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a b s t r a c t

In this work, we deal in a d dimensional unit ball equipped with an inner product
constructed by adding a mass point at zero to the classical ball inner product applied to
the gradients of the functions. Apart from determining an explicit orthogonal polynomial
basis, we study approximation properties of Fourier expansions in terms of this basis.
In particular, we deduce relations between the partial Fourier sums in terms of the
new orthogonal polynomials and the partial Fourier sums in terms of the classical ball
polynomials. We also give an estimate of the approximation error by polynomials of
degree at most n in the corresponding Sobolev space, proving that we can approxi-
mate a function by using its gradient. Numerical examples are given to illustrate the
approximation behavior of the Sobolev basis.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The natural field of application of orthogonal polynomials is that of the approximation of functions, which can be
ound in multiple technological applications. The reconstruction and representation of surfaces is a basic tool of graphical
omputing, medical imaging and other branches. For example, in ophthalmological practice, the Hartmann–Shack sensor
or wavefront sensor) is used to determine the refractive errors of the human optical system, measuring slopes or normals
f the wavefront at different points starting from the displacement of some luminous points in a target. A systematic
ethod of classifying forms of aberration is to express the corresponding function on an appropriate basis. The so-called
ernike polynomials, originally described by Frits Zernike in 1934 [1] to describe the diffraction of the wavefront in the
hase contrast image microscope, are recognized as the standard basis of wavefront developments by the Optical Society
f America, (OSA). In addition, they are implemented in the standard measuring devices used in optics.
From our point of view, Zernike polynomials are polynomials in two variables which are orthogonal on the unit disk

ith respect to the Lebesgue measure. They are represented in polar coordinates as a product of a radial polynomial part
imes a trigonometric function. The even polynomials are multiples of the cosine, and the odd polynomials are multiples
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of the sine. Any sufficiently regular phase function defined on the unit disk can be represented by its Fourier expansion
in terms of the Zernike polynomials with certain coefficients. The alteration of these coefficients allows detection of the
possible aberrations of the studied optical system. The Zernike polynomials show many applications in the manufacture
of precision optical devices, because they allow the characterization of higher order errors observed in the interferometric
analysis to achieve the desired performance of the system. They are also used to describe the aberrations of the cornea
or lens from an ideal spherical shape in optometry and ophthalmology. Finally, they can be effectively used in adaptive
optics to cancel atmospheric distortion, allowing images to be improved in IR or visual astronomy and satellite images.

However, in practice, Zernike polynomials present convergence problems when working on the edges of the disk,
roducing distortions that could be eliminated by dealing with a modification of the associated inner product ([2,3],
mong others). This modification could be, for instance, of Sobolev type, that is, including into the original inner product
ne or several terms on one or several points on the interior or on the boundary of the unit disk, using function values
nd/or derivative operators, since it is known that measuring devices are also capable of describing local gradients.
obolev orthogonal polynomials in several variables have already been applied in the analysis of polishing tools in the
anufacture of optical surfaces [4]. In the case of applications of orthogonal polynomials to the clinical problems related

o human vision, we consider interesting, for example, the study of the efficiency of bivariate Zernike–Sobolev orthogonal
olynomials within this context.
In this paper we start dealing in a d dimensional unit ball equipped with a inner product constructed by adding a mass

point at zero to the classical ball inner product applied to the gradients of the functions in the form

⟨f , g⟩∇,µ = f (0)g(0) + λ

∫
Bd

∇f (x) · ∇g(x) (1 − ∥x∥2)µ dx,

for λ > 0 and µ > −1. While these conditions are necessary for the positive definiteness of the inner product, our
contribution involves only the case when µ ⩾ 0. Our paper is divided in three parts. In the first part, we work in the
general frame, then we study the particular case when µ = 0, that we have called the Zernike case, noting that it cannot
be deduced from the general case, and finally, we have designed and implemented numerical experiments to contrast
the improvements offered by these new approaches. We show that if we only know the gradients of the functions, we
can compute approximants by using the Sobolev Fourier orthogonal expansions, and the approximation is similar or even
better than the classical one.

Since the above inner product involves a derivation operator, it is usually called a Sobolev inner product. Despite the
fact that there are many works about univariate orthogonal polynomials with respect to this kind of inner product, the
multivariate case has been considered only in a few classical cases (see, for example, [5,6] and the references therein). In
the introduction of [7], Li and Xu explain why and how the approximation based on the Sobolev orthogonal expansions
could be better than the classical orthogonal expansions.

The particular inner product involving gradients that we will study in our paper was introduced and studied in the
particular case µ = 0 by Xu in [4], where the author finds a complete system of orthonormal polynomials with respect
to these inner products and explores their properties.

Our objective in this paper, apart from the extension and completion of the results obtained by Xu in [4] to the more
general case µ ⩾ 0, is to study the analytic properties of approximation by means of the corresponding Fourier sums. We
remark that, using our results, we can compute the coefficients of the Sobolev–Fourier sums without using derivatives.

The paper is organized as follows. Section 2 presents background on the orthogonal structure and approximation on
the unit ball. The Sobolev inner product with a mass point at the origin and associated bases of orthogonal polynomials are
discussed in Section 3. Section 4 is devoted to the study of Sobolev Fourier orthogonal expansions and their approximation
behavior. Finally, in Section 6, we illustrate our results with numerical examples.

2. Preliminaries

In this section, we collect the basic background on the classical orthogonal polynomials on the unit ball and orthogonal
expansions that will be used throughout this paper.

For x ∈ Rd, we denote by ∥x∥ the usual Euclidean norm of x. The unit ball and the unit sphere in Rd are denoted by
Bd

=
{
x ∈ Rd

: ∥x∥ ⩽ 1
}
and Sd−1

=
{
ξ ∈ Rd

: ∥ξ∥ = 1
}
, respectively.

For µ > −1, let Wµ be the weight function on the unit ball defined as

Wµ(x) =
(
1 − ∥x∥2)µ , x ∈ Bd.

This weight function can be used to define the inner product

⟨f , g⟩µ = bµ

∫
Bd

f (x)g(x)
(
1 − ∥x∥2)µ dx, f , g ∈ L2(Wµ;Bd), (2.1)

where bµ is the normalization constant such that ⟨1, 1⟩µ = 1 given by

bµ =

(∫
Wµ(x) dx

)−1

=
Γ
(
µ + 1 +

d
2

)
d/2 .
Bd Γ (µ + 1)π
2
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In turn, this inner product induces the norm ∥ · ∥µ defined by

∥f ∥µ =

(
bµ

∫
Bd

f (x)2 Wµ(x)dx
)1/2

, f ∈ L2(Wµ;Bd). (2.2)

For n ⩾ 0, let us denote by Πd
n the linear space of real polynomials in d variables of total degree less than or equal to

n, and by Πd
=
⋃

n⩾0 Πd
n the linear space of all real polynomials in d variables.

A polynomial P ∈ Πd
n is said to be an orthogonal polynomial of (total) degree n if ⟨P,Q ⟩µ = 0 for all Q ∈ Πd

n−1. For
n ⩾ 0, let Vd

n (Wµ) denote the space of orthogonal polynomials of total degree n. Then dimVd
n (Wµ) =

(n+d−1
n

)
:= rdn .

For n ⩾ 0, let {Pn
ν (x) : 0 ⩽ ν ⩽ rdn } be a basis of Vd

n (Wµ). Notice that every element of Vd
n (Wµ) is orthogonal to

olynomials of lower degree. If the elements of the basis are also orthogonal to each other, that is, ⟨Pn
ν , Pn

η ⟩ = 0 whenever
ν ̸= η, we call the basis mutually orthogonal. If, in addition, ⟨Pn

ν , Pn
ν ⟩ = 1, we say that the basis is orthonormal.

2.1. Spherical harmonics

Let Hd
n denote the space of harmonic polynomials in d variables of degree n, that is, homogeneous polynomials of

degree n satisfying the Laplace equation ∆Y = 0, where ∆ =
∂2

∂x21
+ · · · +

∂2

∂x2d
is the usual Laplace operator. It is well

known that

adn := dim Hd
n =

(
n + d − 1

n

)
−

(
n + d − 3

n

)
.

Spherical harmonics are the restriction of harmonic polynomials to the unit sphere. If Y ∈ Hd
n, then in spherical-polar

oordinates x = rξ where r > 0 and ξ ∈ Sd−1, we get

Y (x) = rn Y (ξ ),

o that Y is uniquely determined by its restriction to the sphere. We will also use Hd
n to denote the space of spherical

armonics of degree n.
If we define the operator

x · ∇ =

d∑
i=1

xi
∂

∂xi
,

hen, by Euler’s equation for homogeneous polynomials, we deduce

x · ∇Y (x) = n Y (x), ∀Y ∈ Hd
n.

The differential operators ∆ and x · ∇ can be expressed in spherical-polar coordinates as [8]

∆ =
∂2

∂r2
+

d − 1
r

∂

∂r
+

1
r2

∆0, (2.3)

x · ∇ = r
∂

∂r
, (2.4)

here ∆0 is the spherical part of the Laplacian and is called the Laplace–Beltrami operator. The operator ∆0 has spherical
armonics as eigenfunctions. More precisely, it holds that [8]

∆0 Y (ξ ) = −n (n + d − 2) Y (ξ ), ∀Y ∈ Hd
n, ξ ∈ Sd−1.

We will also need the following family of differential operators, Di,j, defined by

Di,j = xi ∂j − xj ∂i, 1 ⩽ i < j ⩽ d.

These are angular derivatives since Di,j = ∂θi,j in the polar coordinates of the xi, xj–plane, (xi, xj) = ri,j (cos θi,j, sin θi,j).
Furthermore, the angular derivatives Di,j and the Laplace–Beltrami operator ∆0 are related by

∆0 =

∑
1⩽i<j⩽d

D2
i,j.

Spherical harmonics are orthogonal polynomials on Sd−1 with respect to the inner product

⟨f , g⟩Sd−1 =
1

σd−1

∫
Sd−1

f (ξ ) g(ξ ) dσ (ξ ),

where dσ denotes the surface measure and σd−1 denotes the surface area,

σd−1 =

∫
dσ (ξ ) =

2πd/2
.

Sd−1 Γ (d/2)
3
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2.2. Mutually orthogonal polynomials on the unit ball

A mutually orthogonal basis of Vd
n (Wµ) can be given in terms of Jacobi polynomials and spherical harmonics.

For α, β > −1, the Jacobi polynomial P (α,β)
n (t) of degree n is defined as

P (α,β)
n (t) =

1
n!

n∑
k=0

(
n
k

)
(k + α + 1)n−k(k + α + β + 1)k

(
t − 1
2

)k

,

here (a)n = a (a + 1) · · · (a + n − 1) denotes the Pochhammer symbol. They are orthogonal with respect to the Jacobi
eight function wα,β (t) = (1 − t)α(1 + t)β on [−1, 1].

Proposition 2.1 ([9]). For n ⩾ 0 and 0 ⩽ j ⩽ n
2 , let {Y n−2j

ν (x) : 1 ⩽ ν ⩽ adn−2j} denote an orthonormal basis of Hd
n−2j. For

> −1, define the polynomials

Pn,µ
j,ν (x) = P

(
µ,n−2j+ d−2

2

)
j

(
2 ∥x∥2

− 1
)
Y n−2j

ν (x). (2.5)

hen the set {Pn,µ
j,ν : 0 ⩽ j ⩽ n

2 , 1 ⩽ ν ⩽ adn−2j} constitutes a mutually orthogonal basis of Vd
n (Wµ).

Moreover,

⟨Pn,µ
j,ν , Pm,µ

k,η ⟩µ = Hµ

j,n δn,m δj,k δν,η,

here

Hµ

j,n =
(µ + 1)j (d/2)n−j (n − j + µ + d/2)
j! (µ + d/2 + 1)n−j (n + µ + d/2)

. (2.6)

The square of the norm of the Jacobi polynomial P (α,β)
j (x), denoted by h(α,β)

j , is related with Hµ

j,n as follows:

Hµ

j,n =
γµ,d

2n−2j h
(µ,n−2j+ d−2

2 )
j , (2.7)

here γµ,d =
bµ σd−1

2µ+
d
2 +1

.

It is known that the elements of the basis of Vd
n (Wµ) defined in (2.5) are eigenfunctions of a second order linear partial

ifferential operator Lµ. More precisely, we have [10,11]

Lµ[Pn,µ
j,ν (x)] = λ

µ

n,j P
n,µ
j,ν (x) , (2.8)

here

Lµ = (1 − ∥x∥2)∆ − (2µ + 1) (x · ∇), (2.9)

nd

λ
µ

n,j = −[4 j (n − j + µ + d/2) + 2 (n − 2 j) (µ + 1)]. (2.10)

We will need the following proposition in the sequel, which states that the basis defined in (2.5) satisfies another
rthogonality on the unit ball.

roposition 2.2 ([11]). Let µ > −1 and let Pn,µ
j,ν (x) be the mutually orthogonal polynomials in Vd

n (Wµ) defined in (2.5). Then,

bµ

∫
Bd

∇Pn,µ
j,ν (x) · ∇Pm,µ

k,η (x)Wµ+1(x) dx = Hµ

j,n(∇) δn,m δj,k δν,η,

where

Hµ

j,n(∇) = [4 j (n − j + µ + d/2) + 2 (n − 2 j) (µ + 1)]Hµ

j,n.

The following lemma will be useful in the sequel. For convenience we define Pn,µ
j,ν (x) = 0 if j < 0.

Lemma 2.3 ([11]). Let µ > −1. Then

∆ Pn,µ
j,ν (x) = κ

µ

n−j P
n−2,µ+2
j−1,ν (x) and ∆0 P

n,µ
j,ν (x) = ϱn−2j P

n,µ
j,ν (x),

where

κµ
n = 4

(
n + µ +

d
) (

n +
d − 2

)
and ϱn = −n (n + d − 2).
2 2
4
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Motivated by Proposition 2.2, we define the Sobolev space: For m ∈ Nd
0, let |m| = m1 +· · ·+md and ∂m

= ∂
m1
1 · · · ∂

md
d .

For µ > −1 and s ⩾ 1, we denote by Ws
2(Wµ;Bd) the Sobolev space

Ws
2(Wµ;Bd) =

{
f ∈ L2(Wµ;Bd); ∂mf ∈ L2(Wµ+|m|;Bd), |m| ⩽ s, m ∈ Nd

0

}
.

2.3. Fourier orthogonal expansion and approximation

With respect to the basis (2.5), the Fourier orthogonal expansion of f ∈ L2(Wµ;Bd) is defined by

f (x) =

∞∑
n=0

⌊
n
2 ⌋∑

j=0

adn−2j∑
ν=1

f̂ n,µ
j,ν Pn,µ

j,ν (x) with f̂ n,µ
j,ν :=

1
Hµ

j,n

⟨
f , Pn,µ

j,ν

⟩
µ

. (2.11)

Since ∥f ∥µ is finite, the Parseval identity holds: for µ > −1,

∥f ∥2
µ =

∞∑
n=0

⌊
n
2 ⌋∑

j=0

adn−2j∑
ν=1

⏐⏐̂f n,µ
j,ν

⏐⏐2 Hµ

j,n. (2.12)

Let projµn : L2(Wµ;Bd) → Vd
n (Wµ) and Sµ

n : L2(Wµ;Bd) → Πd
n denote the projection operator and the partial sum

operator, respectively. Then,

projµmf (x) =

⌊
m
2 ⌋∑

j=0

adm−2j∑
ν=1

f̂ m,µ

j,ν Pm,µ

j,ν (x) and Sµ
n f (x) =

n∑
m=0

projµmf (x).

By definition, Sµ
n f = f if f ∈ Πd

n and ⟨f − Sµ
n f ,Q ⟩µ = 0 for all Q ∈ Πd

n .
It turns out that the partial derivatives commute with the partial sum operator.

Proposition 2.4 ([11]). Let µ > −1. Then,

∂i Sµ
n f = Sµ+1

n−1 (∂i f ), 1 ⩽ i ⩽ d,

and

Di,j Sµ
n f = Sµ

n (Di,j f ), 1 ⩽ i < j ⩽ d.

The relations in the above proposition pass down to the Fourier coefficients.

Proposition 2.5. Let f ∈ W2
2 (Wµ;Bd), µ > −1. Then,

∆̂ f
n−2,µ+2
j,ν = κ

µ

n−j−1 f̂
n,µ

j+1,ν, 0 ⩽ j ⩽
n − 2
2

,

nd

∆̂0 f
n,µ
j,ν = ϱn−2j f̂

n,µ
j,ν , 0 ⩽ j ⩽

n
2
.

We consider the error, En(f )µ, of best approximation by polynomials in Πd
n in the space L2(Wµ;Bd), defined by

En(f )µ = inf
pn∈Πd

n

∥f − pn∥µ,

nd notice that the infimum is achieved by Sµ
n f . The following estimate was proved in [11]: for n ⩾ 2s and f ∈ W2s

2 (Wµ;Bd),

En(f )µ ⩽
c
n2s

[
En−2s(∆sf )µ+2s + En(∆s

0f )µ

]
, (2.13)

nd for n ⩾ 2s + 1 and f ∈ W2s+1
2 (Wµ;Bd),

En(f )µ ⩽
c

n2s+1

[ d∑
i=1

En−2s−1(∂i ∆sf )µ+2s+1 +

∑
1⩽i<j⩽d

En(Di,j ∆
s
0f )µ

]
. (2.14)

Here and in the sequel, c is a generic constant independent of n and f but may depend on µ and d, and its value may
be different from one instance to the next. As pointed out in [11], each term involving ∆ and ∆0 on the right hand side
of the above inequalities is necessary since the first term deals with the radial component of f and the second one deals
with the harmonic component of f defined on the ball.
5
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3. Sobolev orthogonal polynomials with a mass point at zero

This section is devoted to the study of the orthogonal structure on the unit ball with respect to the Sobolev inner product

⟨f , g⟩∇,µ = f (0)g(0) + λ

∫
Bd

∇f (x) · ∇g(x)Wµ(x)dx, λ > 0. (3.1)

rthogonal polynomials with respect to inner products involving derivatives are called Sobolev orthogonal polynomials.
et us denote by Vd

n (∇,Wµ) the space of Sobolev orthogonal polynomials of degree n with respect (3.1).
Let U(Wµ;Bd) denote the Sobolev space

U(Wµ;Bd) = {f ∈ W1
2 (Wµ;Bd) : |f (0)| < +∞},

nd let ∥ · ∥∇,µ denote the norm of U(Wµ;Bd) defined by

∥f ∥∇,µ =

(
f (0)2 +

λ

bµ

d∑
i=1

∥∂if ∥2
µ

)1/2

. (3.2)

In the following proposition, we construct a mutually orthogonal polynomial basis with respect to the inner product
(3.1).

Proposition 3.1. For µ > 0, define the polynomials

Q n,µ
j,ν (x) := Pn,µ−1

j,ν (x) − Pn,µ−1
j,ν (0), n ⩾ 1, (3.3)

Q 0,µ
0,0 (x) := 1.

Then {Q n,µ
j,ν : 0 ⩽ j ⩽ n

2 , 1 ⩽ ν ⩽ adn−2j} constitutes a mutually orthogonal basis of Vd
n (∇,Wµ). Moreover,⟨

Q n,µ
j,ν ,Qm,µ

k,η

⟩
∇,µ

= H∇,µ

j,n δn,m δj,k δν,η,

where

H∇,µ

j,n =
λ

bµ−1
[4 j (n − j + µ + d/2 − 1) + 2 (n − 2 j)µ]Hµ−1

j,n . (3.4)

roof. We note that since Y n−2j
ν ∈ Hd

n−2j are homogeneous polynomials, Y n−2j
ν (0) = 0 when n − 2j ⩾ 1, and, therefore,

n,µ−1
j,ν (0) = 0 for n − 2j ⩾ 1. Moreover, Q n,µ

j,ν (0) = 0 for n ⩾ 1.
On one hand, it is clear that⟨

Q 0,µ
0,0 ,Q 0,µ

0,0

⟩
∇,µ

= 1 and
⟨
Q 0,µ
0,0 ,Qm,µ

k,η

⟩
∇,µ

= 0, m ⩾ 1.

n the other hand, we compute⟨
Q n,µ
j,ν ,Qm,µ

k,η

⟩
∇,µ

= λ

∫
Bd

∇Pn,µ−1
j,ν (x) · ∇Pm,µ−1

k,η (x)Wµ(x) dx.

rom Proposition 2.2 we get⟨
Q n,µ
j,ν ,Qm,µ

k,η

⟩
∇,µ

=
λ

bµ−1
[4 j (n − j + µ + d/2 − 1) + 2 (n − 2 j)µ]Hµ−1

j,n δn,m δj,k δν,η. □

Observe that we can write the basis (3.3) as follows:

Q n,µ
0,ν (x) := Y n

ν (x),

Q n,µ
j,ν (x) := P

(
µ−1,n−2j+ d−2

2

)
j

(
2 ∥x∥2

− 1
)
Y n−2j

ν (x), 1 ⩽ j ⩽ ⌊
n − 1
2

⌋,

Q n,µ
n
2 ,1 (x) := P

(µ−1, d−2
2 )

n
2

(2 ∥x∥2
− 1) − (−1)

n
2
(d/2) n

2

(n/2)!
,

where Q n,µ
n (x) holds only when n is even. Here, we have used the fact that P (α,β)(−1) = (−1)k(β + 1) /k!

2 ,1 k k

6
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The case when µ = 0 was previously studied in [4]. Here, we recall the explicit expression for the basis in this case.
Let us denote by qk(x) the univariate polynomial defined by

q0(x) = 1, qk(x) =

∫ x

−1
P
(0, d2 )
k−1 (t) dt, k ⩾ 1.

The Jacobi polynomials P
(−1, d−2

2 )
k (x) are well defined for k ⩾ 1, satisfying [12, (4.5.5), p.72]

d
dx

P
(−1, d−2

2 )
k (x) =

1
2

(
k +

d − 2
2

)
P
(0, d2 )
k−1 (x). (3.5)

ence, we have

qk(x) =
4

2k + d − 2

(
P
(−1, d−2

2 )
k (x) − (−1)k

(d/2)k
k!

)
.

roposition 3.2. A mutually orthogonal basis for Vd
n (∇,W0) is given by

Q n,0
0,ν (x) = Y n

ν (x),

Q n,0
j,ν (x) = (1 − ∥x∥2) P

(1,n−2j+ d−2
2 )

j−1 (2∥x∥2
− 1) Y n−2j

ν (x), 1 ⩽ j ⩽ ⌊
n−1
2 ⌋,

Q n,0
n
2 ,1(x) =

4
n + d − 2

(
P
(−1, d−2

2 )
n
2

(2∥x∥2
− 1) − (−1)

n
2
(d/2) n

2

(n/2)!

)
,

(3.6)

here Q n,0
n
2 ,1(x) holds only when n is even. Furthermore,⟨

Q n,0
0,ν ,Q n,0

0,ν

⟩
∇,0

= n λ σd−1,⟨
Q n,0
j,ν ,Q n,0

j,ν

⟩
∇,0

=
2 j2

n +
d−2
2

λ σd−1, 1 ⩽ j ⩽ ⌊
n−1
2 ⌋,⟨

Q n,0
n
2 ,1,Q

n,0
n
2 ,1

⟩
∇,0

=
8

n +
d−2
2

λ σd−1.

(3.7)

. Sobolev Fourier orthogonal expansions and approximation

For µ ⩾ 0 and f ∈ U(Wµ;Bd), let us denote by f̂ n,µ
j,ν (∇) the Fourier coefficients with respect to the basis of Vd

n (∇,Wµ)
efined in (3.3), that is,

f̂ n,µ
j,ν (∇) =

1

H∇,µ

j,n

⟨
f ,Q n,µ

j,ν

⟩
∇,µ

.

et proj∇,µ
m : U(Wµ;Bd) → Vd

n (∇, Wµ) and S∇,µ
n : U(Wµ;Bd) → Πd

n denote the projection operator and partial sum
perators

proj∇,µ
m f (x) =

⌊
m
2 ⌋∑

j=0

adm−2j∑
ν=1

f̂ m,µ

j,ν (∇)Qm,µ

j,ν (x) and S∇,µ
n f (x) =

n∑
m=0

proj∇,µ
m f (x).

4.1. The case µ > 0

The Fourier coefficients with respect to the basis (2.5) of Vd
n (Wµ) are related to the Fourier coefficients f̂ n,µ

j,ν (∇).

Proposition 4.1. Let µ > 0. Then, for f ∈ U(Wµ;Bd),

f̂ n,µ
j,ν (∇) = f̂ n,µ−1

j,ν , n ⩾ 1,

f̂ 0,µ
0,1 (∇) = f (0).

Proof. Since Q 0,µ
0,0 (x) = 1 and H∇,µ

0,0 = 1 for µ ⩾ 0, f̂ 0,µ
0,1 (∇) = ⟨f ,Q 0,µ

0,1 ⟩∇,µ = f (0).
Let µ > 0. For n ⩾ 1,⟨

f ,Q n,µ
j,ν

⟩
∇,µ

= f (0)Q n,µ
j,ν (0) + λ

∫
Bd

∇f (x) · ∇Q n,µ
j,ν (x)Wµ(x) dx

= λ

∫
∇f (x) · ∇Pn,µ−1

j,ν (x)Wµ(x) dx.

Bd

7
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Using Green’s formula and (2.8), we get⟨
f ,Q n,µ

j,ν

⟩
∇,µ

= λ [4 j (n − j + µ + d/2 − 1) + 2 (n − 2 j)µ]

∫
Bd

f (x) Pn,µ−1
j,ν (x)Wµ−1(x) dx

=
λ

bµ−1
[4 j (n − j + µ + d/2 − 1) + 2 (n − 2 j)µ]

⟨
f , Pn,µ−1

j,ν

⟩
µ−1

.

From (3.4), we get

f̂ n,µ
j,ν (∇) =

1

H∇,µ

j,n

⟨
f ,Q n,µ

j,ν

⟩
∇,µ

=
1

Hµ−1
j,n

⟨
f , Pn,µ−1

j,ν

⟩
µ−1

= f̂ n,µ−1
j,ν . □

It is important to note that the Fourier coefficients can be computed without involving the derivatives of f .
For µ > 0, we can deduce the relationship between the projection operators with respect to the classical and Sobolev

bases.

Proposition 4.2. For µ > 0,

proj∇,µ

0 f (x) = f (0),

proj∇,µ
m f (x) = projµ−1

m f (x) − projµ−1
m f (0), m ⩾ 1,

and

S∇,µ

0 f (x) = f (0),

S∇,µ
n f (x) = f (0) + Sµ−1

n f (x) − Sµ−1
n f (0), n ⩾ 0.

Proof. Clearly, proj∇,µ

0 f (x) = f (0). For m ⩾ 1,

proj∇,µ
m f (x) =

⌊
m
2 ⌋∑

j=0

adm−2j∑
ν=1

f̂ m,µ

j,ν (∇)Qm,µ

j,ν (x)

=

⌊
m
2 ⌋∑

j=0

adm−2j∑
ν=1

[̂
f m,µ−1
j,ν Pm,µ−1

j,ν (x) − f̂ m,µ−1
j,ν Pm,µ−1

j,ν (0)
]
.

Then,

proj∇,µ
m f (x) = projµ−1

m f (x) − projµ−1
m f (0), m ⩾ 1,

where we have used Proposition 4.1 to write f̂ n,µ
j,ν (∇) = f̂ n,µ−1

j,ν for n ⩾ 1.
Moreover, since projµ−1

0 f (x) − projµ−1
0 f (0) = 0

S∇,µ
n f (x) = proj∇,µ

0 f (x) +

n∑
m=1

proj∇,µ
m f (x)

= f (0) +

n∑
m=0

[
projµ−1

m f (x) − projµ−1
m f (0)

]
.

Therefore,

S∇,µ
n f (x) = Sµ−1

n f (x) + f (0) − Sµ−1
n f (0), µ > 0, (4.1)

nd, consequently, S∇,µ
n f (0) = f (0). □

We have the following proposition stating the interaction between differentiation and the partial sum operator S∇,µ
n

or µ > 0.

roposition 4.3. Let µ > 0 and n ⩾ 1. Then,

∂i S∇,µ
n f (x) = Sµ

n−1(∂i f )(x), 1 ⩽ i ⩽ d,

r, equivalently,

∂ S∇,µf (x) = S∇,µ+1(∂ f )(x) + Sµ (∂ f )(0) − (∂ f )(0).
i n n−1 i n−1 i i

8
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Proof. Differentiating (4.1) and using Proposition 2.4, we obtain

∂i S∇,µ
n f (x) = ∂i Sµ−1

n f (x) = Sµ

n−1(∂i f )(x).

Using (4.1) again, we get

Sµ

n−1(∂i f )(x) = S∇,µ+1
n−1 (∂i f )(x) + Sµ

n−1(∂i f )(0) − (∂i f )(0),

and the result follows. □

We have the following expression for the Parseval identity.

Corollary 4.4. For µ > 0 and f ∈ U(Wµ;Bd),

∥f ∥2
∇,µ = f (0)2 +

λ

bµ−1

∞∑
n=1

⌊
n
2 ⌋∑

j=0

an−2j∑
ν=1

⏐⏐⏐λµ−1
n,j

⏐⏐⏐ ⏐⏐⏐̂f n,µ−1
j,n

⏐⏐⏐2 Hµ−1
j,n ,

where λ
µ−1
n,j are defined in (2.10).

Consequently,

bµ−1

∫
Bd

∥∇f (x)∥2 Wµ(x) dx =

∞∑
n=1

⌊
n
2 ⌋∑

j=0

an−2j∑
ν=1

⏐⏐⏐λµ−1
n,j

⏐⏐⏐ ⏐⏐⏐̂f n,µ−1
j,n

⏐⏐⏐2 Hµ−1
j,n .

Proof. Parseval’s identity for f ∈ U(Wµ;Bd) with respect to the orthogonal basis defined in (3.3) is written as

∥f ∥2
∇,µ = f (0)2 +

∞∑
n=1

⌊
n
2 ⌋∑

j=0

an−2j∑
ν=1

⏐⏐̂f n,µ
j,n (∇)

⏐⏐2 H∇,µ

j,n .

The result follows from Proposition 4.1 and (3.4).
The last equation follows from∫

Bd
∇f (x) · ∇f (x)Wµ(x) dx = lim

λ→+∞

∥f ∥2
∇,µ

λ
. □

Let En(f )∇,µ denote the error of best approximation by polynomials in Πd
n in the space U(Wµ;Bd):

En(f )∇,µ = ∥f − S∇,µ
n f ∥∇,µ.

e have the following estimate.

heorem 4.5. Let µ > 0. Then, for n ⩾ 2s + 1 and f ∈ U(Wµ;Bd) ∩ W2s+1
2 (Wµ;Bd),

En(f )∇,µ ⩽
c

(n − 1)2s

d∑
i=1

[
En−2s−1(∆s∂if )µ+2s + En−1(∆s

0∂if )µ

]
,

and for n ⩾ 2s + 2 and f ∈ U(Wµ;Bd) ∩ W2s+2
2 (Wµ;Bd),

En(f )∇,µ

⩽
c

(n − 1)2s+1

d∑
i=1

[ d∑
k=1

En−2s−2(∂k ∆s∂if )µ+2s+1 +

∑
1⩽k<ℓ⩽d

En−1(Dk,ℓ∆
s
0∂if )µ

]
.

roof. For n ⩾ 1, we have

En(f )2∇,µ = ∥f − S∇,µ
n f ∥2

∇,µ =
λ

bµ

d∑
i=1

∥∂i f − ∂i S∇,µ
n f ∥2

µ.

Using Proposition 4.3, we get

En(f )2∇,µ =
λ

bµ

d∑
i=1

∂i f − Sµ

n−1(∂i f )
2

µ
=

λ

bµ

d∑
i=1

En−1(∂i f )2µ,

and the result follows from (2.13) and (2.14). □
9
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Lemma 4.6. Let µ ⩾ 0. For f ∈ U(Wµ+1;Bd),

En(f )µ ⩽
c

√
n
En(f )∇,µ+1.

roof. From Corollary 4.4 and the Parseval identity (2.12), we get

∥f − Sµ
n f ∥

2
µ =

∞∑
m=n+1

⌊
m
2 ⌋∑

j=0

am−2j∑
ν=1

⏐⏐̂f m,µ

j,ν

⏐⏐2 Hµ

j,m

=

∞∑
m=n+1

⌊
m
2 ⌋∑

j=0

1⏐⏐λµ

m,j

⏐⏐
am−2j∑
ν=1

⏐⏐λµ

m,j

⏐⏐ ⏐⏐̂f n,µ
j,ν

⏐⏐2 Hµ

j,n

⩽
c

2 (µ + 1) n
En(f )2∇,µ+1,

where c is a constant. The inequality follows from
⏐⏐λµ

n,j

⏐⏐−1
⩽ 1

2 (µ+1) n for n ⩾ 1 and 0 ⩽ j ⩽ ⌊
n
2⌋. □

Moreover, the following proposition shows that the rate of convergence of S∇,µ
n f towards f is faster than the rate stated

n Theorem 4.5.

heorem 4.7. Let µ > 0. Then, for n ⩾ 2s + 1 and f ∈ U(Wµ+2s+1;Bd) ∩ W2s+1
2 (Wµ;Bd),

En(f )∇,µ ⩽
c

(n − 1)2s+1/2

d∑
i=1

[
En−2s−1(∆s∂if )∇,µ+2s+1 + En−1(∆s

0∂if )∇,µ+1

]
,

nd for n ⩾ 2s + 2 and f ∈ U(Wµ+2s+2;Bd) ∩ W2s+2
2 (Wµ;Bd),

En(f )∇,µ

⩽
c

(n − 1)2s+3/2

d∑
i=1

[ d∑
k=1

En−2s−2(∂k ∆s∂if )∇,µ+2s+2 +

∑
1⩽k<ℓ⩽d

En−1(Dk,ℓ∆
s
0∂if )∇,µ+1

]
.

onsequently,

En(f )∇,µ ⩽
c

(n − 1)2s+1/2

d∑
i=1

[
∥∆s∂if ∥∇,µ+2s+1 + ∥∆s

0∂if ∥∇,µ+1

]
,

nd

En(f )∇,µ

⩽
c

(n − 1)2s+3/2

d∑
i=1

[ d∑
k=1

∥∂k ∆s∂if ∥∇,µ+2s+2 +

∑
1⩽k<ℓ⩽d

∥Dk,ℓ∆
s
0∂if ∥∇,µ+1

]
,

espectively.

roof. For n ⩾ 2s + 1 and f ∈ U(Wµ+2s+1;Bd) ∩ W2s+1
2 (Wµ;Bd), Theorem 4.5, together with Lemma 4.6, implies

En(f )∇,µ ⩽
c

(n − 1)2s+1/2

d∑
i=1

[
En−2s−1(∆s∂if )∇,µ+2s+1 + En−1(∆s

0∂if )∇,µ+1

]
.

oreover, from the fact that, for i = 1, . . . , d,

En−2s−1(∆s∂if )∇,µ+2s+1 ⩽ c ∥∆s∂if ∥∇,µ+2s+1,

nd

En−1(∆s
0∂if )∇,µ+1 ⩽ c ∥∆s

0∂if ∥∇,µ+1,

e get

En(f )∇,µ ⩽
c

(n − 1)2s+1/2

d∑
i=1

[
∥∆s∂if ∥∇,µ+2s+1 + ∥∆s

0∂if ∥∇,µ+1

]
.

he remaining part of the theorem follows similarly. □
10
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5. The Zernike case µ = 0

This case is more complicated than the previous one. Hence, we consider it separately here.

Proposition 5.1. For f ∈ U(W0;Bd),

f̂ n,0
0,ν (∇) =

⟨
f , Y n

ν

⟩
Sd−1 ,

f̂ n,0
j,ν (∇) =

n +
d−2
2

j

[
2
(
n − j + d−2

2

)
σd−1

∫
Bd

f (x) Pn−2,1
j−1,ν (x) dx

−
⟨
f , Y n−2j

ν

⟩
Sd−1

]
, 1 ⩽ j ⩽ ⌊

n − 1
2

⌋,

f̂ n,0
n
2 ,1 (∇) =

n +
d−2
2

2

[
⟨f , 1⟩Sd−1 −

(n + d − 2)
σd−1

∫
Bd

f (x) Pn−2,1
n
2 −1,1(x) dx

]
,

f̂ 0,0
0,1 (∇) = f (0),

where f̂ n,0
n
2 ,1 (∇) holds when n is even.

Proof. Here, we use spherical-polar coordinates x = r ξ where r > 0 and ξ ∈ Sd−1.
Let n ⩾ 1. Using Green’s identity and the fact that Q n,0

0,ν (0) = Y n
ν (0) = 0, we get⟨

f ,Q n,0
0,ν

⟩
∇,0

= λ

∫
Sd−1

f (ξ )
∂ Q n,0

0,ν

∂r
(ξ ) dσ (ξ ) − λ

∫
Bd

f (x)∆Q n,0
0,ν (x) dx.

bserve that ∆Q n,0
0,ν (x) = ∆ Y n

ν (x) = 0. Moreover, by Euler’s equation for homogeneous polynomials, we have that

∂

∂r
Y n

ν (x)
⏐⏐⏐⏐
r=1

= n Y n
ν (ξ ).

hen, from (3.7), we get

f̂ n,0
0,ν (∇) =

⟨
f ,Q n,0

0,ν

⟩
∇,0⟨

Q n,0
0,ν ,Q n,0

0,ν

⟩
∇,0

=
⟨
f , Y n

ν

⟩
Sd−1 .

Similarly, for j ⩾ 1, we have⟨
f ,Q n,0

j,ν

⟩
= λ

∫
Sd−1

f (ξ )
∂ Q n,0

j,ν

∂r
(ξ ) dσ (ξ ) − λ

∫
Bd

f (x)∆Q n,0
j,ν (x) dx.

sing the following facts [4]:

∂

∂r
Q n,0
j,ν (x)

⏐⏐⏐⏐
r=1

= −2 P
(1,n−2j+ d−2

2 )
j−1 (1) Y n−2j

ν (ξ ),

P
(1,n−2j+ d−2

2 )
j−1 (1) = j,

∆Q n,0
j,ν (x) = −4 j

(
n − j +

d − 2
2

)
Pn−2,1
j−1,ν (x),

we get⟨
f ,Q n,0

j,ν

⟩
= −2 j λ

∫
Sd−1

f (ξ ) Y n−2j
ν (ξ ) dσ (ξ )

+ 4 j
(
n − j +

d − 2
2

)
λ

∫
Bd

f (x) Pn−2,1
j−1,ν (x) dx,

and, therefore, from (3.7), we obtain

f̂ n,0
j,ν (∇) = −

n +
d−2
2

j

⟨
f , Y n−2j

ν

⟩
Sd−1

+
2
(
n +

d−2
2

) (
n − j + d−2

2

)
j σd−1

∫
Bd

f (x) Pn−2,1
j−1 ν (x) dx.
11
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Similarly, f̂ n,0
n
2 ,1 (∇) is deduced by using the fact that P

(−1, d−2
2 )

n
2

(2∥x∥2
− 1) is a radial function and that

∂

∂r
P
(−1, d−2

2 )
n
2

(2r2 − 1)
⏐⏐⏐⏐
r=1

= (n + d − 2),

∆P
(−1, d−2

2 )
n
2

(2∥x∥2
− 1) = (n + d − 2)2 P

(1, d−2
2 )

n
2 −1 (2∥x∥2

− 1), (5.1)

here we have used (2.3) and the identities ([10,12], respectively)
d
dx

P (α,β)
n (x) =

1
2
(n + α + β + 1) P (α+1,β+1)

n−1 (x),

β P (α,β)
n (t) + (1 + t)

d
dt

P (α,β)
n (t) = (β + n) P (α+1,β−1)

n (t),

to compute ∆P
(−1, d−2

2 )
n
2

(2∥x∥2
− 1). □

For the case when µ = 0, the Parseval identity reads

∥f ∥2
∇,0 = f (0)2 + λ σd−1

∞∑
n=1

[ adn∑
ν=1

n
⏐⏐⟨f , Y n

ν

⟩
Sd−1

⏐⏐2
+

⌊
n−1
2 ⌋∑

j=0

adn−2j∑
ν=1

(2n + d − 2)

×

⏐⏐⏐⏐⏐2
(
n − j + d−2

2

)
σd−1

∫
Bd

f (x) Pn−2,1
j−1 ν (x) dx −

⟨
f , Y n−2j

ν

⟩
Sd−1

⏐⏐⏐⏐⏐
2]

+ λ σd−1

∞∑
k=1

(4k + d − 2)
⏐⏐⏐⏐ ⟨f , 1⟩Sd−1 −

(2k + d − 1)
σd−1

∫
Bd

f (x) P2k−2,1
k−1,1 (x) dx

⏐⏐⏐⏐2.
Since ∫

Bd
∇f (x) · ∇f (x) dx = lim

λ→+∞

∥f ∥2
∇,0

λ
,

we have the following corollary.

Corollary 5.2. For f ∈ U(W0;Bd),

1
σd−1

∫
Bd

∥∇f (x)∥2 dx =

∞∑
n=1

[ an∑
ν=1

n
⏐⏐⟨f , Y n

ν

⟩
Sd−1

⏐⏐ 2
+

⌊
n−1
2 ⌋∑

j=0

an−2j∑
ν=1

(2n + d − 2)

×

⏐⏐⏐⏐⏐2
(
n − j + d−2

2

)
σd−1

∫
Bd

f (x) Pn−2,1
j−1 ν (x) dx −

⟨
f , Y n−2j

ν

⟩
Sd−1

⏐⏐⏐⏐⏐
2]

+

∞∑
k=1

(4k + d − 2)
⏐⏐⏐⏐ ⟨f , 1⟩Sd−1 −

(2k + d − 1)
σd−1

∫
Bd

f (x) P2k−2,1
k−1,1 (x) dx

⏐⏐⏐⏐2.
herefore, if f (x) = (1 − ∥x∥2) g(x) ∈ U(W0;Bd),

σd−1 b21

∫
Bd

∥∇f (x)∥2 dx

= 4
∞∑
n=1

⌊
n−1
2 ⌋∑

j=0

an−2j∑
ν=1

(2n + d − 2)
(
n − j +

d − 2
2

)2 ⏐⏐⏐H1
j−1,n−2 ĝ

n−2,1
j−1 ν

⏐⏐⏐ 2
+

∞∑
(4k + d − 2) (2k + d − 1)2

⏐⏐⏐⏐H1
k−1,2k−2 ĝ

2k−2,1
k−1,1

⏐⏐⏐⏐2.

k=1

12
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We will denote the projection operator on Hd
n by projHd

n
. It is well known that

projHd
n
f (x) = ∥x∥2 n +

d−2
2

d−2
2

1
σd−1

∫
Sd−1

f (y) C
( d−2

2 )
n (x′

· y) dσ (y),

or x ∈ Bd and x′
= x/∥x∥ ∈ Sd−1, where C (λ)

n (t) denotes the Gegenbauer polynomial of degree n and x · y is the usual dot
roduct in Rd. Moreover, we will denote by Pµ

n (·, ·) the reproducing kernel on Vd
n (Wµ) given by

Pµ
n (x, y) =

⌊
n
2 ⌋∑

j=0

adn−2j∑
ν=1

Pn,µ
j,ν (x) Pn,µ

j,ν (y)

Hµ

j,n
.

Proposition 5.3. For f ∈ U(W0;Bd) and n ⩾ 1,

proj∇,0
n f (x) = projHd

n
f (x)

+ (1 − ∥x∥2)
[
d (d/2 + 1)

σd−1

∫
Bd

f (y)P1
n−2(x, y) dy

−

(
n +

d − 2
2

) ⌊
n−1
2 ⌋∑

j=1

1
j
P
(1,n−2j+ d−2

2 )
j−1 (2∥x∥2

− 1) projHd
n−2j

f (x)
]

+ f̂
n,0
n
2 ,1(∇)Q n,0

n
2 ,1(x),

where the last term holds when n is even.
Consequently, if f (x) = (1 − ∥x∥2) g(x) ∈ U(W0;Bd), then

proj∇,0
n f (x) = (1 − ∥x∥2) proj1n−2 g(x)

+
(n + d − 2)

(
n +

d−2
2

)
(n + d)

8 σd−1

H1
n
2 ,n

b1
ĝ n,1

n
2 ,1 Q

n,0
n
2 ,1(x).

Proof. From Proposition 4.1, we have f̂
n,0
0,ν(∇) =

⟨
f , Y n

ν

⟩
Sd−1 . Then,

adn∑
ν=1

f̂ n,0
0,ν (∇) Y n

ν (x) =

adn∑
ν=1

⟨
f , Y n

ν

⟩
Sd−1 Y n

ν (x) = projHd
n
f (x).

Again, from Proposition 4.1, we have that for 1 ⩽ j ⩽ ⌊
n−1
2 ⌋,

f̂ n,0
j,ν (∇) = −

n +
d−2
2

j

⟨
f , Y n−2j

ν

⟩
Sd−1

+
2
(
n +

d−2
2

) (
n − j + d−2

2

)
j σd−1

∫
Bd

f (x) Pn−2,1
j−1,ν (x) dx.

Therefore,

⌊
n−1
2 ⌋∑

j=1

adn−2j∑
ν=1

f̂
n,0
j,ν (∇)Q n,0

j,ν (x)

= −

(
n +

d − 2
2

)
(1 − ∥x∥2)

⌊
n−1
2 ⌋∑

j=1

1
j
P
(1,n−2j+ d−2

2 )
j−1 (2∥x∥2

− 1) projHd
n−2j

f (x)

+ 2
(
n +

d − 2
2

)
(1 − ∥x∥2)

⌊
n−2
2 ⌋∑

j=0

adn−2−2j∑
ν=1

n − j − 1 +
d−2
2

j + 1

×
1

σd−1

∫
Bd

f (y)Pn−2,1
j,ν (y) Pn−2,1

j,ν (x) dy,

here we have made the change j − 1 → j in the last line. Using

H1
j,n−2 =

(j + 1) (d/2) (d/2 + 1)
d−2 d−2 ,
(n + 2 ) (n − 1 − j + 2 )
13
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we obtain

⌊
n−1
2 ⌋∑

j=1

adn−2j∑
ν=1

f̂
n,0
j,ν (∇)Q n,0

j,ν (x)

= −

(
n +

d − 2
2

)
(1 − ∥x∥2)

⌊
n−1
2 ⌋∑

j=1

1
j
P
(1,n−2j+ d−2

2 )
j−1 (2∥x∥2

− 1) projHd
n−2j

f (x)

+
d (d/2 + 1)

σd−1
(1 − ∥x∥2)

∫
Bd

f (y)P1
n−2(x, y) dy.

Note that

b1 =
d (d/2 + 1)

σd−1
,

s the normalization constant for W1(x). □

The study of the interaction between differentiation and the partial sums S∇,0
n depends on the following proposition.

First, we recall integration by parts in higher dimensions. From the Divergence Theorem and the product rule, if u is a
real valued function and V is a vector field, then∫

Sd−1
uV · ξ dσ (ξ ) =

∫
Bd

∇ · (uV) dx =

∫
Bd

u∇ · V dx +

∫
Bd

∇u · V dx.

Therefore, the integration by parts formula on the unit ball is∫
Bd

u∇ · V dx =

∫
Sd−1

uV · ξ dσ (ξ ) −

∫
Bd

∇u · V dx.

Proposition 5.4. For f ∈ U(W0;Bd) and m ⩾ 1, we have

∂i proj∇,0
m f (x) ∈ Vd

m−1(W0), 1 ⩽ i ⩽ d,

and

Di,j proj∇,0
m f (x) ∈ Vd

m(∇,W0), 1 ⩽ i < j ⩽ d.

Proof. By the definition of proj∇,0
m f (x), it is sufficient to show that ∂i Q

m,0
j,ν (x) ∈ Vd

m−1(W0) for 0 ⩽ j ⩽ ⌊
m
2 ⌋, 1 ⩽ ν ⩽ adm−2j,

nd 1 ⩽ i ⩽ d.
Fix i ∈ {1, 2, . . . , d}. For j = 0, we have

∂iQ
m,0
0,ν (x) = ∂i Ym

ν (x).

We compute⟨
∂i Ym

ν , Pk,0
ℓ,η

⟩
0

= b0

∫
Bd

∂i Ym
ν (x) Pk,0

ℓ,η (x) dx.

Applying the integration by parts formula to Pk,0
ℓ,η (x) and the vector field Ym

ν (x) ei, where ei is the ith canonical vector in
n, we obtain∫

Bd
∂i Ym

ν (x) Pk,0
ℓ,η (x) dx =P

(0,k−2ℓ+ d−2
2 )

ℓ (1)
∫
Sd−1

ξi Y k−2ℓ
η (ξ ) Ym

ν (ξ ) dσ (ξ )

−

∫
Bd

∂iP
k,0
ℓ,η (x) Y

m
ν (x) dx.

he integral over Sd−1 vanishes for k ⩽ m− 2. Moreover, since Ym
η (x) = Pm,0

0,η (x), then the second integral on the right also
anishes for k ⩽ m − 2. Therefore,⟨

∂i Ym
ν , Pk,0

ℓ,η

⟩
0

= 0, k ⩽ m − 2.

onsequently, ∂iQ
m,0
0,ν (x) ∈ Vd

m−1(W0).
For 1 ⩽ j ⩽ ⌊

m−1
2 ⌋, we have

∂ Qm,0(x) = ∂ (1 − ∥x∥2) Pm−2,1(x).
i j,ν i j−1,ν

14
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From the integration by parts formula and the fact that 1 − ∥x∥2 vanishes on the sphere, we get∫
Bd

∂i (1 − ∥x∥2) Pm−2,1
j−1,ν (x) Pk,0

ℓ,η (x) dx = −

∫
Bd

∂iP
k,0
ℓ,η (x) P

m−2,1
j−1,ν (x)W1(x) dx.

Hence,⟨
∂i (1 − ∥x∥2) Pm−2,1

j−1,ν (x), Pk,0
ℓ,η (x)

⟩
0

= 0, k ⩽ m − 2,

and, thus, ∂i Q
m,0
j,ν (x) ∈ Vd

m−1(W0).
Finally, from (3.5), we have∫

Bd
∂iQ

m,0
m
2 ,1(x) P

k,0
ℓ,η (x) dx = 4

∫
Bd

xi P
(0, d2 )
m
2 −1 (2∥x∥

2
− 1) Pk,0

ℓ,η (x) dx

= 4
∫
Bd

Pm−1,0
m
2 −1,i (x) P

k,0
ℓ,η (x) dx,

where we have used the fact that Y 1
i (x) = xi. Therefore,⟨

∂iQ
m,0
m
2 ,1, P

k,0
ℓ,η

⟩
0

= 0, k ⩽ m − 2.

Hence, we conclude that ∂iQ
m,0
m
2 ,1(x) ∈ Vd

m−1(W0).
Now, Di,j maps Hd

n to itself, and

Di,j Q
m,0
m
2 ,1(x) = 0, 1 ⩽ i < j ⩽ d,

ince Qm,0
m
2 ,1(x) is a radial function. This implies that Di,j proj∇,0

m f (x) ∈ Vd
m−1(∇,W0). □

We use the previous result to show that differentiation commutes with the partial Fourier sum S∇,0
n .

Proposition 5.5. Let µ = 0. Then,

∂i S∇,0
n f = S0n−1(∂if ), 1 ⩽ i ⩽ d,

and

Di,j S∇,0
n f = S∇,0

n (Di,j f ), 1 ⩽ i < j ⩽ d.

Proof. By its definition, f − S∇,0
n f =

∑
+∞

m=n+1 proj
∇,0
m f . From Proposition 5.4 we get that ⟨∂i (f − S∇,0

n f ), P⟩0 = 0 for
all P ∈ Πd

n−1. Consequently, S
0
n−1(∂if − ∂i S∇,0

n f ) = 0. Since S0n−1 reproduces polynomials of degree at most n − 1, then
S0n−1(∂iS

∇,0
n f ) = ∂iS∇,0

n f , which implies that

0 = S0n−1(∂if − ∂iS∇,0
n f ) = S0n−1(∂if ) − ∂iS∇,0

n f ,

and the first commutation relation is proved. The second relation can be established in a similar way. □

The relation in the proposition above passes down to the Fourier coefficients.

Proposition 5.6. Let f ∈ U(W0;Bd) ∩ W2
2 (W1;Bd). Then,

∆̂f
n−2,1
j,ν = −4 (j + 1)

(
n − j − 1 +

d − 2
2

)
f̂
n,0
j+1,ν(∇), 0 ⩽ j ⩽ ⌊

n − 3
2

⌋,

∆̂f
n−2,1
n−2
2 ,1 = 4 (n + d) (n + d − 1) f̂

n,0
n
2 ,1(∇),

here the last relation holds only when n is even. Moreover,

∆̂0f
n,0
j,ν (∇) = −(n − 2j) (n − 2j + d − 2) f̂

n,0
j,ν (∇), 0 ⩽ j ⩽ ⌊

n − 1
2

⌋,

∆̂0f
n,0
n
2 ,1(∇) = 0.

roof. From proj∇,0
n f = S∇,0

n f − S∇,0
n−1f , Proposition 5.5, and Proposition 2.4, we obtain ∆ proj∇,0

m f = proj1m−2(∆ f ).
On the other hand, we have

∆ proj∇,0
n =

adn−2j∑
f̂
n,0
0,ν(∇)∆Y n

ν (x)

ν=1

15
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+

⌊
n−1
2 ⌋∑

j=1

∑
ν

f̂
n,0
j,ν (∇)∆(1 − ∥x∥2) Pn−2,1

j−1,ν (x)

+
4

n + d − 2
f̂
n,0
n
2 ,1(∇)∆ P

(−1, d−2
2 )

n
2

(2∥x∥2
− 1).

sing ∆Y n
ν (x) = 0, together with (5.1) and

∆(1 − ∥x∥2) Pn−2,1
j−1,ν (x) = −4 j

(
n − j +

d − 2
2

)
Pn−2,1
j−1,ν (x), [4]

we obtain

∆ proj∇,0
n = − 4

⌊
n−3
2 ⌋∑

j=0

∑
ν

(j + 1)
(
n − j − 1 −

d − 2
2

)
f̂
n,0
j+1,ν(∇) Pn−2,1

j,ν (x)

+ 4(n + d) (n + d − 1) f̂
n,0
n
2 ,1(∇) Pn−2,1

n
2 −1,1(x).

Hence, by ∆ proj∇,0
m f = proj1m−2(∆ f ), the first result follows.

Similarly, using Di,j S∇,0
n f = S∇,0

n (Di,j f ), we get ∆0proj∇,0
n f = proj∇,0

n (∆0 f ). Then, using

∆0 Y (ξ ) = −n (n + d − 2) Y (ξ ), ∀Y ∈ Hd
n, ξ ∈ Sd−1.

we get the second result. □

The main results of this section are the following theorems.

Theorem 5.7. Let s ⩾ 1 be an integer and f ∈ U(W0;Bd) ∩ W2s
2 (W1,Bd). Then, for n ⩾ 2s + 2,

En(f )∇,0 ⩽
c

n2s−1

[
En−2s−2(∆sf )2s+1 + En(∆s

0f )∇,0

]
,

nd, consequently,

En(f )∇,0 ⩽
c

n2s−1

[
∥∆sf ∥2s+1 + ∥∆s

0f ∥∇,0

]
.

Proof. The Parseval identity reads,

En(f )2∇,0 = ∥f − S∇,0
n f ∥2

∇,0 =

∞∑
m=n+1

⌊
m
2 ⌋∑

j=0

∑
ν

⏐⏐⏐̂f m,0
j,ν (∇)

⏐⏐⏐2 H̃0
j,m = Σ1 + Σ2 + Σ3,

here we split the sum as

Σ1 =

∞∑
m=n+1

⌊
m−1
2 ⌋∑

j=⌊
m
4 ⌋

∑
ν

⏐⏐⏐̂f m,0
j,ν (∇)

⏐⏐⏐2 H̃0
j,m,

Σ2 =

∞∑
m=⌊

n+2
2 ⌋

⏐⏐⏐̂f m,0
m
2 ,1(∇)

⏐⏐⏐2 H̃0
m
2 ,m,

Σ3 =

∞∑
m=n+1

⌊
m
4 ⌋−1∑
j=0

∑
ν

⏐⏐⏐̂f m,0
j,ν (∇)

⏐⏐⏐2 H̃0
j,m.

We estimate Σ1 first. Using Proposition 5.6, we get⏐⏐⏐̂f m,0
j,ν (∇)

⏐⏐⏐2 =
1

16 j2 (m − j + d−2
2 )2

⏐⏐⏐∆̂ f
m−2,1
j−1,ν

⏐⏐⏐2 ,

and iterating the first identity in Proposition 2.5, we obtain⏐⏐⏐̂f m,0
j,ν (∇)

⏐⏐⏐2 =
1

16 j2 (m − j + d−2
2 )2

s−1∏
i=1

(
κ2i−1
m−j−1

)−2
⏐⏐⏐∆̂s f

m−2s−2,2s+1
j−s−1,ν

⏐⏐⏐2 .

For ⌊
m
4 ⌋ ⩽ j ⩽ ⌊

m
2 ⌋, we have j ∼ m, and, thus⏐⏐⏐̂f m,0

(∇)
⏐⏐⏐2 ∼

1 ⏐⏐⏐∆̂s f
m−2s−2,2s+1

⏐⏐⏐2 .
j,ν m4s j−s−1,ν

16
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C

5

Furthermore,

H̃0
j,m

H2s+1
j−s−1,m−2s−2

=
H̃0

j,m

H0
j,m

H0
j,m

H1
j−1,m−2

H1
j−1,m−2

H2s+1
j−s−1,m−2s−2

.

From (2.6) and (3.7), we have

H̃0
j,m

H0
j,m

=
4 λ σd−1 (m +

d
2 ) (m − j + d

2 ) j
2

d (m +
d−2
2 ) (m − j + d

2 )
,

H0
j,m

H1
j−1,m−2

=
(m − 2 +

d
2 ) (m − j + d−2

2 )

( d2 + 1) (m +
d
2 ) j

,

H1
j−1,m−2

H2s+1
j−s−1,m−2s−2

=
(2)2s (m − j − s +

d−2
2 )s (m − j + d+2

2 )s
(1 +

d+2
2 )2s (j − s)s (j + 1)s

.

It is easy to verify that when j ∼ m,

H̃0
j,m

H2s+1
j−s−1,m−2s−2

∼ m2.

onsequently, it follows that

Σ1 ⩽ c
∞∑

m=n+1

⌊
m−1
2 ⌋∑

j=⌊
m
4 ⌋

∑
ν

m−4s+2
⏐⏐⏐∆̂s f

m−2s−2,2s+1
j−s−1,ν

⏐⏐⏐2 H2s+1
j−s−1,m−2s−2.

Similarly, we obtain

Σ2 ⩽ c
∞∑

m=⌊
n+2
2 ⌋

m−4s+2
⏐⏐⏐∆̂s f

m−2s−2,2s+1
m
2 −s−1,1

⏐⏐⏐2 H2s+1
m
2 −s−1,m−2s−2.

Next, we estimate Σ3. Iterating the identities involving ∆0 in Proposition 5.6, we obtain⏐⏐⏐̂f m,0
j,ν (∇)

⏐⏐⏐2 =
1

(m − 2j)2s (m − 2j + d − 2)2s

⏐⏐⏐∆̂s
0 f

m,0

j,ν (∇)
⏐⏐⏐2 ∼

1
m4s

⏐⏐⏐∆̂s
0 f

m,0

j,ν (∇)
⏐⏐⏐2 ,

for 0 ⩽ j ⩽ ⌊
m
4 ⌋. Consequently, it follows that

Σ3 ⩽ c
∞∑

m=n+1

⌊
m
4 ⌋−1∑
j=0

∑
ν

m−4s
⏐⏐⏐∆̂s

0 f
m,0

j,ν (∇)
⏐⏐⏐2 H̃0

j,m

⩽
c
n4s En(∆

s
0 f )

2
∇,0.

Putting these estimates together completes the proof of the theorem. □

.1. Approximation behavior in terms of the fractional Laplace–Beltrami operator

In the proof of Theorem 5.7, we do not need to specify the basis of spherical harmonics in the definition of Q n,0
j,ν . It is

far more complicated to give a bound for the error En(f )∇,0 in terms of derivatives of odd order involving ∆ and ∆0, for
which we do need to specify the basis as in [11]. Thus, here we shall choose a more convenient distributional differential
operator in order to avoid having to specify a basis.

Recall that the space Hd
n of spherical harmonics can be characterized as the eigenfunction space of the Laplace–Beltrami

operator ∆0 on Sd−1:

Hd
n =

{
f ∈ C2(Sd−1) : −∆0 f = n (n + d − 2) f

}
.

Therefore, we can define the fractional powers of −∆0.

Definition 5.8. For α ∈ R, we define

(−∆0)
α/2 f =

∞∑
(n (n + d − 2))α/2 projHd

n
f .
n=0

17
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It is shown in [13] that(−∆0)1/2 f

Sd−1 = ∥∇0f ∥Sd−1 ,

where ∥ · ∥Sd−1 is the norm induced by ⟨·, ·⟩Sd−1 and ∇0 denotes the tangential gradient defined as

∇0f = ∇ F |Sd−1 with F (x) = f
(

x
∥x∥

)
, x ∈ Rd

\ {0}.

Theorem 5.9. Let s ⩾ 1 be an integer and f ∈ U(W0;Bd) ∩ W2s
2 (W1;Bd). Then, for n ⩾ 2s + 3,

En(f )∇,0 ⩽
c

n2s−1

[
d∑

i=1

En−2s−3(∂i∆sf )2s+2 + En
(
(−∆0)1/2∆s

0f
)
∇,0

]
.

onsequently,

En(f )∇,0 ⩽
c

n2s−1

[
d∑

i=1

∥∂i∆
sf ∥2s+2 + ∥(−∆0)1/2∆s

0f ∥∇,0

]
.

Proof. On one hand, from Lemma 4.6, we have

En−2s−2(∆sf )22s+1 ⩽
c
n
En−2s−2(∆sf )2

∇,2s+2 ⩽
c
n

[
d∑

i=1

En−2s−3(∂i∆sf )22s+2

]
.

On the other hand, we have

En
(
∆s

0f
)2
∇,0 =

∞∑
m=n+1

⌊
m
2 ⌋∑

j=0

∑
ν

⏐⏐⏐∆̂s
0f

m,0
j,ν (∇)

⏐⏐⏐2 H̃0
j,m(∇)

⩽

∞∑
m=n+1

⌊
m
2 ⌋∑

j=0

∑
ν

(m − 2j) (m − 2j + d − 2)
⏐⏐⏐∆̂s

0f
m,0
j,ν (∇)

⏐⏐⏐2 H̃0
j,m(∇)

=En
(
(−∆0)1/2∆s

0f
)2
∇,0 .

he result follows from combining the inequalities above and Theorem 5.7. □

. Numerical experiments

In this section we present numerical experiments to compare the approximation behavior of Fourier orthogonal
xpansions with respect to classical and Sobolev ball polynomials with d = 2 variables. To this end, we consider different
unctions defined on B2. For each function f (x, y), we compute Sµ

n f and S∇,0
n f for different values of µ and n. The two

pproximations were compared by computing their respective root mean square error (RMSE) as follows. We generate a
ircular mesh consisting of 1441 points{

(ri cos(θj), ri sin(θj)) : ri = i/20, θj = jπ/36, 0 ⩽ i ⩽ 20, 0 ⩽ j ⩽ 71
}
.

e set zi,j = f (ri cos(θj), ri sin(θj)), and ẑi,j equal to the value of the approximation (classical or Sobolev) at the same point,
nd compute the RMSE as:

RMSE(S) =

⎛⎜⎜⎜⎜⎜⎝
(z0,0 − ẑ0,0)2 +

20∑
i=1

71∑
j=0

(zi,j − ẑi,j)2

1441

⎞⎟⎟⎟⎟⎟⎠

1/2

.

where S denotes either Sµ
n f (x, y) or S∇,0

n f (x, y).
We consider three different continuous functions and provide figures showing their approximation overlapped with

their graph. We also provide tables with the approximation error of Sµ
n and S∇,0

n for different values of µ and n. The figures
and errors were obtained using Wolfram Mathematica. We point out that the approximation error in the Sobolev case
seems to be smaller than the classical approximation error as the value of n gets large.
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Fig. 1. Graph of f (x, y) = x sin(5x − 6y) + y.

Fig. 2. Approximations overlapped with the graph of f (x, y). Left: S120f (x, y). Right: S∇,1
20 f (x, y).

Table 1
Approximation errors for f (x, y).

µ n RMSE(Sµ
n f (x, y)) RMSE(S∇,µ

n f (x, y))

0

5 0.29919 0.29001
10 0.01235 0.01704
15 1.26607 × 10−4 1.74117 × 10−4

20 8.9264 × 10−7 5.35549 × 10−7

1

5 0.30721 0.29003
10 0.01913 0.01196
15 2.65266 × 10−4 1.23246 × 10−4

20 3.54923 × 10−6 9.9071 × 10−7

1.5

5 0.32634 0.29171
10 0.02730 0.01365
15 4.22629 × 10−4 1.63851 × 10−4

20 9.80412 × 10−6 4.10402 × 10−6

2

5 0.35935 0.30226
10 0.03816 0.01882
15 6.42325 × 10−4 2.62762 × 10−4

20 4.32089 × 10−6 6.58669 × 10−6

3.5

5 0.53568 0.41311
10 0.08591 0.05138
15 1.73557 × 10−3 9.31567 × 10−4

20 2.1150 × 10−4 1.10783 × 10−4

6.1. Example 1

First, we consider the function

f (x, y) = x sin(5x − 6y) + y.

The graph of f (x, y) is shown in Fig. 1, and the approximations S120f (x, y) and S∇,1
20 f (x, y) are shown in Fig. 2. We list the

RMSE of both approximations for different values of n and µ in Table 1. For µ > 0, a seemingly faster rate of convergence
can be observed for the Sobolev approximation. Nevertheless, for µ = 0, the rate of convergence of the Sobolev expansion
does not seem to be much faster than the classical one. This is consistent with the theoretical rates of convergence that
appear in Section 4.
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Fig. 3. Graph of g(x, y) = sin(10x + y).

Fig. 4. Approximations overlapped with the graph of g(x, y). Left: S120g(x, y). Right: S∇,1
20 g(x, y).

Table 2
Errors of the expansions of g(x, y).

µ n RMSE(Sµ
n g(x, y)) RMSE(S∇,µ

n g(x, y))

0

5 0.69811 0.75427
10 0.17290 0.20945
15 7.21219 × 10−4 8.09666 × 10−4

20 4.35377 × 10−6 4.70028 × 10−6

1

5 0.80258 0.69811
10 0.32401 0.17290
15 0.00210 0.00071
20 1.59163 × 10−5 4.35377 × 10−6

1.5

5 1.01491 0.70814
10 0.48232 0.21956
15 0.00356 0.00117
20 2.87009 × 10−5 1.08525 × 10−5

2

5 1.34532 0.80258
10 0.69211 0.32401
15 0.00568 0.00210
20 5.24189 × 10−5 1.59163 × 10−5

3.5

5 2.89127 1.77811
10 1.62760 0.95300
15 0.01719 0.00856
20 3.98356 × 10−4 1.1693 × 10−4

6.2. Example 2

Now, we consider the continuous sinusoidal function

g(x, y) = sin(10x + y).

Its graph is shown in Fig. 3, and the approximations Sµ

20f (x, y) and S∇,µ

20 f (x, y) are shown in Fig. 4. We note that the
approximation error in the classical and Sobolev case seems to be larger at the maximum and minimum values of the
function. Table 2 shows the errors corresponding to the approximations of g(x, y). Again, the rates of convergence seem
to corresponding to the theoretical rates.
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w
O
N
T

Fig. 5. Graph of h(x, y) = ex
2
−y2

− xy.

Fig. 6. Approximations overlapped with the graph of h(x, y). Left: S120h(x, y). Right: S∇,1
20 h(x, y).

Table 3
Errors of the expansions of h(x, y).

µ n RMSE(Sµ
n h(x, y)) RMSE(S∇,µ

n h(x, y))

0

5 0.01063 0.01141
10 8.52813 × 10−6 1.80036 × 10−5

15 8.41258 × 10−7 1.50115 × 10−5

20 9.02632 × 10−7 1.5485 × 10−5

1

5 0.01097 0.01061
10 8.7175 × 10−6 8.5254 × 10−6

15 1.80786 × 10−7 6.95056 × 10−7

20 1.42097 × 10−6 6.95056 × 10−7

1.5

5 0.01182 0.01098
10 8.98758 × 10−6 1.57057 × 10−5

15 2.99213 × 10−6 1.3121 × 10−5

20 1.29664 × 10−5 1.75648 × 10−5

2

5 0.01218 0.01126
10 9.2924 × 10−6 8.7124 × 10−6

15 1.74896 × 10−6 1.57222 × 10−6

20 2.61056 × 10−6 1.57222 × 10−6

3.5

5 0.01342 0.01235
10 1.12976 × 10−5 9.79411 × 10−6

15 1.27364 × 10−5 9.79411 × 10−6

20 1.9156 × 10−5 2.72889 × 10−5

6.3. Example 3

Here, we consider the continuous function

h(x, y) = ex
2
−y2

− xy,

hose graph is shown in Fig. 7. Both approximations are shown in Fig. 8, and their respective RSME are listed in Table 4.
bserve that, in this case, the RSME for both approximations are significantly smaller than in the previous examples.
ote that the errors apparently do not change for a large n but this may be due to rounding errors (see Figs. 5 and 6 and
able 3).
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T
c

Fig. 7. Graph of h(x, y) = q(x2 + y2).

Fig. 8. Approximations overlapped with the graph of h(x, y). Left: S120h(x, y). Right: S∇,1
20 h(x, y).

Table 4
Approximation errors for h(x, y).

µ n RMSE(Sµ
n f (x, y)) RMSE(S∇,µ

n f (x, y))

0

5 0.032115 0.105139
10 1.69904 × 10−3 7.90909 × 10−3

15 2.81159 × 10−4 8.211484 × 10−4

20 7.60244 × 10−5 1.19557 × 10−4

1

5 0.03692 0.06976
7 9.17275 × 10−3 7.2697 × 10−3

10 3.88087 × 10−3 3.06606 × 10−3

15 2.59168 × 10−4 4.45460 × 10−4

20 2.53382 × 10−4 2.18760 × 10−4

1.5

5 0.047003 0.060414
10 5.42702 × 10−3 2.71346 × 10−3

15 2.34768 × 10−4 5.35595 × 10−4

20 6.85998 × 10−3 1.81918 × 10−4

2

5 0.059031 0.058599
10 6.93792 × 10−3 3.79857 × 10−3

15 9.35486 × 10−4 4.16972 × 10−4

20 1.35988 × 10−3 2.93696 × 10−4

3.5

5 0.09692 0.08112
10 0.010308 8.25693 × 10−3

15 4.58444 × 10−3 1.9499 × 10−3

20 3.93952 × 10−3 2.22019 × 10−3

6.4. Example 4

Here, we consider the following univariate C2 spline defined on [0, 1] by:

q(t) =

⎧⎨⎩
−1.50391(t + 0.8)3 + 3.96995(t + 0.8)2 − 2.22067(t + 0.8) + 0.35, 0 ⩽ t ⩽ 0.8,

5.41466(t − 0.8)3 − 3.2488(t − 0.8)2 − 1.06683(t − 0.8) + 0.8, 0.8 ⩽ t ⩽ 1.

hen, we construct the radially symmetric function h(x, y) = q(x2 +y2) defined on B2 whose graph is shown in Fig. 7. The
lassical and Sobolev approximations are shown in Fig. 8, and their respective RSME are listed in Table 4. We remark that,
22
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contrary to the previous examples, h(x, y) is not an analytic function. In spite of this, the approximation errors appear to
behave similarly than in the previous examples.
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