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Abstract
Numerical optimization solves problems that are analytically intractable at the cost of arriving at a sufficiently good but

rarely optimal solution. To maximize the result, optimization algorithms are run with the guidance and supervision of a

human, usually an expert in the problem. Recent advances in deep reinforcement learning motivate interest in an artificial

agent capable of learning to do the expert’s task. Specifically, we present a proximal policy optimization agent that learns

to optimize in a real case study such as the modeling of the photo-fenton disinfection process, which involves a number of

parameters that have to be adjusted to minimize the error of the model with respect to the experimental data collected in

several trials. The expert spends an average of 4 h to find a suitable set of parameters. On the other hand, the agent we

present does not require a human expert to guide or validate the optimization procedure and achieves similar results in

2:5� less time.

Keywords Deep reinforcement learning � Proximal policy optimization � Wastewater disinfection � Photo-fenton process

Mathematics Subject Classification 68T07 � 68T20 � 68T42 � 90C26

1 Introduction

Modeling is a task that requires the participation of an

expert not only for translating the process dynamics into

math expressions but also, often, to find the best set of

model parameters. While the former is self-evident, the

latter is sometimes dismissed as a simple optimization

problem of minimizing a cost function for which there are

several well-known methods such as gradient descent,

bayesian optimization [1], ant colony optimization [2],

genetic algorithms [3] or variable neighborhood search [4],

just to mention a few. Gradient descent based methods are

used in combination with different strategies such as multi-

start, momentum or variable learning rate to avoid getting

stuck into local optima or plateaus, but they usually require

expert intervention to guide the process as well as to val-

idate the result. The rest of the methods mentioned above

are gradient-free and have proved to be efficient in dealing

with gradient descent issues by shifting the effort of

guiding the optimization to encoding the solutions and

testing large populations, which usually entails high com-

putational costs.

In this paper, we explore an in-between line, which takes

advantage of gradient descent but at the same time liberates

the expert from guiding and supervising it because is able

to learn from its own past experience. Specifically, our goal

is to have an iterative algorithm that, at time step t, acts
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over xt, the candidate solution being evaluated, to produce

the next candidate solution xtþ1.

Let st be the fully observable state of the optimization

problem, which can be all the information needed to

describe how good is a candidate solution. It can be as

simple as its value in the objective function or it can

incorporate more information, depending on the underlying

problem. And let at be the action taken at time step t after

observing st. Such an action not only modifies the candi-

date solution, but also causes the state of the optimization

problem to transition from st to stþ1 in a deterministic way.

This setting complies with the reinforcement learning (RL)

framework, in which an agent learns to make decisions in

an environment by trial and error based on a reward signal.

Current advances in deep neural networks have led to

the emergence of deep reinforcement learning (DRL), in

which the agent consists of a neural network that is trained

with past experiences and produces a probability distribu-

tion across all the possible actions, referred to as policy.

Since the neural network is expected to generalize, the

agent is arguably trained to act similar to an expert guiding

and supervising a gradient descent based optimization. In

other words, this approach produces two outcomes: (1) a

solution to the optimization problem and (2) a policy that

leads the agent from any point in the solution space to a

valid solution, meaning that its evaluation in the cost

function is no greater than a given threshold. We separate

both because the first is not consequence of the second,

since there is no guarantee that the last candidate solution

evaluated is better than another evaluated before. Once the

optimization is solved, the agent is not necessary anymore

for that particular problem, but having it is indeed a great

advantage over gradient-free algorithms. If the conditions

that shape the solution space change, for example due to

non-stationary behaviors, the agent could be retrained

using the last configuration to find the new optimum more

efficiently. The agent could also be transferred to a similar

problem, meaning that the state observed by the agent has

the same representation.

To test the proposal, we carry out an experimental study

on a real problem: the wastewater disinfection by a solar

photo-fenton process. This is particularly relevant because

antibiotic resistant bacteria have become one of the main

global health challenges nowadays [5]. Advanced oxida-

tion processes (AOPs), including photo-fenton, have

already proved their ability to eliminate antibiotic resistant

gene and antibiotics themselves [6] that currently remain

untreated in wastewater treatment plants. Specifically, solar

photo-fenton at neutral PH avoids three major troubles in

the industrial implementation of AOPs, namely changes in

water PH, conductivity and temperature [7, 8, 9, 10].

There are two main types of models for the solar photo-

fenton process: empirical and mechanistic. Empirical

models try to fit some pathogen inactivation curves over

time to experimental conditions. This allows a better

understanding of the process mechanisms, the relative

relevance of each studied variable and their possible syn-

ergistic or antagonist effect. But those models are restricted

to interpolation in the studied range of variables that are

themselves limited to the laboratory scale. On the other

hand, only mechanistic models, defining the elemental

reactions and their rates, can cross the barrier of experi-

mental ranges and allow an accurate simulation of the

process industrial application. Hence, a whole methodol-

ogy allowing to define and fit mechanistic models of pro-

cesses at the research stage would cheapen and shorten

their way to real applications in the daily live.

This paper focuses on the latter. Specifically, our case

study is the photo-fenton model developed by Casado et al.

[11] which involves 13 kinetic parameters for 512 reactions

between 140 different species (135 bacteria at different

steps of radiation or radical damage and 5 compounds of

the Fenton process), but the methodological approach can

be applied in a wide range of chemical processes in

research and development.

Our goal is to find the optimal set of parameters that best

match the mechanistic model to the experimental data. This

problem presents several challenges:

• The solution space is non-convex, and has infeasible

zones (with infinite or null values), plateaus and several

local optima.

• Real experimental data are used for fitting the model

which implies a non-exact correlation between the fitted

model and the true data.

• The obtained result will be useful only if it is found in

less, or at least, the same time than the engineer need

using other optimization methods that requires

intervention.

• Running the model represents a bottleneck, so it is

important to reduce the number of executions.

In order to deal with the challenges listed above, we try up

to 12 different solvers, all of them based on a proximal

policy optimization (PPO) agent [12]. The best performing

agent in this broad comparison is referred to as reinforce-

ment learning with direct actions and balanced memory. In

summary, this paper presents the following contributions:

• We provide a method of solving the photo-fenton model

that can be used by the average chemical engineer with

little additional effort. Since the engineer has to code

the chemical model in any case, it is only necessary to

refactor that code to match the specifications of the

reinforcement learning environment [13].

• We show how to translate well-stablished results in AI

and DRL into real problems, as recommended in [14].
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Indeed, these kind of algorithms are mainly tested on

benchmarks. Although these provide a good empirical

proof of an algorithm’s performance, they do not tell

anything of how to adapt them to real-life problems so

performance is usually poorer.

• We also introduce a novel and simple technique to

sample and balance the training data collected during

the online interaction with the environment. This

technique helps the reinforcement learning agent to

avoid getting stuck when the reward received is not

informative enough.

The rest of the paper is organized as follows. Section 2

summarizes works related with our proposal. Section 3

provides the terminology and background of reinforcement

learning and the agent used. Section 4 exposes the problem

addressed and the solution proposed in terms of deep

reinforcement learning. Section 5 discusses the experi-

ments carried out. Finally, Sect. 6 points out the

conclusions.

2 Related works

From an academic point of view, neural networks have

been used in optimization within the leaning to learn [15]

framework. According to this proposal, a neural network is

trained in a supervised manner to act as a surrogate for a

gradient descent based optimizer to update the weights of

another neural network in regression and classification

problems.

Another approach is learning an optimizer by means of

deep reinforcement learning (DRL). In [16], an agent was

trained to optimize linear and quadratic regression algo-

rithms in 101 benchmark tasks and another agent is trained

to be able to optimize neural networks with thousand of

parameters. DRL has also succeeded in combinatorial

optimization benchmarks such as the travelling salesman

problem [17] and the max-cut problem [18].

This approach to optimization has also been applied to

real-world problems and, in particular, to chemical indus-

try, for example in real-time optimization of hydrocracking

[19], in batch bio-process optimization for finding alter-

natives to fossil based materials [20], in batch optimization

of bioreactors for food industry [21], in real-time detection

of pollution risk due to wastewater [22] and in the analysis

of material qualities like hardness of aluminum alloys [23].

It has also been applied in other domains such as health

care, for melanoma’s gene regulation [24] or protein

folding problems in the fight against hereditary diseases

[25], or in the field of energy, as in [26] to manage the

electric power in a building or a small city, or in [27] to

maximize electrical energy generation with

acceptable emission levels. A review on reinforcement

learning applied to process control can be found in [28].

With regard to the photo-fenton process, there were a lot

of efforts in the development of complex kinetochemical

models [7, 10] but less in its optimization, which is

sometimes reduced to the application of some old-fash-

ioned stochastic gradient descent method or heuristics,

mainly because it is beyond the competences of chemical

engineers [11, 29].

Another line of work attempts to develop simpler

models based on the geometry of the disinfection curve

rather than on a reaction mechanism. These models are

optimized through linear and exponential regression

[6, 8, 9]. Some work along these line incorporates neural

networks that are responsible for generating concentration

curves over time [30, 31, 32, 33]. These methods outper-

form the latter by being capable of optimizing multiple

parameters, but they do not allow to obtain an analytical

expression of the model. This makes these methods unable

to manage the model if experimental parameters change

over time and they would need to be retrained with new

data. As they use neural networks as a surrogate of a

kinetochemical model, they are also unable to extrapolate

when the order of magnitude of the experimental condi-

tions changes [34].

Our proposal is the first, to our knowledge, to present a

methodology that allows extrapolation to new data and

avoids human intervention by using DRL to find the opti-

mal set of parameters to fit a kinetochemical model to

experimental data.

3 Background

The purpose of this section is to provide the terminology

and essential concepts about reinforcement learning and

the specific agent used in this article. Deeper and com-

prehensive explanations can be found in [12, 35, 36].

3.1 Reinforcement learning

Reinforcement learning (RL) is a machine learning (ML)

framework in which an Agent learns to carry out a task by

interacting with an Environment. The fundamental

assumption is that this goal can be achieved maximizing

the cumulative reward along the sequence of actions taken

or decisions made.

The basic training process consists of the loop depicted

in Fig. 1. At time t, the agent observes the state of the

environment st and takes an action at. The action produces

the environment to transition from state st to state stþ1.

Additionally, the environment also implements a function

Rðst; at; stþ1Þ that produces a Reward signal rt which helps
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the agent to gain knowledge about how to act. The loop is

repeated until a stop criterion is triggered. Typically, this

happens when the task is done or after a maximum number

of iterations if not. At that point, an Episode ends. Typi-

cally, the training process consists of executing a number

of episodes, each one starting from different, random,

initial state.

During this process, the agent is learning to map states

into actions, referred to as a Policy p, that can be either

deterministic, such that at ¼ pðstÞ, or stochastic, so

at � pðajstÞ. Typically, the policy is a parametric function

and learning consists of finding a set of parameters that

optimize an objective function. Thus, let Gt be the Return,

defined as the cumulative reward along the forthcoming

sequence of states due to the future actions taken according

to the policy,

Gt ¼ rtþ1 þ crtþ2 þ c2rtþ3 þ � � � ¼ rtþ1 þ cGtþ1;

where 0\c\1 is the Discount factor, included to prefer

rewards closer in time. Given that the return is defined for

future time steps, it makes sense to consider its expected

value. Thus, the Value of the current state st according to a

policy p is defined as the expectation of the return at that

time step. Taking into account the recursive property, it can

be expressed as

vpðstÞ ¼ Ep rtþ1 þ cvpðstþ1Þ½ �jst; at � pðstÞ�: ð1Þ

Then, according to the RL framework, the optimal policy

p� is the one that maximizes the expected return, which is

equivalent to maximizing the value of the current state.

Thus, once trained, given any initial state, s0, the agent will

take a sequence of actions according to p�, resulting into a

sequence of states until the task is done.

In RL, the human must model the dynamics of a prob-

lem in the environment, which consists of: deciding the

state variables, designing how states transition from one to

the next and shaping the reward function. Reward shaping

is the decision made about the reward function

Rðst; at; stþ1Þ. Tiny but frequent rewards usually make the

agent to accumulate them in circular trajectories that do not

reach the true goal, whereas big but sparse rewards may

difficult the learning process as the dimensionality of the

problem increases [35].

On the other hand, the agent consists of an algorithm

that runs episodes in the loop described above. In practice,

it usually incorporates an exploration–exploitation strat-

egy. The purpose of Exploration is to act randomly,

enabling the agent to discover useful actions. On the con-

trary, Exploitation consists of acting according to the pol-

icy learned so far. Then, a strategy is to schedule a

combination of both during the training process. For

example, an �-greedy strategy [35] consists of sampling

from a uniform distribution over the set of possible actions

with a time variable probability �.

3.2 Deep Reinforcement Learning

Mnih et al. presented an agent capable of mastering many

Atari video games without any previous knowledge about

the game itself [37]. Such an agent used a deep neural

network as a tool for mapping states into actions. Since

then, deep reinforcement learning (DRL) has become the

de facto standard for addressing numerous RL problems,

with several solutions proposed such as deep Q networks

(DQN) [37], double DQN [38] or dueling DQN [39],

deterministic policy gradient (DPG) [40], REINFORCE

[41], asynchronous advantage actor-critic (A3C) [42] or

proximal policy optimization (PPO) [12]. Besides, there

are research efforts to make neural networks converge

faster by fighting ill-conditioned problems, saddle points or

vanishing gradients [43].

All these DRL agents incorporate a Replay memory, also

known as Replay buffer, that stores tuples ðst; at; rt; stþ1Þ, or
variations of it, resulting from the interaction with the

environment, referred to as experiences. The Replay

memory is used as the data set for training the neural

networks embedded in the agent.

The standard management of the Replay memory simply

consists of storing the last n experiences. A more elabo-

rated management is presented in [44], where experiences

are prioritized to replay important transitions more fre-

quently. In [45], every experience ðst; at; rt; stþ1Þ is exten-
ded with extra information in order to create secondary

objectives for the agent to learn more efficiently when the

reward is sparse. In this paper, we propose a way for

sampling experiences from the Replay memory based on

the reward distribution and test it against the Standard

management and the Hindsight Experience Replay (HER)

proposed in [45].

Fig. 1 Reinforcement learning loop
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3.3 Proximal policy optimization (PPO)

The ultimate goal of this paper is to solve an optimization

problem with DRL. To this end, a wish list of agent skills

would have the following elements:

• Parallel execution Candidate evaluation with the

objective function is often the bottleneck in numerical

optimization, so parallelization is a key requirement.

• Continuous actions The landscape of candidate solu-

tions for the problem addressed in this paper is

continuous, so the agent must be able to produce

infinite possible outcomes.

• Stability and convergence It is a non-convex and ill-

posed optimization problem, so the agent should be able

to learn how to handle infeasible areas, plateaus and

local optima.

Several DRL algorithms in the literature meet these spec-

ifications to a greater or lesser extent such as deep deter-

ministic policy gradient (DDPG) [46], trust region policy

optimization (TRPO) [47], proximal policy optimization

(PPO) [12] or soft actor-critic (SAC) [48] just to mention a

few. We choose PPO as suggested in [49], arguing that it

has become one of the most widely used, has a simple and

modular pipeline, incorporates a gradient penalty that

makes it robust and less sensitive to hyperparameters and

allows multiple environments to be run on simultaneous

threads [14, 50].

A PPO agent consists of two neural networks, the Actor

and the Critic, although the architecture can have common

layers as in [42]. The input of both is the current state. The

Actor estimates the parameters of the policy pðajstÞ.
Specifically, we take the usual assumption of the policy

being a Normal distribution with fixed standard deviation

r, so the actor output estimates the mean l̂. The Critic

estimates the value of the state, v̂pðstÞ.
Every training iteration of PPO consists of two stages. In

the first one, the agent acts according to the exploration–

exploitation strategy defined, and experiences are stored in

the buffer. Besides, none of the neural networks are

updated, so it is fully parallelizable. In the second stage the

weights of the neural networks are updated using only

experiences from the buffer. Finally, before beginning a

new training iteration, the buffer is emptied.

Each stored experience contains all the necessary data to

calculate the targets for training both networks. Experi-

ences extend the standard tuple with l̂t and v̂pðstÞ,
becoming ðst; at; stþ1; rt; l̂t; v̂pðstÞÞ: Notice that at may be

different from l̂t, as in this paper. The former is the action

taken by the agent at time t, while the latter is the

parameter that defines the policy of the actor at time t. In

other words, at is a realization of the policy during the

exploration. Hence, such a PPO agent is able to produce

continuous actions.

Finally, PPO also remembers the previous policy, in

order to compare the likelihood of the action proposed with

respect to it against current policy. An action much more

likely in the current policy can lead to excessive weight

updates. To fight this issue, PPO clips ratio between the

current policy and the old policy when both are evaluated

on the pair ðst; atÞ.

4 Case study

In this paper, we propose to use PPO to conduct an intel-

ligent and efficient exploration of the parameter space for

the kinetochemical model of the solar photo-fenton process

proposed in [11].

Solar photo-fenton is a wastewater treatment process

that belongs to the Advanced Oxidation Technologies

group. It is based in a RedOx cycle of iron salts with

hydrogen peroxide as oxidant and solar radiation as

reductant agent. The cycle produces hydroxil radicals able

to damage a wide range of pathogens and pollutants. This

cycle is coupled with direct solar disinfection (SoDis),

which produces a parallel route of pathogens inactivation.

Hence, the solar photo-fenton kinetochemical model

consists of three parametric submodels: the SoDis model,

the Bacteria model and the Peroxide model, denoted

MS; MB; MP, respectively; and let KS; KB; KP be the

set of parameters for each one of them, summarized in

Table 1 with the same names given in [11].

Table 1 Experimental setup with the solar photo-fenton process

Subprocess Model Par. NI NT NM

Sodis Sodis 3 7 120 18

Photo-Fenton Bacteria 5 12 120 9 - 24

Photo-Fenton Peroxide 5 12 120 11 - 14

Model Set of parameters for a model ( KModel)

Sodis ksolar, ksolar;repair, n

Bacteria kHO, kHO;repair, kHO;repair2, ksolar;repair2, m

Peroxide k1, k2, k3, k4, k5

Detail of the parameters of each model in the whole solar photo-

fenton model. More details about their meaning and the model can be

found in [11]

Par. number of parameters in the model, NI number of trials in which

the disinfection process has been carried out in the reactor, each trial

with different initial conditions, NT duration (in minutes) of a single

trial, NM number of measurements taken during each trial (it is not

always the same)
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4.1 Fitting the photo-fenton kinetochemical
model

For the sake of compactness, we do not repeat the complete

explanation of the model in [11]. Instead, we briefly recap

here how to proceed for fitting the model.

First, a series of trials is carried out with different initial

concentrations of bacteria in a reactor exposed to solar

radiation, which causes the bacterial concentration to

decrease over time. During this process, the bacteria con-

centration is measured several times. The set of parameters

for MS can then be found comparing the true measured

concentrations with the expected concentrations according

to the model and the parameters proposed. This comparison

is the core of the optimization problem that is explained

below. Let K�
S be the resulting set of parameters.

Second, a new series of trials is carried out, this time

with different initial concentrations of peroxide as well as

of bacteria in the reactor, and also exposed to solar radia-

tion. Thus, the decrease of bacteria over time is now also

due to the presence of peroxide. Similarly, during this

process both bacteria and peroxide concentrations are

measured several times. Then, by setting KB ¼ f8k ¼
10�5;m ¼ 1g and KS ¼ K�

S, K
�
P is found comparing the

true measures of the peroxide with the outcome from MP.

And finally, by setting KS ¼ K�
S and KP ¼ K�

P, K
�
B is found

in the same fashion.

The tuple ðK�
S;K

�
B;K

�
PÞ is the optimal set of parameters,

i.e., those that best explain the experimental data collected

with the model given. Since [11] presented the model

already fitted using the sequential quadratic programming

(SQP) method provided by GNU Octave, we will use that

solution as baseline to compare our fully automated opti-

mization method.

4.1.1 Experimental data and trial details

Photo-fenton trials There were 12 trials of 120 minutes

each, all with different initial conditions as shown in the

left panel of Fig. 2. Peroxide and bacteria concentrations

are measured evenly in time, and its number ranges from 9

to 24 for bacteria and from 11 to 14 for peroxide. The

middle and right panels in Fig. 2 show the measures and

the model fitted according to [11]. All the odd-numbered

trials are in the top panels and the even-numbered are in the

bottom panels.

Solar disinfection trials There were 7 trials of 120

minutes each, with different solar radiation and fixed initial

concentration of bacteria through all experiments. During

each trial, the bacteria concentration was measured evenly

18 times.

Wallclock time per fitting The average time for fitting

the whole model, guided and supervised by a human expert

is 4 h.

4.1.2 The optimization problem

Let M be any of the models involved (Sodis, Bacteria or

Peroxide), and let KM be the set of parameters for M, as

listed in Table 1. The ith trial with a given M is defined by

a set of initial conditions IM. Model M returns the esti-

mated bacteria or peroxide concentration (depending on

M) at any given time step t, represented as

ci;t ¼ MðKM; IM; i; tÞ:
Since the experimental data are collected at specific

times, we denote sðjÞ to the time step at which the jth

measure was taken, so vi;sðjÞ is the experimental data from

the jth measurement in the ith trial. The concentration

estimated by a model for the ith trial is then redefined to the

same time step than the real concentration as

ci;sðjÞ ¼ MðKM; IM; i; sðjÞÞ:
Let EM be the error of model M, defined as:

EM ¼
XNI

i¼1

XNM

j¼1

�
log10ðvi;sðjÞÞ � log10ðci;sðjÞÞ

�2
; ð2Þ

then the goal is to find the set of parameters K�
M that best

explain the experimental data at every step of the fitting

process. Formally,

K�
M ¼ argmin

KM

EM KM; fvi;sðjÞg8i;j

� �
: ð3Þ

The Sodis model is indeed easy to optimize and a gradient

descent quickly converges into K�
S. But Bacteria and

Peroxide models are quite challenging, with infeasible

regions and large plateaus, which makes it very difficult

both to find a valid starting point for numerical optimiza-

tion and to drive it through the parameter space. For this

reason, this paper only focuses on searching K�
B and K�

P.

To this end, in this paper we propose an automated

optimization method based on DRL, which requires

introducing an agent and modeling an environment.

Additionally, we introduce several variations for the solver.

4.2 RL environment modeling

The environment consists of a mechanism to transition

from state st to stþ1 and a reward function.

In this problem, the environment contains the full solar

photo-fenton model fMS;MB;MPg, such that for any

given set of parameters fKS;KB;KPg it returns the esti-

mated bacteria and peroxide concentration and the error

EM for every trial and every time step.
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The state st encodes all the information about the opti-

mization problem at some time step t that is considered

necessary for the agent to make a decision. According to

Sect. 4.1, Peroxide and Bacteria models are optimized

sequentially, and K�
S is known; so, let M 2 fMB;MPg be

the model being optimized, then we define st, the current

state of that optimization, as the pair of all the concentra-

tions estimated by the model and all the parameters used in

the model, i.e.,
�
fci;sðjÞg;KM

�
t
, for all i 2 NI and j 2 NM ,

at time step t.

The agent will modify KM (see below) so the transition

mechanism is simply running the model with the new set of

parameters.

The reward function produced at every time step is

R ¼
1=EM 0\EM\þ1
�10 otherwise:

�
ð4Þ

The otherwise case includes null values of EM, if any.

4.3 PPO agent

For this particular problem, it is useful for the agent to have

a history of successive states until the current one. This

history supplies implicit information about the gradient and

the parameter space landscape. Thus, we define an

Observation as a sequence of 20 states,

Ot ¼ fst�19; st�18; . . .; stg:
Our PPO agent consists of two independent dense neural

networks: one for the Actor and another for the Critic. Each

has a long short-term memory (LSTM) input layer in order

to process each observation. The Critic network has a

single output neuron with identity activation. The Actor

network has as many outputs as parameters are in the

model, i.e., as many elements in KM. Each output pro-

duces l, the center of a normal distribution that is sampled

during exploration, depicted in Fig. 3. The array whose

elements are these samples is related to the action taken by

the agent at that time step according to two variants that we

present.

Fig. 2 Initial conditions for each trial and reference solution for the

photo-fenton model from [11]. Left: Initial amount of solar radiation,

iron (Feþ2 ), concentration of bacteria (E. coli) and concentration of

hydrogen peroxide (H2O2) for each trial over the peroxide and

bacteria models. Center: Experimental data (vi;sðjÞ) and concentration

curves generated by the model (ci;sðjÞ) for reference solution to the

peroxide model with error EMP
¼ 0:297. Right: Experimental data

(vi;sðjÞ) and concentration curves (ci;sðjÞ) for reference solution to the

bacteria model with error EMB
¼ 0:520. Odd rows shows the odd

experiments and even rows the even experiments for visualization

clarity in both center and right panels

Fig. 3 Representation of how actions are obtained from actor’s output

in exploration. Dice mean sampling from the distribution
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• Incremental The actor’s output activation is a tanh and

the normal distribution has standard deviation r ¼ �,

with 0\�\1. The sampled array is then at ¼ DKM,

meaning that the actions are increments with respect to

the last set of parameters. The next state becomes

stþ1 ¼
�
fci;sðjÞg;KM þ at

�
tþ1

.

• Direct The actor’s output activation is the identity and

the normal distribution has standard deviation r ¼ 5�,

with 0\�\1. The sampled array is then at ¼ K0
M,

meaning that the actions are the new parameters for the

next time step, regardless of their previous values. The

next state becomes stþ1 ¼
�
fci;sðjÞg; at

�
tþ1

.

Hiperparameter � has been included so the standard devi-

ation can be controlled with a single value ranging the unit

interval in any of the two variants. Finally, at ¼ l during

exploitation for both.

To train the agent, we also try other solving algorithms,

including exploration strategies, balancing the Memory

Replay, using Hindsight Experience Replay and incorpo-

rating expert knowledge to the agent. They are all pre-

sented below.

4.3.1 Exploration strategies

Hiperparameter � allows to customize the exploration

strategy. Thus, we test three different ones, depicted in

Fig. 4.

• Single annealing At each iteration, � decays by a fixed

damping factor d 2 ð0; 1Þ, i.e., �tþ1 ¼ d � �t

• Multi-annealing The single annealing is repeated four

cycles with the same initial �0 ¼ 1.

• Meta-annealing Same than multi-annealing but linearly

decreasing �0, i.e., �
ðcycle kþ1Þ
0 ¼ �

ðcycle kÞ
0 � 0:2

In all of them, as � decreases the actions sampled are closer

to the center of the distribution, thus closer to the actions

taken during exploitation.

4.3.2 Balancing the replay memory

The standard Replay memory management leads to an

unbalanced data set for training the agent because most of

the data collected comes from experiences with low reward

(high error) or actions that produce parameters leading to

numerical errors such as division by or log of zero, while

just a few experiences achieve a high reward (low error).

This unbalance is more noticeable at the beginning of

training, when the agent behavior is mostly random and

makes the agent to waste a lot of time learning what not to

do instead of what to do.

To solve this issue, in this paper we propose a Balanced

Replay memory based on the histogram that approximates

the distribution of rewards. Specifically, we use 30 bins, so

that each experience will belong to only one of them

depending on its reward. Then, we randomly sample the

same number of experiences from each bin obtaining a

balanced data set in terms of rewards for training. Since the

reward function is intrinsically related with the error val-

ues, the data will be also balanced in terms of error.

4.3.3 Hindsight experience replay

HER [45] introduces secondary goals to lessen the issues

rising due to sparse rewards. To this end, we first define the

following: the goal state, the stop state and the state

extension operation. Let sgoal ¼
�
vi;sðjÞ

�
for i 2 NI and j 2

NM be the goal state, consisting of the experimental data

used to fit the model, and let sX ¼
�
ci;sðjÞ

�
tend

also for i 2 NI

and j 2 NM be the stop state, which consists of all the

concentrations measured in the last iteration of an episode

(i.e., when the episode stops). Since we run 12 episodes per

round, there will be 12 sX, so let X be the set that contains

them all. Both the goal and the stop states are arranged in

vectors, and we define the state extension operation of two

states sa and sb as their serial concatenation, resulting into

an extended state denoted as ðsaksbÞ.
HER acts extending all the current and the next states in

the Replay memory both with the goal and the stop state. In

other words, each tuple ðst; at; stþ1; rt; l̂t; v̂pðstÞÞ yields two:
�
ðstjjsgoalÞ; at; ðstþ1jjsgoalÞ; rt; l̂t; v̂pððstjjsgoalÞÞ

�
;�

ðstjjsXÞ; at; ðstþ1jjsXÞ; rt; l̂t; v̂pððstjjsXÞÞ
�
;

(

which are stored in the Replay memory.

Finally, we replace the reward function given in (4) with

Fig. 4 Value of epsilon for

different exploration strategies

through iterations. Left Single
annealing. Center Multi-

annealing. Right Meta-

annealing
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R ¼
ð1=EMÞ � 1 if 0\EM\þ1;

0 if stþ1 is any sX 2 X;

�10 otherwise:

8
><

>:
ð5Þ

Since the error EM is always nonnegative, the lower it gets,

the greater the reward, and for EM [ 1, the reward is

negative down to �1. Besides, reaching a stop state has the

same reward than EM ¼ 1. Hence, the stop states are our

secondary goals for HER. As in the rest of variants, after

training the agent’s networks, the Replay memory is

emptied.

4.3.4 Incorporating expert knowledge

The agent is learning from its own trial-and-error experi-

ence in a continuous action space, so it is very unlikely for

it to take the best possible action. Since actions are due to

the Actor, which is trained with the Replay memory, a

possible extra aid is to store experiences that come from a

numerical optimization algorithm. We refer to this variant

as Optimizer, for Expert knowledge from an optimizer.

Specifically, we include an additional step of the Nelder–

Mead simplex optimizer [51] at the beginning of the

experiences collection stage of PPO. Thus, the Replay

memory has 12% of expert experiences each time the Actor

is trained.

5 Experiments

We present two experiments. The first one aims at

selecting one exploration strategy out of the three pro-

posed. In the second experiment, we use PPO to fit the

photo-fenton model to the experimental data holding the

exploration strategy chosen previously.

Both experiments follow the same schedule: For a

chosen agent, we execute a total of 9 tests, each one of

them with 12 episodes of, at most, 40 iterations; and all the

episodes are executed in parallel. The first three tests are

repeated for 11 rounds, the next three for 21 rounds and the

last three for 42 rounds. The number of rounds is chosen to

mimic a total execution time of 1, 2 and 4 hours per test,

although there is not a perfect match because many epi-

sodes may end before the 40th iteration. Indeed, every

continuous parameter is modified with increments of 0.1

within the range ð�20; 20Þ and every integer parameter is

Table 3 Experimental results of the different exploration strategies

for I, B, IB and DB agents in the peroxide smodel (colour

figure online)

The table shows the exploration strategy that gets the lowest error.

The plot below shows the occurrence of each strategy in the table

Table 2 All the different PPO

agents used
Type of action Replay mem. management Expert knowledge Starting point

Valid Random

Increments Standard None I I-R

Balanced None IB IB-R

Direct values Standard None D D-R

HER None DHER DHER-R

Balanced None DB DB-R

Optimizer DBO DBO-R

The two rightmost columns give the acronym of every agent solver resulting from the combination on its

left, with a valid starting point or a random (not necessarily valid) one
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in the interval [1, 40]. Hence, at the end of every test, an

agent has tested about 5,000 candidate set of parameters in

11 rounds and about 40,000 in 42 rounds, which is much

less than a grid search on the parameter space.

Finally, we take the human agent as a reference value

both for the error reached by the best solution proposed for

each model and for the total execution time, which is 4

hours as referred to in Sect. 4.1.1.

5.1 Exploration strategy selection

In this first experiment, wemake an ablation study about how

those different exploration strategies described in Sec-

tion 4.3.1 impact on the agent’s performance. To this end, we

try the agents identified as I, IB,D andDB; in otherwords, we

cross the two variants for taking actions (incremental and

direct) with and without balancing the Replay memory.

Besides, for the sake of compactness and computational

efficiency, the agents only optimize the peroxide model. The

reason is that the exploration strategy is a meta-algorithm

independent of the agent used, which is PPO and its variants,

and the optimization problem.Hence,we use this experiment

as a model to estimate the best strategy.

The experiment follows the schedule given above. We

run 3 tests per strategy, for each agent and each choice of

rounds, and report the errors for each agent split in three

ways: the lowest (Best), the greatest (Worst) and the

average error. For the sake of clarity, in Table 3 we only

report the winner strategy, i.e., the one with less error in

each split. Next, we count the number of times each

strategy is both in every split (the three rightmost columns)

and in the whole table, and show the results in the plot

below.

Table 3 clearly shows that meta-annealing strategy is a

better choice both in the worst and best test and it is similar

to single annealing in average. Hence, we select the meta-

annealing strategy for the next experiment.

5.2 Model fitting

In this section, we present the results using the complete

photo-fenton process as modeled in [11]. Specifically, we

aim at optimizing only the Peroxide and the Bacteria

models sequentially, as explained in Sect. 4.1.

5.2.1 Peroxide model optimization

First, we search for the set of parameters K�
P that minimizes

EMP
, the error of the peroxide model as defined in (2). To

this end, we follow the schedule given above, but this time

testing all the agents listed in Table 2. We report the lowest

error attained in the nine tests carried out by each agent

split as in Sect. 5.1, and the results are shown in Table 4. In

that table, bars in the Time column are scaled to the

interval [0:0:0] to [0:59:59], in hh:mm:ss format,

Table 4 Lowest errors attained on the peroxide Model with different

agents during a given number of rounds

Peroxide model (k1, k2, k3, k4, k5)

Agent Time Rounds Best Average Worst

Human 0.297 0.297 0.297

I 0:23:15 42 0.177 0.280 0.335

0:10:19 21 0.215 0.278 0.324

0:05:30 11 0.151 0.672 1.471

IB 0:22:07 42 0.157 0.221 0.284

0:11:46 21 0.179 0.197 1.477

0:05:39 11 0.482 0.837 1.481

D 0:51:39 42 0.148 0.153 0.158

0:32:07 21 0.157 0.174 0.186

0:18:44 11 0.224 0.244 0.254

DB 0:51:01 42 0.144 0.150 0.160

0:31:02 21 0.150 0.170 0.185

0:17:02 11 0.150 0.177 0.195

DHER 0:54:04 42 0.142 0.152 0.161

0:31:19 21 0.153 0.179 0.212

0:17:11 11 0.250 0.247 0.250

DBO 6:01:36 42 0.149 0.155 0.167

1:11:06 21 0.168 0.200 0.246

0:21:57 11 0.181 0.243 0.339

I-R 0:12:57 42 0.329 0.377 0.473

0:06:37 21 0.284 0.392 0.562

0:03:19 11 0.442 0.738 1.153

IB-R 0:14:59 42 0.234 0.266 0.307

0:06:56 21 0.281 0.667 1.418

0:03:28 11 0.200 0.988 1.481

D-R 0:13:01 42 0.142 0.150 0.157

0:06:31 21 0.163 0.188 0.201

0:03:22 11 0.162 0.241 0.295

DB-R 0:12:33 42 0.136 0.151 0.161

0:05:58 21 0.156 0.166 0.179

0:03:08 11 0.151 0.208 0.287

DHER-R 0:13:04 42 0.142 0.150 0.157

0:06:01 21 0.161 0.175 0.186

0:03:08 11 0.162 0.184 0.223

DBO-R 6:02:24 42 0.149 0.208 0.262

1:10:52 21 0.143 0.171 0.202

0:22:34 11 0.148 0.189 0.226

After repeating three tests, the table reports the best, average and

worst error achieved by the solutions of each test. The agents are

identified according to Table 2

Time is in format hh:mm:ss
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whereas bars in the three rightmost columns are scaled

between the minimum and maximum of every column.

A look at the Time column indicates that the use of

expert knowledge requires more than one hour per test

when running 21 or 42 rounds of it. We blame this poor

performance on the extra time the optimizer uses. Thus, in

comparison with the errors achieved with other agents, a

first conclusion is that DBO and DBO-R are candidates to

be dismissed. In the same line, agents D, DB and DHER

are also at the bottom of the ranking because their per-

formance in terms of error is similar to others that consume

much less execution time. These three agents require a

valid starting point, which is usually hard to find, so extra

time is required. The reason why I and IB perform faster is

that incremental actions are more conservative than direct

actions; hence, after finding a valid starting point, it is less

likely to move to an invalid one.

However, when the starting point is not required to be

valid, aggressive actions are more effective in moving to

another area of the parameter space in case of an invalid

start. Thus, D-R, DB-R and DHER-R achieve better per-

formance than I-R and IB-R, beating the human agent

(error of 0.297). Moreover, it takes barely 3 min to achieve

a K�
P of such quality even in the worst of the three tests

performed with only 11 rounds. In other words, the agent

consumes 3 minutes out of the 4 hours set as an upper

bound, leaving almost the entire time budget for tuning the

bacterial model.

5.2.2 Bacteria model optimization

In this section, we search for the set of parameters K�
B that

minimizes EMB
. We follow the same schedule as before,

but all agents without a random starting point are discarded

because of the excessive execution time, even those with

fewer rounds. For this reason, we modify the number of

rounds during the tests for the rest of agents, making then

to be 21, 42 and 84. Results are presented in Table 5.

DBO-R still takes a prohibitively long time for the same

reason than in Sect. 5.2.1; the optimizer needs that extra

time for providing expert knowledge to the Replay mem-

ory. The tests with 84 rounds also exceed the time budget.

Since the method proposed liberates the human of this task

entirely, one could consider leaving the computer to work

overnight if it achieves similar performance. Thus, given

around 6 hours, I-R and IB-R show to be able to approx-

imate the human performance (error 0.520) in the best and

the average of the three tests. For the rest of tests, the

average error is between 80 and 100% greater than the

human. However, errors lower than 1 result into a model

than predicts a drop on the bacteria concentration in the

same order of magnitude than those trials in which the

disinfection is more effective (trials 3–6).

5.2.3 Joint optimization

To decide which agent performs better jointly in both

optimizations, we can only compare those tried in both

models, i.e., those with ‘‘Random’’ starting point, denoted

with suffix -R. To this end, we plot the results of Tables 4

and 5 in the left and right panels of Fig. 5, respectively.

Both represent the error versus the agent. The blue dotted

and red dashed lines are the average error over three tests

for 21 and 42 rounds, respectively. The solid black line is

the sum of these two. The blue and orange areas are

bounded by the worst and the best error.

Thus, agent DB-R has the lowest errors in the peroxide

model and the second lowest average errors in the bacteria

model. Both IB-R and DB-R result into a similar average

error for 42 rounds, which takes almost 3 hours: one hour

less than the human. But IB-R, which is the best option in

the bacteria model, performs much worst in the peroxide

model lasting the same time than DB-R. Altogether, DB-R

Table 5 Lowest errors attained on the Bacteria Model with different

agents during a given number of rounds

Bacteria Model (kHO,kHO;repair,kHO;repair 2,ksolar;repair 2,m)

Agent Time Rounds Best Average Worst

Human 0.520 0.520 0.520

I-R 5:44:34 84 0.574 0.698 0.832

3:17:48 42 0.894 0.986 1.123

1:33:49 21 0.631 0.912 1.273

IB-R 6:27:13 84 0.596 0.716 0.760

2:58:31 42 0.771 0.841 0.894

1:45:27 21 0.567 0.718 0.959

D-R 5:26:56 84 0.803 0.878 0.945

2:43:40 42 0.931 0.989 1.028

1:45:23 21 0.916 1.026 1.163

DB-R 5:22:09 84 0.875 0.994 1.064

2:46:30 42 0.672 0.837 0.945

1:22:34 21 0.643 0.847 0.994

DHER-R 5:25:40 84 0.851 1.018 1.169

2:46:29 42 0.865 0.971 1.045

1:23:49 21 0.596 1.257 2.322

DBO-R 33:15:28 84 0.882 0.927 1.045

14:13:45 42 1.056 1.076 1.134

6:43:02 21 0.968 1.000 1.043

After repeating three tests, the table reports the best, average and

worst error achieved by the solutions of each test. The agents are

identified according to Table 2

Time is in format hh:mm:ss

Neural Computing and Applications (2023) 35:1379–1394 1389

123



is proposed as the agent with the best performance, able to

fit the experimental data in 21 rounds, with a total time

slightly below 1 hour and 30 min. Hence, with a time

budget of 4 hours and a half it is possible to run it three

times to have a notion of the uncertainty in the errors

attained.

6 Conclusion

In this paper, we show that DRL can be used to carry out an

optimization problem in a real-life task that requires a

human expert. Specifically, we use a PPO agent with up to

12 different variants and three exploration strategies.

Results show that the method proposed could free the

human from this task with little effort because the reward is

a simple relation with the error, the environment is the

model being fitted and the agent is the same that can be

used for any other DRL problem. Thus, the method could

work on any other environment modeled and programmed

as the one we deal with.

On the other hand, although we made some first steps,

further research in this area would be useful to completely

cover the needs of the engineers in which the use of

advanced optimizers is beyond their competencies.

Therefore, we suggest two possible guidelines for future

work in this area: (1) the integration of new DRL algo-

rithms beyond PPO. There are many possibilities when it

comes to selecting a reinforcement learning algorithm and

the benchmarks do not show a clear winner [14]. An

ablation study of some of state of the art DRL agent would

shed light on which one is preferable to use. (2) Introducing

techniques like activated gradients to boost the neural

networks convergence would encourage the DRL agent to

explore faster.

Appendix A Network’s architectures

Our PPO agent uses two independent neural networks: one

for the Actor and another for the Critic.

Actor network architecture

We use an input layer of 128 LSTM neurons with hyper-

bolic tangent activation, followed by a first hidden layer of

256 dense neurons with ReLU activation, a second hidden

layer of 256 dense neurons with ReLU activation and a

third hidden layer of 128 dense neurons with ReLU acti-

vation. The output layer is dense with as many neurons as

number of parameters to optimize depending on the model,

and its activation depends on the type of agent. Thus, I, I-R,

IB and IB-R use the hyperbolic tangent activation, whereas

all the others use the idendity activation.

Critic network architecture

The input and the first hidden layers are exactly the same as

in the Actor network. Then We use a second hidden layer

of 128 dense neurons with ReLU activation. The output

consists of a single dense neuron with identity activation.

Appendix B Data preprocessing

State normalization

Before being processed by the agent, the state is scaled to

range ½�1; 1�n, where n depends on the agent used.

Fig. 5 Average, best and worst

error of each agent for peroxide

(left) and bacteria (right) models

for tests of 21 (blue) and 42

(red) rounds. Blue dotted and

red dashed lines are average

error, blue and orange areas

bound the best and worst error,

and solid black line is the sum

of both average errors (colour

figure online)
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Peroxide data normalization

We scale every ci;sðjÞ, the H2O2 concentration values esti-

mated by the model, to keep them within the interval [0, 1].

It is possible because we know that the first estimated value

is greater than the rest for a given trial, except if it is a non-

valid one, such as infinite or null. In that case it is replaced

by �1.

Bacteria data normalization

The bacteria concentration ranges within 6 orders of

magnitude, between 106 and 0, which is ideal event of total

bacteria inactivation. For this reason, we use the base-10

log of the concentration instead. Once more, non-valid data

are replaced by �1

Fig. 6 Experimental H2O2 concentration measured in 12 different

trials (vi;sðjÞ, represented with marks) vs. estimated concentrations

(ci;sðjÞ, represented with lines) due to the model best fitted (lowest

error) with five versions of the PPO optimization agent, together with

the reference model [11]. For the sake of clarity, the 12 trials are split

in two panels, 6 above and 6 below
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Appendix C Qualitative results

Figures 6 and 7 show some of the best Peroxide and

Bacteria models, respectively, tuned with the best param-

eters found with the 42-round tests. We only show agents

I-R, IB-R, D-R, DB-R and DHER-R because these are used

on both models and give a total execution time less or

equal to three hours, which is 1 hour less than the reference

[11], also shown in the lower right corner.
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in two panels, 6 above and 6 below
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