
Empirical Software Engineering (2022) 27:135
https://doi.org/10.1007/s10664-022-10166-x

Development effort estimation in free/open source
software from activity in version control systems

Gregorio Robles1 ·Andrea Capiluppi2 · Jesus M. Gonzalez-Barahona1 ·
Björn Lundell3 · Jonas Gamalielsson3

Accepted: 18 March 2022
© The Author(s) 2022

Abstract
Effort estimation models are a fundamental tool in software management, and used as a fore-
cast for resources, constraints and costs associated to software development. For Free/Open
Source Software (FOSS) projects, effort estimation is especially complex: professional
developers work alongside occasional, volunteer developers, so the overall effort (in person-
months) becomes non-trivial to determine. The objective of this work it to develop a simple
effort estimation model for FOSS projects, based on the historic data of developers’ effort.
The model is fed with direct developer feedback to ensure its accuracy. After extracting
the personal development profiles of several thousands of developers from 6 large FOSS
projects, we asked them to fill in a questionnaire to determine if they should be considered
as full-time developers in the project that they work in. Their feedback was used to fine-
tune the value of an effort threshold, above which developers can be considered as full-time.
With the help of the over 1,000 questionnaires received, we were able to determine, for
every project in our sample, the threshold of commits that separates full-time from non-full-
time developers. We finally offer guidelines and a tool to apply our model to FOSS projects
that use a version control system.

Keywords Effort estimation · Open source · Free software ·
Mining software repositories · Versioning system · Commits

1 Introduction

Effort estimation models are invaluable tools in software management: they help gaining
insights on past resources and associated costs; and they serve as models to forecast resource
demand and allocation, as well as dealing with predicted constraints. Traditionally, effort
estimation is generally used by companies in the earlier stages of a software project to

Communicated by: Kelly Blincoe

� Andrea Capiluppi
a.capiluppi@rug.nl

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10166-x&domain=pdf
http://orcid.org/0000-0001-9469-6050
mailto: a.capiluppi@rug.nl

 135 Page 2 of 37 Empir Software Eng (2022) 27:135

estimate the number of developers, and the amount of time that it will require to develop a
software.

In the context of Free/Open Source Software (FOSS) development, there has hardly been
a formal way of tracking the effort of developers, especially in its original volunteering
form. It was argued that, in some circumstances, small-team development could eventually
evolve (Capiluppi and Michlmayr 2007) into a distributed development (e.g., ‘bazaar’). In
such cases, effort is even more complex to track, since the level of contributions varies along
an onion-type model (Crowston and Howison 2005), where the outer the layer the smaller
the code contribution, but the larger the user base, and the bug reporting facility. The inner
the layer, the more pronounced the development effort.

This volunteer-based model for FOSS development was later complicated by the partici-
pation of companies, alongside volunteers (Riehle et al. 2014). Companies devoted staff and
effort into a FOSS project to enter a saturated market, or to gain a foothold in a specialised
development, without deploying vast amounts of resources and recreate a competitor prod-
uct from scratch (Fitzgerald 2006). This hybrid model introduces further complexity in
the effort estimation modeling: if the volunteers can still be modeled alongside the basic
onion-model, the involvement of external companies and their focused effort become quite
challenging to describe and model.

The effort estimation model presented depends on the threshold value of a FOSS project,
and on the analysis of its publicly available data on version control systems (VCSs), such
as git. Other projects can easily create their tailored model, and survey their developers to
obtain their threshold value. As a further contribution of this work, we propose the threshold
values of six large FOSS projects. These values can be re-used, compared, or validated with
other projects.

Given the fluid nature of FOSS development, all the existing approaches to FOSS effort
estimation are currently missing two pieces of crucial information. The first is a precise mea-
sure of past effort of the developers, even in the more sophisticated models. In traditional
effort estimation models, software projects are able to estimate future effort, because they
know their past effort. Given the increasing involvement of companies in FOSS develop-
ment, this aspect is fundamental to (i) allow potential new participant companies to evaluate
the current developers effort, and (ii) fine tune their participatory effort in the FOSS projects.

The second piece of crucial information that is missing is some sort of validation by the
developers themselves. Assigning developers to the wrong tiers, or using a too wide (or too
small) time window to evaluate the commits activity, produces different values of estimated
effort.

For this purpose, in this paper we surveyed over 1,000 developers working on 6 large
FOSS projects, with the aim to count how many developers consider themselves as ‘full-
timers’ in each project. The number of commits (in a six months’ timespan) of these self-
identified full-time developers was later used as the threshold θ that minimises the error to
differentiate full-timers from other contributors. We used that threshold θ to estimate the
effort produced by developers in each of the analysed FOSS projects. The contribution of
this work is, to the knowledge of the authors, the first developer-validated model to FOSS
effort estimation available in literature.

The present work is an extension of a previously published paper (Robles et al. 2014).
Its Future Work section posited that: “We envisage to expand this study by 1) studying other
FOSS projects to ascertain if our method is applicable in general, and if it is to what extent;
2) performing a scientific experiment to obtain margins of error for the estimation of error
for full-time developers (...)”.

Empir Software Eng (2022) 27:135 Page 3 of 37 135

The current paper should therefore be considered as the enactment of the future work
proposed in Robles et al. (2014), and provides the following specific contributions:

– We provide analysis and results for five more industrial FOSS projects.
– We offer an extension of a previous SLR on effort estimation including papers from

2016-2020.
– We clarify the model, offering an example of how it can be used in practice.
– We further develop on the concepts of goodness and compensation
– We discuss about the estimation error of the model.
– We discuss the repercussions for practitioners.

This paper is articulated as follows: Section 2 introduces the vision of this research.
Section 3 deals with related work, especially focusing on the effort estimation models built
for the various generations of FOSS (e.g., fully volunteered projects, hybrid FOSS projects,
company-led FOSS projects). Section 4 introduces the model for effort estimation that we
propose, alongside the terms and definitions we used throughout this study; Section 5 intro-
duces the characteristics of the analysed projects, while Section 6 describes the survey that
was circulated to the developers of the FOSS projects, and how the threshold θ was evalu-
ated for each project. Section 7 shows how the model is deployed for the OpenStack project,
while Section 8 proposes further replication, when considering five other projects. Section 9
discusses the findings, especially considering what sort of benefits we envisage for FOSS
communities and companies. Section 10 finally concludes.

2 Vision of the Research

The model that we propose below is based on an overarching vision, that is set to maximise
the applicability and reproducibility of our model in other FOSS projects. As depicted in the
flowchart of Fig. 1, the model requires the parsing of a project’s VCS, and that is a relatively
simple resource to have an access to, with modern software engineering tooling. The model
then uses the responses of developers to a survey to establish a value of commits (θ) above
which developers should be considered as full-time.

The second data source of our effort estimation model (i.e., creating, distributing, collect-
ing and analysing the developer surveys) can be time consuming and requires commitment
from a FOSS project’s management board. To combat this, our model has been built also for
those projects that cannot (or do not want) to directly and regularly survey their developers:
the vision of this research is to build enough evidence from several FOSS projects, and to
obtain threshold values for classes of similar projects. Those shared thresholds can then be
reused for other projects, thus removing the need to regularly survey developers.

3 Related Research

Traditional effort estimation models are generally used by organizations in the early stages
of a project to estimate total effort, number of developers and time (e.g., duration) needed
to develop the software. Effort estimation in traditional commercial software has been
approached by means of models, either top-down (e.g., by analogy or by expert judgement)
or bottom up (e.g., via regression models using past data). In the area of effort estimation, a
comprehensive and systematic literature review on effort estimation was presented in 2007

 135 Page 4 of 37 Empir Software Eng (2022) 27:135

Fig. 1 Flowchart to run our effort estimation model in other FOSS projects

Empir Software Eng (2022) 27:135 Page 5 of 37 135

in Jorgensen and Shepperd (2007). The most evident result was to observe that over half
of the papers surveyed are based on history-based evaluations to build models to estimate
future effort.

Similarly to the systematic literature review (SLR) of 2007 (Jorgensen and Shepperd
2007), the research works around effort estimation (specifically for FOSS systems) were
extensively analysed in 2016 by Wu et al. (2016). The type of study proposed by the authors,
alongside the object of the predictions, were analysed and clustered, as visible in the top part
of Fig. 2. Different types of studies were identified, based on the goal of the relative research
(‘Guidelines and Measurement’, ‘Measure individual contribution’, ‘Predict maintenance
activity resource’, ‘Predict direct effort’ and ‘Predict indirect effort’) and the approach used
in the research (‘Development of estimation method’, ‘Case study’, ‘Experiment’, ‘History-
based evaluation’, ‘Theory’ and ‘Comparison study’). The largest set of research studies
was found to be under the ‘Development of estimation method’ to ‘predict maintenance
activity resources’ (comparably to Jorgensen and Shepperd 2007).

In order to include the more recent literature, we repeated the process presented in the
2016 SLR. We analysed the papers that were written between 2016 and 2020, using the
same search string,1 and the same search engines.2 We obtained 2,279 candidate studies
from the database search (without duplicates). After reading abstract and title, we obtained
41 articles; after reading each, we gathered 16 studies that comply with the search criteria
from the original SLR. The labels of the SLR were applied to these papers, as visible in the
bottom part of Fig. 2.

Similarly to the original study, the largest category was found again to be the studies that
predict maintenance activity resources: although most of the papers design and/or deploy a
new estimation method (Hönel et al. 2018; Mi and Keung 2016; Thung 2016; Zhao et al.
2016, mostly focused on bug-fixing efforts), we also found three studies that used history-
based evaluations to directly predict effort (Malhotra and Lata 2020; Porru et al. 2016; Yang
et al. 2016).

Applicability of Traditional Effort Estimation techniques to FOSS The FOSS paradigm,
at least in its original form, was deemed as difficult, if not impossible, to fit under
the most well-known estimation models (for instance the COCOMO I or COCOMO II
models (Boehm 1981; Boehm et al. 2000)). Various research attempts have showed that
fundamental assumptions and constructs could not be applied to the FOSS domain; whereas
other aspects were simply absent from commercial organizations (Amor et al. 2006;
Capiluppi and Izquierdo-Cortázar 2013; Kalliamvakou et al. 2009; Robles et al. 2014).

More specifically, Amor et al. (2006) proposed to measure the total effort invested in a
project by characterizing all the activities of developers that can be traced: commits, e-mails,
bug activities, among others. Kalliamvakou et al. (2009) replicated the study and included
the contribution of developer effort.

Capiluppi and Izquierdo-Cortázar (2013) determined the average hours worked per day
by the Linux kernel developers. They characterized the Linux kernel by the time of day
when the commits were observed in the repository and when the author worked most fre-
quently. They divided a working day into traditional office hours (from 9am to 5pm), after

1As per the original paper: (“Open source” OR OSS OR FOSS OR FLOSS OR opensource OR libre OR
free) AND (maintain OR maintenance OR evolve OR evolution OR “bug fix*” OR “bug-fixing” OR “defect
fixing” OR “defect correction” OR “defect resolution” OR effort OR cost OR estimat*, predict*) AND
(empirical OR validation OR experiment OR evaluation OR “case study”).
2Inspec, Compendex, IEEE Xplore, ACM Digital Library, Science Direct and Google Scholar.

 135 Page 6 of 37 Empir Software Eng (2022) 27:135

Fig. 2 Topic of the SLR conducted in 2016 by Wu et al. (2016) (top); additional SLR performed for this
study (bottom)

office hours (5pm to 1am) and late hours (from 1am to 8am). The authors found that
within the Linux kernel community the effort was constant throughout the week, which
suggested the need for different estimation models from the ones traditionally used in

Empir Software Eng (2022) 27:135 Page 7 of 37 135

industrial settings, where the work schedule is presumed to be 9am-5pm, Monday to
Friday.

A more general work to address the commit frequency was presented in Kolassa et al.
(2013a). Using the http://Ohloh.net repository, the authors evaluated the overall commit
frequency, and the average number of commits that developers featured on. The same repos-
itory was also analysed to evaluate the size of a typical commit (Kolassa et al. 2013b),
where the authors found power laws underlying the patterns of commit size. Later on, the
frequency of commits was analysed in Hou et al. (2014) for two Apache projects, POI and
Tomcat. The authors also found that commits follow power laws, with large bursts and long
tails. Power laws were again found in 4 Apache projects, when analysing the time interval
between commits and files committed (Ma et al. 2014).

Mockus and Votta (2000) showed that, out of nearly 400 programmers in the Apache
project, the 15 most productive ones contributed 88 percent of the total lines of code (LOC).
They compared those 15 Apache developers with programmers in five other commercial
projects. They defined code productivity as the mean number of lines of code per devel-
oper per year (KLOC/developer/year). Koch and Schneider (2002, 2008) reported that in
FOSS projects, the distribution of effort between participants (programmers) is skewed as in
Mockus et al. (2002). Indeed, the majority of code was written and most of the effort spent
by just a few contributors. This paper presents and illustrates the use of a similar approach,
when identifying who these ‘major contributors’ are, but instead of imposing an a-priori
threshold above which we consider a developer to be a ‘super’ or a ‘major’ contributor (or
even a hero (Agrawal et al. 2018)), we validate that threshold with the help of the developer
surveys. To the best of our knowledge, the identification of developer types in this way is
novel.

Moulla et al. (2013, 2014) applied the COCOMO model to the TRIADE (version 7a)
FOSS project, using LOCs and regression models with COSMIC Function Points as the
independent variable (Dumke and Abran 2016; Abran et al. 2016). They reported that in
terms of effort, development of software based on FOSS has advantages over develop-
ment from scratch. Fernandez-Ramil et al. (2009) used linear regression models to estimate
effort and duration for FOSS projects with LOC as the independent variable. Yu (2006) also
used linear regression models with LOC as the independent variable to indirectly predict
maintenance effort in free and FOSS projects. Effort was measured by examining the LOC
added, deleted and modified. Anbalagan and Vouk (2009) investigated predicting how much
time developers spend in corrective maintenance of FOSS projects. Their study focused on
72,482 bug reports from over nine releases of Ubuntu, a Linux distribution system. They
used a linear regression model with ‘bug reports corrected by developer’ as the independent
variable to predict the time taken to correct bugs. They observed that for FOSS estimation
maintenance effort is lower than for proprietary development due to higher code quality.

According to Capra et al. (2007), Capra et al. (2008), and Capra et al. (2010), FOSS
shows a slower growth of maintenance effort over time. Studies by Koch and Schneider
(2002), Koch (2004), and Koch (2008) on effort modelling and developer participation in
FOSS projects show that the number of participants, other than programmers, was about
one order of magnitude larger than the number of programmers. In summary, a number
of studies are available on software effort estimation but few discuss effort and duration
in FOSS projects using linear regression models. The categorization of contributors and
the size and choice of the datasets also present a challenge for research on FOSS projects
estimation.

http://Ohloh.net

 135 Page 8 of 37 Empir Software Eng (2022) 27:135

Effort Estimation in Hybrid FOSS Systems The terminology around FOSS started to
change as long as volunteer communities began to collaborate with industrial entities. One
of the first research studies that identified the possibility of a mixed development approach
was the seminal work by Lerner and Tirole (2002). Various strategies were formulated,
where commercial enterprises could be profitable using FOSS as a strategic asset.

A more formal description of the grades of involvement of commercial companies into
FOSS projects was formulated in two research works (Shah 2006; Capra et al. 2008). The
first work was focused on the motivations of developers and how that was affected by the
type of FOSS development. In the second work, and using ‘governance’ as the term of
reference, Capra et al. produced various levels of involvement, from volunteer-based, to
company-driven FOSS projects.

Summary of Past Work Previous work on FOSS effort estimation has been typically run
by detecting effort using direct measurements (e.g., number of developers) and applying
proxies to those in order to derive a measurement of effort. In other cases, effort was derived
indirectly, by using various other measurements, and inferring a relationship to the effort
devoted to a software project. Table 1 summarises the past works in terms of how direct and
indirect measurements (and which ones) were used when deriving effort estimation models.
As visible, the approach that we propose in our paper (and that has been trialled in its earlier

Table 1 Summary of past works based on the use of direct and indirect measurements

Ref Type Attributes Validated w
developers

Source
code

Yu (2006) INDIRECT lag time, source code changes NO

Alomari (2015) INDIRECT lag time, delta LOCs, delta files NO

Process
based

Abdelmoez et al. (2012) INDIRECT Bugs data NO

Ahsan et al. (2009) INDIRECT Bugs data NO

People-
based
estimation

Koch and Schneider (2002) DIRECT Proxy of {lag time, LOCs} NO

Capra et al. (2007) DIRECT Proxy of {lag time, LOCS,
methods}

NO

Koch (2008) DIRECT Proxy of {active developers,
lag time, LOCS, methods}

Activity-
based
estimation

Amor et al. (2006) DIRECT Proxy of {LOCs, commits,
emails, bug activity}

NO

Capiluppi and Izquierdo-
Cortázar (2013)

DIRECT Proxy of {active developers,
lag time, LOCs}

NO

People- &
activity-
based

Robles et al. (2014) DIRECT +
INDIRECT

Proxy of {commits}, surveys YES

People- &

activity-

based

Ours DIRECT +

INDIRECT

Proxy of commits , surveys YES

Highlighted are the characteristics of the present paper

Empir Software Eng (2022) 27:135 Page 9 of 37 135

inception at Robles et al. (2014)) is grounded in both direct and indirect measurements.
Furthermore, its results have been validated with developers’ responses: this alone is the one
aspect that sets our model apart from any other attempt at estimating the effort produced by
FOSS developers.

In general, effort estimation models for FOSS projects are based on the data that are
collected in the various development activities; these data (especially when they have large
variance, or are heterogeneous) need transformation parameters (e.g., logarithmic) that
might be needed to normalise a distribution, or to take into account different types of data
for the same model. One example of the latter would be devising a transformation parame-
ter to consider all the different activities (emails, blogs, online discussions, etc., as well as
the actual code commits) that a developer is engaged into (Amor et al. 2006).

This type of models suffers from a couple of issues: first, it is well known that contri-
butions to FOSS projects are not uniform. A few developers are responsible for a major
amount of the work, while a large number of developers contribute with a comparatively
small one (Koch and Schneider 2002; Mockus et al. 2002). So, one of the problems when
measuring effort of the overall FOSS development process consists in translating the uneven
nature of contributions (Mockus et al. 2002) into a consistent estimation model. Inferring
the effort devoted by regular and occasional contributors is not easy, and in addition is a
source of inaccuracy.

The second issue is that the conversion of that data to effort is far from simple, since it
is not possible to exactly determine how much time or effort the developer actually spent
on those activities. In general, the information we can gather consists of points in time
(i.e., timestamps) where specific actions have occurred (e.g., when the commit was per-
formed, when the e-mail was sent, when a comment to a bug notification was submitted),
but not how long these actions actually took (e.g., performing the changes in the com-
mit, reading and writing the e-mail, debugging the software to add information on the
bug).

4 Empirical Approach

In this section we introduce the concepts and terminology at its base (4.1), and the
two types of input (4.2) that the model uses to evaluate the developers effort. Using
an example scenario, we show how to evaluate the threshold θ to identify full-time
developers (4.3).

In addition, we discuss how to estimate the error in our model (4.4), and contribute the
novel goodness performance measure (4.5) that helps in finding the optimal θ . We conclude
the section by evaluating the total estimated effort of the example scenario, as well as the
relative estimation error (4.6).

4.1 Concepts and Terminology

Our model is build on top of following concepts that are well known in the Software
Engineering research literature:

– Commit: action by which a developer synchronizes a set of changes to the versioning
system repository. A commit is given by a point in time (the timestamp can be obtained
from its metadata).

 135 Page 10 of 37 Empir Software Eng (2022) 27:135

– Author (or developer, or contributor): individual who contributes the changes, but
may not be the one who performs the commit (which is done by the committer).

– Committer: developer who actually performs the commit to the repository, but may
have not been the real author of the changes. In our model, we do not consider
committers, since it would decrease its accuracy.

– Full-time developer: Developer who devotes the relative amount of time of a 40 hour-
week to the project.3 In some research literature on FOSS, full-time developers are
called “professional” developers as compared to volunteers (Sowe et al. 2008; Stein-
macher et al. 2015; Von Krogh et al. 2003). In this paper, we prefer full-time and
non-full-time developer, as the latter can be professionals as well, just with a minor
participation in the project.

– Person-Month: measure of effort. A person-month is observed when a full-time
developer devotes 1 month of effort to the project.

In addition, for our model we use the following terminology:

– Period of study n: timespan (in months) during which the activity (i.e., commits) by
developers is aggregated.

– Threshold θ : minimum amount of activity (i.e., commits) during the period of study
by a developer to be considered as a full-time developer.

– Effort Ed in a period of study (by developer d): any developer who performs more
commits than θ in a period of study of n months will be considered as full-time with n
person-months. A developer who committed a commits (with a < θ), will be assigned
an effort of n ∗ a

θ
person-months.

– Effort En in a period of study n (for the whole project): The overall effort En is
evaluated by summing up the effort in a period of study of all developers (full-time and
non-full-time). The formula to obtain the overall effort is as follows:

En =
df t∑

d=1

n +
dnf t∑

d=1

n ∗ ad

θ

where df t is the number of full-time developers, dnf t the number of non-full-
time developers, and ad the number of commits that a non-full-time developer has
contributed in the period n, smaller than θ .

– Maximum possible effort M in a period of study (for the whole project): This is the
effort when all developers are considered full-time, e.g., θ = 1. It can be considered as
an upper bound of the total effort, and is calculated as follows:

Max(En) =
df t+dnf t∑

d=1

n

4.2 Surveying Developers

The first basic input to our model is the self-identification of developers as full- or non-full-
time. This is done by means of a short survey that tries to obtain this information.

3In some countries there is a different work week, e.g., in the UK it is 35 hours. The model presented can be
adjusted if needed.

Empir Software Eng (2022) 27:135 Page 11 of 37 135

Table 2 Example scenario to
determine θ : developers identify
themselves as either full-time (F)
or non-full-time (NF). We
evaluate their effort by counting
the number of their commits

Dev # Full-time or non-full-time? Effort (# commits)

(From questionnaires) (From data analysis)

D1 F 12

D2 F 10

D3 F 13

D4 NF 3

D5 NF 11

D6 NF 8

D7 F 10

D8 NF 5

One of the questions of the survey explicitly asks respondents to classify themselves
in one or the other category (‘What do you consider yourself in the project? (full-time,
part-time, occasional contributor’). But as this question can be easily misunderstood, we
recommend to use additional, alternative questions that allow to check the input given by
developers for consistency. Thus, we asked them how many hours per week they have usu-
ally devoted in the last months to the project (‘On average, how many hours in a week have
you spent in the project in the last six months?; developers could choose among following
options: >40 h, 40 h, 30 h, 20 h, 10 h, <5 h).

In addition, on a separate web page of the survey, we also showed developers a chart con-
taining their own personal activity (in number of commits per month). We added a line to
the chart with the estimated value of θ , and asked them if we had identified them correctly.
Developers could answer in an open text box. Although the aim of this question was to see
if developers corroborate our findings, we did not achieve it. This was because (1) our esti-
mated value of θ was far away from the value finally obtained; and (2) developers were not
aware of the details of the model and commented on other issues of lesser interest.4 How-
ever, the feedback received clearly indicated that using a period of study of 1 month was not
a good choice. For the analysis presented here, we have set 6 months as the most convenient
“Period of study n” , as this is the usual time between releases for many projects (Michlmayr
et al. 2015). By doing this, all cycles of six months will be affected by the same process
(development, feature freeze, release, etc.).

4.3 Determining the Threshold Value θ

Our effort estimation model depends on how accurately we can identify full-time and non-
full-time developers. To illustrate its evaluation, we use an exemplary scenario: let’s assume
that the development team of a software project is made up of 8 developers, and that they
responded to the questionnaire (“Are you a full-time or a non-full-time developer?”) as in
the second column of Table 2. In the third column, we report the amounts of commits that
each worked on during the period n, as extracted by parsing the versioning system of their
project (Robles et al. 2004).

The first three developers (D1, D2 and D3) self-identified as full-time (F). From the data
analysis of their commits, we detected that these developers actually worked on 12, 10 and
13 commits respectively during the period under study (for example, a month). Using the

4Details can be found in the reproduction package in an anonymized way

 135 Page 12 of 37 Empir Software Eng (2022) 27:135

data analysis, and if only these three developers were active, the minimum θ to identify a
full-time developer would be 10 commits in the period.

On the other hand, when we consider all the other developers, especially D5, the thresh-
old θ = 10 becomes less effective: D5 classifies his/her work as non-full-time, but he/she is
responsible for 11 commits in the period n. If we use θ = 10 to detect full-time developers
also for D5, we wrongly classify him/her as full-time; if, on the contrary, if we use θ = 11 to
identify full-time developers (and to correctly classify D5), we wrongly classify D2 and D7,
who both contributed 10 commits, but self-identified themselves as full-time. Determining
the value of θ becomes therefore an exercise to minimise the classification errors.

4.4 Determining the Estimation Error

In the example above, we have the typical information retrieval problem with true/false
positives and true/false negatives. In particular, and depending on how the threshold θ has
been chosen:

– A true positive (tp) means that, using a specific θ , the developer identified as full-time
is indeed full-time. Using θ = 10, the example above comprises 4 true positives (e.g.,
D1, D2, D3 and D7).

– A false positive (fp) means that the developer is flagged as full-time, but s/he is not.
Using θ = 10, the example above comprises 1 false positive (e.g., D5).

– A false negative (fn) means that the developer has not been identified as full-time,
albeit s/he is. Using θ = 10, the example above does not comprise any false negatives. If
we used θ = 11, instead of θ = 10, the example above would contain 2 false negatives
(e.g., D2 and D7), but no false positives.

– A true negative (tn) means that a non-full-time contributors has been correctly flagged.
Using θ = 10, the example above contains 3 true negatives (e.g, D4, D6 and D8).

The visual representation of these terms is displayed in Fig. 3, using the full-time and
non-full-time subsets of developers. Within the realm of information retrieval, we can also
evaluate the values of well-known performance measures:

– The precision of the model is the ratio of true positives (i.e., the correctly identified
full-time developers) and the number of all the identified (correctly or not) full-time
developers, or Pd = tp

tp+fp
.

– The recall of the model (or its sensitivity) is the ratio of correctly identified full-
time developers and the total number of full-time developers (whether they have been
correctly identified or not), as in Rd = tp

tp+fn
.

– The accuracy is the ratio of all the correctly predicted developers, and the overall set
of observations: Ad = tp+tn

tp+tn+fp+fn
.

– The F-measure is a combination of both precision and recall, Fd = 2 ∗ Pd∗Rd

Pd+Rd
.

However, these ‘classic’ performance measurements do not take into account the fact
that classification errors can compensate each other: depending on the project, the same θ

could classify a non-full-time developer as full-time (e.g., a false positive) and at the same
time a full-time developer as non-full-time (e.g., a false negative). In this case, we state that
the two errors compensate each other.

Empir Software Eng (2022) 27:135 Page 13 of 37 135

Fig. 3 Visual representation of the tp, fn, fp and tn values for the full-time and non-full-time developer sets

4.5 Compensating the Classification Errors: the goodness Measure

The formulation of the goodness measurement is designed to explicitly consider the com-
pensation of classification errors: this fact alone sets our model apart from traditional
information retrieval techniques. Below we illustrate (i) how the goodness performance
measure can accommodate the compensation of classification errors, and (ii) how it is piv-
otal in selecting the most probable threshold θ to detect the full-time developers for our
model.

The evaluation of the goodness measurement stems from the intrinsic distribution of the
developers’ work patterns. Depending on their contributions and what type of contributors
they consider themselves to be, a larger or smaller number of wrongly classified developers
could seriously skew the evaluation of the overall effort. It is also worth noticing that there
is currently no mention in the literature of the possibility of classification errors, and the
need of error compensation. As it stands, this is the first research work that addresses this
open issue. The formula of the goodness measure is as follows:

– Goodness = 1 − |(tp+fp)−(tp+fn)|
tp+fn+fp

= 1 − |fp−fn|
tp+fn+fp

The goodness measure depends on the number of non-compensated classifications (the
numerator, an absolute value, since compensation works both ways), divided by the total
number of positives and false negatives. Subtracting this fraction to 1, the goodness becomes
larger as long as false positives and negatives have been compensated (or if no compensation
was necessary). The measure of goodness could also consider the true negatives (tn) instead
of the true positives (tp). The reason of not including (tn) is due to the typical distribution
of FOSS developers: a large number of FOSS developers have an extremely low level of
contribution. As a result, including a large number of tn into the definition of goodness
would inevitably lower its discriminative power, as compared to using tp .

Using the same example scenario depicted in Table 2, we report in Table 3 the values of
tp , fp, fn and goodness, using different values of θ (that is, number of commits). As visible,
the relatively high number of false positives (fp) has a negative impact on the goodness
measure, especially when θ is small. As long as more false positives get compensated by
false negatives, the goodness measure finds its maximum: we posit that the best values of θ

lie where the goodness is maximised (highlighted in Table 3).

 135 Page 14 of 37 Empir Software Eng (2022) 27:135

Table 3 True positives, false
positives and false negatives (as
well as the resulting goodness
measure) at different values of θ .
The data is based on the example
from Table 2

goodness

1 4 4 0 0.50

2 4 4 0 0.50

3 4 4 0 0.50

4 4 3 0 0.57

5 4 3 0 0.57

6 4 2 0 0.67

7 4 2 0 0.67

8 4 2 0 0.67

9 4 1 0 0.80

10 4 1 0 0.80

11 2 1 2 0.80

12 2 0 2 0.50

13 1 0 3 0.25

4.6 Total Estimated Effort and Estimation Error

The identification of θ allows to evaluate the effort by developers for a certain period, or for
the entire project. In the latter case, an adjustment of the threshold might become necessary.
In the example scenario that was discussed above (see Tables 2 and 3), the threshold that
maximises the goodness measure lies between 9 and 11. If we choose θ = 10, the overall
effort by developers is 6.6 PM, as in the sum of:

– 5 PM (1 PM each for the D1, D2, D3, D5 and D7 developers)5

– 3
10 PM (for the D4 developer)

– 8
10 PM (for the D6 developer)

– 5
10 PM (for the D8 developer)

Choosing a different threshold, but still within the values that maximise the goodness
function (i.e., the shaded rows in Table 3), has a small effect on the overall effort, that sums
up to 6.78 PM in case of θ = 9, and 6.27 PM in case of θ = 11. The estimation errors grow
larger as long as one moves away from the ‘safe’ range of θ . The sum to evaluate the overall
effort, as presented above for the example scenario, is the same that was used to evaluate
the effort of the projects under study.

Table 4 lists the estimation errors (in percentage) if a different θ is selected, as compared
to the θ = 10 that maximises the goodness of our example scenario.

5 Deployment of theModel

The model presented above is deployed using 6 large FOSS projects that have a different
degree of participation of commercial companies. The selection of these projects is based

5Full-time developers are assumed to work 1 PM every month, even if they work more than the chosen θ .
We call this aspect the saturation of a developer’s effort.

Empir Software Eng (2022) 27:135 Page 15 of 37 135

Table 4 Values of global effort
(in PM) by developers, and the
percentages of error when
choosing a different threshold.
The data is based on the example
from Table 2

Effort (PM) Estimation
error

%12.1200.81

%12.1200.82

%12.1200.83

%24.7157.74

%51.5106.75

%11.1133.76

%32.841.77

%60.600.78

9 6.78 2.69%

10 6.60

11 6.27 4.96%

12 5.92 10.35%

13 5.54 16.08%

on convenience sampling: two of the authors of this paper have a direct contact with the
communities under study.

All selected projects follow common practices found nowadays in large FOSS software
development projects: they have code review in process (using an external tool like Gerrit,6

except Ceph that uses GitHub’s pull-request driven process) and recommend to do commit
squashing (Kalliamvakou et al. 2014). Squashing a commit refers to move changes intro-
duced in a commit into its parent, to end up with one commit instead of two. If you repeat
this process multiple times, n commits can be reduced (i.e., ‘squashed’) to a single one. It
is common practice in many FOSS projects to squash all commits that belong to a change,
after it is reviewed and accepted (Kononenko et al. 2018).

Summary statistics are provided in Table 5, with an additional column stating whether it
is a consortium with commercial participation (‘consortium’), or an organization (commer-
cial or not) driving the project (‘organization’).

OpenStack OpenStack is a software project to build a SaaS (software as a service)
platform. Over 200 companies have become involved in the project. AMD, Brocade Com-
munications Systems, Canonical, Cisco, Dell, Ericsson, Groupe Bull, HP, IBM, InkTank,
Intel, NEC, Rackspace Hosting, Red Hat, SUSE Linux, VMware Yahoo! and many others
have been participating in OpenStack.

Moodle Moodle is an FOSS project that implements a PHP-based learning management
system: it started as a volunteer project in 2002, but it has since evolved into a company-
driven FOSS project. Moodle HQ is the company that keeps developing it, and there is an
estimated 80 international companies that help in its development.

6https://www.gerritcodereview.com/

https://www.gerritcodereview.com/

 135 Page 16 of 37 Empir Software Eng (2022) 27:135

Table 5 Main parameters of the studied projects, January 2014

Project Type First release # Authors (distinct) # Commits (w/o bots) SLOC

Ceph Consortium 07/2008 (v0.2) 158 37,254 418K

Linux Consortium 08/1991 3,665 540,263 >10M

Moodle Organization 08/2002 (v1.0) 174 52,523 1.28M

OpenStack Consortium 10/2010 1,410 68,587 1.65M

WebKit Consortium 06/2005 690 107,471 5.0M

MediaWiki Organization 01/2001 605 357,786 340K

Ceph Ceph is a freely available storage platform,7 and it also started as a volunteer based
FOSS project. After being merged into the Linux kernel in 2010, it was incorporated by
RedHat that is now responsible for its in-house development. Various large organisations
contribute to its development, from Canonical to Cisco, Fujitsu and Intel.

Linux Linux represents the most well-known success story for FOSS projects. Started as a
volunteer project back in 1991, Linux grew exponentially, although it is still a community-
driven project. The amount of contributions from commercial companies have slowly
outgrown those of the individual developers: the latter account now for only 10% of the
developers of the operating system.

WebKit WebKit is an FOSS project started by Apple, although it started as a fork of an
existing KDE project. It implements the engine that sits behind the Safari web browser.
KDE, as well as other FOSS communities, still participates in the development of WebKit,
but large commercial organisations (Google, Nokia) have also contributed to it. In April
2013, Google forked the WebKit creating to Blink. Since then it is mainly a project backed
by Apple.

MediaWiki Wikimedia is the non-profit organisation that supports the growth of the
Wikipedia online encyclopedia. Wikimedia is directly in charge of the MediaWiki FOSS
project,8 that implements the wiki engine that allows pages to be added, modified and
contributed to by anyone.

6 Data Gathering

As mentioned above, the estimation model that we propose in this paper obtains data from
two sources: (i) the VCS of the project under study, and (ii) the questionnaire data that was
sent to the developers identified in the VCS of each project. Below we describe the steps
that were performed to gather the data from each source.

7https://github.com/ceph/ceph
8https://phabricator.wikimedia.org/source/mediawiki/

https://github.com/ceph/ceph
https://phabricator.wikimedia.org/source/mediawiki/

Empir Software Eng (2022) 27:135 Page 17 of 37 135

Table 6 Summary of emails sent
to the developers of the sampled
projects, and ratio of completed
questionnaires

Sent Received Ratio

Ceph 158 24 15.19%

Linux 3,665 652 17.79%

Moodle 174 42 24.14%

OpenStack 1,407 131 9.31%

WebKit 690 85 12.32%

MediaWiki 605 94 15.54%

Total 6,699 1,028 15.35%

6.1 Versioning SystemData

The information from the VCS is obtained by means of Dueñas et al. (2018), which is part
of the MetricsGrimoire toolset.9 Perceval retrieves development information and metadata
from repositories10 of the project, and provides it as JSON files, ready for analysis.

The data obtained from the VCS repositories was subject to two cleaning operations: one
related to the extraction and reconciliation of duplicated developer identities (Robles and
Gonzalez-Barahona 2005; Wiese et al. 2016); and one related to the exclusion of commits
generated by automated bots. We performed those operations for all the projects in the
sample.

Using OpenStack as an example, from the analysis of its commits we observed that there
are 1,840 distinct author identifiers in the VCS of OpenStack. After applying a merging
algorithm (Kouters et al. 2012), manual inspection and feedback from the community, 1,410
distinct real authors have been identified, once duplicate IDs were merged. Additionally,
the total number of commits is almost 90,000, although many of these have been done
automatically by bots. The committers identified as bots, as well as their commits, were
excluded from the analysis. Bots are responsible for 21,284 commits, almost 25% of all
commits in the project: those bots and their commits were excluded from the data used to
evaluate θ .

OpenStack, as many other FOSS projects, has an uneven contribution pattern where a
small group of developers have authored a major part of the project. In summary, 80%
of the commits have been authored by slightly less than 8% of the authors, while 90%
of the commits correspond to about 17% of all the authors. In addition, as the corporate
involvement in OpenStack is significant, this should allow us to identify full-time developers
from companies: the OpenStack Foundation estimates that around 250 developers work
professionally in the project.

At the end of this data analysis, for each project in our sample we obtained the number
of monthly commits per developer.

6.2 Online Survey of Developers Effort

To obtain data of the time commitment of the FOSS developers in the sampled projects, we
designed an on-line survey (as described in Section 4.2). We obtained the e-mail addresses

9http://metricsgrimoire.github.io
10The Ceph, Linux, Moodle, MediaWiki and OpenStack datasets were retrieved from git repositories. The
WebKit dataset was retrieved from a Subversion repository.

http://metricsgrimoire.github.io

 135 Page 18 of 37 Empir Software Eng (2022) 27:135

of the developers from their authorship information in the VCS, and sent them an e-mail
with an invitation to participate.

Gathering all the distinct developers from the 6 sampled FOSS projects, an overall 6,700
personalized mails were sent, and the survey was answered by a grand total of 1,028 respon-
dents. We removed 55 survey responses because they were empty or we could see from the
answer in the free text box that the respondent had misunderstood/misinterpreted the ques-
tions (e.g., there was a developer referring to his contributions to the LibreOffice project,
which is not part of the analysed sample of projects). We also amended 32 surveys (e.g.,
some respondents stated to be professional developers hired by a company and devoted 40
or more hours a week to the project, but had left empty their status, which we set to “full
time”).

Table 6 reports the number of responses (and the ratio) obtained from the developers of
the sampled projects.

7 Model Deployment—OpenStack

This section reports the results of our analysis: we first present an in-depth analysis of the
OpenStack project, and later an overall view of all the projects in the sample.

7.1 Identification of Full-Time Developers

In this section we describe how the full-time developers were identified within the Open-
Stack contributors, by using the threshold θ and calibrating the results of the questionnaire.
The same approach was followed for the other projects in the sample.

As a first step we analysed the questionnaires: we gathered that 37 developers identify
themselves as full-time, while 54 developers consider themselves as non-full-time. As a
second step, we extracted the number of commits of each developer, in the six months
prior the questionnaire. Given those two sources of information, we need to answer the
question: what is the minimum number of commits that more precisely separates full-time
from non-full-time developers?

To answer that question, the two plots in Fig. 4 classify the developers as following (at a
certain level of θ):

– true positives: number of full-time OpenStack developers that are classified as full-
timers;

– false negatives: number of full-time OpenStack developers wrongly classified as non-
full-timers;

– false positives: number of non-full-time OpenStack developers that were classified as
full-timers;

– true negatives: number of non-full-time OpenStack developers correctly classified as
non-full-timers.

Full-Time Developers When θ is set to 1, developers who contribute at least one commit
in a six-month time-span will be considered as full-time by our algorithm. From Fig. 4,
the precision to detect a full-time developer with θ = 1 is maximum: this means that each
of the 37 self-identified full-time developer has contributed at least one commit during the
allocated time-span (i.e., six months).

Empir Software Eng (2022) 27:135 Page 19 of 37 135

Fig. 4 (Top) True positives (tp) and false negatives (fn) for full-time developer identification for several val-
ues of θ (OpenStack project). (Bottom) False positives (fp) and true negatives (tn) for non-full-time developer
identification for several values of θ . The dimension of the vertical axis has been maintained to ease the
comparison of the size of both populations

The number of true positives (tp) decreases once θ gets larger: for example, out of the
37 self-identified full-timers, only 30 developers contribute at least 8 commits every six
months (i.e., θ = 8). The remaining 7 developers are classified as false negatives: even if
they are full-time developers, our approach considers them as non-full-timers. In this case,
the precision of using a threshold θ = 8 to detect full-time developers is 30

37 .

Non-full-time Developers The same approach applies to non-full-time developers, but
based on false positives and true negatives (see bottom plot of Fig. 4): setting θ = 1, all
the self-identified non-full-time developers are false positives, and our algorithm considers
them as full-timers.

As seen in the bottom plot of the same Figure, also the number of true negatives (tn)
increases, as long as θ gets larger. At θ = 8, for example, 38 out of 54 non-full-time
developers are correctly identified as non-full-timers (i.e., true negatives); while 6 out of
54 non-full-time developers are still considered as full-timers, at that level of θ (i.e., false
positives).

 135 Page 20 of 37 Empir Software Eng (2022) 27:135

Fig. 5 Compensation between false positives and false negatives for values of t. Negatives values of the y
axis indicate false positives that do not get compensated by false negatives, while positive values of the y
axis indicate false negatives not compensated by false positives

7.2 Compensation of Error and the Goodness Metric

Figure 5 displays graphically the compensation pattern in the OpenStack project, and for dif-
ferent values of θ . The number of wrongly classified non-full-time developers are subtracted
from the number of wrongly classified full-time developers.

As it can be seen, for θ = 1 no full-time developer has been incorrectly classified, but
all non-full-time developers have. No compensation occurs then. However, as θ increases,
the error of incorrectly classifying full-time developers is compensated by the error of
incorrectly classifying non-full-time developers. The value for which the number of non-
compensated errors is minimum corresponds to t = 12, where the difference is 1 (i.e., there
is one false negative more than false positives).

Figure 6 shows that, for the OpenStack project, the value of goodness peaks at θ = 12
(0.979). Thus, the error for our effort estimation should be smaller for θ = 12, due to the
effect of compensation that the goodness factor recognizes.

Fig. 6 Relevance of results (for many threshold values) for the OpenStack project

Empir Software Eng (2022) 27:135 Page 21 of 37 135

7.3 Effort Estimation

Having obtained feedback from the OpenStack developers through the survey, the identifi-
cation of full-time developers via θ becomes more precise. Depending on the θ chosen, the
effort estimation will provide more or less accurate values.

Table 7 shows the results of the estimated effort in OpenStack, and using several values
of θ . Considering the global effort through the whole lifespan of the project, we can see that
-as expected- the number of person-months decreases while the threshold increases: less and
less developers are considered as full-time, thus pushing the effort down. The upper bound
of effort for OpenStack, where a single commit in a semester would have been coded as 6
person-months, results in 17,400 person-months.

According to the analysis, the best values for θ are between 9 and 12. The highlighted
value of θ = 12 in Table 7 is what minimizes the error of considering developers as full-time
using the feedback from the OpenStack developers. For the θ = 12 scenario, the estimation

Table 7 Estimated total effort (in PM) for the OpenStack project, given per threshold value (column θ).
Estimated effort values for all semesters. The darker the background, the higher the value of goodness
(white < 0.8 ≤ lightblue < 0.9 ≤ greenblue ≤ 1.0)

Effort (total, PM) Effort (semester, PM)

10s2 11s1 11s2 12s1 12s2 13s1 13s2

1 17,400 426 816 1,242 1,890 2,742 4,368 5,916

2 15,255 420 813 1,170 1,647 2,385 3,783 5,037

3 13,804 402 798 1,110 1,486 2,140 3,384 4,484

4 12,747 389 785 1,056 1,383 1,964 3,074 4,098

5 11,891 378 768 1,008 1,295 1,830 2,821 3,791

6 11,213 370 757 964 1,224 1,726 2,618 3,554

7 10,629 362 743 927 1,164 1,635 2,451 3,346

8 10,128 355 732 896 1,112 1,560 2,310 3,164

9 9,683 345 721 866 1,065 1,493 2,189 3,003

10 9,298 337 711 841 1,025 1,434 2,086 2,864

11 8,957 330 700 819 987 1,381 1,997 2,743

12 8,655 324 690 800 955 1,334 1,919 2,634

13 8,370 318 680 782 924 1,289 1,847 2,531

14 8,112 313 672 767 896 1,247 1,781 2,437

15 7,876 308 663 753 872 1,208 1,721 2,351

16 7,662 303 656 740 850 1,173 1,666 2,275

17 7,466 298 648 729 830 1,140 1,615 2,206

18 7,284 294 641 719 812 1,107 1,568 2,142

19 7,109 291 634 708 794 1,077 1,522 2,083

20 6,945 288 628 698 777 1,048 1,481 2,025

 135 Page 22 of 37 Empir Software Eng (2022) 27:135

of the amount of effort that was invested in the OpenStack project lies around 9,000 person-
months (750 person-years). This can be considered as the most accurate, and it reaches only
half of the estimation value produced in the upper bound estimation (with θ = 1).

The table also provides information for every semester. As can be observed, the effort
devoted to the OpenStack project is increasing with time, with a maximum for all the thresh-
olds in the second semester of 2013. If we take the value of 12 as the threshold, 2,634
person-months have been worked during the last six months. This implies that we esti-
mate that the actual effort on OpenStack has been around 440 person-months during the
last six months. When asked about these figures, OpenStack members confirmed that they
sound reasonable as the estimation of the OpenStack foundation is that currently over 250
professional developers work on the project hired by companies.11

On a side note, it should be noted that the ratio between the effort estimated as the upper
bound (θ = 1) and the one with θ = 12 is steadily increasing. In the second semester of
2010 the ratio was 1.31, while for the second semester of 2013 it has grown to 2.25. This
is because the number of non-full-time contributors has grown as well. Thus we can see
how much the “minor contributors” in the project affect the estimations given by our model.
While the error (noise) introduced by these small contributions is included using the upper
bound, higher values of θ filter it out. The result is not only a more realistic estimation, but
also an estimation where the more error-prone assumptions (i.e., non full-time developers)
have a smaller weight in the total effort.

8 Further Model Deployment

The estimation model deployed in the OpenStack project was also evaluated for the other
systems composing our sample. In this section, we perform the model deployment for 5
other systems to

(i) identify their full-time and non-full-time developers (8.1),
(ii) extract the values of θ where compensation happens more frequently for each system

(8.2), and
(iii) find the goodness value that maximises the accuracy of the (project-specific) model

(8.3).

Table 8 shows the summary of the calculations of both the θ value, and the correspond-
ing effort for the other projects in the sample. In the next sections we describe how the
estimation model was deployed in each of the additional systems in the sample.

8.1 Identification of Full-Time Developers

The approach that was presented for OpenStack was repeated for all the systems. In all the
cases, when θ increases, the more precise it becomes to identify the non-full time develop-
ers, based to their responses to the questionnaires. Similarly, when θ grows, the accuracy at
identifying full-time developers decreases for all but one project. Ceph (second from bottom
plots in Fig. 7) is an expected variation to this trend: all its self-identified full-time devel-

11This type of informal feedback was gathered only from OpenStack developers, but not repeated for the
other projects in the sample.

Empir Software Eng (2022) 27:135 Page 23 of 37 135

Table 8 Estimated total effort (in PM) for all projects from 2010s2-2013s2 (3.5 years), given per threshold
value (column θ). The darker the background, the higher the value of goodness (white < 0.8 ≤ lightblue <

0.9 ≤ greenblue ≤ 1.0)

OStack t Moodle t WebKit t Linux t Ceph t MWiki

1 17,400 1 2,688 1 11,976 1 57,390 1 1,056 1 5,508

...

6 8 11 11 32,156 18 574 30 3,348

7 9 12 12 31,157 19 567 31 3,324

8 10,128 10 13 8,022 13 30,240 20 560 32 3,302

9 9,683 11 1,846 14 7,887 14 29,393 21 554 33 3,279

10 9,298 12 1,803 15 7,753 15 28,602 22 548 34 3,258

11 8,957 13 1,765 16 7,619 16 27,865 23 542 35 3,237

12 8,655 14 1,731 17 7,493 17 27,173 24 536 36 3,217

13 8,370 15 1,698 18 7,372 18 26,524 25 530 37 3,198

14 8,112 16 1,666 19 7,257 19 25,914 26 525 38 3,179

15 7,876 17 1,636 20 7,146 20 25,334 27 520 39 3,161

16 7,662 18 1,609 21 7,037 21 24,781 28 516 40 3,142

17 7,466 19 1,584 22 6,933 22 24,256 29 511 41 3,124

18 7,284 20 1,561 23 6,833 23 23,761 30 506 42 3,106

19 21 24 6,737 24 23,290 31 501 43 3,089

20 22 25 6,646 25 22,839 32 496 44 3,072

21 23 26 6,558 26 22,411 33 492 45 3,056

22 24 27 6,472 27 22,002 34 488 46 3,040

23 25 28 6,390 28 21,609 35 484 47 3,025

opers have an extremely high number of commits in the six-month time-frame, higher than
the 50 commits depicted in the figure.

8.2 Compensation

Similarly to what achieved in Section 7.2, the compensation levels were evaluated to identify
the minimum between false negatives and false positives. The plots of the compensation
values, per project, are available in Fig. 8. Given a compensation plot, one can obtain the
value of θ for each project, and more precisely where the compensation is closest to zero. In
the extreme case of the Ceph project, there are no false negatives, and only false positives,
therefore the compensation is negative for any threshold value.

8.3 Goodness (and Threshold Values Obtained)

In Fig. 9 we have plotted similar metrics to Fig. 6 (i.e., precision, recall and goodness) for
the rest of the analysed systems. The θ value for a project is selected in correspondence of
the maximum value of the goodness: as demonstrated above, that threshold value minimizes
the estimation error.

We collected the values of θ , per project, in Table 9. In the Discussion (in particular in
Section 9.5), we elaborate about why projects might have different values of θ , and how

 135 Page 24 of 37 Empir Software Eng (2022) 27:135

Fig. 7 Correct identification of full-time (l) and non-full-time (r) developers depending on the threshold
value (x-axis). The darker shade gives those developers that have been correctly identified, while the lighter
one is for those that were not. The vertical axis has been kept the same for each project in order to ease visual
comparison of the population of each group

this knowledge can be leveraged to extend our model to other projects, and without having
to directly survey their developers.

9 Discussion

In this section we discuss the limitations, implications and further possibilities of our
research. We will start presenting the threats to validity (9.1), and then elaborate further
on the sources of error of our model (9.2). Finally, possible impact for practitioners and
managers (9.3), the representativeness of our survey (9.4) and the possibilities of generaliz-
ing to other FOSS projects (9.5) are presented and discussed.

Empir Software Eng (2022) 27:135 Page 25 of 37 135

Fig. 8 Compensation between false positives and false negatives for values of θ . Y-axis is given in number
of developers; the x-axis corresponds to the θ value. Negatives values of the y axis indicate false positives
that do not get compensated by false negatives, while positive values of the y axis indicate false negatives not
compensated by false positives. Note that the magnitude of the vertical axis is different for each plot

9.1 Threats to Validity

All empirical studies, such as this one, are subject to threats to validity. Here, we point the
most relevant ones and discuss how to mitigate or control these threats if possible.

Conceptual Assumptions and assertions have been done. We have tried to make them explicit,
as for instance the assumptions that a person-month equates to 40h/week. Some of them
may require further support, but this does not invalidate the plausibility of the argument.

Internal Having only considered one of the many sources of activity (and data) may result
in our estimation model being not accurate. Further work is expected to be of broad interest
and supportive of the claims presented.

External Originally, OpenStack was chosen as the illustrative case study. We consider that
this project is representative of many FOSS projects, especially those where many industry
players cooperate. There may be certain practices that could only be found for OpenStack:
for instance, their review process produces large (and few) commits, so values of θ should
be selected differently for other FOSS projects. We have applied the model to other five
FOSS projects, and the results are similar.

The model has been conceived to work well when participation follows a power-law and
the number of full-time developers that can be easily identified because their activity is
much higher then by the rest of developers—else we could have many false negatives (i.e.,

 135 Page 26 of 37 Empir Software Eng (2022) 27:135

Fig. 9 Values of precision, recall
and goodness relative to θ .
Legend: Precision (), Recall
(), Goodness (). Note that in
Ceph the values of goodness
coincide with the ones of
precision

Empir Software Eng (2022) 27:135 Page 27 of 37 135

Table 9 Values of θ for all the
projects analysed Project θ

OpenStack 12

Moodle 14

Linux 17

WebKit [16–19]

Ceph 24

MediaWiki [36–37]

many full-time developers not identified as such). What we have assumed is usually the
case in FOSS development, but has not to be true for all FOSS projects. We have applied
our model to large project (with hundreds of committers), but cannot ensure it will offer
meaningful results for other FOSS projects, especially small ones.

The selection of the further 5 systems was based on convenience sampling: as said before,
the communities of the projects selected were more easily reached, due to two of the authors
of the being paper in direct contact with all of them. Although the sample might be unrep-
resentative, the systems were only used to deploy the model, not to show its absolute value
for any other system. In any case, the generalization of the model to other FOSS projects
remains to be investigated.

Construct A replication package,12 following the guidelines in González-Barahona and
Robles (2012), is offered to others to reproduce our findings. The replication package con-
tains all scripts and public information, but not all the results of the surveys, as personal
information was collected. Aggregated and anonymized information from the surveys is
available.

It is important to note that it is not possible to establish a unique ground truth for the total
effort made by developers in FOSS projects. This is because FOSS projects do not typically
make use of timesheets to track the actual effort of developers. Therefore, a ‘traditional’
measure of effort is not clearly computable.

The measures that we propose do not help in establishing what is the ground truth, but
rather to minimise the error in the evaluation of the estimated effort based on actual input
by the developers of the project.

A larger threat to construct validity was identified, based on the representativeness of
the survey sample. It should be, however, noted that for determining the best value of θ , we
do not need a representative sample of the whole project population, but just a representa-
tive sample that allows us to effectively discriminate between full-time and non-full-time
developers. We thus require basically data that is representative of (very) active developers
to perform this analysis. With a very high probability, all the developers with a low activity
(i.e., few commits) are non-full-time developers—and our model will accurately label them
as such. We check if this affects our results in more detail in Section 9.4.

9.2 On the Sources of Estimation Error

Our effort estimation model is based on the identification of full-time developers. Once
identified, full-timers are assigned the maximum possible effort (1PM every month):

12http://gsyc.urjc.es/∼grex/repro/2022-emse-effort-estimation

http://gsyc.urjc.es/~grex/repro/2022-emse-effort-estimation

 135 Page 28 of 37 Empir Software Eng (2022) 27:135

non-full-timers are only assigned a share of it, depending on the number of their commits
and the θ . In this situation, the sources of error are the following:

1. Wrong identification of full-time developers (false negatives) or non-full-time develop-
ers (false positives).

2. Wrong assignment of effort to non-full-timers.

Note that we assume that the assignment of effort to full-timers is error-free, as we argue
that by definition the effort of a full-time developer is 1PM. We argue below (Sections 9.2.1
and 9.2.2) why both sources of error do not pose a major threat to the validity of our model
and its results.

9.2.1 Wrong Identification

In our model false negatives (FN) refer to full-time developers that we have not identified
as such. We have included a short comment in the threats to validity (Section 9.1), stating
that results may not hold if there are many false negatives in a certain project.

However, we consider it safe to assume that the number of false negatives will be small
in the general case of FOSS development. The reasons for this are as follows:

1. The number of full-time developers should be (very) low compared to the amount of
total participants in a FOSS project. This is because the distribution of participation
is very skewed, as in a power-law or Rayleigh-type curve (as reported in the research
literature (Koch 2008; Sowe et al. 2008)), in FOSS. So, in general, full-time developers
will have profiles with high commit activity, well above the threshold value, that is, the
lowest bound of activity for full-timers.

2. A false negative might be compensated by a false positive. Some full-time developers
might have a low activity, below θ . When they are below θ , compensation (i.e., non-
full-time developers that are incorrectly identified as full-time (false positives)) softens
this situation. In other words, because we have chosen θ where goodness is highest (i.e.,
the one that maximizes compensation), the number of FNs that are not compensated
should be the lowest possible.

3. If not compensated, the impact of the error is small, as an aggregate. Having a FN that
is not compensated means that a developer is assigned a fraction of the effort depending
on the number of commits and the threshold. So, if for OpenStack θ is 12 commits in
a 6-month period, and we have a full-time developer with 6 commits in that period, we
would have a false negative and this developer would be accounted with an effort of
6/12 * 6PM = 3 PM instead of with 6PM. This would imply an error of 100% at the
individual level. But our estimation model is based on aggregation of all developers, so
even if the error for one individual developer might be high, the fact that it is low for
many other developers will pay off for the whole project.

A similar reasoning applies to false positives (FP) in our model, i.e., to non-full-time
developers that we have not identified as such. Even if the population of non-full-time devel-
opers was large, using the highest goodness value ensures highest compensation and, thus,
the lowest aggregated number of FPs. In this case, the individual error introduced would
be because a non-full-time developer is assigned 6PMs in a period of six months, when the
real effort is less (e.g., 3PMs). Again, the error at the individual level might be large, but its
impact on the whole project will be small.

For the six projects under study in this paper, the number of non-compensated FNs or FPs
are: 1 developer for OpenStack, Linux and Ceph and 0 developers for WebKit, MediaWiki

Empir Software Eng (2022) 27:135 Page 29 of 37 135

and Moodle. This can be seen from the Figs. 5 and 8, This strengthens our argument: the
impact of an incorrect identification of developers in our model is very low, even negligible
in large FOSS projects.

9.2.2 Wrong Assignment of Effort to Non-full-timers

Another source of error may come with the effort estimation assigned to non-full-
time developers. In our model we assign non-full-time developers the fraction of com-
mits/threshold (i.e., if they did 2 commits in 6 months and θ is 12, as in OpenStack, then
they will be assigned an effort of 1/6 * 6 = 1 PM for the 6 months).

The rationale for this estimation is easy to understand: these developers are not directly
estimated for their effort, but as its fraction to the minimum activity that is required to be
considered as a full-time developer. In other words, if a non-full-time developer has authored
2 commits and we expect full-time developers to submit at least 12 commits (θ = 12),
our model will assign this developer 1/6 of the minimum effort needed to be considered a
full-time developer.

9.3 Impact

Based on the models of FOSS development, the analysis that was presented, and its findings,
can have a direct impact on the decisions taken by practitioners and managers. The estima-
tion of past efforts, with the addition of an understanding of what is already implemented,
what is missing, and what needs to be maintained, can help to plan for the future.

If managers can estimate past effort, they can also evaluate the effort that is likely to
be needed in the near future. This is particularly important for those projects where many
developers, from different companies, contribute with very different levels of dedication,
and where estimating past effort is very difficult. In those contexts, the impact of a company
leaving the project can be estimated; in a similar way, the impact of a new company allo-
cating its developers at different levels of effort (e.g, full-time, part-time, occasional, etc.).
All these levels of developer engagement can be re-estimated periodically, so that managers
can account from divergences from the plan.

In particular, from our experience the focus on the estimation of past effort in FOSS is
important usually in two situations:

1. When a company is evaluating the overall effort put in the development of a FOSS
project, because they have a direct interest in assuming all or part of that cost. This is
the case, for example, when the software is strategic to a company, and they want to
evaluate how much effort was put in it in the past. This evaluation will be then used as
an estimation of future effort, in the short and medium term, and considering to hire a
part of the developing team: knowing the past effort gives also an evaluation of which
fraction of the development effort they are hiring.

2. When some FOSS is developed mainly by developers hired by companies, usually in
the context of some Foundation or managing board, where companies involved decide
about the resources they allocate to the project. In those case, having estimations about
past efforts, and allocations of those efforts to companies (and to developers hired by
those companies) is fundamental for the negotiations where new companies want to
gain influence in the project, a seat in the board, or just negotiate how to move for-
ward features that are important for them. We have specifically observed this kind of

 135 Page 30 of 37 Empir Software Eng (2022) 27:135

negotiations in projects such as Xen and OpenStack, and in some projects under the
Linux Foundation umbrella.

In addition to this, when companies participate to FOSS endeavours, they are fully aware
of the effort produced by their own developers, and how they engage with the FOSS projects
that they have an interest in. Having a better estimate of how much effort (overall) has
been produced into a FOSS project would make a clearer case for a company’s Return-on-
Investment (RoI). As companies are usually aware of the effort they put into the project,
they can compare this with the total effort obtaining a ratio of how much of this effort
comes from the community. The returned effort is what a company gains for its stake over a
FOSS, as contributed by the community around it. That gain would necessarily influence a
company’s strategic decision of investing its own developer efforts (or procure and pay for
development efforts from other specialist companies) into the FOSS project, and at what
level. Even more importantly, in case of other commercial enterprises participating to the
same development, a company would be able to tailor and adapt their own input to the
project, and based on other companies’ behaviour.

9.4 Representativeness of the Survey Sample

The rate of responses obtained in the questionnaires to the developers is around 25% at best
(in the case of the Moodle project). This means that most developers have not responded
to the questionnaires, and the representativeness of the sample could be put in question.
Limited to the OpenStack project, Fig. 10 shows two box-plots with the analysis of the
developers who responded to the survey (left) and all the active developers (right). The
measured activity in number of commits considers the six months preceding the survey.

In order to check whether the two distributions of commits come from the same popu-
lation, we applied the Kolmogorov-Smirnov’s test, a non-parametric test that considering
two samples, evaluates the null hypothesis H0: are the two samples extracted from the same
population?. We considered various activity levels (e.g., developers committing 0 or more
commits; developers committing 1 or more commits and so on) and tested their distribution
against the overall active population of developers, at the same activity level. The signif-
icance level for each of those statistical tests was set to a standard α = 0.5: Table 10
summarises the p-values (last column) along with other attributes.

As visible from Table 10, we reject the base H0 at all activity levels up to 4 commits
per period: hence, between 1 and 4 commits, we can reject the hypothesis that the surveyed
developers represent the overall population. With higher commit activities (5 commits or
more), the H0 cannot be rejected at the α = 0.05 level: from 5 commits up, we cannot
reject the hypothesis that the surveyed developers represent the overall population. As the
values of activity increase, the surveyed population becomes more representative of the
project: since our model is based on activity and the classification is performed only on
active developers, these results give a stronger support to our model.

The same analysis was extended to the other sampled systems, and summarised in the
boxplots of Fig. 11. From top left, the activity of the responding developers (in the 6 months
preceding the questionnaire) for the Linux, WebKit, MediaWiki, Ceph and Moodle systems
was compared with the activity of all developers in each project. Similarly to OpenStack,
we cannot reject the hypothesis that the surveyed developers of those projects represent the
overall population, for activities of more than 3 commits.

Empir Software Eng (2022) 27:135 Page 31 of 37 135

Fig. 10 Boxplot with the activity (in number of commits during the last 6 months before the survey) for the
active developers surveyed in the OpenStack project (left) and for all the active developers (right) in the last
6 months before the survey

Table 10 Summary of population measures. Several populations have been selected, depending on a
minimum number of commits. D and p-value as given by the Two-sample Kolmogorov-Smirnov test

Commits Population Min. 1st Q Median Mean 3rd Q Max. D p-value

≥0 All (1,626) 0.00 0.00 1.00 9.62 6.00 491.00 0.203 0.0001

Survey (125) 0.00 0.00 4.00 14.12 14.00 201.00

≥1 All (986) 1.00 1.00 3.00 13.76 11.00 491.00 0.197 0.0028

Survey (92) 1.00 1.00 5.00 16.35 19.00 201.00

≥2 All (693) 2.00 3.00 7.00 19.15 18.00 491.00 0.194 0.0128

Survey (74) 2.00 5.00 12.00 23.61 27.00 201.00

≥3 All (563) 3.00 5.00 9.00 23.11 22.00 491.00 0.196 0.0243

Survey (64) 3.00 6.75 13.50 26.98 31.00 201.00

≥4 All (490) 4.00 6.00 11.00 26.11 26.00 491.00 0.136 0.2562

Survey (63) 4.00 7.00 14.00 27.37 31.00 201.00

≥5 All (427) 5.00 7.00 13.00 29.37 30.00 491.00 0.121 0.4406

Survey (58) 5.00 8.50 16.50 29.38 34.75 201.00

≥8 All (314) 8.00 12.00 19.00 37.77 41.00 491.00 0.119 0.6229

Survey (46) 8.00 13.00 22.00 35.57 42.75 201.00

≥11 All (256) 11.00 14.75 24.00 44.34 52.00 491.00 0.084 0.9631

Survey (41) 11.00 14.00 26.00 38.83 50.00 201.00

 135 Page 32 of 37 Empir Software Eng (2022) 27:135

Fig. 11 Boxplot with the activity (in number of commits during the last 6 months before the survey) for
active surveyed developers and for all the active developers in the last 6 months before the survey

9.5 Generalization to Other Projects

If a project wants to know its own θ with accuracy, the amount of data that they need
is limited and is easy to gather. By polling their developers for their full-time/part-time
status, they could use our model to find their particular θ . Some FOSS projects regularly
survey their developers for knowing their community better, including personal, academic,
working, community and other matters. So, for instance, since 2011 OpenStack performs
a yearly developer survey.13 Gathering information for our model would just require two
questions to be added to those surveys (e.g., ‘do you consider yourself to be a full-time
developer’ and ‘how many commits have you performed in the last 6 months’) .

We think, however, that the value of θ is dependent on intrinsic properties of the project,
and that a FOSS project can use the model without having to perform a developers survey,
but to use a θ from a similar project. The results of applying our model to the 6 FOSS
projects in this study make us think that θ depends on the process that the project follows.
Thus, depending on the project’s practices, commits may require more or less effort to be
approved before being merged, depending on whether a review process is in practice. If
that is the case, code is not formally committed to the repository until it has been through
extensive review, usually including several revisions. In addition, and particularly in those
projects that have more strict code review practices, projects require to squash all commits
into a single one once a change is accepted; then, this only commit can be pushed to the
repository. This has as a consequence that commits are larger and more costly (in time and
effort) for those projects, than for others that do not follow this practice.

13https://insights.stackoverflow.com/survey/

https://insights.stackoverflow.com/survey/

Empir Software Eng (2022) 27:135 Page 33 of 37 135

This can be confirmed from the projects that we have studied in this paper. The values
of θ shown in Table 9 are similar for those projects that have strict code reviewing prac-
tices, such as OpenStack (θ = 12), Moodle (14), Linux (17) and WebKit (16–19). All of
them use Gerrit to support code review. Ceph (24) and MediaWiki (36–37) have higher
numbers of θ , because their code review practices are lighter (i.e., less demanding) and
commit squashing is not that strictly followed as in the former projects. For instance, Ceph
uses GitHub’s pull-request mechanism, which requires just one approval from a maintainer,
while for OpenStack changes require to be approved by at least two maintainers.

Projects that do not use commit squashing, could use ‘active days’ instead of ‘commits’
in the model. That way, all commits during the same day would be considered as a contri-
bution, mitigating the impact of different commit behaviours of committers (Kolassa et al.
2013a).

10 Conclusion and FutureWork

This paper has tackled two challenges. The first is how to design a simple, but sound estima-
tion model to measure the effort provided in a sparse, distributed and uneven development
scenario, like the FOSS one. The second challenge is how to design the model so that it
offers not only a reasonable prediction, but also credible.

In order to maximise the simplicity of our estimation model for FOSS development, we
only discriminate between two types of developers: full-timers and the rest. For harness-
ing the credibility of our model, we have obtained feedback data from over a thousand
developers, who work at different levels across six large FOSS projects.

The model establishes a threshold θ that separates the level of activity of full-timers from
the rest of developers. The value of θ has been optimised with the developers’ responses:
thanks to their feedback, we have achieved a much more realistic separation of developer
types, minimizing the estimation error. Using θ in our model, the estimation of the overall
effort results in a simple calculation, and just using two developer types.

We conjecture that the model being dependent on this value of θ is what allows the model
to be useful for different projects: the relationship of commits to effort (which is at the core
of the model) may be very different from project to project, but we have shown that it can
be captured with this single parameter.

Using 6 large FOSS projects as case studies, we have shown how the model can be
applied and fine-tuned. Although further research on this is needed, the results obtained
make us hypothesize that the value of θ depends on the development practices—basically,
how strict code reviewing practices are and if commit squashing is frequently used when
merging changes into the source code. If so, the future applicability of our model would not
require to survey developers, as it would suffice to use a value of θ obtained from projects
that follow similar practices.

We envisage to expand this study by 1) studying other FOSS projects to ascertain if
our method is applicable in general, and if so, to what extent; 2) performing a scien-
tific experiment to obtain margins of error for the estimation of error for non-full-time
developers; 3) comparing our results with the ones provided by traditional software esti-
mation models used in industry, such as COCOMO; 4) after quantifying the effort required
in a FOSS project, establishing whether it is more profitable for a prospective adopting
company to redo (“make”) their own system, or to invest (“buy”) in the existing FOSS sys-
tem as discussed in Asundi (2005); and 5) comparing our approach with previous effort

 135 Page 34 of 37 Empir Software Eng (2022) 27:135

estimation techniques for FOSS projects, as the one proposed in Capra et al. (2007) based
on the measure of entropy to calculate maintenance costs.

Acknowledgements We want to express our gratitude to Bitergia14 for the support they have provided when
questions have arisen. We acknowledge the support of the Government of Spain through the “BugBirth”
project (RTI2018-101963-B-100). We also acknowledge the work by Carlos Cervigón on an earlier version
of the manuscript.

Declarations

Conflict of Interest The authors whose names are listed immediately below certify that they have NO
affiliations with or involvement in any organization or entity with any financial interest (such as hono-
raria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock
ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non- finan-
cial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject
matter or materials discussed in this manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdelmoez W, Kholief M, Elsalmy FM (2012) Bug fix-time prediction model using naı̈ve bayes classifier.
In: 2012 22nd International conference on computer theory and applications (ICCTA). IEEE, pp 167–172

Abran A, Desharnais J-M, Aziz F (2016) 3.5 measurement convertibility—from function points to cosmic
ffp. Cosmic Function Points: Theory and Advanced Practices 214

Agrawal A, Rahman A, Krishna R, Sobran A, Menzies T (2018) We don’t need another hero? The impact
of “heroes” on software development. In: Proceedings of the 40th international conference on software
engineering: software engineering in practice, pp 245–253

Ahsan SN, Ferzund J, Wotawa F (2009) Program file bug fix effort estimation using machine learning
methods for oss. In: SEKE, pp 129–134

Alomari H (2015) A slicing-based effort estimation approach for open-source software projects. Int J Adv
Comput Eng Netw (IJACEN) 3(8):1–7

Amor JJ, Robles G, Gonzalez-Barahona JM (2006) Effort estimation by characterizing developer activity.
In: Proceedings of the 2006 international workshop on economics driven software engineering research.
ACM, pp 3–6

Anbalagan P, Vouk M (2009) On predicting the time taken to correct bug reports in Open Source projects.
In: IEEE international conference on software maintenance. ICSM 2009. IEEE, pp 523–526

Asundi J (2005) The need for effort estimation models for open source software projects. ACM SIGSOFT
Softw Eng Notes 30(4):1–3

Boehm B (1981) Software engineering economics
Boehm BW, Madachy R, Steece B et al (2000) Software cost estimation with COCOMO II with CDROM.

Prentice Hall PTR
Capiluppi A, Izquierdo-Cortázar D (2013) Effort estimation of FLOSS projects: a study of the Linux kernel.

Empir Softw Eng 18(1):60–88

14http://bitergia.com/

http://creativecommons.org/licenses/by/4.0/
http://bitergia.com/

Empir Software Eng (2022) 27:135 Page 35 of 37 135

Capiluppi A, Michlmayr M (2007) From the cathedral to the bazaar: an empirical study of the lifecycle
of volunteer community projects. In: IFIP International conference on open source systems. Springer,
pp 31–44

Capra E, Francalanci C, Merlo F (2007) The economics of open source software: an empirical analysis
of maintenance costs. In: IEEE international conference on software maintenance. ICSM 2007. IEEE,
pp 395–404

Capra E, Francalanci C, Merlo F (2008) An empirical study on the relationship between software design
quality, development effort and governance in Open Source Projects. IEEE Trans Softw Eng 34(6):765–
782

Capra E, Francalanci C, Merlo F (2010) The economics of community open source software projects: an
empirical analysis of maintenance effort. Advances in Software Engineering

Crowston K, Howison J (2005) The social structure of free and open source software development. First
Monday 10(2)

Dueñas S, Cosentino V, Robles G, Gonzalez-Barahona JM (2018) Perceval: software project data at your will.
In: Proceedings of the 40th international conference on software engineering: companion proceedings,
pp 1–4

Dumke R, Abran A (2016) COSMIC function points: theory and advanced practices. Auerbach Publications
Fernandez-Ramil J, Izquierdo-Cortazar D, Mens T (2009) What does it take to develop a million lines of

Open Source code? In: Open source ecosystems: diverse communities interacting. Springer, pp 170–184
Fitzgerald B (2006) The transformation of open source software. Mis Quarterly 587–598
González-Barahona JM, Robles G (2012) On the reproducibility of empirical software engineering studies

based on data retrieved from development repositories. Empir Softw Eng 17(1–2):75–89
Hönel S, Ericsson M, Löwe W, Wingkvist A (2018) A changeset-based approach to assess source code den-

sity and developer efficacy. In: Proceedings of the 40th international conference on software engineering:
companion proceedings, pp 220–221

Hou Q, Ma Y, Chen J, Xu Y (2014) An empirical study on inter-commit times in svn. In: SEKE, pp 132–137
Jorgensen M, Shepperd M (2007) A systematic review of software development cost estimation studies. IEEE

Trans Softw Eng 33(1):33–53
Kalliamvakou E, Gousios G, Spinellis D, Pouloudi N (2009) Measuring developer contribution from software

repository data. MCIS 2009:4th
Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils of

mining github. In: Proceedings of the 11th working conference on mining software repositories, pp 92–
101

Koch S (2004) Profiling an open source project ecology and its programmers. Electron Mark 14(2):77–88
Koch S (2008) Effort modeling and programmer participation in open source software projects. Inf Econ

Policy 20(4):345–355
Koch S, Schneider G (2002) Effort, co-operation and co-ordination in an open source software project:

GNOME. Inf Syst J 12(1):27–42
Kolassa C, Riehle D, Salim MA (2013a) The empirical commit frequency distribution of open source

projects. In: Proceedings of the 9th international symposium on open collaboration, pp 1–8
Kolassa C, Riehle D, Salim MA (2013b) A model of the commit size distribution of open source. In:

International conference on current trends in theory and practice of computer science. Springer, pp 52–66
Kononenko O, Rose T, Baysal O, Godfrey M, Theisen D, De Water B (2018) Studying pull request merges: a

case study of shopify’s active merchant. In: Proceedings of the 40th international conference on software
engineering: software engineering in practice, pp 124–133

Kouters E, Vasilescu B, Serebrenik A, van den Brand MG (2012) Who’s who in GNOME: using LSA
to merge software repository identities. In: 2012 28th IEEE international conference on software
maintenance (ICSM). IEEE, pp 592–595

Lerner J, Tirole J (2002) Some simple economics of open source. J Ind Econ 50(2):197–234
Ma Y, Wu Y, Xu Y (2014) Dynamics of open-source software developer’s commit behavior: an empirical

investigation of subversion. In: Proceedings of the 29th annual ACM symposium on applied computing,
pp 1171–1173

Malhotra R, Lata K (2020) Using ensembles for class-imbalance problem to predict maintainability of open
source software. Int J Reliab Qual Safety Eng 2040011

Mi Q, Keung J (2016) An empirical analysis of reopened bugs based on open source projects. In: Proceedings
of the 20th international conference on evaluation and assessment in software engineering, pp 1–10

Michlmayr M, Fitzgerald B, Stol K-J (2015) Why and how should open source projects adopt time-based
releases? IEEE Softw 32(2):55–63

Mockus A, Votta LG (2000) Identifying reasons for software changes using historic databases. In:
International conference on software maintenance. Proceedings. IEEE, pp 120–130

 135 Page 36 of 37 Empir Software Eng (2022) 27:135

Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of open source software development: Apache
and mozilla. ACM Transa Softw Eng Methodol (TOSEM) 11(3):309–346

Moulla D, Kolyang (2013) COCOMO model for software based on open source: application to the adaptation
of triade to the university system. Int J Comput Sci Eng (IJCSE) 5(6):522–527

Moulla DK, Damakoa I, Kolyang DT (2014) Application of function points to software based on open source:
a case study. In: 2014 Joint conference of the international workshop on software measurement and the
international conference on software process and product measurement. IEEE, pp 191–195

Porru S, Murgia A, Demeyer S, Marchesi M, Tonelli R (2016) Estimating story points from issue reports. In:
Proceedings of the the 12th international conference on predictive models and data analytics in software
engineering, pp 1–10

Riehle D, Riemer P, Kolassa C, Schmidt M (2014) Paid vs. volunteer work in open source. In: 2014 47th
Hawaii international conference on system sciences. IEEE, pp 3286–3295

Robles G, Gonzalez-Barahona JM (2005) Developer identification methods for integrated data from various
sources. ACM SIGSOFT Softw Eng Notes 30(4):1–5

Robles G, Koch S, González-Barahona JM, Carlos J (2004) Remote analysis and measurement of libre soft-
ware systems by means of the cvsanaly tool. In: Proceedings of the 2nd ICSE workshop on remote
analysis and measurement of software systems (RAMSS). IET, pp 51–56

Robles G, González-Barahona JM, Cervigón C, Capiluppi A, Izquierdo-Cortázar D (2014) Estimating devel-
opment effort in free/open source software projects by mining software repositories: a case study of
openstack. In: Proceedings of the 11th working conference on mining software repositories. ACM,
pp 222–231

Shah SK (2006) Motivation, governance, and the viability of hybrid forms in open source software
development. Manag Sci 52(7):1000–1014

Sowe SK, Stamelos I, Angelis L (2008) Understanding knowledge sharing activities in free/open source
software projects: an empirical study. J Syst Softw 81(3):431–446

Steinmacher I, Conte T, Gerosa MA, Redmiles D (2015) Social barriers faced by newcomers placing their
first contribution in open source software projects. In: Proceedings of the 18th ACM conference on
computer supported cooperative work & social computing, pp 1379–1392

Thung F (2016) Automatic prediction of bug fixing effort measured by code churn size. In: Proceedings of
the 5th international workshop on software mining, pp 18–23

Von Krogh G, Spaeth S, Lakhani KR (2003) Community, joining, and specialization in open source software
innovation: a case study. Res Policy 32(7):1217–1241

Wiese IS, da Silva JT, Steinmacher I, Treude C, Gerosa MA (2016) Who is who in the mailing list? comparing
six disambiguation heuristics to identify multiple addresses of a participant. In: 2016 IEEE International
conference on software maintenance and evolution (ICSME). IEEE, pp 345–355

Wu H, Shi L, Chen C, Wang Q, Boehm B (2016) Maintenance effort estimation for open source software:
a systematic literature review. In: 2016 IEEE international conference on software maintenance and
evolution (ICSME). IEEE, pp 32–43

Yang Y, Harman M, Krinke J, Islam S, Binkley D, Zhou Y, Xu B (2016) An empirical study on dependence
clusters for effort-aware fault-proneness prediction. In: 2016 31st IEEE/ACM international conference
on automated software engineering (ASE). IEEE, pp 296–307

Yu L (2006) Indirectly predicting the maintenance effort of open-source software. J Softw Maint Evol: Res
Pract 18(5):311–332

Zhao Y, Zhang F, Shihab E, Zou Y, Hassan AE (2016) How are discussions associated with bug rework-
ing? an empirical study on open source projects. In: Proceedings of the 10th ACM/IEEE international
symposium on empirical software engineering and measurement, pp 1–10

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Gregorio Robles is a Full Professor at the Universidad Rey Juan Carlos, Madrid, Spain. Gregorio is special-
ized in free/open source software research, basically by mining software repositories. Lately, he investigates
as well how to assess the development of Computational Thinking skills. He is one of the founders of Bitergia,
a software development analytics company. His homepage can be found at http://gsyc.urjc.es/∼grex.

http://gsyc.urjc.es/~grex

Empir Software Eng (2022) 27:135 Page 37 of 37 135

Andrea Capiluppi works as an Associate Professor at University of Groningen, The Netherlands. Andrea’s
work focuses on empirical software engineering and open source and he’s currently directing the NLPforSE
(Natural Language Processing for Software Engineering) research group with a focus on machine learning
techniques for software engineering.

Björn Lundell received a PhD from the University of Exeter in 2001. He is a professor at the University of
Skörvde where he leads the Software Systems Research Group, and has been a staff member and researcher
since 1984. Professor Lundell’s research contributes to theory and practice in the software systems domain
and centres on different aspects of openness (in particular open source and open standards) related to devel-
opment, use, and procurement of software systems. His research addresses fundamental socio-technical
challenges concerning software systems, and focuses on different aspects of lock-in, interoperability, and
longevity of systems. His research is reported in over 100 papers in a variety of international journals and
conferences. Professor Lundell has been active in a number of international and national research projects
which have lead to significant scientific and societal impact, and has been an expert advisor and contributed
to guidelines and policies in the field.

Jonas Gamalielsson is a researcher at the University of Skövde, Sweden. has worked with software develop-
ment in industry from 1990 to 2001, and has thereafter (since 2001) been involved in teaching and research
at the University of Skövde. He received his Ph.D. in computer science from Heriot-Watt University (Edin-
burgh) in 2009. He is a member of the Software Systems Research Group at University of Skövde and has
conducted research related to open source software in a number of national and international projects since
2008. Focus has been on challenges related to lock-in, interoperability and long-term maintenance of soft-
ware systems in various contexts. His research is reported in publications in a variety of international journals
and conferences.

Affiliations

Gregorio Robles1 ·Andrea Capiluppi2 · Jesus M. Gonzalez-Barahona1 ·
Björn Lundell3 · Jonas Gamalielsson3

Gregorio Robles
gregorio.robles@urjc.es

Jesus M. Gonzalez-Barahona
jesus.gonzalez.barahona@urjc.es

Björn Lundell
bjorn.lundell@his.se

Jonas Gamalielsson
jonas.gamalielsson@his.se

1 Department of Telematic and Computational Systems Engineering, Universidad Rey Juan Carlos,
Madrid, Spain

2 Department of Computer Science, University of Groningen, Groningen, The Netherlands
3 School of Informatics, University of Skövde, Skövde, Sweden

http://orcid.org/0000-0001-9469-6050
mailto: gregorio.robles@urjc.es
mailto: jesus.gonzalez.barahona@urjc.es
mailto: bjorn.lundell@his.se
mailto: jonas.gamalielsson@his.se

	Development effort estimation in free/open source software from activity in version control systems
	Abstract
	Introduction
	Vision of the Research
	Related Research
	Applicability of Traditional Effort Estimation techniques to FOSS
	Effort Estimation in Hybrid FOSS Systems
	Summary of Past Work

	Empirical Approach
	Concepts and Terminology
	Surveying Developers
	Determining the Threshold Value
	Determining the Estimation Error
	Compensating the Classification Errors: the goodness Measure
	Total Estimated Effort and Estimation Error

	Deployment of the Model
	OpenStack
	Moodle
	Ceph
	Linux
	WebKit
	MediaWiki

	Data Gathering
	Versioning System Data
	Online Survey of Developers Effort

	Model Deployment—OpenStack
	Identification of Full-Time Developers
	Full-Time Developers
	Non-full-time Developers

	Compensation of Error and the Goodness Metric
	Effort Estimation

	Further Model Deployment
	Identification of Full-Time Developers
	Compensation
	Goodness (and Threshold Values Obtained)

	Discussion
	Threats to Validity
	Conceptual
	Internal
	External
	Construct

	On the Sources of Estimation Error
	Wrong Identification
	Wrong Assignment of Effort to Non-full-timers

	Impact
	Representativeness of the Survey Sample
	Generalization to Other Projects

	Conclusion and Future Work
	References
	Affiliations

