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Abstract
Complexity measures aim to characterize the underlying complexity of supervised data. These measures tackle factors
hindering the performance of Machine Learning (ML) classifiers like overlap, density, linearity, etc. The state-of-the-art
has mainly focused on the dataset perspective of complexity, i.e., offering an estimation of the complexity of the whole
dataset. Recently, the instance perspective has also been addressed. In this paper, the hostility measure, a complexity measure
offering a multi-level (instance, class, and dataset) perspective of data complexity is proposed. The proposal is built by
estimating the novel notion of hostility: the difficulty of correctly classifying a point, a class, or a whole dataset given their
corresponding neighborhoods. The proposed measure is estimated at the instance level by applying the k-means algorithm
in a recursive and hierarchical way, which allows to analyze how points from different classes are naturally grouped together
across partitions. The instance information is aggregated to provide complexity knowledge at the class and the dataset
levels. The validity of the proposal is evaluated through a variety of experiments dealing with the three perspectives and the
corresponding comparative with the state-of-the-art measures. Throughout the experiments, the hostility measure has shown
promising results and to be competitive, stable, and robust.

Keywords Hostility measure · Complexity measures · Data complexity · Classification · Supervised problems

1 Introduction

For several years now, Machine Learning (ML) is in the
spotlight and supervised problems account for an important
part of it. For classification problems and, indeed, for all
analysis involving data, a first step of data exploration
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is essential, providing the user with the knowledge and
understanding of the data. This is extremely useful for the
following tasks involving data, and skipping it could lead
to wrong decisions and results. However, on a daily basis,
this exploratory phase is rarely focused on the underlying
complexity of the dataset. As a matter of fact, during the
modeling stage, the selection of the best classifier ordinarily
follows a trial-and-error approach. Several classifiers are
tested and the one offering the best performance is
finally selected. No information is drawn about why some
classifiers perform better or which characteristics of the
data are causing the final results. Different factors can
disturb the performance of classifiers [3]. For instance,
the distribution of classes, the sparsity of data, the type
of decision boundary, the overlap among classes or the
noise. The purpose of complexity measures is to identify
and quantify this type of data characteristics as a way of
understanding the complexity of the data and its impact in
the classification [14].

Complexity measures have mainly focused on a global
perspective, quantifying the complexity of the whole dataset
from different points of view: linearity, overlap, balance
of classes, etc. In the last years, a new approach building
complexity measures at the instance level and averaging
them to get the global dataset perspective has emerged
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[33]. In fact, some of the classic measures were originally
constructed from the instance level [14]. The instance
approach is fruitful since it provides the global complexity
estimation by identifying the critical and problematic
individual points that are actually causing that complexity.
Thus, data complexity is analyzed from two points of view:
the instance and the dataset level.

In this paper, the two-level perspective is taken a step
further presenting, to our knowledge for the first time,
a multi-level study of data complexity through the here
defined concept of hostility and the proposed complexity
measure, the hostility measure, that estimates it. The notion
of hostility refers to the difficulty of correctly classifying a
point, a class, or a dataset according to their surroundings.
For example, a point fully surrounded by instances of its
own class will have an hostility of zero. On the other hand,
the more instances from other classes are around it, the more
hostility the point will have. This concept is intuitive, it
naturally embraces the various perspectives of data: point,
class, and dataset, and it offers an interpretable value in
terms of the probability of how difficult it is to classify them
regarding their neighborhoods.

The estimation of the notion of hostility is carried out
by building a complexity measure at the instance level,
aggregating it at the class level to get a complexity value
for each class and also, aggregating it at the dataset level
to have a global quantification of the complexity. This
is the proposed multi-level complexity measure which is
called the hostility measure. It analyzes the distribution
of classes in neighborhoods of increasing size. By doing
this, it detects critical points. That is, those points that
are in overlapping areas (a really detrimental factor for
classifiers [31, 33, 36]). These can also be borderline points,
which are near the decision boundary, or noisy points that
can be faded among points from other classes. In contrast
with most complexity measures, the here proposed hostility
measure combines different layers of information since it is
calculated by applying the well-known algorithm k-means
in a recursive and hierarchical way. This increases the
robustness and adaptability of the method. Also, tracking
the results from the different layers of the procedure
provides useful information. Some promising results of a
preliminary version of the proposal have been presented in
[20].

The main contributions of the present paper are:

1. To revisit the main state-of-the-art complexity measures
clarifying its levels of definition.

2. To introduce the concept of hostility.
3. Based on the notion of hostility, to propose a

new complexity measure called the hostility measure
that addresses a multi-level perspective of the data
complexity.

4. To evaluate the performance of the hostility measure
and compare it with the state-of-the-art.

5. To present the hostility tracking graph and the
overlapping tracking graph that are able to offer
exploratory information about a dataset.

The paper is structured as follows. Section 2 recapitulates
the state-of-the-art of complexity measures with special
emphasis on the ones considering more than one level of
information. The concept of hostility is formally presented
in Section 3 and the proposed measure of complexity
is described in Section 4. In Section 5, experiments
comprising the three perspectives are expounded. Section 6
describes the research opportunities that have emerged
along the current research. Finally, Section 7 concludes.

2 State-of-the-art

Complexity measures gained more attention as a result
of the work from Ho and Basu [14]. Ever since, these
measures have been further studied and applied for several
purposes: imbalanced problems [2, 18, 30, 39], meta-
learning [21, 24], analysis of learning algorithms [4,
27], automatic recommendation of classifiers [6], and
hyper-parameter optimization [7]. They have also been
implemented in different fields like genetics, medicine,
and human-computer interaction [3]. A detailed summary
with applications of complexity measures as well as a
recapitulation of the existing complexity measures can be
found in [25].

Regarding complexity measures that address more than
one level of information, the work in [33] is seminal
providing the instance perspective. The aim is to detect
which instances are harder to classify and to calculate
the individual contribution of the instances to the global
complexity. To this end, a range of complexity measures,
called hardness measures, were defined to tackle the
instance perspective specifically. They can be later averaged
to get the dataset level. In accordance with this new
perspective, some of the classical measures have been
adapted to the instance level [1].

Following [25], complexity measures are grouped in
six main categories: feature-based, linearity, neighborhood,
network, dimensionality, and class imbalance. Next, a brief
explanation and the main measures of each category are
described.

Feature-based measures focus on the overlap of
features between classes to assess the discriminant ability
of the features:

• F1, the maximum Fisher’s discriminant ratio mea-
sures the capacity of every feature to separate the
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classes in terms of the overlap that the values of each
feature present [14].

• F2, the volume of overlapping region calculated as
the length of the overlapping zones among classes
[14].

• F3, the maximum individual feature efficiency is
defined as the maximum discriminant capacity of the
features. This is calculated as the maximum number
of points from different classes in overlap, for the
set of features, divided by the total number of points
[13].

• F4, the collective feature efficiency is similar to F3
but analyzing jointly the discriminatory power of the
features [29].

• F1v, the directional-vector maximum Fisher’s dis-
criminant ratio was created as a version of F1 able to
overcome the major drawback of feature-based mea-
sures: they assume the discriminative hyperplane is
perpendicular to the axis of one input feature [29].
F1v projects data for maximizing class separation
and, in that projection, looks for a vector able to
separate the classes.

• In [1], the idea of getting the overlap of features
within the two classes is extended to the instance
level with four hardness measures. F1HD captures
the number of features for which an instance lies in
an overlapping area. The distance of each instance
to the overlapping region is gauged for each feature
and then transformed to obtain higher values for
instances placed on the middle of the overlapping
region. This is calculated for each feature and F2HD

is defined to be the minimum of them, F3HD the
mean, and F4HD the maximum.

Linearity measures check the linear separateness in a
problem:

• L1, the sum of the error distance by linear
programming [14]. It evaluates if the data is linearly
separable by adding the distances of the incorrectly
classified instances to the linear boundary. Note
that although L1 detects if a problem is linearly
separable, it is not able to distinguish which one is
the simpler linear problem. The instance version of
L1 is L1HD [1] which multiplies, for each instance,
its distance to the linear frontier by its label yi ∈
{−1, +1}.

• L2, the error rate of a linear classifier [14].
• L3, non-linearity of a linear classifier [15]. It starts

generating test points by linear interpolation between
random pairs of points of the same class. Then, the
linear classifier is trained on the original points and
tested on the new points. L3 is the test error.

Neighborhood measures are based on the distance
among points. They study the distribution of classes,
how they intertwine with each other, the presence of
overlapped and borderline points in neighborhoods:

• N1, the fraction of borderline instances obtained
from a Minimum Spanning Tree (MST) built from
the data [14]. Each vertex of the tree corresponds to
one instance and the edges are weighted according
to the distance between them. N1 is the percentage
of vertices connected to instances of other classes.
The instance version of N1, N1HD , is defined as
the number of connections the instance holds with
instances from other classes [1]. Both measures are
sensitive to noisy instances.

• N2 is the ratio of intra/extra class nearest neighbor
distance [14], defined as r/(1+r), where r is the ratio
of the sum of the distances between each point and its
closest neighbor (intra) and the sum of the distances
between every point and its closest neighbor from
other class (extra). Its instance version N2HD takes
the ratio value for each point [1]. N2 is influenced by
the data distribution, the shape of the boundary, and
noisy points.

• N3 is the error rate of the k-Nearest Neighbour
(kNN) classifier with k = 1 and using a leave-one-
out procedure [14].

• N4, non-linearity of the kNN classifier, is similar to
L3 but using the kNN classifier with k = 1 [14].

• T 1 is the fraction of hyperspheres covering the data
[14]. This measure starts building a hypersphere
centered at each point, whose radius is determined
by the distance between the point and its nearest
enemy (i.e., the nearest point from other class). Then,
all the hyperspheres completely included in bigger
hyperspheres are eliminated. Finally, T 1 is the ratio
between the final number of retained hyperspheres
and the number of points.

• LSC: local-set average cardinality. Following [21],
the local-set of an instance (originally defined in [5])
is the set of instances closer to that instance than
its nearest enemy. The cardinality of the local-set
indicates its proximity to the decision boundary and
also the space between classes.

• In [1], four measures related to T 1 and local-set
concept are added:

– LSC(xi ), the local-set cardinality of each
point.

– LSradius is the radius of the local-set of each
point, showing how close every point is to
the other class.
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– The usefulness index U of an instance is
the number of instances containing it in its
local-set.

– The harmfulness index H of an instance is
the number of instances for which it is the
nearest enemy.

• The k-Disagreeing Neighbors (kDN) of a point is the
percentage of its nearest neighbors from other classes
[33]. It is averaged for the dataset level.

• R-value [28] measures the existing overlap among
classes on the dataset. It examines, using kNN, if
a point is in an overlapping area. If more than a
parameter θ of its k nearest neighbors are from other
class, the point is considered to be in overlap. This is
averaged to have an overlapping ratio per class and
an overall overlapping ratio for the whole dataset.

Network measures are gauged based on a graph built
from the data preserving the original similarities among
instances. Each instance is represented as a node in the
graph and is connected with undirected edges to instances
distancing from it less than a threshold ε. In the final
graph, nodes from different classes are not connected.
The main measures [11] are the average density of the
network (Density), the clustering coefficient (ClsCoef )
and the hub score (Hubs).
Dimensionality measures focus on the sparsity of the
data and measure the relationship between the number
of points and the number of features. The principal
measures are: the average number of features per
dimension T 2 [14], the average number of Principal
Component Analysis (PCA) dimensions per points T 3
[23], and the ratio of the PCA dimension to the original
dimension T 4 [23].
Class imbalance measures assess the balance between
the class sizes. Two common metrics are the imbalance
ratio C2 and the entropy of class proportions C1.

Furthermore, in this work, the category model-inspired
measures is proposed to be added to the previous taxonomy.
These complexity measures are inspired by the learning
mechanism of different classifiers. The hardness measures
from [33] framed in this category are listed below. The
dataset level value of these measures is just the average of
the instance values.

• Disjunct Size (DS). The DS of an instance is the number
of instances in its disjunct (i.e., leaf node where it
is classified in a Decision Tree (DT)) divided by the
number of instances in the largest disjunct. Disjuncts
are created with a version of C4.5 algorithm: not pruned
and allowing one instance per node.

• The Disjunct Class Percentage (DCP) of a instance
is the proportion of instances from its class in its
belonging disjunct.

• The Tree Depth (TD) is the depth of the leaf node in a
DT where the point is classified. It uses a C4.5 decision
tree in its pruned version, Tree Depth Pruned (TDP),
and unpruned version Tree Depth Unpruned (TDU).
Note that if a point is misclassified in a shallow split of
the pruned tree, the resulting complexity information of
that point is not trustworthy.

• Based on the philosophy of the Naı̈ve Bayes, the Class
Likelihood (CL) estimates the likelihood of an instance
belonging to a class deeming independent features. For
continuous variables, likelihood is gauged with a kernel
density estimation.

• Class Likelihood Difference (CLD) offers the difference
between the CL of an instance and its maximum
likelihood for the rest of classes.

Table 1 summarizes the complexity measures of this
section and details the level of definition of each measure.

3 Hostility

In this section, the formal notion of hostility at each
one of the considered levels (point, class, and dataset) is
presented. For this purpose, the notation used for the formal
definitions of the hostility and the preliminary concept of
the neighborhood of a point are first addressed.

Let X = (X1, . . . ,Xp)T be the input vector of p random
variables, Y the random output variable and assume that
(X ,Y) is the corresponding joint distribution. Suppose that
D = {(xi , yi) | i = 1, . . . , n} is the dataset containing n

independent and identically distributed observations from
(X ,Y) where xi = (xi1, . . . , xip)T is the ith observed value
of X and yi is the ith observed value of Y , i = 1, . . . , n.
Now, let X = {xi}ni=1 be the set of input observations from
D and Y = {yi}ni=1 the set of the corresponding labels from
D, where yi ∈ C = {1, . . . , c} being C the set of class
labels.

In these terms and following [17], the neighborhood of a
point xi ∈ X is a subset of X containing an open ball with
center xi and radius r > 0, r ∈ R. This is, containing the set
of all points xj ∈ X such that d(xi , xj ) < r , being d(·, ·) a
distance function. The neighborhood of a point xi ∈ X will
be denoted as N(xi ).

Definition 1 The hostility of an instance is the difficulty
of correctly classifying the instance given its neighborhood.
That is, the hostility of an instance (xi , yi) ∈ D, denoted as
H(xi , yi), is the opposite of the probability of identifying
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Table 1 Levels of definition of
each complexity measure Category Instance Class Dataset

Feature – – F1 [14]

– – F1v [29]

F1HD , F2HD , F3HD , F4HD [1] – F2 [14]

F1HD , F2HD , F3HD , F4HD [1] – F3 [13]

– – F4 [29]

Linearity L1HD [1] – L1 [14]

– – L2 [14]

– – L3 [15]

Neighborhood N1HD [1] – N1 [14]

N2HD [1] – N2 [14]

– – N3 [14]

– – N4 [14]

LSC(xi ) [1], LSradius [1], U [22], H [22] – T 1 [14]

LSC(xi ) [1], LSradius [1], U [22], H [22] – LSC [21]

– R-value [28] R-value [28]

kDN [33] – kDN [33]

Network – – Density [11]

– – ClsCoef [11]

– – Hubs [11]

Dimensionality – – T 2 [14]

– – T 3[23]

– – T 4 [23]

Class imbalance – – C1 [23]

– – C2 [34]

Model-inspired DS [33] – DS [33]

DCP [33] – DCP [33]

TDP[33] – TDP [33]

TDU [33] – TDU [33]

CL [33] – CL [33]

CLD [33] – CLD [33]

its class yi given the distribution of classes of all the points
that belongs to its neighborhood:

H(xi , yi) = 1 − P(Y = yi | {(xj , yj ) ∈ D | xj ∈ N(xi )}),
(1)

being {(xj , yj ) ∈ D | xj ∈ N(xi )} the instances pertaining
to the neighborhood of the point xi , that is, to N(xi ).

Definition 2 The hostility of a class c is the difficulty
of adequately identifying all the points of the class c, as
belonging to class c, given their neighborhoods. That is, the
hostility of a class c is the opposite of the probability of
correctly classifying the complete class c given the points
that belong to the neighborhood of the set of the points from

class c. Let Dc = {(xi , yi) ∈ D | yi = c} be the restricted
dataset D to class c. Then, the hostility of a class c, denoted
as H(Dc), is:

H(Dc) = 1−P(Y = c | {(xj , yj ) ∈ D | xj ∈ N(Xc)}), (2)

where Xc = {xi | (xi , yi) ∈ D, yi = c} is the set of all
instances from class c and N(Xc) = ⋃

{(xi ,yi )∈Dc} N(xi ) is
the neighborhood of the set Xc.

Definition 3 The hostility of a dataset D is the difficulty
of correctly classifying all the points of D given their
neighborhoods. In other words, the hostility of a dataset D

is the opposite of the probability of identifying the class of
each point of the dataset given the neighborhood of the set
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X of input observations from D. Then, given a dataset D, its
hostility H(D) is:

H(D) = 1 − P((Y = y1, . . . ,Y = yn) | {(xj , yj ) ∈ D | xj ∈ N(X)}), (3)

where N(X) = ⋃n
i=1 N(xi ) is the neighborhood of the

set X.

4 Proposedmethod

In this section, the proposed hostility measure to estimate
the previously defined hostility concept is described. The
hostility measure is able to provide knowledge in three
different levels: instance, class, and dataset. It is initially
calculated for every single point, offering an hostility
estimation value for every instance Ĥ (xi , yi). These
instance values are used for two further aggregations. First,
an hostility value for every class Ĥ (Dc) and second, a global
value for the whole dataset Ĥ (D). The dataset value goes
hand-in-hand with complexity measures from the state-of-
the-art. However, the perspective per class is quite novel and
offers prior knowledge about which class is more affected
by the distribution of others and, hence, will be harder to
classify.

The calculation of the hostility measure starts by apply-
ing the k-means clustering algorithm with the Euclidean
distance. If this unsupervised algorithm is applied to a
supervised dataset and, for each cluster, the probability of
every class is extracted, an informative class data structure
map can be achieved. Not only this map will reveal where a

Fig. 1 Hierarchical and recursive application of k-means based on [37]

class is dominant, but it will also point out the most uncer-
tain areas where classifiers tend to fail. Nevertheless, if the
parameter k is not correctly selected, any exploratory analy-
sis derived from the resulting partition would be worthless.
To avert this situation the k-means algorithm is here hier-
archically and recursively performed following [37] (see
Fig. 1). The k-means is a simple method that allows to easily
analyze the data in the natural groups they form accord-
ing to their similarities and to select a good representative
for each cluster. In addition, applying them in a hierarchic
and recursive way guarantees robust partitions capturing the
structure of the data and interactions among classes. Also, it
enables to efficiently track the evolution of these partitions
in the different iterations. In this recursive process, the dif-
ferent clustering iterations will be denoted as “layers” from
now on. In the first layer, k-means is implemented using the
whole set X and, in the next iterations, the data input is the
set of centroids gathered from the previous step. Thus, the
data input will be denoted as X′, being X′ = X in the first
iteration. Every time the algorithm is performed, a cluster
partition B = {B1, . . . , Bk} of the current data input X′ is
achieved. B is a crisp partition matching:

k⋃

r=1

Br = X′,

Br ∩r �=s Bs = ∅, r �= s, r, s ∈ {1, 2, . . . , k},
∅ ⊂ Br ⊂ X′, r ∈ {1, 2, . . . , k}. (4)

Note that the larger the number of layers, the smaller
the number of clusters and, consequently, more points are
grouped together. The objective is to capture the behavior
of classes through recursive partitions and to get successive
clusters revealing how data from different classes are
grouped.

In every layer l ∈ N, for any original point xi ∈ X, the
probability of its class yi in the cluster Br ∈ B it pertains to
is stored. The probability is denoted as pli , with l indicating
the number of the layer and i = 1, . . . , n referring to the
particular instance xi . This probability is the proportion of
the class yi in the specific cluster Br based on the original
points that belong to it:

pli = |{xj ∈ X | xj , xi ∈ Br ∧ yj = yi}|
|{xj ∈ X | xj ∈ Br}| , (5)

where | · | represents the cardinal of a set. As the procedure
is hierarchical, it is straightforward to get to which cluster
a point belongs to at any layer. Thus, in every layer l, a
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probability vector pl = (pl1, . . . , pln)
T ∈ R

n is gathered
and it is averaged with the probability vector from previous
layers:

p = (pl + pl−1 + · · · + p1) · 1/l. (6)

This probability vector p = (p1, . . . , pn)
T ∈ R

n

summarizes for every point the dominance of its class
through the variety of clusters where the point has been
grouped. This average probability vector is the key for the
hostility measure calculation since it reflects, for each point,
the presence of its class. Consequently, its opposite 1 − p
shows the absence of its class, that is, the dominance of
the others and how harmful they are. In other words, the
estimated hostility value for all points is just the opposite of
this average probability vector, that is,

Ĥ (xi , yi) = 1 − pi . (7)

These hostility measure values at the instance level estimate
the probability of Definition 1. Finally, all points have,
for every layer, an hostility measure value in the range
[0, 1]. A high hostility measure value means that the point
is surrounded by points from other class. Medium values
imply the point lies in an overlapping area where both
classes are quite equally dominant. Low values are for
points in zones where its class is the dominant one.

To estimate the hostility for the class and the dataset
levels meeting Definition 2 and 3, a probability threshold
δ is applied to binarize the instance values. If the hostility
measure is equal or higher than δ, its binary value will be 1.
Otherwise, it will be binarized to 0 as the point lies in areas
where its class is better represented and is less harmful for
the classification task. This binary information is averaged
to achieve the hostility estimation per class and for the total
dataset:

– The hostility measure of a class c is calculated
by averaging the binarized hostility measure of the
instances belonging to that specific class:

Ĥ (Dc) =
∑

(xi ,yi )∈Dc
I (Ĥ (xi , yi) ≥ δ)

nc

, (8)

being nc the number of instances in class c and I (·)
the indicator function that takes value 1 when its
argument is true and 0 otherwise. This estimation gives
an indication of how complex it is to identify each
class within the dataset and allows a ranking of the
complexity of the different classes.

– The global hostility measure for the dataset is calculated
as the average of the binarized hostility measure of all
points in dataset:

Ĥ (D) =
∑

(xi ,yi )∈D I (Ĥ (xi , yi) ≥ δ)

n
. (9)

Similarly to the hostility measure per class, it is
estimated as the proportion of critical points in
the whole dataset. That is, points expected to be
erroneously identified as from other class.

For both cases, the maximum value is reached when the
hostility measure of all points is higher or equal than δ, that
is, when Ĥ (xi , yi) ≥ δ, ∀(xi , yi) ∈ Dc for the class level
and ∀(xi , yi) ∈ D for the dataset one. Notice that all the
proposed hostility measures are defined in the range [0, 1] to
ease its interpretation and comparison. Besides, it supplies,
in both levels, an estimation of the classification complexity.

The proposed method has three parameters:

– The probability threshold (δ) aforementioned.
– The proportion of grouped points per cluster (σ ).

This parameter automatically determines the number of
clusters k in every layer. The purpose of σ is to set the
pace of grouping in the recursive k-means process.

– The minimum number of clusters allowed (kmin). It
cannot be lower than the number of classes. The
iterative process stops when the following k is going to
be lower than kmin. The final results come from this last
layer.

Algorithm 1 presents the pseudocode to obtain the
hostility measure.1 The inputs of the algorithm are the three
parameters δ, σ and kmin, the set of points X = {xi}ni=1
and the set of the corresponding binary labels Y = {yi}ni=1
with yi ∈ {−1, +1}. The algorithm returns an hostility
vector with the respective hostility measure per instance
ĥ = (Ĥ (x1, y1), . . . , Ĥ (xn, yn)), the hostility measure per
class Ĥ−1 = Ĥ (D−1) and Ĥ+1 = Ĥ (D+1), and the
hostility measure of the whole dataset ĤD = Ĥ (D). It can
also return the estimated hostility of each point per layer
Ĥm. Note that in all layers except for the first one, the
hierarchical structure has to be used to extract the belonging
cluster of every original point.

Since in every layer the hostility measure values are
obtained, their evolution across partitions can be tracked.
This tracking is used to select, by seeking for changes in
the hostility measure behavior, the best layer to stop and,
consequently, the kmin parameter. A pattern change in this
resulting hostility tracking graph will point out where the
partition of clusters starts to lose the structure of the data,
which is usually when the number of clusters is low. The
final selected layer must be the one before the pattern
changes to ensure that data structure is captured and stable
results.

Notice that, even though the hostility measure uses
k-means as the base of the method, it is not affected
by its main drawbacks. The k-means method depends

1The code is available at https://github.com/URJCDSLab/Hostility
measure/tree/main/Algorithm code.
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on the initialization and cannot form non-convex shapes
[9]. Nevertheless, the hostility measure overcomes these
problems thanks to its initialization with a high value for
k to maximize the number of layers and, consequently,
the resulting information to combine. When the number of
clusters k is high, the chance of having a bad initialization
decreases. Also, in the first layer, the method starts with
a local perspective and the quantity of points per cluster
is small which saves the problem of the inability to form
non-convex clusters. As for the rest of the layers, thanks to
tracking it is possible to detect when the behavior of the
partition becomes different and, thus, to keep the previous
results.

For the sake of simplicity and clarity, the method has
been expounded for the binary case but its calculation for
multi-class problems is straightforward. In fact, in the multi-
class case, more information can be extracted: the estimated
hostility that every single class received from the rest of
classes and the estimated hostility that a class received from
a specific class or a group of classes.

5 Experiments

This section is devoted to evaluate the hostility measure
through a variety of experiments involving artificial data
and benchmark real datasets. The section begins with the

description of the datasets and the selection of parameters
for the rest of experiments. Later, the performance of
the proposed measure is analyzed and compared with the
state-of-the-art measures. Since a multi-level approach is
presented, these experiments are divided into instance,
class, and dataset levels. After this, two more experiments
are presented highlighting other abilities of the hostility
measure: an experiment showing the explanatory power of
the hostility and overlapping tracking graphs derived from
the method as well as the extension of the proposal to multi-
class problems. The section ends with the lessons learned
throughout the experiments. Notice that all the results from
this section related to hostility come from the hostility
measure which estimates the formal concept of hostility.
However, for the sake of simplicity, both terms will be used
interchangeably.

5.1 Set up

A total of 27 datasets have been considered: 11 are artificial
datasets specifically created to assess the behavior of the
hostility measure and the remaining 16 are binary real
datasets from [8, 35].2

2The real data and the generator code of the artificial data can be found
at https://github.com/URJCDSLab/Hostility measure/tree/main/Data.
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Fig. 2 Artificial datasets. The class −1 is the blue one represented with · and the class +1 is the orange one represented with +

The 11 artificial datasets (see Fig. 2) are 9 sets of Normal
distributions, the moon dataset and the XOR dataset. Each
of the simulated Normal datasets is formed by 2 bivariate
Normal distributions with different degrees of overlap,
density, and a variety of shapes. Datasets 1,2,3, and 4
are formed by classes with equal variance and with an
increasing symmetric overlap between classes. Datasets
5,6,7,8, and 9 present different dispersion for each pair of
classes and various asymmetric types of overlap. In these
last datasets, there is a sparse class that is always less
overlapped and a denser class that can be fully or partially
concentrated inside the sparse class. For all cases, each class
has 4500 points.

The artificial data have been mainly generated using
the Normal distribution so as to have a theoretical overlap
reference value. Given two Normal probability density
functions f (x) and g(x), their overlap [38] is defined as:

overlap(f, g) =
∫ ∞

−∞
min{f (x), g(x)}dx. (10)

Table 2 contains the overlap of artificial datasets. For Moon
and XOR datasets, the overlap is 0.

The main features of the 16 real datasets are presented
in Table 3. Notice that the Wine and Yeast datasets
are originally multi-class problems but the two more
balanced classes have been chosen. Besides, as a reference
of the complexity of each real and artificial dataset, a
set of ML algorithms have been considered: SVM with

linear kernel, SVM with RBF kernel, Random Forest
(RF), MLP, XGBoost, kNN, DT and LR. The respective
parameters have been selected through a 5-fold cross
validation and a grid search maximizing the balanced
accuracy. For the artificial datasets, 6000 points are destined
to training and 3000 to testing. The real datasets are
split into training (70%) and testing (30%). Finally, the
best model for each dataset is the one maximizing the
balanced accuracy while avoiding overfitting, that is,
the model matching max(T est Balanced Accuracy −

Table 2 Artificial datasets: overlap, best classifier and corresponding
error

Dataset Overlap Best classifier Error

1 0.034 kNN 0.020

2 0.157 Multiple Layer Perceptron (MLP) 0.084

3 0.479 Logistic Regression (LR) 0.241

4 1.000 DT 0.495

5 0.160 MLP 0.085

6 0.227 Support Vector Machine (SVM) RBF 0.124

7 0.053 MLP 0.039

8 0.077 Linear SVM 0.034

9 0.360 MLP 0.184

Moon 0.000 MLP, XGBoost, kNN 0.001

XOR 0.000 SVM RBF 0.005

8081Hostility measure for multi-level study of data complexity



Table 3 Real datasets:
characteristics, best classifier
and corresponding error

Dataset Instances Features Best classifier Error

Bands 365 20 LR 0.390

Banknote 1372 5 SVM RBF 0.000

Bupa 345 7 LR 0.367

Haberman 306 4 SVM RBF 0.350

Hill Valley without noise 606 101 LR 0.361

Ionosphere 351 34 SVM RBF 0.041

Magic 19020 11 MLP 0.141

Mammographic 830 6 LR 0.166

Phoneme 5404 6 XGBoost 0.148

Pima 768 9 MLP 0.251

Sonar 208 61 SVM RBF 0.101

Spambase 4597 58 SVM RBF 0.065

WDBC 569 31 kNN 0.047

Wine (WineQualityRed 5vs6) 1319 12 LR 0.309

Wisconsin 683 10 SVM RBF 0.030

Yeast (Yeast CYTvsNUC) 892 9 MLP 0.340

max(0, T rain Balanced Accuracy − (T est Balanced

Accuracy))).
In all cases, complexity measures are only applied to the

training set [14]. All results, except the classification error,
are computed on the training set and, for all experiments, the
datasets are previously standardized. Tables 2 and 3 contain
the best model for each dataset and its corresponding
test error. Notice that the error is, in all cases, 1 −
Balanced Accuracy.

Regarding the parameters of the hostility measure, the
selection of kmin, σ and δ is required. The parameter δ is
a threshold for a probability vector and, as such, is fixed
to 0.5 as the default value for class probabilities. For the

σ parameter, values between 4 and 8 are recommended by
the authors. Smaller σ values are discarded because they
are not able to capture the data structure in the first layer.
On the other hand, higher values minimize the number of
layers and can lose the data structure in intermediate and
last layers due to the high number of clusters that they
assemble. To maximize the number of layers, lower σ values
are preferred in general. For large datasets, higher σ values
can be used to save computational cost. Throughout the
paper, results for these σ values in {4, 5, 6, 7, 8} will be
shown to point out their validity. The parameter kmin is, by
default, the number of classes but it can be selected using
the hostility tracking graph. As an example, the hostility

Fig. 3 Hostility tracking graph. The negative class is represented in
blue and the positive one in orange. For each layer and each class, the
size of each dot indicates the proportion of clusters in which each class

is the majority one. The hostility measure is obtained with σ = 8 for
the (a) dataset 2 and σ = 5 for the (b) dataset 5

8082 C. Lancho et al.



tracking graphs for the datasets 2 and 5 are displayed in
Fig. 3. The σ values are equal to 8 and 5, respectively. The
size of the dots of the graph represents, for every layer and
every class, the proportion of clusters in which the class is
the majority class. Figure 3a reveals that both classes have
a similar low hostility caused by the opposite class. This
behavior is maintained across the three layers as the steady
hostility values per class reflect. Note that in the last layer,
there is a slight change in the hostility patterns. Therefore,
the best layer to stop could be the layer 2 or 3. Moreover,
in each layer, the size of the dots for both classes is similar,
which means that they are the most representative class
in a similar number of clusters. In Fig. 3b, the class −1
clearly has more hostility than the class +1. The trend of
hostilities change from the layer 2 (k = 240) and starts
to widen. Hence, the best layer to stop is the layer 2 to
avoid instability. Regarding the dot sizes, the negative class
is the most representative in most of the clusters through
all layers. Given the low hostility of the class +1, this also
reflects that it is less sparse than the class −1. To ease
and automatize the user work, the rest of the experiments
are all obtained following the next criterion: selecting the
last layer that offers hostilities per class that do not vary
more than 25% from the hostility results from the first
layer.

Concerning measures from the state-of-the-art, the
parameters have been chosen according to authors’ recom-
mendations: for kDN, k = 5 following [1, 33] and R-value
is obtained with k = 7 and θ = 3 following [28]. In the
case of CL and CLD the Gaussian kernel density estimation
is selected. The C4.5 algorithm from RWeka [16] is used
to calculate the hardness measures based on C4.5 DT. For
DS and TDU, parameters are chosen to avoid pruning and
with a minimum number of instances per node equal to 1.
For DCP and TDP, default parameters are taken. In partic-
ular, the complexity measures F1, F1v, F2, F3, F4, N1,
N2, N3, N4, T 1, LSC, Density, ClsCoef , Hubs, L1, L2,
L3, T 2, T 3, C1, and C2 are obtained from the R package
‘ECoL’ [10].

Moreover, for all experiments, all complexity measures
have been correspondingly re-scaled to behave accordingly
to the error, i.e., lower values imply simpler instances and
higher values more complex instances.

5.2 Instance level

This subsection is dedicated to the instance perspective of
complexity measures. It is, in turn, divided into two different
experiments. First, a graphical study and comparison of the
behavior of several complexity measures is presented. This
experiment shows the relation among complexity values at
the instance level and the predicted probabilities from the
best classifier. The second experiment aims to verify if each

complexity measure is actually able to identify the most
complex points. The complexity measures considered in this
section are all the measures covering the instance level in
Table 1.

In this experiment, the predicted probabilities offered by
the best classifier of each point belonging to its correct
class are obtained following the cross validation scheme in
[33]. The opposite of these predicted probabilities serve as
a complexity reference for all instances.

5.2.1 Graphical analysis and correlation with classification
error

For this experiment, the datasets 3 and 6 have been chosen3

as a representative sample of the artificial datasets: two
Normal distributions with similar density and overlap and
other two with a great difference in density and the positive
class fully inside the negative one. Figures 4 and 5 contain
the complexity measures values for instances in the datasets
3 and 6, respectively. Since some classes are in overlap, a
graph per class and per complexity measure is generated.
As detailed before, it is also presented a graph with the
predicted probability that each point has of belonging to the
opposite class according to the corresponding best classifier.
In the graphs, yellow colors imply more complexity and
blue colors less.

As expected, the feature-based measures (F1HD , F2HD ,
F3HD and F4HD) fail in the task of determining the
difficulty of each point since they appraise overlapping
perpendicular to axes. CL and CLD are calculated with a
kernel density estimation using the Gaussian distribution.
This assumption is reflected in the results. CL is informing
about how far are points from the center of the distribution
but not about its complexity. Even though CLD detects
better the hardest instances, the captured complexity
distribution is biased by the Gaussian assumption. The
measures based on decision trees (DS, DCP, TDP and TDU)
show sharp cuts associated with the hyperplanes generated
by the trees instead of degraded complexity values. This
behavior does not comprise the complexity distribution
of points. Although TDU provides richer information not
so characterized by hyperplanes, it considers that the
overlapping region of the dataset 6 (see Fig. 5s) is equally
complex for both classes even when the class −1 is clearly
less present in the specific area (recall that both classes have
the same number of samples). The linearity measure L1HD

performs well for the dataset 3 (Fig. 4n) but fails for the
dataset 6 that it is not linearly separable (Fig. 5n).

3The visual analysis for the rest of artificial datasets can
be found at https://github.com/URJCDSLab/Hostility measure/tree/
main/Visual analysis
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Fig. 4 Visual analysis of the complexity measures for the dataset 3 at the instance level. For each complexity measure, the left graph is for the
class +1 and the right graph is for the class −1. Yellow colors indicates more complex instances

Concerning measures based on the local-set concept, the
harmfulness index H is the less informative since it only
assigns high complexity values (yellow points) to points
absolutely surrounded by points of other class (i.e., the
point is the nearest enemy of all of them). Except for these
few points, it considers similar low levels of complexity
for the rest of the dataset points. LSC, LSradius and the

usefulness index U perform better in detecting the most
complex areas but, inside those areas, they do not generate a
clear complexity degradation (in contrast with the classifier
behavior in Figs. 4a and 5a). In addition, they overestimate
the complexity and identify as complex some points that are
not even in overlap (see Fig. 4a, f and g). The measures kDN,
N1HD and N2HD reveal the best results among measures
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Fig. 5 Visual analysis of the complexity measures for the dataset 6 at the instance level. For each complexity measure, the left graph is for the
class +1 and the right graph is for the class −1. Yellow colors indicates more complex instances

from the state-of-the-art. They capture the distribution of the
complexity for the two datasets and reflect the same patterns
as the classifier. Nevertheless, none of them accomplishes
a smooth complexity degradation as the classifier. The
only measure that achieves it is the here proposed hostility
measure thanks to its construction. The combination of
information from different layers produces richer results.

Also, as the number of clusters is smaller in each layer, their
size is larger and this enables to study the points and the
distribution of classes from a local to a global perspective.
For both datasets, the hostility measure is the complexity
measure that visually most closely resembles the results
from the classifier (see Fig. 4a and b for the dataset 3
and Fig. 5a and b for the dataset 6). Points receiving more

8085Hostility measure for multi-level study of data complexity



Fig. 6 Boxplots of the Spearman correlations, at the instance level,
between each complexity measure and the predicted probabilities from
the best model for the artificial (a) and real datasets (b). Axis y shows

the complexity measures and axis x is the correlation. The numbers
accompanying the hostility measure are the σ value

hostility (yellow) are those surrounded by points from the
other class since they lie in areas where its class is not
dominant and will be easily mixed up with the opposite
class. Medium hostility values (green-light blue) are in the
boundary between classes, where both classes are equally
present so they harm each other in a balanced way. Low
values (dark blue) are for points placed in areas where its
class is the dominant one.

To evaluate analytically if the complexity values per
instance are consistent with the predicted probabilities from
the corresponding best classifier, the Spearman correlation
is gauged between the complexity values of each measure
at the instance level and those predicted probabilities
of the classifier for each dataset. These correlations
ease the comparison of the capacity of the complexity
measures to correctly rank the points given their complexity.
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Table 4 The train errors of each real dataset when the 10% (first row) and the 50% (second row) more complex points are eliminated using each
of the complexity measures. The train error achieved with the whole train set is shown as a reference

Data Train error Hostility CLD L1HD LSC U kDN

Bands 0.301 0.258 0.250 0.218 0.255 0.233 0.244

0.107 0.092 0.000 0.109 0.127 0.006

Bupa 0.299 0.245 0.252 0.210 0.267 0.278 0.259

0.160 0.028 0.000 0.180 0.233 0.057

Haberman 0.275 0.043 0.165 0.201 0.000 0.000 0.078

0.000 0.000 – – 0.009 0.010

Hill Valley 0.201 0.220 0.217 0.190 0.226 0.230 0.206

0.141 – 0.149 0.258 0.306 0.249

Magic 0.115 0.010 0.082 0.064 0.006 0.000 0.001

0.009 0.000 0.000 0.000 0.000 –

Mammo. 0.172 0.090 0.095 0.076 0.073 0.073 0.059

0.003 0.000 0.000 0.004 0.000 0.005

Phoneme 0.076 0.013 0.006 0.008 0.000 0.002 0.001

0.000 0.000 0.000 0.000 0.000 –

Pima 0.261 0.000 0.171 0.170 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000

Wine 0.281 0.207 0.212 0.202 0.215 0.213 0.215

0.081 0.002 0.000 0.079 0.090 0.088

Yeast 0.338 0.283 0.228 0.262 0.000 0.000 0.000

0.000 0.000 0.000 0.040 0.000 0.026

The hostility measure is obtained with σ = 5. The symbol ‘–” means there is not enough data to train a model

Then, to easily compare all results, a boxplot based on these
correlations is generated per each complexity measure.
High and positive Spearman correlations mean that the
complexity measure is able to order the points adequately
according to their complexity and matching the predicted
probabilities from the best model. On the other hand, low
and negative values imply that the complexity ranking
established by the complexity measure behaves differently
than the results from the best model. That is, there is no
agreement about which points are more complex. Note that,
for this experiment, the hostility measure is computed for
σ ∈ {4, 5, 6, 7, 8}.

For the artificial data (see Fig. 6a), the measures
revealing higher correlation with the classifier are the
hostility measure, some of the local-set concept based
measures like LSC, LSradius, and U and also N2HD

and kDN. In the case of the real datasets (see Fig. 6b),
the outstanding measures are the hostility measure, LSC,
U , CLD, kDN and L1HD . The only measures keeping its
behavior for both types of datasets are the hostility measure,
LSC, U and kDN. Taking into account the performance
of LSC and U in the visual study, it can be concluded
that the hostility measure and kDN are the two complexity
measures performing better in estimating the complexity of
each point.

5.2.2 Complexity points detection verification

The purpose of the current experiment is to prove that the
instances pointed out as complex by complexity measures
are indeed harder to classify. To that aim, the evolution
of the train error when using all points and when filtering
a proportion of the most complex ones is analyzed. In
particular, two subsets of the train data are considered: the
first subset removes the 10% of most complex points and the
second subset the 50%. Since, in every subset, the samples
are simpler according to the complexity measures, the error
is expected to decrease.

In this experiment, results are shown for the 10
real datasets with higher classification error and for the
highlighted measures in the former experiment: the hostility
measure, kDN, L1HD , LSC, U and CLD.4

Table 4 reveals that, in general, all the considered
measures are detecting the most complex points since they
achieve an error reduction when filtering the 10% and
the 50% of those points. Another common and expected
pattern is that the more complex points are removed, the

4The results for the remaining complexity measures can be found at
https://github.com/URJCDSLab/Hostility measure/tree/main/Filter ex
periment
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lower the error. The case of Hill Valley is noteworthy:
only the hostility measure and L1HD have managed to
reduce the initial error. When retaining the 90% of the
simplest points, the hostility measure slightly increases the
error of the Hill Valley data set. Note that, due to its
construction, when filtering the most complex points with
the proposed measure, at the beginning, only noise points
or outliers will be extracted. However, in an intermediate
stage, the points lying in the most uncertainty areas will
be removed, only remaining the simpler ones. The behavior
of LSC and kDN in the Yeast data set is also remarkable.
They increase the error when training with the second and
simpler subset. Despite this, in general, the six considered
complexity measures correctly identify which points are
harder to classify and they could be used to reduce the size
of train data. Nevertheless, the hostility measure, L1HD , and
CLD outshine presenting a more stable performance.

5.3 Class level

This section of experiments is devoted to the approach
of data complexity through the class level perspective.
To assess the capacity of the proposal to estimate the

complexity of each class, a comparison among the results of
the hostility measure for each class with the best classifier’s
errors is addressed in this section. The comparison includes
also the R-value since it offers the class perspective.

For the artificial data (Table 5), the hostility measure
(with all the σ values considered) and R-value show values
similar to the error committed in both classes. Hence,
both measures allow anticipating what to expect in the
classification task. Similar results are found for the real data
(Table 6). The two measures perform well in capturing the
proportion of critical points that really harm the classifier.
Nevertheless, R-value fails in determining which class is
more difficult to classify for the Hill Valley dataset and the
proposal fails for the Mammographic one. In this case, the
hostility results are less stable for the different values of σ

due to the small size of some real datasets (see Table 3). In
these cases, the recommended σ among the possible options
is the one maximizing the number of layers. For the small
datasets, σ should be 4 or 5.

These results are accompanied by the Spearman corre-
lation among the error, the hostility measure and R-value,
to evaluate if they are able to rank classes according to
the real complexity. Results are presented in Table 7a for

Table 5 The error, the hostility measure and R-value for the artificial data at the class level

Data Error Host. 4 Host. 5 Host. 6 Host. 7 Host. 8 R-value

D1 0.015 0.014 0.012 0.014 0.014 0.012 0.020

0.025 0.019 0.021 0.021 0.025 0.024 0.025

D2 0.079 0.066 0.083 0.065 0.091 0.073 0.087

0.088 0.091 0.070 0.089 0.070 0.089 0.095

D3 0.241 0.236 0.231 0.239 0.250 0.235 0.271

0.241 0.204 0.211 0.225 0.215 0.220 0.277

D4 0.393 0.327 0.324 0.356 0.352 0.385 0.509

0.598 0.317 0.355 0.353 0.375 0.349 0.521

D5 0.130 0.150 0.116 0.126 0.133 0.136 0.133

0.041 0.032 0.039 0.034 0.035 0.031 0.045

D6 0.196 0.181 0.168 0.169 0.177 0.170 0.177

0.051 0.048 0.056 0.060 0.052 0.057 0.076

D7 0.074 0.053 0.057 0.065 0.063 0.065 0.072

0.005 0.009 0.009 0.013 0.012 0.010 0.005

D8 0.055 0.059 0.060 0.059 0.056 0.063 0.064

0.013 0.019 0.026 0.021 0.021 0.020 0.024

D9 0.298 0.252 0.264 0.254 0.255 0.271 0.267

0.069 0.122 0.107 0.088 0.108 0.070 0.136

Moon 0.001 0.001 0.001 0.001 0.000 0.000 0.001

0.000 0.001 0.001 0.001 0.001 0.001 0.001

XOR 0.004 0.012 0.009 0.013 0.017 0.018 0.008

0.007 0.016 0.012 0.015 0.016 0.017 0.012

For each dataset, the first row shows the results for the class −1 and the second one for the class +1. The numbers accompanying the hostility
measure indicate the corresponding σ value
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Table 6 The error, the hostility measure and R-value for the real data at the class level

Data Error Host. 4 Host. 5 Host. 6 Host. 7 Host. 8 R-value

Bands 0.145 0.217 0.174 0.161 0.130 0.093 0.224
0.634 0.532 0.511 0.457 0.468 0.606 0.553

Bank. 0.000 0.000 0.000 0.002 0.002 0.004 0.002
0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bupa 0.500 0.386 0.436 0.505 0.386 0.545 0.505
0.233 0.186 0.314 0.250 0.300 0.179 0.307

Hab. 0.074 0.076 0.051 0.121 0.089 0.115 0.146
0.625 0.561 0.702 0.825 0.754 0.632 0.825

Hill V. 0.022 0.207 0.188 0.211 0.249 0.300 0.493
0.700 0.498 0.536 0.564 0.545 0.507 0.488

Iono. 0.029 0.025 0.051 0.057 0.025 0.045 0.025
0.053 0.136 0.125 0.136 0.261 0.205 0.420

Magic 0.057 0.077 0.074 0.068 0.074 0.079 0.057
0.224 0.288 0.314 0.326 0.331 0.342 0.374

Mammo. 0.109 0.151 0.151 0.161 0.201 0.214 0.191
0.223 0.128 0.124 0.142 0.145 0.131 0.216

Phon. 0.103 0.064 0.066 0.084 0.086 0.089 0.076
0.193 0.218 0.240 0.226 0.262 0.276 0.260

Pima 0.120 0.163 0.123 0.189 0.146 0.137 0.197
0.383 0.406 0.380 0.390 0.353 0.385 0.444

Sonar 0.173 0.191 0.221 0.132 0.132 0.250 0.324
0.029 0.078 0.104 0.273 0.273 0.260 0.104

Spamb. 0.040 0.047 0.036 0.063 0.047 0.072 0.069
0.090 0.160 0.200 0.164 0.192 0.200 0.153

WDBC 0.000 0.036 0.024 0.052 0.028 0.016 0.012
0.094 0.061 0.027 0.054 0.068 0.108 0.068

Wine 0.275 0.195 0.197 0.182 0.222 0.216 0.302
0.344 0.269 0.280 0.330 0.256 0.327 0.325

Wisc. 0.045 0.035 0.051 0.042 0.058 0.071 0.045
0.014 0.066 0.084 0.066 0.066 0.096 0.102

Yeast 0.223 0.275 0.293 0.191 0.284 0.204 0.315
0.457 0.290 0.423 0.380 0.393 0.450 0.463

For each dataset, the first row shows the results for the class −1 and the second one for the class +1. The numbers accompanying the hostility
measure are the σ value

the artificial datasets and in Table 7b for the real datasets.
Both measures achieve correlations between 0.79 and 1.
Hence, the hostility measure is able to correctly identify

Table 7 Spearman correlation at the class level of both the hostility
measure and R-value with the error

Measure Error Measure Error

Hostility σ = 4 0.984 Hostility σ = 4 0.872

Hostility σ = 5 0.983 Hostility σ = 5 0.879

Hostility σ = 6 0.990 Hostility σ = 6 0.826

Hostility σ = 7 0.979 Hostility σ = 7 0.823

Hostility σ = 8 0.985 Hostility σ = 8 0.789

R-value 0.978 R-value 0.792

(a) Artificial data (b) Real data

which class is harder and will need more attention during
the classification task. Also, it offers interpretable values.

5.4 Dataset level

The final experiments deal with the classic dataset perspective
to study the performance of the hostility measure and to
compare it with measures from the state-of-the-art.

Since complexity measures should be well-correlated
with the classification error, the Spearman correlation
among complexity measures and the error from best
classifiers are presented in Table 8 for the artificial data
and in Table 8b for the real data. The correlations with the
theoretical overlap are also shown for the artificial case.
All measures have been previously normalized so that a
positive correlation with the error is expected. Both tables
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Table 8 Spearman correlation
at the dataset level. In the
artificial case, the correlation is
gauged between the complexity
measures and both the error
and the theoretical overlap. For
the real case, only for the error

Measure Error Overlap Measure Error

Hostility σ = 4 0.991 0.998 Hostility σ = 4 0.938

Hostility σ = 5 0.991 0.998 Hostility σ = 5 0.935

Hostility σ = 6 0.991 0.998 Hostility σ = 6 0.935

Hostility σ = 7 0.991 0.998 Hostility σ = 7 0.921

Hostility σ = 8 0.989 0.993 Hostility σ = 8 0.906

F1 0.309 0.246 F1 0.824

F1v 0.409 0.337 F1v 0.918

F2 0.218 0.228 F2 −0.079

F3 0.500 0.446 F3 0.653

F4 0.536 0.483 F4 0.330

L1 0.209 0.118 L1 0.768

L2 0.564 0.515 L2 0.903

L3 0.564 0.515 L3 0.897

T 2 – – T 2 0.076

T 3 – – T 3 −0.076

T 4 – – T 4 0.295

C1 – – C1 −0.162

C2 – – C2 −0.162

Density 0.664 0.601 Density 0.832

ClsCoef 0.782 0.793 ClsCoef 0.365

Hubs 0.755 0.711 Hubs −0.112

DS 0.918 0.920 DS 0.565

DCP 0.624 0.573 DCP 0.712

TDU 0.945 0.907 TDU 0.621

TDP −0.059 −0.094 TDP −0.043

CL 0.291 0.232 CL −0.088

CLD 0.436 0.360 CLD 0.021

N1 0.991 0.998 N1 0.924

N2 1.000 0.989 N2 0.729

N3 0.991 0.998 N3 0.888

N4 0.736 0.720 N4 0.791

T 1 −0.991 −0.998 T 1 −0.388

LSC 0.927 0.902 LSC 0.603

kDN 0.982 0.989 kDN 0.924

R-value 0.991 0.998 R-value 0.924

(a) Artificial data (b) Real data

The symbol “–” means that Spearman correlation cannot be computed due to constant values

reveal that the hostility measure and the other neighborhood
measures are more correlated with the error and the overlap.
For both the artificial and real datasets, the correlation
values related to hostility measure are higher than 0.9.
Other measures showing a similar behavior are: N1, N3,
kDN, and R-value and, not so close, N2 and N4. On the
one hand, LSC, DS, TDU, ClsCoef , and Hubs have a
satisfactory behavior for the artificial datasets but not for
the real datasets. On the other hand, F1, F1v, L1, L2,
L3, and Density show high correlations only for real

datasets. DCP presents medium-high correlation values and
F2, F3, and F4 medium and low values revealing that
they are not able to rank the datasets according to the error.
Finally, T 1, TDP, CL, and CLD have negative or really low
correlations not matching at all the ranking of the error.
Dimensionality measures and class imbalanced measures
return the same value for the artificial datasets since they
have the same number of instances per class and features.
In the case of the real datasets, they have low and negative
correlations.
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Table 9 The hostility measure
values at the dataset level for
the artificial and real datasets

Dataset Error Overlap Hostility Dataset Error Hostility

1 0.020 0.034 0.018 Bands 0.390 0.333

2 0.084 0.157 0.081 Banknote 0.000 0.000

3 0.241 0.479 0.227 Bupa 0.367 0.270

4 0.495 1.000 0.367 Haberman 0.350 0.206

5 0.085 0.160 0.084 Hill Valley 0.361 0.351

6 0.124 0.227 0.113 Ionosphere 0.041 0.065

7 0.039 0.053 0.037 Magic 0.141 0.151

8 0.034 0.077 0.041 Mammogra. 0.166 0.139

9 0.184 0.360 0.171 Phoneme 0.148 0.109

Moon 0.001 0.000 <0.001 Pima 0.251 0.248

XOR 0.005 0.000 0.018 Sonar 0.101 0.131

(a) Artificial data. The values of the hos- Spambase 0.065 0.091

tility measure are shown with σ = 8 WDBC 0.047 0.045

Wine 0.309 0.231

Wisconsin 0.030 0.046

Yeast 0.340 0.282

(b) Real data. The values of the hostility

measure are shown with σ = 4

To enable the comparison, the error, and the theoretical overlap for the artificial case, are also presented

As a way to proof the clarity and explainability of the
hostility measure, Table 9a and b show the dataset hostility
value and the classification error for the artificial and
real datasets, respectively. In this case, σ = 8 has been
chosen for the artificial datasets due to the high number
of instances (6000). For the real datasets, to maximize the
number of layers, σ = 4 has been selected. Recall that, at
the dataset level, the proposed measure is an estimation of
the proportion of critical points. It is shown that it differs
slightly from the error. That is, the hostility measure offers
a good estimation of the critical points of a dataset.

5.5 Enrichment of the hostility tracking graph

The hostility tracking graph, besides its utility to select the
best layer to stop, offers information about the interaction
among classes. The hostility tracking graph of the dataset 2
(see Fig. 3a) showed a close and constant hostility behavior
centered around 0.08. This means that the global complexity
for the dataset is low and that both classes are equally
harmed by the other class. There is an 8% of critical points
in each class. In the case of the dataset 5, Fig. 3b presented
a different situation. Until layer 2, the hostility of each class
remains pretty steady, but from layer 3 both hostilities start
to widen. This means that the behavior of the data when
analyzed in small neighborhoods is not the same than in
bigger ones. Moreover, the class +1 always shows lower
hostility than the class −1. Hence, the class −1 is expected
to be harder to classify.

Previous figures were obtained from the binarization
of the hostility measure using the threshold δ = 0.5.
Furthermore, if it is binarized with δ > 0, insights about the
overlap of each class are achieved. With this binarization,
1 means that the point is in an overlapping area. Thus, any
point that shares cluster with a point from other class is
considered to be in overlap. In the first layer, this offers an
estimation of the overlapping per class. As the number of
clusters increases, the overlapping is obviously tending to 1.
Despite this, tracking this overlapping estimation provides
information about the density of the classes and how they
interact. Besides, the dot sizes of both graphs inform about
the distribution of the classes among the clusters of the
different partitions and how this evolves across layers.

As an example, the overlapping tracking graph of the
datasets 2 and 5 are presented in Fig. 7. In the case of
the dataset 2, the same behavior in both classes across
layers is detected. That is, as the number of clusters
increases, a similar amount of points from both classes
share cluster with points from the other class. If this
information is combined with the one from the hostility
tracking graph (Fig. 3a) and the balanced size of the dots
(similar distribution of both classes in the partitions), it is
concluded that they have the same density, and they overlap
in a symmetric way. The overlapping tracking graph of the
dataset 5 is quite different: the class +1 begins with a really
high value of overlap and quickly reaches the maximum
(i.e., in every cluster with a point from the class +1 there
is at least one point from the class −1) and the class −1
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Fig. 7 Overlapping tracking graph. The negative class is represented
in blue and the positive one in orange. For each layer and each class,
the size of each dot indicates the proportion of clusters in which each

class is the majority one. The overlapping is obtained with the hostility
measure with σ = 8 for the dataset 2 and σ = 5 for the dataset 5

starts with a low overlap value and increases uniformly but
keeping distance with the class +1. This pattern highlights
an asymmetric overlap. The class +1 is totally in overlap
but not the class −1. That is, the class +1 is fully (or
almost fully) inside the class −1. This complements the
information of the hostility tracking graph (Fig. 3b). The
class −1 has more hostility than the class +1 but the class
+1 is totally in overlap. The dot sizes reflect that the class
+1 represents the majority class in few clusters but, given
its low hostility, the class is well covered by these clusters.
Notice that, in the first layer, the class +1 is the majority
class in a bigger proportion of clusters than in the rest of
layers. This means that when clusters are smaller, it is easier
for the class +1 to be the majority one. Therefore, the class
+1 is clearly denser and, even though it is totally in overlap,
all its points are concentrated. This also explains why the
behavior of the dataset 5 when analyzing more local clusters
or more global clusters was different. Since one class is
so dense, when the number of cluster starts to be low, it
is eminently being grouped in the same cluster. Thus, as
mostly all its class is grouped together and is the densest
class, it has lower hostility. Consequently, all points from
the sparse class that are grouped in the same cluster as the
dense one have more hostility.

As a conclusion, these tracking graphs serve to provide
rich information about classes and guide the user’s next
steps. For example, knowing that one class is entirely inside
the other let the user to filter the non-overlapping ones
and to focus the classification model in the complex areas.
Another strong aspect is that these tracking graphs can be
made for high dimensional data offering some exploratory
insights for data hard to visualize.

5.6 Hostility measure for multi-class problems

The hostility measure is expounded for the binary case
but its extension to multi-class is straightforward. In this
experiment, two artificial datasets composed of 3 classes
have been generated and presented in (Fig. 8).5 The first
one is similar to the dataset 1 with a new more dispersed
class that overlaps with the two former ones. The second
one is similar to the dataset 7 with a new dense class that
only overlaps with the black one (originally the negative
class). For both datasets, the total hostility per class and
the hostility that each class presents due to each one of the
other classes are contained in Table 10a and b, respectively.
Regarding the first multi-class dataset, the hostility reflects
that the class 2 is the one with more hostility (0.139). This
hostility comes mostly from the class 0 (0.119) while the
class 1 brings practically no disturb to it (0.018). Similarly,
the most perturbing class to the class 0 is the class 2
(0.120). Concerning the class 1, its total hostility is 0.045
which is equally provoked by the classes 0 and 1 (0.021).
The second multi-class dataset is specially interesting since
the hostility results reveal that the classes 1 and 2 do not
generate hostility towards each other. The class 0 is the one
that has more hostility (0.122) and that is equally caused by
the classes 1 and 2. The hostility of the classes 1 and 2 due
to the class 0 is pretty low revealing that these two classes
are better differentiated than the class 0.

Thus, the hostility measure is useful for multi-class
problems since it shows how hostile is every class for

5Its generator code can also be found at https://github.com/URJCDS
Lab/Hostility measure/tree/main/Data/Artificial data
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Fig. 8 Multi-class data. The class 0 is represented in blue, the class 1 in orange and the class 2 is the black one

each of the other classes and the total hostility that a class
is suffering. Thus, it let the user divide the data space
according to its hostility and tackle every area with a
different strategy.

5.7 Lessons learned

The main lessons learned from the proposal along the
experiments are summarized in the current section. These
lessons include from the great stability of the method and its
good performance in all evaluated datasets to the validity of
the recommended parameters.

Some of the alternative complexity measures have
performed properly, offering really good results for some
of these experiments. However, they have revealed poor
performance in other cases. For instance, L1 is weak in
estimating the global complexity but stands out in filtering
the complex points. kDN performs well in general but in
the graphical analysis showed closest points with opposite
complexity values and was not so balanced when tackling
artificial or real data. The hostility measure is clearly the
most stable always offering good and satisfactory results
for both artificial and real datasets. This is because the

combination of layers and the use of k-means to analyze the
points in their inherent groups, instead of in fixed structures,
provides adaptability and robustness to the method.

It is remarkable that the hostility measure, using the
Euclidean distance, has performed well in all the considered
types of datasets. The datasets involved in the experiments
have contemplated extreme scenarios regarding overlap,
density, and decision boundary shape, including linear and
non-linear data. Hence, the method is able to detect the
interactions among classes independently of the linearity of
the data and of the shape of the decision boundary.

The results of the hostility measure have also revealed the
validity of the recommended σ values: {4, 5, 6, 7, 8}. Taking
into account the construction of the method, the validity
of a range of values for the σ parameters reflects that the
hostility measure is capturing the data structure. Smaller and
higher σ values are discarded since they group few points
in the first layer or too many points in the intermediate
and final layers, respectively. Note that the weakest part of
the hostility measure is the number of parameters. Despite
the fact that this should be further revised by the authors,
at the moment the selection of parameters has been quite
simplified to the user.

Table 10 The hostility measure
values for the multi-class
datasets

The tables contain the hostility measure between each pair of classes and the total value for each class. The
hostility measure is obtained with σ = 6 for both datasets 1 and 2. Cq , q = 0, 1, 2 refers to each one of the
classes
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6 Research opportunities

The research ways that have appeared throughout the
construction of this work are expounded in this section:

– Finding the decision boundary. Medium hostility
values mean that the point resides in an uncertain area
where both classes are equally present. This is normally
the decision boundary and it could be detected by
identifying those uncertain areas. One way of doing this
is by translating the hostility in terms of uncertainty
(for example, using Rényi’s entropy) since its maximum
value reflects the worst case, that is, when all classes are
equally present. On the other hand, its minimum value
is the best scenario in which there is only one class.
This can be used for classification: applying weights
to points depending on their uncertainty, dividing the
data in different sets and building different classifiers
for each one of them, etc.

– Feature selection. The hostility measure can be used to
select the subset of features that minimizes the hostility
of the dataset. This can also be tackled from the class
level to discover which features are more harmful for
each class.

– Imbalanced data. In the present work, the parameter
δ has been set to 0.5 as the default threshold for
probabilities. However, when classes are not balanced,
this value might favor the majority class. The idea
will be to set the δ parameter equal to the proportion
of the minority class. The resulting hostility measure
would allow the user to know whether the classification
model used is harming the minority class or not. This
version of the proposed measure could be compared
with complexity measures specifically created for the
imbalanced case that offer values per class [2, 26, 32].

– The choice of metric. In this paper, the Euclidean
distance has been selected. It is worth analyzing the
effect of the metric in the performance of the proposal
and checking if the hostility measure with, for example,
a Radial Basis Function Kernel achieves better results
in the case of non-linear data.

– Methods to estimate the concept of hostility. The
k-means algorithm performed hierarchically and recur-
sively has been considered to estimate the hostility.
However, alternative estimation methods like applying
hierarchical clustering in every layer with an automatic
selection of the number of clusters and selection of
prototypes or using a dendrogram as the basis for the
calculation of the concept of hostility could be also
contemplated.

– The applicability of the method. As reflected in
Section 2, complexity measures have been applied

to different fields [3]. Besides the application of the
hostility measure in those fields, it could also perform
in different domains like, for example, Big Data, to
check if the condensation of data is rich enough to
substitute the original data [12]. Also, an adapted
version of the hostility could be applied to obtain useful
information to enrich the modeling phase in target-
environment networks that arises in fields like genetics
and economics [19].

7 Conclusions

In the present work, the concept of hostility has been
introduced for the instance, the class, and the dataset level.
The hostility is the damage, in terms of probability, that a
point, a class or a dataset suffers from the presence of points
of other classes in its surroundings when being classified. To
estimate it, the hostility measure, a neighborhood measure
offering a multi-level data complexity perspective, has been
presented. The measure is constructed at the instance level
by means of a hierarchical and recursive application of
the k-means algorithm. After this procedure, an hostility
measure value between 0 and 1 is obtained for every
point. These values per point are aggregated to get an
hostility measure value per class, indicating how hard is to
identify each class, and for the whole dataset, illustrating
the difficulty of separating the classes. As the method is
hierarchical and recursive, the neighborhoods analyzed are
of increasing size which allows the method to combine a
local and a more global perspective.

To evaluate the proposed complexity measure, several
experiments for each one of the perspectives have been
carried out. In them, the performance of the hostility mea-
sure has been compared with complexity measures from the
state-of-the-art. The hostility measure has generally stood
out, showing a good and stable performance in all of them.
It is easy to understand, to interpret and is suitable for
binary and multi-class classification problems. Also, the
proposal does not make assumptions about data nor it is
based on a supervised classifier which ensures that there is
no relation between results from the complexity measure
and the posterior classification. In addition, to the best of
the authors’ knowledge, the hostility measure is the only
complexity measure that offers a multi-level analysis of data
complexity and combines different layers of information
which increases the robustness of the method. Moreover, the
complexity class perspective is deeply tackled in the present
work. Not only an estimation of the complexity of each class
is offered, but also two exploratory graphs (hostility and
overlapping tracking graph) are presented providing infor-
mation about the density and the relation between classes.
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