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Abstract
Recent findings have associated different COMT genotypes with working memory capacity in patients with fibromyalgia. 
Although it is thought that the COMT gene may influence neural correlates (P2 and P3 ERP components) underlying working 
memory impairment in this chronic-pain syndrome, it has not yet been explored. Therefore, the aim of the present research 
was to investigate the potential effect of the COMT gene in fibromyalgia patients on ERP working memory indices (P2 and 
P3 components). For this purpose, 102 participants (51 patients and 51 healthy control participants) took part in the experi-
ment. Event-related potentials and behavioral responses were recorded while participants performed a spatial n-back task. 
Participants had to decide if the stimulus coincided or not in the same location as the one presented one (1-back condition) 
or two (2-back condition) trials before. Genotypes of the COMT gene were determined through a saliva sample from all 
participants. Present results significantly showed lower working memory performance (p < 0.05) in patients with fibromyalgia 
as compared to control participants (higher rate of errors and slower reaction times). At neural level, we found that patients 
exhibited enhanced frontocentral and parieto-occipital P2 amplitudes compared to control participants (p < 0.05). Interest-
ingly, we also observed that only fibromyalgia patients carrying the Val/Val genotype of the COMT gene showed higher 
frontocentral P2 amplitudes than control participants (p < 0.05). Current results (behavioral outcomes and P2 amplitudes) 
confirmed the presence of an alteration in working memory functioning in fibromyalgia. The enhancement of frontocentral 
P2 could be reflecting that these patients would manifest an inefficient way of activating executive attention processes, in 
carriers of the Val/Val genotype of COMT. To our knowledge, the present findings are the first linking neural indices of 
working memory dysfunctions and COMT genotypes in fibromyalgia. Applying a subgroup of patient’s strategy based on 
this genetic marker could be useful to establish more tailored therapeutical approaches.
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Introduction

Fibromyalgia is a chronic syndrome mainly characterized 
by non-specific widespread pain [1]. In addition to pain, 
patients commonly suffer from fatigue [2, 3], sleep prob-
lems [4, 5], affective and cognitive alterations [6–9], among 
other symptoms. In the last years, cognitive dysfunction in 
fibromyalgia has attracted growing research efforts. It has 
been suggested that these impairments are better explained 
by alterations in working memory subprocesses [10]. How-
ever, due to the symptoms’ complexity and heterogeneity 
in describing this chronic syndrome, findings on working 
memory impairments not always have been convergent 
[11–14]. Patient profiles or subgroups have been proposed 
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as an alternative approach to overcome this controversy 
[15–18]. In this vein, genetic factors could become useful 
biomarkers for fibromyalgia.

Catechol-O-methyltransferase (COMT) gene is one of the 
possible candidates associated, at least partially, with inter-
individual variability in physical, psychological or cognitive 
symptoms in fibromyalgia [3, 19–24]. This gene encodes an 
enzyme of the same name, which is involved in the degra-
dation of catecholamines, such as dopamine, adrenaline or 
noradrenaline [25–27]. The COMT gene is located on chro-
mosome 22 (22q11.2), spans about 27 Kb and has 6 exons 
and 2 promoters [28].The COMT gene locus contains dozen 
single nucleotide polymorphism (SNPs) [29] with minor 
allelic frequency greater than 1%. Most of them are located 
in noncoding regions and do not have an obvious potential 
for functional consequence. The most studied SNP in the 
COMT gene is the rs4680, also known as Val158Met. This 
polymorphism causes a substitution from valine (Val) to a 
methionine (Met) at amino acid position 158 [29, 30]. The 
Met allele is associated with low enzymatic activity and low 
protein stability [31]. The Met/Met genotype is associated 
with three to four times  lower activity of the COMT enzyme 
than Val/Val genotype [32], whereas Met/Val seems to have 
intermediate levels of enzyme activity [33]. Briefly, the Met/
Met genotype of the Val158Met polymorphism has been 
associated with an increase in tender points [19–22], the 
severity of fatigue [3], and depression or anxiety symptoma-
tology in fibromyalgia [23, 34]. Complementarily, recent 
findings regarding cognitive impairment have indicated that 
patients with fibromyalgia bearing the Val/Val genotype 
showed a worsening in working memory tasks compared 
to healthy control participants carrying the same genotype 
[24]. However, evidence coming from the studies exploring 
the influence of COMT genotypes on cognitive function-
ing is far to be unequivocal [35–39]. In this regard, some 
authors have proposed the tonic/phasic dopamine hypoth-
esis trying to solve such inconsistencies [36, 40]. In brief, 
this hypothesis proposes that the regulatory effect of dopa-
mine on cortical (frontal) and subcortical regions (striatum) 
occurs through two processes: one phasic (derived from the 
transient release of high-amplitude dopamine) and the other 
tonic (characterized by long-lasting low-level dopamine 
release) [40, 41]. COMT genotypes seem to have different 
effects on the fronto-striatum dopaminergic network. Thus, 
whereas Met allele has been associated with tonic dopamine 
activity, leading to a better performance in tasks requiring 
cognitive stability, such as information maintenance [36, 38, 
42], Val allele has been related to higher phasic dopamine 
levels [36]. This allele has been associated with a greater 
performance in tasks involving cognitive flexibility (updat-
ing or switching tasks) [38, 43, 44].

Given that the different working memory subprocesses 
(encoding, executive attention or updating [45, 46]) occur 

very fast, the use of techniques capable of identifying its 
neural time course, such as event-related potentials (ERPs), 
might be suitable for characterizing the dysfunctional neural 
mechanisms underlying working memory in fibromyalgia. 
This technique is derived from the electroencephalogram 
(EEG), which primarily records cortical electrical activ-
ity from postsynaptic potentials [47] of open-field neural 
structures [48, 49]. Along with the high temporal resolu-
tion offered by EEG, ERPs offer an increased signal-to-
noise ratio (due to the averaging of many of the same or 
similar events) [47]. Furthermore, the positive or negative 
waves formed by the ERP appear to reflect different stages 
of sensory or cognitive processing [50], helping to under-
stand such processes. Recently, some authors have reported 
lower parietal P2 amplitudes during a 2-back task [9], as a 
reflection of impairment in the encoding of information [51]. 
Furthermore, failures in context updating and replacement 
subprocesses of working memory have been also detected 
in fibromyalgia patients, as it was suggested by diminished 
parietal amplitudes in the P3 component [9]. This evidence 
could be consistent with the abnormal functioning the altera-
tions of the frontoparietal neural network that have been 
previously reported in these chronic-pain patients [52].

It should be noted that several ERP components have 
shown a high heritability [53–55], however experimental 
evidence linking ERP data and genetic polymorphisms is 
still very scarce. Only a few studies have attempted to estab-
lish a relationship between P3 and different genotypes of the 
COMT gene in healthy participants and some pathologies, 
such as schizophrenia. Findings derived from these investi-
gations were inconclusive about the significant influence of 
different COMT genotypes on P3 component [37, 56–59]. 
In addition, to our knowledge, no studies are exploring the 
relationship between COMT genotypes and P2 modulations, 
neither in healthy participants nor in chronic-pain patients.

Despite the high prevalence of cognitive impairment in 
fibromyalgia, the usefulness of ERPs methodologies for 
exploring the time course of working memory subproc-
esses and their close association with biological indices 
(i.e., COMT genotypes), the relationship between these three 
variables have not been explored up to date in this chronic-
pain syndrome. Therefore, the aim of the present research 
was to investigate the potential effect of theVal158Met SNP 
of the COMT gene (genotypes: Met/Met, Met/Val and Val/
Val) in fibromyalgia patients and healthy participants while 
ERP indices and behavioral measures were recorded in 
response to a spatial n-back task. Based on previous find-
ings in patients with fibromyalgia, we expected that patients 
will exhibit both a lower task performance (higher reactions 
time and proportion of errors) and a decrement of P2 and P3 
amplitudes. Furthermore, we expected to find a significant 
modulation of the COMT gene on the ERP indices of work-
ing memory.
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Materials and methods

Participants

A group of 278 women (both healthy control participants 
and patients with fibromyalgia) underwent genotyping 
of the Val158Met/rs4680 polymorphism of the COMT 
gene. Of these participants, one hundred and fourteen 
right-handed participants took part in the experiment (57 
patients with fibromyalgia and 57 healthy control par-
ticipants). Finally, data from one hundred and two par-
ticipants (51 patients with fibromyalgia and 51 controls 
participants) were analyzed, as it will be explained later. 
Patients fulfilled the 2016 American College of Rheu-
matology (ACR) diagnostic criteria for fibromyalgia [2]. 
They were recruited from the Fibromyalgia and Chronic 
Fatigue Syndrome Association of Comunidad de Madrid 
(AFINSYFACRO) and Fibromyalgia Association of 
Pinto (AFAP). Control participants were recruited among 
friends of patients and through both emailed and public 
advertisements located along with the School of health 
sciences of the Rey Juan Carlos University. All partici-
pants were aged between 35 and 68 years old. Patients 
with fibromyalgia and healthy control group were matched 
for age [F (1,122) = 0.577, p = 0.449] and education level 
[χ2 (2) = 1.029, p = 0.598]. Participants had normal or 
corrected-to-normal eyesight and they had no history of 
psychiatric neurological or disorders that impaired cog-
nitive functions. Moreover, none exhibited any disorder 
related to alcohol or drug abuse. Control participants did 
not suffer from any chronic-pain condition. Most patients 
with fibromyalgia were taking analgesics, benzodiazepines 
or antidepressants. Patients who were taking medications 
kept doing it because of both medical prescription and 
ethical considerations.

Self‑report measurements and psychological 
assessment

The Rey Juan Carlos University Research Ethics Board 
approved this study (ref: 0603201805018), and it followed 
all requirements from this Committee and the Declaration 
of Helsinki. Participants gave written informed consent for 
their involvement in the experiment. Once in the labora-
tory, different self-report instruments were administered to 
the participants just before starting the experimental ses-
sion. All participants filled out State-trait anxiety inven-
tory (STAI) [60]. The Beck Depression inventory (BDI) 
[61], the pain catastrophizing scale [62] and the Fear of 

pain questionnaire (FPQ-III) [63] were also administered. 
In addition, they completed a visual analog scale (VAS) 
for assessing both fatigue and pain during the previous 
week ranging from 10 (worse imaginable fatigue/pain) 
to 0 (no fatigue/pain at all). Finally, only patients with 
fibromyalgia had to complete the Fibromyalgia Impact 
Questionnaire (FIQ to evaluate their functional status and 
current health [64].

Stimuli and experimental paradigm

Participants performed a spatial n-back task with two lev-
els of cognitive load (1-back -low load- and 2-back -high 
load-). This task was originally used by Gevins and Cutillo 
[65] and later modified by Stokes and colleagues [66]. 
Commonly, n-back tasks consist of detecting whether a 
stimulus appearing on the screen is identical to the stimu-
lus presented n times before. Specifically, in the paradigm 
here used, a white dot was peripherally presented at one 
of the four spatial localizations or quadrants in which the 
computer screen can be divided. Thus, participants were 
required to detect if the dot currently present on the screen 
was located in the same quadrant as the one that appeared 
in the previous trial (1-back condition) or twice before 
(2-back condition). All participants were instructed to 
continuously look at a small cross located in the center of 
the screen while the sequence of dots was presented. They 
completed the task sitting on a chair placed at 60 cm (eyes-
screen distance) from the screen. Participants were asked 
to press with their right hand one button of a two keys 
device if the answer was affirmative (if the dot coincided in 
the same location as the one presented n trials before) and 
a different one if it was negative (if the dot was in different 
position as the one presented before). This task was con-
figured in such a way that 50% of the answers were set to 
be negative. The order of stimulus presentation was semi-
random, so that there were no more than three consecu-
tive responses of the same type (affirmative or negative). 
Each dot (4.6 × 4.6 cm, 4.393° visual angle) was presented 
in white ink against a black background. It remained on 
the screen for 300 ms. The interval between dots was set 
at 2050 ms. The subject’s answer was recorded only if it 
came during the first 2000 ms that followed the dot onset, 
so any answer given past that time was considered as an 
omission. Both 1-back and 2-back tasks were divided into 
4 blocks of 20 stimuli each to avoid fatigue interference. 
A total of 160 stimuli were presented (80 belonging to the 
1-back and 80 for the 2-back condition). Figure 1 shows a 
schematic illustration of the experimental paradigm used.
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Electrophysiological recording

Brain electrical activity was recorded using an electrode cap 
(ElectroCap International) with 60 homogeneously distrib-
uted scalp electrodes. All these electrodes were referenced 
to mastoids. Vertical and horizontal eye movements were 
controlled through an electrooculographic (EOG) record-
ing. Electrodes were placed infra- and supraorbitally to 
the left eye (vertical EOG). Another pair of electrodes was 
located at the outer canthus of each eye (horizontal EOG). A 
ground electrode was attached into an electrode cap between 
Fpz and Fz. All electrode impedances were kept below 5 
kΩ. Online bandpass filters from 0.1 to 40 Hz (3 dB points 
for − 6 dB/octave roll-off) were applied for the recording 
amplifiers. Further, data were digitally filtered with a 30 Hz 
24 dB/octave low-pass filter. Channels were continuously 
digitizing data at a sampling rate of 500 Hz throughout the 

entire recording session. Off-line pre-processing was per-
formed using Brain Vision Analyzer software (Brain Prod-
ucts). The continuous recording was divided into 1000 ms 
epochs for each trial, beginning 200 ms before stimulus 
onset. EOG-artifact removal was conducted following the 
procedure described by Gratton and colleagues [67]. Base-
line correction and EEG visual inspection were also car-
ried out removing epochs with artifacts for further analyses. 
Data from twelve participants (6 fibromyalgia and 6 healthy 
control) were removed due to the high rate of artifacted 
trials (over 50%). Regarding the patient’s group, this arti-
fact rejection procedure led to an admission trial average 
of 78.18% (mean = 62.55; SD = 10.07) for 1-back condition 
and 73.60% (mean = 58.88; SD = 8) for 2-back condition. 
The average of admitted trials for the control group was 
73.30% (mean = 58.64; SD = 11.65) for 1-back condition and 
71.07% (mean = 56.86; SD = 15.90) for 2-back condition. 
ERP averages were categorized according to each group of 
participants (patients with fibromyalgia and healthy control 
participants) and n-back condition (1-back and 2-back). 
Behavioral outcomes derived from the task performance 
[proportion of errors (PE) and reaction times (RT)] were 
also recorded and analyzed with respect to the group and 
cognitive load condition.

COMT genotyping and control analysis

Genomic DNA was extracted from 5 ml of saliva using 
REALPURE Saliva RBMEG06 Kit (Durviz, Valencia, 
Spain) according to the manufacturer’s protocol.

The resulting DNA was diluted to 100–1000 ng/μl, using 
1 × Tris‐EDTA (TE) buffer (Sigma‐Aldrich, Dorset, UK) and 
assessed for purity and concentration using a NanoDrop™ 
ND1000 Spectrophotometer (Thermo Fisher Scientific 
Inc., Hemel Hempstead, Hertfordshire, UK). COMT poly-
morphisms were genotyped by real-time polymerase chain 
reaction analysis using TaqMan® Predesigned SNP Geno-
typing Assays for rs4680 polymorphisms (Applied Biosys-
tems). TaqMan® SNP Genotyping Assays use TaqMan® 
5 ́‐nuclease chemistry for amplifying and detecting specific 
polymorphisms in purified genomic DNA samples. Each 
assay allows genotyping of individuals for a single nucleo-
tide polymorphism (SNP). Each TaqMan® SNP genotyping 
assay contains: (A) Sequence-specific forward and reverse 
primers to amplify the polymorphic sequence of interest and 
(B) two TaqMan® minor groove binder (MGB) probes with 
non-fluorescent quenchers (NFQ): One VIC™‐labeled probe 
to detect Allele 1 sequence and One FAM™‐labeled probe 
to detect Allele 2 sequence. Amplification was carried out 
in ABI Prism 7000 Sequence Detection System (Thermo 
Fisher Scientific Inc., Hemel Hempstead, Hertfordshire, UK) 

Fig. 1   Schematic sequence of the spatial n-back task described in the 
main text. The participants were asked to give an affirmative answer 
if the dot presented on the screen was the same as the one presented 
one trials before (a:1-back) or two trails before (b: 2-back). In other-
wise should give a negative answer. ITI = 2050 ms
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in the Genomics and Flow Cytometry Unit of the Rey Juan 
Carlos University. All genotypes were determined twice.

Then, the chi-square (χ2) test was used to assess the dis-
tribution of the genotypes between patients and healthy con-
trol participants to meet the Hardy–Weinberg equilibrium 
(HWE).

Detection and quantification of ERPs: P2 
and P3 components

To identify and subsequently quantify P2 and P3 compo-
nents of the ERPs, a principal component analysis (PCA) 
based on the covariance matrix was performed. This tech-
nique has been widely used in numerous studies for its 
advantages over analysis based on visual inspection of grand 
averages since it allows to avoiding subjectivity when select-
ing time windows based of EEG signal [68, 69]. Firstly, tem-
poral PCA (tPCA) computes the covariance between all ERP 
time points, which tends to be high among those time points 
involved in the same component, and low between those 
belonging to different ERP components. Temporal factor 
(TF) score, the tPCA-derived parameter in which extracted 
temporal factors may be quantified, is linearly related to 
the amplitude of components (in this case, P2 and P3). The 
decision on the number of factors to extract was carried out 
through the application of the scree test [70]. Selected fac-
tors were Promax rotated as previously recommended [71].

Analyses on ERPs, behavior and COMT 
genotypes

Because EEG signal overlapping can also occur at the spatial 
level, a spatial PCA (sPCA) on the TFs related to P2 and 
P3 was also carried out. Thus, while tPCA determines ERP 
components over time, sPCA separates them throughout 
the space (i.e., the scalp). Each spatial factor (SF) or scalp 
region would ideally reflect one of the concurrent neural 
processes (occurred at the same time) underlying each TF or 

ERP component (representing ideally each phase or subproc-
ess of a given cognitive process). Therefore, this configuring 
and quantifying scalp regions system is preferable to an a 
priori subdivision into fixed scalp regions. In this case, SFs 
scores would reflect the amplitude of the whole spatial factor 
or electrode scalp region. This regional grouping was also 
determined through a covariance matrix-based sPCA and 
the decision on the number of factors to extract was based 
on the scree test as well. Extracted SFs were also submitted 
to Promax rotation.

Experimental effects were tested by computing a series 
of repeated measures ANOVAs for exploring the influence 
of group (two levels: patients with fibromyalgia and healthy 
participants), cognitive load condition (two levels: 1-back 
and 2-back) and COMT genotypes (three levels: Met/Met, 
Met/Val and Val/Val) on the factor scores corresponding to 
the P2 and P3 components. Thus, cognitive task load was 
included as the within-subject factor and the group of par-
ticipants and COMT genotypes did so as between-subject 
factors. Regarding behavioral outcomes (PE and RTs), 
repeated measures ANOVAs were also computed including 
Group and COMT genotypes as the between-subject fac-
tors and task load as within-subject factor. Responses above 
2000 ms or below 200 ms were detected and removed from 
the analyses. Greenhouse–Geisser (GG) correction was 
applied to adjust the degrees of freedom of the F ratios and 
to overcome sphericity violations. Post hoc comparisons to 
determine the significance of pairwise contrasts were per-
formed using Bonferroni adjustment (α = 0.05) for control-
ling the Type I error rate. Effect sizes were computed using 
the partial eta-square (η2

p) method.
Finally, several control analyses were also carried out to 

control the potential effect of benzodiazepines and antide-
pressants within the group of patients with fibromyalgia. 
We computed ANOVAs on both ERP components (P2 and 
P3) and behavioral measures (RT and PE), including fibro-
myalgia patients using and not using particular medications 
(benzodiazepines and antidepressants) as factor. All statis-
tical analyses were done with SPSS package (v.25.0; SPSS 
Inc., Chicago; IL).

Table 1   Allele and genotype 
frequencies of the COMT gene 
in the patients with fibromyalgia 
and the healthy control 
participants

Genotype frequencies n (%) Allele frequencies

Genotype Control (n=57) Fibromyalgia (n=57) Control (n=57) Fibromyal-
gia (n=57)

Val/Val 20 (35.1) 19 (33.34) Val 0.43 0.44
Met/Val 25 (43.85) 24 (42.10) Met 0.57 0.56
Met/Met 12 (21.05) 14 (24.56)
P value HWE 0.427 0.253
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Results

COMT polymorphism frequencies

Statistical data related to genotypes and allele frequency 
distributions of the COMT gene considering each group of 
participants can be observed in Table 1. Frequency of the 
Val158Met polymorphism distribution fulfilled the HWE 
for both groups, healthy control participants (χ2 = 0.630; 
p = 0.427) and the patients with fibromyalgia (χ2 = 1.305; 
p = 0.253).

Analyses on demographic, clinical and psychological 
data

To characterize the whole sample of participants, a 
series of ANOVAs were conducted. Results showed that 
patients with fibromyalgia scored significantly higher 
in BDI [F (1,100) = 54.99, p = 0.001, η2

p = 0.355], STAI-
State [F (1,100) = 29.34, p = 0.001, η2

p = 0.227], STAI-
Trait [F (1,100) = 52.70, p = 0.001, η2

p = 0.345], fatigue 

VAS [F (1,100) = 75.24, p = 0.001, η2
p = 0.429], pain VAS 

[F (1,100) = 131.60, p = 0.001, η2
p = 0.568], PCS total [F 

(1,100) = 44.48, p = 0.001, η2
p = 0.308] and their subscales 

(PCS rumination [F (1,100) = 10.30, p = 0.002, η2
p = 0.093], 

PCS magnification [F (1,100) = 3.25, p = 0.001, η2
p = 0.250], 

PCS helplessness [F (1,100) = 76.18, p = 0.001, η2
p = 0.432]) 

and FPQ minor [F (1,100) = 5.09, p = 0.048, η2
p = 0.048] than 

control participants. There were no significant differences 
in total [F (1,100) = 0.55, p = 0.461], severe [F (1,100) = 1.58, 
p = 0.211] or medical [F (1,100) = 0.283, p = 0.596] fear of 
pain. Full details corresponding to socio-demographic, 
medication and clinical data for each group of participants 
are shown in Table 2.

Detection, spatio‑temporal characterization, 
and quantification of P2 and P3

Following the procedure described in the Method sec-
tion, and after the application of the tPCA, five TFs were 
extracted from the ERPs (see Fig. 2 for the correspond-
ence between P2 and P3 components and TFs derived 
from the tPCA). According to the factor peak latency and 

Table 2   Means and standard 
deviations of age, level of trait 
and state anxiety, depression, 
pain, drug consumption and 
educational level for each group 
of participants. P values for 
each statistical contrast are also 
included

Statistically significant results are highlighted in bold

Clinical variables Fibromyalgia patients Healthy control P value 
of F or χ2 
test

Age 51.33 (7.45) 50.18 (8.77) 0.449
STAI
 STAI-state 48.27 (28.85) 22.27 (20.84) 0.001
 STAI-trait 66.68 (28.66) 28.10 (24.88) 0.001

BDI 18.33 (11.42) 5.58 (4.48) 0.001
VAS pain 5.96 (2.12) 1.52 (1.76) 0.001
VAS fatigue 6.03 (2.43) 2.07 (2.17) 0.001
FIQ 53.29 (16.75) − −
PCS total 56.03 (25.11) 25.49 (20.96) 0.001
 PCS rumination 48.53 (28.90) 31.21 (25.47) 0.002
 PCS magnification 64.20 (24.71) 38.13 (20.75) 0.001
 PCS helplessness 61.88 (24.38) 24.58 (18.34) 0.001

FPQ-III total 76.98 (24.87) 73.90 (16.20) 0.461
 FPQ-III severe 35.64 (12.10) 33.21 (6.59) 0.211
 FPQ-III minor 21.37 (7.85) 18.35 (5.43) 0.048
 FPQ-III medical 23.07 (7.97) 22.31 (6.45) 0.596

Drug consumption
 Antidepressants (%) 49.0 2 0.001
 Analgesics (%) 54.9 2 0.001
 Benzodiazepines (%) 17.6 2 0.008
 Others (%) 66.66 29.41 0.001

Educational level
 Elementary studies (%) 7.02 3.5 0.598
 Middle level (%) 45.61 52.7
 Superior university studies (%) 47.37 43.8
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topography distribution, TF3 was associated with P2 and 
TF2 with P3 component (peaking around at 200 ms and 
300 ms, respectively). Subsequently, after the applica-
tion of sPCA, three spatial factors or scalp regions were 
extracted from each TF. P2: SF1 (parieto-occipital factor 
or region), SF2 (frontocentral factor or region) and SF3 
(frontal factor or region); and P3: SF1 (parieto-occipital 
factor or region), SF2 (frontal factor or region) and SF3 
(frontocentral factor or region). Full statistical data related 
to the rest of TFs (TF1, TF4, TF5 and TF6) are included 
in Supplementary Material 1.

Experimental effects on the ERP components: P2 
and P3

Grand averages where the most relevant experimental 
effects for P2 and P3 components can be seen in Figs. 3 
and 4.

P2 analyses

Statistical analyses showed a main effect of working memory 
load in two different scalp regions of P2: parieto-occipital 
(SF1) [F (1,96) = 12.540, p = 0.001, η2

p = 0.116] and frontal 
(SF3) [F (1,96) = 13.337, p = 0.0001, η2

p = 0.122]. Both scalp 
regions presented lower amplitudes in P2 for 2-back task 
than 1-back condition (Fig. 3a). Furthermore, it was revealed 
a main effect of Group. Parieto-occipital [F (1,96) = 4.193, 
p = 0.043, η2

p = 0.042] and frontocentral P2 amplitudes [F 
(1,96) = 4.334, p = 0.04, η2

p = 0.043] were higher for patients 
with fibromyalgia as compared to healthy control partici-
pants (Fig. 3b). Finally, and more interestingly, we also 
observed an interaction effect between COMT gene by 
Group [F (2,96) = 3.740, p = 0.027, η2

p = 0.072]. Specifically, 
post-hoc analyses revealed that patients with fibromyalgia 
carrying the Val/Val genotype showed greater P2 frontocen-
tral amplitudes than healthy control participants carrying the 
same COMT genotype (p = 0.001; Fig. 4). No other signifi-
cant interactions were found (see Table 3 for full information 
about this statistical contrast).

P3 analyses

ANOVAs revealed a main effect of working mem-
ory load for parieto-occipital (SF1) [F (1,96) = 35.048, 
p = 0.0001, η2

p = 0.267] and frontal (SF2) P3 component 
[F (1,96) = 13.100, p = 0.0001, η2

p = 0.120]. In both cases, 
P3 amplitudes for 2-back condition were lower than 1-back 
condition (Fig. 3a). Unexpectedly, the statistical analyses 
did not yield any significant relationship between COMT 
genotypes and P3 amplitudes at any scalp region. We found 
neither significant effect for the interaction between P3 by 
Group (full statistical details can be seen in Table 3).

Behavioral data

Mean values for RT and PE associated with the perfor-
mance on the n-back task (separated by group of partici-
pants), can be seen in Table 4. Repeated measures ANOVAs 
showed a main effect of task load for RT [F (1,96) = 431.018, 
p = 0.0001, η2

p = 0.815], revealing that 2-back condition 
(mean = 729.20, SD = 12.18) generated slower RT than 
1-back condition (mean = 496.86, SD = 8.91). Similarly, PE 
for 2-back condition (mean = 0.39, SD = 0.02) was higher 
than those associated with 1-back condition (mean = 0.10, 
SD = 0.01) [F (1,96) = 269.287, p = 0.0001, η2

p = 0.733]. Fur-
thermore, ANOVAs also yielded a main effect of Group 
for both RT [F (1,96) = 5.709, p = 0.019, η2

p = 0.055] and 
PE [F (1,96) = 8.069, p = 0.005, η2

p = 0.078]. In both cases, 
patients with fibromyalgia exhibited worse behavioral 
performance (i.e., higher PE (mean = 0.28, SD = 0.02) 
and RT (mean = 629.52, SD = 12.69)) than healthy 

Fig. 2   a tPCA: Factor loadings after Promax rotation. TF2 (P3 com-
ponent) is highlighted in black continuous line and FT3 (P2 compo-
nent) is drawn in black discontinuous line. b Scalp map distributions 
of the P2 and P3 components are also provided
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control participants (PE (mean = 0.21, SD = 0.02) and 
RT (mean = 586.51, SD = 12.89), respectively) (Table 4). 
Finally, no significant behavioral effects were found with 
respect to COMT genotypes.

Effects of medication on the ERP and behavioral 
data in fibromyalgia

Finally, statistical contrasts including the intake of psycho-
tropics drugs by patients (i.e., benzodiazepines and antide-
pressants) did not reach statistical differences (p > 0.05) for 
any of the collected data (ERP or behavioral). Full statistical 
details can be observed in Table 5.

Discussion

In the present research we applied a spatial n-back paradigm 
to explore how distinct indices of working memory capac-
ity (ERPs and behavior) might be modulated by different 

genotypes of the COMT gene in patients with fibromyal-
gia. According to previous investigations, we observed that 
patients with fibromyalgia had a higher rate of errors and 
longer reaction times in the experimental task than healthy 
participants. There is extensive previous evidence that has 
consistently reported lower performance in fibromyal-
gia patients across various paradigms measuring working 
memory functioning (using both verbal and spatial tasks) 
[9, 24, 52, 72–74]. Therefore, working memory impairment 
in this chronic-pain syndrome seems to be robust [75] and 
highly relevant to general cognitive performance, as this 
process appears to underlie other mental functions [76]. 
At the neural level, current findings support the sensitivity 
of electrophysiological signals for revealing altered neural 
patterns in fibromyalgia [9, 77, 78]. Particularly, enhanced 
P2 amplitudes measured at parieto-occipital and frontocen-
tral distributed scalp sites were identified for fibromyalgia 
patients compared to the healthy participants. To note, the 
most remarkable finding was that patients carrying Val/
Val COMT genotype exhibited higher frontocentral P2 

Fig. 3   Grand averages repre-
senting a ERPs to both working 
memory load conditions (black 
lines represent 1-back condition 
and red lines 2-back condition) 
at frontal (AF4 and AF) and 
parieto-occipital electrodes 
(PO4 and PO8); and b ERPs for 
each group (red line represents 
brain responses to the healthy 
control group and black line 
shows the activity linked to 
patients with fibromyalgia) in 
frontocentral (FC3 and FC5) 
and parieto-occipital (PO3 and 
PO5) scalp sites
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amplitudes compared to the healthy group. These neural 
modulations (peaking around 200 ms) were found regard-
less of the working memory load condition. Unexpectedly, 
any significant effect was found for P3 component when the 
influences of group (patients and control participants) or 
COMT genotype were tested. To our knowledge, the pre-
sent findings, are the first linking ERP indices of working 
memory dysfunctions in chronic-pain syndromes, such as 
fibromyalgia, with different genotypes of the COMT gene.

As previously indicated, patients with fibromyalgia 
showed enhanced amplitudes of P2 component compared to 
healthy participants in two spatial regions (frontocentral and 
parieto-occipital) delimitated by spatial principal component 
analysis. Although there is still some debate about the sig-
nificance of this cortical response, it has been argued that 
the posterior P2 component may represent memory encoding 
and recoding processing [51], whereas frontocentral P2 seem 
to be related to executive attention [79, 80]. Neuroimaging 
studies have indicated that a distinctive activation pattern 

Fig. 4   Grand averages showing 
brain responses (ERPs) for Val/
Val genotype carriers in fron-
tocentral electrode sites (FC1, 
FC3, FCz and Fz). Patients with 
fibromyalgia are represented in 
black line and healthy partici-
pants in red line

Table 3   Description of spatial factors belonging to TF3 (P2 ERP component) and TF2 (P3 ERP component), as well as their peak latency (ms) 
and distribution over the scalp. The results of the ANOVAs for each spatial factor are also shown, d.f.= degrees of freedom

Statistically significant results are highlighted in bold

Temporal 
factor

Peak Scalp distri-
bution

ANOVAs 
LOAD 
(d.f.=1,96)

ANOVAs 
COMT 
(d.f.=2,96)

ANOVAs 
GROUP 
(d.f.=1, 96)

ANOVAs 
COMT by 
GROUP 
(d.f.=2, 96)

ANOVAs 
LOAD by 
COMT 
(d.f.=2, 96)

ANOVAs 
LOAD by 
GROUP 
(d.f.=2, 96)

ANOVAs 
LOAD by 
GROUP 
by COMT 
(d.f.=2, 96)

TF3 (P2) 200ms SF1(parieto-
occipital)

SF2 (fronto-
central)

SF3(frontal)

F = 12.540, 
p = 0.001

F = 0.288, 
p = 0.593

F = 13.337, 
p = 0.0001

F = 1.823, 
p = 0.167

F = 0.371, 
p = 0.691

F = 1.233, 
p = 0.296

F = 4.193, 
p = 0.043

F = 4.334, 
p = 0.040

F = 1.095, 
p = 0.298

F = 2.944, 
p = 0.057

F = 3.740, 
p = 0.027

F = 2.830, 
p = 0.064

F = 0.075, 
p = 0.928

F = 0.599, 
p = 0.551

F = 0.030, 
p = 0971

F = 2.287, 
p = 0.134

F = 2.558, 
p = 0.113

F = 0.034, 
p = 0.854

F = 0.749, p = 
0.476

F = 1.052, p = 
0.353

F = 0.024, p = 
0.976

TF2 (P3) 300ms SF1 (parieto-
occipital)

SF2 (frontal)
SF3 (fronto-

central)

F = 35.048, 
p = 0.0001

F = 13.100, 
p = 0.0001

F = 1.371, 
p = 0.245

F = 1.732, 
p = 0.182

F = 1.068, 
p = 0.348

F = 0.505, 
p = 0.605

F = 0.003, 
p = 0.957

F = 0.017, 
p = 0.896

F = 0.698, 
p = 0.644

F = 0.430, 
p = 0.652

F = 0.576, 
p = 0.563

F = 0.588, 
p = 0.342

F = 0.766, 
p = 0.468

F = 0.583, 
p = 0.560

F = 1.033 
p = 0.360

F = 0.085, 
p = 0.771

F = 0.144, 
p = 0.737

F = 0.207, 
p = 0.650

F = 0.452, p = 
0.637

F = 0.146, p = 
0.865

F = 1.125, p = 
0.329
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involving prefrontal, but also inferior parietal cortices (fron-
toparietal memory network), might be underlying, at least 
partially, working memory impairment in fibromyalgia [52]. 
In the same line, parieto-occipital P2 modulations have been 
also recently reported when patients’ cognitive resources 
were involved in a verbal working memory task [9]. In that 
case, however, clear decrements in posterior P2 amplitudes 
were described. The question that now arises is what would 
be differentiating present findings from those obtained in 
previous research. Requirements linked to the n-back task 
(verbal versus visuo-spatial) seem to be different. Prior evi-
dence has reported that whereas verbal working memory 
tasks would lead to the activation of right frontal regions, 
spatial tasks would activate left frontal ones [81–83]. Cru-
cially, verbal items of a working memory task are associated 
with greater durability as mental representations, generating 
in turn, a higher degree of proactive interference than the 

interference generated in spatial tasks [84]. This may lead 
to verbal cognitive tasks to entail a higher load than spatial 
working memory paradigms making them more difficult. In 
this sense, the enhancement of parieto-occipital and fronto-
central P2 amplitudes here detected might be reflecting the 
set-in motion of possible compensatory mechanisms [6, 85]. 
Given that spatial working memory tasks would demand 
a low degree of cognitive load, it would allow the imple-
mentation of such compensatory processes. Nevertheless, 
the higher cognitive load of verbal working memory task 
may prevent to activate them. It is thought that neurocog-
nitive profile of patients with fibromyalgia has significant 
similarities with other clinical or subclinical populations. 
Particularly, these patients have shown an equivalent cogni-
tive performance to that of older adults in working memory 
tasks [86]. Additionally, clear enhancements of P2 have been 
described in older people while they performed a cognitive 

Table 4   Means and standard deviations (in parenthesis) of reaction times (RTs) and proportion of errors (PE) related to each COMT genotype 
(Val/Val, Met/Val and Met/Met). Data are showed separately for healthy control participants and patients with fibromyalgia

1  Higher for 2-back than 1-back
2  Higher for fibromyalgia than healthy control

Load COMT Group RT (ms) Main effects on RT (p< 0.05) PE Main effects on PE (p<0.05)

1-back Met/Met Fibromyalgia 546.64 (95.187) 0.17 (0.16)
Healthy control 447.21 (65.93) 0.07 (0.04)

Met/Val Fibromyalgia 524.65 (111.31) 0.13 (0.14)
Healthy control 476.5 (77.70) 0.09 (0.04)

Val/Val Fibromyalgia 467.06 (86.80) 2-back > 1-back1 0.09 (0.06) 2-back > 1-back1

Healthy control 458.97 (65.39) Fibromyalgia > healthy control2 0.07 (0.04) Fibromyalgia > healthy control2

2-back Met/Met Fibromyalgia 725.82 (121.44) 0.45 (0.23)
Healthy control 704.49 (113.925) 0.34 (0.15)

Met/Val Fibromyalgia 778.02 (116.10) 0.46 (0.20)
Healthy control 721.53 (107.15) 0.37 (0.17)

Val/Val Fibromyalgia 734.91 (122.51) 0.39 (0.19)
Healthy control 710.38 (132.68) 0.32 (0.16)

Table 5   P values related 
to medication effects 
(benzodiazepines and 
antidepressants) on behavior 
(proportion of errors and 
reaction times) and ERP activity 
(P2 and P3) after controlling 
the use of psychotropic drugs 
within the fibromyalgia group

Antidepressant ANOVAs Benzodiazepines ANOVAs

Electrophysiological data
P2
 Parieto-occipital (SF1) F (1,49) = 0.098, p = 0.756 F (1,49) = 0.535, p = 0.468
 Frontocentral (SF2) F (1,49) = 0.125, p = 0725 F (1,49) = 0.033, p = 0.857
 Anterior (SF3) F (1,49) = 0.035, p = 0.852 F (1,49) = 0.986, p = 0.326

P3
 Parieto-occipital (SF1) F (1,49) = 0.151, p = 0.699 F (1,49) = 1.453, p = 0.234
 Anterior (SF2) F (1,49) = 0.216, p = 0.644 F (1,49) = 0.0001, p = 0.984
 Frontocentral (SF3) F (1,49) = 0.211, p = 0.648 F (1,49) = 0.596, p = 0.444

Behavioral data
 Proportion of errors F (1,49) = 2.426, p = 0.126 F (1,49) = 0.263, p = 0.611
 Reaction times F (1,49) = 3.208, p = 0.079 F (1,49) = 0.023, p = 0.881
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task [87]. These data has been interpreted as a sign of the 
activation of compensatory neural mechanisms during low 
load tasks, but such cognitive effort cannot be triggered to 
deal with tasks involving a high degree of cognitive load 
[88–90]. The available data lead to think that this signifi-
cant increase of cognitive resources in fibromyalgia would 
be, however, inefficiently allocated since behavioral perfor-
mance remained significantly below that shown by healthy 
participants.‬ 

Particularly, the selective enhancement of frontocentral 
P2 amplitudes exhibited by patients with fibromyalgia carry-
ing the Val/Val genotype deserves a detailed consideration. It 
has been observed that reduced synaptic levels of dopamine 
and reduced receptor activity associated with homozygous 
valine carriers seem to be a key factor that might contribute 
to a significantly poorer performance on working memory 
tasks in healthy people [91–94], but also in fibromyalgia 
patients [24]. Consequently, some investigations have pro-
posed that such cognitive dysfunction may be related to 
the reduction in the efficiency of neural transmission that 
characterizes to valine carriers (i.e., higher neural activation 
but poor performance in cognitive tasks) [95]. This fact has 
been related to an increase of cortical noise in the activity 
of both prefrontal and frontocentral brain regions [56, 58, 
96, 97]. Cortical noise would be manifested by random, less 
synchronized or less focused cortical activity [77] where 
excessive noise levels can lead to information processing 
difficulties [98]. Increased cortical noise during cognitive 
tasks has been also reported in patients with fibromyalgia 
[77] suggesting that it may be underling a more pronounced 
cognitive impairment. This fact, together with the general-
ized compensatory processing here detected in fibromyalgia, 
could contribute to explain the enhancement of neural indi-
ces (frontocental P2 amplitudes) in patients carrying Val/Val 
genotype of the COMT gene. As it was mentioned, frontal 
and frontocentral P2 activity has been associated with the 
activation of executive attention processes [79, 80]. Execu-
tive attention allows information to be actively maintained 
and manipulated [99], which makes this subprocess a cru-
cial element for the correct performance in working mem-
ory tasks. Because this subprocess is closely linked to the 
capacity to maintain information for a given period of time, 
is thought that executive attention could be considered a 
subprocess that requires cognitive stability. Keeping this in 
mind, modulation of frontocentral P2 amplitudes (underly-
ing executive attention) could fit the tonic/phasic hypothesis 
of dopamine. This theory postulates that the Met allele of 
the COMT gene could increase tonic activity (constant and 
slow firing neurons activity) whereas the Val allele would 
enhance phasic activity (neurons would have a transient, 
but large amplitude activity) [36, 38]. Neuropsychological 
studies have reported lower performance for valine carri-
ers in tasks requiring cognitive stability (i.e., information 

maintenance) [36, 38, 42]. Thus, it could be thought that the 
influence of the COMT gene on the amplitude of the fron-
tocentral P2 may be characterizing working memory dys-
function in fibromyalgia. On the other hand, the Met allele 
has been associated with higher reaction times and lower 
accuracy in tasks involving cognitive flexibility (updating 
or switching tasks) [38, 43, 44].

Surprisingly, available results did not reveal a relation-
ship between COMT genotypes and P3 amplitudes. Unlike 
some prior investigations, we found no clear mediating role 
of the COMT gene (fibromyalgia patients carrying Val/Val 
genotype) on P3 amplitudes [57–59, 100]. Nevertheless, 
the present results must be interpreted considering differ-
ent important factors. None of the of previous studies was 
focused on fibromyalgia syndrome (other patient’s sam-
ple were studied) and paradigms used (e.g., oddball task) 
involved other cognitive processes than those brought out by 
n-back tasks. Despite this, present electrophysiological data 
suggest that any influence of COMT gene on P3 amplitude, 
if exists, must be very subtle. Further research specifically 
focused on working memory dysfunction in fibromyalgia 
should be done (for instance, exploring the additive effects 
of other candidate genes related to dopamine regulation in 
neural networks) [101] to delimitate the potential influences 
of such genetic markers on different neural indices.

Some limitations should be considered with respect to the 
present findings. It has been pointed out that a single SNP 
may have small effects on the specific trait studied [102]. 
In this sense, the use of haplotypes can be a useful tool. It 
has been described that the use of several SNPs that form 
haplotypes may have a greater effect on gene function than 
nonsynonymous variations [30]. This haplotype-based strat-
egy could shed light on some of the inconsistencies found 
in the present study. On the other hand, the selection of the 
rs4680 or Val158Met polymorphism of the COMT gene 
in this study is unlikely to cover all the genetic variations 
involving the different subprocesses of working memory. It 
has been suggested that genetic effects on working memory 
have an additive effect on dopamine regulation in prefrontal 
neural networks [101]. This additive effect would involve 
the influence of various genes related to dopamine regula-
tion at different levels (dopamine receptors: DRD4, DRD1, 
DRD2 or dopamine transporters: DAT, among others) [101, 
103–113]. It would be recommended that future investiga-
tion designs might consider the role of additional genes 
related to the regulation of dopaminergic transmission for 
exploring effects on cognitive performance in patients with 
fibromyalgia. Furthermore, future studies should be done to 
replicate these promising results using ERP and other EEG 
analysis methodologies, such as EEG oscillations or single-
trial analyses in patients with fibromyalgia and other disor-
ders with cognitive impairment. In this regard, it should be 
noted that the EEG represent a non-stationary signal [114], 
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like occurs with almost real biological systems [115]. The 
use of different approaches such as the wavelet transform 
[116], time-varying autoregressive models [117], among 
others [118–120], would help to better analyze EEG signals 
and understand its temporal dynamics.

Conclusions

In summary, present results suggest that COMT gene might 
influence ERP activity associated with working memory 
processing in fibromyalgia patients. Thus, patients with 
fibromyalgia carrying Val/Val genotype showed higher 
amplitudes of frontocentral P2 as compared to healthy valine 
carriers. It has been suggested that Val/Val genotype is asso-
ciated with a high rate of cortical noise leading to a decrease 
in frontal efficiency to activate cognitive operations. This 
fact could be reflecting a specific impairment in executive 
attention process due to lower frontal efficiency in Val/Val 
fibromyalgia carriers. These promising data could help to 
better characterize working memory impairment in fibro-
myalgia, considering Val/Val genotype of the COMT gene 
as a biological marker useful to generate different patient 
profiles. Future research is needed to confirm present find-
ings and measure up the possibility to establish more tai-
lored treatments to deal with cognitive dysfunction in these 
chronic-pain patients.
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