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ABSTRACT

Transmit-power control is a critical task in cognitive radio (CR)
networks. In the present contribution, adherence to hierarchies
between primary and secondary users in a peer-to-peer CR net-
work is enabled through distributed power control. Hierarchies
are effected by imposing minimum and maximum bounds on
a quality-of-service (QoS) metric, such as communication rate.
These bounds translate to signal-to-interference-plus-noise ra-
tio (SINR) constraints. Furthermore, a utility function cap-
tures each user’s satisfaction with the received SINR. The novel
power control strategy maximizes the total utility while respect-
ing individual SINR constraints — a task recast as a convex
optimization problem under a suitable relaxation. Sufficient
conditions, realistic for practical CR networks, are provided to
obtain the optimal power allocation from the solution of the re-
laxed problem. Finally, a low-overhead distributed algorithm
for optimal power control is developed, and tested against com-
peting alternatives via simulations.

Index Terms— Cognitive radios, distributed algorithms,
optimization methods, power control, QoS constraints

1. INTRODUCTION

Cognitive radio is an emerging technology promising efficient
spectrum utilization by dynamically adapting to the conditions
of the operating environment [1]. In a CR network, primary
users or licensees coexist with secondary and/or unlicensed users
or lessees, who have limited access to network resources [1,
§49]. Such a regulated access can be realized by bounding the
maximum level of a commodity a user can receive, which may
be communication rate (as in [2], [3]), bit error rate (BER), or
any other QoS figure. Such bounds lead in turn to heteroge-
neous QoS requirements of the CR users.

Adjusting transmission power [1, §27] offers the potential
to satisfy these requirements. The challenge however, is to
mitigate co-channel interference, which is intimately coupled
with individual power control decisions. This paper deals with
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a utility-based approach to power control in peer-to-peer CR
networks, where the satisfaction of each user with the received
QoS level is captured by a utility function, which depends on
the received SINR; see also [4], [5], [3] and references therein.

So far, two sub-optimal algorithms have been reported for
distributed power control in CR networks with diverse QoS
constraints [3]. The contribution of the present work is two-
fold: (i) optimal power control is obtained using convex opti-
mization; and (ii) a practical distributed algorithm for optimal
power control is developed to account for heterogeneous QoS
requirements tailored to the CR paradigm (not considered in
other works on utility-based power control [4], [5], [6]).

The remainder of the paper is organized as follows. The
power control problem is stated in Sec. 2 and solved in Sec. 3.
The resultant distributed algorithm is the subject of Sec. 4, while
Sec. 5 presents simulations and Sec. 6 conclusions.

2. PROBLEM STATEMENT

Consider a wireless peer-to-peer network with a set of M :=
{1, . . . , M} links, as in [4], [3], where each link i ∈ M entails
a user with a dedicated transmitter (Txi) wishing to communi-
cate with a corresponding receiver (Rxi). All links are assumed
sharing the same frequency band (referred to as single-channel
in [4]), as e.g., in CDMA. Let hij denote the channel gain from
Txi to Rxj (assumed static); ni the noise power at Rxi; and
pi the transmission power of Txi. Suppose that Txi can trans-
mit with at least Pmin

i and at most Pmax
i power budget, i.e.,

pi ∈ Pi := [Pmin
i , Pmax

i ]. The received SINR γi at Rxi is a
function of the powers p := (p1, . . . , pM ) and is given by

γi :=
hiipi

ni +
∑

k �=i hkipk

. (1)

Each user link i ∈ M adopts a utility function ui(γi) that
reflects the received QoS level. The utilities are selected con-
cave, strictly increasing and twice continuously differentiable
over (0,∞). We will focus on two important utilities (with
wi > 0 and α < 0):

ui(γi) = wi ln γi or ui(γi) = wiα
−1γα

i . (2)

These utilities satisfy (with α = 0 if ui(γi) = wi ln γi)

Ci(γi) := −
γiu

′′
i (γi)

u′i(γi)
= 1− α, ∀ γi > 0. (3)
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The ratio Ci(γi) is instrumental in ensuring convexity of
the power control problem; see [5, Ch.5], [4] and references
therein. In future submissions, we will consider general utilities
for which Ci(γi) is be allowed to vary with γi. Note that for
the utilities in (2) it is also necessary to have Pmin

i > 0. This
imposes no practical restriction, since setting Pmin

i to a very
small value effectively amounts to no transmission.

In the framework of CR networks, the maximum level of
individual user commodities is bounded. For this reason, the
focus here is on commodities that are one-to-one functions of
γi. These include rate ln(1 + γi) [2], [3], BER, or each user’s
utility function ui(γi). A bound on the maximum level of the
commodity readily maps to an SINR constraint γi ≤ γmax

i .
Moreover, such a constraint is pertinent when further increase
in γi cannot effectively increase the user’s utility, as e.g., in
fixed-rate services [3]. Also note that QoS guarantees for pri-
mary (or even secondary) users can be provided through a min-
imum SINR constraint γi ≥ γmin

i .
Power control in networks with heterogeneous QoS con-

straints amounts to selecting powers p that maximize the total
utility of the users,

∑M

i=1 ui(γi), while respecting the individ-
ual SINR requirements; i.e., the goal is

max
{p|pi∈Pi ∀i∈M}

M∑
i=1

ui(γi) (4a)

subj. to γmin
i ≤ γi ≤ γmax

i , ∀i ∈ M. (4b)

In general, problem (4) is non-convex in p; certain instances
of (4) though are known to be equivalent to convex problems.
Specifically, in the absense of (4b) and for a general class of
utility functions which includes (2), problem (4a) can be writ-
ten as a convex optimization problem under the transformation
pi = eyi [5]; see also [4]. (From [4] and [5] it can be inferred
that minimum SINR constraints γi ≥ γmin

i can also be handled,
although this is not explicitly treated.) Finally, under minimum
SINR constraints only (γi ≥ γmin

i ), problem (4) can also be
written as a geometric program (GP), if ui(γi) = wi ln γi; and
as a generalized GP, if ui(γi) = wiα

−1γα
i [6]. (In the area of

GP, the transformation pi = eyi is also standard [6].)
None of the aforementioned works can accommodate the

maximum SINR constraint γi ≤ γmax
i , pertinent to CR net-

works. It is the present paper’s contribution to tackle the solu-
tion of (4), through a suitable relaxation, elaborated next.

3. OPTIMAL POWER CONTROL

Let qi be an auxiliary variable, associated with link i, upper-
bounding the true interference-plus-noise denominator in (1).
Collecting all qi’s in a vector q := (q1, . . . , qM ), consider the
following relaxed version of (4):

max
{p|pi∈Pi ∀i∈M}

q∈RM
++

M∑
i=1

ui

(
hiipiq

−1
i

)
(5a)

subj. to γmin
i ≤ hiipiq

−1
i ≤ γmax

i , ∀i ∈M (5b)

qi ≥ ni +
∑
k �=i

hkipk, ∀i ∈M, (5c)

where R++ are the positive reals. Clearly, if (5c) were equal-
ity constraints, then problems (4) and (5) would be equivalent.
Even though (5) is not jointly convex in p, q, it will be possible
to transform it into an equivalent convex optimization problem.

To this end, apply the one-to-one change of variables pi =
eyi , qi = ezi . Then the power constraints in (5a) map to Pmin

i ·
e−yi ≤ 1 and (Pmax

i )−1eyi ≤ 1; the SINR constraints (5b)
become γmin

i h−1
ii ezi−yi ≤ 1, (γmax

i )−1hiie
yi−zi ≤ 1; and

those in (5c) translate to nie
−zi +

∑
k �=i hkie

yk−zi ≤ 1. The
transformed constraints are convex in y := (y1, . . . , yM ) and
z := (z1, . . . , zM ) since all left-hand sides are compositions of
nonnegative sum of exponentials (which are convex functions)
with affine mappings [7, Sec. 3.2].

What remains to show is that the objective in (5a) is concave
in y, z. Since it is a nonnegative sum of ui(e

yi−zi+ln hii) terms,
it suffices for ui(e

x) to be concave in the scalar x ∈ R, i.e., that
d2ui(e

x)
dx2 ≤ 0 ⇔ Ci(ξ) = −

ξu′′

i (ξ)
u′

i
(ξ) ≥ 1 (ξ = ex).

Now define matrix A := [aij ] with aii = 0 ∀ i ∈ M and
aij = hji/hii ∀ j �= i. (It is common to collect channels hij in
such a matrix; see e.g., [5].) The following result asserts that
under mild conditions the solution of (5) also solves (4).1

Proposition 1 Assume that: (a1) problem (4) is feasible; (a2)
utilities ui(γi) are continuous and strictly increasing; (a3) ma-
trix A is irreducible; (a4) there is no power vector p with
pi ∈ Pi ∀ i ∈ M s.t. γi = γmax

i ∀ i ∈ M; and (a5) the con-
straint Pmin

i is sufficiently small s.t. hiiP
min
i /ni < γmax

i . If
p∗, q∗ solve problem (5), then (5c) holds as equality at p∗, q∗;
i.e.,

q∗i = ni +
∑
k �=i

hkip
∗
k ∀i ∈M.

It is worth stressing that Prop. 1 holds for any strictly increasing
utility, not only the ones in (2). Note further that the assump-
tion hiiP

min
i /ni < γmax

i is innocuous, since Pmin
i is selected

so small that it amounts to no transmission. Moreover, the as-
sumption on the irreducibility [5, Def. A.21] of A is common
in power control problems; see e.g., [5, Sec. 5.5].

The non-achievability condition on the SINRs γmax
i within

the power constraints for all users is slightly more restrictive
and should be checked before solving (5). It is important to
remark that if the SINRs γmax

i are achievable for all users, then
the optimal total utility will be

∑M

i=1 ui(γ
max
i ) and no further

optimization is needed. If not though, the solution of (4) will
yield the optimal power allocation.

To check this, we rely on a classical power control algo-
rithm for given SINR requirements [8]. Specifically, consider
the iteration p(t+1) = I

(
p(t)

)
, called standard power control

algorithm (SPCA), where I(p) := [I1(p), . . . , IM (p)] with

Ii(p) := min
{
Pmax

i , γmax
i

1

hii

(
ni +

∑
k �=i

hkipk

)}
.

From [8, Cor. 1] it follows that the algorithm converges, and
upon convergence, all users will have γi = γmax

i if and only
if this is feasible under the constraint pi ≤ Pmax

i ∀ i ∈ M
(and then pi ≥ Pmin

i ∀ i ∈ M due to hiiP
min
i /ni < γmax

i );

1Proofs are omitted due to space limitations.
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otherwise, at least one user will have γi < γmax
i . Furthermore,

the SPCA can be implemented in a distributed fashion, without
any exchange of information among users [8, Sec. VI].

Proposition 1 allows optimizing the power allocation (when
not all γmax

i are achievable) by solving the Karush-Kuhn-Tucker
(KKT) conditions [7, Sec. 5.5.3] of the convex equivalent of (5).
This is the theme of the ensuing subsection.

3.1. Solution of the KKT conditions

Let λ�
i , λu

i , μi denote Lagrange multipliers corresponding to
min and max SINR constraints (5b) and (5c), respectively. The
Lagrangian of the convex equivalent of (5) is

L(y, z, λ�, λu, μ) :=
∑

i

μi

[
e−zi

(
ni +

∑
k �=i

hkie
yk

)
− 1

]

−
∑

i

ui(hiie
yi−zi) +

∑
i

λ�
i

(
γmin

i h−1
ii ezi−yi − 1

)

+
∑

i

λu
i

(
(γmax

i )−1hiie
yi−zi − 1

)
. (6)

The Lagrangian is separable in zi; hence, the zi which mini-
mizes the Lagrangian can be obtained given y, λ�

i , λu
i , μi for

each i ∈M by taking ∂L/∂zi = 0. The latter yields:

u′i

(
hii

eyi

ezi

)
−μi

ni +
∑

k �=i hkie
yk

hiieyi
+e2zi

λ�
iγ

min
i

(hiieyi)2
−

λu
i

γmax
i

= 0

(7)
Eq. (7) can be solved for ezi as a function of y, λ�

i , λu
i , μi.

In fact, all quantities needed for solving (7) are known locally
at Txi or Rxi. Specifically, these are the local Lagrange multi-
pliers λ�

i , λu
i , μi, the received power hiie

yi , and the measured
SINR, hiie

yi/
(
ni +

∑
k �=i hkie

yk
)
.

Since optimal powers y∗ and optimal Lagrange multipliers
λ�∗, λu∗, μ∗ cannot be obtained in closed form, namely by
solving ∂L/∂yi = 0 directly, an iterative algorithm is needed.
The exact form of a Lagrangian gradient-based algorithm and
its distributed implementation are presented next.

4. DISTRIBUTED ALGORITHM

In this section, we present a distributed algorithm to solve the
convex equivalent of (5). Let z̄i denote the optimal value of
zi as a function of y, λ�

i , λu
i , μi, obtained locally from (7).

Then at any y, λ�, λu, μ (and corresponding z̄) we have

∂L

∂yi

∣∣∣∣
(y,z̄,λ�,λu,μ)

= −u′i

(
hii

eyi

ez̄i

)
hii

eyi

ez̄i
+ eyi

∑
j �=i

hijμje
−z̄j

− ez̄iλ�
iγ

min
i (hii)

−1e−yi + e−z̄iλu
i (γmax

i )−1hiie
yi . (8)

Further, define a beacon variable bj := μje
−z̄j and observe

that the variables bj as well as the channels hij are the only
non-local (to Txi or Rxi) quantities that ∂L/∂yi depends on.

Now let Y min
i := lnPmin

i , Y max
i := lnPmax

i , and [.]
Y max

i

Y min
i

define the projection onto [Y min
i , Y max

i ]; and [.]+ onto the non-
negative reals. Then the optimal powers y∗ and Lagrange mul-
tipliers λ�∗, λu∗, μ∗ can be obtained by gradient projection
iterations (indexed by t) with constant stepsize β.

yi(t + 1) =

[
yi(t)− β

∂L

∂yi

∣∣∣∣
(y(t),z̄(t),λ�(t),λu(t),μ(t))

]Y max
i

Y min
i

(9)

λ�
i(t + 1) =

[
λ�

i(t) + β

(
ez̄i(t)γmin

i

hiieyi(t)
− 1

)]+

(10)

λu
i (t + 1) =

[
λu

i (t) + β

(
hiie

yi(t)

γmax
i ez̄i(t)

− 1

)]+

(11)

μi(t + 1) =

[
μi(t) + β

(
μi

ni +
∑

k �=i hkie
yk(t)

ez̄i(t)
− 1

)]+

.

(12)
The updates for yi, λ�

i , λu
i , μi take place at the transmitter of

link i ∈ M. As in [4], this is possible provided that Txi knows:
(i) the SINR hiie

yi/
(
ni+

∑
k �=i hkie

yk
)

at every timeslot t and
the channel hii (through feedback from Rxi); (ii) the channels
hij to Rxj (by reciprocity if Rxj transmits a training signal);
and (iii) the beacon variables bj . Note that each bj is known at
Txj , so every transmitter must broadcast its beacon variable to
all other transmitters. Nevertheless, it is only a scalar quan-
tity that must be broadcasted. This type of message passing in
utility-based power control is also used in [4], [6, Ch. 3], while
a simpler scheme is advocated in [5, Sec. 6.5.4].

We contend that the updates (9)–(12) can be implemented
in a distributed fashion. Indeed, observe that the updates (10)–
(12) need only quantities locally available at each Txi. Specifi-
cally, z̄i can be evaluated at Txi, if the current SINR and chan-
nel hii are fed back from Rxi. Similarly, the interference-plus-
noise ni +

∑
k �=i hkie

yk depends only on the current SINR,
hii and power eyi . For the evaluation of ∂L/∂yi in (9), the
variables bj need to be acquired at Txi as described earlier in
(iii), and the channels hij are available by assumption (ii). (All
other quantities involved in ∂L/∂yi are known at Txi by (i).)

5. NUMERICAL RESULTS

We tested our algorithm in a power control problem for a peer-
to-peer CR-CDMA network consisting of M = 8 users with
heterogeneous QoS constraints. With dij denoting the distance
between Txi and Rxj , the channels hij follow a (deterministic)
path loss model with hii = d−4

ii and hij = B−1d−4
ij for i �= j,

where B = 128 is the spreading gain. All Txi-Rxi pairs are
placed randomly with uniform distribution. Specifically, each
Txi is placed on a square with side 10 m and each Rxi is placed
on a square with side 3 m centered at its corresponding Txi and
at distance at least 1 m from it (if not, the position of Rxi is re-
drawn). Table 1 lists the coordinates (on the plane) of 8 Tx-Rx
pairs selected randomly as described. Since hij > 0 ∀ i, j, ma-
trix A is irreducible [5, Lem. A.22], and (a3) in Prop. 1 holds.

Logarithmic utilities (i.e., ui(γi) = ln γi) are adopted, as
well as the heterogeneous QoS requirements used in [3] (given
in terms of rates), mapped to SINR for our simulation. Specifi-
cally, we set γmin

i = 8, γmax
i = 20 for users 2, 3, and 4, γmin

i =
20, γmax

i = 140 for users 5, 7, and 8, and γmin
i = 140, γmax

i =
20000 for users 1 and 6. (The assignment of γmin

i , γmax
i to
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Pair Coordinates Txi; Rxi Pair Coordinates Txi; Rxi

1 (4.80,5.15);(4.92,3.67) 5 (6.17,3.18);(6.95,4.40)
2 (5.61,6.06);(6.11,7.51) 6 (6.85,5.88);(8.07,6.70)
3 (6.16,9.67);(4.70,10.93) 7 (5.10,1.30);(4.45,0.12)
4 (6.62,8.22);(5.17,9.39) 8 (7.14,2.54);(5.83,1.05)

Table 1. Coordinates of 8 Tx-Rx pairs (shown in 2 columns).

Lagrangian QoS-ps-DSA QoSe-DSA ADP SPCA∑
ui 32.43 12.1 12 33.7

γ1 140 1.4e-07 7.1e-08 81 70.4
γ2 20 20 20 43.3 20
γ3 20 20 20 191.1 20
γ4 20 20 20 6.2 20
γ5 32.9 52.5 91.3 55.2 81.4
γ6 786.2 655.3 904.7 443 734.2
γ7 140 140 140 544.9 140
γ8 30 32.2 25.6 7.5 24.1

Table 2. Total utility (top) and SINR per user (bottom) achieved
by different algorithms.

users is random.) We also set for all i, Pmax
i /ni = 40 dB,

Pmax
i /Pmin

i = 90 dB and a stepsize β = 0.25 for this ex-
ample. Note that for these values, hiiP

min
i /ni < Pmin

i /ni =
−50 dB < γmax

i , as required by (a5) in Proposition 1.
Achievability of the SINRs γmax

i can be checked with the
SPCA (typically, no more than 20 iterations are required). The
resulting SINRs are listed in the last column of Table 2. Clearly,
users 1, 5, 6, and 8 have achieved SINR γi < γmax

i (shown in
boldface), confirming that (a4) in Prop. 1 holds and the utility
maximization algorithm (9)–(12) needs to be used.

Total utility and SINR per user of this paper’s algorithm
(9)–(12) along with those of QoS-ps-DSA, QoSe-DSA [3] (for
the single-channel case) and ADP [4] are listed in Table 2,
where the SINRs violating the constraints are shown in bold-
face. Clearly, QoS-ps-DSA and QoSe-DSA, which incorpo-
rate QoS provisioning, failed to satisfy all users’ rate require-
ments, although these were feasible. Also observe that they
have not maximized the total utility. Moreover, we remark that
the ADP has achieved the highest utility, which is expected,
since it solves (4a) without the constraints (4b). Finally, note
that despite the high value of Pmax

i /ni = 40 dB, several users
actually operate at much lower SINR, e.g., γ4 = 13 dB, indi-
cating that the network is not operating at high SINR.

Fig. 1 depicts the convergence of powers and Lagrange mul-
tipliers for our Lagrangian algorithm. Although the conver-
gence is relatively fast, the figure indicates that it may take an
order of magnitude more iterations to converge than its game-
theoretic counterparts in [3] (but the algorithms in [3] do not
guarantee satisfaction of the constraints). Note further that none
of the Lagrange multipliers μi is finally zero, showing that the
constraints (5c) are active for all i, in agreement with Prop. 1.

6. CONCLUSIONS

The present work tackled several aspects of the power control
problem in peer-to-peer CR networks. The hierarchy between
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Fig. 1. Convergence of powers and Lagrange multipliers.

primary and secondary users was manifested through appropri-
ate minimum and maximum SINR constraints, while a utility
function was employed as a QoS indicator for each user. The
optimal power control was obtained by considering a relaxed
version of the original problem, which was shown equivalent
to a convex problem; interestingly, a solution of the original
problem could be recovered from the relaxed one under mild
assumptions. Finally, a distributed algorithm for optimal power
control requiring exchange of a scalar quantity was developed.2
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