
TESIS DOCTORAL

Robust Network Topology Inference and
Processing of Graph Signals

Autor:
Samuel Rey Escudero

Director:
Prof. Dr. Antonio García Marqués

Programa de Doctorado Interuniversitario
en Multimedia y Comunicaciones

Escuela Internacional de Doctorado

2022

Resumen

En los últimos años, la creciente presencia de sistemas vastos y heterogéneos está causando que
los datos sean cada vez más abundantes y con estructuras más complejas, motivando así el rápido
desarrollo de nuevos modelos y herramientas capaces de lidiar con el dominio irregular (no Euclídeo)
donde están definidas las señales. Un método particularmente interesante consiste en representar
la estructura subyacente de las señales mediante un grafo e interpretar las señales como señales
definidas en el grafo. Precisamente, este es el mecanismo empleado en el procesado de señales
definidas en grafos o graph signal processing (GSP), un área relativamente nueva que encapsula
la topología del grafo en una matriz conocida como el graph-shift operator (GSO), y aprovecha
la relación entre las señales y el grafo para desarrollar herramientas que lidien eficazmente con el
dominio irregular de las señales.

Además de la estructura irregular de las señales, otra limitación fundamental es que los datos
observados son propensos a presentar imperfecciones o perturbaciones, muchas veces inherentes al
propio proceso de recolección de los mismos. La naturaleza de estas perturbaciones es muy variada
y, si se ignoran, pueden perjudicar significativamente el rendimiento de los algoritmos que utilicen
los datos perturbados. En GSP, las perturbaciones pueden clasificarse atendiendo a si afectan a las
señales observadas o a la topología del grafo, y la atención recibida en trabajos previos depende,
entre otros factores, del tipo de perturbación y de la complejidad resultante de su modelado.

Antecedentes

El desarrollo de métodos robustos a perturbaciones en las señales suele desembocar en proble-
mas tratables que, además, han sido estudiados en otras áreas relacionadas con GSP, propulsando
la aparición de una considerable cantidad de trabajos. En este ámbito, la presencia de ruido en
las señales constituye un problema omnipresente y ampliamente tratado en la literatura que puede
combatirse eficazmente mediante métodos que separen la señal del ruido, una tarea conocida
como signal denoising. Existe una gran variedad de métodos tradicionales basados en problemas
de optimización convexa [1–4], y también alternativas más recientes enfocadas en modelos no lin-
eales [5–7]. Otro tipo de perturbación relevante en las señales es la presencia de valores perdidos
o missing values, lo que implica que solo un subconjunto de los valores de la señal son observados.
Esto hace que sea necesario reconstruir la señal original, un problema ampliamente tratado en
trabajos de muestreo e interpolación bajo el supuesto de que las observaciones pertenecen a nodos
distintos [8–11], o se corresponden a agregaciones sucesivas de los valores de la señal en nodos
vecinos [12,13].

Por otro lado, las perturbaciones en la topología del grafo originan problemas particularmente
desafiantes y cuentan con menos trabajos previos en otras áreas, siendo estos algunos de los mo-
tivos por los que han sido menos estudiadas en la literatura de GSP. En esta clase de perturbaciones
destacan los errores en los enlaces del grafo, lo que se refleja en errores en el GSO y perjudica
gravemente a la mayoría de las herramientas dentro de GSP basadas en el espectro o en polinomios
del GSO. Inicialmente, [14,15] modelaron la influencia de estas perturbaciones bajo algunas suposi-

iv Resumen

ciones simplificadoras y, posteriormente, [16, 17] introdujeron métodos que tenían en cuenta las
imperfecciones en los enlaces para la estimación de filtros definidos en grafos o graph filters (GFs).
Por último, en el contexto de inferencia de topología, la presencia de nodos ocultos supone una
perturbación crítica. En este escenario solo se dispone de observaciones de un subconjunto de los
nodos y, aunque típicamente se busca inferir el subgrafo correspondiente a los nodos observados,
es imperativo tener en cuenta la influencia ejercida por los nodos ocultos. Este relevante problema
se ha comenzado a abordar en el contexto de selección de modelos gráficos Gaussianos [18, 19],
inferencia lineal de redes Bayesianas [20], o regresión no lineal [20].

Objetivos

El objetivo final de esta tesis es avanzar hacia un modelado robusto dentro de GSP en el que
los algoritmos sean cuidadosamente diseñados para incorporar la influencia de las perturbaciones
en los datos. Para conseguirlo, nos proponemos analizar y comprender el impacto de diferentes
tipos de perturbaciones en problemas fundamentales dentro del marco de GSP y, después, diseñar
una formulación robusta capaz de aliviar los efectos perjudiciales producidos por estas perturba-
ciones. Como este objetivo es bastante amplio, para ayudarnos a delimitar la extensión de la tesis
planteamos los siguientes objetivos específicos.

(O1) Eliminación de ruido en señales definidas en grafos. Cuando las señales observadas
presenten ruido, nuestro objetivo será diseñar arquitecturas no lineales capaces de separar el ruido
de la señal. Investigaremos distintas alternativas para incorporar la información codificada en
la topología del grafo en la arquitectura y desarrollaremos garantías teóricas que evidencien la
capacidad de eliminar ruido de las arquitecturas propuestas.

(O2) Interpolación de señales. Cuando las señales observadas contengan valores perdidos, nos
centraremos en reconstruir la señal a partir de las muestras observadas. Para esto, asumiremos que
las observaciones pueden representarse como muestras tomadas mediante un esquema de muestreo
de agregación local sucesiva y que la señal original es una señal sparse difundida en el grafo.

(O3) Identificación robusta de GFs. Nuestro objetivo será proponer un algoritmo capaz de
estimar un filtro a partir de pares de señales de entrada y salida que tenga en cuenta la presencia
de perturbaciones en los enlaces del grafo. Además, trataremos con un escenario relacionado
donde el objetivo será estimar simultáneamente varios filtros definidos sobre el mismo grafo y
propondremos una implementación eficiente del algoritmo resultante.

(O4) Inferencia de topología robusta y conjunta. Enfocaremos el problema clásico de inferencia
de topología de una red mediante un enfoque robusto a la presencia de nodos ocultos y considerando
que hay varias redes relacionadas que deben ser estimadas. En primer lugar, asumiremos que las
señales observadas son estacionarias en el grafo y, después, platearemos un modelo de inferencia
conjunta que aproveche la similitud de distintos grafos para inferirlos simultáneamente, mejorando
así la calidad de la estimación.

Aunque el carácter de esta tesis es principalmente teórico, además de estos objetivos dedicados
a un tipo de perturbación específica, también consideramos como objetivo transversal la evaluación
de los algoritmos desarrollados mediante datos reales para ilustrar su potencial aplicabilidad.

Metodología

En el desarrollo de esta tesis hemos seguido un planteamiento sistemático que busca la obten-
ción de soluciones óptimas. Para cada problema específico, nos hemos centrado en la obtención

v

de modelos matemáticos capaces de capturar toda la estructura inherente al problema para poste-
riormente aprovecharlos en el desarrollo de problemas de optimización rigurosamente formulados.
Debido a la complejidad de las tareas abordadas, los problemas de optimización resultantes suelen
ser no convexos, por lo que el siguiente paso se centra en proponer relajaciones convexas y/o algo-
ritmos iterativos capaces de encontrar una solución (sub)óptima, demostrando matemáticamente
la convergencia de los algoritmos iterativos a un punto estacionario cuando sea necesario.

Tras el desarrollo de los algoritmos pertinentes, es imprescindible evaluar su rendimiento numéri-
camente y compararlos con distintas alternativas existentes. En este aspecto, además de la evalu-
ación mediante datos sintéticos, es una parte fundamental la aplicación de los algoritmos a datos
reales para estimar la potencial aplicación de las herramientas desarrolladas en escenarios prácti-
cos. Finalmente, todo el código desarrollado se ha subido a repositorios online en GitHub para
incrementar la visibilidad y difusión de los resultados obtenidos.

Resultados

El trabajo realizado en esta tesis se ha visto reflejado en la escritura de 4 artículos de re-
vista JCR (3 de ellos actualmente en proceso de revisión), y 7 publicaciones en conferencias
internacionales.

La tarea de eliminación de ruido descrita en el objetivo (O1) se ha llevado a cabo en [21,22].
Hemos desarrollado dos arquitecturas sobreparametrizadas y no entrenables que incorporan la
topología del grafo de maneras distintas. La primera se basa en GFs no entrenables que generalizan
la operación de convolución, y la segunda se basa unos operadores de sobremuestreo construidos
mediante esquemas de clustering jerárquico. Por otro lado, se ha realizado un análisis matemático
de ambas arquitecturas obteniendo garantías teóricas sobre su rendimiento, mejorando así nuestro
entendimiento sobre arquitecturas no lineales y la influencia de incorporar la topología del grafo.
Finalmente, las arquitecturas propuestas han servido como elemento clave en otros problemas
ajenos a la eliminación del ruido [23,24].

Los resultados derivados del objetivo (O2) se reflejan en [25]. En este trabajo hemos general-
izado los resultados del esquema de muestreo de agregación local sucesiva a escenarios donde la
señal original es una señal sparse difundida a través de la red en lugar de ser una señal de banda
limitada. Después de definir el modelo de observaciones para las señales perturbadas, hemos
propuesto un algoritmo de interpolación definido en el dominio espectral, y hemos generalizamos
resultados existentes sobre deconvolución ciega a este esquema de muestreo de agregación local
sucesiva con señales sparse difundidas en el grafo.

La solución propuesta al objetivo (O3) se ha traducido en las publicaciones [26,27]. El método
desarrollado está formulado en el dominio de los vértices, evitando problemas de inestabilidad
numérica y las dificultades asociadas con la influencia de perturbaciones en el espectro del grafo.
La identificación robusta del filtro se ha reformulado como un problema de optimización conjunto
en el que el objetivo de identificación del filtro ha sido aumentado con un regularizador que remueve
el ruido de la topología del grafo. De esta forma, además de estimar el filtro deseado también
se proporciona una estimación mejorada del grafo subyacente. Por otro lado, hemos generalizado
este problema a escenarios donde el objetivo es estimar simultáneamente múltiples GFs, todos
definidos sobre el mismo grafo. También en relación con este tipo de perturbaciones, en [28]
hemos desarrollamos una definición alternativa de GFs menos sensible a los errores en la topología.

Finalmente, la inferencia de topología en presencia de nodos ocultos planteada en (O4) se
ha abordado en [29, 30]. Inicialmente, hemos revisitado la definición clásica de estacionariedad
para que refleje la influencia de los nodos ocultos y la hemos empleado en la formulación de un
problema de optimización con restricciones adicionales que aprovechan la estructura resultante de
la presencia de nodos ocultos. Después, hemos presentado un método de inferencia de topología
conjunta que estimaba la topología de varios grafos simultáneamente para explotar la similitud

vi Resumen

entre los distintos grafos. Clave para este método robusto fue emplear la estructura por bloques
resultante de la presencia de variables ocultas. Adicionalmente, íntimamente relacionado con este
objetivo está el trabajo desarrollado en [31], donde proponemos un algoritmo de inferencia de
topología basado en información previa sobre la densidad de motivos (o motifs) del grafo objetivo.
Esta novedosa prior sobre la estructura del grafo tiene un carácter local y puede emplearse, por
ejemplo, para medir la distancia entre grafos de distinto tamaño, un problema no trivial que es
clave en los modelos de inferencia conjunta.

Conclusiones

En esta tesis se ha contribuido a construir los cimientos de un paradigma robusto en el que
abordar problemas clásicos de GSP mientras se modela la influencia de perturbaciones en los datos
observados. Con esta finalidad, se han considerado varios tipos de perturbaciones clasificados en
dos amplias clases: (i) perturbaciones en las señales; y (ii) perturbaciones en la topología del grafo.
La primera clase de perturbaciones está asociada con los objetivos (O1) y (O2) y suele originar
problemas tratables que han sido estudiados en mayor profundidad. Por otro lado, la segunda clase
de perturbaciones aparece en los objetivos (O3) y (O4) y origina problemas más desafiantes, por
lo que cuenta con un menor número de trabajos previos.

En primer lugar, en el capítulo 3 se han presentado distintas redes neuronales no lineales y
no entrenables que incluyen la topología del grafo mediante dos estrategias distintas y, además,
se ha caracterizado matemáticamente su capacidad para separar las señales del ruido asumiendo
algunas simplificaciones, avanzando así en la comprensión sobre este tipo de arquitecturas. El
capítulo 4 ha lidiado con la presencia de valores perdidos en las señales mediante la interpretación
de las observaciones como muestras recogidas a través de un esquema de muestreo de agregaciones
locales para, posteriormente, proponer un método espectral para su interpolación asumiendo se
trataba de señales sparse difundidas en el grafo. Después, en el capítulo 5 hemos presentado un
algoritmo robusto a perturbaciones en los enlaces del grafo capaz de identificar uno o varios GFs
a partir de un conjunto de observaciones de entrada y salida. Como el problema de optimización
era no convexo, hemos desarrollado un algoritmo iterativo basado en la resolución secuencial de
varios problemas convexos, hemos demostrado su convergencia a un punto estacionario y, además
de estimar los filtros de interés, hemos comprobado que elimina las perturbaciones existentes en
la topología del grafo. Finalmente, en el capítulo 6 se ha presentado un método de inferencia de
topología conjunta que tiene en cuenta la influencia de los nodos ocultos. Este algoritmo lidia
con la inferencia de varios grafos a partir de señales estacionarias y tiene en cuenta la particular
estructura del problema para aprovechar la similitud entre nodos no observados.

Adicionalmente, los algoritmos desarrollados en cada capítulo han sido evaluados mediante una
extensiva batería de experimentos empleando datos sintéticos y reales. En estos experimentos se
han comparado los métodos propuestos en esta tesis con otras alternativas del estado del arte.

Agradecimientos

Antes de comenzar a presentar el contenido de esta tesis, me gustaría agradecer la financiación
recibida1 y, aún más importante, dedicar unas líneas en agradecimiento a una serie de personas
que me han acompañado durante este viaje.

Sin lugar a dudas, la primera persona a la que debo darle las gracias es a mi director de
tesis, Antonio. Muchas gracias por tu esfuerzo y dedicación, por aquellas largas tutorías al inicio
del doctorado dónde pasabas horas explicándome conceptos que, aunque ahora parecen triviales,
al principio parecían magia, y por transmitirme la importancia de utilizar un vocabulario claro y
preciso (aunque reconozco que esto último sigue siendo un trabajo en desarrollo). En resumen,
una gran parte de mi evolución como investigador en estos cuatro años te la debo a ti, y espero
seguir trabajando y aprendiendo contigo en el futuro. También quiero dar las gracias a Santiago
y a su fantástico grupo en la Universidad de Rice. Gracias por acogerme como a uno más del
grupo y por ofrecerme un entorno tan motivador. Habéis conseguido que los 6 meses que pasé en
Houston hayan sido una experiencia maravillosa.

Cambiando ahora al ámbito familiar, quiero darles las gracias a mis padres. Ellos siempre han
estado a mi lado para darme apoyo y han hecho de mi educación y la de mi hermano una de sus
prioridades. Si he sido capaz de llegar hasta aquí, ha sido gracias a vosotros. Y ya que menciono a
mi hermano, no puedo pasar la oportunidad de agradecerle esos viajes a Salamanca tan necesarios
para desconectar y recargar baterías de cuando en cuando.

Por supuesto, no puedo olvidarme de Celia, una de las personas más importantes en mi vida.
Pero que voy a decirte a estas alturas que tu no sepas ya... Simplemente, muchas gracias por
haberme hecho feliz todos estos años y por embarcarte conmigo en una nueva aventura ahora que
este viaje de 4 años llega a su fin.

Por último, pero no menos importante, quiero mencionar a mis compañeros del doctorado.
Gracias por contribuir a un entorno de trabajo maravilloso en el laboratorio, con esa combinación
de discusiones científicas, dudas e inquietudes, pero también con desayunos y alguna que otra
cerveza. Sin duda alguna, habéis hecho que estos años se pasen volando. Y en especial, gracias a
Andrei y a Víctor por ayudarme con este último empujón para rematar la tesis.

1Este trabajo ha sido parcialmente financiado por las ayudas FPU17/04520, EST21/00420, y por el proyecto de
investigación SPGRAPH (PID2019-105032GB-I00).

Abstract

The abundance of large and heterogeneous systems is rendering contemporary data more per-
vasive, intricate, and with a non-regular structure. With classical techniques facing troubles to
deal with the irregular (non-Euclidean) domain where the signals are defined, a popular approach
at the heart of graph signal processing (GSP) is to: (i) represent the underlying support via a
graph and (ii) exploit the topology of this graph to process the signals at hand. In addition to the
irregular structure of the signals, another critical limitation is that the observed data is prone to the
presence of perturbations, which, in the context of GSP, may affect not only the observed signals
but also the topology of the supporting graph. Ignoring the presence of perturbations, along with
the couplings between the errors in the signal and the errors in their support, can drastically hinder
estimation performance. While many GSP works have looked at the presence of perturbations in
the signals, much fewer have looked at the presence of perturbations in the graph, and almost
none at their joint effect. While this is not surprising (GSP is a relatively new field), we expect this
to change in the upcoming years. Motivated by the previous discussion, the goal of this thesis is to
advance toward a robust GSP paradigm where the algorithms are carefully designed to incorporate
the influence of perturbations in the graph signals, the graph support, and both. To do so, we
consider different types of perturbations, evaluate their disruptive impact on fundamental GSP
tasks, and design robust algorithms to address them.

The first part of the thesis addresses the presence of perturbations in the graph signals, which
typically lead to more tractable problems. When the observed signals are corrupted by additive
noise, we introduce two untrained nonlinear graph neural network architectures to remove the
noise from the observations, develop theoretical guarantees for their denoising capabilities in a
simple setup, and provide empirical evidence in more general scenarios. Each of the architectures
incorporates the information encoded by the graph in a different manner: one relying on graph
convolutions, and the other employing graph upsampling operators based on hierarchical clustering.
Intuitively, each architecture implements a different prior over the targeted signals. Then, we
move on to a setting where perturbations appear in the form of missing values. In this case,
we assume that the original signal is a diffused sparse graph signal, interpret the missing values
as samples gathered through a successive aggregation sample scheme, and study the recovery
(interpolation) of the original signal. Depending on the particular application, the goal is to
use the local observations to recover the diffused signal or (the location and values of) the seeds.
Different sampling configurations are investigated, including those of known and unknown locations
of the sources as well as that of the diffusing filter being unknown.

The second part of the thesis deals with perturbations in the topology of the graph, which
give rise to more challenging formulations. In this sense, we propose a novel approach for han-
dling perturbations in the links of the graph and apply it to the problem of robust graph filter
(GF) identification from input-output observations. Different from existing works, we formulate
a non-convex optimization problem that operates in the vertex domain and jointly performs GF
identification and graph denoising, and hence, on top of learning the desired GF, an estimate
of the graph is obtained as a byproduct. To handle the resulting bi-convex problem, we design

x Abstract

an algorithm that blends techniques from alternating optimization and majorization minimization,
showing its convergence to a stationary point. Then, moving on to the last type of perturbation, we
investigate the problem of learning a graph from nodal observations for setups where only a subset
of the nodes are observed, with the others remaining unobserved or hidden. Our schemes assume
the number of observed nodes is considerably larger than the number of hidden nodes, and build
on recent GSP models to relate the signals and the underlying graph. Specifically, we go beyond
classical correlation and partial correlation approaches and assume that the signals are stationary in
the sought graph, and moreover, we propose a joint network topology inference framework where
several related graphs are estimated together. The underlying idea is to exploit the similarity of
the different graphs to enhance the quality of the estimation. Since the resulting problems are ill-
conditioned and non-convex, the block matrix structure of the proposed formulations is leveraged
and suitable convex-regularized relaxations are presented.

Although the methodology and focus of this thesis are more theoretical (defining an estimation
problem, stating the considered assumptions, obtaining the estimates as solutions to rigorously
formulated optimization problems, designing computationally efficient provably convergent algo-
rithms and, whenever possible, characterizing the performance of those), the experimental results
will also play an important role. To that end, we evaluate the performance of our algorithms
over synthetic and real-world datasets and compare their results with state-of-the-art alternatives.
These experiments reflect the impact of ignoring the presence of perturbations, show the strengths
and weaknesses of the proposed methods, demonstrate that in a number of settings our methods
outperform current alternatives, and assess the applicability of our schemes to real-world problems.

Contents

Resumen iii

Agradecimientos vii

Abstract ix

1 Introduction 1
1.1 Motivation and context . 1
1.2 Objectives . 5
1.3 Summary of contributions . 6
1.4 Outline of the dissertation . 9

2 Fundamentals of graph signal processing 11
2.1 Graphs, graph signals, and the GSO . 11
2.2 Graph filters and filter identification . 13
2.3 Models for graph signals . 13
2.4 Graph inverse problems: denoising and interpolation 15
2.5 Graph learning . 16
2.6 Graph neural networks . 18
2.7 Graph perturbations in GSP . 19

3 Non-linear denoising of graph signals 21
3.1 Introduction . 21
3.2 GNNs for graph-signal denoising . 22
3.3 Graph convolutional generator . 24

3.3.1 Guaranteed denoising with the GCG . 25
3.3.2 Numerical inspection of the deep GCG spectrum 28

3.4 Graph upsampling decoder . 29
3.4.1 Graph upsampling operator from hierarchical clustering 31
3.4.2 Guaranteed denoising with the GDec . 33
3.4.3 Analyzing the deep GDec . 34

3.5 Numerical results . 35
3.5.1 Denoising capability of graph untrained architectures 35
3.5.2 Denoising synthetic data . 36
3.5.3 Denoising real-world signals . 38

3.6 Conclusion . 39
3.7 Appendix: Proof of Theorem 3.1 . 40
3.8 Appendix: Proof of Lemma 3.1 . 40
3.9 Appendix: Proof of Lemma 3.2 . 42

xii Contents

4 Signal interpolation of diffused sparse signals 43
4.1 Introduction . 43

4.1.1 Successively aggregated graph signals . 44
4.2 Aggregation Sampling of DSGS . 44

4.2.1 Aggregating the sparse input . 45
4.2.2 Aggregating the diffused sparse input . 47
4.2.3 Blind deconvolution . 47
4.2.4 Space-shift sampling of diffused sparse signals 48

4.3 Numerical experiments . 49
4.4 Conclusion . 51

5 Robust graph filter identification 53
5.1 Introduction . 53
5.2 GF identification with imperfect graph knowledge 54

5.2.1 Modeling graph perturbations . 56
5.3 Robust GF identification . 57

5.3.1 Alternating minimization for robust GF identification 58
5.3.2 Leveraging stationary observations . 61

5.4 Joint robust identification of multiple GFs . 61
5.4.1 Joint GF identification for time series . 63

5.5 Efficient implementation of the robust GF identification algorithm 65
5.6 Numerical results . 68

5.6.1 Synthetic experiments . 68
5.6.2 Real-world datasets . 71

5.7 Concluding remarks . 73
5.8 Appendix: Proof of Theorem 5.1 . 74

6 Robust network topology inference 77
6.1 Introduction . 78
6.2 Topology inference model in the presence of hidden variables 79

6.2.1 Correlation and partial correlation networks with hidden variables 79
6.3 Topology inference from stationary signals . 81

6.3.1 Topology inference with stationary observations as a convex optimization . 82
6.3.2 Robust network inference . 82

6.4 Joint inference from stationary signals in the presence of hidden variables 83
6.4.1 Modeling hidden variables in the joint inference problem 84
6.4.2 Convex relaxations for the joint topology inference 85

6.5 Numerical experiments . 86
6.5.1 Numerical experiments based on joint inference 86

6.6 Conclusion . 88

7 Concluding remarks 89
7.1 Revisiting the proposed goals . 89
7.2 Future lines of research . 90

Bibliography 93

Acronyms 101

Chapter 1

Introduction

We begin by providing a short overview of the research environment surrounding this thesis,
motivating the relevance of graph-based methods and highlighting the impact of the presence
of perturbations in the data. After that, the chapter: (i) states the main objectives sought by
this work; (ii) lists the resulting contributions; and (iii) presents a brief outline of the remaining
chapters.

1.1 Motivation and context

In the last two decades, we have been experiencing a data deluge largely propelled by the per-
vasive deployment of networks of sensing devices, the massive use of online social media, and the
unstoppable digitalization of our daily tasks. At the same time, as contemporary interconnected
systems grow in size and importance, the data generated by such systems becomes more complex
and heterogeneous, motivating the fast development of new methods and techniques to process
datasets defined over irregular (non-Euclidean) domains [32–35]. Among the novel approaches
that emerged to handle contemporary data, one particularly tractable and fruitful consists in mod-
eling the underlying irregular structure by means of a graph, and then, interpreting the data as
signals defined on the graph, which are commonly referred to as graph signals. This graph-based
perspective has rapidly grown in popularity and it has been successfully applied to data obtained
from power, communication, social, geographical, financial, or biological networks, to name a
few [36–38]. Moreover, it has attracted the attention of researchers from different areas, including
statistics, machine learning, and signal processing.

Precisely, interpreting signals with irregular support as graph signals and then exploiting the
topology of the underlying graph to process the signals is at the core of graph signal processing
(GSP), a relatively new field that is developing swiftly [39–42]. GSP is devoted to developing new
models and algorithms for processing graph signals, oftentimes by generalizing classical tools origi-
nally conceived to process signals with regular support (time or space). Based on the fundamental
assumption that there exists a close relation between the properties of the signals and the topology
of the graph where they are supported, the key to the success of GSP is to effectively exploit the
relation between the graph and the signals. To that end, a considerable proportion of the efforts in
GSP are directed at analyzing how the algebraic and spectral characteristics of the graph impact

2 Introduction

the properties of the graph signals. In this analysis, the so-called graph-shift operator (GSO) plays
a fundamental role. The GSO is a sparse matrix whose sparsity pattern encodes the topology of
the graph, rendering it a cornerstone element within the GSP framework [39, 43]. For example,
employing the GSO as a building block enables the definition of different spectral tools such as
the graph Fourier Transform (GFT) [44–46], or more general graph-signal operators such as graph
filters (GFs), which may be expressed as polynomials of the GSO [43,47–49].

A wide range of graph-related problems have been addressed under the GSP umbrella, and even
though a variety of goals and assumptions are considered for the different problems, the key idea of
harnessing the relation between the graph and the signals remains a constant. A popular problem
consists in modeling an arbitrary linear transformation between some input and output graph signals
through a GF. This task is commonly referred to as GF design or GF identification, and the inferred
GF may be interpreted as the dynamics driving a network-diffusion process of interest [47,48,50,51].
The sampling and reconstruction of graph signals is also an interesting problem [8,9,11,12], with
meaningful connections to semisupervised learning. Note that while sampling signals defined over
regular domains is relatively straightforward (regular sampling schemes are prudent and give rise to
sample signals that are regular as well), this is not the case for graph signals, which are inherently
irregular. Hence, the efforts when approaching this task focus on designing sampling schemes
that exploit the graph structure allowing to effectively recover the whole signal from its sampled
version. The reconstruction of the signal is also known as graph signal interpolation, and it is
related to solving an inverse problem that involves both the signal observations and the supporting
graph [1, 4, 52, 53]. Depending on the actual relation between the observations and the original
signal, the problem has been addressed from a point of view of signal denoising, inpainting, or
signal super-resolution, to name a few. Another fundamental but considerably different problem
is that of network topology inference, also known as graph learning [54–59]. In contrast with
previous GSP problems, in network topology inference the focus is placed on the topology of
the graph, which is unknown, and therefore, the goal is to infer the graph from a set of nodal
observations. Finally, in the context of deep learning, another line of research that has attracted
attention is the development of non-linear architectures that exploit the relation between graphs
and signals by incorporating the topology of the graph into their design. This popular family of
neural networks (NNs) is known as graph neural networks (GNNs), and it encompasses a gamut
of different graph-based architectures that have been applied to a wide range of problems [60–64].

All the aforementioned GSP applications use as input the observed data (graph signals) and the
observed/inferred support (the graph). Unfortunately, imperfect knowledge due to the presence
of noise, missing values, or outliers is pervasive in contemporary data science applications. In this
sense, we will use the generic term perturbation to refer to any imperfection in the observed data,
encompassing a variety of defects whose particularities will depend on the application at hand and
the features of the data. To further illustrate the diverse nature of perturbations in a GSP context,
consider the example of a network of sensors measuring some quantity of interest. The process of
acquiring the measurement will introduce a certain amount of noise, and furthermore, if any sensor
is damaged then its measures will be completely lost. Equally important, the information about
the connections between the sensors may not be fully accurate. This example clearly illustrates
that, when dealing with GSP, one needs to account for (i)perturbations in the graph signals;
(ii) perturbations in the topology of the graph; and (iii) the joint effects and interactions between
these two.

We start describing the presence of perturbations in the graph signals. Clearly, signal perturba-
tions have been extensively investigated in signal processing, statistics, and data science, so that
many of the classical results can also be leveraged in the GSP setup. From this point of view, the
two key (distinctive) questions when dealing with perturbed graph signals are: (i) how does the

1.1. Motivation and context 3

graph influence the perturbation? and (ii) how can the graph be exploited to design the schemes
that mitigate/eliminate the perturbations? Due to the combination of practical relevance, tractabil-
ity, and the existence of related works from classical signal processing, accounting for perturbations
in the observed graph signals has attracted a considerable amount of attention. Accounting for
this, we focus on studying two specific types of perturbations that have been thoroughly analyzed
(the presence of noise in the signals and the presence of missing values), considering graph-aware
processing and acquisition architectures that had not been investigated before.

• (P1) Noise in the graph signals. This simple case assumes that the observed signals are
corrupted by additive noise, typically modeled as an independent identically distributed (i.i.d.)
random variable drawn from a particular distribution. Noisy graph signals arise in a gamut
of graph-related applications such as measurements in electric, social and transportation
networks, or monitoring biological signals [1,37,41,65]. While denoising schemes have been
thoroughly investigated in classical signal processing, the noise perturbating graph signals is
oftentimes related to the topology of the graph (e.g., the noise can be independent across
nodes while its variance is proportional to the node degree or any other node centrality
measure). Even more importantly, GSP denoising schemes must be particularized to exploit
the graph when mitigating (eliminating) the noise. This process is known as graph-based
signal denoising, and traditional approaches include minimizing the graph total variation to
push the signal values at neighboring nodes to be close [1, 2], promoting a notion of signal
smoothness by adding a regularization parameter based on the quadratic form of the graph
Laplacian [3], or encouraging the recovery of signals with a smooth gradient [4]. More
recently, non-linear solutions for denoising graph signals have been proposed, with relevant
examples based on median graph filters [5], graph autoencoders [6], or graph unrolling
architectures [7].

• (P2) Missing values. We use this term to refer to setups where only a subset of the entries
of the graph signal are available. This accounts for cases where the values are missing /
totally corrupted, as well as for sampling setups where the remaining entries were purposely
unobserved. Practical graph scenarios that can lead to missing values include damaged
sensors in a sensor network, wrong or incomplete answers when the data is gathered through
online forms, or just because sampling the signal values at every node is not feasible in large
networks [37, 66, 67]. A number of alternatives arise to deal with this type of perturbed
signals, with naive alternatives including filling the missing values with zeros or using the
mean value within the observed values in the one-hop neighborhood. To fill the missing
values, a reasonable and rigorous approach is to look at the problem from the sampling
perspective and design methods to perform graph signal interpolation. Two critical aspects
in this regard are the postulation of a parsimonious model for the graph signal (bandlimited,
diffused, smooth...) and the impact of the scheme collecting the samples. Several works have
investigated different instances of this problem, with a strong bias towards assuming that the
original signal is graph bandlimited and that the observed values proceed from observations
taken at a fixed subset of nodes [8–11]. Alternatively, other works have postulated that
the observed values correspond to successively aggregating the values of the signal from
neighboring nodes [12,13], and designed the associated optimal interpolation schemes.

We shift focus now to the second class of imperfections studied in this work: perturbations in
the graph topology. In this case, recall that GSP builds upon exploiting the relation between the
signals and the graph, and hence, it is not surprising that methods within the GSP framework are
particularly sensitive to this type of imperfections. More precisely, a fair amount of GSP methods
rely on either the spectrum of the GSO or in polynomials of the GSO, and because the GSO captures

4 Introduction

the topology of the graph, the perturbations in the observed topology translate into perturbations
in the GSO. However, even when assuming additive models to represent the perturbations, which
are the easiest type of models to deal with, measuring the impact of the perturbations in the
topology on the spectrum of the GSO and the polynomials of the GSO is a challenging endeavor.
Not only that, but when perturbations affect the number of observed nodes, even the size of the
GSO will be uncertain. In conclusion, the perturbations in the topology of the graph will not
only hinder the performance of GSP algorithms but, furthermore, developing robust alternatives
that model the presence of perturbations is a non-trivial and ill-posed problem, which has been
barely studied in the GSP literature. In this work, we focus on two types of graph perturbations:
uncertainty (imperfections) in the edges of the graph, and unobserved nodes (whose effects will
be analyzed in the context of graph learning). These two types of perturbations, which are both
theoretically and practically relevant, are described in more detail next.

• (P3) Uncertainty in the edges. Here, we assume that the set of nodes is perfectly known
and that imperfect information about the existence and strength of the links (graph topology)
is available. The perturbations in the observed topology may encompass observing edges that
do not exist in the true graph, missing/unobserved edges that exist in the true graph, noise
present in the weights of the observed edges, or any combination of the previous options.
These perturbations appear in a gamut of practical situations. On the one hand, when
networks are given explicitly, perturbations may be due to observational noise and errors (e.g.,
link failures in power or wireless networks [68]). On the other hand, when in lieu of physical
entities, the graphs model (statistical) pairwise relationships among the observed variables,
they need to be inferred from the data [56,57,69]. While this type of perturbation is critical
for many GSP methods, modeling the influence of the imperfect topological information and
developing robust alternatives is a challenging task, and hence, there is a limited number of
works approaching this problem. In the frequency domain, [14] employs a small perturbation
analysis to study the impact of perturbations in the spectrum of the graph Laplacian. In
the vertex domain, [15, 70] postulates a graphon-based perturbation model applied to GFs
of order one. Then, in more recent approaches, [16] combines structural equation model
(SEM) with total least squares (TLS) to jointly infer the GF and the perturbations in the
GSO, and [17] proposes a robust GF identification alternative where the support of the graph
is assumed to be known, so the perturbations are constrained to be noise in the observed
edges.

• (P4) Hidden nodes. Finally, we consider a perturbation where some elements of the
nodal set are not known, which is a problem particularly acute in the context of network
topology inference. Clearly, when hidden nodes are present, one has only access to signals
(measurements) from the remaining (observed) nodes. However, this should not be confused
with the (missing values) perturbations introduced in (P2). There, the signals at some nodes
were not observed, but the existence of the node and its connections to other nodes were
known. In contrast, here not only the underlying graph is unknown, but even the number
of hidden nodes is oftentimes not known. A number of estimation goals arise in the context
of (P4): inferring the number of hidden nodes, the connections among them, or the values
of the signals, to name a few. In the specific context of network topology inference under
the presence of hidden nodes, the problem is more challenging because the links among
observed nodes are unknown as well. As a result, the main goal is usually to estimate the
links between the observed nodes (also known as learning the observed subgraph). More
ambitious approaches aim also at estimating the links between observed and unobserved
nodes. Clearly, all these problems are related and challenging (highly correlated values from
two observed nodes may be explained not only by an edge between the two nodes but by a

1.2. Objectives 5

third hidden node connected to them). Some network-inference methods have started to look
at the problem of hidden nodes with examples in the context of Gaussian graphical model
selection [18, 19], inference of linear Bayesian networks [20], non-linear regression [71], or
brain connectivity [72], to name a few. Nonetheless, there are still many network-inference
methods (including most in the context of GSP) that have not considered this type of
perturbations.

To summarize, the presence of perturbations in GSP setups leads to having imperfect knowledge
about the graph signals, the graph, or both. Clearly, if these perturbations are ignored, the
performance of naive algorithms that use as input the corrupted data will be drastically hindered.
The solution is to design robust schemes that model and incorporate into their formulation the
presence and effects of the perturbations. While relevant and timely, this is a challenging problem,
especially when the perturbations affect the graph topology. Bearing all this in mind, our goal,
which is presented in detail in the next section, is to develop a set of GSP methods robust to
different types of perturbations, understand their differences and similarities, and discuss how they
can be combined in a meaningful and tractable way.

1.2 Objectives

As discussed in the previous section, the presence of perturbations in the observed data con-
stitutes a relevant and ubiquitous problem. Motivated by this, the prevailing objective of this
thesis is to advance towards a robust GSP paradigm where the algorithms are carefully designed
to deal with the presence of perturbations in the graphs and the signals. To that end, we aim to
analyze and understand the impact of the different types of perturbations in several fundamental
GSP problems and then, design a robust formulation capable of: (i) recovering the original data
from the perturbed observations; and/or (ii) approaching the desired task while taking into ac-
count the presence of perturbations in the data to minimize their disruptive influence. To render
these generic (and relatively ambitious) goals more reachable, we focus our research efforts on
four specific objectives. Each of them considers a specific GSP problem and addresses one of the
perturbations introduced in Section 1.1.

(O1) Non-linear denoising of graph signals. Consider a setting where the observed graph
signals are corrupted with noise as described in the perturbation type (P1). Our goal is to design
non-linear architectures to denoise the observed graph signals. Because dealing with noisy signals
is a problem that has been studied to a considerable extent in the GSP literature, here we focus
on the design of untrained non-linear architectures and on their theoretical characterization. First,
we will explore different ways of incorporating the information encoded in the graph and propose
novel graph-aware NN architectures to denoise graph signals. Second, we will provide theoretical
guarantees for the denoising performance of the proposed architectures, and we will show that the
denoising capability is directly influenced by the topology of the underlying graph.

(O2) Signal interpolation of diffused sparse graph signals. Consider a setting where the
observed signals have missing values as described in the perturbation type (P2). Our goal is to
reconstruct the observed signal when the observations are taken at a particular node according to a
successive local aggregation sampling scheme (AGSS). The signal to be reconstructed is assumed
to be a diffused sparse graph signal (DSGS), a class of signals that can be modeled as a signal with
zeros everywhere except in a few seeding nodes, which is then diffused through the network via a

6 Introduction

GF. Ultimately, we will develop a reconstruction algorithm to recover both the original (diffused)
signal and the seeds from the perturbed observation.

(O3) Robust GF identification. Consider a setting where the observed graph is perturbed as
described in the perturbation type (P3). Our goal is to estimate a GF from some input-output
signal pairs while accounting for the presence of errors in the supporting graph and in the observed
signals. The proposed approach needs to bypass the challenges associated with robust spectral
graph theory and avoid the numerical instability from computing high-order polynomials. We will
also address the scenario where several GFs need to be estimated, with all the GFs being defined
as polynomials of the same GSO.

(O4) Robust network topology inference. Consider a network topology inference problem where
a subset of the nodes remain hidden as described in the perturbation type (P4). Our goal is to
estimate the joint topology of the observed subgraph while taking into account the presence of the
hidden nodes. The observed signals will be assumed to be stationary in the unknown graph and our
main focus will be considering the case where several related graphs, all defined over the same set
of nodes, need to be learned. Here, we will develop a joint network topology inference algorithm
that exploits the graph similarity while accounting for the presence of hidden nodes. Note that
leveraging the graph similarity between hidden nodes (which are not observed) is an interesting
but non-trivial problem.

Clearly, objectives (O1) and (O2) are concerned with perturbations involving the graph signals
and they aim to design schemes to clean/infer the graph signal of interest. In contrast, objectives
(O3) and (O4) are concerned with perturbations involving the topology of the graph and they aim
to solve higher order GSP tasks while mitigating (bypassing) the presence of the perturbations.
On top of these four specific objectives, two transversal objectives are also considered. First,
since many of the findings and challenges faced when addressing (O1)-(O4) are also present in
related robust GSP setups, our aim is that the models and tools put forward in this thesis improve
our understanding of the influence of perturbations in a general way, hoping that these robust
approaches may be extended/generalized to other important GSP applications where the presence
of perturbations is critical. Secondly, even though the scope of this thesis is markedly theoretical,
showcasing the potential applicability of the algorithms developed herein is certainly important.
Therefore, we define another transversal objective, which consists in assessing the practical value
of our algorithms using real-world datasets.

1.3 Summary of contributions

This section provides the list of publications organized around the (results and contributions)
of the four objectives presented in the previous section.

The graph signal denoising task (O1) is addressed in [21, 22]. The preliminary work in [21]
proposed an underparametrized deep decoder NN capable of learning non-linear representation for
graph signals, which were used for compression and denoising. Later on, [22] presented two un-
trained and overparametrized GNNs to address the graph signal denoising problem. To incorporate
the topology of the graph, the first architecture employs a fixed (non-learnable) GF to generalize
the convolutional layer in [60]. The second architecture performs graph upsampling operations
that, starting from a low-dimensional latent space, progressively increase the size of the input
until it matches the size of the signal to denoise. Furthermore, a mathematical analysis was con-

1.3. Summary of contributions 7

ducted for each architecture offering bounds for their performance, improving our understanding
of nonlinear architectures and the influence of incorporating the graph structure into NNs. In-
terestingly, the decoder architecture introduced in [22] has proven useful for other problems than
signal denoising. The decoder was employed to design a graph deep decoder capable of learning
the mapping between input-output signal pairs defined on different graphs [23, 24]. The key idea
is that the encoder uses the input graph to map the input signal onto a latent space, and then,
the decoder uses the output graph to reconstruct the output signal from the latent representation.
The publications related to (O1) are listed below.

[21] S. Rey, A. G. Marques, and S. Segarra, “An underparametrized deep decoder architecture for
graph signals,” in IEEE Intl. Wrksp. Computat. Advances Multi-Sensor Adaptive Process.
(CAMSAP). IEEE, 2019, pp. 231–235.

[22] S. Rey, S. Segarra, R. Heckel, and A. G. Marques, “Untrained graph neural networks for de-
noising,” arXiv preprint arXiv:2109.11700, 2021 (submitted to IEEE Trans. Signal Process.).

[23] S. Rey, V. M. Tenorio, S. Rozada, L. Martino, and A. G. Marques, “Deep encoder-decoder
neural network architectures for graph output signals,” in Conf. Signals, Syst., Computers
(Asilomar). IEEE, 2019, pp. 225–229.

[24] S. Rey, V. M. Tenorio, S. Rozada, L. Martino, and A. G. Marques, “Overparametrized deep
encoder-decoder schemes for inputs and outputs defined over graphs,” in European Signal
Process. Conf. (EUSIPCO). IEEE, 2021, pp. 855–859.

The goal of graph signal interpolation (O2) is pursued in [25], where the observed (non-
missing) values of the perturbed signals are assumed to be taken at a particular node according
to an AGSS. In the AGSS, which was originally proposed for bandlimited graph signals (BGS),
the nodes successively aggregate the values of the signal in their neighborhood, and moreover,
the recovery of the original signals can be guaranteed even if observations are gathered at a
single node. Firstly, [25] applied AGSS to the case where the observed signals are DSGS in lieu
of BGS. Secondly, after defining the observational model for the perturbed signals, the paper
proposed an interpolation algorithm defined in the spectral domain. Finally, existing results for
support identification and blind deconvolution were generalized to deal with AGSS and DSGS. The
publication related to (O2) is listed below.

[25] S. Rey, F. J. I. Garcia, C. Cabrera, and A. G. Marques, “Sampling and reconstruction of
diffused sparse graph signals from successive local aggregations”, IEEE Signal Process. Lett.,
vol. 26, no. 8, pp. 1142–1146, 2019.

The robust robust GF identification problem (O3) is approached in [26, 27]. In those works,
the proposed solution was formulated in the vertex domain, avoiding the numerical instability of
computing large polynomials and, at the same time, bypassing the challenges associated with
robust spectral graph theory. The robust GF identification was recast as a joint optimization
problem where the GF identification objective was augmented with a graph-denoising regularizer
so that, on top of the desired GF, the proposed algorithm also provided an enhanced estimate of the
supporting graph. The joint formulation led to a non-convex bi-convex optimization algorithm, for
which a provably-convergent efficient algorithm able to find an approximate solution was developed.
Furthermore, to address scenarios where multiple GFs are present, the paper generalized the robust
framework so that multiple GFs, all defined over the same graph, were jointly identified. Also
related to (O3), [28] introduced the neighborhood GF, a new type of GF that is numerically

8 Introduction

stable and robust to perturbations in the observed topology. The definition of neighborhood GF,
which replaced the powers of the GSO with k-hop adjacency matrices, was exploited to provide an
alternative design of graph convolutional NN (GCNN) that was employed in graph signal denoising
and node classification problems. The publications involved with (O3) are listed below.

[26] S. Rey and A. G. Marques, “Robust graph-filter identification with graph denoising regular-
ization”, in IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP). IEEE, 2021, pp.
5300–5304.

[27] S. Rey, V. M. Tenorio, and A. G. Marques, “Robust graph filter identification and graph
denoising from signal observations,” arXiv preprint arXiv:2210.08488, 2022 (submitted to
IEEE Trans. Signal Process.).

[28] V. M. Tenorio, S. Rey, F. Gama, S. Segarra, and A. G. Marques, “A robust alternative for
graph convolutional neural networks via graph neighborhood filters,” in Conf. Signals, Syst.,
Computers (Asilomar). IEEE, 2021, pp. 1573–1578.

Lastly, the network topology inference in the presence of hidden nodes (O4) is addressed
in [29, 30]. Initially, [29] investigated how the presence of hidden variables impacts the classical
definition of graph stationarity. Key to the proposed formulation was the consideration of a block
matrix factorization approach and harnessing the low rankness and the sparsity pattern present
in the blocks related to hidden variables. Then, we exploited this block matrix factorization
in [30] to propose a topology inference method that, assuming that the observed signals are graph-
stationary, jointly learns multiple graphs while accounting for the presence of hidden variables.
To fully benefit from the joint inference formulation and successfully exploit the graph similarity
among hidden nodes, the paper carefully exploited the structure inherent to the presence of latent
variables with a regularization inspired by group Lasso [73]. An additional work that is closely
related to the objective (O4) is presented in [31]. The paper presented a graph-learning algorithm
that assumes that a reference graph with a density of motifs similar to that of the sought graph
was known. Then, this similarity was harnessed to reveal a connection between the spectra of
both graphs, which was exploited in the formulation of the inference problem and the associated
algorithm. The prior information about the density of motifs of the unknown graph is local and
robust, in the sense that it enables the comparison of graphs of different sizes, an issue that was
non-trivial. Moreover, leveraging this prior to boost the performance of graph learning algorithms
in the presence of hidden nodes arises as an interesting research problem, which is left as a future
research direction. The publications related to (O4) are listed below.

[29] A. Buciulea, S. Rey, C. Cabrera, and A. G. Marques, “Network reconstruction from graph-
stationary signals with hidden variables”, in Conf. Signals, Syst., Computers (Asilomar).
IEEE, 2019, pp. 56–60.

[30] S. Rey, A. Buciulea, M. Navarro, S. Segarra, and A. G. Marques, “Joint inference of multiple
graphs with hidden variables from stationary graph signals”, in IEEE Int. Conf. Acoustics,
Speech Signal Process. (ICASSP). IEEE, 2022, pp. 5817–05821.

[31] S. Rey, T. M. Roddenberry, S. Segarra, and A. G. Marques, “Enhanced graph-learning
schemes driven by similar distributions of motifs”, arXiv preprintarXiv:2207.04747, 2022
(submitted to IEEE Trans. Signal Process.).

1.4. Outline of the dissertation 9

1.4 Outline of the dissertation

The remainder of this document is organized as follows. First, Chapter 2 introduces fundamen-
tal definitions and concepts that will be employed during the thesis. Then, Chapter 3 considers
the presence of noise in the signals and proposes non-linear architectures to perform graph signal
denoising. Chapter 4 addresses the presence of missing values in the observed signals and intro-
duces an interpolation method for DSGS. Regarding the perturbations in the topology, Chapter 5
addresses the problem of GF identification assuming imperfect knowledge of the observed topol-
ogy, and Chapter 6 approaches the task of network topology inference while accounting for the
presence of hidden nodes. Finally, Chapter 7 provides some concluding remarks and identifies some
interesting future research directions.

Chapter 2

Fundamentals of graph signal processing

This chapter introduces the main concepts and tools from GSP, which are the foundations to
the research carried out in this thesis. To that end, we begin by defining the basics of GSP, then
introduce some fundamental tools and methods, and close the section describing a couple of more
advanced GSP concepts directly related to this thesis.

2.1 Graphs, graph signals, and the GSO

A graph is a mathematical structure formally defined as G := (V, E), where V and E are,
respectively, the sets containing the nodes and edges conforming the graph, which are also com-
monly known as vertices and links. The nodes collected in V are typically labeled using integers so
V := {1, 2, ..., N}, with N denoting the number of nodes in the graph. Then, the edges collected
in E are represented by pairs of nodes (i, j) with i, j ∈ V and (i, j) ∈ E if and only if the node i is
connected to node j. If none of the edges in the graph are directed, that is, if edges are agnostic to
which node is the origin and which is the destiny, then the graph is called undirected, and hence,
(i, j) ∈ E implies that (j, i) ∈ E . In contrast, when the graph captures the direction of the edges
it is called directed, and we might encounter that (i, j) ∈ E but (j, i) ̸∈ E . Fig. 2.1 represents an
undirected graph where the nodes in V are represented in blue and the edges in E are represented
as gray lines. Intuitively, a graph encodes pairwise relations between the nodes in V, with these
relations being represented by the edges. Then, an unweighted graph captures whether an edge
exists or not but it does not provide any information about the strength (closeness, similarity,...)
of the connection. On the other hand, this additional information about the distance or closeness
between connected nodes is provided by weighted graphs. The distinction between weighted and
unweighted graphs is apparent when looking at the adjacency matrix, a widely used matrix rep-
resentation of the topology of G. The adjacency matrix A is a sparse N × N matrix encoding
the connectivity of the graph whose entry Aij ̸= 0 if and only if (i, j) ∈ E . When the graph is
unweighted the entries of A are binary, i.e., A ∈ {0, 1}N×N . On the contrary, if the graph is
weighted then A ∈ RN×N and the non-zero entries Aij capture the weight of the edge between
the nodes i and j. Similarly, when the graph is undirected the matrix A is symmetric. Another
concept involving the connectivity of the graph is that of the neighborhood of a node. For any
node i, its neighborhood Ni := {j ∈ V|(i, j) ∈ E} is the set of nodes that are connected to i.
Furthermore, the degree of a node i is given by the number of neighbors, so it is formally defined

12 Fundamentals of graph signal processing

Figure 2.1: Depiction of a graph signal x and the underlying graph G. Nodes are represented in blue, the
edges are the connections in gray, and the height of the red vertical bars represents the values of x at each
node.

as di := |Ni| = [A1]i, where 1 denotes the vector of all ones. In other words, di can be computed
by adding the entries of the i-th row of A. If graphs are directed, one must account for defining
incoming (outcoming) neighborhoods as well as incoming (outcoming) degrees.

We move on to the definition of graph signals, which represent the other fundamental piece
within the GSP framework and constitute the subject of study in most GSP problems. Formally,
a graph signal can be modeled as a function from the node set to the real field1 x : V → R or,
equivalently, as an N -dimensional real-valued vector x = [x1, ..., xN]⊤ ∈ RN , with xi denoting
the value of the signal at the node i. An example of a graph signal is given in Fig. 2.1, where
the height of the vertical bars represents the value of the signal at each node. Then, because
the graph signal x is defined on G, the core assumption of GSP is that either the values or the
properties of x depend on the topology of G [43]. For instance, consider a graph that encodes
similarity. If the value of Aij is high, then one will expect the signal values xi and xj to be akin
to each other. This rationale helps to explain the advantages of leveraging the topology of the
graph when processing graph signals. Some relevant examples of graph signal models that reflect
the influence of the graph topology on x are provided in Section 2.3.

The last key element in the GSP framework is the so-called graph-shift operator (GSO), a
square matrix that captures the topology of the underlying graph G [43]. The GSO is denoted
by S ∈ RN×N and its entry Sij is allowed to be non-zero if and only if i = j or (i, j) ∈ E .
Intuitively, S can be understood as a topology-aware local operator that can be applied to process
graph signals. There exist several options for selecting the GSO, with typical choices including the
adjacency matrix A, the graph combinatorial Laplacian L := diag(A1) − A, and its normalized
variants [39, 43]. Note that diag(·) denotes the diagonal operator that transforms a vector into
a diagonal matrix. In this sense, using S instead of a specific choice for the GSO is particularly
useful since it provides a higher level of abstraction and results in algorithms that may be applied
to a wider range of scenarios. When G is assumed to be undirected, it follows that S is symmetric
and it can be diagonalized as S = VΛV⊤, where the orthonormal matrix V ∈ RN×N collects the
eigenvectors of S, and the diagonal matrix Λ = diag(λ) collects the eigenvalues λ ∈ RN . On the
other hand, when G represents a directed graph we will assume that S is still diagonalizable and
its decomposition will be given by S = VΛV−1. Note that, in the directed case, the eigenvalues
collected in Λ are likely to be complex numbers.

1For simplicity, we focus our discussion on scalar, real-valued graph signals, but the values associated with each
node could be discrete, complex, or even vectors (e.g., when multiple features per node are observed).

2.2. Graph filters and filter identification 13

2.2 Graph filters and filter identification

Graph filters (GFs) are topology-aware linear operators whose inputs and outputs are graph
signals. More specifically, graph filters implement a linear transformation that can be expressed as
a polynomial of the GSO of the form

H :=
R−1∑

r=0
hrSr = Vdiag(Ψh)V−1 = Vdiag(h̃)V−1, (2.1)

where H is the graph filter, and h := [h0, ..., hR−1]⊤ is the vector collecting the filter coefficients
hi. The N × R Vandermonde matrix Ψ defined as Ψij := Λj−1

ii represents the GFT for GFs, and
thus, h̃ := Ψh is the vector of size N representing the frequency response of H [44, 48]. Since
Sr encodes the r-hop neighborhood of the graph, graph filters can be used to diffuse input graph
signals x across the graph as y = ∑R−1

r=0 hrSrx = Hx, where y is the result of diffusing the signal
x across R−1 neighborhoods with hr being the coefficients of the linear combination.

A relevant problem in the context of GFs is that of GF identification. Consider that we observe
M input and output pairs X := [x1, ..., xM] and Y := [y1, ..., yM] whose relation is given by

Y = HX + W, (2.2)

with W being a zero-mean random matrix (typically assumed to have i.i.d. entries) that accounts
for noisy measurements and model inaccuracies. Leveraging (2.2), the GF identification task
amounts to using the input-output pairs to estimate H under the model in (2.1), which, if the
GSO S is known, boils down to estimating the GF coefficients collected in h ∈ RR. Hence, we
can approach the GF identification task in the node domain by solving the convex problem

min
h

∥∥∥∥∥Y −
R−1∑

r=0
hrSrX

∥∥∥∥∥

2

F

. (2.3)

Leveraging the frequency definition of GFs in (2.1), we rewrite the least-squares (LS) cost in (2.3)
and obtain its (closed-form) solution as

ĥ = argmin
h

∥∥∥vec(Y) − (
(V−1X)⊤ ⊙ V

)
Ψh

∥∥∥
2

2
= Ξ†vec(Y), (2.4)

where vec(·) denotes the vectorization operation, V−1X is the frequency representation of the
input signals (see Section 2.3), ⊙ denotes the Khatri–Rao product, Ψ is the GFT Vandermonde
matrix, Ξ := ((V−1X)⊤ ⊙ V)Ψ, and † is the pseudoinverse operator.

From (2.4) we observe that estimating H is straightforward under the assumptions of: i) Ξ
being full rank (i.e., the inputs are sufficiently rich); and ii) S being perfectly known. However,
as discussed in the first chapter of this thesis, the assumption in ii) does not hold true in many
practical settings. New formulations of (2.4) that account for imperfect GSOs are addressed in
Chapter 5.

2.3 Models for graph signals

There is a great diversity of models capturing different relations between the signals and
the underlying graph. Here, we introduce some popular models for graph signals, which will
be leveraged in subsequent chapters.

14 Fundamentals of graph signal processing

Bandlimited graph signals. The notion of bandlimited graph signals links the properties of a signal
to those of the spectrum of the supporting graph. To be specific, the frequency representation of
the signal x is given by the N -dimensional vector x̃ := V−1x, with V−1 acting as the GFT [44].
Then, a graph signal is said to be low-pass bandlimited if x̃ satisfies that x̃k = 0 for k > K, where
K ≤ N is referred to as the bandwidth of x. If x is bandlimited with bandwidth K, it holds that

x = VK x̃K , (2.5)

with x̃K = [x̃1, · · · , x̃K] collecting the active frequency components, and VK collecting the
corresponding K eigenvectors. In other words, x lives in a subspace of dimension K spanned by the
eigenvectors VK . Nonetheless, even though bandlimited graph signals are typically associated with
low-pass signals, the non-zero elements in x̃ are not constrained to its low-frequency components.
We might encounter high-pass bandlimited signals or signals whose active frequency components
are scattered throughout the spectrum. Furthermore, in relevant cases we might ignore the specific
frequency components that are active, further challenging the solution of inverse problems dealing
with bandlimited graph signals.

Interestingly, comparing the definition of x̃ with the definition of h̃ from (2.1), it follows that,
in contrast with classical signal processing, the GFT for graph signals is different from the GFT
for GFs. Nonetheless, exploiting the frequency representations x̃ and h̃, we have that the output
y = Hx in the frequency domain is given by

ỹ = diag(Ψh)V−1x = diag(h̃)x̃ = h̃ ◦ x̃, (2.6)

with ◦ denoting the Hadamard (entry-wise) product. Note that equation (2.6) is the counterpart
of the convolution theorem for time signals [48].

Diffused sparse graph signals (DSGS). A graph signal is called a DSGS when it can be modeled
as a signal with only a few non-zero entries which is then diffused through the graph. Mathemat-
ically, given a GSO S, a DSGS x with S non-zero seeds can be written as

x = Hs, where H = ∑R−1
r=0 hrSr and ∥s∥0 ≤ S, (2.7)

where s denotes the original sparse signal whose non-zero entries are referred to as seeding nodes.
Clearly, signals in (2.7) can be viewed as the state reached after the diffusion process modeled by
H is over, and the sparse input s ∈ RN has been spread throughout the graph.

It is worth noticing that bandlimited signals and DSGS are two generative models with a
similar goal: providing a simpler representation of x. In this sense, the bandlimited model offers
an alternative representation of x that is sparse in the frequency domain while the DSGS model
offers an alternative representation of x that is sparse in the node domain. As happened with the
frequency components, the support of the seeding nodes may be known a priori or we may need
to learn it through deconvolution schemes.

Smooth graph signals. A graph signal is considered smooth on G if the signal value at two
connected nodes is “close” or, equivalently, if the difference between the signal value at neighboring
nodes is small. A common approach to quantify the smoothness of a graph signal relies on the
quadratic form [54] ∑

(i,j)∈E
Aij(xi − xj)2 = x⊤Lx, (2.8)

which quantifies how much the signal x changes with respect to the notion of similarity encoded in
the weights of A. This measure will be referred to as local variation (LV) of x. Note that, if the

2.4. Graph inverse problems: denoising and interpolation 15

goal is to obtain the mean LV of M graph signals collected in the N ×M matrix X = [x1, ..., xM],
this can be achieved by computing

1
M

M∑

m=1
x⊤

mLxm = 1
M

M∑

m=1
tr(xmx⊤

mL) = tr(ĈxL), (2.9)

where Ĉx := 1
M

∑M
m=1 xmx⊤

m = 1
M XX⊤ denotes the sample estimate of the covariance of X.

When compared with the previous models for graph signals, it is clear that smoothness is a
more lenient assumption. For example, consider that we impose a maximum LV on x with the
constraint x⊤Lx ≤ c for some c > 0. Then, while bandlimited signals are constrained to live in the
subspace spanned by VK , smooth signals are only constrained to lie within an ellipsoid. Last but
not least, more advanced notions of smoothness can be defined by considering ∥x − Hx∥2

2, where
H represents a pre-specified low-pass GF whose filter taps/frequency response can be tailored to
fit the notion of smoothness at hand.

Stationary graph signals. The definition of graph stationarity connects the statistical properties
of random graph signals with the underlying graph. Formally, a zero-mean random graph signal
x is said to be stationary on G if its covariance matrix Cx = E[xx⊤] is a positive-semidefinite
polynomial of the GSO [74]. When G is undirected so that VV⊤ = I, a common example of
stationary graph signals arises when x is the output of a linear graph-diffusion process whose input
is a zero mean white signal w ∈ RN , i.e., when the covariance of w is E[ww⊤] = I and x = Hw.
In this particular case, we have that the covariance of x is given by

Cx = E[xx⊤] = HE[ww⊤]H⊤ = HH⊤ = H2. (2.10)

Since the graph filter H is by definition a polynomial of the GSO S, from the last equality in
(2.10), it readily follows that Cx is a polynomial of S as well. As a result, in the spectral domain,
it holds that S and Cx share the same eigenvectors, and moreover, we have that the matrices
S and Cx commute, i.e., CxS = SCx. Finally, we emphasize that graph stationarity does not
impose a deterministic condition on x but, instead, it imposes a condition on the covariance of
the signal.

2.4 Graph inverse problems: denoising and interpolation

The models for graph signals discussed previously in Section 2.3 have been shown to bear
practical relevance in real-world datasets and are widely employed in inverse problems. Here, we
briefly describe traditional approaches to leverage the properties of some of those models when the
observed signals are perturbed.

In the context of graph signal denoising, when the perturbation consists in the presence of an
additive noise in the signal of interest, we are given the noisy observation x = x0 + n and the
goal is to recover the original signal x0 ∈ RN . If x0 is known to be bandlimited and the graph is
undirected, an estimate of x0 is readily given by

x̂0 = VKV⊤
Kx, (2.11)

where, by projecting x onto the subspace spanned by V⊤
K , we remove the components of the noise

n orthogonal to V⊤
K while retaining all the energy of x0. Differently, if x0 is known to be smooth

16 Fundamentals of graph signal processing

and the noise is white and Gaussian, a popular approach is to solve an optimization problem of
the form of

x̂0 = argminx̌0 ∥x − x̌0∥2
2 + αx̌⊤

0 Lx̌0. (2.12)

Here, the estimate x̂0 is a smooth representation of the noisy observation x, with the weight α
controlling the trade-off between minimizing the similarity of x̂0 and x and the LV of x̂0. Note
that, if the noise is drawn from a different distribution, then a similarity metric other than the
ℓ2 norm may be preferred. Along the same lines, if additional statistical information about the
noise were available (e.g., the covariance of the noise), this can also be incorporated into the
minimization problem.

Now, let us consider the problem of graph signal interpolation. This is a relevant problem in
setups where the graph signal has been corrupted with missing values or, alternatively, when only
a sampled version of the signal is available due to the fact that only a subset of nodes has been
observed. To be specific, consider the sampling set Q ⊆ V with cardinality Q ≤ N that collects
the set of nodes that have been observed, and define the (fat) selection matrix ΠQ ∈ {0, 1}Q×N

whose elements satisfy: (i) ∑j ΠQ,ij = 1 for all i; and (ii) ∑i ΠQ,ij = 1 if j ∈ Q and ∑i ΠQ,ij = 0
otherwise. Then, if the original signal x is bandlimited, and assuming that the observed values
correspond to observations at different nodes, we denote the perturbed signal with missing values as
xQ := ΠQx = ΠQVK x̃K . Under these conditions, the original signal x can be readily recovered
via

x̂ = VK x̃K = VK(ΠQVK)†xQ, (2.13)

provided that the rank of the Q × K submatrix ΠQVK is K. Nonetheless, in some settings, the
missing values may be represented more accurately with alternative sampling schemes. An equally
valid, but less intuitive approach to sampling a graph signal, is to fix some node i, and consider
the sampling of the signal seen by this node as the GSO is applied recursively. In other words,
consider that the signal has been locally diffused according to S, as encoded in the matrix

Z := [z(0), z(1), ..., z(N−1)] = [x, Sx, ..., SN−1x]. (2.14)

Then, using the matrix Z and with ei denoting the i-th canonical vector, the successively ag-
gregated signal at node i is the i-th row of Z, that is zi := (eT

i Z)T = ZT ei. Sampling is now
reduced to the selection of Q out of the N elements of zi, that is zQ,i := ΠQzi = ΠQ

(
ZT ei

)
.

Leveraging the results in [12], the signal x can be recovered from zQ,i as

x = VK

(
ΠQΨ⊤diag(υi)

)†zQ,i, with υi := [Vi,1, ..., Vi,N]⊤. (2.15)

2.5 Graph learning

Graph learning, also known as network topology inference, has developed swiftly in the last years
and, currently, is among the most active research areas within GSP. Given a set of graph signals
(nodal observations) collected in the matrix X = [x1, x2, ..., xM] ∈ RN×M , which are typically
assumed to be independent realizations of a random network process, the goal is to discover the
topology of the graph encoded in the GSO by assuming that the observed signals X and the
unknown graph are intimately connected. Fig. 2.2 illustrates the case where a graph learning
algorithm is employed to learn the connection between the different regions of the brain based on
the signals measured at each region. Intuitively, the relation between X and G will depend on the
application at hand, with different relations between the observations and the unknown topology

2.5. Graph learning 17

leading to different graph learning algorithms. Here, we will provide a succinct summary of the
most relevant approaches based on [59]. The interested reader is referred there for additional
details.

One of the first methods to estimate the topology G is given by correlation networks, where
the topology is obtained from the Pearson correlation of the i.i.d. random vectors collected in
X. The Pearson correlation coefficient between variables xi and xj is denoted as ρij and can be
computed from the entries of the covariance matrix [Cx]ij . Therefore, in the context of GSP, the
GSO for correlation networks is usually set to the sampled covariance Ĉx, or a thresholded version
to ensure a sparse matrix S.

While correlation networks are a simple alternative, high correlations may be due to latent
network effects. For example, the random variables xi and xj may be highly correlated not because
the nodes i and j are connected but because of a third node k that is influencing both of them.
In principle, such a confounding can be resolved by considering the partial correlation coefficients

ρij|V\ij := cov(xi, xj |V\ij)√
var(xi|V\ij)var(xj |V\ij)

. (2.16)

Here, V\ij denotes the set of random variables except for those indexed by nodes i and j. The edge
set in partial correlation networks is then defined analogously to their (unconditional) correlation
network counterpart.

Of particular interest is the case when each column of X is sampled independently from the
same Gaussian distribution. Under such an assumption, ρij|V\ij = 0 implies that xi and xj are
conditionally independent given the remaining variables in V \ ij. The resulting partial correlation
network is known as Gaussian Markov random field (GMRF) or Gaussian graphical model [75].
Then, the key realization is that the partial correlation coefficients V \ ij, which capture the
topology of the graph, can be expressed as the normalized entries of C−1

x . In the context of
GMRFs, this important matrix is known as the precision matrix. From the GSP perspective,
the previous discussion implies that S = C−1

x . In other words, the topology of the graph is
encoded in the inverse covariance matrix. Leveraging this observation, the notorious graphical
Lasso algorithm [69] estimates S through the regularized maximum likelihood (ML) estimator

Ŝ = argmax
S⪰0

log det(S) − tr(ĈxS) − λ∥S∥1, (2.17)

where the ∥S∥1 denotes the ℓ1 norm of the vectorization of S.

Finally, we consider a network topology inference approach that builds upon the more lenient
assumption of stationary graph signals. First, in correlation networks, it was assumed that S = Cx,
and later on, in the graphical Lasso algorithm and other GMRF approaches the relation between

Graph Learning

Algorithm

Figure 2.2: Application of a generic graph learning scheme. The input, represented on the left, is given
by signals measured in the different regions of the brain (the nodes of the graph). Then, the output of the
graph learning algorithm, on the right, are the inferred connections between the different regions, i.e., the
estimated topology of the network.

18 Fundamentals of graph signal processing

the GSO and the covariance of the observed signals is constrained to S = C−1
x . In contrast, the

assumption of stationary graph signals only implies that the mapping S → Cx is given by a generic
polynomial, hence including the previous scenarios as particular cases. While there are different
formulations for this graph learning approach, one particularly interesting for this thesis is given by

Ŝ = argmin
S

∥S∥1 s. t. ∥SĈx − ĈxS∥2
F ≤ ϵ, S ∈ S, (2.18)

which is formulated solely in the node domain thanks to the commutativity constraint ∥SĈx −
ĈxS∥2

F . The optimization problem finds the sparsest GSO that commutes with Ĉx, with ϵ being
a small positive parameter controlling the quality of the estimate Ĉx, and with S collecting the
requirements for S to be a specific type of GSO. A typical example is the set of adjacency matrices

SA := {Aij ≥ 0; A = A⊤; Aii = 0; A1 ≥ 1}, (2.19)

where we require the GSO to have non-negative weights, be symmetric, and have no self-loops,
and the last constraint rules out the trivial 0 solution by imposing that every node has at least one
neighbor. Analogously, the set of combinatorial Laplacian matrices is

SL := {Lij ≤ 0 for i ̸= j; L = L⊤; L1 = 0; L ⪰ 0}, (2.20)

where we require the GSO to be a positive semidefinite matrix, have non-positive off-diagonal
values, have positive entries on its diagonal, and have the constant vector as an eigenvector (i.e,
the sum of the entries of each row to be zero).

So far the section has been focused on a graph learning setting that, in the network science
parlance, is known as the network association problem [37]. While network association is the most
widely considered approach in the context of graph learning, two relevant variations are: the link
prediction problem and the network tomography problem. Link prediction is a simpler problem
in which a subset of the edges of the graph is observed along with the signals. This additional
information can be incorporated into the previous framework by modifying the constraint set S. In
contrast, network tomography is a more challenging task where the observed signals are perturbed
and observations from only a subset of the nodes are available. Precisely, developing robust
algorithms that address the latter problem leveraging several GSP assumptions is the subject of
Chapter 6.

2.6 Graph neural networks

Generically, we represent a GNN using a parametric nonlinear function fΘ(Z|G) : RN(0)×F (0) →
RN that depends on the graph G. The parameters of the architecture are collected in Θ, and
the matrix Z ∈ RN(0)×F (0) represents the input of the network. Despite the many possibilities for
defining a GNN, a broad range of such architectures recursively applies a graph-aware linear trans-
formation followed by an entry-wise nonlinearity. Then, a generic deep graph-based architecture
fΘ(Z|G) with L layers can be described as

Ŷ(ℓ) = T (ℓ)
Θ(ℓ)

{
Y(ℓ−1)|G

}
, 1 ≤ ℓ ≤ L, (2.21)

Y
(ℓ)

ij = g(ℓ)
(
Ŷ

(ℓ)
ij

)
, 1 ≤ ℓ ≤ L, (2.22)

where T (ℓ)
Θ(ℓ){·|G} : RN(ℓ−1)×F (ℓ−1) → RN(ℓ)×F (ℓ) is a graph-aware linear transformation, Y(0) = Z

and y = Y(L) denote the input and output of the architecture, Θ(ℓ) ∈ RF (ℓ−1)×F (ℓ) are the

2.7. Graph perturbations in GSP 19

Layer 1

…

…

Layer L

Figure 2.3: Block diagram of a generic GNN with L layers. The inputs of the architecture are the matrix
Z and the topology of the graph. As specified in (2.21)-(2.22), each layer is composed of a learnable graph-
aware linear transformation T (ℓ)

Θ(ℓ)

{
Y(ℓ−1)|G

}
followed by a entry-wise non-linear transformation g(ℓ)

(
Ŷ

(ℓ)
ij

)
.

parameters that define such a transformation, and g(ℓ) : R → R is a scalar nonlinear transformation
(e.g., the ReLU function), which is oftentimes omitted in the last layer. Moreover, N (ℓ) and
F (ℓ) represent the number of nodes and features at layer ℓ, and Θ = {Θ(ℓ)}L

ℓ=1 collects all the
parameters of the architecture. The structure of the generic GNN specified by the recursion in
(2.21)-(2.22) is depicted in Fig. 2.3. Finally, even though the output of fΘ(Z|G) are graph signals
defined in RN , which is the case of interest for Chapter 3, it can be easily adapted to output graph
signals with more than one feature.

2.7 Graph perturbations in GSP

The presence of noise in the observed topology represents a relevant but challenging problem
that is yet to be studied in more depth by the GSP community. Current works addressing this
issue customarily represent the influence that these perturbations exert in the GSO via an additive
term because of its tractability, but even then, the resulting models are non-trivial. The source of
this difficulty lies in the main tools used in GSP, which are based either on the GFT (eigenvectors
of the GSO) or on graph filters (polynomials of the GSO). The challenges are then twofold:
(i) characterizing the impact that an additive matrix perturbation has on the eigenvectors and/or
a polynomial of that matrix is highly nontrivial; and (ii) even small perturbations on S may
lead to great discrepancies in both the eigenvectors and the associated polynomials, as we show
in Chapter 5. Here, we present a succinct overview of relevant works considering the influence of
noise in the observed topology to provide some context.

We start with the work presented in [14], which analyzes how perturbations in the edges affect
the spectrum of the combinatorial graph Laplacian L. The authors assume an additive perturbation
model and define the perturbed Laplacian as L̄ := L + ∆L, with ∆L denoting the perturbation
matrix. Assuming that all the eigenvalues of L have multiplicity one and that ∥∆L∥F ≪ ∥L∥F ,
they perform a small perturbation analysis to quantify the influence of the perturbations in the
eigenvalues and eigenvectors of L. Based on this result, and assuming that the perturbation of
each edge is modeled as a random event characterized by a certain probability, a statistical analysis
is carried out to characterize the mean and the variance of the perturbation of the eigenvalues.
Lastly, [14] studies the influence of the perturbations on the spectrum of BGS when the eigenvectors
of L are used as the GFT.

20 Fundamentals of graph signal processing

Differently, [15] investigated the influence of perturbations in the adjacency matrix leveraging
results from the graphon theory. The perturbed adjacency matrix is also defined based on an
additive perturbation model as Ā = A + ∆ϵ ◦ (1N×N − 2A), where 1N×N is the matrix of all
ones of size N × N . The perturbations in ∆ϵ are modeled as a random graph drawn from either
an Erdős-Rényi (ER) or a stochastic block model (SBM), and then, generalizations considering
different probabilities for creating and destroying edges and dealing with weighted graphs are
also proposed. Finally, the model put forth in [15] is employed to analyze the influence of the
perturbations in a polynomial of the GSO of order 2.

To close this chapter, we stress that, for ease of exposition, we presented a taxonomy where
the fundamental concepts, tools, and problems in the GSP framework were clearly segregated.
Nonetheless, in practical settings we can encounter different combinations of the above problems
and generative models giving rise to a rich gamut of GSP tasks. This can be seen in blind
deconvolution, which is a graph filter identification problem when x is a DSGS and the seeding
nodes in s are unknown, or in the problem approached in Chapter 5, where we simultaneously
estimate a graph filter and denoise the observed topology of the graph.

Chapter 3

Non-linear denoising of graph signals

The first problem considered in the robust GSP framework proposed in this thesis involves the
presence of noise in the observed graph signals. As discussed in previous chapters, the presence
of noise represents a pervasive type of perturbation capable of rendering the observed data useless
when the signal-to-noise ratio is low. As a result, (pre-)processing schemes that remove the noise
from the observed signals are required. It is worth recalling that, because the presence of noise in
the signals does not affect the topology of the graph and results in tractable problems, there are
several works addressing the denoising of graph signals. In this sense, the approach described in this
chapter, which encapsulates our work from [21, 22], is primarily concerned with incorporating the
information encoded in the graph topology into non-linear architectures and, furthermore, providing
a mathematical characterization of the denoising capabilities of the proposed architectures.

Bearing the previous comments in mind, the chapter is organized as follows. Section 3.1 gives a
brief overview of the architectures developed and summarizes the main contributions. Section 3.2
formally introduces the problem at hand and presents our general approach. Section 3.3 and
Section 3.4 detail the proposed architectures and provide the mathematical analysis for each of
them. Numerical experiments are presented in Section 3.5 and concluding remarks are provided in
Section 3.6.

3.1 Introduction

In order to develop a graph-aware non-linear architecture capable of removing the noise from the
observed signals, the goal of this chapter is twofold. First, we explore different ways of incorporating
the information encoded in the graph and propose new graph-based NN architectures to denoise
graph signals. Second, we provide theoretical guarantees for the denoising capabilities of this
approach and show that such guarantees are directly influenced by the properties of the graph.
The mathematical analysis, performed on particular instances of these architectures, characterizes
their denoising performance under specific assumptions for the original signal and its underlying
graph. In addition, we provide empirical evidence about the denoising performance of our method
for scenarios more general than those strictly covered by our theory, further illustrating the value
of our graph-aware untrained architectures to denoise graph signals.

22 Non-linear denoising of graph signals

The presented architectures are untrained NNs, meaning that the parameters of the network
are optimized using only the signal observation that we want to denoise, avoiding the dependency
on a training set with multiple observed graph signals. The underlying assumption behind this
untrained denoising architecture is that, due to the graph-specific structure incorporated into the
different layers, when tuning the network parameters using stochastic gradient steps, the NNs are
capable of learning (matching) the structure of the signal faster than that of the noise. Hence, the
denoising process is carried out separately for each individual observation by fitting the weights of
the NN and stopping the updates after a few iterations. This same phenomenon has been observed
to hold true in non-graph deep learning architectures [76, 77]. In the context of signal denoising,
the consideration of an overparametrized graph-aware architecture along with early stopping avoids
overfitting to the noise.

To incorporate the topology of the graph, the first architecture multiplies the input at each
layer by a fixed (non-learnable) graph filter [48], which can be seen as a generalization of the
convolutional layer in [60]. The second architecture performs graph upsampling operations that,
starting from a low-dimensional latent space, progressively increase the size of the input until it
matches the size of the signal to denoise. The sequence of upsampling operators are designed
based on hierarchical clustering algorithms [23,78–80] so that, in contrast to [6], matrix inversions
are not required, avoiding the related numerical issues.

Contributions. In summary, the contributions of this chapter are the following:

(i) We introduce two new overparametrized and untrained GNNs for solving graph-signal de-
noising problems.

(ii) We characterize theoretically the denoising performance of each of the two architectures,
improving our understanding of nonlinear architectures and the influence of incorporating
graph structure into NNs.

(iii) The proposed architectures are evaluated and compared to other denoising alternatives
through numerical experiments carried out with synthetic and real-world data.

3.2 GNNs for graph-signal denoising

We now formally introduce the problem of graph-signal denoising within the GSP framework,
and present our approach to tackle it using untrained GNN architectures. Given the graph G, let
us consider the observed graph signal x ∈ RN , which is a noisy version of the original graph signal
x0. With n ∈ RN being a noise vector, the relation between x and x0 is

x = x0 + n. (3.1)

Then, the goal of graph-signal denoising is to remove as much noise as possible from the observed
signal x to estimate the original signal x0, which is performed by exploiting the information encoded
in G.

Recall that a traditional approach for the graph-signal denoising task is to solve an optimization
problem of the form

x̂0 = argminx̌0 ∥x − x̌0∥2
2 + αR(x̌0|G). (3.2)

3.2. GNNs for graph-signal denoising 23

Algorithm 1: Proposed graph-signal denoising method
Inputs : x and G
Outputs: x̂0 and Θ̂(x)

1 Set fΘ(Z|G) as explained in Section 3.3 or Section 3.4
2 Generate Z from iid zero-mean Gaussian distribution
3 Initialize Θ(0) from iid zero-mean Gaussian
4 for t = 1 to T do
5 Update Θ(t) minimizing (3.3) with SGD
6 end
7 Θ̂(x) = Θ(T)
8 x̂0 = fΘ̂(x)(Z|G)

The first term promotes fidelity to the signal observations, the regularizer R(·|G) promotes denoised
signals with desirable properties over the given graph G, and α > 0 controls the influence of the
regularization. Common choices for the regularizer include the quadratic Laplacian R(x|G) =
x⊤Lx [3], or regularizers involving high-pass graph filters R(x|G) = ∥Hx∥2

2 that foster smoothness
on the estimated signal [1, 44].

While those traditional approaches exhibit a number of advantages (including interpretability,
mathematical tractability, and convexity), they may fail to capture more complex relations between
G and x0, motivating the development of nonlinear graph-denoising approaches.

As summarized in Algorithm 1, in this chapter we advocate handling the graph-signal denoising
task by employing an overparametrized GNN (denoted by fΘ(Z|G)) as described in (2.21)-(2.22).
The weights of the architecture, collected in Θ, are learned by minimizing the loss function

L(x, Θ) = 1
2∥x − fΘ(Z|G)∥2

2, (3.3)

applying stochastic gradient descent (SGD) in combination with early stopping to avoid overfitting
the noise. The entries of the parameters Θ and the input matrix Z are initialized at random
using an i.i.d. zero-mean Gaussian distributions, and the weights learned after a few iterations of
denoising the observation x are denoted as Θ̂(x). Note that Z is fixed to its random initialization.
Finally, the denoised graph signal estimate is computed as

x̂0 = fΘ̂(x)(Z|G). (3.4)

The intuition behind this approach is as follows: since the architecture is overparametrized it
can in principle fit any signal, including noise. However, as shown formally later, both empirically
and theoretically, the proposed architectures fit graph signals faster than the noise and, therefore,
with early stopping they fit most of the signal and little of the noise, enabling signal denoising.

Remark 1. The proposed architectures are described as untrained NNs because, when minimizing
(3.3), the weights in Θ are learned to fit each observation x, with the denoised signal x̂0 being
the output for those particular weights. This implies that each noisy-denoised signal pair (x, x̂0)
is associated with a particular value of the weights Θ, in contrasts with trainable NNs, where the
weights Θ are first learned by fitting the signals in a training set and later used (unchanged) to
denoise signals that were not in the training set.

Regarding the specific implementation of the untrained network fΘ(Z|G), there are multiple
possibilities for selecting the linear and nonlinear transformations T (ℓ)

Θ(ℓ) and g(ℓ) defined in equa-

24 Non-linear denoising of graph signals

tions (2.21) and (2.22), respectively. As customary in NNs dealing with signals defined in RN , we
select the ReLU operator, defined as ReLU(x) = max(0, x), to be the entrywise nonlinearity g(ℓ).
Then, we focus on the design of the linear transformation, which is responsible for incorporating
the structure of the graph. The two following sections postulate the implementation of two par-
ticular linear transformations T (ℓ)

Θ(ℓ) (each giving rise to a different GNN) and analyze the resulting
architectures.

3.3 Graph convolutional generator

Our first architecture to address the graph-signal denoising task is a graph-convolutional genera-
tor (GCG) network that incorporates the topology of the graph into the NN pipeline via vertex-based
graph convolutions. Then, leveraging the fact that convolutions of a graph signal on the vertex
domain can be represented by a graph filter H ∈ RN×N [48], we define the linear transformation
for the convolutional generator as

T (ℓ)
Θ(ℓ){Y(ℓ−1)|G} = HY(ℓ−1)Θ(ℓ). (3.5)

Remember that the F (ℓ−1) × F (ℓ) matrix Θ(ℓ) collects the learnable weights of the ℓ-th layer, and
the graph filter H is given by (2.1). The coefficients {hr}R−1

r=0 are fixed a priori so that H promotes
desired properties on the estimated signal. Using the linear transformation defined in (3.5), the
output of the GCG with L layers is given by the recursion

Y(ℓ) = ReLU(HY(ℓ−1)Θ(ℓ)), for ℓ = 1, ..., L − 1, (3.6)
y(L) = HY(L−1)Θ(L), (3.7)

where Y(0) = Z denotes the random input and the ReLU is not applied in the last layer of the
architecture. With the proposed linear transformation, the GCG learns to combine the features
within each node by fitting the weights of the matrices Θ(ℓ) while the graph filter H interpolates
the signal by mixing features from R − 1 neighborhoods.

Even though the proposed GCG exploits graph convolutions to incorporate the graph topology
into the architecture, it is intrinsically different from other GCNNs. The linear transformation
proposed in [60], arguably one of the most popular implementations of GCNNs, is given by

T (ℓ)
Θ(ℓ){Y(ℓ−1)|G} = (A + I)Y(ℓ−1)Θ(ℓ). (3.8)

Recalling the definition of graph filters in (2.1), it is evident that (3.8) is a particular case of our
proposed linear transformation, obtained by setting the generative graph filter to H = A + I,
a low-pass graph filter of degree one. In addition to representing a more general scenario, (3.6)
endows the GCG with two main advantages. First, the graph filter H allows us to incorporate
prior information on the signals to denoise, making our GCG architecture more suitable to denoise
a (high-) low-frequency signal by employing a (high-) low-pass filter. Second, in (3.8) there is an
equivalence between the depth of the network and the radius of the considered neighborhood, so
that gathering information from nodes that are R hops apart requires a GNN with R layers. In
contrast, with the architecture considered in (3.6), the same can be achieved by considering a GCG
with L layers and a graph filter H of degree R/L [48], reducing the number of learnable parameters
and bypassing some of the well-known over-smoothing problems associated with (3.8) [81].

Next, we adopt some simplifying assumptions to provide theoretical guarantees on the denoising
capability of the GCG (Section 3.3.1). Then, we rely on numerical evaluations to demonstrate that
the results also hold in more general settings (Section 3.3.2).

3.3. Graph convolutional generator 25

3.3.1 Guaranteed denoising with the GCG

To formally prove that the proposed architecture can successfully denoise the observed graph
signal x, we consider a two-layer GCG given by

fΘ(Z|G) = ReLU(HZΘ(1))θ(2), (3.9)

where Θ(1) ∈ RF ×F and θ(2) ∈ RF are the learnable coefficients. With F denoting the number of
features, we consider the overparametrized regime where F ≥ 2N , and analyze the behavior and
performance of denoising with the untrained network defined in (3.9).

We start by noting that scaling the i-th entry of θ(2) is equivalent to scaling the i-th column
of Θ(1), so that, without loss of generality, we can set the weights to θ(2) = b, where b is a vector
of size F with half of its entries set to 1/

√
F and the other half to −1/

√
F . Furthermore, since Z

is a random matrix of dimension N × F , the column space of Z spans RN , and hence, minimizing
over ZΘ(1) is equivalent to minimizing over Θ ∈ RN×F . With these considerations in place, the
optimization over (3.3) can be performed replacing the two-layer GCG described in (3.9) by its
simplified form

fΘ(H) = fΘ(Z|G) = ReLU(HΘ)b. (3.10)

Note that we replaced fΘ(Z|G) with fΘ(H) since the graph influence is modeled by the graph
filter H, and the influence of the matrix Z is absorbed by the learnable weights Θ.

The denoising capability of the two-layer architecture is related to the eigendecomposition of its
expected squared Jacobian [82]. However, to understand which signals can be effectively denoised
with the proposed architecture, we need to connect the spectral domain of the expected squared
Jacobian with the spectrum of the graph, given by the eigenvectors of the adjacency matrix.

To that end, we next compute the expected squared Jacobian of the two-layer architecture in
(3.10). Denote as JΘ(H) ∈ RN×NF the Jacobian matrix of fΘ(H) with respect to Θ, which is
given by

J ⊤
Θ (H) =

b1H⊤diag(ReLU′(Hθ1))
...

bF H⊤diag(ReLU′(HθF))

 ∈ RNF ×N , (3.11)

where θi represents the i-th column of Θ, and ReLU′ is the derivative of the ReLU, which is the
Heaviside step function. Then, define the N × N expected squared Jacobian matrix as

X := EΘ[JΘ(H)J ⊤
Θ (H)] =

F∑

i=1
b2

iE
[
ReLU′(Hθi)ReLU′(Hθi)⊤

]
◦ HH⊤. (3.12)

Moreover, from the work in [83, Sec. 3.2], we note that E
[
ReLU′(Hθi)ReLU′(Hθi)⊤

]
is in fact

the so-called dual activation of the step function. Therefore, combining the expression for the dual
activation of the step function from [83, Table 1] with (3.12), we obtain that

X = 0.5
(
11⊤ − π−1 arccos(C−1H2C−1)

)
◦ HH⊤, (3.13)

where ◦ represents the Hadamard (entry-wise) product, arccos(·) is computed entry-wise, hi rep-
resents the i-th column (row) of H, C = diag([∥h1∥2, ..., ∥hN ∥2]) is a normalization term so that
C−1H2C−1 is the autocorrelation of the graph filter H.

26 Non-linear denoising of graph signals

Since X is symmetric and positive (semi) definite, it has an eigendecomposition X = WΣW⊤.
Here, the columns of the orthonormal matrix W = [w1, . . . , wN] are the N eigenvectors, and the
nonnegative eigenvalues in the diagonal matrix Σ are assumed to be ordered as σ1 ≥ σ2 ≥ ... ≥ σN .

After defining the two-layer GCG fΘ(H) and its expected square Jacobian X , we formally
analyze its performance when denoising bandlimited graph signals. This is particularly relevant
given the importance of (approximate) bandlimited graph signals both from analytical and practical
points of view [40]. For the sake of clarity, we first introduce the main result (Theorem 3.1) and
then we detail a key intermediate result (Lemma 3.1) that provides additional insight.

Formally, consider the K-bandlimited graph signal x0 as described in (2.5), and let the archi-
tecture fΘ(H) have a sufficiently large number of features F :

F ≥
(

σ2
1

σ2
N

)26

ξ−8N, with ξ ∈ (0, (2 log(2N/ϕ))− 1
2) (3.14)

being an error tolerance parameter for some prespecified ϕ. Then, for a specific set of graphs
with minimum number of nodes Nϵ,δ that is introduced later in the section (cf. Ass. 3.1), if
we solve (3.3) running gradient descent with a step size η ≤ 1

σ2
1
, the following result holds (see

Appendix 3.7).

Theorem 3.1. Let fΘ(H) be the network defined in equation (3.10), and assume it is sufficiently
wide, i.e., it satisfies condition (3.14) for some error tolerance parameter ξ. Let x0 be a K-
bandlimited graph signal spanned by the eigenvectors VK , and let wi and σi be the i-th eigenvector
and eigenvalue of X . Let n be the noise present in x, set ϕ and ϵ to small positive numbers,
and let the conditions from Ass. 3.1 hold. Then, for any ϵ, δ, there exists some Nϵ,δ such that
if N > Nϵ,δ, the error for each iteration t of gradient descent with stepsize η used to fit the
architecture is bounded as

∥x0 − fΘ(t)(H)∥2 ≤
(
(1 − ησ2

K)t + δ(1 − ησ2
N)t

)
∥x0∥2

+ ξ∥x∥2 +
√∑N

i=1((1 − ησ2
i)t − 1)2(w⊤

i n)2, (3.15)

with probability at least 1 − e−F 2 − ϕ − ϵ.

As explained next, the fitting (denoising) bound provided by the theorem first decreases and
then increases with the number of iterations t. To be more precise, let us analyze separately each
of the three terms in the right hand side of (3.15). The first term captures the part of the signal
x0 that is fitted after t iterations while accounting for the misalignment of the eigenvectors VK

and WK . This term decreases with t and, since δ can be made arbitrary small (cf. Lemma 3.1),
vanishes for moderately low values of t. The second term is an error term that is negligible if the
network is sufficiently wide. Therefore, ξ can be chosen to be sufficiently small by designing the
architecture according to the condition in (3.14). Finally, the third term, which depends on the
noise present in each of the spectral components of the squared Jacobian (w⊤

i n)2, grows with t.
More specifically, if the σi associated with a spectral component is very small, the term (1 − ησ2

i)
is close to 1 and, hence, the noise power in the i-th frequency will be small. Only when t grows
very large the coefficient (1 − ησ2

i)t vanishes and the i-th frequency component of the noise is
fitted. As a result, if the filter H is designed such that eigenvalues of the squared Jacobian satisfy
that σK ≫ σK+1, then there will be a range of moderate-to-high values of t for which: i) the
first term is zero and ii) only the K strongest components of the noise have been fitted, so that
the third term can be approximated as

√∑K
i=1(w⊤

i n)2. Clearly, as t grows larger, the coefficient

3.3. Graph convolutional generator 27

((1 − ησ2
i)t − 1) will also be close to one for i > K, meaning that additional components of the

noise will be fitted as well, deteriorating the performance of the denoising architecture. This implies
that if the optimization algorithm is stopped before t grows too large, the original signal is fitted
along with the noise that aligns with the signal, but not the noise present in other components.

In other words, Theorem 3.1 not only characterizes the performance of the two-layer GNN,
but also illustrates that, if early stopping is adopted, our overparametrized architecture is able
to effectively denoise the bandlimited graph signal. This result is related to the error bound for
denoising images presented in [82], where x0 is assumed to lie in the span of WK . However,
when dealing with graphs, it is unclear which signals would satisfy this requirement. Motivated by
this, we assume that x0 is a bandlimited signal (i.e., lies in the span of VK), which is a natural
condition employed in many applications.

As a consequence, a critical step to attain Theorem 3.1 is to relate the eigenvectors of X with
those of the adjacency matrix A, denoted as V. To achieve this, we assume that A is random and
provide high-probability bounds between the leading eigenvectors of A and X . More specifically,
consider a graph G drawn from a SBM [84] with K communities. Also, denote by M(A) the
SBM with expected adjacency matrix A = E[A], and by βmin the minimum expected degree
βmin := mini[A1]i. Given some ρ > 0, we define as MN (βmin, ρ) the class of SBMs M(A)
with N nodes for which βmin = ω(ln(N/ρ)), where ω(·) denotes the (conventional) asymptotic
dominance. Then, the condition of G being drawn from this SBM whose expected minimum degree
increases with N is formally expressed in the following assumption.
Assumption 3.1. The model M(A) from which A is drawn satisfies M(A) ∈ MN (βmin, ρ),
with βmin = ω(ln(N/ρ)).

We note that, as discussed in [85], the minimal degree condition considered in Ass. 1 ensures
that nodes belonging to the same community also belong to the same connected component with
high probability, which is required to relate A and A. Under these conditions, the following result
holds.
Lemma 3.1. Let the matrix X be defined as in (3.13), set ϵ and δ to small positive numbers, and
denote by VK and WK the K leading eigenvectors in the respective eigendecompositions of A
and X . Under Ass. 3.1, there exists an orthonormal matrix Q and an integer Nϵ,δ such that, for
N > Nϵ,δ, the bound

∥VK − WKQ∥F ≤ δ,

holds with probability at least 1 − ϵ.

The proof is provided in Appendix 3.8, and it leverages Ass. 1 to relate the eigenvectors VK

and WK based on the eigenvectors of the expected values of A and X .

For a given K, Lemma 3.1 bounds the difference between the subspaces spanned by the K
leading eigenvectors of A and X when graphs are big enough, a result that is key in obtaining
Theorem 3.1. Moreover, the lemma shows that if the lower bound Nϵ,δ increases, then the error
encoded δ becomes arbitrary small. Also note that, if a larger value of K is considered, then
the minimum required graph size Nϵ,δ will also be larger. An inspection of (3.13) reveals that
the result in Lemma 3.1 is not entirely unexpected. Indeed, since H is a polynomial in A, so is
H2. This implies that V are also the eigenvectors of H2, and because H2 appears twice on the
right hand side of (3.13), a relationship between the eigenvectors of X and V can be anticipated.
However, the presence of the Hadamard product and the (non Lipschitz continuous) nonlinearity
arccos renders the exact analysis of the eigenvectors a challenging task. Consequently, we resorted
to a stochastic framework in deriving Lemma 3.1.

28 Non-linear denoising of graph signals

1 8 16 24 32 40 48 56 64

0.05

0.10

0.15

0.20

0.25

V1
W1

1 8 16 24 32 40 48 56 64
−0.30
−0.25
−0.20
−0.15
−0.10
−0.05
0.00
0.05
0.10

V3
W3

1 8 16 24 32 40 48 56 64
−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3
0.4
0.5

V10
W10

1 8 16 24 32 40 48 56 64
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

V64
W64

Figure 3.1: Comparison between the eigenvectors of the matrices A and X for an SBM graph with N = 64
nodes and K = 4 communities, and for a GCG of L = 5 layers. From left to right, the figures represent the
first, third, tenth, and last eigenvectors.

3.3.2 Numerical inspection of the deep GCG spectrum

While for convenience, the previous section focused on analyzing the GCG architecture with
L = 2 layers, in practice we often work with a larger number of layers. In this section, we provide
numerical evidence showing that the relation between matrices A and X described in Lemma 3.1
also holds when L > 2.

To that end, Fig. 3.1 shows the pairs of eigenvectors vi and wi for the indexes i = {1, 3, 10, 64},
for a given graph G drawn from an SBM with N = 64 nodes and 4 communities. The GCG is
composed of L = 5 layers and, to obtain the eigenvectors of the squared Jacobian matrix, the
Jacobian is computed using the autograd functionality of PyTorch. The nodes of the graph are
sorted by communities, i.e., the first N1 nodes belong to the first community and so on. It can be
clearly seen that, even for moderately small graphs, the leading eigenvectors of A and X are almost
identical, becoming more dissimilar as the eigenvectors are associated with smaller eigenvalues. It
can also be observed how leading eigenvectors have similar values for entries associated with nodes
within the same community. Moreover, Fig. 3.2 depicts the matrix product V⊤W, where it is
observed that the K = 4 leading eigenvectors of both matrices are orthonormal. The presented
numerical results strengthen the argument that the analytical results obtained for the two-layer
case can be extrapolated to deeper architectures.

Another key assumption of Lemma 3.1 is that G is drawn from the SBM described in MN (βmin, ρ).
This assumption facilitates the derivation of a bound relating the spectra of A and X (i.e., the
subspaces spanned by the eigenvectors VK and WK). However, the results reported in Fig. 3.3

3.4. Graph upsampling decoder 29

2 4 6 8 10

2

4

6

8

10 0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.2: Heatmap representation of the matrix product V⊤
KWK . The low values of the off-diagonal

entries illustrate the orthogonality between both sets of eigenvectors. These eigenvectors are the same as
those depicted in Fig. 3.1.

suggest that such a relation exists for other type of graphs, even though its analytical characteri-
zation is more challenging. The figure has 12 panels (3 columns and 4 rows). Each of the columns
corresponds to a different graph, namely: 1) a realization of a small-world (SW) graph [86] with
N = 150 nodes, 2) the Zachary’s Karate graph [87] with N = 34 nodes, and 3) a graph of
N = 316 weather stations across the United States1. Each of the three first rows correspond to
an N × N matrix, namely: 1) the normalized adjacency matrix A, 2) H2, the squared version of
a low pass graph filter and whose coefficients are drawn from a uniform distribution and set to
unit ℓ1 norm, and 3) the squared Jacobian matrix X . Although we may observe some similarity
between A and X , the relation between X and the graph G becomes apparent when comparing
the matrices H2 and X . The matrix H is a random graph filter used in the linear transformation
of the convolutional generator fΘ(H), and it is clear that the vertex connectivity pattern of X is
related to that of H2. Since X and H2 are closely related and we know that the eigenvectors of
H2 and those of A are the same, we expect W (the eigenvectors of X) and V (the eigenvectors
of A) to be related as well. To verify this, the fourth row of Fig. 3.3 represents V⊤

KWK , i.e., the
pairwise inner products of the K leading eigenvectors of A and those of X . It can be observed that
the K leading eigenvectors are close to orthogonal, which means that the relation observed in the
vertex domain carries over to the spectral domain and VK and WK expand the same subspace.
These results suggest that a deep GCG could be able to denoising signals living in the subspace
spanned by VK . However, because the bound in Theorem 3.1 assumed a 2-layer GCG, we address
this hypothesis numerically in Section 3.5.

To summarize, the presented results illustrate that the analytical characterization provided in
Section 3.3.1, which considered a 2-layer GCG operating over SBM graphs, carries over to more
general setups.

3.4 Graph upsampling decoder

The GCG architecture presented in Section 3.3 incorporated the topology of G via the vertex-
based convolutions implemented by the graph filter H. In this section, we introduce the graph
decoder (GDec) architecture. In contrast to the GCG and other GCNNs, this novel graph-aware

1Data extracted from the National Centers for Environmental Information. Available at
https://www.ncei.noaa.gov/data/global-summary-of-the-day

30 Non-linear denoising of graph signals

1 20 40 60 80100120140

1
20
40
60
80

100
120
140

0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25 30

1
5

10
15
20
25
30

0.0

0.2

0.4

0.6

0.8

1.0

1 50 100150200250300

1
50

100
150
200
250
300 0.0

0.2

0.4

0.6

0.8

1.0

1 20 40 60 80100120140

1
20
40
60
80

100
120
140

0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25 30

1
5

10
15
20
25
30

0.0

0.2

0.4

0.6

0.8

1.0

1 50 100150200250300

1
50

100
150
200
250
300 0.0

0.2

0.4

0.6

0.8

1.0

1 20 40 60 80100120140

1
20
40
60
80

100
120
140

0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25 30

1
5

10
15
20
25
30

0.0

0.2

0.4

0.6

0.8

1.0

1 50 100150200250300

1
50

100
150
200
250
300 0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25 30

1
5

10

15

20

25

30 0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25

1

5

10

15

20

25 0.0

0.2

0.4

0.6

0.8

1.0

1 10 20 30 40 50 60 70

1
10
20
30
40
50
60
70 0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.3: Illustrating the matrices A, H2, X , and V⊤
KWK , shown in rows 1, 2, 3, and 4, respectively,

for different types of graphs. The column 1, 2, and 3 present a SW graph, the Zachary’s Karate graph, and
the weather stations graph. The graph filter H2 is created as a square graph filter with coefficients drawn
from a uniform distribution and set to unit ℓ1 norm. For each graph (column), it can be seen that the
matrices A, H2, and X are related, and that the leading eigenvectors VK and WK are close to orthogonal.

denoising NN incorporates the topology of G via a (nested) collection of graph upsampling oper-
ators [21]. Specifically, we propose the linear transformation for the GDec denoiser to be given
by

T (ℓ)
Θ(ℓ){Y(ℓ−1)|G} = U(ℓ)Y(ℓ−1)Θ(ℓ), (3.16)

where U(ℓ) ∈ RN(ℓ)×N(ℓ−1) , with N (ℓ) ≥ N (ℓ−1), are graph upsampling matrices to be defined
soon. Note that, compared to (3.5), the graph filter H is replaced with the upsampling operator
U(ℓ) that depends on ℓ. Adopting the proposed linear transformation, the output of the GDec

3.4. Graph upsampling decoder 31

Figure 3.4: Dendrogram of an agglomerative hierarchical clustering algorithm and the resulting graphs
with 2, 4, 7 and 14 nodes.

with L layers is given by the recursion

Y(ℓ) = ReLU(U(ℓ)Y(ℓ−1)Θ(ℓ)), for ℓ = 1, ..., L−1, (3.17)
y(L) = U(L)Y(L−1)Θ(L), (3.18)

where the ReLU is also removed from the last layer.

Similar to the GCG, the proposed GDec learns to combine the features within each node.
However, the interpolation of the signals in this case is determined by the graph upsampling
operators {U(ℓ)}L

ℓ=1, rather than by employing convolutions. The size of the input N (0) is now
a design parameter that will determine the implicit degrees of freedom of the architecture. Note
that, from the GSP perspective, the input feature matrix Y(ℓ−1) ∈ RN(ℓ−1)×F (ℓ−1) represents
F (ℓ−1) graph signals, each of them defined over a graph G(ℓ−1) with N (ℓ−1) nodes. Therefore,
even though the input Y(0) = Z is still a random white matrix across rows and columns, since
N (ℓ) ≥ N (ℓ−1), the dimensionality of the input is progressively increasing.

A closer comparison with the GCG reveals that the smaller dimensionality of the input Z endows
the GDec architecture with fewer degrees of freedom, rendering the architecture more robust to
noise. Not only that, but the graph information is now included via the graph upsampling operators
U(ℓ) instead of relying on graph filters. Clearly, the method used to design the graph upsampling
matrices, which is the subject of the next section, will have an impact on the type of graph signals
that can be efficiently denoised using the GDec architecture.

3.4.1 Graph upsampling operator from hierarchical clustering

Regular upsampling operators have been successfully used in NN architectures to denoise sig-
nals defined on regular domains [82]. While the design of upsampling operators in regular grids
is straightforward, when the signals at hand are defined on irregular domains the problem be-
comes substantially more challenging. The approach that we put forth in this chapter is to use
agglomerative hierarchical clustering methods [78–80] to design a graph upsampling operator that
leverages the graph topology. These methods take a graph as an input and return a dendrogram;

32 Non-linear denoising of graph signals

see Fig. 3.4. A dendrogram can be interpreted as a rooted-tree structure that shows different
clusters at the different levels of resolution ν. At the finest resolution (ν = 0) each node forms
a cluster of its own. Then, as ν increases, nodes start to group together (agglomerate) in bigger
clusters and, when the resolution becomes large (coarse) enough, all nodes end up being grouped
in the same cluster.

By cutting the dendrogram at L + 1 resolutions, including ν = 0, we obtain a collection of
node sets with parent-child relationships inherited by the refinement of clusters. Since we are
interested in performing graph upsampling, note that the dendrogram is interpreted from left to
right. This can be observed in the example shown in Fig. 3.4, where the three red nodes in the
second graph (ν = 10, layer ℓ = 1) are children of the red parent in the coarsest graph (ν = 12,
layer ℓ = 0). In this sense, the graph upsampling operator is given by the inverse operation of
the clustering algorithm. We leverage these parent-children relations to define the membership
matrices P(ℓ) ∈ {0, 1}N(ℓ)×N(ℓ−1) , where the entry P

(ℓ)
ij = 1 only if the i-th node in layer ℓ is the

child of the j-th node in layer ℓ − 1. Moreover, we can further exploit the dendrogram to obtain
coarser-resolution versions of the original graph G. To that end, note that the clusters at layer ℓ
can be interpreted as nodes of a graph G(ℓ) with N (ℓ) nodes and adjacency matrix A(ℓ). There
are several ways of defining A(ℓ) based on the original adjacency matrix A. While our architecture
does not focus on a particular form, in the simulations we set A

(ℓ)
ij ̸= 0 only if, in the original graph

G, there is at least one edge between nodes belonging to the cluster i and nodes from cluster
j. In addition, the weight of the edge depends on the number of existing edges between the two
clusters.

With the definition of the membership matrix P(ℓ) and the adjacency matrix A(ℓ), the upsam-
pling operator of the ℓ-th layer is given by

U(ℓ) =
(
γI + (1 − γ) A(ℓ)

)
P(ℓ), (3.19)

where γ ∈ [0, 1] is a pre-specified constant. Notice that U(ℓ) first copies the signal value from
the parents to the children by applying the matrix P(ℓ), and then every child performs a convex
combination between this value and the average signal value of its neighbors. This design promotes
that nodes descending from the same parent have similar (related) values, which conveys a notion
(prior) of smoothness on the targeted graph signals. As we show in Section 3.5, the implicit
smoothness prior results in a better performance when denoising smooth signals but, on the other
hand, makes the architecture more sensitive to model mismatch. Therefore, when dealing with
high-frequency signals, a worth-looking approach left as a future research direction is to rely on
algorithms that cluster the nodes considering not only the topology of G but also the properties of
the graph signals.

Because the membership matrices P(ℓ) are designed using a clustering algorithm over G, and
the matrices A(ℓ) capture how strongly connected the clusters of layer ℓ are in the original graph,
these two matrices are responsible for incorporating the information of G into the upsampling
operators U(ℓ). Furthermore, we remark that the upsampling operator U(ℓ) can be reinterpreted
as the application of P(ℓ) followed by the application of a graph filter

H̃(ℓ) = γI + (1 − γ)A(ℓ), (3.20)

which sets the filter coefficients as h0 = γ and h1 = 1 − γ.

3.4. Graph upsampling decoder 33

3.4.2 Guaranteed denoising with the GDec

As we did for the GCG, our goal is to theoretically characterize the denoising performance of
the GNN architecture defined by (3.17)-(3.19). To achieve that goal, we replicate the approach
implemented in Section 3.3.1. We first derive the matrix X and provide theoretical guarantees
when denoising a K-bandlimited graph signal with the GDec. Then, to gain additional insight, we
detail the relation between the subspace spanned by the eigenvectors W and the spectral domain
of A. This relation is key in deriving the theoretical analysis.

We start by introducing the 2-layer GDec

fΘ(Z|G) = ReLU(UZΘ(1))θ(2). (3.21)

Upon following a reasoning similar to that provided after (3.10), instead of employing the previous
architecture we can optimize (3.3) over its simplified version

fΘ(U) = fΘ(Z|G) = ReLU(UΘ)b. (3.22)

An important difference with respect to the GCG presented in (3.10) is that the matrix Θ has a
dimension of N (0) × F , so it spans RN(0) instead of RN . Since N (0) < N , the smaller subspace
spanned by the weights of the GDec renders the architecture more robust to fitting noise, but, on
the other hand, the number of degrees of freedom to learn the graph signal of interest are reduced.
As a result, the alignment between the targeted graph signals and the low-pass vertex-clustering
architecture becomes more important.

The expected squared Jacobian X = EΘ[JΘ(U)J ⊤
Θ (U)] is obtained following the procedure

used to derive (3.13), arriving at the expression

X = 0.5
(

11⊤ − 1
π

arccos(C̃−1UU⊤C̃−1)
)

◦ UU⊤, (3.23)

where ui represents the i-th row of U, and C̃ = diag([∥u1∥2, ..., ∥uN ∥2]) is a normalization matrix.

Then, let x0 be a K-bandlimited graph signal and let fΘ(U) have a number of features F
satisfying (3.14). If we solve (3.3) running gradient descent with a step size η ≤ 1

σ2
1
, the following

result holds.

Theorem 3.2. Let fΘ(U) be the network defined in equation (3.22). Consider the conditions
described in Theorem 3.1 and let N (0) match the number of communities K (see Ass. 3.1). Then,
for any ϵ, δ, there exists some Nϵ,δ such that if N > Nϵ,δ, then the error for each iteration t of
gradient descent with stepsize η used to fit the architecture is bounded as (3.15), with probability
at least 1 − e−F 2 − ϕ − ϵ.

The proof of the theorem is analogous to the one provided in Appendix 3.7 but exploiting
Lemma 3.2 instead of Lemma 3.1. Lemma 3.2 is fundamental in attaining Theorem 3.2 and is
presented later in the section.

Theorem 3.2 formally establishes the denoising capability of the GDec when x0 is a K-
bandlimited graph signal and K = N (0) matches the number of communities in the SBM graph.
When compared with the GCG, the smaller dimensionality of the input Z, and thus the smaller
rank of the matrix Θ, constrains the learning capacity of the architecture, making it more robust
to the presence of noise. However, this additional robustness also implies that the architecture is

34 Non-linear denoising of graph signals

more sensitive to model mismatch, since its capacity to learn arbitrary signals is smaller. Intuitively,
the GDec represents an architecture tailored for a more specific family of graph signals than the
GCG. Moreover, employing the GDec instead of the GCG has a significant impact on the relation
between the subspaces spanned by VK and WK .

To establish the new relation between VK and WK , assume that the adjacency matrix is
drawn from an SBM M(A) with K communities such that M(A) ∈ MN (βmin, ρ), so that the
SBM follows Ass. 3.1. In addition, set the size of the latent space to the number of communities
so N (0) = K. Under this setting, the counterpart to Lemma 3.1 for the case where fΘ(U) is a
GDec architecture follows.

Lemma 3.2. Let the matrix X be defined as in (3.23), set ϵ and δ to small positive numbers,
and denote by VK and WK the K leading eigenvectors in the respective eigendecompositions of
A and X . Under Ass. 3.1, there exist an orthonormal matrix Q and an integer Nϵ,δ such that for
N > Nϵ,δ the bound

∥VK − WKQ∥F ≤ δ,

holds with probability at least 1 − ϵ.

Lemma 3.2 asserts that the difference between the subspaces spanned by VK and WK becomes
arbitrarily small as the size of the graph increases. The proof is provided in Appendix 3.9 and
the intuition behind it arises from the fact that the upsampling operator can be understood as
U = H̃P, where H̃ is a graph filter of the specific form described in (3.20). Remember that P is
a binary matrix encoding the cluster in the layer ℓ − 1 to which the nodes in the layer ℓ belong.
Since we are only considering two layers, and we have that N (0) = K, the matrix P is encoding the
node-community membership of the SBM graph and, hence, the product PP⊤ is a block matrix
with constant entries matching the block pattern of A. As shown in the proof, this property can
be leveraged to bound the eigendecomposition of A and X .

3.4.3 Analyzing the deep GDec

The deep GDec composed of L > 2 layers can be constructed following the recursion presented
in (3.17) and (3.18). In this case, by stacking more layers we perform the upsampling of the input
signal in a progressive manner and, at the same time, we add more nonlinearities, which helps
alleviating the rank constraint related to the input size N (0). In the absence of nonlinear functions,
the maximum rank of the weights would be N (0), and thus, only signals in a subspace of size N (0)

could be learned. By properly selecting the number of layers and the input size when constructing
the network, we can obtain a trade-off between the robustness of the architecture and its learning
capability.

In addition, the effect of adding more layers is also reflected on the smoothness assumption
inherited from the construction of the upsampling operator. Adding more layers is related to less
smooth signals, since the number of nodes in G with a common parent, and thus, with similar
values, is smaller.

We note that numerically illustrating that the bound between VK and WK holds true for the
deep GDec, and that its denoising capability is not limited to signals defined over SBM graphs
provide results similar to those in Section 3.3.2. Therefore, instead of replicating the previous
section, we directly illustrate the performance of the deep GDec under more general settings in the
following section, where we present the numerical evaluation of the proposed architectures.

3.5. Numerical results 35

3.5 Numerical results

This section presents different experiments to numerically validate the theoretical claims intro-
duced in the chapter, and to illustrate the denoising performance of the GCG and the GDec. The
experiments are carried out using synthetic and real-world data, and the proposed architectures
are compared to other graph-signal denoising alternatives. The code for the experiments and the
architectures is available on GitHub2. For hyper-parameter settings and implementation details
the interested reader is referred to the online available code.

3.5.1 Denoising capability of graph untrained architectures

The goal of the experiment shown in Figures 3.5a and 3.5b is to illustrate that the proposed
graph untrained architectures are capable of learning the structured original signal x0 faster than
the noise, which is one of the core claims of the chapter. To that end, we generate an SBM
graph with N = 64 nodes and K = 4 communities, and define 3 different signals: (i) “Signal”:
a piece-wise constant signal x0 with the value of each node being the label of its community;
(ii) “Noise”: zero-mean white Gaussian noise n with unit variance; and (iii) “Signal + Noise”:
a noisy observation x = x0 + n where the noise has a normalized power of 0.1. Fig. 3.5a and
3.5b show the normalized mean square error (NMSE), with the error for each realization being
∥x0−x̂0∥2

2/∥x0∥2
2. The mean is computed for 100 realizations of the noise as the number of epochs

increases when the different signals are fitted by the 2-layer GCG and the 2-layer GDec, respectively.
It can be seen how, in both cases, the error when fitting the noisy signal x decreases for a few
epochs until it reaches a minimum, and then starts to increase. This is because the proposed
untrained architectures learn the signal x0 faster than the noise, but if they fit the observation
for too many epochs, they start learning the noise as well and, hence, the NMSE increases. As
stated by Theorem 3.1 and Theorem 3.2, this result illustrates that, if early stopping is applied,
both architectures are capable of denoising the observed graph signals without a training step. It
can also be noted that, under this setting, the GDec learns the signal x0 faster than the GCG and,
at the same time, is more robust to the presence of noise. This can be seen as a consequence of
GDec implicitly making stronger assumptions about the smoothness of the targeted signal.

The goal of the second test case is two-fold. First, it illustrates that the result presented in
Lemma 3.1 is not constrained to the family of SBM (as specified by Ass. 1), but can be generalized
to other families of random graphs as well. In addition, it measures the influence of the number
of nodes in the discrepancies between VK and WK . To that end, Fig. 3.6 contains the mean
eigenvector similarity measured as 1

K ∥VK − WKQ∥F as a function of the number of nodes in
the graph. The eigenvector similarity is computed for 50 realizations of random graphs and the
presented error is the median of all the realizations. The random graph models considered are:
the SBM (“SBM”), the connected caveman graph (“CAVE”) [88], the regular graph whose fixed
degree increases with its size (“REG”), the small world graph (“SW”) [86], and the power law
cluster graph model (“PLC”) [89]. The second term in the legend denotes the number of leading
eigenvectors taken into account in each case, which depends on the number of active frequency
components of the specific random graph model. We can clearly observe that for most of the
random graph models, the eigenvector error goes to 0 as N increases and, furthermore, the error
is below 10−1 even for moderately small graphs. This illustrates that, although the conditions
assumed for Lemma 3.1 and Lemma 3.2 focus on the specific setting of the SBM, the results can
be applied to a wider class of graphs. Here, the regular graphs are particularly interesting since

2https://github.com/reysam93/Graph_Deep_Decoder

https://github.com/reysam93/Graph_Deep_Decoder

36 Non-linear denoising of graph signals

0 100 200 300 400 500
Epochs

10−3

10−2

10−1

100
M
ea
n
Er
ro
r

Sign+Noise
Sign
Noise

(a)

0 100 200 300 400 500
Epochs

10−4

10−3

10−2

10−1

100

M
ea
n
Er
ro
r

Sign+Noise
Sign
Noise

(b)

Figure 3.5: a) Error of the 2-layer GCG when fitting a piece-wise constant signal, noise, and a noisy signal,
as a function of the number of epochs. The graph is drawn from an SBM with 64 nodes and 4 communities,
and the normalized noise power is Pn = 0.1. b) Counterpart of a) but for the 2-layer GDec architecture.

50 100 500 1000 2000
Number of nodes

10−6
10−5
10−4
10−3
10−2
10−1
100

Ei
ge

nv
ec
to
r e

rro
r

SBM, K=8
CAVE, K=8
REG, K=1
SW, K=5
PLC, K=1

Figure 3.6: Mean distance between the K leading eigenvectors of the adjacency matrix and X as a function
of the graph size for several graph models.

most classical signals may be interpreted as signals defined over regular graphs. As a result, this
empirical evidence motivates the extension of the proposed theorems to more general settings as
a future line of work.

3.5.2 Denoising synthetic data

We now proceed to comment on the denoising performance of the proposed architectures with
synthetic data. The usage of synthetic signals allows us to study how the properties of the noiseless
signal influence the quality of the denoised estimate.

The first experiment, shown in Fig. 3.7, studies the error of the denoised estimate obtained
with the 2-layer GCG as the number of epochs increases. The reported error is the NMSE of the
estimated signal x̂0, and the figure shows the mean values of 100 realizations of graphs and graph
signals. The normalized power of the noise present in the data is 0.1. Graphs are drawn from

3.5. Numerical results 37

0 300 600 900 1200 1500
Epochs

10−2

10−1

100

M
ea
n
Er
ro
r

Rand
BL, K=16
BL, K=32
BL, K=4
DW

Figure 3.7: Median NMSE when the 2-layer GCG is used to denoise different families of graph signals.

0 100 200 300 400 500
Epochs

10−3

10−2

10−1

100

M
ea
n
Er
ro
r

TV
LR
BL, K=25
BL, K=8

2L-GCG
GCG
GD

(a)

0 100 200 300 400 500
Epochs

10−2

10−1

100

M
ea
n
Er
ro
r

TV
LR
BL, K=25
BL, K=8

2L-GCG
GCG
GD

(b)

Figure 3.8: Median MSE when denoising a graph signal as a function of the number of epochs. a) Perfor-
mance comparison between total variation, Laplacian regularization, bandlimited models, the 2-layer GCG,
the deep GCG, and the deep GDec, when the signals are bandlimited. b) Counterpart of a) for the case
where signals are diffused white.

an SBM with N = 64 nodes and 4 communities, and the graph signals are generated as: (i) a
zero-mean white Gaussian noise with unit variance (“Rand”); (ii) a bandlimited graph signal (cf.
2.5) using the K leading eigenvectors of A as base (“BL”); and (iii) a diffused white (“DW”)
signal created as y = med(Hw|G), where w is a white vector whose entries are sampled from
N (0, 1), H is a low-pass graph filter, and med(·|G) represents the graph-aware median operator
such that the value of the node i is the median of its neighborhood [5,90]. The results in Fig. 3.7
show that the best denoising error is obtained when the signal is composed of just a small number
of eigenvectors, and the performance deteriorates as the bandwidth (i.e., the number of leading
eigenvectors that span the subspace where the signal lives) increases, obtaining the worst result
when the signal is generated at random. This result is aligned with the theoretical claims since
it is assumed that the signal x0 is bandlimited. It is also worth noting that the architecture also
achieves a good denoising error with the “DW” model, showcasing that the GCG is also capable
of denoising other types of smooth graph signals.

Next, Fig. 3.8a compares the performance of the 2-layer GCG (“2L-GCG”), the deep GCG

38 Non-linear denoising of graph signals

(“GCG”) and the deep GDec (“GDec”) with the baseline models introduced in Section 3.2, which
are the total variation (“TV”) [1], Laplacian regularization (“LR”) [3], and bandlimited model
(“BL”) [9]. In this setting, the graphs are SBM with 256 nodes and 8 communities, and the
signals are bandlimited with a bandwidth of 8. Since the “BL” model with K = 8 captures the
actual generative model of the signal x0, it achieves the best denoising performance. However, it
is worth noting that the GCG obtains a similar result, outperforming the other alternatives. On the
other hand, the “LR” obtains an error noticeably larger than that of “BL” and “GCG”, highlighting
that, even though “BL” and “LR” are related models their different assumptions lead to different
performances. Moreover, the benefits of using the deep GCG instead of the 2-layer architecture
are apparent, since it achieves a better performance in fewer epochs.

On the other hand, Fig. 3.8b illustrates a similar experiment but with the graph signals gen-
erated as “DW”. Under this setting, it is clear that the GDec outperforms the other alternatives.
These results showcase the benefits of employing a nonlinear architecture relative to classical de-
noising approaches. Furthermore, this experiment corroborates that the GDec is more robust to the
presence of noise when the signals are aligned with the prior implicitly captured by the architecture.

3.5.3 Denoising real-world signals

Finally, we assess the performance of the proposed architectures in several real-world datasets.
To the baselines considered in the previous experiments, we add the following competitive denois-
ing algorithms: graph trend filtering (“GTF”) [2], a graph-aware median operator (“MED”) [5],
a GCNN (“GCNN”) implemented as in [60], a graph attention network (“GAT”) [91], a Kron
reduction-based autoencoder (“K-GAE”) [92], and the graph unrolling sparse coding architecture
(“GUSC”) in [7]. Moreover, we consider the following noise distributions: (i) zero-mean Gaussian
distribution, which is the noise model typically assumed for sensor measurements in signal pro-
cessing; (ii) uniform distribution on some interval [0, a], where a ∈ R+ is chosen accordingly to
the desired noise power; and (iii) Bernoulli distribution to model errors in binary signals. Next, we
describe the selected datasets and analyze the achieved results, which are summarized in Table 3.1.

Temperature. We consider a network of 316 weather stations distributed across the United
States [44]. Graph signals represent daily temperature measurements in the first three months
of the year 2003. The graph G represents the geographical distance between weather stations
and is given by the 8-nearest neighbors graph. The first and second rows of Table 3.1 list the
NMSE when the noise is drawn from a Gaussian and a uniform distribution, respectively. In both
cases, the noise has a normalized power of 0.3. It is clear that the GDec architecture outperforms
the alternatives in both scenarios. Furthermore, we can observe that the GCG achieves a better
performance than GCNN, showcasing the benefits of being able to use a more general graph filter.

S&P 500. In this experiment, we have 189 nodes representing stocks belonging to 6 different
sectors of the S&P 500 with the graph signals representing the prices of those stocks at particular
time instants. We follow [93] to estimate the graph G assuming that the signals are drawn from
a multivariate Gaussian distribution and are smooth on G. We consider the noise specifications
described in the previous dataset and provide the NMSE in the third and fourth rows of Table 3.1.
It is worth noting that considering Gaussian noise in this dataset constitutes a more challenging
denoising problem than using uniform noise. A plausible explanation is that the graph is estimated
assuming that the data follows a Gaussian distribution, and hence, it is harder to separate the
Gaussian noise from the true signals. In the presence of Gaussian noise, the GCG and the GDec

3.6. Conclusion 39

Table 3.1: Denoising error of several datasets with different types of random noise

DATASET
(METRIC) METHOD BL TV LR GTF MED GCNN GAT K-GAE GUSC GCG GDec

TEMPERATURE Gaussian 0.062 0.117 0.095 0.066 0.053 0.123 0.045 0.134 0.044 0.056 0.035
(NMSE) Uniform 0.063 0.117 0.094 0.064 0.053 0.118 0.047 0.136 0.049 0.057 0.036

S&P 500 Gaussian 0.350 0.238 0.231 0.239 0.319 0.252 0.199 0.354 0.203 0.188 0.188
(NMSE) Uniform 0.216 0.246 0.161 0.298 0.340 0.091 0.222 0.273 0.127 0.094 0.121
CORA Whole G 0.154 0.142 0.115 0.126 0.167 0.099 0.141 0.135 0.099 0.093 0.121

(ERROR RATE) Conn. comp. 0.151 0.141 0.105 0.116 0.165 0.093 0.139 0.135 0.094 0.088 0.125

outperform the other 8 alternatives. However, when the noise follows a uniform distribution, the
best performance is obtained by the GCG and the GCNN, with GDec being the third best. In
addition, we observe that traditional methods yield an error that is considerably larger than that
incurred by the proposed architectures. This is aligned with our initial intuition about linear and
quadratic methods being more limited when the actual relation between x0 and G is more intricate,
as is the case for financial data.

Cora. Lastly, we consider the Cora citation network dataset [60]. Nodes represent different
scientific documents and edges capture citations among them. Like in [7], we consider the 7 class
labels as binary graph signals encoding if the particular node belongs to that class. For each signal,
we consider 25 realizations of Bernoulli noise that randomly flips 30% of the binary values of the
signals, resulting in a total of 175 noisy graph signals. With the error rate denoting the proportion
of labels correctly recovered after the denoising process, Table 3.1 shows the error metric averaged
over all the signals. Moreover, since the graph is formed by several connected components, we
report two results: the error rate when the whole graph is considered (fifth row) and the error rate
when only the largest connected component is considered (sixth row). It can be seen that the GCG
yields the best performance in both cases.

3.6 Conclusion

In this chapter, we faced the relevant task of graph-signal denoising. To approach this prob-
lem, we presented two overparametrized and untrained GNNs and provided theoretical guarantees
on the denoising performance of both architectures when denoising K-bandlimited graph signals
under some simplifying assumptions. Moreover, we numerically illustrated that the proposed ar-
chitectures are also capable of denoising graph signals in more general settings. The key difference
between the two architectures resided in the linear transformation that incorporates the informa-
tion encoded in the graph. The GCG employs fixed (non-learnable) low-pass graph filters to model
convolutions in the vertex domain, promoting smooth estimates. On the other hand, the GDec
relies on a nested collection of graph upsampling operators to progressively increase the input
size, limiting the degrees of freedom of the architecture, and providing more robustness to noise.
In addition to the aforementioned analysis, we tested the validity of the proposed theorems and
evaluated the performance of both architectures with real and synthetic datasets, showcasing a
better performance than other classical and nonlinear methods for graph-signal denoising. Finally,
we consider extending the results from Theorem 3.1 and Theorem 3.2 to more general scenarios
as an interesting future line of work.

40 Non-linear denoising of graph signals

3.7 Appendix: Proof of Theorem 3.1

Let x0 be a K bandlimited graph signal as described in (2.5), which is spanned by the K
leading eigenvectors of the graph VK , with x̃0 denoting its frequency representation. Let Q
be an orthonormal matrix that aligns the subspaces spanned by VK and WK , and denote as
x̄0 = WKQx̃0 the bandlimited signal using WK as basis and whose frequency response is also
x̃0. Note that x̄0 can be interpreted as recovering x0 from its frequency response using WK in
lieu of VK . Also, note that x0 − x̄0 = (VK − WKQ)x̃0 represents the error between the signal
x0 and its approximation inside the subspace spanned by WK . With these definitions in place,
in [82, Th. 3] the authors showed that error when denoising a signal x = x0 + n is bounded with
probability at least 1 − e−F 2 − ϕ by

∥x0 − fΘ(t)(Z|G)∥2 ≤ ∥Ξx0∥2 + ξ∥x∥2 (3.24)

+
√∑N

i=1((1 − ησ2
i)t − 1)2(w⊤

i n)2,

with Ξ := W(IN − ηΣ2)tW⊤, and IN the N × N identity matrix. However, note that the bound
provided for ∥Ξx0∥2 in [82] requires that x0 lies in the subspace spanned by WK , which is not
the case. As a result, we further bound this term as

∥Ξx0∥2 = ∥Ξ(x0 + x̄0 − x̄0)∥2
(i)= ∥ΞK x̄0 + Ξ(VK − WKQ)x̃0∥2
(ii)
≤ ∥ΞK x̄0∥2 + ∥Ξ(VK − WKQ)x̃0∥2
(iii)
≤ ∥ΞK∥2∥x̄0∥2 + ∥Ξ∥2∥VK − WKQ∥F ∥x̃0∥2

(iv)
≤ (∥ΞK∥2 + δ∥Ξ∥2) ∥x0∥2

(v)=
(
(1 − ησ2

K)t + δ(1 − ησ2
N)t

)
∥x0∥2. (3.25)

Here, ΞK := WK(IK − ηΣ2
K)tW⊤

K , and ΣK represents a diagonal matrix containing the first
K leading eigenvalues σk. We have that (i) follows from x̄0 being bandlimited in WK , so
Ξx̄0 = ΞK x̄0. Then, (ii) follows from the triangle inequality, and (iii) from the ℓ2 norm being
submultiplicative and using the Frobenius norm as an upper bound for the ℓ2 norm. In (iv) we apply
the result of Lemma 3.1, which holds with probability at least 1−ϵ because N > Nϵ,δ, and the fact
that, since both WK and VK are orthonormal matrices, we have that ∥x0∥2 = ∥x̄0∥2 = ∥x̃0∥2.
We obtain (v) from the largest eigenvalues present in ΞK and Ξ.

Finally, the proof concludes by combining (3.25) and (3.24).

3.8 Appendix: Proof of Lemma 3.1

Define Ã as Ã := E[Ã] = E[D]− 1
2 AE[D]− 1

2 and let X be given by (3.13). Denote by H
a graph filter defined as a polynomial of the expected adjacency matrix Ã, and let X̄ be the
expected squared Jacobian using the graph filter H, i.e.,

X̄ = 0.5
(

11⊤ − 1
π

arccos(C−1H2C−1)
)

◦ H2, (3.26)

3.8. Appendix: Proof of Lemma 3.1 41

where C is the counterpart of C in (3.13), but using H instead of H. Given the following
eigendecompositions Ã = VΛV⊤, X = WΣW⊤, Ã = V̄Λ̄V̄⊤, and X̄ = W̄Σ̄W̄⊤, for
arbitrary orthonormal matrices T and R, we have that

∥VK − WKQ∥F ≤ ∥VK − V̄KT∥F + ∥V̄KT − W̄KR∥F + ∥W̄KR − WKQ∥F. (3.27)

To prove the theorem, we bound the three terms on the right hand side of (3.27).

Bounding ∥V̄KT−W̄KR∥F. From the definition of an SBM, it follows that A = E[A] = BΩB⊤,
where B ∈ {0, 1}N×K is an indicator matrix encoding the community to which each node belongs,
and Ω is a K × K matrix encoding the link probability between the communities of the graph.
Therefore, Ã and X̄ are both block matrices whose blocks coincide with the communities in
the SBM. This implies that the eigenvectors associated with non-zero eigenvalues must span the
columns of B. Hence, the leading eigenvectors must be related by an orthonormal transformation,
from where it follows that, given T, we can always find R such that

∥V̄KT − W̄KR∥F = 0. (3.28)

Bounding ∥VK − V̄KT∥F. Under Ass. 3.1, as it is shown in [85], with probability at least 1 − ρ
we have that

∥Ã − Ã∥ ≤ 3
√

3 ln(4N/ρ)
βmin

. (3.29)

Then, we combine the concentration (3.29) with the Davis-Kahan results [94, Th. 2], which bound
the distance between the subspaces spanned by the population eigenvectors (V̄K) and their sample
version (VK). Denoting as λ̄i the i-th eigenvalue collected in Λ̄, i.e. λ̄i = Λ̄ii, we obtain that
there exists an orthonormal matrix T such that

∥VK − V̄KT∥F ≤
√

8K

λ̄K − λ̄K+1
∥Ã − Ã∥F ≤ 3

√
8K

λ̄K

√
3 ln(4N/ρ)

βmin
, (3.30)

where we note that, since Ã follows an SBM, then λ̄i = 0 for all i > K.

Since βmin = ω(ln(N/ρ)), we obtain that

∥VK − V̄KT∥F → 0, as N → ∞. (3.31)

Bounding ∥W̄KR −WKQ∥F. If we show that ∥X − X̄ ∥ → 0 as N → ∞, we can then mimic the
procedure in (3.29) and (3.30) to show that the difference between the leading K eigenvectors of
X and X̄ also vanishes. Hence, we are left to show that ∥X − X̄ ∥ → 0 as N → ∞. From the
definitions of X and X̄ , it follows that

∥X − X̄ ∥ ≤ 0.5∥H2 − H2∥ + 1
2π

∥ arccos(C−1H2C−1) ◦ H2 (3.32)

− arccos(C−1H2C−1) ◦ H2∥.

To bound the difference between the sampled and expected filters, we have that

∥H2 − H2∥ =

∥∥∥∥∥∥

(
L∑

ℓ=0
hℓÃℓ

)2

−
(

L∑

ℓ=0
hℓÃ

ℓ

)2∥∥∥∥∥∥
(3.33)

=
∥∥∥∥∥

2L∑

ℓ=0
αℓ(Ãℓ − Ãℓ)

∥∥∥∥∥ ≤
2L∑

ℓ=0
αℓ

∥∥∥Ãℓ − Ãℓ
∥∥∥ ,

42 Non-linear denoising of graph signals

for suitable coefficients αℓ and recalling that L = 2. Then, we can then leverage the fact that
∥Ã∥ = ∥Ã∥ = 1 to see that

∥∥∥Ãℓ − Ãℓ
∥∥∥ ≤ ℓ

∥∥∥Ã − Ã
∥∥∥. We thus get that

∥H2 − H2∥ ≤
2L∑

ℓ=0
ℓαℓ

∥∥∥Ã − Ã
∥∥∥ → 0, as N → ∞, (3.34)

where the limiting behavior follows from (3.29). Finally, to bound the second term in (3.32),
we first note that the argument of the norm can be re-written as arccos(C−1H2C−1) ◦ (H2 −
H2)+(arccos(C−1H2C−1)−arccos(C−1H2C−1))◦H2. The limit in (3.34) ensures that the first
of these two terms vanishes. Similarly, it follows that ∥C−1H2C−1 − C−1H2C−1∥ → 0 which,
combined with the fact that arccos is a uniformly continuous function, we can always find an Nδ′

such that ∥ arccos(C−1H2C−1) − arccos(C−1H2C−1)∥ ≤ δ′ with high probability. Combining
this result with (3.34) and applying the Davis-Kahan Theorem as done to obtain (3.30) we get
that

∥W̄KR − WKQ∥F → 0, as N → ∞. (3.35)

Replacing (3.28), (3.31), and (3.35) into (3.27) our result follows.

3.9 Appendix: Proof of Lemma 3.2

Recall that Ã = E[Ã], and define H̃ := γI + (1 − γ)Ã as the specific graph filter introduced
in Section 3.4.1 as a polynomial of Ã. Let X be given by equation (3.23), and denote by X̄ the
expected squared Jacobian using the graph filter H, i.e.,

X̄ = 0.5
(

11⊤ − 1
π

arccos(C̃−1UU⊤C̃−1)
)

◦ UU⊤ (3.36)

with U = H̃P and where the matrix C̃ is the counterpart of C̃ in (3.23), but using U in lieu of U.
Given the eigendecompositions Ã = VΛV⊤, X = WΣW⊤, Ã = V̄Λ̄V̄⊤, and X̄ = W̄Σ̄W̄⊤,
analogously to Lemma 3.1, we bound the difference between VK and WK by bounding the three
terms in the right hand side of (3.27).

Bounding ∥V̄KT − W̄KR∥. We have that UU⊤ = H̃PP⊤H̃⊤. Since P is a binary matrix
indicating to which community belongs each node, PP⊤ is a block diagonal matrix that captures
the structure of the communities of the SBM. Then, because H̃ is also block matrix with the same
block pattern that the SBM, it turns out that the matrix X̄ is also a block matrix whose blocks
coincide with the communities in the SBM graph. Therefore, the rest of the bound is analogous
to that in Lemma 3.1.

Bounding ∥VK − V̄KT∥. The relation between A and A is the same as in Lemma 3.1 so the
bound provided in (3.31) holds.

Bounding ∥W̄KR−WKQ∥. To derive this bound we show that ∥UU⊤−UU⊤∥ = ∥H̃PP⊤H̃⊤−
H̃PP⊤H̃⊤∥ goes to 0 as N grows. From (3.34) we have that ∥H − H∥ → 0, as N → ∞, and
hence, ∥H̃ − H̃∥ → 0, as N → ∞. Therefore, it can be seen that

∥UU⊤ − UU⊤∥ → 0, as N → ∞, (3.37)

with ∥UU⊤ − UU⊤∥ vanishing as N grows. The remainder of the derivation of the bound is
analogous to that for (3.35).

Chapter 4

Signal interpolation of diffused sparse signals

We continue with GSP setups where signals are corrupted by perturbations, looking at a scenario
where the (network aggregated) data has missing (limited) values. A natural and systematic
approach in these setups is to model the observed values as a sampled signal, and then, propose an
interpolation algorithm that reconstructs the original signal. Key to the success of the interpolation
is to exploit the structure of both the graph signals and the assumed sampling scheme employed
to represent the missing values. This is precisely the strategy put forth in our work in [25], which
is also the main subject of this chapter.

The outline of the chapter is as follows. After briefly highlighting our contributions and re-
membering some concepts fundamental for this work in Section 4.1, Section 4.2 presents the main
results, including the recovery schemes with known and unknown seeds, as well as unknown dif-
fusing filter. The effect of noise, the design of the sampling matrix, and the consideration of
more than one sampling node are also briefly analyzed, and next, a gamut of illustrative numerical
results, including some showcasing practical relevance in real datasets, are presented in Section 4.3.

4.1 Introduction

In this chapter, we are concerned with the recovery of perturbed graph signals with a non-
negligible proportion of missing values. Furthermore, we assume that the observations are gathered
using an AGSS scheme, so that the (sampling and reconstruction) results in [12,13] can be lever-
aged. In addition, because dealing with a large number of missing values (or, equivalently, having
access to only a few sampled values) is a non-trivial problem, we assume that the original (unper-
turbed) signals studied in this framework are DSGS. In this sense, recall that DSGS are a class of
signals that can be modeled as a sparse graph signal, i.e., a signal that is zero everywhere except in
a few seeding nodes, which is then diffused through the network via a GF. First, we aim at recon-
structing the signal assuming that the seeding nodes are known, but ultimately, we consider that
the seeds are also unknown and our goal consists in reconstructing both the unperturbed signal and
the seeds from the available observations. It is worth noticing that the AGSS is a sampling method
for graph signals introduced in [12] where nodes successively aggregate the values of the signal in
their neighborhood. Under this setting, the recovery can be guaranteed even if observations are
gathered at a single node and the sampling collection process can be implemented distributively.

44 Signal interpolation of diffused sparse signals

Contributions. The main contribution of this chapter is the generalization of the AGSS, which
was originally proposed for BGS, to DSGS. Additionally, we generalize existing results for support
identification and blind deconvolution to setups where observations are collected using an AGSS.
The algorithms presented in this chapter are relevant also for distributed estimation and source
localization. Sampling and recovery using as input the signal value at a subset of nodes were
discussed in [8, 9, 67] for BGS, and in [95] for DSGS. Aggregation and space-shift sampling (a
generalization of the AGSS considering multiple nodes) for BGS were investigated in [12]. Blind
deconvolution and filter identification for DSGS in a centralized setup with access to the full signal
(no sampling) were investigated in [47].

4.1.1 Successively aggregated graph signals

Fundamental to the approach put forth in this chapter is the AGSS, which was introduced in
Section 2.4, and the definition of successively aggregated graph signals zi. Here, we briefly refresh
these concepts and highlight their local nature.

Consider the signal y = Hx, which is the diffusion of x across the graph G as modeled by the
GF H with coefficients h, and let us define the r-th shifted signal z(r) := Srx and further define
the N × N matrix

Z := [z(0), z(1), . . . , z(N−1)] = [x, Sx, . . . , SN−1x], (4.1)

Intuitively, Z groups the signal x and the result of the first N − 1 applications of the GSO. It is
then clear that: a) the output of the graph filter can be found as y = Hx = Zh, with h being
zero-padded if R < N ; b) since S is a local operator, the r-th column of Z can be found locally
from the (r − 1)-th diffusion step as z(r) = Sz(r−1); and c) as one moves right-wise in (4.1), the
columns of Z can be viewed as the evolution of a process which is diffused linearly according to
the local structure codified in S.

Then, in the AGSS we consider the i-th node fixed and sample the signals observed at this node
as the GSO S is applied recursively. In other words, as the signal has been locally diffused according
to S, as described in (4.1). Then, with ei denoting the i-th canonical vector and leveraging the
definition of the matrix Z, the successively aggregated signal observed by node i is the i-th row
of Z, that is zi := (eT

i Z)T = ZT ei. Under this setting, sampling is reduced to the selection of Q
out of the N elements of zi, which can be done as follows

zQ,i := ΠQzi = ΠQ
(
ZT ei

)
. (4.2)

4.2 Aggregation Sampling of DSGS

This section considers the problem of reconstructing DSGS from local observations obtained
from AGSS. In contrast with BGS, the interest when dealing with DSGS can be either in recovering
x (signal reconstruction) or in recovering s (distributed source localization and estimation). For
that reason, we start by analyzing the case where H = I and x = s. After that, we discuss the
more general case where the nodes sample the signal x = Hs, both for known and unknown H.
A collaborative setting where more than one node collects the samples closes the section. To help
readability, a summary of the setups considered is provided in Table 4.1.

4.2. Aggregation Sampling of DSGS 45

Scenario Sparse
support H ΠQ

Obs.
matrix Equation

Sparse recovery Known Known
H = I Fixed Θ (4.6)

Active sampling Known Known
H = I Flexible Θ (4.8)

Blind sparse
recovery Unknown Known

H = I Fixed Θ (4.9)

Diffused recovery Known Known Fixed Ξ (4.6), replacing
Θ with Ξ

Diffused active
recovery Known Known Flexible Ξ (4.8), replacing

Θ with Ξ
Blind diffused

recovery Unknown Known Fixed Ξ (4.9), replacing
Θ with Ξ

Blind
deconvolution Unknown Unknown Fixed Φ (4.12)

Table 4.1: Compilation of the settings considered in Section 4.2.

4.2.1 Aggregating the sparse input

A critical aspect to analyze the recovery x = s from its aggregated samples is to write the
relationship between the sampled signal zQ and the sparse input s. For the ease of exposition, we
do that in the form of a lemma.
Lemma 4.1. Given the GSO S ∈ RN×N , the sampling matrix ΠQ and a sparse input x = s, the
shifted signal zi and its sampled version zQ,i can be expressed as

zQ,i = ΠQzi and zi = ΨT diag(υi)Us := Θis. (4.3)

For the expression above, note that we have defined the observation matrix Θi := ΨT diag(υi)U,
where we recall that Ψ is the GFT for filters, U := V−1 is the GFT for signals, and υi =
[Vi,1, ..., Vi,N]T . While nontrivial, (4.3) can be derived after substituting (2.14) into (2.7), or by a
minor modification of the proof in [12, Lemma 2]. Interestingly, (4.3) reveals that zQ,i depends
on how strongly the seeds express each of the frequencies (represented by Us), how strongly the
sampling node senses each of the frequencies (represented by the frequency pattern υi) and the
spectral effect of the diffusion (powers of the GSO) captured in the Vandermode matrix Ψ.

To proceed with the recovery of the sparse input, let us denote as S the support of s, define
sS := ΠSs ∈ RS as the vector collecting the non-zero values of s, and suppose for now that this
support is known. Then, we have that

zQ,i = ΠQΘis = ΠQΘiΠT
S sS . (4.4)

This setup would correspond to the case where the indexes of the seeding nodes (identity of
the influencers or location of the sources) is known, but their particular values are not. Clearly,
for the recovery problem in (4.4) being identifiable, a necessary condition is Q, the number of
observations in zQ,i, being no less than S, the number of unknowns in sS . Consider first the
extreme case Q = S. It is then clear that the sparse signal ŝ(i), with the superscript (i) denoting
the index of the sampling node, can be recovered as

ŝ(i) = ΠT
S ŝ(i)

S and ŝ(i)
S = (ΠQΘiΠT

S)−1zQ,i, (4.5)

46 Signal interpolation of diffused sparse signals

provided that the inverse exists, which will depend on the particular set of rows Q and columns
S. For the standard case of Q > S and the observations being corrupted by additive noise, the
observed signal yi is given by yi = zi +wi. Assuming that the noise wi is zero-mean, independent
of x, and with known covariance matrix R(i)

w := E[wiwH
i], the best linear unbiased estimator of

the sparse inputs is [96]

ŝ(i) =ΠT
S ŝ(i)

S and ŝ(i)
S =(MQ)†(R(i)

w,Q)−1/2yQ,i, with (4.6)

R(i)
w,Q :=ΠQR(i)

w ΠT
Q and MQ :=(R(i)

w,Q)−1/2ΠQΘiΠT
S ,

provided that R(i)
w,Q is non-singular. Note that if the noise is Gaussian, the estimator in (4.6)

attains the Cramér-Rao bound.

Using (4.6), the error covariance matrix is [96]

R(i)
e := E[(sS − ŝ(i)

S)(sS − ŝ(i)
S)T] = (MT

QMQ)†, (4.7)

which depends on the noise model, the spectrum of the GSO, the seed nodes, the node taking
the observations, and the sample-selection scheme adopted. (4.7) can then be used to assess
the performance of the estimation. The particular error metric depends on the application at
hand [97]. The most commonly used is the mean square error (MSE), which corresponds to
minimizing trace(R(i)

e), with other popular metrics including the spectral norm λmax(R(i)
e) and

the log determinant log det(R(i)
e).

Active sampling

Critical for the error performance is the design of a good sampling matrix. This requires solving
first the optimal scheme for a fixed node i (which is a relevant problem by itself) and then selecting
the best node (provided that the system operating conditions yield such a possibility). Except for
trivial cases, optimizing the sampling set is NP-hard. In particular, when the interest is in the
MSE, the optimal sampling matrix Π(i)∗

Q corresponds to

min
ΠQ

trace
(
(ΠSΘT

i ΠT
Q(ΠQR(i)

w ΠT
Q)−1ΠQΘiΠT

S)†
)

s.t. ΠQ,ij ∈ {0, 1},
∑

jΠQ,ij = 1, ∥ΠQ∥0 = Q, (4.8)

which is a fractional high-order polynomial minimization over binary variables. While convex
relaxations to approximate (4.8) are available, greedy schemes for related problems have been
shown to work well [98], and are advocated here.

Blind (sparse) recovery

In many relevant applications (e.g., those dealing with inverse problems) the seeds in S are
unknown. In that case, the noiseless recovery requires solving

s∗ := arg min
s

||s||0 s.t. zQ,i = ΠQΘis, (4.9)

4.2. Aggregation Sampling of DSGS 47

and then setting x̂(i) = ŝ(i) = s∗. Leveraging results from sparse recovery, it can be shown that
identifiability needs Q ≥ 2S and the observation matrix Θi to be full spark [99]. The problem
in (4.9), which does not account for noise, is NP-hard due to the presence of the ℓ0 norm. A
standard approach is to relax the equality with a LS cost and relax the ℓ0 norm with a (weighted)
ℓ1 regularizer. This yields

s(i)
1 := arg min

s
∥(R(i)

w,Q)−1/2(yQ,i − ΠQΘis
)∥2

2 + γ||s||1,

where (R(i)
w,Q)−1/2 accounts for the colored noise and γ is the regularization parameter.

4.2.2 Aggregating the diffused sparse input

We now analyze the recovery of x = Hs from its aggregated samples, assuming first that the
filter H is known. The main difference with respect to the previous case is that now the relation
between s and zQ,i is

zQ,i = ΠQzi and zi = ΨT diag(υi ◦ h̃)Us := Ξis, (4.10)

where Ξi := ΨT diag(υi ◦ h̃)U and ◦ denotes the entry-wise product. Compared with (4.3), we
notice that the observations depend not only on the frequency pattern of the sampling node υi,
but also on the frequency response of the diffusing filter h̃. Intuitively, nodes with a frequency
pattern more aligned with that of the diffusing filter (so that |det(diag(υi ◦ h̃))| is large) are more
likely to give rise to a better reconstruction in the presence of noise.

Apart from replacing the observation matrix Θi with Ξi, another important difference stems
from the particular error to minimize. Since in this case x and s are different, depending on the
application the focus can be on estimating s and minimizing the MSE associated with R(i)

e,s :=
E[(sS − ŝ(i)

S)(sS − ŝ(i)
S)T] or on estimating x and minimizing the MSE associated with R(i)

e,x :=
E[(x − x̂(i))(x − x̂(i))T]. This requires to premultiply (or not) the error terms in the objectives
of the optimizations presented in the previous sections. Such a dichotomy was not an issue for
BGS since the frequency coefficients are a byproduct and the ultimate goal was to recover x. By
contrast, for DSGS both x (signal reconstruction) and s (source localization) are meaningful on
their own.

4.2.3 Blind deconvolution

There may be scenarios where the diffusing filter H = ∑R−1
r=0 hrSr is unknown. The recovery

problem in this case is considerably more challenging, but it can be tackled provided that R, the
order of the diffusing filter, is sufficiently small. To be specific, after some manipulations, the
expression x = Hs with H being a graph filter can be written as x = V(ΨT ⊙ UT)T vec(shT),
where ⊙ stands for the Khatri-Rao product (cf. [47]). We can then relate the samples zQ,i with
the unknown s and h as

zQ,i = ΠQΨT diag(υi)(ΨT ⊙ UT)T vec(shT), (4.11)

which is a system of Q bilinear equations. If the support S is known, the number of unknowns
is R + S. If it is not, the number is R + N and the constraint ∥s∥0 ≤ S must be added,
further complicating the problem. The resultant problem can be handled by an alternating scheme
that iterates between optimizing s given h and optimizing h for the new s. More sophisticated

48 Signal interpolation of diffused sparse signals

1 2 3 4 5 6

Number of Seeding Nodes

0

0.2

0.4

0.6

0.8

1

R
e

c
o

v
e

ry
 R

a
te

Figure 4.1: Recovery rate of DSGS in SBM graphs. Signals are recovered via the ℓ1-norm relaxation using
the Laplacian as the GSO. 500 simulations with different graphs: N = 50, B = 5, Q = 8, R(i)

w,Q = 10−5I.

approaches include lifting techniques that define the lifted variable Σ := shT , the observation
matrix Φi := ΨT diag(υi)(ΨT ⊙UT)T, and find an approximation to

min
Σ

∥zQ,i − ΠQΦivec(Σ)∥2
2 + γ1rank(Σ) + γ2∥Σ∥2,0, (4.12)

where γ1 and γ2 are regularization parameters and ∥Σ∥2,0 is defined as the number of non-zero
rows of Σ. The estimates ŝ(i) and ĥ(i) are then found the main left and right singular vectors
of Σ∗, which are subject to an inherent scaling ambiguity. See [47] for further justification and
suitable relaxations.

In the case of selection sampling (SS), the expression analogous to (4.11) is

xQ = ΠQV(ΨT ⊙ UT)T vec(shT), (4.13)

which is also a bilinear system similar to the previous one. Note that, as in the BGS case (cf.
Section 2.3), the role of V in SS is taken by ΨT diag(υi) in AGSS.

4.2.4 Space-shift sampling of diffused sparse signals

In many setups, access to more than one sampling node is available. This is useful to robustify
the recovery and reduce the number of required samples per node, which is convenient because
the conditioning number of the Vandermonde matrix Ψ (one of the factors in Θi) worsens as the
samples per node increase. The resultant sampling scheme is referred to as space-shift sampling
[12]. To particularize it to the setup at hand, define the vectorized version of Z as z̄ and then
the N2 × N matrix Ῡ := [diag(υ1), . . . , diag(υN)]T diag(h̃). With these conventions, z̄ can be
written as z̄ = (I ⊗ ΨT)ῩUs, where ⊗ stands for the Kronecker product. The sampled version
in this case is given as z̄Q = Π̄Qz̄, where Π̄Q is a selection matrix of size Q × N2. The results
in the previous sections can be applied to this case as well provided that Θi and ΠQ are replaced
with Θ̄ := (I ⊗ ΨT)ῩU and Π̄Q.

4.3. Numerical experiments 49

8 10 12 14

Number of Observations

10
-10

10
-5

10
0

M
S

E

Figure 4.2: Median MSE of recovered signals defined over 95 real-world graphs using a blind diffused
recovery scheme.

4.3 Numerical experiments

Short simulations to illustrate and gain intuition about some of the results presented are shown
here.

Test case 1. First, we consider a SBM graph with N nodes and B communities with Nb =N/B
nodes each [100]. Edges exist with probability pbb = 0.4 if the incident nodes are in the same
community and with probability pbb′ = 0.1 if they are not. The remaining parameters are given in
the caption of Fig. 4.1. The index of the seeding nodes is chosen uniformly at random and the seed
value is drawn from a zero-mean unit variance Gaussian (ZMUVG). The filter taps have length
R = 6 and each of them is drawn from a ZMUVG. Fig. 4.1 depicts the recovery rate, defined as
the proportion of simulations for which the seeds are correctly identified and the ℓ2-norm of the
error is less than 0.1, as the number of seeds S increases. All sampling nodes are considered, and
the median error is reported. The 10 scenarios (lines) in the figure consider if: 1) ΠS is known or
not (“Known”/“Unk”); 2) the sampling node i is in the same community than one of the seeds
or is a random node (“Comm”/“Rand”); 3) the sampled signal is either s or x (“ŝ”/“x̂”); and 4)
the sampling scheme is AGSS or SS (“AGSS”/“SS”) . The results confirm that recovery is harder
as S increases, that blind schemes are not able to recover the signal if S > Q/2 = 4, and that
knowledge of ΠS notably facilitates the recovery. We also observe that if the other two criteria
are fixed, AGSS always outperform SS, confirming that AGSSs are more robust and less sensitive
to the sampling configuration [12]. Similarly, “Comm” is always better than “Rand”. This is not
surprising since the (diffused) seed values reach the sampling node faster if the node belongs to the
same community. This also explains why recovering x seems to be always easier than recovering
(non-diffused) signal s.

Test case 2. Fig. 4.2 tests our schemes in the D&D protein structure database [101], where
nodes account for amino acids, links capture similarity, and signals are the expression level of
the amino acids. We assume that the data can be accurately modeled as DSGS and try to
recover the full signal following the blind diffused recovery scheme (label “DSGS,1”), its space-
shift counterpart with 2 and 5 nodes (“DSGS,2”, “DSGS,5”), and AGSS modeling the data not
as DSGS but as bandlimited (“BGS”). The median error of all graphs is reported and all sampling
nodes are considered, selecting the 25th error percentile. The main observations are: 1) BGS
yields the worst performance, pointing out that the DSGS model is a good fit for the information

50 Signal interpolation of diffused sparse signals

5 10 15 20 25 30

Bandwidth

0

0.2

0.4

0.6

0.8

1

R
e

c
o

v
e

ry
 r

a
te

Figure 4.3: Recovery rate of DSGS in directed and undirected SBM graphs for varying filter bandwidth
length. Signals are recovered via the pseudoinverse (known ΠS) and the ℓ1-norm relaxation (unknown ΠS)
using the adjacency matrix as the GSO. Directed graphs with non-diagonalizable adjacency matrices are
discarded. 100 graph-realizations for each type of graph, selecting the sampling node i from all the N nodes
as the one leading to the smallest ℓ2-norm of (s − ŝ). The remaining parameters are: N = 30, B = 2, pb =
0.25, pbb′ = 0.05, Q = 4, R(i)

w,Q = 10−5I.

in the D&D database; and 2) for the “DSGS,1” the median MSE increases when the number of
observations is high. This stems from the conditioning number of Ψ as explained in Section 4.2.4.
In contrast, the “DSGS,2” and “DSGS,5” schemes are more robust.

Test case 3. We test our schemes in the ETEX dataset [36], which contains {yt}29
t=0 graph

signals whose nodes correspond to different locations and t represents time. We use as GSO the
adjacency of the geographical graph [102], the seed is set as s = y0, and the signal to be sampled
and recovered is x = yt for all t > 0. Using Q = 16 samples and the same approach than in the
second test case, we run the experiment for 29 different signals (one per t, t > 0), obtaining MSE
of 3 · 10−5 and 1.5 · 10−5 for “DSGS,1” and “DSGS,2” respectively.

Test case 4. In Fig. 4.3 we analyze the impact on the recovery of two factors: a) the bandwidth
of the diffusing filter and b) the directivity of the supporting graph. To this end, let us consider a
bandpass filter h̃ whose non-zero band consists of W elements randomly drawn from a ZMUVG.
Moreover, we consider two types of SBM graphs: one where links are directed (denoted as “Dir” in
the figure) and antoher one with undirected links (“Und”). For this test case, the adjacency matrix
is chosen as GSO. The remaining parameters are detailed in the caption of Fig. 4.3. The plotted
results reveal that successful interpolation from DSGS samples is more amenable in directed than
undirected graphs. The additional information about the edge direction contained in the GSO,
central during both filtering and the AGSS, helps identifying the seeds in S. Furthermore, lower
W hinders the diffusion of the seeds, making the recovery harder. Indeed, in the extreme case of
W = 0 the factor diag(υi ◦ h̃) in (4.10) renders the observations zero.

Test case 5. Fig. 4.4 studies the impact of the density of the graph on the recoverability of
the signals. In this experiment, both the intra-cluster and the inter-cluster probability vary in the
same direction, as explained in the caption of the figure. The results show that the recovery rate
tends to improve when the graphs are denser. With a higher link probability, the chances that
any node is close to the seeds increases, so that they can access the information related with the
non-zero elements of the sampled signal. As a result, the fraction of nodes able to recover the
signal increases. In addition, the plot confirms that directed graphs (“Dir”) have a better recovery

4.4. Conclusion 51

0.3 0.4 0.5 0.6 0.7 0.8

Intra-Cluster Pobability

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
c
o
v
e
ry

 R
a
te

Und known

Und filt known

Und unk

Und filt unk

Dir known

Dir filt known

Dir unk

Dir filt unk

Figure 4.4: Recovery rate of sparse and DSGS in directed and undirected SBM graphs for different prob-
abilities of inter-cluster and intra-cluster links. Signals are recovered via the pseudoinverse (known ΠS)
and the ℓ1-norm relaxation (unknown ΠS) using the adjacency matrix as the GSO. The tested intra-cluster
probability are [0.3, 0.4, 0.5, 0.6, 0.7, 0.8], as shown in the horizontal axis. The corresponding inter-cluster
probabilities are [0.1, 0.15, 0.2, 0.25, 0.3]. For each point in the figure, 100 graph-realizations are considered
and, for each of those realizations, the N = 30 nodes are tested, so that the rates shown correspond to
averages across 3000 trials. The remaining parameters are: B = 3, Q = 9, R(i)

w,Q = 10−6I.

rate than undirected graphs (“Und”), which is consistent with the results presented for the test
case 3.

4.4 Conclusion

Here, we considered the presence of missing values in the (aggregated) observed data and
approached the reconstruction of the original signal in the context of sampling and interpolation
of graph signals. Assuming that the observed values were gathered through an AGSS, first, we
proposed a convex optimization problem to interpolate sparse signals with either known or unknown
support of the seeding nodes. Later on, we moved on to the more general case where the signals
were DSGS and contemplated the signal interpolation when the diffusing filter H was known, and
then, the blind sparse recovery case where H was unknown. Finally, we studied the case where
the aggregated observations were collected at more than one sampling node, and we evaluated the
proposed interpolation algorithms over synthetic and real-world datasets.

Chapter 5

Robust graph filter identification

In this chapter, we shift our attention from perturbations involving the observed graph signals
to perturbations involving the edges of the observed graph, a prevalent type of uncertainty that is
especially relevant when the networks are inferred from a set of nodal observations. Nonetheless,
we may also encounter imperfections in the topology when networks are physical entities due to
errors in the observation process. Regardless of their source, the presence of errors in the observed
topology is critical for most GSP applications, so it is essential that they are properly accounted
for in order to build a robust GSP framework. In this sense, we note that the polynomial definition
of GFs renders them particularly sensitive to the presence of these perturbations, since even errors
affecting only a few edges can lead to large discrepancies when high-order polynomials are involved.
As a result, this chapter picks up our work in [26, 27] and addresses the relevant problem of GF
identification from input-output pairs from a robust perspective. Even though we also consider
the presence of noise in the observed graph signals, the proposed analysis is primarily concerned
with perturbations involving the edges of the graph. Next, we provide some highlights about the
method presented in this chapter and a brief summary of the resulting contributions.

5.1 Introduction

On top of its theoretical interest, the task of GF identification is practically relevant to, e.g.,
understanding the dynamics of network diffusion processes [40, 47, 48], as well as explaining the
structure of real-world datasets [25,103,104]. Motivated by this, the work described in this chapter
investigates the problem of estimating a GF from input-output signal pairs assuming that both
the signals and the supporting graph have errors. The proposed approach is formulated in the
vertex domain, avoiding the numerical instability of computing large polynomials and, at the same
time, bypassing the challenges associated with robust spectral graph theory. To that end, we
recast the robust estimation as a joint optimization problem where the GF identification objective
is augmented with a graph-denoising regularizer, so that, on top of the desired GF, we also obtain
an enhanced estimate of the supporting graph. The joint formulation leads to a non-convex bi-
convex optimization problem, for which a provably-convergent efficient (alternating minimization)
algorithm able to find an approximate solution is developed. Furthermore, to address scenarios
where multiple GFs are present (e.g., when dealing with vector autoregressive (AR) spatio-temporal
processes or in setups where nodes collect multi-feature vector measurements), we generalize our

54 Robust graph filter identification

framework so that multiple GFs, all defined over the same graph, are jointly identified.

Despite their theoretical and practical relevance, the number of robust GSP works is limited,
due in part to the challenges emanating from the presence of graph perturbations. Initial works
modeling the influence of perturbation in the spectrum of the graph Laplacian [14], and proposing
a graphon-based perturbation model [15] were previously commented on in Section 2.7. More
recently, [16] combines SEM with TLS to jointly infer the GF and the perturbations when the
observed data is explained by a SEM. A different robust alternative is presented in [17], where
the support of the graph is assumed to be known and the goal is to estimate the weights of the
network topology and the coefficients of the GF. The resultant problem is non-convex and the
authors adopt a sequential convex programming (SCP) approach to solve it. Finally, the presence
of perturbations has also been considered in non-linear GSP tasks. An alternative definition of GFs
robust to perturbations is proposed in [28], and the transferability of GFs when employed in graph
neural networks is studied in [105–107].

Contributions and outline. After analyzing the influence of edge perturbations in polynomial
GFs and stating the robust GF identification problem in Section 5.2, our main contributions are:

1. We formulate a non-convex optimization problem to jointly estimate the graph and the GF,
develop an alternating optimization algorithm to solve it, and prove its convergence to a
stationary point (Section 5.3).

2. We consider a generalization where several GFs are jointly estimated by exploiting the fact
that they are polynomials of the same GSO (Section 5.4).

3. We propose an efficient implementation of the GF identification algorithm to handle graphs
with a large number of nodes (Section 5.5).

The effectiveness of the proposed algorithms is evaluated numerically in Section 5.6, and some
concluding remarks are provided in Section 5.7. Last but not least, while we focus on GF identifi-
cation from input-output pairs, the approach put forth in this chapter can be generalized to other
GSP tasks, which is a research path we plan to pursue in the near future.

5.2 GF identification with imperfect graph knowledge

This section introduces and discusses the problem of estimating a GF H = ∑N−1
r=0 hrSr from

noisy input-output signal pairs (X ∈ RN×M , Y ∈ RN×M) assuming that we have access to an
imperfect GSO S̄ ∈ RN×N , which can be modeled as

S̄ = S + ∆, (5.1)

where S ∈ RN×N represents the true GSO and ∆ ∈ RN×N is a perturbation matrix. Before
discussing models for the perturbation matrix, we find illustrative to demonstrate the impact of ∆
on the GSP problem at hand.

As pointed out in the introduction, the presence of uncertainties in the topology of G is
particularly relevant when dealing with GFs. Indeed, due to the polynomial definition of H, even
small perturbations can lead to significant errors when S̄ (and not S) is used as the true GSO.
To see this more clearly, Fig. 5.1 provides an example that illustrates how the errors encoded in

5.2. GF identification with imperfect graph knowledge 55

5 10 15 20

5

10

15

20

(a) |S̄ − S|
0

0.2

0.4

0.6

0.8

1

5 10 15 20

5

10

15

20

(b) |S̄2 − S2|
0

0.2

0.4

0.6

0.8

1

5 10 15 20

5

10

15

20

(c) |S̄3 − S3|
0

2

4

6

8

5 10 15 20

5

10

15

20

(d) |S̄4 − S4|
0

5

10

15

20

25

Figure 5.1: Absolute error for different powers of the matrix S and its perturbed version S̄. The true GSO
is the adjacency matrix of an Erdős-Rényi graph with link probability of 0.15, and S̄ is perturbed by creating
and destroying links independently with a probability of 0.05.

∆ propagate for different matrix powers, demonstrating that the discrepancies between S̄r and
Sr increase swiftly as the power r grows. More rigorously, let C be a positive constant such
that ∥S∥ ≤ C and ∥S̄∥ ≤ C, and define H̄ := ∑N−1

r=0 hrS̄r. Then, the error generated by the
perturbations is upper-bounded by

∥H̄ − H∥ ≤
N−1∑

r=1
|hr|∥S̄r − Sr∥ ≤

N−1∑

r=1
|hr|rCr−1∥∆∥, (5.2)

where the last inequality follows from [105, Lemma 3]. In words, the maximum difference between
the true H and the perturbed H̄ increases exponentially with the degree of the GF.

From the previous discussion, it is not surprising that the imperfect knowledge of the graph
topology is also relevant when estimating the filter coefficients. In fact, ignoring the errors in ∆
and attempting to estimate h solving (2.4) when S̄ is used in lieu of the true (unknown) S leads to
a poor solution, as we illustrate numerically in Section 5.6. Motivated by this, we approach the GF
identification problem from a robust perspective by taking into account the imperfect knowledge
of the GSO. The resultant robust estimation task is formally stated next.
Problem 5.1. Let G be a graph with N nodes, let S ∈ RN×N be the true (unknown) GSO
associated with G, and let S̄ ∈ RN×N be the perturbed (observed) GSO. Moreover, let X ∈ RN×M

and Y ∈ RN×M be a pair of matrices collecting M observed input and output signals defined over
G and related by the model in (2.2). Our goal is to use the triplet (X, Y, S̄) to: i) learn the GF
H that best fits the model in (2.2) and ii) recover an enhanced estimation of S. To that end, we
make the following assumptions:
(AS1) H is a polynomial of S [cf. (2.1)].
(AS2) S and S̄ are close according to some metric d(S, S̄), i.e., the observed perturbations are
“small” in some sense.

On top of the previous two assumptions, we also consider that the norm of the noise observation

56 Robust graph filter identification

matrix W in (2.2) is small, which is a workhorse assumption in this type of problems. Similar to
standard GF identification approaches, (AS1) limits the degrees of freedom of the linear operator
in (2.2). However, the fact of the true S being unknown adds uncertainty to the problem and,
as a result, additional signal observations are required to achieve an identification performance
comparable to the one obtained when S̄ = S. Regarding the recovery of the true GSO, (AS2)
accounts for the hypothesis that S̄ is a perturbed observation of S and, hence, matrices S and S̄
are not extremely different. Note that this guarantees that “some” information about the true GSO
is available, so that (AS1) can be effectively leveraged. While not exploited in our formulation,
additional assumptions constraining the GSO could also be incorporated into the problem. Finally,
the metric d(·, ·) employed to quantify the similarity between S and S̄ should depend on the model
for the perturbation ∆, a subject that is briefly discussed next.

5.2.1 Modeling graph perturbations

The development and analysis of graph perturbation models that combine practical relevance
and analytical tractability constitutes an interesting yet challenging open line of research [15, 70].
Due to its flexibility and tractability, here we consider an additive perturbation model [cf. (5.1)],
so that the focus is constrained to understanding the structural (statistical) properties of matrix
∆ = S̄ − S.

Consider first the case where perturbations only create or destroy links independently. If G is an
unweighted graph, a simple approach is to consider perturbations modeled as independent Bernoulli
variables with possibly different creation/destruction probabilities. In this case, the entries of ∆
would be

∆ij =

1 if link (i, j) is created,
−1 if link (i, j) is destroyed,

0 otherwise.
(5.3)

Since ∆ models the creation and destruction of links, it is worth noting that ∆ij = 1 only if
Sij = 0 and ∆ij = −1 only if Sij = 1. In the more general case of G being a weighted graph,
∆ij = −Sij destroys an existing link while ∆ij = z creates a new link. Here, z is a random
variable sampled from a particular distribution (typically mimicking the weight distribution of the
true S). When facing this type of perturbations, a suitable distance function is the ℓ0 norm

d(S, S̄) = ∥S − S̄∥0, (5.4)

with the ℓ1 norm ∥S − S̄∥1 being a prudent convex relaxation.

Alternatively, rather than creating or destroying links, perturbations may represent uncertainty
over the edge weights. This entails the support of matrix ∆ matching that of S and S̄, and the
non-zero entries of ∆ being sampled from a distribution that models the observation noise. For
example, if the noise is zero-mean, Gaussian and white, it holds that ∆ij ∼ N (0, σ2) when Sij ̸= 0
and ∆ij = 0 when Sij = 0. Under this setting, an appropriate distance metric is given by

d(S, S̄) = ∥SE − S̄E∥2
2, (5.5)

where SE and S̄E only select the non-zero entries (edges) in S and S̄. Additionally, one can have
setups where the two types of perturbations are simultaneously present. That is, perturbations
may create and destroy links while the actual value of the existing links is also uncertain. In such
a case, a combination of ℓ1 and ℓ2 norms like in elastic nets [108] is adequate.

5.3. Robust GF identification 57

The models previously described only consider the perturbation of edges in an independent
fashion. However, there may be scenarios where the perturbations are correlated. Consider for
example a communication network. If the power supply of a node stalls, the signal-to-noise ratio of
all its links will be poor, and hence, links involving that node will be more likely to fail. Perturbations
dependent across links can be modeled by means of a multivariate correlated Bernoulli distribution,
an Ising model, or more sophisticated random graph models [109]. When prior information about
the dependence of the perturbations is available, it can be incorporated into the function d(S, S̄)
to better extract the information encoded in S̄.

5.3 Robust GF identification

This section presents the optimization problem and the proposed algorithm to estimate H and
S under the setting described in Problem 5.1. Given the matrices X, Y, and S̄, we approach the
robust GF identification task by means of the following non-convex optimization

Ĥ, Ŝ = argmin
H,S

∥Y − HX∥2
F + λd(S, S̄) + β∥S∥0

s. to : S ∈ S, SH = HS, (5.6)

where s. to stands for subject to. The first term in the objective promotes the linear input-output
relation in (2.2), encouraging the norm of W = Y − HX to be small. The use of the Frobenius
norm is well-justified when the observation noise is Gaussian and white, but other types of noise
could be accommodated by using a different norm. The second term incorporates the assumption
(AS2) as a regularizer to obtain an estimate Ŝ that is related to the given GSO S̄. The ℓ0 norm
in the third term accounts for the fact of S being sparse. Clearly, if additional information about
S is available, it can be incorporated into (5.6), either as a regularizer (e.g., a statistical prior
quantifying the log-likelihood of a class of GSOs) or as a constraint that must be satisfied (e.g.,
the GSO being symmetric). The latter is indeed the role of S ∈ S in (2.2), with S representing
a (desired) family of GSOs such as the set of adjacency matrices with no self-loops (S is the set
of matrices with non-negative entries whose diagonal entries are zero) or the set of combinatorial
graph Laplacians (matrices with non-positive off-diagonal entries and zero row-sum). Finally, the
(key) constraint SH = HS captures the fact of H being a polynomial of S and not of S̄ (AS1).
Note first that the constraint is pertinent, if H is a polynomial of S, then H and S have the
same eigenvectors and, as a result, their product commutes [48]. More importantly for the GF-
identification at hand, when the GSO is perfectly known the model H = h0I+h1S+...+hN−1SN−1

is linear in the unknown h. As a result, a formulation that estimates h directly (as carried out in
classical non-robust approaches) is well-motivated. However, when both h and S are unknown,
the model H = h0I+h1S+ ...+hN−1SN−1 is highly non-linear in S, challenging the development
of a tractable solution that jointly estimates h and S. Our formulation bypasses this problem by
recasting the optimization variables as H and S, leading to the (more tractable) bilinear constraint
in (5.6). Nonetheless, if estimating h is the ultimate goal, this can be readily achieved from Ĥ
and Ŝ as

ĥ =
(
vec(I), vec(Ŝ), ..., vec(ŜN−1)

)†
vec(Ĥ). (5.7)

The approach put forth in (5.6) has two main advantages. First, while most works formulate
the recovery of the GF in the spectral domain, our formulation operates in the vertex domain.
Working on the spectral domain would imply finding the Vandermonde GFT matrix Ψ. Since
this matrix involves high-order polynomials of the eigenvalues of the GSO, it is also prone to
numerical instability and error accumulation [40]. Even if approaches that bypass this issue by

58 Robust graph filter identification

estimating the graph-frequency response h̃ = Ψh in lieu of h are adopted, the estimation would
still be challenging since they require computing the eigenvectors V, which are known to be highly
sensitive to errors in the GSO (especially those associated with small eigenvalues) [14,110]. On top
of this, characterizing the spectral errors and incorporating those to the optimization is not a trivial
task. The second advantage emanates from casting the true GSO S as an explicit optimization
variable. As already explained, this approach is robust to error accumulation and facilitates the
incorporation of the (additive) effect of the perturbations into the optimization. An additional
benefit is that we obtain a denoised version (enhanced estimation) of the true GSO, which can be
practically relevant in most real-world applications.

In a nutshell, in the context of robust GF identification, choosing a formulation that: i) works
entirely in the vertex domain, ii) considers S as an explicit optimization variable, and iii) codifies
the GF structure via the constraint HS = SH, exhibits multiple advantages. However, it must
be noted that the number of optimization variables is larger than in classical approaches (adding
computational complexity) and that the bilinear filtering constraint HS = SH, while more tractable
than its polynomial counterpart, is still non-convex. Alternatives to deal with these issues are
discussed in later sections.

5.3.1 Alternating minimization for robust GF identification

This section presents a systematic efficient approach to find an approximate solution to (5.6).
Since the goal is to design specific algorithms, from this section onwards, we particularize the GSO
distance to d(S, S̄) = ∥S − S̄∥0, so that, according to the discussion in Section 5.2.1, the focus
is on graph perturbations that create and destroy links. Apart from its practical relevance, the
reason for choosing the ℓ0 norm as a distance is also motivated by its more intricate (challenging)
structure. Indeed, the algorithms presented next can be easily adapted to (more tractable) distances
associated with alternative perturbation models. Having clarified this, the main obstacle to solving
(5.6) is its lack of convexity, which emanates from two different sources: (s1) the ℓ0 norms in
the objective, and (s2) the bilinear constraint involving S and H. Next, we explain the strategy
adopted to deal with them and find a solution to (5.6) by solving a succession of convex problems.

• Regarding the ℓ0 norm in (s1), a workhorse approach is to replace it with its convex surrogate,
the ℓ1 norm. However, it is possible to exploit more sophisticated (non-convex) alternatives
that typically lead to sparser solutions. The one chosen in this work is to approximate the
ℓ0 norm of a generic matrix Z ∈ RI×J using the logarithmic penalty

∥Z∥0 ≈ rδ(Z) :=
I∑

i=1

J∑

j=1
log(|Zij | + δ), (5.8)

where δ is a small positive constant [111]. The non-convexity of the logarithm can be handled
efficiently by relying on a majorization-minimization (MM) approach [112], which considers
an iterative linear approximation leading to an iterative re-weighted ℓ1 norm. It is worth
noting that, since we will consider an iterative algorithm to deal with the bilinearity of (5.6),
the iterative nature of the re-weighted ℓ1 norm will not impose a significant computational
burden. Details on the exact form of this sparse regularizer will be provided soon, when
describing the estimation of S.

• To deal with the bilinear terms in (s2), we adopt an alternating optimization approach [113]
resulting in an iterative algorithm where the optimization variables H and S are updated in

5.3. Robust GF identification 59

two separate iterative steps. At each step, we optimize over one of the optimization variables
with the other remaining fixed, resulting in two simpler problems that can be solved efficiently.
The details about the specific steps will be provided shortly.

Taking into account these considerations, the first task to implement our approach is to rewrite
the problem in (5.6) as

min
S∈S,H

∥Y−HX∥2
F +λrδ1(S−S̄)+βrδ2(S)+γ∥SH−HS∥2

F , (5.9)

where we recall that rδ(·) was introduced in (5.8). Note that: i) the logarithmic penalty has also
been used to promote sparsity in the term S − S̄ since we selected the ℓ0 norm as the distance
between S and S̄, and ii) the constraint SH = HS was relaxed and rewritten as a regularizer, a
formulation more amenable to an alternating optimization approach.

The next task is to solve (5.9) by means of an iterative algorithm that blends techniques from
alternating optimization and MM approaches. Specifically, for a maximum of tmax iterations, we
run the following two steps at each iteration t = 0, ..., tmax − 1.

Step 1: GF Identification. We estimate the block of N2 variables collected in H while the
current estimate of the GSO, denoted as S(t), remains fixed. This results in the convex optimization
problem

H(t+1) = arg min
H

∥Y−HX∥2
F +γ∥S(t)H−HS(t)∥2

F , (5.10)

an LS minimization whose closed-form solution is

vec(H(t+1))=
(
XX⊤⊗I+γ(SS⊤⊕S⊤S−S⊤⊗S⊤−S⊗S)

)−1(X⊗ I)vec(Y). (5.11)

Here, ⊗ is the Kronecker product, ⊕ is the Kronecker sum, and I is the identity matrix of size
N × N . Also note that (5.11) omitted the iteration superscript in S(t) to alleviate notation.

Step 2: Graph Denoising. Following an MM scheme, we optimize an upper bound of (5.9) where
the logarithmic penalties are linearized. Then, we estimate the block of N2 variables collected in
S while the current estimate of the GF H(t+1) remains fixed. This yields

S(t+1) = arg min
S∈S

N∑

i=1

N∑

j=1

(
λΩ̄(t)

ij |Sij − S̄ij | + βΩ(t)
ij |Sij |)+ γ∥SH(t+1) − H(t+1)S∥2

F , (5.12)

where Ω̄(t) and Ω(t) are computed in an entry-wise fashion based on the GSO estimate from the
previous iteration as

Ω̄(t)
ij = 1

|S(t)
ij − S̄ij | + δ1

, Ω(t)
ij = 1

|S(t)
ij | + δ2

. (5.13)

The overall alternating algorithm is summarized in Algorithm 2, where a fixed number of
iterations is considered. The algorithm starts by initializing the GSO as S(0) = S̄ (although other
options could also be appropriate), and then, it iterates between Steps 1 and 2 for a fixed number
of epochs (or until some stopping criterion is met). In this regard, a key feature of the algorithm
is that it is guaranteed to converge to a stationary point, as is formally stated next.

60 Robust graph filter identification

Algorithm 2: Robust GF identification with graph denoising.
Input: X, Y, S̄
Output: Ĥ, Ŝ.

1 Initialize S(0) as S(0) = S̄.
2 for t = 0 to tmax − 1 do
3 Compute H(t+1) by solving (5.11) fixing S(t).
4 Update Ω(t) and Ω̄(t) as in (5.13).
5 Compute S(t+1) by solving (5.12) using H(t+1), Ω(t), and Ω̄(t).
6 end
7 Ĥ = H(tmax), Ŝ = S(tmax).

Theorem 5.1. Denote as f(H, S) the objective function in (5.9), and let Z∗ be the set of stationary
points of f . Let z(t) = [vec(H(t))⊤, vec(S(t))⊤]⊤ represent the solution provided by the iterative
algorithm (5.11)-(5.12) after t iterations. Assuming that i) the GSO does not have repeated
eigenvalues and ii) every row of X̃=V−1X has at least one nonzero entry, then z(t) converges to
a stationary point of f as t goes to infinity, i.e.,

lim
t→∞

d(z(t) |Z∗) = 0,

with d(z |Z∗) := minz∗∈Z∗ ∥z − z∗∥2.

The proof relies on the convergence results shown in [114, Th. 1b] and the details are provided
in Appendix 5.8. Note that the convergence of the algorithm was not self-evident since the original
optimization problem in (5.9) is non-convex and Step 2 is minimizing an upper-bound of the original
objective function. The sufficient conditions in i) and ii) guarantee that every graph frequency is
excited so that the GF is identifiable and (5.10) has a unique solution, which is a requirement for
convergence (see Proposition 5.1 in Appendix 5.8 for details). Clearly, condition ii) is fulfilled even
for M = 1 if all the entries of the vector x̃ = V−1x are nonzero. Alternatively, when M > 1 and
ii) is satisfied, condition i) can be relaxed.

Another relevant element in the proposed algorithm is the weight γ. If γ is set to a value that
is too large, the GF estimated in the first iteration H(1) will be an (almost exact) polynomial of S̄
so that the algorithm will converge quickly to the same solution as that of the non-robust design
[cf. (5.6) with S = S̄]. On the other hand, if γ is too close to zero the two problems decouple
and the solution converges quickly to that of the two separated problems [cf. (5.10) and (5.12)
with γ = 0]. As a result, the value of the parameter must be chosen carefully. In this context,
schemes that start with a small γ to encourage the exploration during the warm-up phase, and
then increase γ as the iteration index grows to guarantee that the final Ĥ is a polynomial of Ŝ are
a suitable alternative for the setup at hand.

Finally, one drawback of the proposed robust GF identification algorithm is that the optimiza-
tion problems in (5.10) and (5.12) may be slow when dealing with large graphs. However, we
will mitigate this issue by introducing an efficient implementation that reduces the computational
complexity of the overall algorithm (see Section 5.5).

5.4. Joint robust identification of multiple GFs 61

5.3.2 Leveraging stationary observations

The alternating convex approximation in Algorithm 2 exploits the fact that X and Y are linearly
related via H, which is a polynomial of S. However, in setups where the perturbations in S̄ are very
large, obtaining accurate estimates of S and h from Ĥ may still be challenging. One alternative to
overcome this issue is to leverage the additional structure potentially present in our data. Indeed,
as detailed in the introduction, it is common to consider setups where the signals exhibit additional
properties depending on the supporting graph, with notable examples including graph-bandlimited
signals [39, 44], diffused sparse graph signals [25, 47], or graph stationary signals [74, 115, 116].
Clearly, incorporating such additional information into the optimization problem would enhance its
estimation performance.

This section explores this path, restricting our attention to the case where the observed signals
are stationary on G. The motivation for this decision is that, due to the tight connection between
graph-stationary signals and GFs (see Chapter 2), the formulation in (5.9) and Algorithm 2 require
relatively minor modifications to incorporate the assumption of X and Y being stationary on S,
leaving the incorporation of additional signal models as future work. To formulate the updated
problem, recall that the covariance matrix of a stationary graph signal can be expressed as a
polynomial of the GSO. Therefore, incorporating stationarity calls for modifying (5.9) as

min
S∈S,H

∥Y−HX∥2
F + λrδ1(S−S̄) + βrδ2(S) + γ∥SH−HS∥2

F

s. to : ∥CyS−SCy∥2
F ≤ϵy, ∥CxS−SCx∥2

F ≤ϵx, (5.14)

where Cy and Cx denote the covariance matrices of Y and X, respectively. If the covariances are
perfectly known, then the corresponding parameters ϵy and ϵx are set to zero. Alternatively, if the
Cy and Cx are the sample estimates of the true covariances, then the values of ϵy and ϵx must
be selected based on the quality of the estimators (accounting, e.g., for the number of available
observations M).

The constraints in (5.14) capture the graph-stationarity assumption by promoting the commu-
tativity with the true GSO. Therefore, such constraints are considered in the graph denoising step
[cf. (5.12)]. In addition, since Cy, Cx and H are all polynomials of S, the equalities CyH = HCy
and CxH = HCx must hold as well, so it is also possible to augment the GF identification step
[cf. (5.10)] with the corresponding constraints. While in the interest of brevity, we do not spell
out all the possible formulations here, the impact of several of these alternatives is numerically
analyzed in Section 5.6. Finally, it is important to note that, since the stationarity constraints are
quadratic and convex, the convergence described in Theorem 5.1 also holds true for the iterative
algorithm associated with (5.14).

5.4 Joint robust identification of multiple GFs

In Section 5.3, we approached the problem of identifying a single GF H defined over a single
graph G. However, in a variety of situations we encounter multiple processes (signals) over the
same graph G. Consider for example a network of weather stations measuring the temperature,
humidity, and wind speed. Each of these measurements corresponds to observations of a different
process, all of them taking place over a common graph. Intuitively, since all the GFs are related by
the underlying graph G, we propose a joint GF identification approach that exploits this relationship
to enhance the quality of the estimation. We focus first on the case where the input-output signals
associated with each GF (graph process) are observed separately. Later in the section, we address

62 Robust graph filter identification

a slightly more involved case where the GFs model the (AR) dynamics of a time-varying graph
signal and, as a result, the observed signals are intertwined.

Consider a set of K unknown GFs {Hk}K
k=1, all represented by N × N matrices and defined

over the graph G. To be consistent with Problem 5.1, we assume that: i) the true S is unknown
and only the perturbed version S̄ is available; ii) all Hk are polynomials of the same GSO S; and
iii) for each k, matrices Xk ∈ RN×Mk and Yk ∈ RN×Mk collect the observed input and output
graph signals and are related via

Yk = HkXk + Wk, (5.15)

with Hk = ∑N−1
r=0 hr,kSr and Wk being a white random matrix capturing observation noise and

model inaccuracies. Then, we aim at estimating the GFs {Hk}K
k=1 in a joint fashion while taking

into account the inaccuracies in the topology of G. This is summarized in the following problem
statement.

Problem 5.2. Let G be a graph with N nodes, let S ∈ RN×N be the true (unknown) GSO asso-
ciated with G, and let S̄ ∈ RN×N be the perturbed (observed) GSO. Moreover, let Xk ∈ RN×Mk

and Yk ∈ RN×Mk be the matrices collecting the Mk observed input and output graph signals
associated with k = 1, ..., K network processes, all defined over G and adhering to the model in
(5.15). Our goal is to use {Xk}K

k=1, {Yk}K
k=1, and S̄ to learn the K GFs {Hk}K

k=1 that best fit the
data, along with an enhanced estimation of S. To that end, we make the following assumptions:
(AS2) S and S̄ are close according to some metric d(S, S̄), i.e., the observed perturbations are
“small” in some sense.
(AS3) Every Hk is a polynomial of S.

Assumption (AS2), which was also considered in Problem 5.1, promotes the tractability of the
problem by ensuring that S and S̄ are related. As discussed in Section 5.2.1, the distance function
d(·, ·) must be selected depending on the perturbation model at hand. (AS3) captures the key
fact that all the matrices Hk are GFs of the same GSO, establishing a link that can be leveraged
via a joint estimation (optimization) of the K GFs. Implementing an approach similar to that in
Section 5.3 (i.e., working on the vertex domain, considering the true GSO as an explicit optimization
variable, accounting for the GF structure via a commutativity constraint, and assuming that the
graph perturbations create and destroy links), the multi-filter counterpart to (5.9) that codifies
Problem 5.2 is

min
S∈S,{Hk}K

k=1

K∑

k=1
αk∥Yk −HkXk∥2

F +λrδ1(S − S̄)

+ βrδ2(S) +
K∑

k=1
γ∥SHk−HkS∥2

F . (5.16)

Ideally, the value of the positive weight αk must be selected based on the norm of Wk (e.g.,
prior information on the noise level and the number of signal pairs Mk). If none is available, then
αk = 1 for all k. Equally important, the fact of pursuing a joint optimization implies that each Hk

contributes with a regularization term ∥SHk − HkS∥2
F promoting the commutativity of the k-th

GF with the single S. Intuitively, having the same S in all these terms couples the optimization
across k and contributes to reduce the uncertainty over S, leading to enhanced estimates of both
S and {Hk}K

k=1. As a result, the joint GF identification approach is expected to provide better
results than estimating each Hk separately by solving K instances of (5.9). We validate this
hypothesis numerically via the experiments in Section 5.6.

5.4. Joint robust identification of multiple GFs 63

Following a motivation similar to that in the previous section, we deal with the non-convex
minimization in (5.16) designing an alternating optimization algorithm that breaks the bilinear
terms SHk and HkS, and approximates the logarithmic terms with a linear upper-bound. The
resulting algorithm solves iteratively the following two subproblems for t = 1, ..., tmax iterations.

Step 1: Multiple GF Identification. Given the current estimate S(t), we solve the optimization
problem in (5.16) with respect to each H(k). This yields

H(t+1)
k =argmin

Hk

αk∥Yk−HkXk∥2
F+γ∥S(t)Hk−HkS(t)∥2

F , (5.17)

whose closed-form solution can be found using (5.11) replacing γ with γ/αk, X with Xk, and Y
with Yk. Note that since the only coupling across GFs is via the GSO, (5.17) estimates each H(t+1)

k

separately from the other GFs, solving K LS problems (each with N2 unknowns). Furthermore, if
multiple processors are available, (5.17) can be run in parallel across k.

Step 2: Graph Denoising. Given the current estimates of the GFs {H(t+1)
k }K

k=1, we follow an
MM scheme that, minimizing a linear upper-bound of the logarithmic penalties, yields the estimate
of the GSO via

S(t+1) = argmin
S∈S

N∑

ij=1

(
λΩ̄(t)

ij |Sij − S̄ij | + βΩ(t)
ij |Sij |)

+
K∑

k=1
γ∥SH(t+1)

k − H(t+1)
k S∥2

F , (5.18)

where Ω and Ω̄ are obtained as in (5.13).

The solution to Problem 5.2 is simply given by Ŝ = S(tmax) and Ĥk = H(tmax)
k for every k.

Similar to (5.9), convergence to a stationary point of (5.16) is guaranteed, as formally stated next.

Corollary 5.1. Denote as f({Hk}K
k=1, S) the objective function in (5.16). If the vector z(t) =

[vec(H(t)
1)⊤, ..., vec(H(t)

K)⊤, vec(S)⊤]⊤ represents the solution provided by the iterative algorithm
(5.17)-(5.18) after t iterations and every Xk excites all graph frequencies, then z(t) converges to
a stationary point of f as the number of iterations t goes to infinity.

The key to prove Theorem 5.1, which established the convergence to a stationary point for
the robust estimation of a single GF, was to show that the optimization problem in (5.9) and the
proposed algorithm satisfied the conditions in [114, Th. 1b]. The formulation we put forth for the
multi-filter case resembles closely that of the single-filter case, and, as a result, it is not difficult to
show that those conditions also hold true for the problem in (5.16) (see Appendix 5.8 for details).

The discussion and formulations in Section 5.3.2 dealing with incorporating additional infor-
mation about the input-output signals into the optimization are also pertinent for the setup in this
section. The details of such a formulation are omitted for brevity, but it will be explored in the
experimental section.

5.4.1 Joint GF identification for time series

A slightly different, practically relevant, setup where multiple GFs need to be estimated is that
of graph-based multivariate time series. In that setup, each variable is associated with a node of the

64 Robust graph filter identification

graph and the multiple graph-signal observations correspond to different instants of a time-varying
graph signal. AR and moving-average (MA) modeling of time series has a long tradition, with
common approaches to decrease the degrees of freedom including limiting the memory of the series
and assuming that matrices of coefficients relating different time instants are low rank [117]. In
the context of graph signals and network processes, a natural approach is to constrain the matrices
of coefficients to be GFs, all defined over the same graph [118, 119]. This section introduces a
variation of the problem in (5.16) tailored to this setup.

To introduce the multiple-graph identification problem formally, let Xκ and Yκ denote a
collection of Mκ graph signals corresponding to measurements of a network process for κ =
1, ..., κmax time instants. Suppose now that Yκ can be accurately modeled by an AR dynamics
with memory K so, at every instant κ, the observations Yκ satisfy the equation

Yκ =
K∑

k=1
HkYκ−k + Xκ, with Hk =

N−1∑

r=0
hr,kSr, (5.19)

where Xκ is the exogenous input, and the GF Hk models the influence that the signal observations
from the time instant κ − k exert on the (current) signal at time κ.

Suppose now that: i) we have access to an estimated (imperfect) graph S̄, ii) the value of
the graph signals at different time instants is available, and iii) our goal is to estimate the set of
matrices (GFs) {Hk}K

k=1 in (5.19) that describe the dynamics of the multivariate time series. This
can be accomplished as

min
S∈S,{Hk}K

k=1

κmax∑

κ=K+1

∥∥∥Yκ − Xκ −
K∑

k=1
HkYκ−k

∥∥∥
2

F

+λrδ1(S − S̄)+βrδ2(S)+
K∑

k=1
γ∥SHk−HkS∥2

F . (5.20)

The main difference relative to (5.16) is in the first term, which accounts for the new observation
model [cf. (5.15) vs. (5.19)]. Note that we assume that the exogenous input Xκ is observed. If
that were not the case, it would suffice to remove Xκ from the objective (possibly updating the
Frobenius norm in case statistical knowledge about Xκ were available). Albeit the differences,
the problem in (5.20) is closely related to (5.16), with the sources of non-convexities being the
same. As a result, we approach its solution with a modified version of Algorithm 2 which, at each
iteration t, runs two steps. In the first one, we estimate each of the K GFs by solving

H(t+1)
k =argmin

Hk

κmax∑

κ=K+1

∥∥∥Yκ−Xκ−HkYκ−k−
∑

k′<k

H(t+1)
k′ Yκ−k′

−
∑

K≥k′>k

H(t)
k′ Yκ−k′

∥∥∥
2

F
+

K∑

k=1
γ
∥∥∥S(t)Hk − HkS(t)

∥∥∥
2

F
, (5.21)

which is different from the previous GF identification step [cf. (5.17)]. In contrast, the graph-
denoising step in (5.18) remains the same. Note that (5.21) updates each GF separately in a cyclic
way by solving an LS problem with N2 unknowns. Alternative implementations include using H(t)

k′

in lieu of H(t+1)
k′ for all k′ < k (so that a parallel implementation is enabled) as well as considering

a single LS problem with KN2 unknowns.

Finally, it is worth emphasizing that the formulation introduced in this section can be used as
a starting point to design more general robust schemes for multivariate time series defined over

5.5. Efficient implementation of the robust GF identification algorithm 65

a graph. Dealing with both AR and MA matrices, assuming that the memory of the system is
not known, having only partial/statistical information on the exogenous input, and observing the
signals at only a subset of nodes are all examples of setups of interest. Since our goal in this
section was to demonstrate the relevance of a robust multiple GF formulation in the context of
multivariate time series, to facilitate exposition we restricted our discussion to the relatively simple
case in (5.19), but many other setups (including those previously listed) will be subject of our
future work.

5.5 Efficient implementation of the robust GF identification algorithm

The algorithms proposed up to this point are able to find a solution to the robust GF iden-
tification problem in polynomial time. However, their computational complexity scales with the
number of nodes as N7. To facilitate the deployment in setups where N is large, this section puts
forth an efficient implementation that reduces the number of operations.

The new algorithm (summarized in Algorithm 3) preserves the core structure of Algorithm 2,
with an outer loop that, at each iteration, runs two steps: one involving the estimation of the
GF(s) and another one dealing with the estimation of the GSO. The main difference is that now,
instead of finding the exact solution to those two problems, we obtain an approximate solution.
While the details, which are step-dependent, will be specified in the next paragraphs, the overall
idea is that for each of the steps we run a few simple (gradient/proximal) iterations. Although
Algorithm 3 involves two nested loops, the complexity of the problems in the inner loop is cut
down significantly, so that the overall computational overhead is reduced.

To be specific, we describe next the two steps that, at each iteration of the outer loop t =
0, ..., tmax−1, Algorithm 3 runs.

Step 1: Efficient GF Identification. Solving the GF-identification step with the closed-form
solution presented in (5.11) involves inverting a matrix of size N2 × N2, which requires O(N6)
operations. To explain our alternative implementation, let f1(H|S(t)) denote the objective function
in (5.10). Since f1 is strictly convex and smooth, it can be efficiently optimized using a gradient
descent approach [120].

To that end, for each iteration t of the outer loop, we define the inner iteration index τ as well
as the sequence of variables Ȟ(τ) with τ = 0, ..., τmax1 , which is initialized as Ȟ(0) = H(t). With
this notation at hand, at each iteration τ = 0, ..., τmax1 − 1 of the inner loop, we update Ȟ(τ+1)

via
Ȟ(τ+1) = Ȟ(τ) − µ∇f1(Ȟ(τ)|S(t)). (5.22)

Here, µ > 0 is the step size and ∇f1 denotes the gradient of f1 with respect to H, which is given
by

∇f1(H|S(t))=2
(
HXX⊤−YX⊤

)
+2γ

(
S(t)⊤(S(t)H−HS(t))−(S(t)H−HS(t))S(t)⊤)

. (5.23)

When the τmax1 gradient updates are computed, we conclude the GF-identification step by setting
H(t+1) = Ȟ(τmax1).

Since each gradient calculation involves the multiplication of N × N matrices, the resultant
computational complexity is O(τmax1N3), which may go down to O(τmax1N2.4) if an efficient
multiplication algorithm is employed [121]. For large values of N , this complexity is substantially
smaller than that required to find the inverse of an N2 × N2 matrix.

66 Robust graph filter identification

Step 2: Efficient graph denoising. Since the optimization in (5.12) involves N2 variables (the
entries in S), using an off-the-shelf convex solver incurs a computational complexity of O(N7) [120].
Inspired by the Lasso regression algorithm [122], we optimize individually over each entry Sij in
an iterative manner. The main idea is running multiple rounds of N2 efficient scalar optimizations
rather than dealing with a single but demanding N2-dimensional problem. To provide the details
of the scheme developed to estimate S, we need to specify the set of constraints S and introduce
some definitions. Let us focus on the set of adjacency matrices SA := {S|Sij ≥ 0, Sii = 0} and
define the vectors s := vec(S), vector s̄ := vec(S̄), and the matrix Σ(t) := H(t+1)⊤ ⊕ −H(t+1).
With these definitions in place, the minimization in (5.12) is equivalent to solving

min
s

N2∑

i=1

(
λω̄

(t)
i |si − s̄i| + βω

(t)
i si

)
+ γ∥Σ(t)s∥2

2,

s. to : s ≥ 0, sD = 0, (5.24)

where sD collects the elements in the diagonal of S, and the vectors ω̄(t) and ω(t) are computed
according to (5.13) but with s̄(t) and s(t) in lieu of S̄(t) and S(t). The constraint sD = 0, implies
that only the N2 −N elements of s representing the off-diagonal entries of S need to be optimized.
The key point to find those N2 −N values is to leverage that the non-differentiable part of the cost
in (5.24) is separable across si, postulate N2 − N scalar optimization problems (coupled via the
ℓ2 term in the cost), and address the optimization following a projected cyclic coordinate descent
scheme.

To define clearly the operation of Step 2 at each iteration t of the outer loop, we need to
introduce some notation. First, let us denote as τ the iteration index for the inner loop, define
the sequence of variables š(τ) where τ = 0, ..., τmax2 , and initialize the sequence as š(0) = s(t).
Moreover, with ℓ ̸∈ D denoting an index of the off-diagonal elements of the GSO, let σℓ ∈ RN2

denote the associated ℓ-th column of Σ(t), ωℓ ≥ 0 and ω̄ℓ ≥ 0 the associated entries of ω(t)

and ω̄(t), and š
(τ)
ℓ ∈ R the associated entry of š(τ) (note that dependence on t was omitted to

facilitate readability). Then, at every iteration τ = 0, ..., τmax2 − 1 of the inner loop, Algorithm 3
optimizes over each šℓ separately in a cyclic (successive) way. The advantage of this approach
is that the solution to the scalar optimization over šℓ is given in closed form by the following
projected soft-thresholding operation

š
(τ+1)
ℓ =

(
−λ̄ℓ + u

(τ)
ℓ

)+
if s̄ℓ < −λ̄ℓ + u

(τ)
ℓ ,

(
λ̄ℓ + u

(τ)
ℓ

)+
if s̄ℓ > λ̄ℓ + u

(τ)
ℓ ,

s̄ℓ otherwise,

(5.25)

with λ̄ℓ = λω̄ℓ

γσ⊤
ℓ σℓ

and u
(τ)
ℓ = −βωℓ − γσ⊤

ℓ r(τ)
ℓ

γσ⊤
ℓ σℓ

.

Here, (·)+ denotes the operation (x)+ = max(0, x), and

r(τ)
ℓ :=

∑

j<ℓ

σj š
(τ+1)
j +

∑

j>ℓ

σj š
(τ)
j . (5.26)

Note that (5.25) is a soft-thresholding operation with respect to the term |si − s̄i|. Also, the
constraints in SA are satisfied due to the projection operator (·)+ :=max{·,0}, and because we do
not optimize over the elements of the diagonal of S.

At first sight, computing each šℓ requires roughly N2 operations, so estimating the whole
vector s would entail a computational complexity of O(N4). However, a closer inspection of the

5.5. Efficient implementation of the robust GF identification algorithm 67

Algorithm 3: Reduced-complexity robust GF identification.
Input: X, Y, S̄
Output: Ĥ, Ŝ.

1 Initialize H(0) and S(0)

2 s̄ = vec(S̄)
3 for t = 0 to tmax − 1 do

// GF-identification step
4 Ȟ(0) = H(t)

5 for τ = 0 to τmax1 − 1 do
6 Ȟ(τ+1) = Ȟ(τ) + µ∇f1(Ȟ(τ)|S(t))
7 end
8 H(t+1) = Ȟ(τmax1)

// Graph denoising step
9 [σ1, ..., σN2] = H(t+1)⊤ ⊕ H(t+1)

10 š(0) = vec(S(t))
11 Update ω̄(t), ω(t) via (5.13) using s̄ and š(0)

12 for i = 0 to τmax2 − 1 do
13 for ℓ ̸∈ D do
14 Obtain r(τ)

ℓ via (5.26)
15 Obtain š

(τ+1)
ℓ via (5.25) using σℓ, r(τ)

ℓ , ωℓ, ω̄ℓ

16 end
17 end
18 S(t+1) = unvec(̌s(τmax2))
19 end
20 Ĥ = H(tmax), Ŝ = S(tmax).

vectors σℓ reveals that no more than 2N of their entries are non-zero because σℓ are the columns
of the Kronecker sum of two N × N matrices. We exploit this sparsity and reduce the number of
operations required to compute each sℓ to approximately 2N , rendering the final computational
complexity of the graph denoising step to O(2τmax2N3).

The pseudocode describing the efficient implementation of Steps 1 and 2 is provided in Al-
gorithm 3. The summary is as follows. We postulate a nested algorithm with two loops. The
outer loop runs tmax iterations. The inner loop runs two steps: Step 1, with τmax1 iterations,
and Step 2, with τmax2 iterations. While the complexity for Algorithm 2 scaled as O(tmaxN7),
with tmax being typically small, the overall computational complexity of Algorithm 3 is roughly
O(tmax(τmax1 + τmax2)N3), which is encouraging, since 2N2 variables are optimized and it scales
with N significantly better than Algorithm 2. Solving Steps 1 and 2 optimally requires setting
large values for τmax1 and τmax2 . Nonetheless, we observe that in most tested setups the approach
of setting small values for τmax1 and τmax2 (at the cost of setting a slightly higher value for tmax)
typically yields a faster convergence. Finally, implementations where the number of iterations is
not fixed but selected based on some convergence criterion are also sensible alternatives.

We close the section noting that we developed Algorithm 3 for the setting described in Prob-
lem 5.1 because the notation was simpler and facilitated the discussion. Nonetheless, an analogous
approach may be followed for the joint estimation of K GFs (cf. Section 5.4), resulting in an al-
gorithm with complexity per GF similar to that for Algorithm 3.

68 Robust graph filter identification

5.6 Numerical results

This section discusses several numerical experiments to gain insights and assess the performance
of the robust GF identification algorithms. Unless specified otherwise, for a variable of interest Θ,
we report its normalized estimation error defined as

nerr(Θ̂, Θ) := ∥Θ̂ − Θ∥2
F

∥Θ∥2
F

, (5.27)

where Θ̂ and Θ denote the estimated and the true value, respectively. The code implementing
our algorithms and the experiments presented next is available on GitHub1. The interested reader
is referred there for additional details and tests.

5.6.1 Synthetic experiments

We start by evaluating our algorithms with synthetic data, which is key to gain intuition.
Unless otherwise stated, graphs are sampled from ER random graph model with a link probability
of p = 0.2 and N = 20 nodes; S̄ is obtained by randomly creating and destroying 10% of the links
in S; M = 50 signals X and Y are generated according to (2.2), with the columns of X being
drawn from a multivariate Gaussian distribution N (0, I), so the signals Y are stationary on S;
signals in Y are corrupted with white Gaussian noise with a normalized power of ηW = 0.05; and
the reported error corresponds to the median of nerr across 64 realizations of graphs and graph
signals.

Test case 1. The first experiment evaluates the influence of perturbations as the order of the
GF R increases. The number of observed pairs of signals considered is M = 100 and 10% of
the edges in S are perturbed. Results are reported in Fig. 5.2, where the x-axis shows R and
the y-axis nerr(ĥ, h). The algorithms considered are: (i) the GF identification algorithm that
ignores perturbations [see (2.4)], denoted as “FI”; (ii) the robust GF identification algorithm from
Algorithm 2 (“RFI”); (iii) a variation of “RFI” where the reweighted ℓ1 norm is replaced by the
standard ℓ1 norm (“RFI-ℓ1”); and (iv) the robust GF identification algorithm accounting for the
stationarity of Y (“RFI-ST”). First, we observe that the error of the “FI” algorithm, while small
for low values of R, increases rapidly as R grows. This is aligned with the discussion of high-order
polynomials in Section 5.2 and illustrates the merits of the robust algorithms. Moreover, “RFI-ST”
presents the best performance illustrating the importance of exploiting additional structure when it
is available. Finally, comparing the error of “RFI” and “RFI-ℓ1” showcases the benefits of replacing
the ℓ1 norm with its reweighted version.

Test case 2. The next experiment tests the influence of different types of perturbations in the
robust and non-robust GF identification algorithms. Figs. 5.3a and 5.3b illustrate the error of the
estimated GF Ĥ and the denoised GSO Ŝ as the ratio of perturbed links in S̄ increases. Graphs are
sampled from the SW [86] random graph model and S̄ is obtained by creating new links, destroying
existing links, or simultaneously creating and destroying links, which are respectively denoted as
“C”, “D”, and “C/D” in the legend. Since the non-robust “FI” algorithm does not perform graph
denoising we show the error nerr(S̄, S), denoted as “S̄” in Fig. 5.3b. Furthermore, because the
number of perturbed links is fixed, the error of S̄ is the same for the considered perturbations and
it is only plotted once. From the figures, we observe that destroying links is the most harmful

1https://github.com/reysam93/graph_denoising

https://github.com/reysam93/graph_denoising

5.6. Numerical results 69

2 3 4 5 610−5

10−4

10−3

10−2

10−1

100

Filter order

n
er

r(
ĥ,

h)

FI
RFI
RFI-ℓ1
RFI-st

Figure 5.2: Comparison of the error when estimating ĥ via robust and non-robust algorithms in the presence
of perturbations as the order of the GF increases.

0.05 0.1 0.15 0.2 0.2510−3

10−2

10−1

(a) Proportion of perturbed links

n
er

r(
Ĥ

,H
)

FI-C FI-D
FI-C/D RFI-C
RFI-D RFI-C/D

0.05 0.1 0.15 0.2 0.25
10−4

10−3

10−2

10−1

100

(b) Proportion of perturbed links

n
er

r(
Ŝ,

S)

S̄ RFI-C
RFI-D RFI-C/D

Figure 5.3: Assessing the performance of the robust GF identification algorithm and the impact of pertur-
bations in the topology. (a) and (b) respectively show the error of estimating Ĥ and Ŝ using a robust or a
non-robust approach for several types of perturbations.

perturbation, especially when the focus is on Ŝ. This may be explained because destroying links is
prone to produce non-connected graphs. Nevertheless, the results show the resilience of the “RFI”
algorithm, which provides low-error estimates Ĥ and Ŝ even when more than 20% of the links are
perturbed.

Test case 3. Next, we compare the performance of our algorithms with other robust alternatives.
Fig. 5.4 reports, for each algorithm, nerr(Ĥ, H) as the ratio of perturbed links increases. The
baselines considered are the TLS-SEM algorithm from [16], and LLS-SCP from [17]. We note that
the TLS-SEM algorithm is tailored to graph signals following a SEM of the form

Y = AY + X = (I − A)−1X, (5.28)

where the observations at the i-th node are represented by the values of the neighbors of i and an
exogenous input. As a result, the TLS-SEM algorithm may not be well suited to deal with signals
generated according to the more general model in (2.2). Taking this into account, to offer a more
favorable comparison we consider two types of graph signals: (i) signals generated according to
(5.28), denoted as “SEM”; and (ii) signals generated according to (2.2), denoted as “H”. It is

70 Robust graph filter identification

0 5 · 10−2 0.1 0.15 0.2 0.25 0.310−5

10−4

10−3

10−2

10−1

100

Proportion of perturbed links

n
er

r(
Ĥ

,H
)

RFI, H RFI, SEM
TLS, H TLS, SEM
SCP, H SCP, SEM

Figure 5.4: Normalized error of Ĥ when estimated with the proposed algorithm and with other baselines
as the ratio of perturbed links increases. Different graph-signal models are considered.

20 40 60 80 100

100

101

102

103

104

105

(a) Number of nodes

tim
e

(s
)

Stand-5
Eff-5-10
Eff-5-25
Eff-5-50

20 40 60 80 1000

0.1

0.2

0.3

0.4

(b) Number of nodes

n
er

r(
Ĥ

,H
)

Stand-5
Eff-5-10
Eff-5-25
Eff-5-50

Figure 5.5: Comparing the performance of several robust GF identification algorithms. (a) and (b) respec-
tively show the running time and error of Ĥ using Algorithm 2 and Algorithm 3 as the number of nodes
increases. Different values for the maximum number of iterations of the inner loops are considered.

worth noting that the “SEM” can be considered as a particular case of the model “H” when the
GF HSEM = (I − A)−1 is employed.

Looking at the results in Fig. 5.4 we observe the following. When the “SEM” model is con-
sidered, TLS-SEM (denoted as “TLS”) obtains the best performance when the perturbation prob-
ability is small, and then, the performance of “TLS” and that of the “RFI” algorithm become
comparable. This illustrates that our algorithm is especially suitable to deal with a large number
of perturbed links. On the other hand, when the “H” model is considered, we observe that the
“RFI” algorithm consistently outperforms the baselines in the presence of perturbations. The good
performance of the “RFI” algorithm on both signal models highlights the flexibility of the proposed
formulation since it considers more lenient assumptions than the other alternatives.

Test case 4. Now, we compare the performance of the standard and the efficient implementation
of the robust identification algorithm, as described in Algorithms 2 and 3. The results are shown in
Figs. 5.5a and 5.5b, where the figures depict the running time measured in seconds and nerr(Ĥ, H)

5.6. Numerical results 71

1 2 3 4 510−2.5

10−2

10−1.5

10−1

Number of filters

∑
K k

=
1

n
er

r(
Ĥ

(k
) ,

H
(k

))
/K

RFI-ℓ1
RFI-ℓ1-J
RFI
RFI-J
RFI-st
RFI-st-J

Figure 5.6: Error performance when estimating K GFs using the separate and joint approach for different
values of K.

as N increases. The legend identifies first the algorithm employed, then the number of iterations
of the outer loop (tmax), and finally the iterations of the inner loops (with τmax1 = τmax2).
As expected, Fig. 5.5a shows that Algorithm 3 is remarkably faster than Algorithm 2 even with
medium-sized graphs, achieving a running time 103 times smaller when N = 100. On the other
hand, in Fig. 5.5b we observe that “Eff-5-50” has an error that is close to the standard implemen-
tation (“Stand-5”) even though it is considerably faster. Furthermore, the trade-off between speed
and estimation accuracy is also evident. “Eff-5-10” is the fastest implementation but the quality
of its estimated GF may not be enough for graphs with more than 40 nodes.

Test case 5. The last experiment with synthetic data studies the benefits of the joint GF esti-
mation. All the GFs are polynomials of the same S, and for each Hk we consider Mk = 15 noisy
observations with ηw = 0.01. Fig. 5.6 shows the results, with the y-axis being the normalized error
averaged across the K graphs, i.e., 1

K

∑K
k=1 nerr(Ĥk, Hk), and the x-axis representing K. We

compare the performance of estimating the GFs jointly (marked as “J” in the legend) or separately
for the three algorithms (“RFI-ℓ1”, “RFI”, and “RFI-st”) described in Test case 1. Note that “RFI-
J” corresponds to the formulation in (5.16). The first thing we observe from the results in Fig. 5.6
is that the error decreases as K increases when a joint algorithm is employed. This is aligned with
the discussion in Section 5.4 and illustrates the benefit of exploiting the common structure. In
addition, algorithms accounting for the stationary of Y outperform the non-stationary alternatives
even though we only have M = 15 signals to estimate the covariance Ĉy.

5.6.2 Real-world datasets

To close the numerical evaluation, we test our robust GF identification algorithms over two
real-world datasets.

Weather station network. This test case evaluates the ability of our algorithms to predict the
temperature measured by a network of stations using the data from previous days. The data
comes from the “Global Summary of the Day” dataset of the National Centers for Environmental

72 Robust graph filter identification

Models 1-Step 3-Step
TTS=0.25 TTS = 0.5 TTS=0.25 TTS = 0.5

LS 6.9 · 10−3 3.1 · 10−3 2.1 · 10−2 9.1 · 10−3

LS-GF 3.3 · 10−3 3.3 · 10−3 8.4 · 10−3 8.5 · 10−3

TLS-SEM 4.0 · 101 3.7 · 10−2 6.8 · 10−1 5.5 · 10−2

RFI 3.4 · 10−3 3.1 · 10−3 8.5 · 10−3 7.5 · 10−3

AR(3)-RFI 3.2 · 10−3 2.8 · 10−3 7.8 · 10−3 6.9 · 10−3

Table 5.1: Performance of the algorithms in predicting the temperature for 2 prediction horizons (1 and 3)
and 2 values (25% and 50%) of train-test split (TTS). The metrics shown are the average of the normalized
error at each timestep 1

M

∑M
κ=1 nerr(ŷκ, yκ) for all samples.

Information2 and we used daily temperature measurements from N = 17 stations in California
during 2017 & 2018. Specifically, with yκ ∈ RN collecting the measurements of the 17 stations
at day κ, we consider an AR model without exogenous inputs, so that yκ ≈ ∑K

k=1 Hkyκ−k. The
data samples were divided into two subsets, the first one (training) was used to obtain the GFs
Hk and the second one (evaluation) was used to assess the performance and the generalization
power of the GFs obtained. Also, the data is normalized so that the signal at each station for all
time samples has unitary norm.

The underlying G was constructed as the unweighted 5-nearest neighbors graph, using the
geographical distance between stations. Since temperature relations across stations are likely to
be due to a range of factors (including, e.g., altitude), the considered adjacency (based only on
geographical positions) may be imperfect, rendering our robust algorithms better suited for this
task.

The estimation performance of the different algorithms is shown in Table 5.1. Since in this
case the ground-truth GF is not known, we use the signal denoising error nerr(yκ, ŷκ) to assess
the quality of the schemes. In this specific experiment, the error is measured over all samples
(both training and test subsets), to see a clear downward trend when increasing the number of
training samples, or equivalently, the train-test split (TTS) value. The algorithms evaluated are
“LS”, “LS-GF” (which postulates a GF with coefficients ĥ = argminh ∥Y−∑r hrSrX∥2

F), “TLS”,
“RFI” (which assumes an AR(1) process) and “AR(3)-RFI”. Two values of TTS (0.25 and 0.50)
and two prediction horizons (1 and 3) are considered. The main observation is that “AR(3)-RFI”
yields the best performance in all settings. Additionally, the results for TTS=0.25 demonstrate
the benefits of considering the underlying graph in the low-sample regime, since even “LS-GF”,
which relies on the imperfect S̄, outperforms “LS”. On the other hand, “LS-GF” does not seem to
improve its prediction as TTS increases, while our two algorithms yield a lower prediction error.

Air quality station network. We consider an experimental setup (AR model, graph creation
method...) similar to that for the weather station data but, in this case, we use 2018 & 2019
data from the United States Environmental Protection Agency3 to predict the ozone levels in a
network of 17 outdoor stations in California. The stations chosen were those with at least 330
measurements each year for a selection of pollutants, and missing data was filled via first-order
interpolation.

The goal here is to analyze how the prediction horizon affects the prediction error. The value
of TTS chosen was 0.5, i.e. evaluation data represented 50% of the samples. Fig. 5.7 shows

2https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
3https://www.epa.gov/outdoor-air-quality-data

https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
https://www.epa.gov/outdoor-air-quality-data

5.7. Concluding remarks 73

1 2 3 4 510−2

10−1.5

10−1

Time horizon used for prediction

∑
M κ

=
1

n
er

r(
ŷ κ

,y
κ
)/

M

LS-Eval (LB) LS
Copy-Prev-Day TLS-SEM
LS-GF RFI
AR(3)-RFI

Figure 5.7: Performance of the algorithms predicting ozone levels in the AirData station network, as the
time horizon of the prediction increases.

the performance of the algorithms when predicting ozone levels. As a baseline, “LS-Eval (LB)”
shows the error measured on the evaluation data when obtaining the GF also using evaluation
data, therefore representing a lower bound for the LS error using AR models of order 1. Also,
“Copy-Prev-Day” represents the error obtained by the “identity GF”, which copies the previous
day’s measurement. As in the previous example, the best performing algorithm is “AR(3)-RFI”,
whose performance is close to the baseline, followed by “RFI”.

5.7 Concluding remarks

This chapter put forth a framework dealing with estimation problems in GSP where the in-
formation about (the links of) the supporting graph is uncertain. Specifically, we addressed the
problem of estimating a GF (i.e., a polynomial of the GSO) from input and output graph signals
under the key assumption that only a perturbed version of the true GSO was available. In contrast
to the majority of existing approaches that operate on the spectral domain, we recast the true
graph as an additional estimation variable and formulated an optimization problem that jointly
estimated the GF and the true (unknown) GSO. We focused first on the case where only one GF
needed to be estimated and, then, shifted to (multi-feature and AR graph signal) setups where
multiple GFs have to be jointly identified. The formulated optimizations operated completely in
the vertex domain and bypassed the problem of computing high-order polynomials, avoiding the
challenges of dealing with the influence of perturbations in the graph spectrum as well as the
numerical instability and error propagation associated with high-order matrix polynomials. While
non-convex, upon blending techniques from alternating optimization and MM, the proposed algo-
rithm was shown to be capable to find a stationary point in polynomial time. This algorithm was
later modified so that the scaling of the computational complexity with respect to the number of
nodes in the graph is reduced. Future work includes delving into the robust estimation of ARMA
time-varying graph signals, consideration of additional graph perturbation models, and application
of our robust estimation framework to other GSP problems, to name a few.

74 Robust graph filter identification

5.8 Appendix: Proof of Theorem 5.1

The proof relies on the results presented in [114, Th. 1b], so it suffices to show that our
formulation and algorithm fulfill the required conditions in [114]. To that end, recall that f(z) is
the objective function in (5.9), and let z1 := vec(H) and z2 := vec(S) denote the B = 2 blocks of
variables considered in our algorithm. Moreover, at each step, the function f(z) is approximated
by u1(z1) and u2(z2), corresponding to the objective functions in (5.10) and (5.12). Then, to
ensure the convergence of our iterative algorithm the following conditions are required.

(C1) Each function ub(zb) must be a global upper bound of f(z) and the first-order behavior of
ub(zb) and f(z) must be the same.

(C2) f(z) must be regular (cf. [114]) at every point in Z∗.

(C3) The level set Z(0) = {z | f(z) ≤ f(z(0))} is compact.

(C4) At least one of the problems in (5.10) and (5.12) must have a unique solution.

Next, we address each of the four conditions separately, proving that our approach satisfies all of
them.

Condition (C1) requires the surrogate functions ub(zb) to be global upper bounds of f(z). For
the first block (b = 1), it is easy to see that u1(z1) = f(z) when the block z2 remains constant,
so it satisfies the requirements. Regarding u2(z2), we approximate f(z) with the first-order Taylor
series of the logarithmic penalty. Because the log is a concave differentiable function, it follows
that its Taylor series of order one constitutes a global upper bound. Moreover, because u2(z2) is a
first-order Taylor series approximation of f(z), it also follows that the first-order behavior of f(z)
and u2(z2) is the same. Therefore, u2 also satisfies the requirement, and hence, (C1) is fulfilled.

To prove (C2), according to [114], a function f(z) is regular if its non-smooth components are
separable across the different blocks of variables. To show this, we decompose f as f = gA + gB,
with functions gA and gB being defined as

gA(H, S) = ∥Y − HX∥2
F + γ∥HS − SH∥2

F ,

gB(S) = λ
N∑

i,j=1
log(|Sij −S̄ij | + δ2) + β

N∑

i,j=1
log(|Sij | + δ1).

Since gA is a smooth function and the non-smooth function gB only depends on the variables on
the second block, z2 = vec(S), it follows that f(z) is a regular function for all feasible points.

Next, we show that the level set Z(0) = {z | f(z) ≤ f(z(0))} is compact as required by (C3).
We start by noting that the entries of S are continuous subsets of R, (e.g., Sij ∈ R+ when S = A),
and that H ∈ RN×N , so f(z) is continuous. Moreover, f(z) ≤ f(z(0)) implies that the functions
∥Y−HX∥2

F and log(|Sij |+δ1) are all bounded, rendering the domain of f(z) bounded. It follows
then that the level set Z(0) is compact.

Finally, we need to prove that either (5.10) or (5.12) has a unique solution, so that (C4) is
fulfilled. Proposition 5.1 (see below) states that, under the two conditions required by Theorem 5.1
(i.e., S does not have repeated eigenvalues, and the graph signals X excite every graph frequency),
the solution to (5.10) is unique. This confirms that (C4) is satisfied, concluding the proof.

5.8. Appendix: Proof of Theorem 5.1 75

Proposition 5.1. Let H ∈ RN×N , S = Vdiag(λ)V−1 ∈ RN×N , and X ∈ RN×M be the GF, the
GSO, and the input signals in (5.10). Then, (5.10) has a unique solution w.r.t. H if the following
conditions are satisfied:

1. λi ̸= λi′ , for all i ̸= i′ and (i, i′) ∈ {1, ..., N}2.

2. Every row of X̃ = V−1X has at least one non-zero entry.

Proof. To simplify exposition, we focus first on the (most restrictive) setup of having only M = 1
input-output pair. Defining ĥ := vec(H), we can reformulate (5.10) as

minĥ∈RN2 γ∥(I ⊗ S − S⊤ ⊗ I)ĥ∥2
2 + ∥y − (x⊤ ⊗ I)ĥ∥2

2, (5.29)

where lowercase symbols y and x are used to emphasize that the output and input signals are a
single N -dimensional vector. Upon defining D := I ⊗ S − S⊤ ⊗ I, and E := x⊤ ⊗ I, solving (5.29)
is equivalent to solving

minĥ∈RN2

∥∥∥
[
0N2

y

]
− Fĥ

∥∥∥
2

2
with F :=

[
γD
E

]
(5.30)

To prove that (5.30) has a unique solution, it suffices to show that F is full column rank, i.e.
∄ n ∈ RN2 such that Fn = 0N+N2 . To show this, we first identify N (D), the null space of D,
and then show that En ̸= 0N for all n ∈ N (D) \ {0N2}.

We start with the characterization of N (D). Given the Kronecker structure of D, each of
its N2 eigenvalues has the form λk − λk′ , with (V−1)⊤ ⊗ V being the associated eigenvectors.
Leveraging that λi ̸= λi′ for i ̸= i′, it follows that only when i = i′ the eigenvalue of D is zero.
As a result, rank(D) = N2 − N and dim(N (D)) = N . Equally important, the N eigenvectors
associated with the N zero eigenvalues are given by (V−1)⊤ ⊙ V, which, as a result, constitutes a
basis spanning N (D). More formally, we concluded that N (D) = {((V−1)⊤ ⊙ V)θ |∀ θ ∈ RN }.
Note that ⊙ denotes the Khatri-Rao product.

Thus, to show that F in (5.30) is full column rank we just need to prove that the only
element n ∈ N (D) that renders En = 0N is the all-zero vector 0N2 . To do so, we leverage the
characterization of N (D) and write En as

En = (x⊤ ⊗ I)((V−1)⊤ ⊙ V)θ = (x⊤(V−1)⊤ ⊙ V)θ
= Vdiag(θ)(x⊤(V−1)⊤)⊤ = Vdiag(θ)V−1x
= Vdiag(θ)x̃ = V(θ ◦ x̃), (5.31)

where we used the property (a ⊗ b)(c ⊙ d) = ac ⊙ bd, and ◦ denotes the entry-wise product.
Since V is invertible, the first and last terms in (5.31) demonstrate that En = 0N requires
θ ◦ x̃ = 0N . However, condition 2) in Proposition 5.1 states that x̃i ̸= 0 for all i; hence,
θ ◦ x̃ = 0N requires θ = 0N . This implies that the only element in N (D) that renders En = 0N

is n = (V−1)⊤ ⊙ V)0N = 0N2 , concluding the proof.

The proof can be generalized for M > 1. In that case, the matrix E has size MN × N2

and the counterpart to (5.31) establishes that having En = 0 requires vec(diag(θ)X̃) = 0MN .
Since Proposition 5.1 assumes that each row of X̃ has at least one nonzero entry, it follows that
θ = 0MN , concluding the proof.

Chapter 6

Robust network topology inference

The last perturbation considered in our robust framework is the presence of hidden nodes,
a perturbation particularly relevant (and common) in the context of network topology inference.
Even though most of the existing works approach the problem of identifying the network topology
based on the assumption that the whole vertex set is observed, oftentimes this scenario is not
realistic. In fact, in many relevant settings, the observed data may correspond only to a subset
of the nodes from the original graph while the rest of them remains unobserved or hidden. The
existence of these hidden nodes entails a challenge for most of the existing methods, which require
important adjustments to develop a robust alternative. Although noticeable less than its “complete
network” counterpart, topology inference of networks with hidden variables has attracted some
attention, with examples including Gaussian graphical model selection [18], inference of linear
Bayesian networks [20], nonlinear regression [71], or brain connectivity [72], to name a few.

Motivated by this, the primary goal of this chapter is to develop a joint network topology
algorithm that is robust to the presence of hidden nodes and harnesses the similarity between
the graphs being estimated to enhance the quality of the estimation. In this chapter, the key
assumption that enables learning the graph topology from a set of nodes is that the observed signals
are observations from a random network process stationary on the unknown graphs. Therefore,
we first introduce how the presence of hidden nodes influences the graph stationarity assumption,
and then, we analyze how to leverage the graph similarity between nodes that are not observed.
This work has been published in [29,30].

After a brief introduction presented in Section 6.1, the remaining chapter is organized as
follows. First, Section 6.2 provides a general overview of the structure resulting from the presence
of hidden nodes. Then, Section 6.3 introduces the structure and problem formulation when a
single graph is being learned, and Section 6.4 addresses the joint network topology inference form
stationary observations. Finally, Section 6.5 evaluates the performance of the proposed algorithms,
and Section 6.6 provides some concluding remarks.

78 Robust network topology inference

6.1 Introduction

When reviewing the literature addressing the problem of network topology inference, it holds
that the standard approach entails learning the topology of a single graph when observations
(measurements) from all the nodes in the network are available. Nonetheless, in many relevant
settings we only have access to observations from a subset of nodes, with the remaining nodes
being unobserved or hidden. The existence of these hidden nodes constitutes a relevant and
challenging problem since closely related values from two observed nodes may be explained not
only by an edge between the two nodes but by a third latent node connected to both of them.
Furthermore, many contemporary setups involve multiple related networks, each of them with a
subset of available signals. This is the case, for example, in multi-hop communication networks in
dynamic environments, in social networks where the same set of users may present different types
of interactions, or in brain analytics where observations from different patients are available and
the goal is to estimate their brain functional networks. When there exist several closely related
networks, we can boost the performance of network topology inference by approaching the problem
in a joint fashion that allows us to capture the relationship between the different graphs [123–126].

Based on the previous discussion, in this chapter we approach the problem of joint network
topology inference with hidden nodes from stationary observations. Although the assumption of
graph stationarity has been successfully adopted in the context of the network-topology inference
problem, a formulation robust to the presence of hidden variables is still missing. To fill this
gap, first we detail how hidden nodes impact the classical definition of graph stationarity and
introduce the formulation of the single-network-recovery problem as a constrained optimization
that accounts explicitly for the modified definitions. Then, we propose a topology inference method
that simultaneously performs joint estimation of multiple graphs and accounts for the presence of
hidden variables. Then, to fully benefit from the joint inference formulation, a critical aspect is
to capture the similarity among graphs not only accounting for the observed nodes but also for
the hidden ones. This is achieved by carefully exploiting the structure inherent to the presence
of latent variables with a regularization inspired by group Lasso [73]. The proposed method is
evaluated using synthetic and real-world graphs and compared with other related approaches.

Contributions. To summarize, the main contributions of this chapter are the following.

(i) We develop a joint network topology inference optimization-based framework that accounts
for the presence of hidden variables and exploit the graph similarity on the whole graph, not
only on the observed nodes.

(ii) We quantify the performance of the proposed algorithms using numerical experiments.

To introduce notation and facilitate exposition, we start by reviewing topology inference meth-
ods in the presence of hidden variables for partial correlation networks as well as their generalization
for graph stationary signals. This review (including the generalization to stationary signals) was
published in [116]. While being one of the authors of that paper, we emphasize that the contents
of [116] are not included as a contribution of this Ph.D. thesis and, that, the contributions of this
chapter are limited to those listed above as (i) and (ii).

6.2. Topology inference model in the presence of hidden variables 79

6.2 Topology inference model in the presence of hidden variables

The first step towards formally stating the network topology inference from a robust perspective
is to properly describe the structure resulting from the presence of hidden variables. To that end,
let us assume that the unknown graph G is an undirected graph with N nodes, consider that there
is a random process associated with G, and denote by X := [x1, ..., xM] ∈ RN×M a collection of
M independent realizations of such a process. In this chapter, to model the presence of hidden
nodes, we assume that we only have access to the subset of nodes O ⊆ V with cardinality O ≤ N .
Meanwhile, the remaining H = N − O nodes collected in the subset H = V \ O stay unobserved,
and thus, only the entries of X associated with the subset O are observed. For the sake of simplicity
and without loss of generality, we assume that the observed nodes correspond to the first O nodes
of the graph. Hence, defining XO ∈ RO×M as the submatrix formed by the first O rows of X, it
is clear that XO collects the values of the M available signals at the O observed nodes. Lastly,
if the N × N matrices S and C represent, respectively, the full GSO and covariance matrix of
the random graph process, these matrices, as well as the signals X, present the following block
structure

X =
[
XO

XH

]
, S=

[
SO SOH

SHO SH

]
, C=

[
CO COH

CHO CH

]
. (6.1)

Here, the submatrices SO and CO, both of dimension O × O, are associated with the observed
variables. The observed GSO SO describes the connections between the observed nodes while the
remaining blocks collect connections involving hidden nodes. Similarly, the observed covariance
CO corresponds to the covariance of the random variables defined at the observed nodes. Since
the graph is undirected, both S and C are symmetric, and thus, SOH = S⊤

HO and COH = C⊤
HO.

Clearly, the sample covariance matrix Ĉ = 1
M XX⊤ present the same block structure as C.

With the previous definitions in place, the problem of network topology inference in the presence
of hidden nodes aims at estimating the submatrix SO from the observed graph signals XO while
accounting for the presence of hidden nodes. This is depicted in Fig. 6.1, where the detrimental
effects of ignoring the hidden nodes is also illustrated. However, despite having observations from
O nodes, there are still H = N − O nodes that remain unseen and influence the observed signals
XO, rendering the inference problem challenging and severely ill-conditioned. As a result, to ensure
the tractability of the problem, we assume that the number of hidden nodes is substantially smaller
than the number of observed nodes (O ⪅ N) and, more importantly, we consider that there exists
a known property relating the full graph signals X to the full GSO S. The particular relationship is
further developed in subsequent sections, where we assume that X is stationary (Section 6.3 and
Section 6.4) on S, giving rise to different network topology inference problem that are formally
introduced later in the chapter. Then, the key issue to address is how the relation between X
and S, which involves the full signals and GSO, translates to the submatrices XO, SO, and CO in
(6.1). Nonetheless, before discussing our specific solution, a relevant question that is addressed
next is how classical topology-inference approaches handle the problem of latent nodal variables.

6.2.1 Correlation and partial correlation networks with hidden variables

A key question when addressing the network topology inference problem in the (more general)
scenario of hidden nodes is how to modify the existing formulations that deal with the full observable
case (i.e. O = V). The answer to that question is very different for the so-called direct methods
(which consider that a link between i and j exists based only on correlation/similarity metrics
between the signals observed at i and j) and indirect methods (which consider that the link (i, j)

80 Robust network topology inference

Signals structure

Signals of unknown graph

Graph learning

ignoring hidden nodes

Graph learning

considering hidden nodes

𝐒

𝐒𝑂

Figure 6.1: Depiction of the importance of modeling the influence of hidden variables. The left box contains
the true (unknown) graph with the nodes in H represented in yellow, and the graph signals collected in
X, which is a block matrix as in (6.1). Then, the diagram on the top infers the graph assuming that
observations from all nodes are available, i.e., assuming X = XO, and hence it wrongly estimates some
edges (represented in red). On the other hand, the diagram below takes into account the whole matrix
X even though only XO is observed, and thus, it takes into account the presence of hidden variables and
provides an accurate estimation.

exists based on the global relations/dependencies among all nodes and, hence, depends on the
full observation matrices). Correlation networks, which basically assume that Ŝ corresponds to (a
thresholded version) of C, fall into the first category. The generalization to setups with hidden
nodes is indeed trivial and given by ŜO = CO, where only the direct influence between each pair of
observed nodes is considered. A relevant example within the second category are partial correlation
methods (including, those for GMRF) which, in their simplest form, assume that S = C−1. Under
this setting, the key to include hidden variables resides in noticing that, using the expression for
recovering a block of the inverse of a matrix, we can write C−1

O = SO −Q, with Q = SOHS−1
H SOH

being a low-rank matrix since H ≪ O. Leveraging this, the authors in [18] modified the celebrated
graphical Lasso (GL) algorithm to deal with hidden variables via an augmented maximum-likelihood
estimator. The resulting algorithm is known as latent variable graphical Lasso (LVGL) and is given
by

max
SO,Q

log det(SO − Q) − tr(ĈO(SO − Q)) − λ∥SO∥1 − γ∥Q∥∗, (6.2)

s. t. SO − Q ⪰ 0, Q ⪰ 0,

where ĈO represents the sample covariance estimate that can be obtained from the samples in
XO, the nuclear norm ∥ · ∥∗ promotes low-rank solutions, and λ and γ are (tunable) regularization
constants. Clearly, if all the nodes are observed, we have that ĈO = Ĉ and Q = 0 and, if those
are replaced in (6.2), the classical GL formulation is recovered.

Rather than assuming that the relation between X and S is given by either correlations or
partial-correlations, this chapter looks at setups where the operating assumption is that the ob-
served signals are stationary on the graph. Section 6.3 first introduces this setup, and then,
Section 6.4 present a joint network topology inference approach to leverage the similarity of sev-
eral related graphs. Section 6.5 evaluates numerically the performance of the developed algorithms
and compares it with that of classical correlation and LVGL schemes.

6.3. Topology inference from stationary signals 81

6.3 Topology inference from stationary signals

Now, we describe a setup in which the signals X are assumed to be independent samples of a
random network process stationary in S. The resulting inference problem is formally stated next.

Problem 6.1. Given the matrix XO collecting the signal values at the observed nodes of the graph
G, find the sparsest matrix SO encoding the structure of G under the assumptions that:
(AS1) The number of hidden nodes is substantially smaller than the number of observed nodes,
i.e., H ≪ O.
(AS2) The graph signals in X ∈ RN×M are independent realizations of a process that is stationary
in S.

Intuitively, (AS1) promotes the feasibility of the inference problem by ensuring that a con-
siderable amount of the nodes are observed. More interestingly, assumption (AS2) implies that
the GSO and the covariance of the graph process share the eigenvectors, which is tantamount to
assuming that the mapping between S and C can be accurately represented by a matrix polyno-
mial. However, because the stationarity assumption involves the whole matrices S and C but only
the observed submatrix ĈO is available, we need to generalize this mapping to include the effect
of the hidden variables over the observed ones. Key to that end is to note that the assumption
of stationarity (AS1) implies that S and C are simultaneously diagonalizable. The formulation
in [57], which is valid only if O = V, approached this by extracting the eigenvectors of the (sam-
ple) covariance and, then, formulated an optimization problem guaranteeing that the extracted
eigenvectors and those of the GSO were the same. Since obtaining the submatrix of the eigenvec-
tors corresponding to the observed nodes is challenging, here we impose the graph stationarity by
requiring the equality CS = SC to hold [127]. Indeed, suppose that we focus on the upper left
O × O block in both sides of the equality. Then, leveraging the expressions introduced in (6.1),
we have that

COSO + COHSHO = SOCO + SOHCHO. (6.3)

Equation (6.3) shows that, when hidden variables are present, we cannot simply ask SO and
CO to commute, but we need also to account for the terms COHSHO and SOHCHO. Since
(AS1) states that H ≪ O, a reasonable approach is to lift the problem by defining the matrix
P := COHSHO ∈ RO×O and, then, exploit (AS1) to impose that rank(P) ≤ H ≪ O. Moreover,
since both S and C are symmetric matrices, it follows that (COHSHO)⊤ = SOHCHO and, hence,
P⊤ = SOHCHO. Then, by making the general assumption that graphs are typically sparse, we can
formulate Problem 6.1 as an optimization framework in which we attempt to find a sparse matrix
SO and a low-rank matrix P that satisfy (AS1) and (AS2) by solving

min
SO,P

∥SO∥0 (6.4)

s. t. COSO + P = SOCO + P⊤,

rank(P) ≤ H,

SO ∈ S,

where the equality constraint accounts for (AS2) and the second constraint for (AS1), as explained
before. Notice that the first constraint assumes perfect knowledge of the observed covariance
matrix CO, but this might not be attainable in practice, motivating the need for robust versions
of this formulation as discussed in Section 6.3.2. Finally, recall that the set S specify additional
properties that SO must satisfy. In the remainder of this section we will focus on the case where
the GSO is an adjacency matrix, so we consider the set S = SA.

82 Robust network topology inference

Even though (6.10) indeed solves Problem 6.1, it is a non-convex optimization problem, and
hence, challenging to solve, motivating the development of convex approximations.

6.3.1 Topology inference with stationary observations as a convex optimization

It is important to notice that the presence of the rank constraint and the ℓ0 norm in (6.4)
render the problem non-convex and computationally hard to solve, motivating the need for convex
relaxations. To achieve this, instead of enforcing a rank constraint, we will augment the objective
with the nuclear norm as its convex surrogate. Similarly, the ℓ0 norm can be replaced with the ℓ1
norm, its closest convex approximation. After applying these relaxations to (6.4) we obtain the
following convex optimization problem

min
SO,P

∥SO∥1 + γ∥P∥∗ (6.5)

s. t. COSO + P = SOCO + P⊤, SO ∈ SA,

where γ is a regularization constant encoding the relative importance of the low-rank vs the sparsity
promoting term.

Even though replacing the original ℓ0 norm with the convex ℓ1 norm constitutes a common
approach, it is well-known that non-convex surrogates can lead to sparser solutions. Indeed, a
more sophisticated alternative in the context of sparse recovery is to define δ as a small positive
number and replace the ℓ0 norm with a (non-convex) logarithmic penalty [111] as

∥SO∥0 ≈
O∑

i,j=0
log(|Sij | + ϵ0) (6.6)

with ϵ0 being a small positive constant. However, because the logarithm is a concave function it
renders the optimization non-convex. An efficient way to handle this issue consists on relying on a
MM approach [112], which considers an iterative linear approximation to the concave objective and
leads to an iterative re-weighted ℓ1 minimization. For the problem at hand, and with t = 1, ..., T
being the iteration index, the resulting optimization is

S(t+1)
O := argmin

SO,P

O∑

i,j=1
W

(t)
ij [SO]ij + γ∥P∥∗ (6.7)

s. t. COSO + P = SOCO + P⊤,

SO ∈ SA,

with W
(t)
ij being defined as W

(t)
ij = (S(t−1)

ij +ϵ0)−1. Since the iterative algorithm penalizes (assigns
a larger weight to) entries of SO that are close to zero, the obtained solution is typically sparser at
the expense of a higher computational cost. Finally, note that the absolute values can be removed
whenever the constraint [SO]ij ≥ 0 is enforced.

6.3.2 Robust network inference

In most scenarios the covariance matrix CO is not known perfectly but, instead, only an
estimate ĈO is available. This is indeed the case for the setting described in Problem 6.1, where
we only have access to a finite number M of graph signals and we estimate the covariance as

6.4. Joint inference from stationary signals in the presence of hidden variables 83

ĈO = M−1(XOXO⊤). While different choices to accommodate the discrepancies between the
true covariance and its sampled version exist, here we simply chose to relax the commutative
constraint in (6.5), rewriting it using a Frobenius norm

min
SO,P

∥SO∥1 + γ∥P∥∗ (6.8)

s. t. ∥ĈOSO + P − SOĈO − P⊤∥F ≤ ϵ, SO ∈ SA.

The value of the non-negative constant ϵ should be selected based on prior knowledge on the noise
level present in the observations and, more importantly, the number of samples M used to estimate
the covariance. It must be large enough to ensure the problem is feasible but not too large so
the constraint is not active. In the limit, when an infinite number of realizations is available, then
C = Ĉ so we can set ϵ = 0 and (6.8) boils down to (6.5). The same update on the constraint
can be applied to (6.7) to account for imperfect knowledge of the covariance.

6.4 Joint inference from stationary signals in the presence of hidden variables

The last network topology inference task that we will be analyzing from a robust perspective
deals with the estimation of multiple related graphs. The driving idea is to exploit the existing
relation between the different graphs in a joint optimization framework to enhance the quality of
the estimated networks.

To formally introduce the problem of joint graph topology inference in the presence of hidden
variables, let us assume that K undirected graphs {G(k)}K

k=1 are defined over the same set of
nodes V, and denote as X(k) = [x(k)

1 , ..., x(k)
Mk

] ∈ RN×Mk the collection of (zero-mean) Mk signals
defined on top of each unknown graph G(k). Furthermore, in analogy to previous sections, consider
that for each graph only O nodes contained in the subset O are observed while the remaining H
node in the set H remain hidden. Without loss of generality, let the signals associated with the
observed nodes be collected in the first O rows of X(k) and denote them as X(k)

O ∈ RO×Mk .
Then, the distinction between observed and hidden nodes renders each matrix S(k) and Ĉ(k) with
the characteristic block structure introduced in (6.1). Also note that, since the K graphs are
undirected, the matrices S(k) and Ĉ(k) are symmetric.

With these considerations in place, the problem of joint topology inference in the presence of
hidden variables is described next.

Problem 6.2. Given the O × Mk matrices {X(k)
O }K

k=1 collecting the signal values at the observed
nodes for each graph G(k), find the sparsest matrices {S(k)

O }K
k=1 encoding the structure of the K

graphs under the assumptions that:
(AS1) The number of hidden nodes is much smaller than the number of observed nodes, i.e.,
H ≪ O.
(AS2) The signals X(k) are realizations of a random process that is stationary in S(k).
(AS3) The distance between the K graphs is small according to a particular metric d(S(k), S(k′)).

Accounting for the hidden variables implies modeling their influence over the observed nodes
without any additional observation, thus rendering the inference problem a challenge. To ensure
the tractability of the problem, (AS1) guarantees that most of the nodes are observed while
(AS2) establishes a relation between the graph signals and the whole unknown graph via graph
stationarity. Then, (AS3) guarantees that the K graphs are similar so we can benefit from inferring

84 Robust network topology inference

them in a joint setting. The key question now is how to exploit the graph similarity from edges
involving observed nodes but also from edges involving hidden nodes.

In the following section, we exploit the aforementioned assumptions and the block structure
resulting from the presence of hidden variables to approach Problem 6.2 by solving a convex
optimization problem.

6.4.1 Modeling hidden variables in the joint inference problem

The first step towards formulating an optimization problem that solves Problem 6.2 is to
account for the presence of the hidden nodes in the stationary assumption (AS2). This can be
achieved by following the same reasoning as in Section 6.3. Then, for each graph k, we define the
associated O × O matrix P(k) := C(k)

OH(S(k)
OH)⊤, which combined with the commutativity of C(k)

and S(k) that stems from the stationarity assumption results in

C(k)
O S(k)

O + P(k) = S(k)
O C(k)

O + (P(k))⊤. (6.9)

Also note that the matrices P(k) are the product of two matrices of sizes O × H and H × O so
due to (AS1) it follows that the rank of P(k) is upper bounded by H.

With the previous considerations in place, we approach the sparse joint topology inference
problem in the presence of hidden nodes by means of the following non-convex optimization problem

min
{S(k)

O ,P(k)}K
k=1

∑

k

αk∥S(k)
O ∥0 +

∑

k<k′

βk,k′dS(S(k)
O , S(k′)

O) (6.10)

+
∑

k<k′

ηk,k′dP (P(k), P(k′))

s. t. rank(P(k)) ≤ H,

∥Ĉ(k)
O S(k)

O +P(k)−S(k)
O Ĉ(k)

O −(P(k))T ∥2
F ≤ ϵ,

S(k)
O ∈ S.

The first and second constraints capture assumptions (AS1) and (AS2), with ϵ being a small
positive number capturing the fidelity of the sample covariance. The set S encodes the properties
of the desired GSOs. In this section we will focus on the case where the GSO is given by the
adjacency matrix of the underlying undirected graph with non-negative weights and no self-loops.
Thus, from now onwards we set the feasibility set S = SA, with SA as defined in (2.19). Other
GSOs such as the normalized Laplacian can be accommodated via minor adaptations to S; see [57].

Similar to standard joint inference approaches [125], the objective function of (6.10) captures
the similarity of the K graphs with the function dS(·, ·). Nevertheless, when accounting for the
presence of hidden variables, assumption (AS3) is also reflected in the unobserved blocks of the
GSOs. This important observation, captured by the function dP (·, ·), allows us to incorporate
additional structure reducing the degrees of freedom and rendering the problem more manageable.
More specifically, note that the matrix P(k) is given by the product of C(k)

OH and (S(k)
OH)⊤ with

the latter being a submatrix of a sparse GSO, so it can be seen that the matrices P(k) present a
column-sparse structure. Furthermore, since the K graphs are similar, the submatrices S(k)

OH are
also similar, which implies that the matrices P(k) present a similar column-sparsity pattern. In
other words, the columns with non-zero entries are likely to be placed in the same positions for
the different matrices P(k). By designing a distance function dP (·, ·) that exploits this additional

6.4. Joint inference from stationary signals in the presence of hidden variables 85

structure we improve the estimation of the matrices P(k), resulting in a better estimation of the
matrices S(k)

O .

The non-convexity of (6.10), which arises from the presence of the rank constraint and the ℓ0
norm, renders the optimization problem computationally hard to solve, leading us to implement
some convex relaxations that are detailed next.

6.4.2 Convex relaxations for the joint topology inference

The rank constraints are commonly avoided by augmenting the objective function with a nuclear
norm penalty, which promotes low-rank solutions by seeking matrices with sparse singular values.
However, this penalty does not preserve the characteristic column sparsity of the matrices P(k). To
circumvent this issue, in contrast to [116], we employ the group Lasso regularization [73] and rely
on the fact that, in this particular setting, we can promote low rankness by reducing the number
of non-zero columns while still achieving a reliable estimate. Then, we replace the ℓ0 norm by
a reweighted ℓ1 minimization [111], an iterative algorithm rooted on a logarithmic penalty that:
i) converges to a stationary point [114]; and ii) usually outperforms the widely used ℓ1 norm.

By leveraging the aforementioned relaxations we address the joint topology inference problem
in the presence of hidden variables by solving an iterative method. Under this approach, for each
iteration, we solve the following convex problem

min
{S(k)

O ,P(k)}K
k=1

∑

k

αkvec(W(k))⊤vec(S(k)
O) (6.11)

+
∑

k<k′

βk,k′∥S(k)
O − S(k′)

O ∥1

+
∑

k

γk∥P(k)∥2,1 +
∑

k<k′

ηk,k′

∥∥∥∥∥

[
P(k)

P(k′)

]∥∥∥∥∥
2,1

+
∑

k

µk∥Ĉ(k)
O S(k)

O +P(k)−S(k)
O Ĉ(k)

O −(P(k))⊤∥2
F

s. t. S(k)
O ∈ S.

To compute the weight matrices W(k), let t = 1...T denote the iteration index (omitted in the
expression above to alleviate the notation), and compute the k-th weight matrix for the t-th
iteration as W

(k,t)
ij = (S(k,t−1)

Oij
+ δ)−1 with S

(k,t−1)
Oij

being the solution obtained during the (t − 1)-
th iteration and δ a small positive constant. Hence, for each iteration t we first compute the weight
matrices W(k,t) and, then, employ those to estimate the matrices S(k,t)

O and P(k,t). Coming back
to the formulation in (6.11), note that the distance dS(·, ·) is set to the ℓ1 norm to promote similar
edges on the K graphs. The norm ∥ · ∥2,1 represents the group Lasso penalty by first computing
the ℓ2 norm of the columns of the input matrix and then the ℓ1 norm of the resulting vector. To
capture the similar column-sparsity pattern of the matrices P(k) resulting from the similarity of the
K graphs, we design the function dP (·, ·) relying on the group Lasso penalty. More specifically, we
concatenate each pair of matrices P(k) and P(k′) to create a tall matrix and then promote column
sparsity on the tall matrix with the ℓ2,1 norm. Note that a column of all zeros in the tall matrix
implies that the same column in P(k) and P(k′) will only contain zeros, thus promoting the desired
structure. Finally, it is worth noting that we moved the commutativity constraint to the objective
function. Due to the iterative nature of the proposed method, the estimation of the observed GSO
during the first iteration might be far from the true GSO, and hence, a more restrictive constraint

86 Robust network topology inference

as the one employed in (6.10) might be misleading. Augmenting the objective function with the
commutativity penalty is more amenable to an iterative approach.

6.5 Numerical experiments

In this section we asses numerically the performance of the proposed algorithms, comparing
them with different baselines, including the LVGL counterpart presented in (6.2). To compare
the different scenarios raised in this chapter, first we consider the setting where a single graph is
learned from stationary observations (Section 6.3), and then, we evaluate the performance of the
proposed joint network topology algorithm (Section 6.4).

6.5.1 Numerical experiments based on joint inference

Lastly, we evaluate the performance of the joint network topology inference algorithms devel-
oped in Section 6.4, which are evaluated over synthetic and real-world graphs. The error of the
recovered graphs is computed as

K∑

k=1
∥S(k)

O − Ŝ(k)
O ∥2

F /K∥S(k)
O ∥2

F , (6.12)

and when the graphs are randomly generated, they are sampled from an ER model with N = 20
nodes and edge probability p = 0.2. The code for the following experiments is available on GitHub1

and the interested reader is referred there for specific implementation details.

Test case 1. We evaluate the influence of the hidden variables and its detrimental effect on the
topology inference task when the true covariance matrix is known. The results are depicted in
Fig. 6.2a, where we report the error of the recovered graphs, computed according to (6.12), for
several models as the number of hidden variables increases on the x-axis. The error is averaged
over 64 realizations with ER graphs. The considered models are: (i) “PGL”, which stands for
the method introduced in (6.11); (ii) “PNN”, which denotes the reweighed algorithm proposed
in [29] augmented with the joint penalty dS(·, ·) to perform the joint inference; and (iii) “No
hidden”, which is a joint inference method unaware of the presence of hidden variables similar to
the work in [125]. In addition, for each model we let K take the values in {3, 6}. Looking at the
results, we can observe that “PGL” and “PNN”, which take into account the presence of hidden
variables, outperform the method “No hidden”, showcasing the benefit of a robust formulation.
Also, the method proposed in (6.11) outperforms “PNN”, the other alternative accounting for
hidden variables. This reflects the advantage of employing the group Lasso regularization and
incorporating the graph similarity through the careful design of the function dP (·, ·). Lastly, it is
worth noting that the performance improves for higher values of K, achieving better results when
more related graphs are available.

Test case 2. Next, we evaluate the influence of the number of observed signals and compare the
performance of the proposed approach with other related alternatives. In this experiment, only a
single hidden node is considered. To that end, in Fig. 6.2b we show the mean normalized error
of the recovered graphs on the y-axis as the number of samples increases on the x-axis. The

1https://github.com/reysam93/hidden_joint_inference/tree/ICASSP2022

https://github.com/reysam93/hidden_joint_inference/tree/ICASSP2022

6.5. Numerical experiments 87

Figure 6.2: Numerical validation of the proposed algorithm. a) Mean error of 100 realizations as the
number of hidden variables increases for different models and values of K. b) Mean error of the recovered
graphs for several algorithms as the number of samples increases. c) Mean error of the recovered graphs
for joint and separate approaches as the number of samples increases. The first two experiments use ER
graphs with N = 20 and p = 0.2 and the third one employs real-world graphs.

error is computed as in the previous experiment and the mean is considered over 30 realizations
of K = 3 ER graphs with 10 realizations of random covariance matrices for each, resulting
in a total of 300 realizations. We compare the proposed model (“PGL”) with latent variable
graphical Lasso (“LVGL”) [18], and with group and fusion graphical Lasso (“GGL” and “FGL”),
both from [124]. For each model, signals are generated using two different types of covariance
matrices: (i) CMRF = (σI + ϕS)−1 where ϕ is a positive random number and σ is a positive
number so that C−1

MRF is positive semi-definite; and Cpoly = H2 where the matrix H is a graph
filter with random coefficients h. By looking at the Fig. 6.2b, it can be observed that, when
CMRF is employed, the graphical Lasso models slightly outperform the proposed approach. This
is expected since they are tailored for this specific type of covariance matrices. However, we can also
see that the performance of the proposed algorithm is close to that of the alternatives, illustrating
the benefits of considering both the joint optimization and the presence of hidden variables. On
the other hand, when we focus on the covariance matrices Cpoly, it is evident that the proposed
method “PGL” clearly outperforms the alternatives, demonstrating that the proposed method is
based on more lenient assumptions. Note that the results for “LVGL” for the polynomial covariance

88 Robust network topology inference

are not included since the error was too high.

Test case 3. Finally, we test the proposed algorithm and the impact of performing the topology
inference in a joint fashion using real-world graphs. We employ three graphs defined on a common
set of 32 nodes. Nodes represent students from the University of Ljubljana and the different
networks encode different types of interactions among the students2. The error is computed
as detailed in and one hidden variable is considered. The results, illustrated in Fig. 6.2c, show
the error of the recovered graphs as the number of samples increases. The displayed error is
the mean of 30 realizations of random stationary graph signals and only one hidden variable is
considered. Also, for each of the three graphs we include the performance of both the joint and
the separate estimation. It can be observed that the recovery of the three graphs improves when a
joint approach is followed, showcasing the benefits of exploiting the existing relationship between
the different networks. Furthermore, this experiment confirms that the developed method is also
suitable for real applications.

6.6 Conclusion

In this chapter, we faced the challenging problem of joint graph topology inference in the
presence of hidden nodes. First, we detailed the simpler case where the goal was to learn a single
graph from stationary observations, and then, we presented a new method for approaching the
joint graph topology inference in the presence of hidden nodes. To tackle this ill-posed inference
problem, we assume that (i) the number of hidden nodes H is much smaller than the number
of observed nodes O; (ii) the observed signals are realizations from a random process stationary
in S(k); and (iii) the K graphs are closely related. Furthermore, we exploit the inherent block
structure of the matrices C(k) and S(k) to solve the joint topology inference problem by solving
an optimization framework. A reweighted ℓ1 norm to promote sparse solutions is employed, and
the stationarity assumption is adapted to the presence of hidden nodes by defining the (unknown)
low-rank lifting matrices P(k). Instead of relying on the nuclear norm, low-rank matrices P(k) are
achieved by promoting column-sparsity with the group Lasso penalty. Moreover, the similarity of
the K graphs is leveraged in two ways. First, for each pair of graphs, we look for matrices S(k)

O

with a similar edge pattern by minimizing the ℓ1 penalty, and second, we look for matrices P(k)

with a similar column sparsity pattern. The proposed method is evaluated using synthetic and
real-world graphs, and a comparison with other baseline methods based on graph stationarity and
on graphical Lasso is provided.

2The original data can be found at http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students

http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students

Chapter 7

Concluding remarks

The encompassing objective of this thesis was to contribute to building the foundations of a
robust paradigm to address classical problems within GSP while modeling the detrimental influence
of perturbations in the observed data. To that end, we considered several types of perturbations
that were classified into two broad classes: (i) perturbations in the graph signals; and (ii) pertur-
bations in the topology of the graph. First, we dealt with imperfections in the observed signals,
which often lead to tractable problems and have been more studied in related literature. Since
incorporating the influence of imperfections in the signals in GSP tasks is well studied, when the
magnitude of the perturbations is small with respect to the original signal (and especially when the
perturbations capture the presence of noise), we addressed settings where the magnitude of the
perturbations was large. Furthermore, the focus in Chapter 3 and Chapter 4 was on using process-
ing schemes that had not received too much attention in the literature, trying to characterize their
estimation performance (including those based on GNN architectures). In the second part of the
thesis, we dealt with imperfections in the topology of the graph, which give rise to more challenging
problems and have been significantly less studied in the literature. In Chapter 5, the focus was on
estimating a graph filter but we also recovered an enhanced estimate of the unperturbed topology
as a byproduct. Finally, Chapter 6 tackled directly the problem of learning a graph, but for the
challenging setup of network tomography, where hidden (unobservable) nodes are present. Finally,
in each chapter we run an extensive battery of experiments to gain additional insights, test the
robustness of the methods, compare them to existing state-of-the-art alternatives, and assess their
potential applicability in real-world problems.

The remainder of the chapter is devoted to describing the degree of fulfillment of the objectives
listed in Section 1.2 (Section 7.1), and propose future lines of work (Section 7.2).

7.1 Revisiting the proposed goals

First, the objective (O1) considered that the observed graph signals were corrupted with noise
and the goal was to develop non-linear algorithms to separate the noise from the signal. This
was addressed in Chapter 3. Since linear denoising schemes had been investigated extensively, we
designed two (untrained) graph-aware NNs that incorporated the information encoded in the GSO
through different strategies. The GCG relied on fixed (non-learnable) GFs to model convolutions

90 Concluding remarks

in the vertex domain while the GDec employed a nested collection of graph upsampling opera-
tors to progressively increase the input size, limiting the degrees of freedom of the architecture,
and providing more robustness to noise. Furthermore, we provided theoretical guarantees on the
denoising performance of both architectures when denoising K-bandlimited graph signals under
some simplifying assumptions, and then, we numerically illustrated that the proposed architectures
were also capable of denoising graph signals in more general settings. Interestingly, the proposed
GDec is not limited to the graph signal denoising task. In fact, we successfully leveraged the GDec
to learn a mapping from an input graph signal x defined on some graph G1 to a graph signal y
defined on some graph G2 by learning a latent space common to x and y, a problem intimately
related with canonical correlation analysis.

Objective (O2), approached in Chapter 4, considered signals with missing values and the goal
was to interpolate the original signals under the assumption that they were DSGS. Interpreting
the observed (non-missing) values as samples gathered via an AGSS, first we studied the recovery
of the original signal from the local observations when the seeding nodes were known. Then, we
considered more challenging sampling configurations where the seeding nodes, the diffusing filter,
or both, were unknown.

In the objective (O3), the perturbations represented uncertainty in the edges of the observed
graph and the aim was to develop a robust GF identification scheme from input-output obser-
vations. To that end, Chapter 5 recast the true graph as an additional estimation variable and
formulated an optimization problem that jointly estimated the GF and the true (unknown) GSO.
First, we focused on the case where only one GF needed to be estimated and, then, shifted to
setups where multiple GFs have to be jointly identified. The optimization problem was formulated
completely in the vertex domain bypassing the error propagation associated with high-order matrix
polynomials as well as the challenges of dealing with the influence of perturbations in the graph
spectrum. Since the optimization problem was non-convex, we blended techniques from alternating
optimization and MM to obtain an iterative convex algorithm capable to find a stationary point
in polynomial time. This algorithm was later modified so that the scaling of the computational
complexity with respect to the number of nodes in the graph is reduced.

Finally, Chapter 6 deals with objective (O4), which focused on developing a joint network
topology inference algorithm robust to the presence of hidden nodes from stationary observations.
To ensure the tractability of the problems, we assumed that the number of observed nodes was
substantially larger than the number of hidden nodes, and formulated constrained optimization
problems that accounted for the topological and signal constraints. The cornerstone of the proposed
algorithm was to exploit the block-matrix structure resulting from the presence of hidden variables.
This structure allowed us to reformulate the classical definition of stationarity to account for the
presence of hidden variables and, moreover, it revealed a column sparsity pattern on the matrices
P(k) (associated with hidden nodes) that we exploited to promote graph similarity between edges
involved with hidden nodes via a group Lasso regularization.

7.2 Future lines of research

To conclude the document, we present several research directions to strengthen and grow the
robust GSP methodology implemented in this thesis. The suggested lines range from considering
tractable generalizations of the schemes discussed in the previous chapters to more general and
ambitious research directions. The lines in the first group are in general well-defined and likely to
be successfully addressed in the short/medium term, while the ones in the second group can be

7.2. Future lines of research 91

understood as a research plan for the medium/long term.

Generalizing the theoretical characterization of the denoising with GNNs to more general
settings. Enhancing our current understanding of NNs (including GNNs) is a relevant ongoing
research problem. In this sense, generalizing the theoretical analysis from Chapter 3 to hold with
more lenient assumptions would be beneficial. To be precise, our analysis considered the graph
signals being bandlimited, the noise to be white, and the graphs being drawn from an SBM.
Considering more general noise distributions is a tractable task. Regarding the assumptions about
the signals, dealing with other generative models (such as diffused or smooth signals) requires
being able to establish a link between either the spectrum or the vertex distribution of the SBM
and the signals at hand. Lastly, considering graphs beyond SBMs requires finding random graph
models such that (i) the distance between A and A goes to 0 as N grows; and (ii) the sparsity
pattern of A is retained after the operation arccos(HH). This is highly non-trivial, but it may
be doable in some cases (e.g., graphon models more general than SBMs, or non-graphon graphs
with a strong clustered structure). Last but not least, application of our GNN architectures (along
with the associated theoretical analysis) to problems other than graph denoising are also worth
investigating.

Network topology inference with hidden nodes for multiple graphs. The growing adoption
of graph-based approaches has revealed that in many datasets one needs more than one graph to
describe the data. When the set of nodes does not change, multi-layer graphs are the preferred way
to address this problem. However, the theoretical research in this area has been a bit slow and only
recently, generalizations of graphical Lasso to the multi-layer graph case have been proposed. As a
result, network topology inference algorithms for multi-layer graphs in the presence of perturbations
(including hidden nodes) are mostly missing. To develop such an algorithm in the graphical Lasso
case, one should: (i) consider the effect of the hidden nodes in each of the graphs as well as (ii)
incorporate a term that promotes similarity among the different graphs (according to the prior
information and the application at hand). The challenge to achieve the latter is how to split the
similarity metric among observed nodes and hidden nodes. Moreover, the goal would be not only
designing an effective algorithm, but also characterizing analytically its performance. In this sense,
the works in [125, 128] provide two promising starting points for the case where the observations
are either Gaussian or stationary, respectively. Another equally interesting but more challenging
line of research is to look at setups where not all the nodes participate in all relations (layers of
the graph).

Accounting for perturbations in the observed topology in other GSP problems. The pres-
ence of perturbations in the observed topology is critical in most GSP approaches, and hence,
generalizing the ideas from Chapter 5 to other GSP problems like (blind) deconvolution, denoising,
or sampling and reconstruction constitutes an interesting line of research. In this sense, while the
general approach in Chapter 5 can be preserved (i.e., defining the true GSO as an explicit esti-
mation variable, formulate a problem that solves jointly over the variables of interest and the true
GSO, and link the true GSO and the variables of interest via tractable constraints), the specific
formulation and algorithmic approach will depend on the problem at hand. On top of this, even
for the GF identification task investigated in Chapter 5 (as well as for the generalizations sug-
gested above), one can enhance the problem formulation by incorporating additional information
of the GSO and/or its perturbations. A first avenue to pursue is considering alternative types
of link perturbations as well as the presence of hidden nodes. A second avenue is to consider
additional information about the true GSO (either in the form of a statistical prior or, e.g., having
access to other graphs that we know to belong to the same class/family than the true one). The

92 Concluding remarks

previous discussion illustrates that, by strengthening the estimation/denoising of GSO in the for-
mulation, the GSP paradigm shifts from a two-step approach where first one observes/estimates
a graph and then uses the graph to solve SP tasks to an encompassing methodology where the
estimation/denoising of graph and the GSP task of interest are solved jointly.

Exploiting prior information about the graph topology. When dealing with a perturbed GSO S̄,
we have assumed that the magnitude of the perturbations was small, so that we could augment our
formulation with a term that promotes similarity between S and S̄. However, there may be practical
settings where leveraging only this information may not be enough. Examples include setups where
the magnitude of the perturbations in S̄ is large, or when S̄ corresponds to a (possibly perturbed)
subgraph of the whole G, so there is no information about the topology of the remaining graph.
In these cases, having access to prior information about the underlying graph is key to obtaining
an accurate estimate of S that can be exploited. As briefly pointed out in this chapter, two
potential avenues to achieve this are: (i) viewing the graph as a realization of a random graph
model and incorporating some (tractable) statistical prior to the formulation; and (ii) assuming
that we have access to other graphs that are similar / related / belong to the same family as
the graph at hand. Regarding (i), postulation of meaningful and tractable probabilistic graphs
is an entire area of research, so that the efforts there should be on identifying models that are
particularly suited for the (vertex based, spectral based, polynomial based...) approach exploited
by the GSP task at hand. Regarding (ii), our work in [31] (which finds a graph with a density of
motifs similar to that of another given graph and is able to deal with graphs with different numbers
of nodes) provides an early example of how to achieve that. Intuitively, prior information of this
sort could be included in our robust GSP approaches to enhance the resilience of the algorithms
to perturbations and, moreover, the proposed similarity metric can be used in joint (multi-layer)
network topology inference problems even when the sought graphs have different sizes. Although
interesting, employing this prior information about the density of motifs is a challenging task,
because the similarity metric from [31] is formulated in the spectral domain. Since most of the
algorithms presented in this thesis were formulated in the node domain, they will need to be
carefully redesigned to obtain convex solutions exploiting the similarity of motifs.

The lines above represent a few examples of open problems that can be addressed using the
results of this thesis as starting point. There are a number of emerging areas in GSP (tensor models,
time-varying graph signals, link-based signals and GSOs, categorical graph signals, Montecarlo
graph and graph-signal based estimation schemes...) that are at their infancy and, as a result,
are currently ignoring the effect of perturbations. Carefully updating and coming up with new
formulations to render those novel schemes robust to perturbations in the data and the supporting
graph will certainly be a problem of interest that will receive substantial attention in future years.

Bibliography

[1] S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovačevic, “Signal denoising on graphs
via graph filtering,” in Global Conf. Signal Info. Process. (GlobalSIP). IEEE, 2014, pp.
872–876.

[2] Y. Wang, J. Sharpnack, A. Smola, and R. Tibshirani, “Trend filtering on graphs,” in Artif.
Intell. Statistics. PMLR, 2015, pp. 1042–1050.

[3] J. Pang and G. Cheung, “Graph Laplacian regularization for image denoising: Analysis in the
continuous domain,” IEEE Trans. Signal Inf. Process. Netw., vol. 26, no. 4, pp. 1770–1785,
2017.

[4] M. Onuki, S. Ono, M. Yamagishi, and Y. Tanaka, “Graph signal denoising via trilateral
filter on graph spectral domain,” IEEE Trans. Signal Inf. Process. Netw., vol. 2, no. 2, pp.
137–148, 2016.

[5] D. B. Tay and J. Jiang, “Time-varying graph signal denoising via median filters,” IEEE Trans.
Circuits Syst., II, Exp. Briefs, 2020.

[6] T. H. Do, D. M. Nguyen, and N. Deligiannis, “Graph auto-encoder for graph signal denois-
ing,” in IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP), 2020, pp. 3322–3326.

[7] S. Chen, Y. C. Eldar, and L. Zhao, “Graph unrolling networks: Interpretable neural networks
for graph signal denoising,” IEEE Trans. Signal Process., 2021.

[8] A. Anis, A. Gadde, and A. Ortega, “Towards a sampling theorem for signals on arbitrary
graphs,” in IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP). IEEE, 2014, pp.
3864–3868.

[9] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal processing on graphs:
Sampling theory,” IEEE Trans. Signal Process., vol. 63, no. 24, pp. 6510–6523, 2015.

[10] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for bandlimited graph
signals using graph spectral proxies,” IEEE Trans. Signal Process., vol. 64, no. 14, pp.
3775–3789, 2016.

[11] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, “Random sampling of bandlimited
signals on graphs,” Appl. Comput. Harmonic Anal., vol. 44, no. 2, pp. 446–475, 2018.

[12] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph signals with suc-
cessive local aggregations,” IEEE Trans. Signal Process., vol. 64, no. 7, pp. 1832–1843,
2015.

94 Bibliography

[13] S. Chen, R. Varma, A. Singh, and J. Kovačević, “Signal recovery on graphs: Fundamental
limits of sampling strategies,” IEEE Trans. Signal Inf. Process. Netw., vol. 2, no. 4, pp.
539–554, 2016.

[14] E. Ceci and S. Barbarossa, “Graph signal processing in the presence of topology uncertain-
ties,” IEEE Trans. Signal Process., vol. 68, pp. 1558–1573, 2020.

[15] J. Miettinen, S. A. Vorobyov, and E. Ollila, “Modelling graph errors: Towards robust graph
signal processing,” arXiv preprint arXiv:1903.08398, 2019.

[16] E. Ceci, Y. Shen, G. B. Giannakis, and S. Barbarossa, “Graph-based learning under per-
turbations via total least-squares,” IEEE Trans. Signal Process., vol. 68, pp. 2870–2882,
2020.

[17] A. Natali, M. Coutino, and G. Leus, “Topology-aware joint graph filter and edge weight
identification for network processes,” in IEEE Intl. Wrkshp. Mach. Learn. Signal Process.
(MLSP). IEEE, 2020, pp. 1–6.

[18] V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, “Latent variable graphical model selec-
tion via convex optimization,” Annu. Allerton Conf. Commun., Control, Comput., vol. 40,
no. 4, pp. 1935–1967, 2012.

[19] X. Yang, M. Sheng, Y. Yuan, and T. Q. S. Quek, “Network topology inference from het-
erogeneous incomplete graph signals,” IEEE Trans. Signal Process., vol. 69, pp. 314–327,
2020.

[20] A. Anandkumar, D. Hsu, A. Javanmard, and S. Kakade, “Learning linear Bayesian networks
with latent variables,” in Int. Conf. Mach. Learn. (ICML), 2013, pp. 249–257.

[21] S. Rey, A. G. Marques, and S. Segarra, “An underparametrized deep decoder architecture
for graph signals,” in IEEE Intl. Wrksp. Computat. Advances Multi-Sensor Adaptive Process.
(CAMSAP). IEEE, 2019, pp. 231–235.

[22] S. Rey, S. Segarra, R. Heckel, and A. G. Marques, “Untrained graph neural networks for
denoising,” arXiv preprint arXiv:2109.11700, 2021.

[23] S. Rey, V. M. Tenorio, S. Rozada, L. Martino, and A. G. Marques, “Deep encoder-decoder
neural network architectures for graph output signals,” in Conf. Signals, Syst., Computers
(Asilomar). IEEE, 2019, pp. 225–229.

[24] S. Rey, V. M. Tenorio, S. Rozada, L. Martino, and A. G. Marques, “Overparametrized deep
encoder-decoder schemes for inputs and outputs defined over graphs,” in European Signal
Process. Conf. (EUSIPCO). IEEE, 2021, pp. 855–859.

[25] S. Rey, F. J. I. Garcia, C. Cabrera, and A. G. Marques, “Sampling and reconstruction of
diffused sparse graph signals from successive local aggregations,” IEEE Signal Process. Lett.,
vol. 26, no. 8, pp. 1142–1146, 2019.

[26] S. Rey and A. G. Marques, “Robust graph-filter identification with graph denoising regular-
ization,” in IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP). IEEE, 2021, pp.
5300–5304.

[27] S. Rey, V. M. Tenorio, and A. G. Marques, “Robust graph filter identification and graph
denoising from signal observations,” arXiv preprint arXiv:2210.08488, 2022.

95

[28] V. M. Tenorio, S. Rey, F. Gama, S. Segarra, and A. G. Marques, “A robust alternative for
graph convolutional neural networks via graph neighborhood filters,” in Conf. Signals, Syst.,
Computers (Asilomar). IEEE, 2021, pp. 1573–1578.

[29] A. Buciulea, S. Rey, C. Cabrera, and A. G. Marques, “Network reconstruction from graph-
stationary signals with hidden variables,” in Conf. Signals, Syst., Computers (Asilomar).
IEEE, 2019, pp. 56–60.

[30] S. Rey, A. Buciulea, M. Navarro, S. Segarra, and A. G. Marques, “Joint inference of multiple
graphs with hidden variables from stationary graph signals,” in IEEE Int. Conf. Acoustics,
Speech Signal Process. (ICASSP). IEEE, 2022, pp. 5817–5821.

[31] S. Rey, T. M. Roddenberry, S. Segarra, and A. G. Marques, “Enhanced graph-learning
schemes driven by similar distributions of motifs,” arXiv preprint arXiv:2207.04747, 2022.

[32] D. Easley and J. Kleinberg, Networks, crowds, and markets: Reasoning about a highly
connected world. Cambridge University Press, 2010.

[33] M. E. J. Newman, “The structure and function of complex networks,” SIAM rev., vol. 45,
no. 2, pp. 167–256, 2003.

[34] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Network tomography: Recent
developments,” Statistical Science, vol. 19, no. 3, pp. 499–517, 2004.

[35] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of massive data sets. Cambridge
University Press, 2020.

[36] K. Nodop, R. Connolly, and F. Girardi, “The field campaigns of the european tracer ex-
periment (etex): Overview and results,” Atmospheric Environment, vol. 32, no. 24, pp.
4095–4108, 1998.

[37] E. D. Kolaczyk, Statistical Analysis of Network Data: Methods and Models. New York,
NY: Springer, 2009.

[38] O. Sporns, Discovering the Human Connectome. Boston, MA: MIT Press, 2012.

[39] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field
of signal processing on graphs: Extending high-dimensional data analysis to networks and
other irregular domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.

[40] P. Djuric and C. Richard, Cooperative and Graph Signal Processing: Principles and Appli-
cations. Academic Press, 2018.

[41] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst, “Graph signal
processing: Overview, challenges, and applications,” Proc. IEEE, vol. 106, no. 5, pp. 808–
828, 2018.

[42] A. G. Marques, N. Kiyavash, J. M. F. Moura, D. V. D. Ville, and R. Willett, “Graph signal
processing: Foundations and emerging directions (editorial),” IEEE Signal Process. Mag.,
vol. 37, Nov. 2020.

[43] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,” IEEE Trans.
Signal Process., vol. 61, no. 7, pp. 1644–1656, 2013.

[44] ——, “Discrete signal processing on graphs: Frequency analysis,” IEEE Trans. Signal Pro-
cess., vol. 62, no. 12, pp. 3042–3054, 2014.

96 Bibliography

[45] . Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving average graph filter-
ing,” IEEE Trans. Signal Process., vol. 65, no. 2, pp. 274–288, 2016.

[46] S. Sardellitti, S. Barbarossa, and P. D. Lorenzo, “On the graph Fourier transform for directed
graphs,” IEEE J. Sel. Topics Signal Process., vol. 11, no. 6, pp. 796–811, 2017.

[47] S. Segarra, G. Mateos, A. G. Marques, and A. Ribeiro, “Blind identification of graph filters,”
IEEE Trans. Signal Process., vol. 65, no. 5, pp. 1146–1159, 2017.

[48] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design and applications
to distributed linear network operators,” IEEE Trans. Signal Process., vol. 65, no. 15, pp.
4117–4131, 2017.

[49] F. J. Iglesias, S. Segarra, S. Rey, A. G. Marques, and D. Ramírez, “Demixing and blind
deconvolution of graph-diffused sparse signals,” in IEEE Int. Conf. Acoustics, Speech Signal
Process. (ICASSP). IEEE, 2018, pp. 4189–4193.

[50] J. Liu, E. Isufi, and G. Leus, “Filter design for autoregressive moving average graph filters,”
IEEE Trans. Signal Inf. Process. Netw., vol. 5, no. 1, pp. 47–60, 2018.

[51] N. Tremblay, P. Gonçalves, and P. Borgnat, “Design of graph filters and filterbanks,” in
Cooperative Graph Signal Process. Elsevier, 2018, pp. 299–324.

[52] S. Chen, A. Sandryhaila, G. Lederman, Z. Wang, J. M. F. Moura, P. Rizzo, J. Bielak, J. H.
Garrett, and J. Kovačevic, “Signal inpainting on graphs via total variation minimization,” in
IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP). IEEE, 2014, pp. 8267–8271.

[53] S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovačević, “Signal recovery on graphs:
Variation minimization,” IEEE Trans. Signal Process., vol. 63, no. 17, pp. 4609–4624, 2015.

[54] V. Kalofolias, “How to learn a graph from smooth signals,” in Intl. Conf. Artif. Intel. Statist.
(AISTATS). J. Mach. Learn. Res., 2016, pp. 920–929.

[55] E. Pavez and A. Ortega, “Generalized Laplacian precision matrix estimation for graph signal
processing,” in IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP), 2016, pp.
6350–6354.

[56] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning Laplacian matrix in
smooth graph signal representations,” IEEE Trans. Signal Process., vol. 64, no. 23, pp.
6160–6173, 2016.

[57] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Network topology inference from
spectral templates,” IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 3, pp. 467–483,
2017.

[58] S. Segarra, A. G. Marques, M. Goyal, and S. Rey, “Network topology inference from input-
output diffusion pairs,” in IEEE Wrkshp. Statistical Signal Process. (SSP). IEEE, 2018, pp.
508–512.

[59] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the dots: Identifying
network structure via graph signal processing,” IEEE Signal Process. Mag., vol. 36, no. 3,
pp. 16–43, 2019.

[60] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-
works,” arXiv preprint arXiv:1609.02907, 2016.

97

[61] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional neural network archi-
tectures for signals supported on graphs,” IEEE Trans. Signal Process., vol. 67, no. 4, pp.
1034–1049, 2019.

[62] S. Sakhavi, C. Guan, and S. Yan, “Learning temporal information for brain-computer inter-
face using convolutional neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29,
no. 11, pp. 5619–5629, 2018.

[63] Z. Cui, K. Henrickson, R. Ke, and Y. Wang, “Traffic graph convolutional recurrent neural
network: A deep learning framework for network-scale traffic learning and forecasting,” IEEE
Trans. Intell. Transp. Syst., vol. 21, no. 11, pp. 4883–4894, 2019.

[64] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie, and M. Guo, “Graph-
GAN: graph representation learning with generative adversarial nets,” in AAAI Conf. Artificial
Intell., vol. 32, 2018.

[65] P. Giménez-Febrer and A. Pages-Zamora, “Matrix completion of noisy graph signals via prox-
imal gradient minimization,” in IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP).
IEEE, 2017, pp. 4441–4445.

[66] E. Acuna and C. Rodriguez, “The treatment of missing values and its effect on classifier
accuracy,” in Classification, Clustering, Data Mining Appl. Springer, 2004, pp. 639–647.

[67] M. Tsitsvero, S. Barbarossa, and P. D. Lorenzo, “Signals on graphs: Uncertainty principle
and sampling,” IEEE Trans. Signal Process., vol. 64, no. 18, pp. 4845–4860, 2016.

[68] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Filtering random graph processes over
random time-varying graphs,” IEEE Trans. Signal Process., vol. 65, no. 16, pp. 4406–4421,
2017.

[69] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance estimation with the
graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432–441, 2008.

[70] J. Miettinen, S. A. Vorobyov, and E. Ollila, “Graph error effect in graph signal processing,” in
IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP). IEEE, 2018, pp. 4164–4168.

[71] J. Mei and J. M. F. Moura, “SILVar: Single index latent variable models,” IEEE Trans.
Signal Process., vol. 66, no. 11, pp. 2790–2803, 2018.

[72] A. Chang, T. Yao, and G. I. Allen, “Graphical models and dynamic latent factors for modeling
functional brain connectivity,” 2019 IEEE Data Science Wrksp. (DSW), pp. 57–63, 2019.

[73] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-group lasso,” J. Comput.
Graphical Statist., vol. 22, no. 2, pp. 231–245, 2013.

[74] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph processes and spectral
estimation,” IEEE Trans. Signal Process., vol. 65, no. 22, pp. 5911–5926, 2017.

[75] M. Yuan and Y. Lin, “Model selection and estimation in the Gaussian graphical model,”
Biometrika, vol. 94, no. 1, pp. 19–35, 2007.

[76] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in IEEE Conf. Comput.
Vision Pattern Recog., 2018, pp. 9446–9454.

[77] R. Heckel and P. Hand, “Deep decoder: Concise image representations from untrained non-
convolutional networks,” in Intl. Conf. Learn. Repr., 2018.

98 Bibliography

[78] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Prentice Hall Englewood
Cliffs, NJ, 1988, vol. 6.

[79] G. Carlsson, F. Memoli, A. Ribeiro, and S. Segarra, “Hierarchical clustering of asymmetric
networks,” Adv. Data Anal. Classification, vol. 12, no. 1, pp. 65–105, Mar 2018.

[80] G. Carlsson, F. Mémoli, A. Ribeiro, and S. Segarra, “Axiomatic construction of hierarchical
clustering in asymmetric networks,” in IEEE Int. Conf. Acoustics, Speech Signal Process.
(ICASSP), 2013, pp. 5219–5223.

[81] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view,” in AAAI Conf.
Artificial Intell., vol. 34, no. 04, 2020, pp. 3438–3445.

[82] R. Heckel and M. Soltanolkotabi, “Denoising and regularization via exploiting the structural
bias of convolutional generators,” arXiv preprint arXiv:1910.14634, 2019.

[83] A. Daniely, R. Frostig, and Y. Singer, “Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity,” in Adv. Neural Inf. Proc. Syst.,
2016, pp. 2253–2261.

[84] M. Newman, Networks. Oxford University Press, 2018.

[85] M. T. Schaub, S. Segarra, and J. N. Tsitsiklis, “Blind identification of stochastic block
models from dynamical observations,” SIAM J. Math. Data Sc., vol. 2, no. 2, pp. 335–367,
2020.

[86] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature,
vol. 393, no. 6684, pp. 440–442, 1998.

[87] W. W. Zachary, “An information flow model for conflict and fission in small groups,” J.
Anthrop. Res., vol. 33, no. 4, pp. 452–473, 1977.

[88] D. J. Watts, “Networks, dynamics, and the small-world phenomenon,” Amer. J. Sociology,
vol. 105, no. 2, pp. 493–527, 1999.

[89] P. Holme and B. J. Kim, “Growing scale-free networks with tunable clustering,” Physical
review E, vol. 65, no. 2, p. 026107, 2002.

[90] S. Segarra, A. G. Marques, G. R. Arce, and A. Ribeiro, “Design of weighted median graph fil-
ters,” in IEEE Intl. Wrksp. Computat. Advances Multi-Sensor Adaptive Process. (CAMSAP),
2017, pp. 1–5.

[91] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention
networks,” arXiv preprint arXiv:1710.10903, 2017.

[92] F. Dorfler and F. Bullo, “Kron reduction of graphs with applications to electrical networks,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 1, pp. 150–163, 2012.

[93] J. Cardoso, V. D. M., J. Ying, and D. P. Palomar, “Algorithms for learning graphs in financial
markets,” arXiv preprint arXiv:2012.15410, 2020.

[94] Y. Yu, T. Wang, and R. J. Samworth, “A useful variant of the Davis–Kahan theorem for
statisticians,” Biometrika, vol. 102, no. 2, pp. 315–323, 2015.

99

[95] D. Ramirez, A. G. Marques, and S. Segarra, “Graph-signal reconstruction and blind decon-
volution for diffused sparse inputs,” in IEEE Int. Conf. Acoustics, Speech Signal Process.
(ICASSP), March 2017, pp. 4104–4108.

[96] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1993.

[97] F. Pukelsheim, Optimal Design of Experiments. SIAM, 1993, vol. 50.

[98] L. F. O. Chamon and A. Ribeiro, “Greedy sampling of graph signals,” IEEE Trans. Signal
Process., vol. 66, no. 1, pp. 34–47, Jan. 2018.

[99] D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal)
dictionaries via ℓ1 minimization,” Proc. Nat. Academy Sciences, vol. 100, no. 5, pp. 2197–
2202, 2003.

[100] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, “Asymptotic analysis of the stochastic
block model for modular networks and its algorithmic applications,” Physical Review E,
vol. 84, no. 6, p. 066106, Dec. 2011.

[101] P. D. Dobson and A. J. Doig, “Distinguishing enzyme structures from non-enzymes without
alignments,” J. molecular biology, vol. 330, no. 4, pp. 771–783, 2003.

[102] D. Thanou, X. Dong, D. Kressner, and P. Frossard, “Learning heat diffusion graphs,” IEEE
Trans. Signal Inf. Process. Netw., vol. 3, no. 3, pp. 484–499, 2017.

[103] Y. Zhu, F. J. Iglesias-Garcia, A. G. Marques, and S. Segarra, “Estimating network processes
via blind identification of multiple graph filters,” IEEE Trans. Signal Process., vol. 68, pp.
3049–3063, 2020.

[104] Y. He and H. Wai, “Detecting central nodes from low-rank excited graph signals via struc-
tured factor analysis,” IEEE Trans. Signal Process., 2022.

[105] R. Levie, E. Isufi, and G. Kutyniok, “On the transferability of spectral graph filters,” in Int.
Conf. Sampling Theory Appl. (SampTA). IEEE, 2019, pp. 1–5.

[106] R. Levie et al., “Transferability of spectral graph convolutional neural networks,” J. Mach.
Learn. Res., vol. 22, pp. 272–1, 2021.

[107] L. Ruiz, F. Gama, and A. Ribeiro, “Graph neural networks: Architectures, stability, and
transferability,” Proc. IEEE, vol. 109, no. 5, pp. 660–682, 2021.

[108] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” J. Roy.
Statistical Soc.: Ser. B (Statistical Methodology), vol. 67, no. 2, pp. 301–320, 2005.

[109] B. Dai, S. Ding, and G. Wahba, “Multivariate Bernoulli distribution,” Bernoulli, vol. 19,
no. 4, pp. 1465–1483, 2013.

[110] S. Segarra and A. Ribeiro, “Stability and continuity of centrality measures in weighted
graphs,” IEEE Trans. Signal Process., vol. 64, no. 3, pp. 543–555, 2015.

[111] E. J. Candes, M. B. Wakin, and S. Boyd, “Enhancing sparsity by reweighted ℓ1 minimiza-
tion,” J. Fourier Anal. Appl., vol. 14, no. 5-6, pp. 877–905, 2008.

[112] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal pro-
cessing, communications, and machine learning,” IEEE Trans. Signal Process., vol. 65, no. 3,
pp. 794–816, 2016.

100 Bibliography

[113] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimization with biconvex
functions: A survey and extensions,” Math. Methods Oper. Res., vol. 66, no. 3, pp. 373–
407, 2007.

[114] M. Hong, M. Razaviyayn, Z. Luo, and J. Pang, “A unified algorithmic framework for block-
structured optimization involving big data: With applications in machine learning and signal
processing,” IEEE Signal Process. Mag., vol. 33, no. 1, pp. 57–77, 2015.

[115] R. Shafipour and G. Mateos, “Online topology inference from streaming stationary graph
signals with partial connectivity information,” Algorithms, vol. 13, no. 9, p. 228, 2020.

[116] A. Buciulea, S. Rey, and A. G. Marques, “Learning graphs from smooth and graph-stationary
signals with hidden variables,” IEEE Trans. Signal Inf. Process. Netw., vol. 8, pp. 273–287,
2022.

[117] G. C. Reinsel, Elements of multivariate time series analysis. Springer Science & Business
Media, 2003.

[118] J. Mei and J. M. F. Moura, “Signal processing on graphs: Causal modeling of unstructured
data,” IEEE Trans. Signal Process., vol. 65, no. 8, pp. 2077–2092, 2017.

[119] E. Isufi, A. Loukas, N. Perraudin, and G. Leus, “Forecasting time series with VARMA recur-
sions on graphs,” IEEE Trans. Signal Process., vol. 67, no. 18, pp. 4870–4885, 2019.

[120] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[121] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” in
Proc. ACM Symp. Theory Comput., 1987, pp. 1–6.

[122] T. Hastie, R. Tibshirani, and M. Wainwright, “Statistical learning with sparsity,” Monographs
Statistics Appl. Probability, vol. 143, p. 143, 2015.

[123] Y. Murase, J. Török, H. H. Jo, K. Kaski, and J. Kertész, “Multilayer weighted social network
model,” Physical Review E, vol. 90, no. 5, p. 052810, 2014.

[124] P. Danaher, P. Wang, and D. M. Witten, “The joint graphical lasso for inverse covariance
estimation across multiple classes,” J. Roy. Statistical Soc.: Ser. B (Statistical Methodology),
vol. 76, no. 2, pp. 373–397, 2014.

[125] M. Navarro, Y. Wang, A. G. Marques, C. Uhler, and S. Segarra, “Joint inference of multiple
graphs from matrix polynomials,” J. Mach. Learn. Res., 2020.

[126] J. Arroyo, A. Athreya, J. Cape, G. Chen, C. E. Priebe, and J. T. Vogelstein, “Inference for
multiple heterogeneous networks with a common invariant subspace,” J. Mach. Learn. Res.,
vol. 22, no. 142, pp. 1–49, 2021.

[127] S. Segarra, Y. Wang, C. Uhler, and A. G. Marques, “Joint inference of networks from
stationary graph signals,” in Conf. Signals, Syst., Computers (Asilomar). IEEE, 2017, pp.
975–979.

[128] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu, “High-dimensional covariance
estimation by minimizing ℓ1-penalized log-determinant divergence,” Electron. J. Statistics,
vol. 5, pp. 935–980, 2011.

Acronyms

LV local variation

AGSS aggregation sampling scheme

AR autoregressive

BGS bandlimited graph signals

DSGS diffused sparse graph signal

ER Erdős-Rényi

GCG graph-convolutional generator

GCNN graph convolutional NN

GDec graph decoder

GFs graph filters

GFT graph Fourier Transform

GL graphical Lasso

GMRF Gaussian Markov random field

GNNs graph neural networks

GSO graph-shift operator

GSP graph signal processing

i.i.d. independent identically distributed

LS least-squares

LVGL latent variable graphical Lasso

MA moving-average

ML maximum likelihood

102 Acronyms

MM majorization-minimization

MSE mean square error

NMSE normalized mean square error

NNs neural networks

SBM stochastic block model

SCP sequential convex programming

SEM structural equation model

SGD stochastic gradient descent

SS selection sampling

SW small-world

TLS total least squares

ZMUVG zero-mean unit variance Gaussian

	Resumen
	Agradecimientos
	Abstract
	Introduction
	Motivation and context
	Objectives
	Summary of contributions
	Outline of the dissertation

	Fundamentals of graph signal processing
	Graphs, graph signals, and the GSO
	Graph filters and filter identification
	Models for graph signals
	Graph inverse problems: denoising and interpolation
	Graph learning
	Graph neural networks
	Graph perturbations in GSP

	Non-linear denoising of graph signals
	Introduction
	GNNs for graph-signal denoising
	Graph convolutional generator
	Guaranteed denoising with the GCG
	Numerical inspection of the deep GCG spectrum

	Graph upsampling decoder
	Graph upsampling operator from hierarchical clustering
	Guaranteed denoising with the GDec
	Analyzing the deep GDec

	Numerical results
	Denoising capability of graph untrained architectures
	Denoising synthetic data
	Denoising real-world signals

	Conclusion
	Appendix: Proof of Theorem 3.1
	Appendix: Proof of Lemma 3.1
	Appendix: Proof of Lemma 3.2

	Signal interpolation of diffused sparse signals
	Introduction
	Successively aggregated graph signals

	Aggregation Sampling of DSGS
	Aggregating the sparse input
	Aggregating the diffused sparse input
	Blind deconvolution
	Space-shift sampling of diffused sparse signals

	Numerical experiments
	Conclusion

	Robust graph filter identification
	Introduction
	GF identification with imperfect graph knowledge
	Modeling graph perturbations

	Robust GF identification
	Alternating minimization for robust GF identification
	Leveraging stationary observations

	Joint robust identification of multiple GFs
	Joint GF identification for time series

	Efficient implementation of the robust GF identification algorithm
	Numerical results
	Synthetic experiments
	Real-world datasets

	Concluding remarks
	Appendix: Proof of Theorem 5.1

	Robust network topology inference
	Introduction
	Topology inference model in the presence of hidden variables
	Correlation and partial correlation networks with hidden variables

	Topology inference from stationary signals
	Topology inference with stationary observations as a convex optimization
	Robust network inference

	Joint inference from stationary signals in the presence of hidden variables
	Modeling hidden variables in the joint inference problem
	Convex relaxations for the joint topology inference

	Numerical experiments
	Numerical experiments based on joint inference

	Conclusion

	Concluding remarks
	Revisiting the proposed goals
	Future lines of research

	Bibliography
	Acronyms

