation between the properties of the signals and the topology
of the graph where they are supported, the key to the success of GSP is to e�ectively exploit the
relation between the graph and the signals. To that end, a considerable proportion of the e�orts in
GSP are directed at analyzing how the algebraic and spectral characteristics of the graph impact
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the properties of the graph signals. In this analysis, the so-called graph-shift operator (GSO) plays
a fundamental role. The GSO is a sparse matrix whose sparsity pattern encodes the topology of
the graph, rendering it a cornerstone element within the GSP framework [39, 43]. For example,
employing the GSO as a building block enables the de�nition of di�erent spectral tools such as
the graph Fourier Transform (GFT) [44�46], or more general graph-signal operators such as graph
�lters (GFs), which may be expressed as polynomials of the GSO [43,47�49].

A wide range of graph-related problems have been addressed under the GSP umbrella, and even
though a variety of goals and assumptions are considered for the di�erent problems, the key idea of
harnessing the relation between the graph and the signals remains a constant. A popular problem
consists in modeling an arbitrary linear transformation between some input and output graph signals
through a GF. This task is commonly referred to as GF design or GF identi�cation, and the inferred
GF may be interpreted as the dynamics driving a network-di�usion process of interest [47,48,50,51].
The sampling and reconstruction of graph signals is also an interesting problem [8,9,11,12], with
meaningful connections to semisupervised learning. Note that while sampling signals de�ned over
regular domains is relatively straightforward (regular sampling schemes are prudent and give rise to
sample signals that are regular as well), this is not the case for graph signals, which are inherently
irregular. Hence, the e�orts when approaching this task focus on designing sampling schemes
that exploit the graph structure allowing to e�ectively recover the whole signal from its sampled
version. The reconstruction of the signal is also known as graph signal interpolation, and it is
related to solving an inverse problem that involves both the signal observations and the supporting
graph [1, 4, 52, 53]. Depending on the actual relation between the observations and the original
signal, the problem has been addressed from a point of view of signal denoising, inpainting, or
signal super-resolution, to name a few. Another fundamental but considerably di�erent problem
is that of network topology inference, also known as graph learning [54�59]. In contrast with
previous GSP problems, in network topology inference the focus is placed on the topology of
the graph, which is unknown, and therefore, the goal is to infer the graph from a set of nodal
observations. Finally, in the context of deep learning, another line of research that has attracted
attention is the development of non-linear architectures that exploit the relation between graphs
and signals by incorporating the topology of the graph into their design. This popular family of
neural networks (NNs) is known as graph neural networks (GNNs), and it encompasses a gamut
of di�erent graph-based architectures that have been applied to a wide range of problems [60�64].

All the aforementioned GSP applications use as input the observed data (graph signals) and the
observed/inferred support (the graph). Unfortunately, imperfect knowledge due to the presence
of noise, missing values, or outliers is pervasive in contemporary data science applications. In this
sense, we will use the generic termperturbation to refer to any imperfection in the observed data,
encompassing a variety of defects whose particularities will depend on the application at hand and
the features of the data. To further illustrate the diverse nature of perturbations in a GSP context,
consider the example of a network of sensors measuring some quantity of interest. The process of
acquiring the measurement will introduce a certain amount of noise, and furthermore, if any sensor
is damaged then its measures will be completely lost. Equally important, the information about
the connections between the sensors may not be fully accurate. This example clearly illustrates
that, when dealing with GSP, one needs to account for (i)perturbations in the graph signals;
(ii) perturbations in the topology of the graph; and (iii) the joint e�ects and interactions between
these two.

We start describing the presence ofperturbations in the graph signals. Clearly, signal perturba-
tions have been extensively investigated in signal processing, statistics, and data science, so that
many of the classical results can also be leveraged in the GSP setup. From this point of view, the
two key (distinctive) questions when dealing with perturbed graph signals are: (i) how does the
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graph in�uence the perturbation? and (ii) how can the graph be exploited to design the schemes
that mitigate/eliminate the perturbations? Due to the combination of practical relevance, tractabil-
ity, and the existence of related works from classical signal processing, accounting for perturbations
in the observed graph signals has attracted a considerable amount of attention. Accounting for
this, we focus on studying two speci�c types of perturbations that have been thoroughly analyzed
(the presence of noise in the signals and the presence of missing values), considering graph-aware
processing and acquisition architectures that had not been investigated before.

ˆ (P1) Noise in the graph signals. This simple case assumes that the observed signals are
corrupted by additive noise, typically modeled as an independent identically distributed (i.i.d.)
random variable drawn from a particular distribution. Noisy graph signals arise in a gamut
of graph-related applications such as measurements in electric, social and transportation
networks, or monitoring biological signals [1,37,41,65]. While denoising schemes have been
thoroughly investigated in classical signal processing, the noise perturbating graph signals is
oftentimes related to the topology of the graph (e.g., the noise can be independent across
nodes while its variance is proportional to the node degree or any other node centrality
measure). Even more importantly, GSP denoising schemes must be particularized to exploit
the graph when mitigating (eliminating) the noise. This process is known asgraph-based
signal denoising, and traditional approaches include minimizing the graph total variation to
push the signal values at neighboring nodes to be close [1, 2], promoting a notion of signal
smoothness by adding a regularization parameter based on the quadratic form of the graph
Laplacian [3], or encouraging the recovery of signals with a smooth gradient [4]. More
recently, non-linear solutions for denoising graph signals have been proposed, with relevant
examples based on median graph �lters [5], graph autoencoders [6], or graph unrolling
architectures [7].

ˆ (P2) Missing values. We use this term to refer to setups where only a subset of the entries
of the graph signal are available. This accounts for cases where the values are missing /
totally corrupted, as well as for sampling setups where the remaining entries were purposely
unobserved. Practical graph scenarios that can lead to missing values include damaged
sensors in a sensor network, wrong or incomplete answers when the data is gathered through
online forms, or just because sampling the signal values at every node is not feasible in large
networks [37, 66, 67]. A number of alternatives arise to deal with this type of perturbed
signals, with naive alternatives including �lling the missing values with zeros or using the
mean value within the observed values in the one-hop neighborhood. To �ll the missing
values, a reasonable and rigorous approach is to look at the problem from the sampling
perspective and design methods to performgraph signal interpolation. Two critical aspects
in this regard are the postulation of a parsimonious model for the graph signal (bandlimited,
di�used, smooth...) and the impact of the scheme collecting the samples. Several works have
investigated di�erent instances of this problem, with a strong bias towards assuming that the
original signal is graph bandlimited and that the observed values proceed from observations
taken at a �xed subset of nodes [8�11]. Alternatively, other works have postulated that
the observed values correspond to successively aggregating the values of the signal from
neighboring nodes [12,13], and designed the associated optimal interpolation schemes.

We shift focus now to the second class of imperfections studied in this work:perturbations in
the graph topology. In this case, recall that GSP builds upon exploiting the relation between the
signals and the graph, and hence, it is not surprising that methods within the GSP framework are
particularly sensitive to this type of imperfections. More precisely, a fair amount of GSP methods
rely on either the spectrum of the GSO or in polynomials of the GSO, and because the GSO captures
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the topology of the graph, the perturbations in the observed topology translate into perturbations
in the GSO. However, even when assuming additive models to represent the perturbations, which
are the easiest type of models to deal with, measuring the impact of the perturbations in the
topology on the spectrum of the GSO and the polynomials of the GSO is a challenging endeavor.
Not only that, but when perturbations a�ect the number of observed nodes, even the size of the
GSO will be uncertain. In conclusion, the perturbations in the topology of the graph will not
only hinder the performance of GSP algorithms but, furthermore, developing robust alternatives
that model the presence of perturbations is a non-trivial and ill-posed problem, which has been
barely studied in the GSP literature. In this work, we focus on two types of graph perturbations:
uncertainty (imperfections) in the edges of the graph, and unobserved nodes (whose e�ects will
be analyzed in the context of graph learning). These two types of perturbations, which are both
theoretically and practically relevant, are described in more detail next.

ˆ (P3) Uncertainty in the edges. Here, we assume that the set of nodes is perfectly known
and that imperfect information about the existence and strength of the links (graph topology)
is available. The perturbations in the observed topology may encompass observing edges that
do not exist in the true graph, missing/unobserved edges that exist in the true graph, noise
present in the weights of the observed edges, or any combination of the previous options.
These perturbations appear in a gamut of practical situations. On the one hand, when
networks are given explicitly, perturbations may be due to observational noise and errors (e.g.,
link failures in power or wireless networks [68]). On the other hand, when in lieu of physical
entities, the graphs model (statistical) pairwise relationships among the observed variables,
they need to be inferred from the data [56,57,69]. While this type of perturbation is critical
for many GSP methods, modeling the in�uence of the imperfect topological information and
developing robust alternatives is a challenging task, and hence, there is a limited number of
works approaching this problem. In the frequency domain, [14] employs a small perturbation
analysis to study the impact of perturbations in the spectrum of the graph Laplacian. In
the vertex domain, [15, 70] postulates a graphon-based perturbation model applied to GFs
of order one. Then, in more recent approaches, [16] combines structural equation model
(SEM) with total least squares (TLS) to jointly infer the GF and the perturbations in the
GSO, and [17] proposes a robust GF identi�cation alternative where the support of the graph
is assumed to be known, so the perturbations are constrained to be noise in the observed
edges.

ˆ (P4) Hidden nodes. Finally, we consider a perturbation where some elements of the
nodal set are not known, which is a problem particularly acute in the context of network
topology inference. Clearly, when hidden nodes are present, one has only access to signals
(measurements) from the remaining (observed) nodes. However, this should not be confused
with the (missing values) perturbations introduced in(P2) . There, the signals at some nodes
were not observed, but the existence of the node and its connections to other nodes were
known. In contrast, here not only the underlying graph is unknown, but even the number
of hidden nodes is oftentimes not known. A number of estimation goals arise in the context
of (P4) : inferring the number of hidden nodes, the connections among them, or the values
of the signals, to name a few. In the speci�c context of network topology inference under
the presence of hidden nodes, the problem is more challenging because the links among
observed nodes are unknown as well. As a result, the main goal is usually to estimate the
links between the observed nodes (also known as learning theobserved subgraph). More
ambitious approaches aim also at estimating the links between observed and unobserved
nodes. Clearly, all these problems are related and challenging (highly correlated values from
two observed nodes may be explained not only by an edge between the two nodes but by a
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third hidden node connected to them). Some network-inference methods have started to look
at the problem of hidden nodes with examples in the context of Gaussian graphical model
selection [18, 19], inference of linear Bayesian networks [20], non-linear regression [71], or
brain connectivity [72], to name a few. Nonetheless, there are still many network-inference
methods (including most in the context of GSP) that have not considered this type of
perturbations.

To summarize, the presence of perturbations in GSP setups leads to having imperfect knowledge
about the graph signals, the graph, or both. Clearly, if these perturbations are ignored, the
performance of naive algorithms that use as input the corrupted data will be drastically hindered.
The solution is to design robust schemes that model and incorporate into their formulation the
presence and e�ects of the perturbations. While relevant and timely, this is a challenging problem,
especially when the perturbations a�ect the graph topology. Bearing all this in mind, our goal,
which is presented in detail in the next section, is to develop a set of GSP methods robust to
di�erent types of perturbations, understand their di�erences and similarities, and discuss how they
can be combined in a meaningful and tractable way.

1.2 Objectives

As discussed in the previous section, the presence of perturbations in the observed data con-
stitutes a relevant and ubiquitous problem. Motivated by this, the prevailing objective of this
thesis is to advance towards arobust GSPparadigm where the algorithms are carefully designed
to deal with the presence of perturbations in the graphs and the signals. To that end, we aim to
analyze and understand the impact of the di�erent types of perturbations in several fundamental
GSP problems and then, design a robust formulation capable of: (i) recovering the original data
from the perturbed observations; and/or (ii) approaching the desired task while taking into ac-
count the presence of perturbations in the data to minimize their disruptive in�uence. To render
these generic (and relatively ambitious) goals more reachable, we focus our research e�orts on
four speci�c objectives. Each of them considers a speci�c GSP problem and addresses one of the
perturbations introduced in Section 1.1.

(O1) Non-linear denoising of graph signals. Consider a setting where the observed graph
signals are corrupted with noise as described in the perturbation type(P1) . Our goal is to design
non-linear architectures to denoise the observed graph signals. Because dealing with noisy signals
is a problem that has been studied to a considerable extent in the GSP literature, here we focus
on the design of untrainednon-lineararchitectures and on their theoretical characterization. First,
we will explore di�erent ways of incorporating the information encoded in the graph and propose
novel graph-aware NN architectures to denoise graph signals. Second, we will provide theoretical
guarantees for the denoising performance of the proposed architectures, and we will show that the
denoising capability is directly in�uenced by the topology of the underlying graph.

(O2) Signal interpolation of di�used sparse graph signals. Consider a setting where the
observed signals have missing values as described in the perturbation type(P2) . Our goal is to
reconstruct the observed signal when the observations are taken at a particular node according to a
successive localaggregation sampling scheme (AGSS). The signal to be reconstructed is assumed
to be adi�used sparse graph signal (DSGS), a class of signals that can be modeled as a signal with
zeros everywhere except in a few seeding nodes, which is then di�used through the network via a
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GF. Ultimately, we will develop a reconstruction algorithm to recover both the original (di�used)
signal and the seeds from the perturbed observation.

(O3) Robust GF identi�cation. Consider a setting where the observed graph is perturbed as
described in the perturbation type(P3) . Our goal is to estimate a GF from some input-output
signal pairs while accounting for the presence of errors in the supporting graph and in the observed
signals. The proposed approach needs to bypass the challenges associated with robustspectral
graph theory and avoid the numerical instability from computing high-order polynomials. We will
also address the scenario where several GFs need to be estimated, with all the GFs being de�ned
as polynomials of the same GSO.

(O4) Robust network topology inference. Consider a network topology inference problem where
a subset of the nodes remain hidden as described in the perturbation type(P4) . Our goal is to
estimate the joint topology of the observed subgraph while taking into account the presence of the
hidden nodes. The observed signals will be assumed to be stationary in the unknown graph and our
main focus will be considering the case where several related graphs, all de�ned over the same set
of nodes, need to be learned. Here, we will develop ajoint network topology inferencealgorithm
that exploits the graph similarity while accounting for the presence of hidden nodes. Note that
leveraging the graph similarity between hidden nodes (which are not observed) is an interesting
but non-trivial problem.

Clearly, objectives(O1) and(O2) are concerned with perturbations involving the graph signals
and they aim to design schemes to clean/infer the graph signal of interest. In contrast, objectives
(O3) and(O4) are concerned with perturbations involving the topology of the graph and they aim
to solve higher order GSP tasks while mitigating (bypassing) the presence of the perturbations.
On top of these four speci�c objectives, two transversal objectives are also considered. First,
since many of the �ndings and challenges faced when addressing(O1) -(O4) are also present in
related robust GSP setups, our aim is that the models and tools put forward in this thesis improve
our understanding of the in�uence of perturbations in a general way, hoping that these robust
approaches may be extended/generalized to other important GSP applications where the presence
of perturbations is critical. Secondly, even though the scope of this thesis is markedly theoretical,
showcasing the potential applicability of the algorithms developed herein is certainly important.
Therefore, we de�ne another transversal objective, which consists in assessing the practical value
of our algorithms using real-world datasets.

1.3 Summary of contributions

This section provides the list of publications organized around the (results and contributions)
of the four objectives presented in the previous section.

The graph signal denoising task(O1) is addressed in [21, 22]. The preliminary work in [21]
proposed an underparametrized deep decoder NN capable of learning non-linear representation for
graph signals, which were used for compression and denoising. Later on, [22] presented twoun-
trained and overparametrized GNNs to address the graph signal denoising problem. To incorporate
the topology of the graph, the �rst architecture employs a �xed (non-learnable) GF to generalize
the convolutional layer in [60]. The second architecture performs graph upsampling operations
that, starting from a low-dimensional latent space, progressively increase the size of the input
until it matches the size of the signal to denoise. Furthermore, a mathematical analysis was con-
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ducted for each architecture o�ering bounds for their performance, improving our understanding
of nonlinear architectures and the in�uence of incorporating the graph structure into NNs. In-
terestingly, the decoder architecture introduced in [22] has proven useful for other problems than
signal denoising. The decoder was employed to design a graph deep decoder capable of learning
the mapping between input-output signal pairs de�ned on di�erent graphs [23, 24]. The key idea
is that the encoder uses the input graph to map the input signal onto a latent space, and then,
the decoder uses the output graph to reconstruct the output signal from the latent representation.
The publications related to(O1) are listed below.

[21] S. Rey, A. G. Marques, and S. Segarra, �An underparametrized deep decoder architecture for
graph signals,� in IEEE Intl. Wrksp. Computat. Advances Multi-Sensor Adaptive Process.
(CAMSAP). IEEE, 2019, pp. 231�235.

[22] S. Rey, S. Segarra, R. Heckel, and A. G. Marques, �Untrained graph neural networks for de-
noising,� arXiv preprint arXiv:2109.11700, 2021 (submitted to IEEE Trans. Signal Process.).

[23] S. Rey, V. M. Tenorio, S. Rozada, L. Martino, and A. G. Marques, �Deep encoder-decoder
neural network architectures for graph output signals,� in Conf. Signals, Syst., Computers
(Asilomar). IEEE, 2019, pp. 225�229.

[24] S. Rey, V. M. Tenorio, S. Rozada, L. Martino, and A. G. Marques, �Overparametrized deep
encoder-decoder schemes for inputs and outputs de�ned over graphs,� in European Signal
Process. Conf. (EUSIPCO). IEEE, 2021, pp. 855�859.

The goal of graph signal interpolation(O2) is pursued in [25], where the observed (non-
missing) values of the perturbed signals are assumed to be taken at a particular node according
to an AGSS. In the AGSS, which was originally proposed for bandlimited graph signals (BGS),
the nodes successively aggregate the values of the signal in their neighborhood, and moreover,
the recovery of the original signals can be guaranteed even if observations are gathered at a
single node. Firstly, [25] applied AGSS to the case where the observed signals are DSGS in lieu
of BGS. Secondly, after de�ning the observational model for the perturbed signals, the paper
proposed an interpolation algorithm de�ned in the spectral domain. Finally, existing results for
support identi�cation and blind deconvolution were generalized to deal with AGSS and DSGS. The
publication related to(O2) is listed below.

[25] S. Rey, F. J. I. Garcia, C. Cabrera, and A. G. Marques, �Sampling and reconstruction of
di�used sparse graph signals from successive local aggregations�, IEEE Signal Process. Lett.,
vol. 26, no. 8, pp. 1142�1146, 2019.

The robust robust GF identi�cation problem(O3) is approached in [26, 27]. In those works,
the proposed solution was formulated in the vertex domain, avoiding the numerical instability of
computing large polynomials and, at the same time, bypassing the challenges associated with
robust spectral graph theory. The robust GF identi�cation was recast as a joint optimization
problem where the GF identi�cation objective was augmented with a graph-denoising regularizer
so that, on top of the desired GF, the proposed algorithm also provided an enhanced estimate of the
supporting graph. The joint formulation led to a non-convex bi-convex optimization algorithm, for
which a provably-convergent e�cient algorithm able to �nd an approximate solution was developed.
Furthermore, to address scenarios where multiple GFs are present, the paper generalized the robust
framework so that multiple GFs, all de�ned over the same graph, were jointly identi�ed. Also
related to (O3) , [28] introduced the neighborhood GF, a new type of GF that is numerically
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stable and robust to perturbations in the observed topology. The de�nition of neighborhood GF,
which replaced the powers of the GSO withk-hop adjacency matrices, was exploited to provide an
alternative design of graph convolutional NN (GCNN) that was employed in graph signal denoising
and node classi�cation problems. The publications involved with(O3) are listed below.

[26] S. Rey and A. G. Marques, �Robust graph-�lter identi�cation with graph denoising regular-
ization�, in IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP). IEEE, 2021, pp.
5300�5304.

[27] S. Rey, V. M. Tenorio, and A. G. Marques, �Robust graph �lter identi�cation and graph
denoising from signal observations,� arXiv preprint arXiv:2210.08488, 2022 (submitted to
IEEE Trans. Signal Process.).

[28] V. M. Tenorio, S. Rey, F. Gama, S. Segarra, and A. G. Marques, �A robust alternative for
graph convolutional neural networks via graph neighborhood �lters,� in Conf. Signals, Syst.,
Computers (Asilomar). IEEE, 2021, pp. 1573�1578.

Lastly, the network topology inference in the presence of hidden nodes(O4) is addressed
in [29, 30]. Initially, [29] investigated how the presence of hidden variables impacts the classical
de�nition of graph stationarity. Key to the proposed formulation was the consideration of a block
matrix factorization approach and harnessing the low rankness and the sparsity pattern present
in the blocks related to hidden variables. Then, we exploited this block matrix factorization
in [30] to propose a topology inference method that, assuming that the observed signals are graph-
stationary, jointly learns multiple graphs while accounting for the presence of hidden variables.
To fully bene�t from the joint inference formulation and successfully exploit the graph similarity
among hidden nodes, the paper carefully exploited the structure inherent to the presence of latent
variables with a regularization inspired by group Lasso [73]. An additional work that is closely
related to the objective(O4) is presented in [31]. The paper presented a graph-learning algorithm
that assumes that a reference graph with a density of motifs similar to that of the sought graph
was known. Then, this similarity was harnessed to reveal a connection between the spectra of
both graphs, which was exploited in the formulation of the inference problem and the associated
algorithm. The prior information about the density of motifs of the unknown graph is local and
robust, in the sense that it enables the comparison of graphs of di�erent sizes, an issue that was
non-trivial. Moreover, leveraging this prior to boost the performance of graph learning algorithms
in the presence of hidden nodes arises as an interesting research problem, which is left as a future
research direction. The publications related to(O4) are listed below.

[29] A. Buciulea, S. Rey, C. Cabrera, and A. G. Marques, �Network reconstruction from graph-
stationary signals with hidden variables�, in Conf. Signals, Syst., Computers (Asilomar).
IEEE, 2019, pp. 56�60.

[30] S. Rey, A. Buciulea, M. Navarro, S. Segarra, and A. G. Marques, �Joint inference of multiple
graphs with hidden variables from stationary graph signals�, in IEEE Int. Conf. Acoustics,
Speech Signal Process. (ICASSP). IEEE, 2022, pp. 5817�05821.

[31] S. Rey, T. M. Roddenberry, S. Segarra, and A. G. Marques, �Enhanced graph-learning
schemes driven by similar distributions of motifs�, arXiv preprintarXiv:2207.04747, 2022
(submitted to IEEE Trans. Signal Process.).
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1.4 Outline of the dissertation

The remainder of this document is organized as follows. First, Chapter 2 introduces fundamen-
tal de�nitions and concepts that will be employed during the thesis. Then, Chapter 3 considers
the presence of noise in the signals and proposes non-linear architectures to perform graph signal
denoising. Chapter 4 addresses the presence of missing values in the observed signals and intro-
duces an interpolation method for DSGS. Regarding the perturbations in the topology, Chapter 5
addresses the problem of GF identi�cation assuming imperfect knowledge of the observed topol-
ogy, and Chapter 6 approaches the task of network topology inference while accounting for the
presence of hidden nodes. Finally, Chapter 7 provides some concluding remarks and identi�es some
interesting future research directions.





Chapter 2

Fundamentals of graph signal processing

This chapter introduces the main concepts and tools from GSP, which are the foundations to
the research carried out in this thesis. To that end, we begin by de�ning the basics of GSP, then
introduce some fundamental tools and methods, and close the section describing a couple of more
advanced GSP concepts directly related to this thesis.

2.1 Graphs, graph signals, and the GSO

A graph is a mathematical structure formally de�ned asG := ( V; E), where V and E are,
respectively, the sets containing thenodesand edgesconforming the graph, which are also com-
monly known asverticesand links. The nodes collected inV are typically labeled using integers so
V := f 1; 2; :::; N g, with N denoting the number of nodes in the graph. Then, the edges collected
in E are represented by pairs of nodes(i; j ) with i; j 2 V and (i; j ) 2 E if and only if the nodei is
connected to nodej . If none of the edges in the graph are directed, that is, if edges are agnostic to
which node is the origin and which is the destiny, then the graph is calledundirected, and hence,
(i; j ) 2 E implies that (j; i ) 2 E. In contrast, when the graph captures the direction of the edges
it is calleddirected, and we might encounter that(i; j ) 2 E but (j; i ) 62 E. Fig. 2.1 represents an
undirected graph where the nodes inV are represented in blue and the edges inE are represented
as gray lines. Intuitively, a graph encodes pairwise relations between the nodes inV, with these
relations being represented by the edges. Then, anunweightedgraph captures whether an edge
exists or not but it does not provide any information about the strength (closeness, similarity,...)
of the connection. On the other hand, this additional information about the distance or closeness
between connected nodes is provided byweighted graphs. The distinction between weighted and
unweighted graphs is apparent when looking at theadjacency matrix, a widely used matrix rep-
resentation of the topology ofG. The adjacency matrixA is a sparseN � N matrix encoding
the connectivity of the graph whose entryA ij 6= 0 if and only if (i; j ) 2 E. When the graph is
unweighted the entries ofA are binary, i.e.,A 2 f 0; 1gN � N . On the contrary, if the graph is
weighted thenA 2 RN � N and the non-zero entriesA ij capture the weight of the edge between
the nodesi and j . Similarly, when the graph is undirected the matrixA is symmetric. Another
concept involving the connectivity of the graph is that of the neighborhood of a node. For any
node i , its neighborhoodN i := f j 2 Vj (i; j ) 2 Eg is the set of nodes that are connected toi .
Furthermore, thedegreeof a nodei is given by the number of neighbors, so it is formally de�ned
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Figure 2.1: Depiction of a graph signalx and the underlying graphG. Nodes are represented in blue, the
edges are the connections in gray, and the height of the red vertical bars represents the values ofx at each
node.

asdi := jN i j = [ A1 ]i , where1 denotes the vector of all ones. In other words,di can be computed
by adding the entries of thei -th row of A . If graphs are directed, one must account for de�ning
incoming (outcoming) neighborhoods as well as incoming (outcoming) degrees.

We move on to the de�nition of graph signals, which represent the other fundamental piece
within the GSP framework and constitute the subject of study in most GSP problems. Formally,
a graph signalcan be modeled as a function from the node set to the real �eld1 x : V ! R or,
equivalently, as anN -dimensional real-valued vectorx = [ x1; :::; xN ]> 2 RN , with x i denoting
the value of the signal at the nodei . An example of a graph signal is given in Fig. 2.1, where
the height of the vertical bars represents the value of the signal at each node. Then, because
the graph signalx is de�ned on G, the core assumption of GSP is that either the values or the
properties ofx depend on the topology ofG [43]. For instance, consider a graph that encodes
similarity. If the value ofA ij is high, then one will expect the signal valuesx i and x j to be akin
to each other. This rationale helps to explain the advantages of leveraging the topology of the
graph when processing graph signals. Some relevant examples of graph signal models that re�ect
the in�uence of the graph topology onx are provided in Section 2.3.

The last key element in the GSP framework is the so-calledgraph-shift operator(GSO), a
square matrix that captures the topology of the underlying graphG [43]. The GSO is denoted
by S 2 RN � N and its entry Sij is allowed to be non-zero if and only ifi = j or (i; j ) 2 E.
Intuitively, S can be understood as a topology-aware local operator that can be applied to process
graph signals. There exist several options for selecting the GSO, with typical choices including the
adjacency matrixA , the graph combinatorial LaplacianL := diag(A1 ) � A , and its normalized
variants [39, 43]. Note that diag(�) denotes the diagonal operator that transforms a vector into
a diagonal matrix. In this sense, usingS instead of a speci�c choice for the GSO is particularly
useful since it provides a higher level of abstraction and results in algorithms that may be applied
to a wider range of scenarios. WhenG is assumed to be undirected, it follows thatS is symmetric
and it can be diagonalized asS = V�V > , where the orthonormal matrixV 2 RN � N collects the
eigenvectors ofS, and the diagonal matrix� = diag(� ) collects the eigenvalues� 2 RN . On the
other hand, whenG represents a directed graph we will assume thatS is still diagonalizable and
its decomposition will be given byS = V�V � 1. Note that, in the directed case, the eigenvalues
collected in� are likely to be complex numbers.

1For simplicity, we focus our discussion on scalar, real-valued graph signals, but the values associated with each
node could be discrete, complex, or even vectors (e.g., when multiple features per node are observed).
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2.2 Graph �lters and �lter identi�cation

Graph �lters (GFs) are topology-aware linear operators whose inputs and outputs are graph
signals. More speci�cally, graph �lters implement a linear transformation that can be expressed as
a polynomial of the GSO of the form

H :=
R� 1X

r =0

hr Sr = V diag(	h )V � 1 = V diag(~h)V � 1; (2.1)

whereH is the graph �lter, andh := [ h0; :::; hR� 1]> is the vector collecting the �lter coe�cients
hi . The N � R Vandermonde matrix	 de�ned as	 ij := � j � 1

ii represents the GFT for GFs, and
thus, ~h := 	h is the vector of sizeN representing the frequency response ofH [44, 48]. Since
Sr encodes ther -hop neighborhood of the graph, graph �lters can be used to di�use input graph
signalsx across the graph asy =

P R� 1
r =0 hr Sr x = Hx , wherey is the result of di�using the signal

x acrossR� 1 neighborhoods withhr being the coe�cients of the linear combination.

A relevant problem in the context of GFs is that of GF identi�cation. Consider that we observe
M input and output pairsX := [ x1; :::; xM ] and Y := [ y1; :::; yM ] whose relation is given by

Y = HX + W ; (2.2)

with W being a zero-mean random matrix (typically assumed to have i.i.d. entries) that accounts
for noisy measurements and model inaccuracies. Leveraging (2.2), the GF identi�cation task
amounts to using the input-output pairs to estimateH under the model in (2.1), which, if the
GSOS is known, boils down to estimating the GF coe�cients collected inh 2 RR . Hence, we
can approach the GF identi�cation task in the node domain by solving the convex problem

min
h











Y �

R� 1X

r =0

hr Sr X
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F

: (2.3)

Leveraging the frequency de�nition of GFs in (2.1), we rewrite the least-squares (LS) cost in (2.3)
and obtain its (closed-form) solution as

ĥ = argmin
h






 vec(Y ) �

�
(V � 1X )> � V

�
	h








2

2
= � yvec(Y ); (2.4)

wherevec(�) denotes the vectorization operation,V � 1X is the frequency representation of the
input signals (see Section 2.3),� denotes the Khatri�Rao product,	 is the GFT Vandermonde
matrix, � := (( V � 1X )> � V )	 , and y is the pseudoinverse operator.

From (2.4) we observe that estimatingH is straightforward under the assumptions of: i)�
being full rank (i.e., the inputs are su�ciently rich); and ii)S being perfectly known. However,
as discussed in the �rst chapter of this thesis, the assumption in ii) does not hold true in many
practical settings. New formulations of (2.4) that account for imperfect GSOs are addressed in
Chapter 5.

2.3 Models for graph signals

There is a great diversity of models capturing di�erent relations between the signals and
the underlying graph. Here, we introduce some popular models for graph signals, which will
be leveraged in subsequent chapters.
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Bandlimited graph signals. The notion of bandlimited graph signals links the properties of a signal
to those of the spectrum of the supporting graph. To be speci�c, the frequency representation of
the signalx is given by theN -dimensional vector~x := V � 1x, with V � 1 acting as the GFT [44].
Then, a graph signal is said to below-passbandlimited if ~x satis�es that ~xk = 0 for k > K , where
K � N is referred to as the bandwidth ofx . If x is bandlimited with bandwidthK , it holds that

x = V K ~xK ; (2.5)

with ~xK = [~x1; � � � ; ~xK ] collecting the active frequency components, andV K collecting the
correspondingK eigenvectors. In other words,x lives in a subspace of dimensionK spanned by the
eigenvectorsV K . Nonetheless, even though bandlimited graph signals are typically associated with
low-pass signals, the non-zero elements in~x are not constrained to its low-frequency components.
We might encounter high-pass bandlimited signals or signals whose active frequency components
are scattered throughout the spectrum. Furthermore, in relevant cases we might ignore the speci�c
frequency components that are active, further challenging the solution of inverse problems dealing
with bandlimited graph signals.

Interestingly, comparing the de�nition of~x with the de�nition of ~h from (2.1), it follows that,
in contrast with classical signal processing, the GFT for graph signals is di�erent from the GFT
for GFs. Nonetheless, exploiting the frequency representations~x and ~h, we have that the output
y = Hx in the frequency domain is given by

~y = diag(	h )V � 1x = diag(~h)~x = ~h � ~x; (2.6)

with � denoting the Hadamard (entry-wise) product. Note that equation (2.6) is the counterpart
of the convolution theorem for time signals [48].

Di�used sparse graph signals (DSGS). A graph signal is called a DSGS when it can be modeled
as a signal with only a few non-zero entries which is then di�used through the graph. Mathemat-
ically, given a GSOS, a DSGSx with S non-zero seeds can be written as

x = Hs ; where H =
P R� 1

r =0 hr Sr and ksk0 � S; (2.7)

wheres denotes the original sparse signal whose non-zero entries are referred to asseeding nodes.
Clearly, signals in (2.7) can be viewed as the state reached after the di�usion process modeled by
H is over, and the sparse inputs 2 RN has been spread throughout the graph.

It is worth noticing that bandlimited signals and DSGS are two generative models with a
similar goal: providing a simpler representation ofx . In this sense, the bandlimited model o�ers
an alternative representation ofx that is sparse in thefrequency domainwhile the DSGS model
o�ers an alternative representation ofx that is sparse in thenode domain. As happened with the
frequency components, the support of the seeding nodes may be known a priori or we may need
to learn it through deconvolution schemes.

Smooth graph signals. A graph signal is considered smooth onG if the signal value at two
connected nodes is �close� or, equivalently, if the di�erence between the signal value at neighboring
nodes is small. A common approach to quantify the smoothness of a graph signal relies on the
quadratic form [54] X

(i;j )2E

A ij (x i � x j )2 = x> Lx ; (2.8)

which quanti�es how much the signalx changes with respect to the notion of similarity encoded in
the weights ofA . This measure will be referred to as local variation (LV ) of x . Note that, if the
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goal is to obtain the meanLV of M graph signals collected in theN � M matrix X = [ x1; :::; xM ],
this can be achieved by computing

1
M

MX

m=1

x>
m Lx m =

1
M

MX

m=1

tr(xm x>
m L ) = tr(Ĉx L ); (2.9)

whereĈx := 1
M

P M
m=1 xm x>

m = 1
M XX > denotes the sample estimate of the covariance ofX .

When compared with the previous models for graph signals, it is clear that smoothness is a
more lenient assumption. For example, consider that we impose a maximum LV onx with the
constraintx> Lx � c for somec > 0. Then, while bandlimited signals are constrained to live in the
subspace spanned byV K , smooth signals are only constrained to lie within an ellipsoid. Last but
not least, more advanced notions of smoothness can be de�ned by consideringkx � Hx k2

2, where
H represents a pre-speci�ed low-pass GF whose �lter taps/frequency response can be tailored to
�t the notion of smoothness at hand.

Stationary graph signals. The de�nition of graph stationarity connects the statistical properties
of random graph signals with the underlying graph. Formally, a zero-mean random graph signal
x is said to be stationary onG if its covariance matrixCx = E[xx > ] is a positive-semide�nite
polynomial of the GSO [74]. WhenG is undirected so thatVV > = I , a common example of
stationary graph signals arises whenx is the output of a linear graph-di�usion process whose input
is a zero mean white signalw 2 RN , i.e., when the covariance ofw is E[ww > ] = I and x = Hw .
In this particular case, we have that the covariance ofx is given by

Cx = E[xx > ] = H E[ww > ]H > = HH > = H 2: (2.10)

Since the graph �lter H is by de�nition a polynomial of the GSOS, from the last equality in
(2.10), it readily follows thatCx is a polynomial ofS as well. As a result, in the spectral domain,
it holds that S and Cx share the same eigenvectors, and moreover, we have that the matrices
S and Cx commute, i.e.,Cx S = SCx . Finally, we emphasize that graph stationarity does not
impose a deterministic condition onx but, instead, it imposes a condition on the covariance of
the signal.

2.4 Graph inverse problems: denoising and interpolation

The models for graph signals discussed previously in Section 2.3 have been shown to bear
practical relevance in real-world datasets and are widely employed in inverse problems. Here, we
brie�y describe traditional approaches to leverage the properties of some of those models when the
observed signals are perturbed.

In the context ofgraph signal denoising, when the perturbation consists in the presence of an
additive noise in the signal of interest, we are given the noisy observationx = x0 + n and the
goal is to recover the original signalx0 2 RN . If x0 is known to be bandlimited and the graph is
undirected, an estimate ofx0 is readily given by

x̂0 = V K V >
K x; (2.11)

where, by projectingx onto the subspace spanned byV >
K , we remove the components of the noise

n orthogonal toV >
K while retaining all the energy ofx0. Di�erently, if x0 is known to be smooth
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and the noise is white and Gaussian, a popular approach is to solve an optimization problem of
the form of

x̂0 = argmin �x 0
kx � �x0k2

2 + � �x>
0 L �x0: (2.12)

Here, the estimatêx0 is a smooth representation of the noisy observationx, with the weight �
controlling the trade-o� between minimizing the similarity of̂x0 and x and the LV of x̂0. Note
that, if the noise is drawn from a di�erent distribution, then a similarity metric other than the
`2 norm may be preferred. Along the same lines, if additional statistical information about the
noise were available (e.g., the covariance of the noise), this can also be incorporated into the
minimization problem.

Now, let us consider the problem ofgraph signal interpolation. This is a relevant problem in
setups where the graph signal has been corrupted with missing values or, alternatively, when only
a sampled version of the signal is available due to the fact that only a subset of nodes has been
observed. To be speci�c, consider the sampling setQ � V with cardinality Q � N that collects
the set of nodes that have been observed, and de�ne the (fat) selection matrix� Q 2 f 0; 1gQ� N

whose elements satisfy: (i)
P

j � Q;ij = 1 for all i ; and (ii)
P

i � Q;ij = 1 if j 2 Q and
P

i � Q;ij = 0
otherwise. Then, if the original signalx is bandlimited, and assuming that the observed values
correspond to observations at di�erent nodes, we denote the perturbed signal with missing values as
xQ := � Qx = � QV K ~xK . Under these conditions, the original signalx can be readily recovered
via

x̂ = V K ~xK = V K (� QV K )yxQ ; (2.13)

provided that the rank of theQ � K submatrix � QV K is K . Nonetheless, in some settings, the
missing values may be represented more accurately with alternative sampling schemes. An equally
valid, but less intuitive approach to sampling a graph signal, is to �x some nodei , and consider
the sampling of the signal seen by this node as the GSO is applied recursively. In other words,
consider that the signal has been locally di�used according toS, as encoded in the matrix

Z := [ z(0) ; z(1) ; :::; z(N � 1) ] = [ x ; Sx; :::; SN � 1x]: (2.14)

Then, using the matrixZ and with ei denoting the i -th canonical vector, thesuccessively ag-
gregatedsignal at nodei is the i -th row of Z, that is zi := ( eT

i Z)T = ZT ei . Sampling is now
reduced to the selection ofQ out of the N elements ofzi , that is zQ;i := � Qzi = � Q

�
ZT ei

�
.

Leveraging the results in [12], the signalx can be recovered fromzQ;i as

x = V K
�
� Q 	 > diag(� i )

� yzQ;i ; with � i := [ Vi; 1; :::; Vi;N ]> : (2.15)

2.5 Graph learning

Graph learning, also known as network topology inference, has developed swiftly in the last years
and, currently, is among the most active research areas within GSP. Given a set of graph signals
(nodal observations) collected in the matrixX = [ x1; x2; :::; xM ] 2 RN � M , which are typically
assumed to be independent realizations of a random network process, the goal is to discover the
topology of the graph encoded in the GSO by assuming that the observed signalsX and the
unknown graph are intimately connected. Fig. 2.2 illustrates the case where a graph learning
algorithm is employed to learn the connection between the di�erent regions of the brain based on
the signals measured at each region. Intuitively, the relation betweenX and G will depend on the
application at hand, with di�erent relations between the observations and the unknown topology
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leading to di�erent graph learning algorithms. Here, we will provide a succinct summary of the
most relevant approaches based on [59]. The interested reader is referred there for additional
details.

One of the �rst methods to estimate the topologyG is given bycorrelation networks, where
the topology is obtained from the Pearson correlation of the i.i.d. random vectors collected in
X . The Pearson correlation coe�cient between variablesx i and x j is denoted as� ij and can be
computed from the entries of the covariance matrix[Cx ]ij . Therefore, in the context of GSP, the
GSO for correlation networks is usually set to the sampled covarianceĈx , or a thresholded version
to ensure a sparse matrixS.

While correlation networks are a simple alternative, high correlations may be due to latent
network e�ects. For example, the random variablesx i andx j may be highly correlated not because
the nodesi and j are connected but because of a third nodek that is in�uencing both of them.
In principle, such a confounding can be resolved by considering thepartial correlationcoe�cients

� ij jVnij :=
cov(x i ; x j jVnij )

q
var(x i jVnij )var( x j jVnij )

: (2.16)

Here,Vnij denotes the set of random variables except for those indexed by nodesi andj . The edge
set in partial correlation networks is then de�ned analogously to their (unconditional) correlation
network counterpart.

Of particular interest is the case when each column ofX is sampled independently from the
same Gaussian distribution. Under such an assumption,� ij jVnij = 0 implies that x i and x j are
conditionally independent given the remaining variables inV nij . The resulting partial correlation
network is known asGaussian Markov random �eld (GMRF)or Gaussian graphical model[75].
Then, the key realization is that the partial correlation coe�cientsV n ij , which capture the
topology of the graph, can be expressed as the normalized entries ofC � 1

x . In the context of
GMRFs, this important matrix is known as theprecisionmatrix. From the GSP perspective,
the previous discussion implies thatS = C � 1

x . In other words, the topology of the graph is
encoded in the inverse covariance matrix. Leveraging this observation, the notoriousgraphical
Lassoalgorithm [69] estimatesS through the regularized maximum likelihood (ML) estimator

Ŝ = argmax
S� 0

log det(S) � tr(Ĉx S) � � kSk1; (2.17)

where thekSk1 denotes thè 1 norm of the vectorization ofS.

Finally, we consider a network topology inference approach that builds upon the more lenient
assumption of stationary graph signals. First, in correlation networks, it was assumed thatS = Cx ,
and later on, in the graphical Lasso algorithm and other GMRF approaches the relation between

Figure 2.2: Application of a generic graph learning scheme. The input, represented on the left, is given
by signals measured in the di�erent regions of the brain (the nodes of the graph). Then, the output of the
graph learning algorithm, on the right, are the inferred connections between the di�erent regions, i.e., the
estimated topology of the network.
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the GSO and the covariance of the observed signals is constrained toS = C � 1
x . In contrast, the

assumption of stationary graph signals only implies that the mappingS ! Cx is given by a generic
polynomial, hence including the previous scenarios as particular cases. While there are di�erent
formulations for this graph learning approach, one particularly interesting for this thesis is given by

Ŝ = argmin
S

kSk1 s: t : kSĈx � Ĉx Sk2
F � �; S 2 S; (2.18)

which is formulated solely in the node domain thanks to the commutativity constraintkSĈx �
Ĉx Sk2

F . The optimization problem �nds the sparsest GSO that commutes withĈx , with � being
a small positive parameter controlling the quality of the estimateĈx , and with S collecting the
requirements forS to be a speci�c type of GSO. A typical example is the set of adjacency matrices

SA := f A ij � 0; A = A > ; A ii = 0; A1 � 1g; (2.19)

where we require the GSO to have non-negative weights, be symmetric, and have no self-loops,
and the last constraint rules out the trivial0 solution by imposing that every node has at least one
neighbor. Analogously, the set of combinatorial Laplacian matrices is

SL := f L ij � 0 for i 6= j ; L = L > ; L1 = 0; L � 0g; (2.20)

where we require the GSO to be a positive semide�nite matrix, have non-positive o�-diagonal
values, have positive entries on its diagonal, and have the constant vector as an eigenvector (i.e,
the sum of the entries of each row to be zero).

So far the section has been focused on a graph learning setting that, in the network science
parlance, is known as thenetwork associationproblem [37]. While network association is the most
widely considered approach in the context of graph learning, two relevant variations are: the link
prediction problem and the network tomography problem.Link prediction is a simpler problem
in which a subset of the edges of the graph is observed along with the signals. This additional
information can be incorporated into the previous framework by modifying the constraint setS. In
contrast,network tomographyis a more challenging task where the observed signals are perturbed
and observations from only a subset of the nodes are available. Precisely, developing robust
algorithms that address the latter problem leveraging several GSP assumptions is the subject of
Chapter 6.

2.6 Graph neural networks

Generically, we represent a GNN using a parametric nonlinear functionf � (ZjG) : RN (0) � F (0)
!

RN that depends on the graphG. The parameters of the architecture are collected in� , and
the matrix Z 2 RN (0) � F (0)

represents the input of the network. Despite the many possibilities for
de�ning a GNN, a broad range of such architectures recursively applies a graph-aware linear trans-
formation followed by an entry-wise nonlinearity. Then, a generic deep graph-based architecture
f � (ZjG) with L layers can be described as

Ŷ (` ) = T (` )
� ( ` )

n
Y (` � 1) jG

o
; 1 � ` � L; (2.21)

Y (` )
ij = g(` )

�
Ŷ (` )

ij

�
; 1 � ` � L; (2.22)

whereT (` )
� ( ` ) f�jGg : RN ( ` � 1) � F ( ` � 1)

! RN ( ` ) � F ( ` )
is a graph-awarelinear transformation,Y (0) = Z

and y = Y (L ) denote the input and output of the architecture,� (` ) 2 RF ( ` � 1) � F ( ` )
are the
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Figure 2.3: Block diagram of a generic GNN withL layers. The inputs of the architecture are the matrix
Z and the topology of the graph. As speci�ed in (2.21)-(2.22), each layer is composed of a learnable graph-

aware linear transformationT ( ` )
� ( ` )

�
Y ( ` � 1) jG

	
followed by a entry-wise non-linear transformationg( ` )

�
Ŷ ( ` )

ij

�
.

parameters that de�ne such a transformation, andg(` ) : R ! R is ascalarnonlinear transformation
(e.g., the ReLU function), which is oftentimes omitted in the last layer. Moreover,N (` ) and
F (` ) represent the number of nodes and features at layer`, and � = f � (` )gL

`=1 collects all the
parameters of the architecture. The structure of the generic GNN speci�ed by the recursion in
(2.21)-(2.22) is depicted in Fig. 2.3. Finally, even though the output off � (ZjG) are graph signals
de�ned in RN , which is the case of interest for Chapter 3, it can be easily adapted to output graph
signals with more than one feature.

2.7 Graph perturbations in GSP

The presence of noise in the observed topology represents a relevant but challenging problem
that is yet to be studied in more depth by the GSP community. Current works addressing this
issue customarily represent the in�uence that these perturbations exert in the GSO via an additive
term because of its tractability, but even then, the resulting models are non-trivial. The source of
this di�culty lies in the main tools used in GSP, which are based either on the GFT (eigenvectors
of the GSO) or on graph �lters (polynomials of the GSO). The challenges are then twofold:
(i) characterizing the impact that an additive matrix perturbation has on the eigenvectors and/or
a polynomial of that matrix is highly nontrivial; and (ii) even small perturbations onS may
lead to great discrepancies in both the eigenvectors and the associated polynomials, as we show
in Chapter 5. Here, we present a succinct overview of relevant works considering the in�uence of
noise in the observed topology to provide some context.

We start with the work presented in [14], which analyzes how perturbations in the edges a�ect
the spectrum of the combinatorial graph LaplacianL . The authors assume an additive perturbation
model and de�ne the perturbed Laplacian as�L := L + � L , with � L denoting the perturbation
matrix. Assuming that all the eigenvalues ofL have multiplicity one and thatk� LkF � k LkF ,
they perform a small perturbation analysis to quantify the in�uence of the perturbations in the
eigenvalues and eigenvectors ofL . Based on this result, and assuming that the perturbation of
each edge is modeled as a random event characterized by a certain probability, a statistical analysis
is carried out to characterize the mean and the variance of the perturbation of the eigenvalues.
Lastly, [14] studies the in�uence of the perturbations on the spectrum of BGS when the eigenvectors
of L are used as the GFT.
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Di�erently, [15] investigated the in�uence of perturbations in the adjacency matrix leveraging
results from the graphon theory. The perturbed adjacency matrix is also de�ned based on an
additive perturbation model as�A = A + � � � (1N � N � 2A ), where1N � N is the matrix of all
ones of sizeN � N . The perturbations in� � are modeled as a random graph drawn from either
an Erd®s-Rényi (ER) or a stochastic block model (SBM), and then, generalizations considering
di�erent probabilities for creating and destroying edges and dealing with weighted graphs are
also proposed. Finally, the model put forth in [15] is employed to analyze the in�uence of the
perturbations in a polynomial of the GSO of order 2.

To close this chapter, we stress that, for ease of exposition, we presented a taxonomy where
the fundamental concepts, tools, and problems in the GSP framework were clearly segregated.
Nonetheless, in practical settings we can encounter di�erent combinations of the above problems
and generative models giving rise to a rich gamut of GSP tasks. This can be seen inblind
deconvolution, which is a graph �lter identi�cation problem whenx is a DSGS and the seeding
nodes ins are unknown, or in the problem approached in Chapter 5, where we simultaneously
estimate a graph �lter and denoise the observed topology of the graph.



Chapter 3

Non-linear denoising of graph signals

The �rst problem considered in the robust GSP framework proposed in this thesis involves the
presence of noise in the observed graph signals. As discussed in previous chapters, the presence
of noise represents a pervasive type of perturbation capable of rendering the observed data useless
when the signal-to-noise ratio is low. As a result, (pre-)processing schemes that remove the noise
from the observed signals are required. It is worth recalling that, because the presence of noise in
the signals does not a�ect the topology of the graph and results in tractable problems, there are
several works addressing the denoising of graph signals. In this sense, the approach described in this
chapter, which encapsulates our work from [21,22], is primarily concerned with incorporating the
information encoded in the graph topology into non-linear architectures and, furthermore, providing
a mathematical characterization of the denoising capabilities of the proposed architectures.

Bearing the previous comments in mind, the chapter is organized as follows. Section 3.1 gives a
brief overview of the architectures developed and summarizes the main contributions. Section 3.2
formally introduces the problem at hand and presents our general approach. Section 3.3 and
Section 3.4 detail the proposed architectures and provide the mathematical analysis for each of
them. Numerical experiments are presented in Section 3.5 and concluding remarks are provided in
Section 3.6.

3.1 Introduction

In order to develop agraph-aware non-linear architecturecapable of removing the noise from the
observed signals, the goal of this chapter is twofold. First, we explore di�erent ways of incorporating
the information encoded in the graph and propose new graph-based NN architectures to denoise
graph signals. Second, we provide theoretical guarantees for the denoising capabilities of this
approach and show that such guarantees are directly in�uenced by the properties of the graph.
The mathematical analysis, performed on particular instances of these architectures, characterizes
their denoising performance under speci�c assumptions for the original signal and its underlying
graph. In addition, we provide empirical evidence about the denoising performance of our method
for scenarios more general than those strictly covered by our theory, further illustrating the value
of our graph-aware untrained architectures to denoise graph signals.
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The presented architectures areuntrained NNs, meaning that the parameters of the network
are optimized using only the signal observation that we want to denoise, avoiding the dependency
on a training set with multiple observed graph signals. The underlying assumption behind this
untrained denoising architecture is that, due to the graph-speci�c structure incorporated into the
di�erent layers, when tuning the network parameters using stochastic gradient steps, the NNs are
capable of learning (matching) the structure of the signal faster than that of the noise. Hence, the
denoising process is carried out separately for each individual observation by �tting the weights of
the NN and stopping the updates after a few iterations. This same phenomenon has been observed
to hold true in non-graph deep learning architectures [76, 77]. In the context of signal denoising,
the consideration of an overparametrized graph-aware architecture along with early stopping avoids
over�tting to the noise.

To incorporate the topology of the graph, the �rst architecture multiplies the input at each
layer by a �xed (non-learnable) graph �lter [48], which can be seen as a generalization of the
convolutional layer in [60]. The second architecture performs graph upsampling operations that,
starting from a low-dimensional latent space, progressively increase the size of the input until it
matches the size of the signal to denoise. The sequence of upsampling operators are designed
based on hierarchical clustering algorithms [23,78�80] so that, in contrast to [6], matrix inversions
are not required, avoiding the related numerical issues.

Contributions. In summary, the contributions of this chapter are the following:

(i) We introduce two new overparametrized and untrained GNNs for solving graph-signal de-
noising problems.

(ii) We characterize theoretically the denoising performance of each of the two architectures,
improving our understanding of nonlinear architectures and the in�uence of incorporating
graph structure into NNs.

(iii) The proposed architectures are evaluated and compared to other denoising alternatives
through numerical experiments carried out with synthetic and real-world data.

3.2 GNNs for graph-signal denoising

We now formally introduce the problem of graph-signal denoising within the GSP framework,
and present our approach to tackle it using untrained GNN architectures. Given the graphG, let
us consider the observed graph signalx 2 RN , which is a noisy version of the original graph signal
x0. With n 2 RN being a noise vector, the relation betweenx and x0 is

x = x0 + n: (3.1)

Then, the goal of graph-signal denoising is to remove as much noise as possible from the observed
signalx to estimate the original signalx0, which is performed by exploiting the information encoded
in G.

Recall that a traditional approach for the graph-signal denoising task is to solve an optimization
problem of the form

x̂0 = argmin �x 0
kx � �x0k2

2 + �R ( �x0jG): (3.2)
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Algorithm 1: Proposed graph-signal denoising method
Inputs : x and G
Outputs: x̂0 and �̂ (x )

1 Set f � (ZjG) as explained in Section 3.3 or Section 3.4
2 GenerateZ from iid zero-mean Gaussian distribution
3 Initialize � (0) from iid zero-mean Gaussian
4 for t = 1 to T do
5 Update � (t ) minimizing (3.3) with SGD
6 end
7 �̂ (x ) = � (T )

8 x̂0 = f �̂ (x ) (ZjG)

The �rst term promotes �delity to the signal observations, the regularizerR(�jG) promotes denoised
signals with desirable properties over the given graphG, and � > 0 controls the in�uence of the
regularization. Common choices for the regularizer include the quadratic LaplacianR(x jG) =
x> Lx [3], or regularizers involving high-pass graph �ltersR(x jG) = kHx k2

2 that foster smoothness
on the estimated signal [1,44].

While those traditional approaches exhibit a number of advantages (including interpretability,
mathematical tractability, and convexity), they may fail to capture more complex relations between
G and x0, motivating the development of nonlinear graph-denoising approaches.

As summarized in Algorithm 1, in this chapter we advocate handling the graph-signal denoising
task by employing an overparametrized GNN (denoted byf � (ZjG)) as described in (2.21)-(2.22).
The weights of the architecture, collected in� , are learned by minimizing the loss function

L (x ; � ) =
1
2

kx � f � (ZjG)k2
2; (3.3)

applying stochastic gradient descent (SGD) in combination with early stopping to avoid over�tting
the noise. The entries of the parameters� and the input matrix Z are initialized at random
using an i.i.d. zero-mean Gaussian distributions, and the weights learned after a few iterations of
denoising the observationx are denoted aŝ� (x ). Note that Z is �xed to its random initialization.
Finally, the denoised graph signal estimate is computed as

x̂0 = f �̂ (x ) (ZjG): (3.4)

The intuition behind this approach is as follows: since the architecture is overparametrized it
can in principle �t any signal, including noise. However, as shown formally later, both empirically
and theoretically, the proposed architectures �t graph signals faster than the noise and, therefore,
with early stopping they �t most of the signal and little of the noise, enabling signal denoising.

Remark 1. The proposed architectures are described asuntrained NNs because, when minimizing
(3.3), the weights in� are learned to �t each observationx, with the denoised signal̂x0 being
the output for those particular weights. This implies that each noisy-denoised signal pair(x ; x̂0)
is associated with a particular value of the weights� , in contrasts with trainable NNs, where the
weights � are �rst learned by �tting the signals in atraining set and later used (unchanged) to
denoise signals that were not in the training set.

Regarding the speci�c implementation of the untrained networkf � (ZjG), there are multiple
possibilities for selecting the linear and nonlinear transformationsT (` )

� ( ` ) and g(` ) de�ned in equa-
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tions (2.21) and (2.22), respectively. As customary in NNs dealing with signals de�ned inRN , we
select theReLU operator, de�ned asReLU(x) = max(0 ; x), to be the entrywise nonlinearityg(` ) .
Then, we focus on the design of the linear transformation, which is responsible for incorporating
the structure of the graph. The two following sections postulate the implementation of two par-
ticular linear transformationsT (` )

� ( ` ) (each giving rise to a di�erent GNN) and analyze the resulting
architectures.

3.3 Graph convolutional generator

Our �rst architecture to address the graph-signal denoising task is a graph-convolutional genera-
tor (GCG) network that incorporates the topology of the graph into the NN pipeline via vertex-based
graph convolutions. Then, leveraging the fact that convolutions of a graph signal on the vertex
domain can be represented by a graph �lterH 2 RN � N [48], we de�ne the linear transformation
for the convolutional generator as

T (` )
� ( ` ) f Y (` � 1) jGg= HY (` � 1) � (` ) : (3.5)

Remember that theF (` � 1) � F (` ) matrix � (` ) collects the learnable weights of thè-th layer, and
the graph �lter H is given by (2.1). The coe�cientsf hr gR� 1

r =0 are �xed a priori so thatH promotes
desired properties on the estimated signal. Using the linear transformation de�ned in (3.5), the
output of the GCG withL layers is given by the recursion

Y (` ) = ReLU( HY (` � 1) � (` ) ); for ` = 1 ; :::; L � 1; (3.6)

y (L ) = HY (L � 1) � (L ) ; (3.7)

whereY (0) = Z denotes the random input and theReLU is not applied in the last layer of the
architecture. With the proposed linear transformation, the GCG learns to combine the features
within each node by �tting the weights of the matrices� (` ) while the graph �lter H interpolates
the signal by mixing features fromR � 1 neighborhoods.

Even though the proposed GCG exploits graph convolutions to incorporate the graph topology
into the architecture, it is intrinsically di�erent from other GCNNs. The linear transformation
proposed in [60], arguably one of the most popular implementations of GCNNs, is given by

T (` )
� ( ` ) f Y (` � 1) jGg= ( A + I )Y (` � 1) � (` ) : (3.8)

Recalling the de�nition of graph �lters in (2.1), it is evident that (3.8) is a particular case of our
proposed linear transformation, obtained by setting the generative graph �lter toH = A + I ,
a low-pass graph �lter of degree one. In addition to representing a more general scenario, (3.6)
endows the GCG with two main advantages. First, the graph �lterH allows us to incorporate
prior information on the signals to denoise, making our GCG architecture more suitable to denoise
a (high-) low-frequency signal by employing a (high-) low-pass �lter. Second, in (3.8) there is an
equivalence between the depth of the network and the radius of the considered neighborhood, so
that gathering information from nodes that areR hops apart requires a GNN withR layers. In
contrast, with the architecture considered in (3.6), the same can be achieved by considering a GCG
with L layers and a graph �lterH of degreeR=L [48], reducing the number of learnable parameters
and bypassing some of the well-known over-smoothing problems associated with (3.8) [81].

Next, we adopt some simplifying assumptions to provide theoretical guarantees on the denoising
capability of the GCG (Section 3.3.1). Then, we rely on numerical evaluations to demonstrate that
the results also hold in more general settings (Section 3.3.2).



3.3. Graph convolutional generator 25

3.3.1 Guaranteed denoising with the GCG

To formally prove that the proposed architecture can successfully denoise the observed graph
signalx , we consider a two-layer GCG given by

f � (ZjG) = ReLU( HZ� (1) )� (2) ; (3.9)

where� (1) 2 RF � F and � (2) 2 RF are the learnable coe�cients. WithF denoting the number of
features, we consider the overparametrized regime whereF � 2N , and analyze the behavior and
performance of denoising with the untrained network de�ned in (3.9).

We start by noting that scaling thei -th entry of � (2) is equivalent to scaling thei -th column
of � (1) , so that, without loss of generality, we can set the weights to� (2) = b, whereb is a vector
of sizeF with half of its entries set to1=

p
F and the other half to� 1=

p
F . Furthermore, sinceZ

is a random matrix of dimensionN � F , the column space ofZ spansRN , and hence, minimizing
over Z� (1) is equivalent to minimizing over� 2 RN � F . With these considerations in place, the
optimization over (3.3) can be performed replacing the two-layer GCG described in (3.9) by its
simpli�ed form

f � (H ) = f � (ZjG) = ReLU( H� )b: (3.10)

Note that we replacedf � (ZjG) with f � (H ) since the graph in�uence is modeled by the graph
�lter H , and the in�uence of the matrixZ is absorbed by the learnable weights� .

The denoising capability of the two-layer architecture is related to the eigendecomposition of its
expected squared Jacobian [82]. However, to understand which signals can be e�ectively denoised
with the proposed architecture, we need to connect the spectral domain of the expected squared
Jacobian with the spectrum of the graph, given by the eigenvectors of the adjacency matrix.

To that end, we next compute the expected squared Jacobian of the two-layer architecture in
(3.10). Denote asJ � (H ) 2 RN � NF the Jacobian matrix off � (H ) with respect to� , which is
given by

J >
� (H ) =

2

6
4

b1H > diag(ReLU0(H � 1))
...

bF H > diag(ReLU0(H � F ))

3

7
5 2 RNF � N ; (3.11)

where� i represents thei -th column of � , and ReLU0 is the derivative of theReLU, which is the
Heaviside step function. Then, de�ne theN � N expected squared Jacobian matrix as

X := E� [J � (H )J >
� (H )] =

FX

i =1

b2
i E

h
ReLU0(H � i )ReLU0(H � i )>

i
� HH > : (3.12)

Moreover, from the work in [83, Sec. 3.2], we note thatE
h
ReLU0(H � i )ReLU0(H � i )>

i
is in fact

the so-called dual activation of the step function. Therefore, combining the expression for the dual
activation of the step function from [83, Table 1] with (3.12), we obtain that

X = 0 :5
�
11> � � � 1 arccos(C � 1H 2C � 1)

�
� HH > ; (3.13)

where� represents the Hadamard (entry-wise) product,arccos(�) is computed entry-wise,h i rep-
resents thei -th column (row) of H , C = diag([kh1k2; :::; khN k2]) is a normalization term so that
C � 1H 2C � 1 is the autocorrelation of the graph �lterH .
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SinceX is symmetric and positive (semi) de�nite, it has an eigendecompositionX = W�W > .
Here, the columns of the orthonormal matrixW = [ w1; : : : ; wN ] are theN eigenvectors, and the
nonnegative eigenvalues in the diagonal matrix� are assumed to be ordered as� 1 � � 2 � ::: � � N .

After de�ning the two-layer GCGf � (H ) and its expected square JacobianX , we formally
analyze its performance when denoising bandlimited graph signals. This is particularly relevant
given the importance of (approximate) bandlimited graph signals both from analytical and practical
points of view [40]. For the sake of clarity, we �rst introduce the main result (Theorem 3.1) and
then we detail a key intermediate result (Lemma 3.1) that provides additional insight.

Formally, consider theK -bandlimited graph signalx0 as described in (2.5), and let the archi-
tecture f � (H ) have a su�ciently large number of featuresF :

F �

 
� 2

1

� 2
N

! 26

� � 8N; with � 2 (0; (2 log(2N=� )) � 1
2 ) (3.14)

being an error tolerance parameter for some prespeci�ed� . Then, for a speci�c set of graphs
with minimum number of nodesN �;� that is introduced later in the section (cf. Ass. 3.1), if
we solve (3.3) running gradient descent with a step size� � 1

� 2
1
, the following result holds (see

Appendix 3.7).

Theorem 3.1. Let f � (H ) be the network de�ned in equation(3.10), and assume it is su�ciently
wide, i.e., it satis�es condition(3.14) for some error tolerance parameter� . Let x0 be a K -
bandlimited graph signal spanned by the eigenvectorsV K , and letw i and� i be thei -th eigenvector
and eigenvalue ofX . Let n be the noise present inx , set � and � to small positive numbers,
and let the conditions from Ass. 3.1 hold. Then, for any� , � , there exists someN �;� such that
if N > N �;� , the error for each iterationt of gradient descent with stepsize� used to �t the
architecture is bounded as

kx0 � f � ( t ) (H )k2 �
�
(1 � �� 2

K )t + � (1 � �� 2
N )t

�
kx0k2

+ � kxk2 +
q P N

i =1 ((1 � �� 2
i )t � 1)2(w>

i n)2; (3.15)

with probability at least1 � e� F 2
� � � � .

As explained next, the �tting (denoising) bound provided by the theorem �rst decreases and
then increases with the number of iterationst. To be more precise, let us analyze separately each
of the three terms in the right hand side of (3.15). The �rst term captures the part of the signal
x0 that is �tted after t iterations while accounting for the misalignment of the eigenvectorsV K

and W K . This term decreases witht and, since� can be made arbitrary small (cf. Lemma 3.1),
vanishes for moderately low values oft. The second term is an error term that is negligible if the
network is su�ciently wide. Therefore,� can be chosen to be su�ciently small by designing the
architecture according to the condition in (3.14). Finally, the third term, which depends on the
noise present in each of the spectral components of the squared Jacobian(w>

i n)2, grows with t.
More speci�cally, if the� i associated with a spectral component is very small, the term(1 � �� 2

i )
is close to1 and, hence, the noise power in thei -th frequency will be small. Only whent grows
very large the coe�cient (1 � �� 2

i )t vanishes and thei -th frequency component of the noise is
�tted. As a result, if the �lter H is designed such that eigenvalues of the squared Jacobian satisfy
that � K � � K +1 , then there will be a range of moderate-to-high values oft for which: i) the
�rst term is zero and ii) only theK strongest components of the noise have been �tted, so that

the third term can be approximated as
q P K

i =1 (w>
i n)2. Clearly, ast grows larger, the coe�cient
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((1 � �� 2
i )t � 1) will also be close to one fori > K , meaning that additional components of the

noise will be �tted as well, deteriorating the performance of the denoising architecture. This implies
that if the optimization algorithm is stopped beforet grows too large, the original signal is �tted
along with the noise that aligns with the signal, but not the noise present in other components.

In other words, Theorem 3.1 not only characterizes the performance of the two-layer GNN,
but also illustrates that, if early stopping is adopted, our overparametrized architecture is able
to e�ectively denoise the bandlimited graph signal. This result is related to the error bound for
denoising images presented in [82], wherex0 is assumed to lie in the span ofW K . However,
when dealing with graphs, it is unclear which signals would satisfy this requirement. Motivated by
this, we assume thatx0 is a bandlimited signal (i.e., lies in the span ofV K ), which is a natural
condition employed in many applications.

As a consequence, a critical step to attain Theorem 3.1 is to relate the eigenvectors ofX with
those of the adjacency matrixA , denoted asV . To achieve this, we assume thatA is random and
provide high-probability bounds between the leading eigenvectors ofA and X . More speci�cally,
consider a graphG drawn from a SBM [84] withK communities. Also, denote byM (A ) the
SBM with expected adjacency matrixA = E[A ], and by � min the minimum expected degree
� min := min i [A 1]i . Given some� > 0, we de�ne asM N (� min ; � ) the class of SBMsM (A )
with N nodes for which� min = ! (ln( N=� )) , where! (�) denotes the (conventional) asymptotic
dominance. Then, the condition ofGbeing drawn from this SBM whose expected minimum degree
increases withN is formally expressed in the following assumption.

Assumption 3.1. The modelM (A ) from which A is drawn satis�esM (A ) 2 M N (� min ; � ),
with � min = ! (ln( N=� )) .

We note that, as discussed in [85], the minimal degree condition considered in Ass. 1 ensures
that nodes belonging to the same community also belong to the same connected component with
high probability, which is required to relateA and A . Under these conditions, the following result
holds.

Lemma 3.1. Let the matrix X be de�ned as in(3.13), set � and � to small positive numbers, and
denote byV K and W K the K leading eigenvectors in the respective eigendecompositions ofA
and X . Under Ass. 3.1, there exists an orthonormal matrixQ and an integerN �;� such that, for
N > N �;� , the bound

kV K � W K QkF � �;

holds with probability at least1 � � .

The proof is provided in Appendix 3.8, and it leverages Ass. 1 to relate the eigenvectorsV K

and W K based on the eigenvectors of the expected values ofA and X .

For a givenK , Lemma 3.1 bounds the di�erence between the subspaces spanned by theK
leading eigenvectors ofA and X when graphs are big enough, a result that is key in obtaining
Theorem 3.1. Moreover, the lemma shows that if the lower boundN �;� increases, then the error
encoded� becomes arbitrary small. Also note that, if a larger value ofK is considered, then
the minimum required graph sizeN �;� will also be larger. An inspection of (3.13) reveals that
the result in Lemma 3.1 is not entirely unexpected. Indeed, sinceH is a polynomial inA , so is
H 2. This implies thatV are also the eigenvectors ofH 2, and becauseH 2 appears twice on the
right hand side of (3.13), a relationship between the eigenvectors ofX and V can be anticipated.
However, the presence of the Hadamard product and the (non Lipschitz continuous) nonlinearity
arccosrenders the exact analysis of the eigenvectors a challenging task. Consequently, we resorted
to a stochastic framework in deriving Lemma 3.1.
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Figure 3.1: Comparison between the eigenvectors of the matricesA andX for an SBM graph withN = 64
nodes andK = 4 communities, and for a GCG ofL = 5 layers. From left to right, the �gures represent the
�rst, third, tenth, and last eigenvectors.

3.3.2 Numerical inspection of the deep GCG spectrum

While for convenience, the previous section focused on analyzing the GCG architecture with
L = 2 layers, in practice we often work with a larger number of layers. In this section, we provide
numerical evidence showing that the relation between matricesA and X described in Lemma 3.1
also holds whenL > 2.

To that end, Fig. 3.1 shows the pairs of eigenvectorsv i andw i for the indexesi = f 1; 3; 10; 64g,
for a given graphG drawn from an SBM withN = 64 nodes and 4 communities. The GCG is
composed ofL = 5 layers and, to obtain the eigenvectors of the squared Jacobian matrix, the
Jacobian is computed using theautograd functionality of PyTorch. The nodes of the graph are
sorted by communities, i.e., the �rstN1 nodes belong to the �rst community and so on. It can be
clearly seen that, even for moderately small graphs, the leading eigenvectors ofA andX are almost
identical, becoming more dissimilar as the eigenvectors are associated with smaller eigenvalues. It
can also be observed how leading eigenvectors have similar values for entries associated with nodes
within the same community. Moreover, Fig. 3.2 depicts the matrix productV > W , where it is
observed that theK = 4 leading eigenvectors of both matrices are orthonormal. The presented
numerical results strengthen the argument that the analytical results obtained for the two-layer
case can be extrapolated to deeper architectures.

Another key assumption of Lemma 3.1 is thatGis drawn from the SBM described inM N (� min ; � ).
This assumption facilitates the derivation of a bound relating the spectra ofA and X (i.e., the
subspaces spanned by the eigenvectorsV K and W K ). However, the results reported in Fig. 3.3
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Figure 3.2: Heatmap representation of the matrix productV >
K W K . The low values of the o�-diagonal

entries illustrate the orthogonality between both sets of eigenvectors. These eigenvectors are the same as
those depicted in Fig. 3.1.

suggest that such a relation exists for other type of graphs, even though its analytical characteri-
zation is more challenging. The �gure has 12 panels (3 columns and 4 rows). Each of the columns
corresponds to a di�erent graph, namely: 1) a realization of a small-world (SW) graph [86] with
N = 150 nodes, 2) the Zachary's Karate graph [87] withN = 34 nodes, and 3) a graph of
N = 316 weather stations across the United States1. Each of the three �rst rows correspond to
an N � N matrix, namely: 1) the normalized adjacency matrixA , 2) H 2, the squared version of
a low pass graph �lter and whose coe�cients are drawn from a uniform distribution and set to
unit `1 norm, and 3) the squared Jacobian matrixX . Although we may observe some similarity
betweenA and X , the relation betweenX and the graphG becomes apparent when comparing
the matricesH 2 and X . The matrix H is a random graph �lter used in the linear transformation
of the convolutional generatorf � (H ), and it is clear that the vertex connectivity pattern ofX is
related to that of H 2. SinceX and H 2 are closely related and we know that the eigenvectors of
H 2 and those ofA are the same, we expectW (the eigenvectors ofX ) and V (the eigenvectors
of A ) to be related as well. To verify this, the fourth row of Fig. 3.3 representsV >

K W K , i.e., the
pairwise inner products of theK leading eigenvectors ofA and those ofX . It can be observed that
the K leading eigenvectors are close to orthogonal, which means that the relation observed in the
vertex domain carries over to the spectral domain andV K and W K expand the same subspace.
These results suggest that a deep GCG could be able to denoising signals living in the subspace
spanned byV K . However, because the bound in Theorem 3.1 assumed a 2-layer GCG, we address
this hypothesis numerically in Section 3.5.

To summarize, the presented results illustrate that the analytical characterization provided in
Section 3.3.1, which considered a 2-layer GCG operating over SBM graphs, carries over to more
general setups.

3.4 Graph upsampling decoder

The GCG architecture presented in Section 3.3 incorporated the topology ofG via the vertex-
based convolutions implemented by the graph �lterH . In this section, we introduce the graph
decoder (GDec) architecture. In contrast to the GCG and other GCNNs, this novel graph-aware

1Data extracted from the National Centers for Environmental Information. Available at
https://www.ncei.noaa.gov/data/global-summary-of-the-day
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Figure 3.3: Illustrating the matricesA , H 2, X , and V >
K W K , shown in rows 1, 2, 3, and 4, respectively,

for di�erent types of graphs. The column 1, 2, and 3 present a SW graph, the Zachary's Karate graph, and
the weather stations graph. The graph �lterH 2 is created as a square graph �lter with coe�cients drawn
from a uniform distribution and set to unit̀ 1 norm. For each graph (column), it can be seen that the
matricesA , H 2, andX are related, and that the leading eigenvectorsV K andW K are close to orthogonal.

denoising NN incorporates the topology ofG via a (nested) collection of graph upsampling oper-
ators [21]. Speci�cally, we propose the linear transformation for the GDec denoiser to be given
by

T (` )
� ( ` ) f Y (` � 1) jGg= U (` )Y (` � 1) � (` ) ; (3.16)

whereU (` ) 2 RN ( ` ) � N ( ` � 1)
, with N (` ) � N (` � 1) , are graph upsampling matrices to be de�ned

soon. Note that, compared to (3.5), the graph �lterH is replaced with the upsampling operator
U (` ) that dependson `. Adopting the proposed linear transformation, the output of the GDec
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Figure 3.4: Dendrogram of an agglomerative hierarchical clustering algorithm and the resulting graphs
with 2, 4, 7 and 14 nodes.

with L layers is given by the recursion

Y (` ) = ReLU( U (` )Y (` � 1) � (` ) ); for ` = 1 ; :::; L � 1; (3.17)

y (L ) = U (L )Y (L � 1) � (L ) ; (3.18)

where theReLU is also removed from the last layer.

Similar to the GCG, the proposed GDec learns to combine the features within each node.
However, the interpolation of the signals in this case is determined by the graph upsampling
operatorsf U (` )gL

`=1 , rather than by employing convolutions. The size of the inputN (0) is now
a design parameter that will determine the implicit degrees of freedom of the architecture. Note
that, from the GSP perspective, the input feature matrixY (` � 1) 2 RN ( ` � 1) � F ( ` � 1)

represents
F (` � 1) graph signals, each of them de�ned over a graphG(` � 1) with N (` � 1) nodes. Therefore,
even though the inputY (0) = Z is still a random white matrix across rows and columns, since
N (` ) � N (` � 1) , the dimensionality of the input is progressively increasing.

A closer comparison with the GCG reveals that the smaller dimensionality of the inputZ endows
the GDec architecture with fewer degrees of freedom, rendering the architecture more robust to
noise. Not only that, but the graph information is now included via the graph upsampling operators
U (` ) instead of relying on graph �lters. Clearly, the method used to design the graph upsampling
matrices, which is the subject of the next section, will have an impact on the type of graph signals
that can be e�ciently denoised using the GDec architecture.

3.4.1 Graph upsampling operator from hierarchical clustering

Regular upsampling operators have been successfully used in NN architectures to denoise sig-
nals de�ned on regular domains [82]. While the design of upsampling operators in regular grids
is straightforward, when the signals at hand are de�ned on irregular domains the problem be-
comes substantially more challenging. The approach that we put forth in this chapter is to use
agglomerative hierarchical clustering methods [78�80] to design a graph upsampling operator that
leverages the graph topology. These methods take a graph as an input and return a dendrogram;
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see Fig. 3.4. A dendrogram can be interpreted as a rooted-tree structure that shows di�erent
clusters at the di�erent levels of resolution� . At the �nest resolution (� = 0 ) each node forms
a cluster of its own. Then, as� increases, nodes start to group together (agglomerate) in bigger
clusters and, when the resolution becomes large (coarse) enough, all nodes end up being grouped
in the same cluster.

By cutting the dendrogram atL + 1 resolutions, including� = 0 , we obtain a collection of
node sets with parent-child relationships inherited by the re�nement of clusters. Since we are
interested in performing graph upsampling, note that the dendrogram is interpreted from left to
right. This can be observed in the example shown in Fig. 3.4, where the three red nodes in the
second graph (� = 10, layer ` = 1 ) are children of the red parent in the coarsest graph (� = 12,
layer ` = 0 ). In this sense, the graph upsampling operator is given by the inverse operation of
the clustering algorithm. We leverage these parent-children relations to de�ne the membership
matricesP (` ) 2 f 0; 1gN ( ` ) � N ( ` � 1)

, where the entryP (` )
ij = 1 only if the i -th node in layer̀ is the

child of the j -th node in layer̀ � 1. Moreover, we can further exploit the dendrogram to obtain
coarser-resolution versions of the original graphG. To that end, note that the clusters at layer̀
can be interpreted as nodes of a graphG(` ) with N (` ) nodes and adjacency matrixA (` ) . There
are several ways of de�ningA (` ) based on the original adjacency matrixA . While our architecture
does not focus on a particular form, in the simulations we setA (` )

ij 6= 0 only if, in the original graph
G, there is at least one edge between nodes belonging to the clusteri and nodes from cluster
j . In addition, the weight of the edge depends on the number of existing edges between the two
clusters.

With the de�nition of the membership matrixP (` ) and the adjacency matrixA (` ) , the upsam-
pling operator of thè -th layer is given by

U (` ) =
�

 I + (1 � 
 ) A (` )

�
P (` ) ; (3.19)

where
 2 [0; 1] is a pre-speci�ed constant. Notice thatU (` ) �rst copies the signal value from
the parents to the children by applying the matrixP (` ) , and then every child performs a convex
combination between this value and the average signal value of its neighbors. This design promotes
that nodes descending from the same parent have similar (related) values, which conveys a notion
(prior) of smoothness on the targeted graph signals. As we show in Section 3.5, the implicit
smoothness prior results in a better performance when denoising smooth signals but, on the other
hand, makes the architecture more sensitive to model mismatch. Therefore, when dealing with
high-frequency signals, a worth-looking approach left as a future research direction is to rely on
algorithms that cluster the nodes considering not only the topology ofG but also the properties of
the graph signals.

Because the membership matricesP (` ) are designed using a clustering algorithm overG, and
the matricesA (` ) capture how strongly connected the clusters of layer` are in the original graph,
these two matrices are responsible for incorporating the information ofG into the upsampling
operatorsU (` ) . Furthermore, we remark that the upsampling operatorU (` ) can be reinterpreted
as the application ofP (` ) followed by the application of a graph �lter

~H (` ) = 
 I + (1 � 
 )A (` ) ; (3.20)

which sets the �lter coe�cients ash0 = 
 and h1 = 1 � 
 .
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3.4.2 Guaranteed denoising with the GDec

As we did for the GCG, our goal is to theoretically characterize the denoising performance of
the GNN architecture de�ned by (3.17)-(3.19). To achieve that goal, we replicate the approach
implemented in Section 3.3.1. We �rst derive the matrixX and provide theoretical guarantees
when denoising aK -bandlimited graph signal with the GDec. Then, to gain additional insight, we
detail the relation between the subspace spanned by the eigenvectorsW and the spectral domain
of A . This relation is key in deriving the theoretical analysis.

We start by introducing the 2-layer GDec

f � (ZjG) = ReLU( UZ� (1) )� (2) : (3.21)

Upon following a reasoning similar to that provided after (3.10), instead of employing the previous
architecture we can optimize (3.3) over its simpli�ed version

f � (U ) = f � (ZjG) = ReLU( U� )b: (3.22)

An important di�erence with respect to the GCG presented in (3.10) is that the matrix� has a
dimension ofN (0) � F , so it spansRN (0)

instead ofRN . SinceN (0) < N , the smaller subspace
spanned by the weights of the GDec renders the architecture more robust to �tting noise, but, on
the other hand, the number of degrees of freedom to learn the graph signal of interest are reduced.
As a result, the alignment between the targeted graph signals and the low-pass vertex-clustering
architecture becomes more important.

The expected squared JacobianX = E� [J � (U )J >
� (U )] is obtained following the procedure

used to derive (3.13), arriving at the expression

X = 0 :5
�

11> �
1
�

arccos(~C � 1UU > ~C � 1)
�

� UU > ; (3.23)

whereu i represents thei -th row of U , and ~C = diag([ku1k2; :::; kuN k2]) is a normalization matrix.

Then, let x0 be a K -bandlimited graph signal and letf � (U ) have a number of featuresF
satisfying (3.14). If we solve (3.3) running gradient descent with a step size� � 1

� 2
1
, the following

result holds.

Theorem 3.2. Let f � (U ) be the network de�ned in equation(3.22). Consider the conditions
described in Theorem 3.1 and letN (0) match the number of communitiesK (see Ass. 3.1). Then,
for any � , � , there exists someN �;� such that if N > N �;� , then the error for each iterationt of
gradient descent with stepsize� used to �t the architecture is bounded as(3.15), with probability
at least1 � e� F 2

� � � � .

The proof of the theorem is analogous to the one provided in Appendix 3.7 but exploiting
Lemma 3.2 instead of Lemma 3.1. Lemma 3.2 is fundamental in attaining Theorem 3.2 and is
presented later in the section.

Theorem 3.2 formally establishes the denoising capability of the GDec whenx0 is a K -
bandlimited graph signal andK = N (0) matches the number of communities in the SBM graph.
When compared with the GCG, the smaller dimensionality of the inputZ, and thus the smaller
rank of the matrix� , constrains the learning capacity of the architecture, making it more robust
to the presence of noise. However, this additional robustness also implies that the architecture is
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