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In this paper, some results about the controllability of spectral centrality in a
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an unweigthed graph with a prescribed centrality is considered. We show that for
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1 INTRODUCTION

Some of the main goals of Science are understanding, predicting, and controlling systems coming from the real life.1,2 If we
consider a real phenomenon, the first step to be considered is understanding how it works; what are its basic ingredients,
the causes, and effects; and the mechanisms behind it. In a second level of knowledge, a proper scientific modelization
allows us to predict the results and effects of the real phenomenon in advance. Finally, in the last frontier of knowledge,
we should be able to efficiently modify the contour variables of the phenomenon in order to obtain and control the results
derived from it.3 From a mathematical point of view, there are many problems that have been mastered enough in order
to control their results at our wish, including the evolution of dynamical systems modeled with ordinary and partial
differential equations on general systems,4,5 but in this paper, we focus on controlling the structural properties of complex
networks.

Complex networks have widely shown to be a sound mathematical model that fits many real applications, from biologi-
cal to technological systems, passing through many other real applications, such as social systems, economics, linguistics,
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and many other.6–8 During the last decades, the scientific community of Network Science has casted a huge development
of models, tools, and multidisciplinary techniques in order to understand, predict, and control many real systems that can
be understood by using complex networks.6–8 If we focus on controlling systems modeled by some kind of complex net-
works, most part of the efforts done by the scientific community so far have been concentrated on mastering dynamical
processes that take place on complex networks9–11 by extending the classic results from control theory,4,5 but much less
attention has been attached to other control problem dealing with different problems in complex networks analysis. One
of these control problems includes the control of some structural parameters of a complex network, such as centrality
measures.12

Among the vast set of structural measures of complex networks considered by the scientific community, centrality
measures play a crucial role since they quantify the relevance of the nodes in the structure and dynamics on complex net-
works.6,13 There is no consensus about a single centrality measure that resumes the relevance of each node, and therefore,
there are many complementary measures that quantify different aspects of the role of each node, such as the degree, the
eigenvector centrality, PageRank, HITS-Authority score, betweenness centrality, among many others.6–8,13

It is natural considering the control problem related to centrality measures, that is, given a complex network  = ( ,)
and a centrality measure c ∶  → R, we want to modify  in order to get its centrality measure c(̃) at our wish.
This problem was considered for the eigenvector centrality14,15 of weighted networks by V. Nicosia et al,12 by proving
that given a weighted and strongly connected complex network  = ( , ) with n ∈ N nodes, then for every vector
v = (v1, · · · , vn)t ∈ Rn with vi ≥ 0 for all 1 ≤ i ≤ n and v1 + · · · + vn = 1, we can modify the weights in  in order to
get that its eigenvector centrality is v. In particular, given a vector v = (v1, · · · , vn)t ∈ Rn with vi ≥ 0 for all 1 ≤ i ≤ n
and v1 + · · · + vn = 1, it is easy to spot a weighted (and strongly connected) network  = ( , ) such that its eigenvector
centrality or its PageRank centrality16,17 is v. The main goal of this paper is considering this control problem for the
eigenvector14,15 and PageRank16,17 but for unweighted networks. Note that if we restrict ourselves to unweighted networks
and we only allow modifying the structure by adding/removing links, then by using an easy cardinality argument, for any
vector in general v = (v1, · · · , vn)t ∈ Rn with vi ≥ 0 for all 1 ≤ i ≤ n and v1 + · · · + vn = 1, there is no unweighted network
 = ( ,) whose eigenvector or PageRank centrality is v, since there is a finite number of unweighted networks with n
nodes but an infinite number of vectors v = (v1, · · · , vn)t ∈ Rn such that vi ≥ 0 for all 1 ≤ i ≤ n and v1 + · · · + vn = 1.

As an alternative, we consider the following control problem related not with the precise value of the centrality measure
but with the ranking of nodes according to its centrality. Given a ranking (possibly with ties) of the nodes of the network
(i.e., given an ordering d𝜎(1) ≿ d𝜎(2) ≿ · · · ≿ d𝜎(n), for some permutation 𝜎 of the node set and ≿ means sometimes = and
sometimes is >), the goal is spotting an unweighted network such that if we reorder its nodes by using the centrality of
each node (descent ordering), then we recover the prefixed ranking (possibly with ties). This is what we will call later the
inverse ranking problem. Note that in many applications, the information given by the ranking of centrality measures is
even more valuable than the actual value of the centrality measure. An example of this fact can be found, for instance,
in the use of PageRank for web engines, where it is more important to get a higher position in the web ranking than the
actual value of the PageRank of each webpage Furthermore, these control problems are strongly connected with cluster
synchronization in dynamics on complex networks, since each cluster synchronization is related with one symmetry in
the structure of the network.18–20 These symmetries (that are, in general, computationally hard to identify) correspond
to subsets of nodes such that all of them have the same eigenvector centrality.21 Therefore, the solutions of the inverse
ranking problem produce networks with prescribed structural symmetries, and therefore, they have some prefixed clusters
of synchronization.

By using the results obtained by V. Nicosia et al,12 it is straightforward that for any descending ordering (possibly with
ties) of the nodes of the network, we can find a weighted complex network such that if we reorder its nodes by using
the eigenvector centrality or PageRank centrality of each node (descent ordering), then we recover the prefixed ordering.
In this paper, we will consider this inverse centrality problem but for unweighted networks and taking the eigenvector
centrality or the PageRank as centrality measures.

The structure of the paper is as follows. After this introduction, Section 2 is devoted to present the basic definitions about
centrality measure, rankings, and the precise statement of the control problems considered later. Then, Sections 3 and 4
include the solution of the inverse ranking problem for eigenvector and PageRank centralities in the case of undirected
and directed unweighted networks, respectively.
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GARCÍA AND ROMANCE

2 NOTATION, BASIC CONCEPTS, AND MAIN PROBLEMS CONSIDERED

Let  = ( ,) be a (directed or undirected) unweighted graph where  = {1, 2, … ,n} and n ∈ N. If  is an undirected
graph, the links are unordered couples of nodes {i, 𝑗} (possibly i = 𝑗), while if  is a directed graph, the links are ordered
couples of nodes (i, 𝑗) with i, 𝑗 ∈ E (possibly i = 𝑗). The adjacency matrix of  is an n × n-matrix real matrix

A = (ai𝑗) ∈ Mn×n(R), where ai𝑗 =
{

1, if {i, 𝑗}(resp.(i, 𝑗)) is a link of ,
0, otherwise,

where Mn×n(R) denotes the set of all n × n real matrices. Notice that the adjacency matrix of an undirected graph is
necessarily symmetric, while this is not true in general for directed graphs. For directed graphs, a link (i, 𝑗) is said to be
an outlink for node i and an inlink for node 𝑗. We denote grout(i) the outdegree of node i, that is, the number of outlinks
of a node i. Notice that grout(i) =

∑
kaik. If  is undirected, then the outlinks of a node coincide with its inlinks and the

outdegree is called simply the degree on the node, denoted by gr(i) = grout(i).
Vectors of Rn will be denoted throughout this paper by column matrices. In particular, we will consider

e1 =
⎛⎜⎜⎜⎝

1
0
⋮
0

⎞⎟⎟⎟⎠ = (1, 0, · · · , 0)t ∈ R
n, … , en =

⎛⎜⎜⎜⎝
0
0
⋮
1

⎞⎟⎟⎟⎠ = (0, 0, · · · , 1)t ∈ R
n, e = e1 + · · · + en =

⎛⎜⎜⎜⎝
1
1
⋮
1

⎞⎟⎟⎟⎠ = (1, 1, · · · , 1)t,

where vt denotes the transposed of vector v ∈ Rn. The ith-component of a vector v = (v1, · · · , vn)t ∈ Rn is given by
the usual scalar product ⟨v, ei⟩ = vtei = vi, and the sum of the components of the vector v ∈ Rn can be computed as⟨v, e⟩ = vte. Moreover, we will say that a vector v > 0 if all the components vi of v are greater than zero, that is, vtei > 0,
for all i = 1, … ,n.

Since we are going to study the inverse ranking problem for some centrality measures, we must start by recalling the
basic definitions of the centrality measures considered. As we pointed out in Section 1, there is no consensus about a
single centrality measure that resumes the relevance of each node, and therefore, there are many complementary mea-
sures that quantify different aspects of the role of each node, such as the degree, the eigenvector centrality, PageRank,
HITS-Authority score, betweenness centrality, among many others.6–8,13 In this paper, we will consider two (spectral) cen-
trality measures that are related with the eigenvectors of some matrices related with the graph (mainly the adjancency
matrix an some of its renormalizations): the eigenvector centrality14,15 and the (classic) PageRank centrality.17

Eigenvector centrality was introduced by P. Bonacich14,15 in social network analysis by considering that an individual's
centrality must be a function of the centrality of those to whom he or she is connected, so the definition is related with a
positive eigenvector of the transposed of the adjacency matrix as follows:

Definition 1 (14,15). Given a (directed or undirected) strongly connected graph  = ( , ) with n nodes whose
adjacency matrix is denoted by A ∈ Mn×n(R), we say that the vector c ∈ Rn is the eigenvector centrality of the graph 

if c is the unique (positive) eigenvector with ⟨c, e⟩ = 1 (i.e., c is normalized) which is associated to the spectral radius
𝜌(A) of A, that is,

Atc = 𝜌(A)c, c > 0, cte = 1. (2.1)

Once the eigenvector centrality c is given, the eigenvector centrality of a node i ∈  is ci = ⟨c, ei⟩.
Note that the strongly connectedness of  is the necessary and sufficient condition in order to guarantee the existence

and uniqueness of a positive and normalized eigenvector associated to the spectral radius of At, simply by using the classic
Perron–Frobenius theorem.14,15,22

PageRank centrality was introduced by S. Brin and L. Page16,17 in the context of web searchers, in order to get an effi-
cient algorithm for ranking webpages according to its relevance and it is now at the core of the celebrated Google search
engine.23 The basic idea behind this centrality measure is the fact that if we surf at random in the web, the more often we
reach a webpage, the more relevant it is, so in terms of complex networks analysis, the heuristics that supports the PageRank
centrality is that if we follow a random walker along the network's structure, the centrality of each node is the frequency
of passing through it in the Markov chain given by the random walk. Therefore, the mathematical formalization of this
idea is given in the following definition:
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GARCÍA AND ROMANCE

Definition 2 (16,17,23). Consider a (directed or undirected) graph  = ( ,) with n nodes whose adjacency matrix is
denoted by A ∈ Mn×n(R) such that the outdegree of each node is positive and a damping factor q ∈ (0, 1). Let P be the
row-normalized matrix obtained from A and B = Pt, that is,

B = (bi𝑗) ∈ Mn×n(R), where bi𝑗 =
a𝑗i∑
ka𝑗k

,

and define
Φ =

1 − q
n

eet + qB.

We say that the vector c ∈ Rn is the (classic) PageRank centrality of the graph  (with damping factor q) if c is the
unique (positive) eigenvector with ⟨c, e⟩ = 1 (i.e., c is normalized) which is associated to the spectral radius of Φ,
that is,

Φc = 𝜌(Φ)c, c > 0, cte = 1.

Moreover, since Φ is a column-stochastic matrix, its spectral radius 𝜌(Φ) = 1, so c satisfies

qBc = c −
1 − q

n
e, c > 0, cte = 1. (2.2)

Once the (classic) PageRank centrality c is given, the (classic) PageRank centrality of a node i ∈  is ci = ⟨c, ei⟩.
Note that the PageRank centrality c with damping factor q ∈ (0, 1) is the steady state of a Markov chain on  whose

transition matrix is Φ and since 𝜙i𝑗 > 0 for all 1 ≤ i, 𝑗 ≤ n, then by using the classic Perron Theorem, this steady state
always exists and it is unique.16,17,23

If we take a (directed or undirected) graph  = ( , ) such that grout(i) = 0 for some i ∈  (in this case we say that i
is a dangling node), then Φ could be fixed properly in order to extend the definition of PageRank centrality,23 but we will
not need this extension for the purposes of this paper.

There are also other more general definitions of (classic) PageRank centrality, such as the personalized Pagerank cen-
trality23,24 with personalization vector v ∈ Rn such that ⟨v, ei⟩ > 0 for all 1 ≤ i ≤ n and ⟨v, e⟩ = 1 (that will be considered
later), which is the steady state of a Markov chain on  whose transition matrix is

Φv = (1 − q)vet + qB. (2.3)

Next ingredient needed in order to consider the inverse ranking problem for some centrality measures is the concept of
ranking. Roughly speaking, a ranking (without ties) of items is a rank-ordered list of the items,25 but this concept can be
mathematically modeled as follows:

Definition 3. Given a finite family of items S = {s1, · · · , sn}, a ranking of S (without ties) is given by a bijective
application 𝜙 ∶ S → {1, · · · ,n} and the rank-ordered list of the items in S is

s𝜙−1(1) ≻ s𝜙−1(2) ≻ · · · ≻ s𝜙−1(n).

Similarly, a ranking (possibly with ties) of items is a rank-ordered list of the items such that we allow that two items
could be at the same positions (i.e., they are tied). This idea can be formalized as follows:

Definition 4. Given a finite family of items S = {s1, · · · , sn}, a ranking (possibly with ties) of S can be represented by
a surjective application 𝜙 ∶ S → {1, · · · , k} for some 1 ≤ k ≤ n. Note that the rank-ordered list of the items in S is
again s𝜙−1(1) ≻ s𝜙−1(2) ≻ · · · ≻ s𝜙−1(k), but each s𝜙−1( 𝑗) now corresponds to a subset of items that are tied.

Note that it is straightforward to point out that in the previous definition, there are some ties in the ranking if and only
if k < n.

Among all ranking (possibly with ties) of a finite family, the following definition presents a subclass of rankings that do
not transform too much the lexicographical order given in S = {s1, · · · , sn}. This kind of ranking will play a relevant role
in the rest of the paper.
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GARCÍA AND ROMANCE

Definition 5. Let S = {s1, · · · , sn} be a finite family. Given a list of integers (r1, · · · rk) such that 1 ≤ r1, · · · , rk ≤ n
and r1 + · · · + rk = n, the (r1 · · · , rk)-ranking (possibly with ties) is the raking given by the surjective application
𝜙 ∶ S → {1, · · · , k} defined as follows:

𝜙(s1) = 𝜙(s2) = · · · = 𝜙(sr1) = 1,

𝜙(sr1+1) = 𝜙(sr1+2) = · · · = 𝜙(sr1+r2 ) = 2,

· · ·

𝜙(sr1+···+rk−1+1) = 𝜙(sr1+···+rk−1+2) = · · · = 𝜙(sn) = k.

It is easy to check that a (r1 · · · , rk)-ranking of a family S = {s1, · · · , sn} has no ties if and only if k = n, and in this case
r1 = · · · = rn = 1, so the raking obtained is

s1 ≻ s2 ≻ · · · ≻ sn.

Once we have introduced all the notations and basic concepts, we state precisely all the problems that will be considered
in the next sections of the paper. As it was pointed out in Section 1, by using the results obtained by V. Nicosia et al,12 it is
easy to give a positive answer to the following problem for the eigenvector centrality in weighted networks:

Problem 1. (inverse centrality problem for weighted networks). Given a centrality measure and a vector v =
(v1, · · · , vn)t ∈ Rn with vi ≥ 0 for all 1 ≤ i ≤ n and v1 + · · · + vn = 1, find a weighted network  = ( , ) such that its
centrality is v.

It is straightforward to check that if we restrict ourselves to unweighted networks and we only allow modifying the
structure by adding/removing links, then since there is a finite number of unweighted networks with n nodes but an
infinite number of vectors v = (v1, · · · , vn)t ∈ Rn such that v−i ≥ 0 for all 1 ≤ i ≤ n and v1 + · · · + vn = 1, in general, it is
not always possible to find an unweighted network  = ( , ) whose eigenvector or PageRank centrality is v.

As an alternative, we can consider the weaker problem related with rankings and that has sense for unweigthed
networks either for eigenvector centrality or PageRank centrality:

Problem 2. (inverse ranking problem for unweighted networks). Given a centrality measure such as eigenvector
or PageRank centrality and a ranking (possibly with ties) of the nodes of the network, find an unweighted network
 = ( , ) such that if we reorder its nodes by using the centrality of each node (descent ordering), then we recover
the prefixed ranking (possibly with ties).

Since this problem is weaker than the inverse centrality problem, it is straightforward that the inverse ranking problem
for weighted networks has positive answer for eigenvector or PageRank centralities.

Despite the fact that the inverse ranking problem is weaker than the inverse centrality problem, note that in many
applications, the information given by the ranking of centrality measures is even more valuable than the actual value of
the centrality measure. An example of this fact can be found, for example, in the use of PageRank for web engines, where
it is more important to get a higher position in the web ranking than the actual value of the PageRank of each webpage.23

Note that the inverse ranking problem can be rewritten in terms of (r1 · · · , rk)-rankings as the following theorem shows.

Theorem 1. Given a centrality measure, the following assertions are equivalent:

(i) The inverse ranking problem has positive solution for every ranking (possibly with ties).
(ii) For every possible (r1 · · · , rk), the inverse ranking problem has positive solution for all (r1 · · · , rk)-rankings (possibly

with ties).

Proof. (i) ⇒ (ii) is trivial since (ii) is weaker than (i). For the reverse, note that it we take a ranking (possibly with ties)
r of the set of nodes  = {1, · · · ,n}, by using its definition, there is a a surjective application 𝜙 ∶  → {1, · · · , k}
for some 1 ≤ k ≤ n, such that the ranking is given by

𝜙−1(1) ≻ 𝜙−1(2) ≻ · · · ≻ 𝜙−1(k),

where each 𝜙−1( 𝑗) corresponds to a subset of nodes that must be tied. Let us denote r𝑗 = |𝜙−1( 𝑗)| for every 1 ≤ 𝑗 ≤ k
and take a permutation 𝜎 ∶  →  such that
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GARCÍA AND ROMANCE

𝜙−1(1) = 𝜎({1, 2, · · · , r1}),

𝜙−1(2) = 𝜎({r1 + 1, r2 + 2, · · · , r1 + r2}),

· · ·

𝜙−1(k) = 𝜎({r1 + · · · + rk−1 + 1, · · · ,n}).

Now, by hypothesis, there is an unweighted network = ( , ) such that if we reorder its nodes by using the centrality
of each node, we recover the (r1 · · · , rk)-ranking. Finally, if we take ̃ by permuting the nodes of  with 𝜎, then ̃ is
isomorphic to  (as graphs), and therefore, ̃ is an unweighted network such that if we reorder its nodes by using the
centrality of each node, we recover ranking r, and therefore, the inverse ranking problem has positive solution for
every ranking (possibly with ties).

Finally, we will consider the following strict version of the inverse ranking problem that only considers rankings without
ties, that is, permutations of the nodes.

Problem 3. (inverse strict ranking problem for unweighted networks). Given a centrality measure such as eigen-
vector or PageRank centrality and a ranking (without ties) of the nodes of the network, find an unweighted network
 = ( , ) such that if we reorder its nodes by using the centrality of each node (descent ordering), then we recover
the prefixed ranking.

It is easy to prove a similar result to Theorem 1 for this case that ensures that there is a positive answer to the inverse strict
ranking problem for unweighted networks if and only if we can find an unweighted network whose centrality measure
corresponds to the (1, 1, · · · , 1)-ranking.

3 THE INVERSE RANKING PROBLEM FOR UNDIRECTED NETWORKS

In this section we will look for an unweighed and undirected network such that its (eigenvector or PageRank) centrality
produces any prescribed ranking of nodes. We will consider two different cases in terms of the existence of loops or not in
the network. Note that if loops are not allowed in the undirected graphs, then the inverse ranking problem has no solution
in general, as the following example shows.

Example 1. If we consider the case of unweighted and undirected networks of n = 4 nodes and without loops, in
this case , there are only six types of connected graphs with no loops up to isomorphism, as Figure 1 shows. If we
compute the node (r1, , · · · , rk)-rankings for the eigenvector centrality c = (c1, c2, c3, c4)t, we only get the following
types of rankings:

c1 > c2 = c3 = c4, c1 = c2 > c3 = c4, c1 > c2 = c3 > c4 c1 = c2 = c3 = c4,

but the number of (r1, , · · · , rk)-rankings in this case is 23 = 8, so there are some rankings that cannot be obtained for
the eigenvector centrality of a unweighted and undirected networks of n = 4 nodes and without loops.

Despite the fact that there is not a positive answer to the inverse ranking problem for undirected and without loops
(as the previous example shows), the situation changes if we allow loops in the networks. We will prove this fact by
constructing explicitly a family of network unweighted and undirected network with loops whose eigenvector or (classic)
PageRank centrality produces any node ranking that we wish. In order to describe such family of networks, we first need
to introduce some notation.

For every k,m ∈ N, we consider the matrices

1k,m =

( 1 · · · 1
⋮ ⋱ ⋮
1 · · · 1

)
∈ Mk×m(R), 0k,m =

( 0 · · · 0
⋮ ⋱ ⋮
0 · · · 0

)
∈ Mk×m(R). (3.1)

If k = m, then we will denote 1k,k = 1k and 0k,k = 0k. By using this notation we construct the following networks:

Definition 6. Given n ∈ N and a list of integers (r1, · · · rk) such that 1 ≤ r1, · · · , rk ≤ n and r1 + · · · + rk = n,
we consider the unweighted, undirected network of n nodes and with loops (r1, · · · , rk) = ( , ) whose adjacency
matrix is defined by blocks as follows:
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GARCÍA AND ROMANCE

FIGURE 1 All possible rankings (eventually
with ties) for the eigenvector centrality of a
connected, undirected, and without loops graphs
of four nodes

It is clear that for every list of integers (r1, · · · rk), 1 ≤ r1, · · · , rk ≤ n, such that r1 +· · ·+ rk = n, the network (r1, · · · , rk)
is undirected and with loops, since A(r1, · · · , rk) is a symmetric matrix and some of its diagonal elements are nonzero.
Furthermore, the family of networks of the form (r1, · · · , rk) gives a positive answer to the inverse ranking problem for
undirected and unweighted networks with loops, either for eigenvector or (classic) PageRank centralities, as the following
theorem shows.

Theorem 2. For every n ∈ N and any list of integers (r1, · · · rk) such that 1 ≤ r1, · · · , rk ≤ n and r1 + · · · + rk = n,
the network (r1, · · · , rk) ranks its nodes according to its eigenvector centrality and PageRank centrality for any damp-
ing factor q ∈ (0, 1) as the (r1, · · · , rk)-ranking. Therefore, the inverse ranking problem has always positive solution for
unweighted and undirected networks with loops.

Proof. By using Theorem 1, it is enough to prove that (r1, · · · , rk) ranks its nodes according to the (r1, · · · , rk)-ranking
for every list of integers (r1, · · · rk) such that 1 ≤ r1, · · · , rk ≤ n and r1 +· · ·+ rk = n. Let us fix a list of integer (r1, · · · rk)
in previous conditions. We are going to prove that if we rank the nodes of (r1, · · · , rk) according to its eigenvector or
(classic) PageRank centrality, then we recover the (r1, · · · , rk)-ranking. We consider two cases:

1. Ranking for eigenvector centrality. Notice that if A = A(r1, · · · , rk) is the adjacency matrix of (r1, · · · , rk), then A
is symmetric since (r1, · · · , rk) is undirected. Furthermore, since (r1, · · · , rk) is strongly connected by using the
classic Perron–Frobenius theorem,22 then its eigenvector centrality c ∈ Rn is the unique vector such that c > 0,
cte = 1 and

Ac = 𝜌(A)c, (3.2)

where 𝜌(A) is the spectral radius of A. If c ∈ Rn is the eigenvector centrality of (r1, · · · , rk), then we denote it as

ct = (c(1)1 , c(2)1 , … , c(r1)
1 , c(1)2 , … , c(r2)

2 , … , c(1)k , … , c(rk)
k ).

In order to show that the ranking of the nodes of (r1, · · · , rk) according to its eigenvector or (classic) PageRank
centrality coincides with the (r1, · · · , rk)-ranking, the following facts will be proven:
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GARCÍA AND ROMANCE

(a) Fact: c(1)i = c(2)i = · · · = c(ri)
i for every i = 1, · · · , k. Note that the ri-block of (3.2) is

⎧⎪⎪⎨⎪⎪⎩
(c(1)1 + · · · + c(r1)

1 ) + · · · + (c(1)k+1−i + · · · + c(rk+1−i)
k+1−i ) = 𝜌(A)c(1)i

(c(1)1 + · · · + c(r1)
1 ) + · · · + (c(1)k+1−i + · · · + c(rk+1−i)

k+1−i ) = 𝜌(A)c(2)i
⋮
(c(1)1 + · · · + c(r1)

1 ) + · · · + (c(1)k+1−i + · · · + c(rk+1−i)
k+1−i ) = 𝜌(A)c(ri)

i .

Since the left-hand sides of these equations are equal, then we obtain that c(1)i = c(2)i = · · · = c(ri)
i , for all

i = 1, … , k.
(b) Fact: c(1)1 > c(1)2 > · · · > c(rk)

1 . Now, the first equation of each block of (3.2), give

⎧⎪⎪⎨⎪⎪⎩

r1c(1)1 + · · · + rkc(1)k = 𝜌(A)c(1)1

r1c(1)1 + · · · + rk−1c(1)k−1 + 0 = 𝜌(A)c(1)2

r1c(1)1 + · · · + rk−2c(1)k−2 + 0 = 𝜌(A)c(1)3
⋮

Finally, the first equation of the last system minus the second one gives

0 < rkc(1)k = 𝜌(A)(c(1)1 − c(1)2 )

so c(1)1 > c(1)2 since 𝜌(A) > 0 because A is a nonnull symmetric matrix.26 Similarly, c(1)2 > c(1)3 > · · · > c(1)k .

2. Ranking for the classic PageRank centrality. If c ∈ Rn is the PageRank centrality of (r1, · · · , rk) with dampling
factor q, we denote as before

ct = (c(1)1 , c(2)1 , · · · , c(r1)
1 , c(1)2 , · · · , c(r2)

2 , · · · , c(1)k , · · · , c(rk)
k ).

Again, in order to complete the proof, the following facts will be proven:

(c) Fact: c(1)i = c(2)i = · · · = c(ri)
i for every i = 1, · · · , k. If we explicitly write the equations corresponding to the ri-block

of (2.2), that is, the (r1 + · · · − ri−1 + 1)th to the (r1 + · · · + ri)th-equations, we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

q
(

c(1)1 +···+c(r1)
1∑k

𝑗=1 r𝑗
+ c(1)2 +···+c(r2)

2∑k−1
𝑗=1 r𝑗

+ · · · + c(1)k+1−i+···+c(rk+1−i)
k+1−i∑i

𝑗=1 r𝑗

)
= c(1)i − 1−q

n

q
(

c(1)1 +···+c(r1)
1∑k

𝑗=1 r𝑗
+ c(1)2 +···+c(r2)

2∑k−1
𝑗=1 r𝑗

+ · · · + c(1)k+1−i+···+c(rk+1−i)
k+1−i∑i

𝑗=1 r𝑗

)
= c(2)i − 1−q

n

⋮

q
(

c(1)1 +···+c(r1)
1∑k

𝑗=1 r𝑗
+ c(1)2 +···+c(r2)

2∑k−1
𝑗=1 r𝑗

+ · · · + c(1)k+1−i+···+c(rk+1−i)
k+1−i∑i

𝑗=1 r𝑗

)
= c(ri)

i − 1−q
n
.

Since the left-hand side of all these equations is always the same, we get that c(1)i = c(2)i = · · · = c(ri)
i , i = 1, … , k.

(d) Fact: c(1)1 > c(1)2 > · · · > c(rk)
1 . Now if we write the first equation of each block of (2.2), that is, the first, the (r1 + 1)th,

the (r1 + r2 + 1)th-equation... and use previous linear system, we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩

q
(

r1c(1)1∑k
𝑗=1 r𝑗

+ · · · + rkc(1)k∑1
𝑗=1 r𝑗

)
= c(1)1 − 1−q

n

q
(

r1c(1)1∑k
𝑗=1 r𝑗

+ · · · + rk−1c(1)k−1∑2
𝑗=1 r𝑗

+ 0
)

= c(1)2 − 1−q
n

q
(

r1c(1)1∑k
𝑗=1 r𝑗

+ · · · + rk−2c(1)k−2∑3
𝑗=1 r𝑗

+ 0
)

= c(1)3 − 1−q
n

⋮

.
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GARCÍA AND ROMANCE

The first equation of this system minus the second one gives

0 < q
rkc(1)k∑1
𝑗=1 r𝑗

= c(1)1 − c(1)2 , so c(1)1 > c(1)2 .

Similarly, the second equation minus the third one leads to c(1)2 > c(1)3 and so on until we conclude that c(1)1 > c(1)2 >

· · · > c(rk)
1 .

Note that the computational cost of constructing the network of n nodes (r1, · · · , rk) is of order n2, so for any ranking
(possibly with ties) of n nodes, there is an algorithm of quadratic (n2) computational order that produces an unweighted
and undirected network with loops and n nodes whose eigenvector and PageRank centralities rank its nodes according
to a prescribed order.

Let us give a numerical example that illustrate how the family of networks of the form (r1, · · · , rk) solves positively
the inverse ranking problem for unweighted and undirected networks with loops.

Example 2. If we want to construct an unweighted and undirected network with n = 6 nodes such that its eigenvector
centrality and (classic) PageRank centrality are given by the (1, 3, 2) ranking, that is,

c1 > c2 = c3 = c4 > c5 = c6,

then we consider the network (1, 3, 2) whose adjacency matrix can be seen in Figure 2.
For this network (1, 3, 2), its eigenvector centrality is

c1 = 0.24197646, c2 = c3 = c4 = 0.21363934, c5 = c6 = 0.05855276,

while its PageRank (with damping factor 𝛼 = 0.85) is

c1 = 0.30259816, c2 = c3 = c4 = 0.18722203, c5 = c6 = 0.06786788.

Therefore, if we rank the nodes of (1, 3, 2) according to its eigenvector or (classic) PageRank centrality with, for
example, damping factor q = 0.85, then we recover the (1, 3, 2)-ranking.

Remark 1. Note that we cannot expect a similar result to Theorem 2 for personalized pageRank with personalization
vector v ≠ e that holds for every q ∈ (0, 1), since if q ≈ 0 and v ≠ e, then for every network  its personalized
PageRank with damping factor q is c ≈ v. Thus, we cannot recover all the rankings, since v ≠ e makes that some
nodes have a strict difference in their PageRank centrality and therefore they must be in a fixed order in the obtained
ranking.

FIGURE 2 The undirected graph (with loops) of six nodes
(1, 3, 2), that is, (r1, r2, r3) with r1 = 1, r2 = 3, and r3 = 2
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GARCÍA AND ROMANCE

4 THE INVERSE RANKING PROBLEM FOR DIRECTED NETWORKS
WITHOUT LOOPS

In this final section, we will analyze the inverse ranking problem for unweighed but directed networks. By using the results
obtained in Section 3, we get directly that the inverse ranking problem has always positive solution for unweighted and
directed networks with loops, since every undirected network can be understood as a directed network with bidirectional
links, and therefore, the directed network (with bidirectional links) whose adjacency matrix is given in Definition 6 gives
a positive solution to the inverse ranking problem in the unweighted and directed settings, but only if loops are allowed.
If we want to study the same problem but for complex networks without loops, we can consider the following family of
networks:

Definition 7. Given n ∈ N and a list of integers (r1, · · · rk) such that 1 ≤ r1, · · · , rk ≤ n and r1 + · · · + rk = n, we
consider the unweighted, directed network of n nodes and without loops of n nodes ⃗(r1, · · · , rk) = ( , ) whose
adjacency matrix is defined by blocks as follows:

where 1k,m, 0k,m, 1k, and 0k were defined in (3.1) and Ik is the k × k identity matrix.

Note that for every list of integers (r1, · · · rk) such 1 ≤ r1, · · · , rk ≤ n such that r1 +· · ·+ rk = n, network ⃗(r1, · · · , rk) has
no loops, since A⃗(r1, · · · , rk) has null diagonal. In addition to this, the family of networks of the form ⃗(r1, · · · , rk) gives
a positive answer to the inverse ranking problem for directed networks without loops for (classic) PageRank centralities,
as the following Theorem shows.

Theorem 3. For every n ∈ N and any list of integers (r1, · · · rk) such that 1 ≤ r1, · · · , rk ≤ n, k ≥ 3 and r1 + · · · + rk = n,
the network ⃗(r1, · · · , rk) ranks its nodes according to its (classic) PageRank centrality for any damping factor q ∈ (0, 1) as
the (r1, · · · , rk)-ranking. Therefore, the inverse ranking problem has always positive solution for unweighted and directed
networks without loops for (classic) PageRank centrality.

Proof. If c ∈ Rn is the PageRank centrality of ⃗(r1, · · · , rk) with damping factor q, let us denote

ct = (c(1)1 , c(2)1 , … , c(r1)
1 , c(1)2 , … , c(r2)

2 , … , c(1)k , … , c(rk)
k ).

If we plug the block structure given by the adjacency matrix of ⃗(r1, · · · , rk) in expression (2.2), the equations cor-
responding to each of its ri-blocks, i = 1, · · · , k, give a system of equations whose left-hand side is always of the
form

q

(
c(1)1 + · · · + c(r1)

1∑k
𝑗=1 r𝑗 − 1

+
c(1)i + · · · + c(ri)

i − c(i)i∑i
𝑗=1 r𝑗 − 1

+
c(1)i+1 + · · · + c(ri+1)

i+1∑i+1
𝑗=1 r𝑗 − 1

+ · · · +
c(1)k + · · · + c(rk)

k∑k
𝑗=1 r𝑗 − 1

)
,

while the right-hand sides are c(1)i − 1−q
n

, c(2)i − 1−q
n

, … , c(ri)
i − 1−q

n
, respectively. Therefore, since the left-hand sides are

equal, we get that c(1)i = c(2)i = · · · = c(ri)
i . Moreover, the first equations of each block in expression (2.2) together with

the equality of the ci's we have just proved give
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GARCÍA AND ROMANCE

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q
(

(r1−1)c(1)1∑k
𝑗=1 r𝑗−1

+ r2c(1)2∑2
𝑗=1 r𝑗−1

+ · · · + rkc(1)k∑k
𝑗=1 r𝑗−1

)
= c(1)1 − 1−q

n

q
(

r1c(1)1∑k
𝑗=1 r𝑗−1

+ (r2−1)c(1)2∑2
𝑗=1 r𝑗−1

+ r3c(1)3∑3
𝑗=1 r𝑗−1

+ · · · + rkc(1)k∑k
𝑗=1 r𝑗−1

)
= c(1)2 − 1−q

n

q
(

r1c(1)1∑k
𝑗=1 r𝑗−1

+ (r3−1)c(1)3∑3
𝑗=1 r𝑗−1

+ r4c(1)4∑4
𝑗=1 r𝑗−1

+ · · · + rkc(1)k∑k
𝑗=1 r𝑗−1

)
= c(1)3 − 1−q

n

⋮

q
(

r1c(1)1∑k
𝑗=1 r𝑗−1

+ (rk−1)c(1)k∑k
𝑗=1 r𝑗−1

)
= c(1)k − 1−q

n
.

(4.1)

Now, by subtracting the second equation minus the third equation, the third equation minus the fourth one, and
so on in (4.1), we obtain that

0 < q

(
(ri − 1)c(1)i∑i
𝑗=1 r𝑗 − 1

+
c(1)i+1∑i+1

𝑗=1 r𝑗 − 1

)
= c(1)i − c(1)i+1, i = 2, … , k − 1,

where the first term is positive because q > 0, ri ≥ 1, c(1)i > 0, c(1)i+1 > 0 and the denominators are all positive, so
c(1)i > c(1)i+1 for every i = 2, … , k − 1.

On the other hand, if we compute the first equation minus the second one in (4.1), we get that

q

(
c(1)2∑2

𝑗=1 r𝑗 − 1
−

c(1)1∑k
𝑗=1 r𝑗 − 1

)
= c(1)1 − c(1)2 ,

which implies that (
1 +

q∑k
𝑗=1 r𝑗 − 1

)
c(1)1 =

(
1 +

q
r1 + r2 − 1

)
c(1)2 ,

so c(1)1 > c(2)2 as soon as
k∑

𝑗=1
r𝑗 > r1 + r2,

which is clearly true under the hypothesis k ≥ 3, and therefore, by applying the same argument to the rest of equations,
we conclude that

c(1)1 = c(2)1 = · · · = c(r1)
1 > c(1)2 = c(2)2 = · · · = c(r2)

2 > · · · > c(1)k = c(2)k = · · · = c(rk)
k .

Note that the computational cost of constructing the network of n nodes ⃗(r1, · · · , rk) is of order n2, so for any ranking
(possibly with ties) of n nodes, there is an algorithm of quadratic (n2) computational order that produces an unweighted
and directed network without loops and n nodes whose PageRank centrality ranks its nodes according to a prescribed
order.

Let us give a numerical example that illustrates how the family of networks of the form ⃗(r1, · · · , rk) solves positively
the inverse ranking problem for unweighted and directed networks without loops.

Example 3. If we want to construct a directed network with n = 6 nodes and without loops such that its (classic)
PageRank centrality are given by the (1, 3, 2) ranking, that is,

c1 > c2 = c3 = c4 > c5 = c6,

then we consider ⃗(1, 3, 2), whose adjacency matrix appears in Figure 3. For this network PageRank (with, e.g.,
damping factor 𝛼 = 0.85) is

c1 = 0.2267373, c2 = c3 = c4 = 0.20671376, c5 = c6 = 0.07656071.
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GARCÍA AND ROMANCE

FIGURE 3 The directed graph (without loops) of six nodes
⃗(1, 3, 2), thai is, ⃗(r1, r2, r3) with r1 = 1, r2 = 3, and r3 = 2

FIGURE 4 The directed graph (without loops) ⃗(1, 1, 1), that is,
⃗(r1, r2, r3) with r1 = r2 = r3 = 1 and its adjacency matrix

Therefore, if we rank the nodes of (1, 3, 2) according to its eigenvector or (classic) PageRank centrality with damping
factor q = 0.85, then we recover the (1, 3, 2)-ranking.

As it was pointed out in Remark 1, we cannot expect a similar result to Theorem 3 for personalized pageRank with
personalization vector v ≠ e that holds for every q ∈ (0, 1), since if q ≈ 0 and v ≠ e, then for every network  its
personalized PageRank with damping factor q is c ≈ v, so we cannot recover all the rankings, since v ≠ e makes that
some nodes have a strict difference in their PageRank centrality and therefore they must be in a fixed order in the obtained
ranking.

Remark 2. Note that the inverse ranking problem is not solved in general for directed and without loops networks for
eigenvector centrality by using the graph family given in Definition 7, since, for example, if we take r1 = r2 = r3 = 1,
we should expect that ⃗(1, 1, 1) satisfies that c1 > c2 > c3. If we compute the eigenvector centrality of ⃗(1, 1, 1) by
using its adjacency matrix that appears in Figure 4, then we get that

c1 = 0.38196594, c2 = 0.38196594, c3 = 0.23606811,

so c1 = c2 > c3 and we do not recover the expected (1, 1, 1)-ranking.

Although this last example shows that the graph family {⃗(r1, · · · , rk)} does not solve the inverse ranking problem in
general for directed and without loops networks for eigenvector centrality, we can still solve it when we only consider the
inverse strict ranking problem introduced in Problem 3, that is, the inverse ranking problem when r1 = r2 = · · · = rn = 1
and therefore the eigenvector centrality c = (c1, c2, · · · , cn)t ∈ Rn must fulfill that c1 > c2 > · · · > cn, as the following
result shows.

Theorem 4. If 3 ≤ n ∈ N, then graph ⃗ = ( , ) whose adjacency matrix is

A =
⎛⎜⎜⎜⎝

0 1 0 · · · 0
1 0 1 · · · 0
⋮ ⋮ ⋱ ⋱
1 0 · · · 0 0

⎞⎟⎟⎟⎠ ∈ Mn×n(R)

ranks its nodes according to its eigenvector centrality as the (1, 1, · · · , 1)-ranking and the inverse strict ranking problem
has always positive solution for unweighted and directed networks without loops for eigenvector centrality.

Proof. By using a result similar to Theorem 1 for the inverse strict ranking problem, it is enough to prove that ⃗ ranks
its nodes according to its eigenvector centrality as the (1, 1, · · · , 1)-ranking.

First, note that ⃗ is strongly connected, so by using the classic Perron–Forbenius theorem,22 we can compute its
eigenvector centrality that will be denoted by c = (c1, c2, · · · , cn)t ∈ Rn. Furthermore, if we write explicitly equations
given in (2.1), we get that
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⎧⎪⎪⎨⎪⎪⎩
c2 + c3 + · · · + cn = 𝜌(A)c1

c1 = 𝜌(A)c2
c2 = 𝜌(A)c3
⋮

cn−1 = 𝜌(A)cn

,

where 𝜌(A) is the spectral radius of A; therefore, the theorem is proved from the last (n− 1) equations if we show that
𝜌(A) > 1. Note that by using a result from Frobenius,27 since A is nonnegative, then

min
i

( n∑
𝑗=1

ai𝑗

)
≤ 𝜌(A) ≤ max

i

( n∑
𝑗=1

ai𝑗

)

and if A is an irreducible matrix, then equality holds on either side (and hence both sides) if and only if all row sums
of A are equal. If we use this result in our case, since ⃗ is strongly connected, then A is irreducible22 and the row sums
of A are the outdegree of each node, but

grout(1) = grout(n) = 1, grout(2) = · · · = grout(n − 1) = 2,

so by using the result of Frobenius, we get that 1 < 𝜌(A) < 2 and in particular 𝜌(A) > 1, which completes the proof.

Note that if we take 2 ≥ n ∈ N in the last theorem, then the inverse strict ranking problem has no positive solution
in general, for unweighted and undirected networks without loops for eigenvector centrality, simply by computing all
possible strongly connected the unweighted and undirected networks without loops with n = 1, 2 nodes.

5 CONCLUSIONS

We have proved that if we consider a ranking (possibly with ties) of n nodes of the form d𝜎(1) ≿ d𝜎(2) ≿ · · · ≿ d𝜎(n) then
there is always an unweighted and undirected network G = (V ,E) of n nodes (but with some loops) whose eigenvector
centrality and PageRank centrality (for any value of the damping factor q ∈ (0, 1)) ranks its nodes as the prescribed
ranking. If we want to find a network without loops and such that its centrality ranks the nodes according to a prescribed
ranking, then it has been proved that there is always an unweighted and directed network G = (V ,E) of n nodes without
loops such that its PageRank centrality (for any value of the damping factor q ∈ (0, 1)) ranks its nodes as the prescribed
ranking.
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