Algebra Biomedical Engineering

Study Guide

Misael E. Marriaga

September 05, 2023

Esta obra está bajo una Licencia Creative Commons Atribución-CompartirIgual 4.0 Internacional Disponible en https://creativecommons.org/licenses/by-sa/4.0/deed.es

CONTENTS

Chapter I. Systems of linear equations

- Linear equations and their solutions
- Systems of linear equations and elementary operations
- Matrices and matrix operations
- Systems of linear equations and matrices
- Solution sets of linear systems
- Invertible matrices
- Determinants

Objectives: Review basic concepts of linear systems of equations. Introduce the matrix formalism used in the rest of the course and tools to compute and describe the solution sets of linear systems. Establish the connection between the solution sets of a linear system and the inverse and the determinant of the associated matrix.

Chapter II. Vector spaces

- Vector spaces and subspaces
- Linear combinations and spans
- Null space and column space of a matrix
- Linear independence
- Bases and dimensions
- Coordinates

Objectives: Introduce two fundamental concepts in linear algebra: vector spaces and linear independence. Define and study two vector spaces associated with any matrix, null and column space, and establish its connection with the rank of a matrix. Characterize the bases of a vector space and study the representation of vectors in different bases.

Chapter III. Linear mappings and diagonalization

- Linear mappings and matrices
 - o Basic properties
 - Kernel and image of a linear mapping
 - Associated matrices
 - Associated matrices and change of bases
- Eigenvalues, eigenvectors, and diagonalization
 - Eigenvalues and eigenvectors
 - Multiplicity of eigenvalues
 - Diagonalization of linear operators

Objectives: Define and study basic properties of linear mappings. Study the kernel and image of a linear mapping as vector spaces. Study the representation of linear mappings as matrices with respect to different bases. Define eigenvectors and eigenvalues. Develop the theory of

Study Guide- Algebra, Biomedical Engineering

diagonalizable linear operators. Characterize diagonalizable linear operators in terms of the multiplicity of their eigenvalues.

Chapter IV. Inner products and orthogonality

- Inner product spaces
- Gram matrices of an inner product
- Cauchy-Schwarz inequality
- Orthogonality
- Orthogonal sets and bases
- Gram-Schmidt orthogonalization
- Orthogonal projection and minimization
- Least-squares problems
- Orthogonal diagonalization

Objectives: Introduce inner products and inner product spaces. Study the properties of orthogonal sets and bases as well as orthogonal projections with respect to orthogonal bases. Present the Gram-Schmidt orthogonalization algorithm. Study some applications of orthogonalization such as solving least-squares problems and orthogonal diagonalization of linear operators.

Week	Contents	Reference
1	Chapter I. Linear equations	Lecture notes pages 23-31.
	and their solutions, systems	
	of linear equations and	
	elementary operations.	
2	Chapter I. Matrices and	Lecture notes pages 31-48.
	matrix operations, systems	
	of linear equations and	
	matrices, solution sets of	
	linear systems.	
3	Chapter I. Invertible	Lecture notes pages 48-56.
	matrices, determinants.	
4	Chapter II. Vector spaces and	Lecture notes pages 57-63.
	subspaces.	
5	Chapter II. Linear	Lecture notes pages 63-69.
	combinations and spans, null	
	space and column space of a	
	matrix.	
6	Chapter II. Linear	Lecture notes pages 69-74.
	independence.	
7	Chapter II. Bases and	Lecture notes pages 74-79.
	dimension.	
8	Chapter II. Coordinates.	Lecture notes pages 79-84.
9	First midterm exam	

10	Chapter III. Introduction and	Lecture notes pages 85-90.	
	basic properties, kernel and		
	image of a linear mapping.		
11	Chapter III. Associated	Lecture notes pages 90-101.	
	matrices, associated		
	matrices and the change of		
	basis.		
12	Chapter III. Eigenvalues and	Lecture notes pages 101-	
	eigenvectors. Multiplicity of	115.	
	eigenvalues, diagonalization		
	of linear operators.		
13	Chapter IV. Inner product	Lecture notes 116-123.	
	spaces, Gram matrices of an		
	inner product, Cauchy-		
	Schwarz inequality.		
14	Chapter IV. Orthogonality,	Lecture notes 126-132.	
	orthogonal sets and bases,		
	Gram-Schmidt		
	orthogonalization.		
15	Chapter IV. Orthogonal	Lecture notes 132-138.	
	projections and		
	minimization, least-squares		
	problems, orthogonal		
	diagonalization.		
January	Second mic	lterm exam	
·			

Study Guide- Algebra, Biomedical Engineering