
International Journal of Information Security (2023) 22:447–466
https://doi.org/10.1007/s10207-022-00643-1

REGULAR CONTRIBUT ION

SealFSv2: combining storage-based and ratcheting for tamper-evident
logging

Gorka Guardiola-Múzquiz1 · Enrique Soriano-Salvador1

Published online: 6 December 2022
© The Author(s) 2022

Abstract
Tamper-evident logging is paramount for forensic audits and accountability subsystems. It is based on a forward integrity
model: upon intrusion, the attacker is not able to counterfeit the logging data generated before controlling the system.
There are local and distributed solutions to this problem. Distributed solutions are suitable for common scenarios, albeit
not appropriate for autonomous and loosely connected systems. Moreover, they can be complex and introduce new security
issues. Traditional local tamper-evident logging systems use cryptographic ratchets. In previous works, we presented SealFS
(from now on, SealFSv1), a system that follows a radically different approach for local tamper-evident logging based on
keystream storage. In this paper, we present a new version, SealFSv2, which combines ratcheting and storage-based log
anti-tamper protection. This new approach is flexible and enables the user to decide between complete theoretical security
(like in SealFSv1) and partial linear degradation (like in a classical ratchet scheme), exchanging storage for computation with
user-defined parameters to balance security and resource usage. We also describe an implementation of this scheme. This
implementation, which showcases our approach, is an optimized evolution of the original sealfs Linux kernel module.
It implements a stackable file system that enables transparent tamper-evident logging to all user space applications and
provides instant deployability. Last, we present a complete performance evaluation of our current implementation and a fair
performance comparison of the two opposite approaches for local tamper-evident logging (i.e., storage-based vs. ratcheting).
This comparison suggests that, on current systems and general-purpose hardware, the storage-based approach and hybrid
schemes perform better than the traditional ratchet approach.

Keywords Cybersecurity · Logging · File system · Tamper-evident · Verification · Authentication · Forensics

1 Introduction

A tamper-evident logging system protects the integrity of
logging data generated in the past, following the forward
integrity model [1]. Upon intrusion, attackers may be able
to change the logging data generated in the past, but the
tamper-evident system will detect any integrity violation.
This way, forensic auditors are capable of detecting and dis-
carding counterfeit logging data.

There are different solutions to provide logging data
integrity that are based on distributed systems, such as

B Gorka Guardiola-Múzquiz
gorka.guardiola@urjc.es

Enrique Soriano-Salvador
enrique.soriano@urjc.es

1 Universidad Rey Juan Carlos, Madrid, Spain

traditional logging servers or modern systems based on
distributed ledger technology (like blockchain). Neverthe-
less, distributed solutions are not suitable or desirable for
loosely connected or disconnected systems. For example,
autonomous robotic systems that operate at isolated areas
must use a local tamper-evident system for their account-
ability subsystem. An accountability subsystemmanages the
robot information (sensor/actuator data, cognitive informa-
tion, etc.) to explain its behavior and determine whether it
has been caused an accident or malfunction: Any account-
ability data is useless if it can be faked by an attacker. Our
work focuses on local solutions.

Traditional local tamper-evident systems are based on
cryptographic ratchets [2,3] (i.e., hash chains, PRF chains,
linear Merkle trees, etc.). This approach is rather old [1,4–6].
Nevertheless, several recent works have evolved this scheme
to take advantage of new security hardware, etc.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-022-00643-1&domain=pdf
http://orcid.org/0000-0002-3713-6580
http://orcid.org/0000-0002-4265-4577

448 G. Guardiola-Múzquiz , E. Soriano-Salvador

In contrast, we designed and implemented a system that
follows an opposite approach [7]. SealFS (from now on,
SealFSv1) is a Linux kernel module that implements a stack-
able file system that enables tamper-evident logging. It uses
a long pre-generated keystream stored on cheap, large disks.
This long keystream provides keys to authenticate the data
appended to log files. Later, in audit time, a copy of the
keystream is used to verify the logging data. Themain advan-
tage of this approach is its simplicity.

These two approaches are complete opposites. SealFSv1
is closer to the extreme of the spectrum similar to the
one-time pad (OTP) encryption: the keys for authenticat-
ing the logging data are extracted from a pre-generated
cryptographically-secure pseudorandom stream stored on a
high capacity device. The pure ratchet approach is close to
the other extreme: continuous key derivation. The former
may waste a lot of storage space and be I/O bound. The lat-
ter causes linearly degrading security [1,7] and may be CPU
bound.

There is an open question regarding performance (i.e., the
time needed to append data to log files and the time needed
to verify the log files): Which approach performs better on
current general-purpose hardware? As far as we know, this
question remains unanswered.

In our previous work, we provided a quantitative perfor-
mance analysis of SealFSv1 [7], but we were not able to
compare it with ratchets in a controlled way. The SealFSv1
implementation (a Linux kernel module that implements a
file system) and the different ratchet implementations were
too different for conducting fair comparative experiments in
order to answer the previous question.

In this paper, we present SealFSv2, a new version that
combines both approaches. SealFSv2 uses a pre-generated
keystream stored in a device, but it is also able to derive a
set of keys by ratcheting. How many keys are obtained per
piece of the keystream is configurable by the user. More keys
derived means that the keystream will last longer (or occupy
less) butwill provide less (theoretical) security1. All the other
characteristics (dependencies, assumptions) stay the same as
in SealFSv1.

Given that SealFSv2 can be configured to behave as
SealFSv1, a ratchet and a hybrid, it can be used to conduct
comparative experiments to try to answer the previous ques-
tion.

1.1 Contributions

The contributions of this paper are:

1 For further details and discussion, see Sect. 4.4 of the original SealFS
paper [7].

– A novel ratchet/storage-based hybrid scheme for tamper-
evident logs. As far as we know, no other system follows
a similar strategy combining both approaches to enable
forward integrity.

– The description of a performance-tuned open-source
implementation of this scheme: a Linux kernel module
that provides a stackable file system and userspace tools
for verification. The description includes details about
fine-grained concurrency aspects and optimizations.

– The evaluation of our prototype, providing performance
data acquired from a custommicrobenchmark and a stan-
dard benchmark (Filebench [8]).

– A fair and solid comparisonof the twoopposite approaches
(ratchet vs. storage-based). Given that our system imple-
ments both approaches and it’s configurable, we are able
to compare them in a controlled environment.

1.2 Organization

The paper is organized as follows: Sect. 2 discusses the state
of the art, Sect. 3 presents our approach, Sect. 4 describes
the implementation of SealFSv2, Sect. 5 shows its evalua-
tion and the comparative experiments, and Sect. 6 presents
conclusions and future work.

2 Related work

There is a vast body of related work. We described the
main differences of SealFSv1 and closed related work else-
where [7]. This is a succint description of the different
solutions presented in the literature for logging integrity:

– Non-cryptographic models for accounting (e.g., the
system presented by Zeng et al. [9]) and integrity check-
ers (e.g., I3FS [10]). These systems are based on policies
and depend on a trusted platform (i.e., kernel, hypervi-
sor). Thus, they do not comply with a forward integrity
model if the whole system is compromised. Other solu-
tions based on virtualization (for example, see the scheme
proposed by Chou et al. [11]) have the same problem.

– Distributed solutions have a fundamental issue: they
do not work for loosely connected or disconnected sys-
tems. There are multiple distributed solutions: traditional
logging servers, cloud-based logging services (see for
example [12,13]), self-securing storage like S4 [14],
server-based systems that use history trees and ran-
domized binary search trees (hash treaps) [15,16] and
systems based on distributed ledger technology (DLT),
or Blockchain [17–21]. As stated before, we focus on
local tamper-evident logs.

– Traditional local solutions are based on cryptographic
ratchets [1–6,22].A ratchet is a one-wayderivation func-

123

SealFSv2: combining storage-based and ratcheting... 449

tion, i.e., a chain of non-reversible pseudorandom func-
tions, secure hashes, authentication codes (e.g., HMAC),
etc. A ratchet starts with a secret (or several secrets) and
provides a sequence of secrets, overwriting the used ones,
that will be used to authenticate data written to log files.
Given that the chain function is not reversible, the attacker
cannot find a secret used before she takes control of the
system. Therefore, after the intrusion, the attacker is not
able to silently fake already authenticated logging data.
The ratchet approach was proposed three decades ago.
Since then, some authors have evolved it. For example,
Ma et al. [23] proposed a scheme that combines authenti-
cation tags to be more efficient in terms of storage. There
are other works in the same line (e.g., [24–26]). Some of
these systems have security issues [27]. SealFSv1 used a
pure storage-based approach [7], storing all the keys used
to authenticate the logs. This approach was sketched by
Bellare et al. Random Key FI-MAC scheme [1], but it
was not feasible in 1997. As far as the authors know,
it was never implemented. Currently, changes in stor-
age technology have made it practical to implement.
Note that SealFSv1’s approach is not the same (it never
reuses the keys, its epoch is just one log message)
and the implementation is also novel. SealFSv2 com-
bines the ratchet approachwith SealFSv1’s storage-based
approach. A recent tamper-evident logging system based
on the ratchet approach is KennyLoggings [28]. In this
work, Paccagnella et al. describe a race condition present
inmost tamper-evident logging systems.KennyLoggings
provides forward integrity to Linux Audit (auditd), a
Linux subsystem used to trace kernel events2. Kenny-
Loggings is implemented inside the kernel and avoids the
cited race condition, satisfying the synchronous integrity
property. SealFSv2 runs in the kernel, but it does not
authenticate kernel events. It is a general purpose tool.
The goal is to provide forward integrity for application
logging data. SealFSv2 also satisfies the synchronous
integrity property (i.e., it is not vulnerable to the race
condition). Moreover, it does not depend on other kernel
mechanisms or subsystems like Linux Audit. Note that
the overhead caused by Linux Audit is very high [29] and
it affects the whole system. On the other hand, the mech-
anisms of SealFSv2 only affect processes appending data
to a few selected files (the protected logs), the rest of the
system remain unaffected.

– Systems based on specialized devices and secure hard-
ware. Old systems used WORM (Write Once Read
Many) devices and printers to enable logging integrity.
Modern systems take advantage of secure hardware. For
example, Sinha et al. [30] evolved the ratchet approach

2 Note that Linux Audit is not used for application data logging and
does not replace user space logging frameworks, syslog, etc.

to address some of the issues of previous proposals and
use TPM 2 (Trusted Platform Module). Other works use
secure enclaves with sealing/unsealing primitives to pro-
vide integrity and confidentiality of logging data [31–33].
SealFSv2 does not depend on specialized hardware to
enable tamper-evident logging.

In addition, some systems are extremely complex, while
SealFSv2 is focused on simplicity. As Schneier states, “com-
plexity is the worst enemy of security, and our systems are
getting more complex all the time” [34].

For example, Black Block Recorder (BBR) [17] is an
event data recorder for robotics. It follows a very complex
approach based on secure hardware, digital signatures, public
key infrastructure (PKI), ratchets, smart contracts and dis-
tributed ledgers. The robot executes a recorder process on
a secure enclave that captures the events, derives a linked
integrity proof based on a ratchet (i.e., HMAC chain), signs
and sends the data to a storage subsystem that binds the data
to the robot’s public identity with a digital certificate. Then,
the data are sent to another subsystem, the validator. The
validator is based on the Hyperledger Sawtooth [35], a com-
plex open-source ecosystem of blockchain development that
provides distributed ledgers and supports several consensus
algorithms (including a byzantine fault-tolerant one), par-
allelizable transactions, and so on. This validator keeps the
distributed ledger state and cooperates with other robots’ val-
idators.

Thiswork is very ambitious and its goals are different from
ours. SealFSv2 aims to provide a simple and understandable
local system to enable general purpose tamper-evident log-
ging (suitable for robotics or any other applications) without
depending on complex architectures (e.g., Hyperledger), spe-
cialized hardware, secure coprocessors, etc.

3 Scheme

3.1 Main ideas

The ideas behind SealFSv1 and SealFSv2 are similar. Both
use two different storage devices: α and β. α is an storage
device available when the system is running. β is an external
storage device that will be used to verify the logs in the future
(only available at audit time).

A pseudo-random keystream K is securely generated and
a copy is stored in α and β: Kα is the keystream stored in α

and Kβ is the keystream stored in β. Both have a header with
some metadata:

– Kheader .id: an identification number for the keystream.
– Kheader .of f : the current position, or offset, of the
keystream. It is initialized to zero.

123

450 G. Guardiola-Múzquiz , E. Soriano-Salvador

After configuring the system,β is physically disconnected
and kept in a safe place.

When the system starts to execute (i.e., normal operation),
a file (SE ALlog) is used to store the authentication data and
metadata for the data appended to the log files. Chunks of Kα

are read and used to authenticate the data written in log files.
Used chunks are removed from α (they are burnt). Thus, Kα

will be burnt from offset 0 to offset Kαheader .of f − 1,
SealFSv2 uses an extra parameter, N RATCHET . It is

not stored in the header, it must be provided as an argument
when the system starts to execute. This value is the number of
derived keys per chunk read from Kα . When N RATCHET
is greater than 1, we say that the key is ratcheted.

In audit time, the volumes with the log files, both α and
β, are attached to a trusted computer. Then, SealFSv2 is able
to detect if some parts of the log files that were generated in
execution time (before the possible exploitation) have been
modified.

Note that, upon full system compromise, the leaked keys
are the same for any N RATCHET value. None of the
keys used before the attacker elevates privileges are leaked,
because they have been burnt or ratcheted. All the keys used
since the attacker elevates privileges will be compromised:
The adversary could get them directly from the keystream
(disk) or from the internal state of the ratchet (memory).

3.2 Threat model

The threat model is similar to that in SealFSv1 [7]. Briefly:

– The asset is the logging data generated while the system
is not compromised. We focus on the forward integrity
model [1].

– Before the exploitation, the adversary has no access to K
(α or β).

– Upon exploitation, the adversary has total control of the
system (software and hardware).

Storage devices (α and β) must be big enough to store a
long keystream. There is also an important assumption: The
deletion procedure used by the system to burn Kα is secure.
Once data is erased, it cannot be recovered by the attacker.

For SealFSv2, there is a new assumption: The adversary
may be able to compromise the security of keys derived by
the ratcheting algorithm due to linear degradation [1]. The
threat grows proportionallywith the value of N RATCHET .

3.3 Appending data to log files

The system needs extra space to store five integer values
and a secure digest per write operation (independently of the
number of bytes written).

HMAC(key,msg) is a secure message authentication
code algorithm based on a keyed-hash [36]. The input of
the function is a key and a message. The output is a secure
digest of the message that depends on the key.

Only appendwrite operations are allowed (i.e., write oper-
ations at the end of the log file). When some data Di of size
Dszi has to be appended to a log file L at offset Lof fi , the
following operations are executed (see algorithm 1):

1. The data is appended to the log file.
2. The current offset of Kα is read from its header.
3. If the ratchet is consumed (i.e., this iteration is a multiple

of N RATCHET) a chunk of keystream (Ci) is read from
Kα . We use a circular counter initialized to 0, Rof f , to
detect if the ratchet is consumed (when Rof f equals 0, it is
consumed). The chunk size, which determines the length
of key consumed per write is constant (Csz) and indepen-
dent of the size of the write to the log. The updated offset
of Kα is written to its header. Then, the corresponding
chunk of Kα must be burnt. This is done asynchronously
by another burner process when notified. This process is
woken up whenever a piece of key must to be burnt and
executes Algorithm 2.

4. If the key is ratcheted, the ratchet advances:

K = HMAC(K , Rof f ||N RATCHET)

We will refer to this, which generates a new key compu-
tationally from the last one, as the ratcheting algorithm
(see Algorithm 3 and Fig. 1).

5. The HMAC of the concatenation of the log id (L , which
identifies uniquely the log file), the offset in the log
(Lof fi), the data length (Dszi), the offset in Kα for Ci

(Cof fi), Rof f and the data (Di) is calculated (HMACi).
K is used as the key. Later, the key K will be overwritten
by the next key (either by ratcheting or reading from the
file).

6. A record R with fields

[L, Lof fi , Dszi ,Cof fi , Rof f , HMACi]

is created. Note that when the key is ratcheted, all records
are implicitly labeled with the number of pending derived
keys for the current chunk of keystream (Ci).

7. The record R is appended to SE ALlog .
8. The circular counter that represents the number of keys

generated by this ratchet is incremented3:

Rof f = (Rof f + 1) mod N RATCHET

3 Note that mod represents themodulo (remainder of the division oper-
ator).

123

SealFSv2: combining storage-based and ratcheting... 451

Algorithm 1 describes this procedure. Note that the
records of SE ALlog are always sorted according to the key
used (ratcheted or not). Being Ri and R j two contiguous
records in SE ALlog , Ki and K j their corresponding keys,
then K j is always the next key for Ki : if the key is not ratch-
eted, Ki is the previous chunk of keystream; if the key is
ratcheted, K j is the first derivation from Ki (or the next chunk
when the ratchet was consumed).

Algorithm 1 Write algorithm
1: append Di to L at offset Lof fi
2: if Rof f == 0 then
3: Cof fi ← Kαheader .of f
4: Ci ← Kα[Cof fi . . .Cof fi + Csz − 1]
5: K ← Ci
6: Kαheader .of f ← Cof fi + Csz
7: notify burner process to burnt (Ci) from Kα

8: end if
9: if N RATCHET �= 1 then
10: K ← HMAC(K , Rof f ||N RATCHET)

11: end if
12: Hi ← HMAC(Ci , L||Lof fi ||Dszi ||Cof fi ||Rof f ||Di)

13: R ← (L, Lof fi , Dszi ,Cof fi , Rof f , Hi)

14: append R to SE ALlog
15: Rof f ← (Rof f + 1) mod N RATCHET

Algorithm 2 Burning algorithm
1: Kα[Cof fi . . .Cof fi + Csz − 1] ← RANDOM()

Algorithm 3 Ratcheting algorithm
1: K ← Kα[Cof fi . . .Cof fi + Csz − 1]
2: for i = Rof f prev, i < Rof f do
3: K ← HMAC(K , i ||N RATCHET)

4: end for

3.3.1 Concurrency

Note that write operations are concurrent (for the same log
file and for different log files). The write algorithm must be
executed with synchronization between different processes
to preserve the integrity of Kαheader .of f , the order of
SE ALlog and the relationship between Rof f and the key.
This may be problematic.

In Algorithm 1, there are two atomic blocks: red block
(line 1) and the blue block (lines 2-15). There could be over-
runs of concurrent processes performing write operations
for the same log file L: a process A can overrun a process B
between these two atomic blocks. The time window is short,

but it is possible4. In other words, for the same file L , being
Lof fi < Lof f j , a record Ri with offset Lof fi could be
written to SE ALlog after a record R j with offset Lof f j .

SealFSv2 takes care of that disorder, which is handled
by the verification algorithm (see Algorithm 4). The write
algorithm of the previous version [7] ignored this detail,

which is important in practice and affects the performance
of the final implementation.

In practice, an overrun would happen before or after an
attack: It is extremely improbable to happen in themeantime,
cluttering a genuine write and a malicious write. Anyway,
from the point of view of the auditor, both (genuine andmali-
cious) should be considered post-exploitation records.

3.4 Verification

When the auditor needs to verify a log L , to see if it has
been manipulated, she has to attach the β device and execute
algorithm 4 which also uses algorithms 5, 6, 7 and 8.

First, the keystreams are checked: their size and id
numbers must match and the burnt area must end at
Kαheader .of f . Then, all the records of SE ALlog are veri-
fied sequentially. Note that:

– The keystream is burnt sequentially. The keystream pre-
ceding Kαheader .of f has to differ between Kα and Kβ

and be the same (unburnt) after.
– Records are ordered in SE ALlog with respect to their key

index (if the key comes from ratcheting, by Rof f). That
is, given two contiguous records, their corresponding
keys must be contiguous (with respect to the combined
index of their keys). In the verification algorithm, OK and
Rof f are used to check that. OK is the current offset of
the keystream. Rof f is the current offset of the ratchet.

– As explained before, records in SE ALlog belonging to
a log L are partially ordered (by R.Lof f). To give the
implementation wiggle space for performance, the log L
can be slightly out of order with respect to SE ALlog . In
any event, the data areas defined by all the recordsmust be
contiguous: if there is a gap, the verification always fails.
An array, O[], contains a position and a small heap5 for
each log file. This array is used to order the file efficiently
while it is being read and check this invariant.

The corresponding chunk of the keystream is read from
Kβ (at offset R.Cof f). If the key is not ratcheted (i.e.,
N RATCHET = 1), the key K is just the chunk. Else, the
key is ratcheted to R.Rof f generating K . In this case, when

4 As we will see later, in our implementation, that could only happen
for concurrent write system calls from different processes, for the same
file.
5 A data structure used to implement efficient priority queues.

123

Fig. 1 Ratchet example with
N RATCHET = 3

verifying many consecutive records, the last key is kept in a
cache (see Algorithm 7). The key cache takes care of reading
the keystream on demand and ratcheting it to the point as
needed in an efficient manner.

The data described by a record R is read from the log
file (file L , from position R.Lof f , length R.Dsz) and the
HMAC is regenerated using K . The new HMAC and the
HMAC stored in R are compared. If they are not equal, the
verification fails for L . Given that it is a secure HMAC, the
attacker will not able to forge any HMAC of SE ALlog or
deduce the key K (ratcheted or not) for any record stored in
SE ALlog .

The verification algorithm also fails if:

– The adversary removes any record for a log L from
SE ALlog . All possible keys (ratcheted or not) already
burnt in Kα must be used to verify records (the keys
are extracted from Kβ). Detection is easy: If a record is
removed, a key will be unused.

– SE ALlog is truncated and the corresponding lines of the
log files are deleted. As in the previous point, this will be
detected with the keys extracted from Kβ .

– Any log file (L) is modified, truncated or shortened, or
data are taken from it. In this case, the HMACs will not
match.

– Any field of the records of SE ALlog is modified. Again,
the HMACs will not match.

– Two different records of SE ALlog overlap for a file log
L: If there is intersection between the areas defined by
the records for L (defined by fields Lof fi and Dszi), the
verification will fail.

We use a heap for each log file L to check that there are
no holes. In other words, we verify that the log file has been
completely and contiguously covered by the records.

In the verification algorithm, contiguous records are
popped from the corresponding heap in each iteration (see
Algorithm 5). At the end of the verification algorithm, all

SealFSv2: combining storage-based and ratcheting... 453

Algorithm 4 Verification algorithm
1: if si ze(Kα) �= si ze(Kβ) or Kαheader .id �= Kβheader .id then
2: FAIL()
3: end if
4: P ← Kαheader .of f
5: if Kα [P −Csz . . . P − 1] = Kβ [P −Csz . . . P − 1] or Kα [P . . . P +Csz − 1] �=

Kβ [P . . . P + Csz − 1] then
6: FAIL()
7: end if
8: OK ← 0
9: Rof f ← 0
10: N RATCHET ← 1
11: for each record R of SE ALlog do
12: if ((OK /Csz)/N RATCHET) ∗ Csz �= R.Cof f or Rof f �= R.Rof f then
13: FAIL()
14: end if
15: if O[R.L] is not initialized yet then
16: O[R.L] ← R.Lof f
17: end if
18: if O[R.L].heap is full then
19: FAIL()
20: end if
21: push R onto O[R.L].heap
22: pop contiguous from O[R.L].heap
23: if N RATCHET not detected then
24: N RATCHET ← ratchet_detect(R, K)

25: end if
26: K ← keycache(OK , Rof f , N RATCHET)

27: I sOkEntry ← verify entry R for K , OK , L
28: if not I sOkEntry then
29: FAIL()
30: end if
31: O[R.L] ← O[R.L] + R.Dsz,
32: OK ← OK + Csz
33: Rof f ← (Rof f + 1) mod N RATCHET
34: end for
35: for each log file L do
36: pop contiguous from O[L]
37: if O[L].heap not empty then
38: FAIL()
39: end if
40: end for
41: if (OK /Csz) mod N RATCHET �= 0 then
42: FAIL()
43: end if
44: SUCCESS()

Algorithm 5 Pop contiguous algorithm
1: done ← f alse
2: while O[L].heap not empty and not done do
3: Raux ← O[L].heap.min
4: if O[L] �= Raux .Lof f then
5: push Raux onto O[L].heap
6: done ← true
7: else
8: O[L] ← O[L] + Raux .Dsz
9: end if
10: end while

Algorithm 6 Ratchet detection algorithm
1: for NRATCHET in 1..MAXN RATCHET do
2: K ← keycache(OK , Rof f , N RATCHET)

3: I sOkEntry ←verify entry R for K , OK , L
4: if I sOkEntry then
5: return N RATCHET
6: end if
7: end for
8: FAIL()

Algorithm 7 Key cache algorithm
1: K , OKprev , Rof f prev ← last stored K , OK , Rof f
2: if OK = OKprev and Rof f = Rof f prev then
3: return K :HIT
4: end if
5: if OK �= OKprev or Rof f prev > Rof f then
6: K ← Kβ [OK . . . OK + Csz − 1] :REKEY
7: Rof f prev ← 0
8: end if
9: if N RACHET �= 1 then
10: K ← ratchet(K : Rof f prev → Rof f , N RATCHET)

11: end if
12: store K , OK , Rof f :LOAD
13: return K

Algorithm 8 Verification algorithm for an entry
1: MD ← R.L||R.Lof f ||R.Dsz||R.Cof f ||R.Rof f
2: D ← R.L[R.Lof f . . . R.Lof f + R.Dsz − 1]
3: H ′ = HMAC(K , MD||D)

4: if H ′ �= R.H then
5: FAIL()
6: end if

heaps are checked. If any heap is not empty, the verification
fails because some areas of the log files have not been covered
or the attacker inserted fake records in SE ALlog .

The size of the heap defines the level of disorder permitted
for the verification. The heap must be big enough to support
the possible overruns produced by the synchronization of
concurrent processes performing append operations for a log
file L . Note that an out of order append is, in general, a very
improbable event in a real scenario.

Modular log verification (i.e., verifying only a portion of
L) could be done similarly to complete verification, as in
SealFSv1.

3.5 Ratcheting

In general, when using a pure ratchet, the entropy of the sys-
tem is limited to the size of the initial secret or seed, because
the security of the chain degrades linearly with the number
of iterations (i.e., epochs) [1]. We combine ratcheting and
rekeying from disk and burning the piece of the keystream
to provide us with the necessary forgetful (non-reversible)
process. This makes it theoretically more secure even if it
uses more disk space. In SealFSv2, space can be exchanged
for security by using different values of N RATCHET .

Setting N RATCHET = 1, SealFSv2 behaves as
SealFSv16. Setting a greater value for N RATCHET moves
the needle in the other directionwith smaller demands on disk
usage in exchange for linearly degrading the entropy inside
the ratchet chunk. Every N RATCHET chunk we reseed
the entropy of the secret, which degrades linearly.

6 Taking into account that the new version is performance tuned.

123

454 G. Guardiola-Múzquiz , E. Soriano-Salvador

Theoretically, security increases with entropy. Given a
perfect random number generator7 to create the keystream,
the entropy of the keyswould bemaximum if N RATCHET
= 1. In practice, there is a trade-off betweenpractical security
and resource usage (space and time). How many resources
are expended should be the result of a risk/benefit analy-
sis. SealFSv2 permits to adjust the level of entropy with the
N RATCHET parameter and leaves this analysis to the user
(which must define the threat model, etc.).

Our schemeprovides almost randomaccess to thekeystream
(taking in account each access may have to ratchet the key
for that position N RATCHET times or less) in verification
time; we do not need to calculate all the keys, only the offset
from the last rekeying. Pure ratchet-based keystreams must
be regenerated from scratch to verify the logs (even to verify
a small part of a single log file). This can be a problem for
large log files.

Ratcheting introduces some interesting issues. When the
key is ratcheted, no chunk is burnt from the keystream. In
order to preserve the guarantee that L cannot be truncated
without detection (given by line 13 in Algorithm 4), we have
to burn fake entries in SE ALlog when the system stops. Once
the system is stopped, the number of entries in SE ALlog will
be an integer multiple of N RATCHET .

These entries correspond to a special log file which does
not exist8. If SE ALlog does not contain N RATCHET ∗ n
number of entries, then it has been tampered with. Else, the
log is correctly sealed.

Another important detail is that the valueof N RATCHET
is not written anywhere, but it is used to derive the keys. In
order to recover the value of N RATCHET in the verifi-
cation, different values are tested on the first entry until the
HMAC matches. We call this process ratchet detection (see
Algorithm 6).

In our original paper [7], we provided some anecdotal evi-
dence of the service that could be provided by 32GB under
normal usage of the system (14 years) and under heavy usage
(like a Hadoop Server: 1.2 years). Ratcheting the key with
N RATCHET = 64 already scales any of this servers well
beyond its usable lifespan evenwhile taking into account that
keys in SealFSv2 are 32 bytes long and in SealFSv1 occu-
pied 20 bytes which gives a lifespan of they keystream of 560
years and48years, respectively.Given thatwe change the key
every 4 years, we could do for the worst case (the server with
heavy usage)with 3GB. These smaller sizesmake key gener-
ation andmanaging simpler and faster. Howmuch should our
could N RATCHET grow? It depends on two factors: How

7 Note that we do not define or impose the source for the keystream;
this is out of the scope of our work. We recommend to use a CSPRNG
properly reseeded with specialized hardware.
8 In our implementation, it has a special invalid i-node number as we
will explain.

much disk is available for SE ALlog (remember that stop-
ping the system may cost some N RATCHET log entries)
and how much theoretical security we want to provide. The
bigger the N RATCHET , the more we spread the entropy
of the original keystream chunk.

4 SealFSv2 implementation

The implementation of SealFSv1 is described elsewhere [7].
It is a stackable file system, which is mounted on top of
another filesystem to provide extra functionality. The file
system is implemented as a Linux kernel module. The
implementation of SealFSv2 is an evolution of the original
filesystem. It serves the same objects (files and directories)
as the underlying directory (the mount point) and hooks the
write operations that append data to files in order to execute
the write algorithm described in the previous section. Note
that there can be independent instances of SealFS mounted
in separate points if needed to isolate applications.

The authentication procedure described by Algorithm 1 is
transparent for the different concurrent user space processes:
they manage log files as usual (by opening the log file and
performing append write system calls). Like the previous
version:

– It uses the i-node number to identify files (this is impor-
tant for log rotation by renaming). It provides the same
numbers than the underlying filesystem. Some times,
SealFSv2 uses fake, invalid i-node numbers for the fake
records used to seal SE ALlog when needed (as explained
in Sect. 3.5). A problem of using i-nodes as identifiers for
files appears if thefiles are copied somewhere else for ver-
ification. In this case, their i-node numbers will change.
To this effect, the new verification tool accepts a list of
i-node number mappings (from the original number to
the number in the new filesystem) so the verification can
still be done.

– The current implementation uses the HMAC-SHA-
256 [36] algorithm to authenticate the logging data. The
key length used for the algorithm is 32 bytes (indepen-
dently of the value of N RATCHET).

4.1 Concurrent writes

When a user process performs a write system call, the
SealFSv2 hook is called (in kernel space). Then, the hook
function has to execute the write algorithm. It performs the
write to the underlying file and when it is completed, the
actual number of bytes written to the file is known. Then,
SealFS synchronizes the i-nodes and calculates the real offset
for this write operation (current size minus the number of
bytes returned by the write operation).

123

SealFSv2: combining storage-based and ratcheting... 455

Two mechanisms are used for synchronization:

– To synchronize the processes, we use the lock stored in
the i-node for each file. Write operations over different
files can be executed concurrently.

– A global per mount point (i.e., SealFS instance) mutex is
used to preserve the order of operations in SE ALlog and
protect the offsets in the header of Kα . After the append-
onlywrite is done and the real offset is known, the process
acquires the global mutex to execute the blue block of
algorithm 1. Once the key is calculated and the offset
for the SE ALlog is known, the global mutex is released
and each process can proceed independently. Note that
the global mutex is acquired after writing to the log file.
Overruns described in Sect. 3.3.1 may happen here, after
releasing the i-node lock and before acquiring the global
mutex. It is not probable, but it is possible. We tolerate
this race condition, which does not affect correctness, in
order to avoid a bigger critical region (that should include
the slowwrite operation). Such a big critical regionwould
cause too much contention and performance issues. As
explained before, this benign race condition is compen-
sated by the verification algorithm.

4.2 Burning the keystream

When our system consumes a chunk of the keystream, the
chunk needs to be burnt. In theory, overwritten data can be
recovered through complex analysis performed in highly spe-
cialized laboratories [37]. In practice, for current high density
magnetic disks, it suffices from 3 to 7 write passes with pseu-
dorandom data [38]. Other kinds of storage devices (e.g.
SSD) may be trickier. In this case, we should use the tools
provided by the manufacturer. Thus, our implementation for
keystream burning must be extensible.

From the standpoint of correctness and performance, how
to coordinate the kernel and the processes (those performing
the write system call) is another important synchronization
issue. There are various prerequisites to be met:

– The costly burnprocessmust not interferewith the perfor-
mance of the user process by delaying the write operation
response.

– The first burn must happen as early as possible to narrow
the window of opportunity of an attack.

– An easy way to extend and implement new burning pro-
cedures (alternatives for pseudorandom overwrites) must
be in place.

In SealFSv1, the first pseudorandom overwrite was done
synchronously in the hook function. Thus, it is executed in
the context of the user process performing the write system
call. This had two problems with respect to performance:

– The user process had to wait for it to finish to return to
user space.

– The operations could not be batched when there were
multiple processes writing at the same time.

To alleviate these problems, SealFSv2 does it asyn-
chronously. It runs various kernel threads namedk_sealfsd
with the main objective of burning the keystream. These
threads do not have user space and cannot be killed, so it
is guaranteed that they will keep running until the file system
is unmounted.

All k_sealfsd threads are woken up periodically and
go to sleep when there is no work. We make the window
for burning as small as possible by waking up one of them
whenever a write is done. Whenever one of these threads is
active, it will burn as much keystream as possible batching
various regions together if the burnt offset advanced more
than one time while it was sleeping.

These threads try to synchronize the portion burnt of the
keystream as much as possible within the Linux kernel (call-
ing vfs_fsync_range which is not necessarily honored
by all filesystems, but is the best that can be done).

After thewoken up thread burns that portion, the other ker-
nel threads will periodically try to re-burn the same region
(once per thread). While one of the threads is woken up
explicitly by the writing process, the others wake up at regu-
lar intervals. This could make them interfere if they happen
to synchronize by chance. In order to keep that from happen-
ing, following a strategy inspired by cicadas9, the threadswill
wake up at intervals which are relatively prime, lowering the
number of collisions even in the presence of some random
interference between threads.

In order to keep the kernel threads abreast of the portion
that needs to be burnt (and can be burnt), they share an inte-
ger using atomic integer operations on a shared variable. This
variable is different for each SealFSv2 instance (i.e., mount
point). This is done in order to keep the interference minimal
and keep the kernel threads running independently as much
as possible. Given that the only communication between
these kernel threads happens through an atomic variable, the
semantics of the memory model of the Linux kernel has to be
carefully considered. Note that if the semantics are relaxed
enough (like those in C11 [39]), the read from the keystream
could be performed after the key is already burnt. In our case,
it cannot happen, because the Linux kernel documentation10

states explicitly that “read-modify-write (RMW) operations
that have a return value are fully ordered” and “fully ordered
primitives are ordered against everything prior and every-
thing subsequent.”

9 Insects of the genusMagicicadawith long life cycles defined by prime
numbers.
10 /Documentation/atomic.txt file in the Linux kernel tree.

123

456 G. Guardiola-Múzquiz , E. Soriano-Salvador

In other words, an atomic operation which returns a value
behaves as if a full memory barrier was executed before and
after the operation.

After the first write by the woken kernel thread, it is con-
siderably difficult to recover the burnt portion without a very
specialized lower layer attack. Note that the other kernel
threads will also rewrite the portion later.

Apart from the k_sealfsd threads, there is a user space
service (in Unix terminology, a daemon) named sealfsd.
This daemon can read the current offset from the file header
(Kαheader .of f), which is kept synchronized by the kernel
threads. Then, it can perform extra burning actions by imple-
menting further deleting strategies. Being in user space, it can
be easily modified. Thus, it covers the extensibility require-
ment discussed before. Note that the blocks being written by
the k_sealfsd threads and the sealfsd daemon are not
accessed by our driver anymore. Therefore, the interference
is minimal (just exchanging an integer: the offset). The extra
bandwidth required by sealfsd is negligible compared to
the normal use of the disk11.

Keeping this integer (the offset) advancing uniformly
without holes, requires making the update of the integer and
the read of the key an atomic operation, which means keep-
ing a lock acquired for the clients. More complex strategies
can make this more efficient in theory (for example, by using
a more complex data structure to keep the pieces which are
burnt in a non-contiguousway). Thiswouldmeanmore inter-
ferencewith the kernel threads, whichwould either share this
data structure (with more synchronization problems) or send
individual operations through them.

We tried some of these methods and they ended being
similar or worse in performance while introducing signif-
icant complexity and memory management problems. We
also tried simply using a lock but, while simpler, the con-
tention makes performance drop (remember this would be
one lock per mount point). This last strategy is the one we
followed in SealFSv1, which performs worse than SealFSv2.
Note that SealFSv2 also includes other optimizations. For
example, to make the writes faster and not allocate memory
and copy the content of the user buffer to it, it maps the corre-
sponding pages and hashes the user memory directly, which
is considerably faster (not only do we save the copy and pol-
lution of the cache, but the contention when allocating the
memory).

The solution of a uniformly advancing integer appears to
be the best compromise between simplicity and performance.
It also enables thesealfsd daemon to use the same strategy
(by reading the integer from the header of the log, which is
updated periodically by the burner threads). Another strategy

11 Note that a disk block holds 16 keys in the current implementation.
Re-burning the last portions of keystream only requires rewriting a few
blocks.

which may help is to use a raw device (a partition or a raw
hard disk) to keep the keystream. This has some advantages
and some disadvantages. First, it gives us finer control of how
many copies are in the disk (discounting the extra ones make
by the vendor disk firmware). It reduces the interference of
the filesystem. In exchange, we loose the consistency pro-
tection offered by the filesystem, specially for the metadata
(the journal and so on) in case of a loss of power.

4.3 Ratcheting

One important detail to take into account is that the ratch-
eting process is stateful. The last key ratcheted is kept in
memory. Upon reboot, it would be lost. The state on disk
is the keystream. In order to be able to unmount and reboot
gracefully, we add some extra log entries (with length zero
and a special invalid inode) in order to consume the rest of
the ratcheting process. This way, when the first write after a
mount occurs, it provokes a rekey, and it can continue nor-
mally.

Unmounting the system triggers the sealing process.
This way, it is guaranteed that there is a one-to-one map-
ping between the index of each log entry and the tuple
< key, ratchet, of f set >. Take into account that this
wastes N RATCHET log entries per unmount, which can
be significant if N RATCHET is big.

Away to alleviate thiswould be towrite only the first entry
of the seal and consider that one to represent N RATCHET
entries and advance the offset for the first write after the next
mount. Then, the filesystemwould leave a hole of the correct
size with zeroes. Many filesystems have support for holes,
so the seal would occupy in them almost no real disk size
(while keeping the mapping between keystream and offset).

4.4 Tools

There are other user space tools, like in SealFSv1 [7]. The
dump command lists all the records of SE ALlog . The prep
command creates the keystreams Kα and Kβ by reading data
from a the secure pseudorandom data generator. Note that
prep does not know anything about N RATCHET ; it is a
parameter for mount. Both commands are similar to the ones
in SealFSv1. The verify command implements the verifi-
cation algorithm described in Sect. 3.4. In addition, the new
version accepts parameters to map i-node numbers (needed
to verify the files in a different Ext4 filesystem).

4.5 Testing

Wehaveused amachine emulator andvirtualizer,QEMU[40],
and a minimalistic Go userspace, U-root [41], to build a test-
ing environment. This environment is easy to understand and
highly maintainable. It allows us to automatically run a set

123

SealFSv2: combining storage-based and ratcheting... 457

of end-to-end regression tests. It has worked very well for
testing and preserving the sanity of the developers.

In this environment, QEMU starts a Linux system that
mounts the SealFSv2filesystems, runs the tests, and unmount
them, without any interaction with the user. Thanks to the
minimalistic nature of U-root, this can be done in less than
350 lines of simple shell scripting code.

5 Evaluation

In order to perform a complete evaluation of the system, we
have conducted two different experiments using:

1. A microbenchmark similar to the one described in [7],
where we used the timestamp counters (TSC) of the cores
from a user space process to measure the time in cycles
elapsed during awrite system call on a SealFSv2mounted
over an Ext4 filesystem.

2. A standard benchmark,Filebench [8], also for a SealFSv2
mounted over an Ext4 filesystem.

The machine we have measured it in is a 1.60GHz Intel
Core i5-10210UCPUwith 6144KBof cache, 16GBofRAM
and an SSD hard disk model HFM512GDJTNI-82A0A. The
machine runs Ubuntu Linux 20.04with a 5.4.0 x86_64 Linux
kernel.

5.1 Custommicrobenchmark

Unless explicitly stated otherwise, measurements have been
taken at least 1000 times and then the median value obtained.
Before each measurement round, all the caches of the system
are dropped to minimize interference and some writes are
executed to preheat the cache.

Wehavemeasured different versions of the kernelmodule:

– vers_PASS: A version which is a pass through filesys-
tem. In this version, the overhead is caused only by
traversing our intermediate filesystem (with all the rest
of the code commented).

– vers_NOHMAC: A version without the HMAC calcula-
tion (the HMAC code is commented in this case). Note
that this version does not strictly work: The verification
will fail. It is only used for measuring against the reg-
ular version with different number of processes and for
various values of N RATCHET .

– vers_NRATCHET N : A regular complete version with
several values N for N RATCHET .

– vers_NORATCHET: A version of the kernel with the
ratchet code commented. Note that vers_RATCHET 1
is the just the regular version with N RATCHET =
1 (i.e., no ratcheting). It is logically equivalent to

vers_NORATCHET, and should be functionally equiva-
lent, but it is not. The reason is that vers_RATCHET 1
has a conditional jump that controls if it has to do the
ratcheting or not. For performance reasons, this condi-
tional jump is annotated to hint the branch unit the wrong
way: it is biased toward not rekeying (normally, with any
value of N RATCHET > 2 this is a good idea). The
penalty for this wrong speculation is big for that case.

Note that the colors in the microbenchmark graphs cor-
respond with the numbers derived as we explain next. We
can estimate by calculation the approximate cost of each
part of the final code by subtracting the measurements of
the different versions to the baseline version: a basic naked
Ext4 filesystem (labeled as ext in the graphs). For exam-
ple, the median cost of a write in SealFSv2 configured with
N RATCHET = 4 can be decomposed as:

– Cost of the Virtual Filesystem Switch (VFS) and book-
keeping of the stacked filesystem:

OV ERLAY = vers_PASS

– Cost of computing the HMAC of the user data and log
entry:

HMAC = vers_NORATCHET − vers_NOHMAC

– Cost of ratcheting the key:

RATCHET = vers_RATCHET4 − vers_NORATCHET

– Cost of reading a new key and general key bookkeeping:

REK EY I NG = vers_RATCHET 4 − RATCHET

−HMAC − OV ERLAY

We ran the experiments for different values of
N RATCHET (labeled as ratchet001, ratchet002,
etc. in the graphs). We also ran the experiments with
processes sharing thefile descriptors for openfiles (i.e., inher-
iting them already open, suffix -s in the labels) and without
sharing them (i.e., opening them after creating the process,
suffix -p in the labels). Note that the Linux kernel acquires
a lock when the file descriptor is shared12 in order to protect
the file descriptor offset from race conditions.

We first ran the experiments with a write size of 100 bytes
(which is around what is normally written in a log, see [7]
for the rationale) and for different number of processes and
with and without shared file descriptors. Later, we ran the

12 See file.c, the __fdget_pos function in the Linux kernel.

123

458 G. Guardiola-Múzquiz , E. Soriano-Salvador

(a)

(b)

Fig. 2 Ext4 versus different SealFSv2 configurations, with shared (-s)
and non-shared file descriptors (-p)

experiments with different write sizes for non shared file
descriptors, 1 and 64 processes.

In Figs. 2 and 3, we depict the results of the calculations
described above. Note that writing to the filesystem happens
asynchronously (through the file cache), so the cost we mea-
sure for Ext4 is almost the cost of a memory copy and some
synchronization, which is extraordinarily fast.

Figure 2 represents all themeasurements together grouped
by the number of processes in the benchmark and provides an
overview of the different costs. The first thing that becomes
apparent is that sharing thefile descriptor has anunreasonable
cost, both for the regular Ext4 filesystem and for SealFS. In
these case (-s), all writes are mutually exclusive (because of
the file descriptor offset lock in the Linux kernel, as explained
before). Nevertheless, it is an interesting measurement to
understand the cost of the whole operation discounting the
gains obtained by parallelization and concurrency.

More detail and in-depth analysis can be obtained from
Fig. 3. Here we can see that, when the file descriptors are not
shared, some of the costs are hidden by parallelization and
concurrency. Note that this does not happen for the cost of the
ratchet and happens only partly for rekeying. The problem is
that, in order for one write to progress, it has to use a key that
depends on the previous key. Thus, there is a serialization
effect.

When there was no ratcheting, the key could be read in
parallel. On the other hand, for ratcheting, we must block on
a lock, waiting for the previous key to be ratcheted serializing
the operations.

In any case, considering that the cost for the baseline (ext,
the naked Ext4 version) is extremely fast. The worst case for
our measurements in realistic conditions is less than 8 times
of the naked version; it’s perfectly useable for logging.

We pay the cost for the ratcheting (red in the graphics)
in exchange for making the keystream smaller. Note that for
one process (or, equivalently, when the file descriptors are
shared), most of the cost comes from the HMAC. Another
cost to take into account is the space used when unmounting
the device (N RATCHET entries).

Note that, for N RATCHET = 1, results are quite bad
in Figs. 2a and 3b. The branch annotation effect illustrated
previously explains these bad results. It is not so much of a
performance bottleneck to be a real problem. Nevertheless,
if needed, it could be easily solved in a further production
implementation (e.g., by registering a pointer to a func-
tion without the ratchet implementation when the system is
mounted and N RATCHET = 1).

The measurements for different write sizes can be seen in
Fig. 4. Big write sizes are not representative. Normally, logs
are written one or several lines at a time. Nevertheless, these
measurements are still interesting to understand the cost of
the HMAC and the behavior of the filesystem in such cases.
Performance is slightly worse, around ten times (10 times)
the reference naked Ext4 filesystem. As the write size grows,
most of the cycles are taken by the HMAC calculation and
writing to the underlying filesystem.

As shown by the experiments, we conducted for SealFSv1
[7], as expected, different instances of our filesystems (i.e.,
concurrent filesystemsusingdifferentmount points) are inde-
pendent (because they do not share any internal resource).
Thus, it is not worth measuring this case again.

5.2 Standard benchmark: Filebench

Wealso used a standard benchmark for files, Filebench [8], to
evaluate SealFSv2. In order to use Filebench, we measured a
slightly modified version of the filesystem which considered
any open operation on the filesystem to be append only in
any case. Note that the cost of this modification is negligible.

As Filebench measures operations per second and con-
versely bandwidth, the results are better than for the micro-
benchmark. Here, the filesystem exploits the concurrency
of its implementation and the latency is hidden by the fastest
operations. The results, taking this amortized cost in account,
are quite good and can be seen in Figs. 5, 6, 7 and 8.

We have measured values of N RATCHET up to
1048576, to see how much the performance degrades in that
extreme case (that simulates the pure ratchet approach). It

123

SealFSv2: combining storage-based and ratcheting... 459

(a) (b)

(c) (d)

Fig. 3 Ext4 versus different SealFSv2 configurations, with shared (-s) and non-shared file descriptors (-p)

is still less than 8 times of amortized cost, which would be
usable. Take into account that this value for N RATCHET
would not be advisable, because the cost for sealing the
ratchet (unmounting and mounting again) would be for the
worst case 72 MB (1048576 entries at 72 bytes per entry).

5.3 Performance

As explained in our previous work, SealFSv1 [7] was expen-
sive, it was not suitable for intensive I/O. Nevertheless, it was
fast enough to secure regular log files (which do not require
intensive I/O).

SealFSv2 is optimized, so it performsbetter thanSealFSv1.
Nevertheless, it is not suitable for intensive I/O either. In
short, the Filebench bandwidth results (Figs. 6 and 8) show
that the penalty for using SealFSv2 is approximately between
1/3 and 2/3 (compared to Ext4), depending on the concur-
rency level. This cost seems reasonable for tamper-evident
logs.

Nevertheless, there is still room for improvement. The
microbenchmark results (used to itemize the costs) show
that the times to compute the HMAC (green bar in the
microbenchmark figures) and the ratcheting procedure (the
red bar) are noticeable. We could make SealFSv2 faster by
using other lightweight cryptographic algorithms, without

sacrificing the key features of our system: (i) rekeying with
a precomputed keystream to add entropy (the purple bar)
and (ii) the stackable filesystem implementation (the orange
bar), a transparent way to protect the logs of existing software
without requiring any modification of applications, libraries,
and frameworks.

5.4 Verification times

Median verification times for 128measurements are depicted
in Fig. 9. Note that using random offsets does not incur in
any extra cost. The cost of using the ratchet is roughly 1.5
times cost of not using it and is constant for any size.

5.5 Discussion: storage-based versus ratchet versus
hybrid schemes

As explained, the verification for the storage-based approach
is faster (approximately 0.7 times the cost) than for hybrid
approaches (and therefore the pure ratchet approach).

Regarding the filesystem operation (i.e., appending data to
the log files), the storage-based approach seems to perform
better than hybrid approaches (only slightly better in most
cases). In general, this difference may not be significant to
conclude that the pure storage-based approach performs bet-

123

460 G. Guardiola-Múzquiz , E. Soriano-Salvador

(a)

(b)

Fig. 4 Ext4 versus different SealFSv2 configurations, non-shared file
descriptors, for different write sizes

ter than the hybrid approaches with N RATCHET ≤ 64.
Little details in the implementation could decide the win-
ner. The branch annotation issue for N RATCHET = 1
is a proof: in this case, an apparently innocent fine-grained
implementation detail triggers an architectural effect (for an
specific kind of machine, Intel) that makes the pure storage-
based approach worse than the hybrid approach.

The pure ratchet approach (simulated by N RATCHET
= 1048576) performswayworse than the pure storage-based
approach (approximately 1.6 times the cost, as shown in
Fig. 7).

We did not expect these results: we suspected that
the ratchet approach could outperform the storage-based
approach (CPU bound vs. I/O bound). Sometimes, experi-
mental results are surprising.

The results can be explained by the important optimiza-
tions for storage operations present in modern operating
systems like Linux (read-ahead and so on). It becomes appar-
ent that the storage-based approach may be more suitable for
current systems than the ratchet approach.

In any event, in the authors opinion, performance should
not be the key factor to choose the storage-based approach

over the ratchet approach. In both cases, the performance is
good enough for logging. The trade-off is between storage
space and degrading security. Another element to take into
account when considering the keystream disk size is the time
taken to generate it, copy it, etc. A smaller keystream will be
in general more manageable. This could also tilt the balance
to a hybrid approach.

5.6 Limitations of the study

This study has some limitations.

5.6.1 Entropy loss quantification

While Bellare stated that a pure ratchet degrades linearly [1]
and there is a consensus that entropy loss is a defect [42–
45], it is difficult to quantify how much entropy is enough to
keep a system secure. Would a pure ratchet initialized with a
512-bit secret be secure enough for most applications? This
is a difficult theoretical question we do not try to answer in
this study, and thus, a limitation. Answering that question
would require concrete scenarios with threat models which
quantify the computational power of the actors. In addition,
it requires developing a sophisticated theoretical cryptoana-
lytical framework to specify entropy loss-based attacks.

Due to time and space constraints, we have not tried to per-
form this analysis, which would allow the user to quantify
better the security benefit of adding more or less entropy.
Such analysis would guide a practitioner to find the best
possible configuration (i.e., the value of the NRATCHET
parameter in SealFSv2). The only theoretical analysis we
know of is the estimations given by Bellare [1] we already
mentioned.

Finding an optimum amount of entropy, and thus the
smallest keystream necessary to keep the system safe in a
particular scenario, is left as an open problem that can be
addressed in future research.

5.6.2 Quantitative performance comparison

This study does not include a performance comparison
with previous systems cited in Sect. 2, such as Logcrypt,
I3FS, BBR, CUSTOS, KennyLoggings, etc. Note that those
systems follow dissimilar approaches and provide differ-
ent features. Moreover, the numbers presented in those
works correspond to disparate implementations, crypto-
graphic algorithms, environments, benchmarks, operating
systems, and hardware. A fair quantitative comparison, when
possible (note that some of them do not provide exactly the
same functionality), requires rigorous measurements on the
same setup.

123

SealFSv2: combining storage-based and ratcheting... 461

Fig. 5 Filebench operations per second

Due to time and material constraints (e.g., access to the
original software and configurations), we have not tried to
conduct this experimental analysis.

6 Conclusions

We have described SealFSv2, a new version of local tamper-
evident logging system focused on the forward integrity
model. This new version mixes two opposite approaches:

our original storage-based approach and the classical ratchet
approach.

The paper provides: (i) a detailed description of the new
version and its algorithms; (ii) fine-grained details of a
fully functional open-source implementation, a Linux ker-
nel module for a stackable file system; (iii) our experience
building this system; (iv) and a complete evaluation with a
custom minibenchmark and a standard benchmark for file
systems, which permits to compare the performance of the
two confronted approaches (and intermediate ones). The

123

462 G. Guardiola-Múzquiz , E. Soriano-Salvador

Fig. 6 Filebench bandwidth

experimental results suggest that the storage-based approach
is more suitable for current operating systems running on
general-purpose hardware.

Other than dealing with the limitations explained in
Sect. 5.6, future work for SealFS includes disposing of the
external drive by encrypting the key with a public key (or
an epoch session key which could be then saved encrypted)
instead of burning it. Going further, the key could be gen-

erated dynamically from the kernel entropy pool (i.e., a
device like /dev/random) or a special device and saved
encrypted.

Further future work includes configurable cryptographic
algorithms for authentication and ratcheting (including
lightweight cryptographic algorithms to improve perfor-
mance), dynamic variations of the ratchet parameters for
partial security degradation, signed keystreams for third-

123

SealFSv2: combining storage-based and ratcheting... 463

Fig. 7 Filebench operations per second including bigger N RATCHET

party verification and an implementation of the SealFSv2
approach for robotic middleware13.

13 Note that it is not feasible to replace or modify the kernel of some
robotic systems.

The source code of SealFSv2 can be downloaded from:
https://gitlab.etsit.urjc.es/esoriano/sealfs/tree/master

123

https://gitlab.etsit.urjc.es/esoriano/sealfs/tree/master

464 G. Guardiola-Múzquiz , E. Soriano-Salvador

Fig. 8 Filebench bandwidth including bigger N RATCHET

(a) (b)

Fig. 9 Verification times for 1000000 entries of write size 100 bytes and different NRATCHET

123

SealFSv2: combining storage-based and ratcheting... 465

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. This work is partially funded under
the Proyectos de Generación de Conocimiento 2021 call of Ministry
of Science and Innovation of Spain co-funded by the European Union,
project PID2021-126592OB-C22 CASCAR/DMARCE.

Data Availability Data sharing not applicable to this article as no
datasets were generated or analyzed during the current study.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bellare, M., Yee, B.S.: Forward Integrity for Secure Audit Logs.
University of California at San Diego, Tech. Rep. (1997)

2. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.:
Ratcheted encryption and key exchange: The security of messag-
ing. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology—
CRYPTO 2017, pp. 619–650. Springer International Publishing,
Cham (2017)

3. Cohn-Gordon, K., Cremers, C., Garratt, L.: On post-compromise
security. In: 2016 IEEE 29th Computer Security Foundations Sym-
posium (CSF), June, pp. 164–178 (2016)

4. Schneier, B., Kelsey, J.: Cryptographic support for secure logs
on untrusted machines. In: Proceedings of the 7th Conference on
USENIX Security Symposium - Volume 7, ser. SSYM’98. Berke-
ley, CA, USA: USENIX Association, 1998, pp. 4. [Online]. http://
dl.acm.org/citation.cfm?id=1267549.1267553

5. Kelsey, J., Schneier, B.: Minimizing bandwidth for remote access
to cryptographically protected audit logs. In: Recent Advances in
Intrusion Detection, pp. 9 (1999)

6. Schneier, B., Kelsey, J.: Secure audit logs to support computer
forensics. ACM Trans. Inf. Syst. Secur. 2(2), 159–176 (1999).
https://doi.org/10.1145/317087.317089

7. Soriano-Salvador, E., Guardiola-Múzquiz, G.: Sealfs: storage-
based tamper-evident logging. Comput. Secur. 108, 102325 (2021)

8. Tarasov, V., Zadok, E., Shepler, S.: Filebench: a flexible framework
for file system benchmarking. USENIX; Login 41(1), 6–12 (2016)

9. Zeng, L., Chen, H., Xiao, Y.: Accountable administration and
implementation in operating systems. In: 2011 IEEE Global
Telecommunications Conference—GLOBECOM 2011, Dec, pp.
1–5 (2011)

10. Patil, S., Kashyap, A., Sivathanu, G., Zadok, E.: I3fs: An in-kernel
integrity checker and intrusion detection file system. In: Proceed-
ings of the 18th USENIX Conference on System Administration,
ser. LISA ’04. USA: USENIX Association, p. 67-78 (2004)

11. Chou, B., Tatara, K., Sakuraba, T., Hori, Y., Sakurai, K.: A secure
virtualized logging scheme for digital forensics in comparisonwith
kernel module approach. In: 2008 International Conference on
Information Security and Assurance (isa 2008), April, pp. 421–
426 (2008)

12. Loggly, “Loggly: Remote Logging Service,” https://www.loggly.
com/solution/remote-logging-service/, 2019, [Online; accessed
may-2019]

13. Stackdriver, “Stackdriver Logging,” https://cloud.google.com/
logging/, 2019, [Online; accessed may-2019]

14. Strunk, J. D., Goodson, G. R., Scheinholtz, M. L., Soules, C. A. N.,
Ganger, G. R.: “Self-securing storage: Protecting data in com-
promised system. In: Proceedings of the 4th Conference on
Symposium on Operating System Design and Implementation -
Volume 4. USA: USENIX Association, (2000)

15. Crosby, S. A., Wallach, D. S.: “Efficient data structures for
tamper-evident logging. In: Proceedings of the 18th Conference
on USENIX Security Symposium, ser. SSYM’09. USA: USENIX
Association, p. 317-334 (2009)

16. Pulls, T., Peeters, R.: Balloon: A forward-secure append-only
persistent authenticated data structure. IACR Cryptology ePrint
Archive, vol. 2015, p. 7. [Online]. Available: https://eprint.iacr.
org/2015/007 (2015)

17. White, R., Caiazza, G., Cortesi, A., Cho, Y., Christensen, H.:
Black block recorder: immutable black box logging for robots via
blockchain. IEEE J. Robot. Autom. 4, 3812–3819 (2019)

18. Rosa, M., Barraca, J.P., Rocha, N.P.: Logging integrity with
blockchain structures. In: Rocha, Á., Adeli, H., Reis, L.P.,
Costanzo, S. (eds.) New Knowledge in Information Systems and
Technologies, pp. 83–93. Springer International Publishing, Cham
(2019)

19. Wang, H., Yang, D., Duan, N., Guo, Y., Zhang, L.: Medusa:
Blockchain powered log storage system, In: 2018 IEEE 9th Inter-
national Conference on Software Engineering and Service Science
(ICSESS), 11, pp. 518–521 (2018)

20. LogSentinel, “,” https://logsentinel.com/, 2019, [Online; accessed
may-2019]

21. Guardtime, “Blockchain Backed Log Assurance,” https://
guardtime.com/solutions/blockchain-backed-log-assurance,
2019, [Online; accessed may-2019]

22. Holt, J., Seamons,K.: Logcrypt: Forward security and public verifi-
cation for secure audit logs. In: IACRCryptol. ePrint Arch., (2005)

23. Ma,D., Tsudik, G.: A new approach to secure logging. ACMTrans.
Storage (2009). https://doi.org/10.1145/1502777.1502779

24. Yavuz, A., Ning, P., Reiter, M.: Efficient, compromise resilient and
append-only cryptographic schemes for secure audit logging. In:
Financial Cryptography, (2012)

25. Yavuz, A.A., Ning, P.: Baf: an efficient publicly verifiable secure
audit logging scheme for distributed systems. Ann. Comput. Secur.
Appl. Confer. 2009, 219–228 (2009)

26. Hartung,G., Kaidel, B., Koch,A., Koch, J., Hartmann,D.: Practical
and robust secure logging from fault-tolerant sequential aggregate
signatures. In ProvSec, (2017)

27. Hartung, G.: Attacks on secure logging schemes. IACR Cryptol.
ePrint Arch. 2017, 95 (2017)

28. Paccagnella, R., Liao, K., Tian, D., Bates, A.: Logging to the Dan-
ger Zone: Race Condition Attacks and Defenses on System Audit
Frameworks. New York, NY, USA: Association for Computing
Machinery, 2020, p. 1551-1574. [Online]. Available: https://doi.
org/10.1145/3372297.3417862

29. Ma, S., Zhai, J., Kwon, Y., Lee, K. H., Zhang, X., Cio-
carlie, G., Gehani, A., Yegneswaran, V., Xu, D., Jha, S.:
Kernel-Supported Cost-Effective audit logging for causality track-
ing, in 2018 USENIX Annual Technical Conference (USENIX
ATC 18). Boston, MA: USENIX Association, Jul pp. 241–254.
[Online] (2018). Available: https://www.usenix.org/conference/
atc18/presentation/ma-shiqing

30. Sinha, A., Jia, L., England, P., Lorch, J.R.: Continuous tamper-
proof logging using tpm 20. In: Holz, T., Ioannidis, S. (eds.) Trust
and Trustworthy Computing, pp. 19–36. Springer International
Publishing, Cham (2014)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dl.acm.org/citation.cfm?id=1267549.1267553
http://dl.acm.org/citation.cfm?id=1267549.1267553
https://doi.org/10.1145/317087.317089
https://www.loggly.com/solution/remote-logging-service/
https://www.loggly.com/solution/remote-logging-service/
https://cloud.google.com/logging/
https://cloud.google.com/logging/
https://eprint.iacr.org/2015/007
https://eprint.iacr.org/2015/007
https://logsentinel.com/
https://guardtime.com/solutions/blockchain-backed-log-assurance
https://guardtime.com/solutions/blockchain-backed-log-assurance
https://doi.org/10.1145/1502777.1502779
https://doi.org/10.1145/3372297.3417862
https://doi.org/10.1145/3372297.3417862
https://www.usenix.org/conference/atc18/presentation/ma-shiqing
https://www.usenix.org/conference/atc18/presentation/ma-shiqing

466 G. Guardiola-Múzquiz , E. Soriano-Salvador

31. Nguyen, H., Acharya, B., Ivanov, R., Haeberlen, A., Phan, L. T. X.,
Sokolsky, O., Walker, J., Weimer, J., Hanson, W., Lee, I.: Cloud-
based secure logger for medical devices. In: 2016 IEEE First
International Conference on Connected Health: Applications, Sys-
tems and Engineering Technologies (CHASE), pp. 89–94 (2016)

32. Karande, V., Bauman, E., Lin, Z., Khan, L.: Sgx-log: Secur-
ing system logs with sgx, In: Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, ser.
ASIA CCS ’17. New York, NY, USA: Association for Computing
Machinery, p. 19-30. [Online]. Available: https://doi.org/10.1145/
3052973.3053034 (2017)

33. Paccagnella, R., Datta, P., Hassan, W. U., Bates, A., Fletcher,
C., Miller, A., Tian, D.: Custos: Practical tamper-evident auditing
of operating systems using trusted execution, Network and Dis-
tributed System Security Symposium, Jan[Online] (2020). http://
par.nsf.gov/biblio/10146530

34. Schneier, B.: Data andGoliath: TheHiddenBattles toCaptureYour
Data and Control Your World, 1st edn. W. W. Norton Company
(2015)

35. Dhillon, V., Metcalf, D., Hooper, M.: The Hyperledger Project, pp.
139–149. Apress, Berkeley, CA (2017)

36. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing
forMessageAuthentication, IETF,RFC2104, Feb. [Online]. http://
tools.ietf.org/rfc/rfc2104.txt (1997)

37. Gutmann, P.: Secure deletion of data from magnetic and solid-
state memory. In: Proceedings of the 6th Conference on USENIX
Security Symposium, Focusing on Applications of Cryptography–
Volume 6, ser. SSYM’96. USA: USENIX Association, p. 8 (1996)

38. U.S. National industrial security program operating manual DoD
5220.22-M. United States Department of Defense National Indus-
trial Security Program, (2006)

39. ISO, ISO/IEC 9899:2011 Information technology, Programming
languages: C. Geneva, Switzerland: International Organization for
Standardization, December (2011)

40. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Pro-
ceedings of the Annual Conference on USENIX Annual Technical
Conference, ser. ATEC ’05. USA: USENIX Association, p. 41
(2005)

41. Minnich, R. G., Mirtchovski, A.: U-root: A go-based, firmware
embeddable root file systemwith on-demand compilation,” in 2015
{USENIX} Annual Technical Conference ({USENIX}{ATC} 15),
(2015), pp. 577–586. [Online]. https://github.com/u-root/u-root

42. Dörre, F., Klebanov, V.: Practical detection of entropy loss in
pseudo-random number generators,” ser. CCS ’16. New York, NY,
USA: Association for Computing Machinery, (2016). [Online].
https://doi.org/10.1145/2976749.2978369

43. Kelsey, J., Schneier, B., Ferguson, N.: Yarrow-160: Notes on the
design and analysis of the yarrow cryptographic pseudorandom
number generator, In: Selected Areas in Cryptography, (1999)

44. Kaptchuk, G., Jois, T. M., Green, M., Rubin, A. D.: Meteor: Cryp-
tographically secure steganography for realistic distributions. In:
Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, ser. CCS ’21. New York,
NY, USA: Association for ComputingMachinery, (2021), p. 1529-
1548. [Online]. https://doi.org/10.1145/3460120.3484550

45. NIST, Recommendation for random number generation using
deterministic random bit generators,” Computer Security Resource
Center, Tech. Rep. NIST Special Publication 800-90A Revision 1,
(2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1145/3052973.3053034
https://doi.org/10.1145/3052973.3053034
http://par.nsf.gov/biblio/10146530
http://par.nsf.gov/biblio/10146530
http://tools.ietf.org/rfc/rfc2104.txt
http://tools.ietf.org/rfc/rfc2104.txt
https://github.com/u-root/u-root
https://doi.org/10.1145/2976749.2978369
https://doi.org/10.1145/3460120.3484550

	SealFSv2: combining storage-based and ratcheting for tamper-evident logging
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Organization

	2 Related work
	3 Scheme
	3.1 Main ideas
	3.2 Threat model
	3.3 Appending data to log files
	3.3.1 Concurrency

	3.4 Verification
	3.5 Ratcheting

	4 SealFSv2 implementation
	4.1 Concurrent writes
	4.2 Burning the keystream
	4.3 Ratcheting
	4.4 Tools
	4.5 Testing

	5 Evaluation
	5.1 Custom microbenchmark
	5.2 Standard benchmark: Filebench
	5.3 Performance
	5.4 Verification times
	5.5 Discussion: storage-based versus ratchet versus hybrid schemes
	5.6 Limitations of the study
	5.6.1 Entropy loss quantification
	5.6.2 Quantitative performance comparison

	6 Conclusions
	References

