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This paper presents a competitive algorithm that combines the Greedy Randomized Adaptive Search Pro- 

cedure including a Tabu Search instead of a traditional Local Search framework, with a Strategic Oscil- 

lation post-processing, to provide high-quality solutions for the α-neighbor p-center problem ( α − pCP). 

This problem seeks to locate p facilities to service or cover a set of n demand points with the objective 

of minimizing the maximum distance between each demand point and its αth nearest facility. The algo- 

rithm is compared to the best method found in the state of the art, which is an extremely efficient exact 

procedure for the continuous variant of the problem. An extensive comparison shows the relevance of 

the proposal, being able to provide competitive results independently of the α value. 
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. Introduction 

There exist many real-world situations in which a set of facili- 

ies (hospitals, malls, emergency centers, etc.) require to be located 

n order to service a set of demand points (patients, customers, 

eople at risk, etc.). This family of problems are commonly known 

s Facility Location Problems (FLP) ( Basu, Sharma, & Ghosh, 2015 ). 

epending on the objective function to optimize and the consid- 

red constraints, we can identify a large variety of variants: the 

p-center problem ( Ferone, Festa, Napoletano, & Resende, 2017 ), the 

p-median problem ( Daskin & Maass, 2015 ), or the maximal cov- 

rage location problem ( Murray, 2016 ), among others. A common 

haracteristic in most of these FLP variants is that each demand 

oint is always served by its closest facility (when not considering 

apacity constraints), with the aim of reducing the response time. 

owever, there might exist some scenarios where facilities con- 

erned are subject to failure and, therefore, the information about 

he closest one is not enough. In that situation it is not only rel-

vant to have information about the closest facility, but also the 

econd closest, or even more. 

This issue has been approached in the related literature by con- 

idering whether the customer have access to a priori information 

bout the failure of facilities or not. If this information is not avail- 
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ble, customers need to reach the corresponding closest facility to 

ertify its unavailability. Consequently, they will first go to the clos- 

st facility and then, they will go to the next facility, which is the 

losest to the previous one. In this scenario, we are dealing with 

he p-next center problem ( pNCP) ( Albareda-Sambola, Hinojosa, 

arín, & Puerto, 2015; López-Sánchez, Sánchez-Oro, & Hernández- 

íaz, 2019 ), whose goal is to minimize the maximum distance be- 

ween demand points and their closest facility plus the distance 

rom this facility and to its closest facility center. Notice that this 

efinition can be trivially extended to more than two facilities. 

If the customers know in advance that some facilities are not 

ble to satisfy their demands, they do not need to reach their clos- 

st facility and, therefore, they can directly go to a different one. 

n this case, we are dealing with the α-neighbor p -center problem, 

− pCP ( Chen & Chen, 2013 ) where, instead of assigning each de- 

and point to a single facility (such as in the classical p-median 

roblem Daskin & Maass, 2015 ), it is assigned to α facilities. The 

bjective is then to minimize the maximum distance between each 

emand point and its αth closest facility, where α is a problem 

onstraint. Note that α − pCP is able to model other situations in 

hich the customers may prefer to be served by another facility 

nstead of the closest one, since there are αth facilities close to 

ach customer. 

The α − pCP has been tackled from both, continuous and dis- 

rete perspectives. In the former, facilities may be located any- 

here on the plane ( Chen & Chen, 2013 ), while in the latter facili-

ies must be placed in a finite set of potential service points ( Chen

 Chen, 2013 ). To the best of our knowledge, the research on the 
under the CC BY-NC-ND license 
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Fig. 1. Representation of solutions P 1 and P 2 for the same set of 11 points, with p = 4 and α = 2 . 
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− pCP has been mainly focused on the continuous version of the 

roblem. In particular, quite effective and efficient exact methods 

ave been recently proposed which are able to solve instances up 

o 10 0 0 nodes. We refer the reader to ( Callaghan, Salhi, & Brim-

erg, 2019 ) for the most recent work on the continuous α − pCP 

hich proposes an exact algorithm that leverages the structure of 

he problem to optimally solve a new set of large instances. 

In this paper, we focus on the discrete variant, which can be 

ormally defined as follows: let N be the set of points, with | N| = 

 ; d (i, j ) be the distance between points i and j, where i, j ∈ N;

nd p a positive integer number, with 1 < p < | N| . The aim of the

− pCP is to select a set P with exactly p facilities in order to 

inimize the maximum distance between each demand point and 

ts αth closest facility or, in other words, minimize the radius of 

he maximal circle (among the p allowed) so that each demand 

oint is covered by at least α circles. Without loss of generality, it 

an be assumed that the set of candidate locations to host a facil- 

ty is directly equal to N (i.e., every available point is able to host 

 facility). Therefore, a feasible solution for the α − pCP can be 

imply represented as the set of selected facilities, P , where P ⊂ N

ith | P | = p. It is worth mentioning that we do not explicitly indi-

ate the set of demand points since it is determined by N \ P . 
Given a set of facilities, let A be any subset of α elements taken 

rom of P . The α-distance between any demand point i ∈ N \ P and

he set P , denoted as d α(i, P ) , is defined as: 

 α(i, P ) = min 

A ⊂P | A | = α
{ max 

j∈ A 
d (i, j ) } . 

The objective function of the α − pCP, refereed to as f α(P, N) , 

s defined as: 

f α(P, N) = max 
i ∈ N\ P 

d α(i, P ) 

Therefore, the α − pCP consists in minimizing the aforemen- 

ioned objective function. In mathematical terms: 

in 

P⊂N 
 P| = p 

f α(P, N) 

Figure 1 shows two feasible solutions for the same set of 11 

oints considering p = 4 and α = 2 , where facilities are located at 

oints represented with a filled circle. Figure 1 a represents solu- 

ion P 1 = { B, D, G, H} , where f α(P 1 , N) = 4 . 47 which is obtained at

emand point J, whose closest facility is G and the second one 

s D , which is located at a distance of 4.47. In the case of so-

ution P 2 = { A, C, E, K} , depicted at Fig. 1 b, f α(P 2 , N) = 5 . 83 , since

he second closest facility to the demand point J is C, which is at 

 distance of 5.83. Therefore, P 1 is better solution than P 2 , since 

f α(P , N) < f α(P , N) . 
1 2 

144 
The p-center problem ( pCP) is a particular case of the α − pCP 

hen considering α = 1 . The pCP has been widely studied in the 

iterature from both academic and real-life situations, using exact 

nd heuristic approaches. To the best of our knowledge, the first 

ork on the pCP was ( Hakimi, 1964 ) where the problem was in-

roduced, solving it by means of graphical methods. Then, an iter- 

tive set covering based exact method was proposed by Minieka 

1970) . The first mixed integer programming formulation was pre- 

ented in Daskin (1995) . Many heuristic approaches have been ap- 

lied to solve the pCP, for instance, in Mladenovi ́c, Labbé, & Hansen 

2003) whose authors proposed a Tabu Search and a Variable 

eighborhood Search and in Yin, Zhou, Ding, Zhao, & Lv (2017) , the 

uthors propose a Greedy Randomized Adaptive Search Procedure 

ith Path-Relinking to address the pCP. 

The α − pCP was first introduced in Krumke (1995) , where 

he author presented this problem and showed that it is a N P - 

ard problem. He also introduced an efficient algorithm for α ≥
 and gave a 4-approximation algorithm. Later on, the authors 

n Chaudhuri, Garg, & Ravi (1998) used the ideas of the previ- 

us paper to get a lower bound and proposed a 2-approximation 

lgorithm. Other variant of the problem in which capacity con- 

traints were considered was studied in Khuller, Pless, & Suss- 

ann (20 0 0) and they coined it as the α-fault-tolerant capaci- 

ated k -center. The authors proposed two polynomial-time algo- 

ithms when all demand points can be reassigned to other facil- 

ties, in the case of a failure in some facilities, and when only the 

emand points affected by a failure in its assigned facility can be 

eassigned to other facilities. Recently, in Brimberg, Maier, & Schä- 

el (2021) a new variant of the well-known p-median problem is 

resented, named distributed p-median problem, where it is as- 

umed that the demand points interact with more than one facility 

imultaneously, so the closest facility is not necessarily the most 

elevant one. 

The goal of this paper is to propose an algorithm able to solve 

he discrete version of the α − pCP without the need of making 

articular adaptations for each α value. That is, the algorithm will 

rovide high-quality solutions independently on which value is as- 

igned to α. We have considered α = 1 , 2 , 3 since larger values are

ot realistic. To this end, a Greedy Randomized Adaptive Search 

rocedure (GRASP) ( Feo & Resende, 1989; Feo, Resende, & Smith, 

994 ) that includes a Tabu Search (TS) ( Glover & Laguna, 1998 )

nstead of a standard Local Search is presented and it is com- 

ined with post-processing method based on the Strategic Oscilla- 

ion (SO) methodology ( Glover & Laguna, 1998 ) to further improve 

he solutions found by the GRASP. 

The main contributions of this work are described as follows. A 

RASP algorithm is proposed for providing high-quality solutions 
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Algorithm 1 Construct (N, β) . 

1: i ← rand (N) 

2: P ← { i } 
3: CL ← N \ { i } 
4: while | P | < p do 

5: g min ← min i ∈ CL g(i, P ) 

6: g max ← max i ∈ CL g(i, P ) 

7: μ ← g max − β(g max − g min ) 

8: RCL ← { i ∈ CL : g(i, P ) ≥ μ} 
9: j ← rand (RCL ) 

10: P ← P ∪ { j} 
11: CL ← CL \ { j} 
12: end while 

13: return P 
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or the α − pCP. In order to implement a fast and reliable con- 

tructive procedure, the greedy function considered is based on the 

nstance features instead of in the evaluation of the objective func- 

ion, accelerating the construction process. Additionally to a tradi- 

ional local search method, a TS metaheuristic is proposed for the 

mproving stage of GRASP. The TS, based on a short-term memory 

tructure, allows to escape from local optima by always performing 

he best move, even if it leads to a lower quality solution. Finally, 

 post-processing method based on Strategic Oscillation is able to 

everage the exploration of the search space of unfeasible solutions 

eing able to find better solutions for the α − pCP. It is worth 

entioning that, instead of considering the traditional SO, we pro- 

ose four different alternatives that consider greedy and random 

erturbations and greedy and random repairing of solutions within 

he SO framework, to perform a deep analysis on the behavior of 

O. The combination of diversification of GRASP with the intensi- 

cation of TS and SO post-processing results in a very competitive 

lgorithm for solving the discrete version of the α − pCP. 

The rest of this paper is organized as follows. Sections 2 and 

 describe the algorithms implemented to solve the problem un- 

er consideration. Section 5 presents the computational results 

erformed to test the quality of the proposal. Section 6 ana- 

yzes the parameters selected for the proposed algorithm. Finally, 

ection 7 summarizes the paper and discusses future work. 

. Greedy adaptive search procedure 

The algorithm proposed for solving the α − pCP combines a 

reedy Randomized Adaptive Search Procedure (GRASP) with a 

trategic Oscillation (SO) based post-processing for further im- 

roving the solutions found. The GRASP metaheuristic framework 

as originally presented in Feo & Resende (1989) but it was not 

ormally introduced until ( Feo et al., 1994 ). We refer the reader 

o Festa & Resende (20 08, 20 09) for a complete analysis of this

ethodology. 

GRASP is a multi-start procedure which can be divided into two 

ifferent phases: construction and improvement. The former con- 

tructs a solution from scratch following a greedy, randomized and 

daptive strategy, while the latter tries to find a local optimum de- 

arting from the corresponding constructed solution. These stages 

re iteratively applied until reaching a termination criterion (usu- 

lly based on the number of iterations). 

.1. Constructive procedure 

The constructive method within the GRASP methodology starts 

rom an empty solution and iteratively adds elements to it until it 

ecomes feasible. A greedy function is responsible for evaluating 

he quality of each candidate element, in order to select the next 

lement to be included in the solution. Greedy functions used in 

he constructive phase for the GRASP framework are usually re- 

ated with the objective function. However, the evaluation of the 

bjective function for the α − pCP is rather time consuming, since 

t is necessary to find the αth closest facility for each demand 

oint. Therefore, in order to design a fast algorithm, an alternative 

reedy function is proposed. 

Given a partial solution P , the greedy function is calculated as 

he distance among facilities, so that the quality of a solution is es- 

imated when an element i ∈ N \ P is inserted in a partial solution

 . Formally, the greedy function g(i, P ) for a candidate i ∈ N \ P is

efined as: 

(i, P ) = min 

j∈ P 
d (i, j ) 

he greedy function then computes the minimum distance be- 

ween candidate i and any element in the partial solution P . 
145 
Algorithm 1 shows the pseudocode of the constructive proce- 

ure. The method starts by randomly selecting the first element 

o be included in the solution (step 1), initializing the solution 

ith that point hosting a facility (step 2). This initial random se- 

ection is customary in GRASP as it increases the diversity of the 

earch. After that, the candidate list, CL , is created with all the 

oints except the one that has been firstly selected (step 3). The 

ethod iteratively adds a new element to the solution under con- 

truction (steps 4–12). In each iteration, the smallest ( g min ) and 

argest ( g max ) values of the greedy function over all the candidates 

re computed (steps 5–6). Instead of selecting the best element in 

ach iteration, the randomized part of the constructive procedure 

equires a threshold μ to restrict the candidates that are consid- 

red promising (step 7). The threshold is calculated using the in- 

ut β ∈ [0 , 1] parameter, which controls the greediness / random- 

ess of the constructive procedure. On the one hand, if β = 0 , then 

= g max , being a totally greedy algorithm. On the other hand, if 

= 1 , then μ = g min , resulting in a completely random selection. 

herefore, it is important to find an appropriate value for the pa- 

ameter β since it balances the grade of intensification and di- 

ersification of the constructed solutions. The restricted candidate 

ist ( RCL ) contains all the candidates whose greedy function value 

s better (larger) than the given threshold μ (step 8). Then, the 

ethod randomly selects one of the most promising candidates 

ncluded in the RCL (step 9), including it in the partial solution 

 (step 10), and updating the CL (step 11). The method ends by 

eturning the constructed solution when it becomes feasible (step 

3). 

.2. Local search 

The improvement phase is devoted to find a local optimum 

ith respect to a given neighborhood. In general, the neighbor- 

ood of a given solution is usually defined as the set of solutions 

hat can be reached by performing a single movement over it. In 

he case of the α − pCP, the movement consists in removing a 

oint hosting a facility from the solution, and replacing it with an- 

ther element that is not in the solution. This move is traditionally 

nown as swap in the literature ( Pérez-Peló, Sánchez-Oro, López- 

ánchez, & Duarte, 2019 ). Given a solution P , a facility i ∈ P , and

 demand point j ∈ N \ P , the swap movement is formally defined

s: 

wap (P, i, j) ← P ∪ { j} \ { i } 
Having defined the movement, the neighborhood N swap of a 

iven solution P is conformed with all the solutions that can be 

enerated by performing a swap move in P . 

The computation of the objective function for the α − pCP is 

uite time consuming, so we propose to limit, as much as possible, 

he number of solutions evaluated during the exploration of N swap , 
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ith the aim of having an efficient local search procedure. Then, 

et j � be the furthest α-neighbor facility of any demand point from 

hose in P . Notice that one of these facilities determine the value 

f the objective function. This heuristic selection allows us to avoid 

xploring the complete 1-swap neighborhood. More formally, for 

ny i ∈ N \ P , the facility j � is determined as: 

j � ← arg min 

A ⊂P | A | = α
{ max 

j∈ A 
d (i, j ) } . 

Therefore, the set of neighbor solutions of P is mathematically 

efined as: 

 S (P ) ← { Q : Q ← Swap (P, i, j � ) , ∀ i ∈ N \ P } 
The second key element of a local search consists in defining 

he way in which the considered neighborhood is explored. The 

ost extended strategies are Best Improvement (BI) and First Im- 

rovement (FI). On the one hand, BI selects, in each iteration, the 

est solution in the current neighborhood, thus requiring to ex- 

lore the complete neighborhood, being rather time consuming. 

n the other hand, FI selects the first solution that presents a bet- 

er objective function value that the incumbent one. As the evalua- 

ion of the objective function in the α − pCP is very computation- 

lly demanding, a local search method based in the First Improve- 

ent strategy (LS-FI) is proposed in order to reduce the computing 

ime of the proposed algorithm. Additionally, to increase diversifi- 

ation, the solutions in the neighborhood are explored at random 

n each iteration. A comparison of performance between these two 

ocal search strategies is shown in Section 5 . 

.3. Tabu search 

The main drawback of traditional local search procedures is that 

hey strongly depend on the departing solution, getting trapped 

asily in a local optimum. In order to overcome this drawback, a 

econd improvement method based on Tabu Search (TS) ( Glover & 

aguna, 1998 ) is proposed. This methodology helps traditional local 

earch procedures to escape from local optima. The two key fea- 

ures of TS can be summed up in using an adaptive memory and 

ccepting non-improving moves. The proposed TS method starts 

imilarly to the previously described local search, selecting the first 

mproving solution in the neighborhood under exploration. How- 

ver, a short-term memory stores the last elements that have been 

emoved from the solution in every Swap move performed. This 

emory follows a First-In First-Out (FIFO) scheme and has a pre- 

efined maximum size given by the tenure parameter. An element 

annot be included in the solution again while it is stored in the 

emory, in order to restrict the available moves. Elements stored 

n the memory are labelled as tabu-active. 

The TS method always performs the best available move even 

hough it implies deteriorating the quality of the objective func- 

ion. The aim of this strategy is to avoid getting trapped in local 

ptima. The search stops when no improvement is found after a 

redefined number of iterations. 

As it is well described in the related literature ( Glover & La- 

una, 1998 ), the use of memory may prohibit attractive moves. We 

onsider the so-called aspiration criterion, where a move with the 

abu status (since it involves tabu-active elements) is performed if 

t results in a solution with an objective value strictly better than 

hat of the best solution found so far. Notice that there is not dan-

er of cycling since the new solution has not been previously vis- 

ted. Section 5 will discuss the influence of these parameters over 

he global performance of TS. 

. Strategic oscillation 

As far as we know, all neighborhoods reported in the literature 

or the α − pCP are based on swapping demand points that do 
146 
ot host a facility with those hosting facilities. This is the natural 

esign to preserve feasibility during the search. In this paper, the 

xploration of non-feasible solutions by means of Strategic Oscilla- 

ion (SO) is proposed. The idea of exploring unfeasible solutions for 

he continuous α − pCP was recently explored in Elshaikh et al. 

2016) where a perturbation method is presented that allows to 

ncrease the number of facilities to reach better, although unfea- 

ible, solutions. Then, solutions are repaired by removing facilities 

ntil it becomes feasible again. This strategy is based on the origi- 

al idea presented in Salhi (1997) . 

SO was originally introduced in the context of TS ( Glover & 

aguna, 1998 ) and has not been studied as thoroughly as other 

trategies. The boundary that we intend to cross in the current 

ontext is to explore the search space that includes solutions for 

hich the size cardinality constraint may be violated. Our goal is 

o design a SO mechanism that is able to act as a post-processing 

ethod for the solutions generated with the GRASP algorithm. 

The oscillation between feasibility and unfeasibility is deter- 

ined by a parameter δ. Specifically, this method converts the in- 

umbent solution into an unfeasible one, ˆ P , by incorporating δ ad- 

itional facilities to the solution P , where 0 ≤ δ ≤ δmax and | ̂  P | = 

p + δ. Notice that the addition of extra facilities always improve 

or, at least, do not deteriorate) the value of the objective function, 

ince all the demand points have a distance equal than or closer to 

he set of facilities in this situation. Finally, the solution is repaired 

y removing the extra δ facilities. 

For the general case, two new movement operators are consid- 

red, called Insert and Remove . The former transforms a demand 

oint into a facility, while the latter removes a facility from the 

olution. More formally, given a solution P and a demand point 

 ∈ N \ P , the insert movement is formally defined as: 

nsert (P, i ) ← P ∪ { i } 
hile the Remove movement is defined as: 

emove (P, j) ← P \ { j} 
Algorithm 2 depicts the pseudocode of the proposed Strategic 

lgorithm 2 SO (P, δmax ) . 

1: δ ← 1 

2: while δ ≤ δmax do 

3: ˆ P ← P 

4: while | ̂  P | < | P | + δ do 

5: j ← 

{
rand (N \ ˆ P ) Random Strategy 

arg max c∈ N\ P d(c, ˆ P ) Greedy Strategy 

6: ˆ P ← Insert ( ̂  P , j) 

7: end while 

8: ˆ P ← Improve ( ̂  P ) 

9: while | ̂  P | > | P | do 

0: i ← 

{
rand ( ̂  P ) Random Strategy 

arg min 

c∈ ̂ P 
d(c, ˆ P \ { c} ) Greedy Strategy 

11: ˆ P ← Remove ( ̂  P , i ) 

2: end while 

3: ˆ P ← Improve ( ̂  P ) 

4: if f α( ̂  P , N) < f α(P, N) then 

5: P ← 

ˆ P 

6: δ ← 1 

17: else 

18: δ ← δ + 1 

9: end if 

0: end while 

1: return P 

scillation procedure. It starts by initializing the number of addi- 

ional elements to be included in the solution (step 1). Then, it 
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Table 1 

Description of the different SO 

strategies presented. 

Name Insert Remove 

SO-RR Random Random 

SO-RG Random Greedy 

SO-GR Greedy Random 

SO-GG Greedy Greedy 
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1 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html . 
terates until reaching the maximum number of elements to be 

ncluded, δmax , which is an input parameter (steps 2–20). At the 

eginning of each iteration, SO creates a copy ˆ P of the best solu- 

ion found, which will be used for performing the oscillation (step 

). Then, the method starts with the insertion phase (steps 4–7). 

n this phase, δ demand points which do not host a facility are 

elected. We study either greedy or random strategies to incorpo- 

ate new facilities into the solution (step 5). The former consists 

n adding the element that keeps the maximum distance between 

he elements selected to host a facility. For the sake of simplicity, 

et us define d(i, P ) as the minimum distance between i and any

lement of P . More formally, 

(i, P ) ← min 

j∈ P 
d(i, j) . 

Therefore, the greedy insertion strategy selects the element to 

e incorporated according to the following equation: 

j ← arg max 
c∈ N\ P 

d(c, ˆ P ) 

The second criterion selects an element in N \ ˆ P at random. 

nce we have the corresponding facility, it is inserted in the so- 

ution 

ˆ P , becoming unfeasible (step 6). After including δ elements, 

he improvement method is applied to ˆ P to find a local optimum 

hich still unfeasible (step 8). In order to design an algorithm as 

uch generic as possible either, the local search ( Section 2.2 ) or 

he tabu search ( Section 2.3 ) are applied to the unfeasible solution 

o improve ˆ P (step 8). 

Once a local optimum has been found, the removal phase (steps 

–12) iteratively selects a facility to be removed (step 10). Again ei- 

her greedy and random strategies are considered. The former con- 

ists in using the following greedy criterion: 

 ← arg min 

c∈ ̂ P 

d(c, ˆ P \ { c} ) 

The later selects a facility at random. Once we have the cor- 

esponding facility it is removed from the solution (step 11). This 

rocess is repeated until ˆ P becomes feasible. Then, the improve- 

ent method (either, the local search or the tabu search) is applied 

o ˆ P to find a local optimum (step 13). Finally, if an improvement is 

ound (step 14), the best solution and the δ parameter are updated 

steps 15 and 16). Otherwise, the algorithm increases the number 

f elements to be included in the next iteration (step 18). SO stops 

hen no improvement is found after reaching the maximum size, 

eturning the best solution found during the search (step 21). 

With the aim of studying the effect of diversification and in- 

ensification in the context of Strategic Oscillation, we have pro- 

osed greedy and random strategies for both insertion and re- 

oval phases, following a similar scheme than the one presented 

n Sánchez-Oro, Pantrigo, & Duarte (2014) . Therefore, four different 

O strategies are finally analyzed, which are described in Table 1 . 

As can be derived from the results, SO-RR is totally focused on 

iversification, while SO-GG is designed for intensifying the search. 

oth SO-RG and SO-GR try to find a balance between intensification 

nd diversification. Section 5 will deeply evaluate the influence of 

ach variant in the results obtained. 
147 
. Algorithmic approach 

This section is designed for providing an overall view of the 

roposed algorithm, including all the stages that have been pre- 

iously described. In particular, the proposed GRASP+SO algorithm 

s composed of two different stages. First of all, a solution is con- 

tructed and a local optimum with respect to the defined neigh- 

orhood is found. Then, the SO post-processing method is applied 

o further improve the generated solution. These two steps are re- 

eated through a predefined number of iterations �, which will be 

uned in the final algorithm. 

Having defined all the proposed procedures, we now present 

he overall pseudocode in Algorithm 3 . This algorithm requires 

lgorithm 3 GRASP + SO (N, β, δmax , �) . 

1: P b ← ∅ 
2: for i ∈ 1 . . . � do 

3: P ← Construct (N, β) 

4: P ′ ← Improve (P ) 

5: P ′′ ← SO (P ′ , δmax ) 

6: if f α(P ′′ , N) < f α(P b , N) then 

7: P b ← P ′′ 
8: end if 

9: end for 

 input parameters. The first one, N, refers to the instance data, 

hile the last three parameters are search parameters of the algo- 

ithm: β , responsible to balance the greediness/randomness of the 

onstructive procedure, δmax , to indicate how far from feasibility is 

he SO post-processing, and �, to determine the number of itera- 

ions that will be performed. 

The method performs a given number of iterations � (steps 2- 

). In each iteration, a solution P ′ is constructed using the con- 

tructive procedure presented in Section 2.1 . Then, the solution is 

mproved by using the local search or the tabu search presented 

n Section 4 . Finally, with the aim of escaping from local optima, 

he SO procedure described in Section 5 is executed over the im- 

roved solution P ′ , generating a new solution P ′′ . Once a complete 

teration is executed, the solution P ′′ resulting from the SO post- 

rocessing is compared to the best solution found so far P b . If an

mprovement is found, then P b is updated (step 6-8). The method 

nds when � iterations have been performed, returning the best 

olution found during the search, P b . 

. Computational results 

This section presents and discusses the results of the computa- 

ional testing conducted with the proposed algorithm in this pa- 

er. In particular, an analysis of the contribution of SO with re- 

pect to GRASP is performed, highlighting the advantages and dis- 

dvantages of the proposal when considering the α − pCP. Addi- 

ionally, the best GRASP and SO configuration is compared to the 

est method found in the state of the art ( Chen & Chen, 2013 ). 

We have considered the same set of 37 instances used in the 

revious work, which are derived from the well-known TSP-Lib 1 . 

dditionally, we have also considered α = 1 , 2 , 3 , since larger val-

es represent unrealistic situations. Therefore, the complete bench- 

ark is composed of 111 instances since the set of 37 instances has 

een solved once per each α value. In order to consider larger in- 

tances, we have also included the instances proposed in Callaghan 

t al. (2019) , which are more challenging for heuristic methods. 

ll algorithms were implemented in Java 11 and executed over an 

MD Ryzen 5 3600 (2.2 GHz) with 16GB RAM. 

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
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Table 2 

Comparison among the considered β parameter 

values. 

β Avg. Time(s) Dev(%) #Best 

RND 505.38 0.03 4.79 9 

0.00 515.94 0.03 4.75 18 

0.25 491.55 0.03 3.22 11 

0.50 474.45 0.03 5.21 7 

0.75 565.44 0.03 17.85 4 

1.00 722.80 0.03 48.19 0 

Table 3 

Comparison among the considered β parameter values 

when coupled with local search. 

Algorithm Avg. Time(s) Dev(%) #Best 

GRASP( RND ) 414.79 0.85 1.53 14 

GRASP(0.00) 422.91 0.80 4.01 9 

GRASP(0.25) 416.46 0.92 1.93 18 

GRASP(0.50) 418.86 0.88 2.32 9 

GRASP(0.75) 439.98 0.89 6.63 8 

GRASP(1.00) 551.96 0.83 26.25 2 
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Table 4 

Comparison between first and best improvement strategies in the 

proposed local search method. 

Strategy Avg. Time (s) Dev(%) #Best 

Best Improvement 414.87 12.50 0.91 20 

First Improvement 414.79 1.42 0.40 24 

Table 5 

Comparison of different tenure values in the Tabu 

Search. 

tenure Avg. Time(s) Dev(%) #Best 

0.1 403.31 18.85 0.03 29 

0.2 403.47 19.44 0.12 28 

0.3 403.48 18.84 0.15 27 

0.4 403.48 18.26 0.15 27 

0.5 403.48 18.12 0.15 27 
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The experiments are divided into two different phases: prelim- 

nary and final experimentation. The former is intended to select 

he best configuration for the proposed algorithm, while the latter 

onsists in a competitive testing among GRASP, GRASP+SO, and the 

tate of the art for evaluating the quality of the proposal. The pre- 

iminary experiments are performed over a representative subset 

f instances (30 out of 111 instances) that were randomly selected 

o avoid overfitting. 

All the experiments report the following metrics: Avg., the aver- 

ge objective function value; Time(s), the computing time required 

y the algorithm to finish in seconds; Dev(%), the average devia- 

ion with respect to the best solution found in the experiment; and 

Best, the number of times that the algorithm reaches the best so- 

ution of the experiment. 

.1. Preliminary results 

The first experiment is designed to evaluate the best 

alue for the β parameter. In particular, we have tested β = 

 0 . 00 , 0 . 25 , 0 . 50 , 0 . 75 , 1 . 00 , RND } , where RND indicates that the

alue is selected at random in each construction. We have included 

alues 0.00 and 1.00 to see how a completely greedy and random 

respectively) construction influences in the quality of the results. 

able 2 shows the results obtained when considering these β val- 

es. In the context of GRASP, more than one solution must be con- 

tructed to leverage the diversification stage of the metaheuristic. 

or this problem, 100 constructions have been considered for each 

alue of the β parameter. 

As can be derived from the results, the best value for the β pa- 

ameter is β = 0 . 00 in terms of number of best solutions found, 

hile in deviation it is the third best option, after β = 0 . 25 and

= RND . This behavior can be partially explained since β = 0 . 00 

esults in a completely greedy algorithm and, for a construction 

ithout improvement, is the option focused on intensification. 

hese results indicate that it is not recommendable to consider 

arge β values since they include too much randomness in the 

earch. 

The next experiment ( Table 3 ) aims to evaluate the behavior of 

he constructive procedures when coupled with the local search 

rocedure (100 constructions followed by a local search for each 

onstruction). In the context of GRASP, the best constructive pro- 

edure is not necessarily the most adequate one, since including 

ore diversification can eventually lead the local search procedure 

o find better solutions. 
148 
In this case, the GRASP( RND ) is able to reduce the average de- 

iation as well as the average objective function value, presenting 

he best results in these metrics. On the other hand, GRASP(0.25) 

btains a larger number of best values. If we now analyze the re- 

ults obtained by the completely greedy variant, β = 0 . 00 , we can 

ee how focusing just in intensification does not necessarily lead to 

etter results. Even more, the greedy variant results in the fourth 

lace, being better than the variants which are totally focused in 

iversification. These results experimentally confirm the hypothe- 

is that including more diversification in the constructive proce- 

ure can eventually lead to better solutions. Therefore, the selected 

alue for β is RND . 

Since the proposed local search follows a first improvement 

trategy, it is interesting to compare it with a best improvement 

pproach, with the aim of evaluating if the increase in intensifi- 

ation provided by a best improvement strategy is interesting to 

e used in the context of α − pCP. To that end, the next experi- 

ent compares the results obtained by the proposed first improve- 

ent approach with the best improvement strategy, by repeating 

he last scheme: 100 constructions followed by a local improve- 

ent for each construction. Table 4 shows the results obtained in 

his experiment. 

The first relevant result that can be extracted from the table 

s that considering best improvement instead of first improvement 

oes not affect to the quality of the generated solutions. Indeed, al- 

hough both results are rather similar, first improvement is able to 

each 24 best solutions while best improvement reaches 20. How- 

ver, the average deviation of both strategies is close to zero, in- 

icating that the results are equivalent. Notwithstanding, the re- 

ults in terms of computing time are determinant to select first 

mprovement instead of best improvement. In particular, first im- 

rovement is almost 9 times faster than best improvement. There- 

ore, first improvement is the selected strategy for the final algo- 

ithm. 

The next experiments are devoted to adjust the parameters 

or the TS procedure. The first one evaluates the influence of the 

enure parameter, which indicates the length of the tabu list. The 

alues compared are tenure = { 0 . 1 · p, 0 . 2 · p, 0 . 3 · p, 0 . 4 · p, 0 . 5 · p} .
t is worth mentioning that the values indicate a percentage of el- 

ments in the solution to make the algorithm more scalable with 

ifferent problem sizes. In order to obtain meaningful results, we 

et the maximum number of iterations without improvement, de- 

oted as τ , to 20 (the influence of this parameter will be studied 

n the following experiment). 

Table 5 shows the results obtained with these tenure values. Al- 

hough the results are rather similar in quality, it can be easily ob- 

erved that the smaller the tenure, the better the results. There- 

ore, we have selected tenure = 0 . 1 · p as the best value for the 
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Fig. 2. Evolution of the objective function value (Y-axis) with respect to computing 

time (X-axis) when considering different values for the stopping criterion of TS. 

Table 6 

Comparison of local search and tabu search when consid- 

ering similar computing times. 

Algorithm Avg. Time(s) Dev(%) #Best 

Local Search 407.25 39.68 1.69 15 

Tabu Search 402.33 31.73 1.16 23 
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Table 7 

Analysis of different δmax values for the SO algo- 

rithm. 

δmax Avg. Time(s) Dev(%) #Best 

0.1 367.05 239.57 1.40 11 

0.2 361.83 434.60 0.58 17 

0.3 360.44 642.83 0.63 20 

Table 8 

Comparison among different SO strategies for the α −
pCP. 

Strategy Avg. Time(s) Dev(%) #Best 

SO-RR 374.38 318.63 2.55 11 

SO-RG 383.30 262.48 2.90 14 

SO-GR 361.83 434.60 1.11 17 

SO-GG 382.18 357.98 2.47 12 

Table 9 

Comparison of the effect of including SO in the final algo- 

rithm or not. 

Strategy Avg. Time(s) Dev(%) #Best 

With SO 361.83 434.60 0.00 30 

Without SO 402.33 31.73 34.26 0 
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S parameter, since it presents a smaller average objective func- 

ion value (403.31), smaller deviation (0.03%), and larger number 

f best solutions (29) in equivalent computing times (about 19 s). 

ttending to the results showed in the previous experiment, we 

an observe that GRASP is considerably faster than any TS variant. 

The second parameter to be tuned in TS is the maximum 

umber of iterations without improvement τ used as a stop- 

ing criterion. In this case, we have analyzed the values τ = 

 1 , 10 , 20 , 30 , 40 } . Figure 2 shows the evolution of the solution

uality for these τ values. 

As expected, the larger the value of τ , the better the solution. 

owever, the computing time also drastically increases with the τ
alue. Therefore, in order to find a compromise between quality 

nd computing time, we select τ = 20 with the aim of limiting the 

ime spent in the TS procedure to a value smaller than 30 s on 

verage. 

In order to evaluate whether longer CPU times for GRASP would 

esult in a better algorithm than TS, we have executed both algo- 

ithms for similar CPU time. In particular, the number of construc- 

ions of GRASP when considering local search methods has been 

ncreased until reaching similar computing times than when con- 

idering Tabu Search. Table 6 shows the results obtained in this 

omparison. 

The obtained results show the limitations of the local search 

ethod when compared to the proposed tabu search. In particular, 

S maintains a smaller deviation (1.16% versus 1.69%) and a larger 

umber of best solutions found (23 versus 15). This experiment 

dditionally shows the influence of including TS in the final version 

f the algorithm. 

The next experiment is devoted to set the value of the δmax 

arameter inside the SO framework, which limits the maximum 

umber of elements to be added to the incumbent solution. In 

ther words, it limits how far from feasibility a given solution is. 

otice that selecting a large value will result in a completely dif- 

erent solution, which may be equivalent to construct a new solu- 

ion from scratch. Therefore, we set δmax = { 0 . 1 · p, 0 . 2 · p, 0 . 3 · p} .
s we did with the tenure parameter, δmax is evaluated as a per- 

entage of the number of selected elements to ease scalability. 
149 
Results show that, as expected, the larger the δmax value, the 

ore computationally demanding SO becomes. However, it does 

ot necessarily results in better solutions. Analyzing the deviation, 

e can see that δmax = 0 . 2 is able to reach the smallest deviation,

ith a slightly smaller number of best solutions found (17 versus 

0). Additionally the average objective function value is very sim- 

lar, which suggests that the increment in approximately 200 s of 

omputing time does not worth it. Therefore, we select δmax = 0 . 2 

or the final algorithm. 

In the following preliminary experiment, the influence of di- 

ersification and intensification in the SO framework is evaluated. 

o this end, we test all SO variants: SO-RR , SO-RG , SO-GR , SO-GG .

able 8 shows this comparison. 

As can be derived from the results, the best option is to con- 

ider a greedy oscillation and a random repair, since it is able to 

chieve the smallest deviation and the largest number of best solu- 

ions found. The main drawback is that a greedy oscillation always 

equires more computing time than the random one. Therefore, we 

ave opted by SO-GR as the best strategy. 

Finally, to evaluate the relevance of SO within the complete al- 

orithm proposed, we have performed an additional experiment 

o evaluate the quality of the results obtained with the algo- 

ithm before and after considering the SO post-processing method 

 Table 9 ). 

First of all, it is worth mentioning that the SO post-processing 

s the most time consuming part of the algorithm, which is reason- 

ble considering that it implies the execution of two improvement 

tages as it can be seen in Algorithm 2 . However, the impact on the

uality of the solutions generated highlights the relevance of con- 

idering this post-processing stage. In particular, it is able to reach 

ll the best solutions, resulting in an average deviation of 34.26% 

hen not considering it. Therefore, SO has been included in the 

nal version of the algorithm. 

To summarize, the best configuration for the proposed algo- 

ithm consists of β = RND , tenure = 0 . 1 · p, τ = 20 , δmax = 0 . 2 · p,

nd the SO-GR strategy. For the sake of brevity, we denote this al- 

orithm as SO. 
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Table 10 

Comparison of the results obtained by the adaptation of Chen & Chen (2013) coupled with an exhaustive local search, the multistart approach, and 

the proposed SO when considering α = 1 . The original results of the continuous version are also included as a lower bound for the discrete problem. 

α = 1 Lower Bound Chen & Chen (2013) + LS MultiStart + LS SO 

Instance O.F. Time (s) O.F. Time (s) Dev(%) O.F. Time (s) Dev(%) O.F. Time (s) Dev(%) 

att48_48_10 836.34 0.09 1401.71 0.09 16.50% 1380.96 0.20 14.78 1203.18 1.85 0.00 

att48_48_20 474.65 0.11 921.43 0.11 29.64 1203.18 0.09 69.28 710.77 0.65 0.00 

att48_48_30 251.07 0.08 921.43 0.08 99.41 1203.18 0.06 160.38 462.08 0.22 0.00 

att48_48_40 186.95 0.07 331.05 0.07 3.50 1203.18 0.03 276.18 319.85 0.06 0.00 

ch150_150_10 122.55 8.59 177.64 8.59 25.51 162.18 3.25 14.59 141.53 82.96 0.00 

ch150_150_100 18.91 1.78 45.25 1.78 35.19 86.70 0.36 159.05 33.47 1.50 0.00 

ch150_150_110 16.48 1.83 48.22 1.83 59.78 86.70 0.28 187.28 30.18 0.95 0.00 

ch150_150_120 13.77 1.73 40.72 1.73 48.86 86.70 0.21 216.94 27.36 0.55 0.00 

ch150_150_130 11.91 1.76 33.40 1.76 48.75 86.70 0.15 286.15 22.45 0.26 0.00 

ch150_150_140 8.80 1.46 36.68 1.46 108.71 86.70 0.09 393.31 17.58 0.11 0.00 

ch150_150_20 76.80 14.33 133.37 14.33 37.31 124.60 1.86 28.28 97.13 39.97 0.00 

ch150_150_30 55.72 9.55 118.75 9.55 49.26 103.02 1.35 29.49 79.56 18.01 0.00 

ch150_150_40 47.41 6.14 93.49 6.14 37.02 87.68 1.09 28.51 68.23 12.22 0.00 

ch150_150_50 38.01 3.94 79.66 3.94 30.72 86.70 0.93 42.27 60.94 7.74 0.00 

ch150_150_60 31.98 3.95 68.02 3.95 37.02 86.70 0.78 74.65 49.64 6.29 0.00 

ch150_150_70 27.06 2.11 68.02 2.11 46.35 86.70 0.65 86.55 46.48 4.38 0.00 

ch150_150_80 24.99 1.72 49.64 1.72 19.72 86.70 0.54 109.10 41.46 3.28 0.00 

ch150_150_90 20.73 1.83 45.95 1.83 19.75 86.70 0.47 125.92 38.38 2.18 0.00 

eil101_101_10 12.14 2.72 18.68 2.72 30.48 17.46 0.98 21.95 14.32 26.04 0.00 

eil101_101_100 0.71 0.18 1.41 0.18 0.00 12.72 0.02 799.44 1.41 0.05 0.00 

eil101_101_20 7.53 5.78 12.73 5.78 23.62 13.00 0.59 26.27 10.30 8.50 0.00 

eil101_101_30 5.76 2.06 12.04 2.06 46.03 12.72 0.42 54.25 8.25 4.75 0.00 

eil101_101_40 4.61 1.16 11.18 1.16 53.57 12.72 0.33 74.72 7.28 2.89 0.00 

eil101_101_50 3.64 1.00 10.82 1.00 52.97 12.72 0.26 79.89 7.07 1.80 0.00 

eil101_101_60 3.35 0.65 7.62 0.65 20.42 12.72 0.19 101.12 6.32 1.08 0.00 

eil101_101_70 2.69 0.35 7.21 0.35 44.22 12.72 0.14 154.40 5.00 0.55 0.00 

eil101_101_80 2.24 0.28 6.71 0.28 62.70 12.72 0.10 208.51 4.12 0.25 0.00 

eil101_101_90 1.58 0.20 6.32 0.20 100.00 12.72 0.06 302.24 3.16 0.08 0.00 

pr439_439_10 1716.51 42.85 2580.94 42.85 30.89 2660.94 94.80 34.95 1971.83 1800.85 0.00 

pr439_439_20 1029.71 120.01 2958.57 120.01 146.49 2289.65 51.90 90.76 1200.26 1566.51 0.00 

pr439_439_30 739.19 279.80 1630.38 279.80 83.87 1746.42 36.95 96.96 886.71 761.30 0.00 

pr439_439_40 580.01 319.76 1530.52 319.76 109.99 1530.52 28.84 109.99 728.87 490.00 0.00 

pr439_439_50 468.54 368.89 1570.03 368.89 161.67 1510.38 23.49 151.73 600.00 294.52 0.00 

pr439_439_60 400.20 370.46 1654.73 370.46 201.80 1386.09 20.04 152.80 548.29 230.09 0.00 

pr439_439_70 357.95 271.50 1630.38 271.50 226.08 1364.73 17.47 172.95 500.00 175.29 0.00 

pr439_439_80 312.50 264.24 1630.38 264.24 242.76 1364.73 15.47 186.91 475.66 155.71 0.00 

pr439_439_90 280.90 93.01 1144.83 93.01 175.14 1364.73 13.82 227.99 416.08 131.18 0.00 
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tinuous version deteriorates when the size of the instance increase. 
.2. Final results 

The main objective of this section is to compare the results ob- 

ained with our best algorithm with the procedure introduced in 

hen & Chen (2013) . As aforementioned, the best method identi- 

ed in the state of the art is an exact algorithm for solving the 

ontinuous version of the problem. With the aim of having a fair 

omparison with the discrete version tackled in this work, the ex- 

ct algorithm for the continuous version has been adapted. In par- 

icular, each point given in the output of the continuous version 

s mapped to the closest point of the discrete variant. Since this 

daptation can result in low quality solutions, we have additionally 

pplied an exhaustive local search to the resulting solution. There- 

ore, the solution compared is a local optimum with respect to the 

onsidered N S (P ) for the initial solution P given by the exact pro-

edure for the continuous version. Additionally, we have included 

 complete multistart procedure which starts from a random solu- 

ion and then applies the exhaustive local search method to find 

 local optimum. The objective of considering this multistart ap- 

roach is to evaluate if the adaptation of the continuous version 

rovides reasonable results in the discrete approach. 

In this experiment, we consider the whole set of 111 instances. 

ables 10 , 11 , and 12 show the associated results for α = 1 , 2 , and

, respectively, for the small and medium instances. We report, for 

ach instance, the value of the objective function, O.F., the corre- 

ponding computing CPU time in seconds, Time(s), and the devia- 

ion with respect to the best result found, Dev (%), of the proposed 

trategic Oscillation method ( SO ), the state-of-the-art method cou- 
150 
led with the exhaustive local search (Chen & Chen (2013) + LS), 

nd the multistart approach, respectively. Additionally, the results 

btained directly with the algorithm for the continuous version 

Lower Bound) are included as a lower bound, since they corre- 

pond to unfeasible solution in the context of the discrete version. 

otice that a time limit of 1800 s per instance has been set, stop- 

ing the algorithm when reaching that limit, returning the best so- 

ution found so far. 

The proposed SO algorithm consistently finds the best results 

n all the instances, even considering the exhaustive local search in 

he adaptation for the continuous version and in the multistart ap- 

roach, which highlights the relevance of using specific strategies 

or the discrete version of the tackled problem. Indeed, the differ- 

nces between the two methods become more evident as the value 

f α increases, again supporting the same hypothesis. Additionally, 

he size of the instance is also a relevant factor in the analysis, 

ince the results of SO are considerably better when the size of 

he instance increases. It is worth mentioning that the adaptation 

f the continuous version coupled with the exhaustive local search 

s competitive for the discrete version when considering instances 

ith up to 100 nodes. The computing time required by the pro- 

osed SO is also affected by the instance size, being considerably 

igher for the largest instances. The comparison between the adap- 

ation of the continuous version and the multistart approach shows 

ow the former is able to reach better results in small instances, 

ut the latter provides better quality solutions in the largest in- 

tances, highlighting that the quality of the adaptation of the con- 
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Table 11 

Comparison of the results obtained by the adaptation of Chen & Chen (2013) coupled with an exhaustive local search, the multistart approach, and 

the proposed SO when considering α = 2 . The original results of the continuous version are also included as a lower bound for the discrete problem. 

α = 2 Lower Bound Chen & Chen (2013) + LS MultiStart + LS SO 

Instance O.F. Time (s) O.F. Time (s) Dev(%) O.F. Time (s) Dev(%) O.F. Time (s) Dev(%) 

att48_48_10 1377.53 0.20 2334.17 0.20 46.61 1931.36 0.32 21.31 1592.12 5.14 0.00 

att48_48_20 820.45 0.22 1910.06 0.22 68.90 1590.90 0.14 40.68 1130.85 1.21 0.00 

att48_48_30 601.59 0.22 1849.16 0.22 97.48 1590.90 0.07 69.90 936.38 0.42 0.00 

att48_48_40 474.65 0.19 1267.89 0.19 138.29 1590.90 0.03 199.00 532.08 0.07 0.00 

ch150_150_10 184.06 0.95 241.53 0.95 17.44 235.33 6.60 14.43 205.66 223.16 0.00 

ch150_150_100 38.01 3.61 91.90 3.61 72.71 89.67 0.53 68.52 53.21 2.35 0.00 

ch150_150_110 33.24 3.46 77.13 3.46 49.33 89.67 0.43 73.62 51.65 1.36 0.00 

ch150_150_120 31.98 3.20 77.13 3.20 53.34 89.67 0.28 78.28 50.30 0.72 0.00 

ch150_150_130 29.55 2.49 87.22 2.49 87.04 89.67 0.19 92.28 46.63 0.31 0.00 

ch150_150_140 27.06 2.23 71.82 2.23 69.78 89.67 0.10 111.99 42.30 0.14 0.00 

ch150_150_20 122.55 13.20 194.37 13.20 37.33 165.44 3.48 16.89 141.53 94.75 0.00 

ch150_150_30 93.98 26.27 161.82 26.27 43.82 140.76 2.36 25.10 112.51 55.58 0.00 

ch150_150_40 76.38 20.94 118.83 20.94 23.25 117.58 1.84 21.95 96.42 31.74 0.00 

ch150_150_50 65.42 19.11 166.24 19.11 89.58 105.67 1.43 20.51 87.69 18.10 0.00 

ch150_150_60 55.72 8.02 129.57 8.02 65.23 98.11 1.14 25.11 78.42 12.24 0.00 

ch150_150_70 50.78 5.97 117.58 5.97 72.33 94.65 0.99 38.72 68.23 8.20 0.00 

ch150_150_80 47.41 4.22 98.11 4.22 52.24 89.67 0.77 39.14 64.45 5.57 0.00 

ch150_150_90 41.28 4.14 103.50 4.14 66.85 89.67 0.63 44.54 62.04 3.63 0.00 

eil101_101_10 19.46 0.45 25.94 0.45 22.29 24.04 2.05 13.33 21.21 68.12 0.00 

eil101_101_100 3.64 0.68 6.32 0.68 123.61 13.00 0.03 359.62 2.83 0.05 0.00 

eil101_101_20 12.14 7.98 19.10 7.98 35.09 17.46 1.13 23.46 14.14 28.27 0.00 

eil101_101_30 9.22 7.22 18.68 7.22 55.68 14.31 0.75 19.25 12.00 10.63 0.00 

eil101_101_40 7.53 9.60 15.13 9.60 60.41 13.00 0.53 37.80 9.43 6.19 0.00 

eil101_101_50 6.36 4.05 15.81 4.05 83.80 13.00 0.39 51.12 8.60 3.19 0.00 

eil101_101_60 5.76 2.85 13.60 2.85 64.94 13.00 0.29 57.65 8.25 1.94 0.00 

eil101_101_70 5.00 1.61 13.60 1.61 86.83 13.00 0.21 78.57 7.28 0.96 0.00 

eil101_101_80 4.53 1.43 12.04 1.43 90.39 13.00 0.13 105.55 6.32 0.43 0.00 

eil101_101_90 4.03 1.06 9.43 1.06 88.68 13.00 0.07 160.00 5.00 0.11 0.00 

pr439_439_10 2752.64 0.37 3779.05 0.81 20.10 3530.22 217.34 12.19 3146.63 1800.97 0.00 

pr439_439_20 1716.51 0.84 2440.54 26.27 9.63 2765.07 117.33 24.20 2226.26 1800.89 0.00 

pr439_439_30 1271.83 0.94 3222.19 24.36 114.78 2575.12 78.47 71.65 1500.21 1800.18 0.00 

pr439_439_40 1008.17 3.40 3300.00 76.85 163.16 2079.96 58.75 65.87 1253.99 1800.24 0.00 

pr439_439_50 874.27 4.53 2432.33 183.53 127.75 2010.28 47.02 88.23 1068.00 1327.63 0.00 

pr439_439_60 739.19 7.90 2037.31 487.18 108.95 1667.70 39.28 71.05 975.00 918.13 0.00 

pr439_439_70 621.74 25.81 2575.12 1271.12 184.37 1541.50 33.65 70.23 905.54 639.50 0.00 

pr439_439_80 580.01 24.80 2277.06 497.79 211.13 1453.44 29.05 98.59 731.86 509.87 0.00 

pr439_439_90 530.48 49.18 2432.33 291.78 239.76 1453.44 25.42 103.03 715.89 405.64 0.00 
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owever, the proposed SO remains as the best approach for solv- 

ng the considered problem. Finally, it is important to remark that 

O is able to reach results which are relatively close, compared to 

he other methods investigated, to the lower bound obtained with 

he optimal result for the continuous version. 

Notice that for those instances with less than 200 nodes, the 

xact procedure is able to solve the continuous version in less than 

en seconds. Symmetrically, it requires more than 10 0 0 s in those 

nstances with 439 nodes. 

In order to test the limits of the exact procedure, we include 

 new set of large instances obtained from Callaghan et al. (2019) , 

here the number of nodes ranges from 575 to 1323, being a more 

hallenging set. Tables 13 , 14 , and 15 show the results obtained 

hen considering this new set of large instances. 

First of all, the complexity of these instances is high even for 

he continuous version, which it is able to optimally solve just 

ne instance in less than 1800 s. Therefore, the value reported 

or the exact method is the best value found in that computing 

ime limit. Again, the proposed SO is able to reach the best re- 

ults in all the instances for the three considered values of α. Even 

ore, it is able to provide better solutions than the ones reported 

ith the exact method for the continuous version in 1800 s. It is 

orth mentioning that when considering this new set of large and 

ore complex instances, the multistart approach performs con- 

iderably better than the adaptation of the continuous version, 

eing competitive in some instances with the proposed method. 

hese results support the appropriateness of proposing a specific 
w

151 
lgorithm design for the discrete variant of the tackled problem, 

uch as SO. 

.3. What if the demand points are included in the objective function 

valuation? 

In the original work of the α − pCP ( Chen & Chen, 2013 ), when

 demand point becomes a facility it is not considered that the 

losest facility is the demand point itself, i.e., the evaluation of the 

-closest facility ignores that the demand point is already host- 

ng a facility. However, considering the demand point itself in the 

valuation if it hosts a facility is more realistic, since a customer 

r user will not travel to another location if the service can be sat- 

sfied in the point where it is currently located. With the aim of 

valuating the impact of this new approach, we evaluate the per- 

ormance of both, the multistart approach (which has been proven 

o be better than the adaptation of the continuous version) and the 

roposed SO algorithm. 

After performing the same experiment as the one reported in 

ection 5.2 , but including the modification in the evaluation of the 

bjective function value, we have noticed that the algorithm re- 

orts the same results. The rationale behind this is that the mod- 

fication of the objective function value benefits to those points 

osting a facility, but it does not affect the other demand points. 

ince it is a problem where the objective function is computed as 

he maximum distance to the α-neighbor among all the points, 

e have experimentally checked that it always corresponds to a 
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Table 12 

Comparison of the results obtained by the adaptation of Chen & Chen (2013) coupled with an exhaustive local search, the multistart approach, and 

the proposed SO when considering α = 3 . The original results of the continuous version are also included as a lower bound for the discrete problem. 

α = 3 Lower Bound Chen & Chen (2013) + LS MultiStart + LS SO 

Instance O.F. Time (s) O.F. Time (s) Dev(%) O.F. Time (s) Dev(%) O.F. Time (s) Dev(%) 

att48_48_10 1965.63 0.01 2755.07 0.01 26.01 2373.56 0.50 8.56 2186.31 6.72 0.00 

att48_48_20 1179.16 0.35 2011.66 0.33 46.36 1841.40 0.21 33.97 1374.48 1.61 0.00 

att48_48_30 829.38 0.54 1628.44 0.50 60.97 1841.40 0.10 82.02 1011.66 0.54 0.00 

att48_48_40 676.75 0.22 1374.48 0.22 103.63 1841.40 0.04 172.80 675.00 0.08 0.00 

ch150_150_10 295.81 0.15 330.21 0.16 10.60 301.53 10.19 0.99 298.56 398.03 0.00 

ch150_150_100 52.60 5.76 109.42 7.79 57.78 103.50 0.66 49.24 69.35 3.23 0.00 

ch150_150_110 48.80 6.83 134.29 8.85 99.78 103.50 0.50 53.98 67.22 1.85 0.00 

ch150_150_120 47.41 4.79 108.78 5.18 77.48 103.50 0.37 68.87 61.29 0.95 0.00 

ch150_150_130 42.59 4.62 104.00 4.43 80.86 103.50 0.24 79.99 57.50 0.41 0.00 

ch150_150_140 40.01 4.82 77.13 4.33 47.75 103.50 0.13 98.26 52.20 0.16 0.00 

ch150_150_20 168.41 19.58 203.04 13.83 12.98 202.24 5.36 12.53 179.71 150.94 0.00 

ch150_150_30 122.55 26.00 211.07 35.26 44.17 164.50 3.50 12.36 146.41 78.08 0.00 

ch150_150_40 103.43 25.38 167.28 25.21 40.32 146.95 2.56 23.26 119.22 52.10 0.00 

ch150_150_50 87.13 26.36 161.82 27.68 49.80 128.22 1.99 18.69 108.03 26.70 0.00 

ch150_150_60 76.38 21.82 164.50 26.16 68.78 115.73 1.58 18.74 97.46 17.78 0.00 

ch150_150_70 69.37 31.32 134.29 30.88 44.68 110.63 1.28 19.19 92.82 13.10 0.00 

ch150_150_80 61.58 17.73 131.63 17.82 57.86 103.99 1.04 24.71 83.38 8.34 0.00 

ch150_150_90 55.72 9.74 133.65 12.64 67.45 103.50 0.83 29.68 79.81 4.75 0.00 

eil101_101_10 30.22 0.11 33.24 0.10 12.95 32.57 3.13 10.68 29.43 92.44 0.00 

eil101_101_100 5.17 2.24 10.20 2.15 260.62 15.13 0.03 434.93 2.83 0.05 0.00 

eil101_101_20 16.32 2.70 20.81 3.41 15.43 20.61 1.66 14.32 18.03 43.73 0.00 

eil101_101_30 12.14 4.77 16.28 5.61 15.12 17.46 1.08 23.46 14.14 19.37 0.00 

eil101_101_40 10.31 10.51 21.40 11.04 77.72 15.81 0.78 31.29 12.04 9.71 0.00 

eil101_101_50 9.01 6.60 21.54 7.03 102.63 15.13 0.55 42.33 10.63 4.74 0.00 

eil101_101_60 7.53 8.05 13.60 8.47 50.19 15.13 0.39 67.08 9.06 2.22 0.00 

eil101_101_70 6.71 8.09 14.42 8.72 68.77 15.13 0.27 77.08 8.54 1.06 0.00 

eil101_101_80 6.08 4.06 15.13 4.49 107.83 15.13 0.18 107.83 7.28 0.44 0.00 

eil101_101_90 5.76 2.50 10.77 2.95 77.06 15.13 0.09 148.74 6.08 0.11 0.00 

pr439_439_10 3989.30 0.49 4601.22 0.09 12.88 4257.34 352.85 4.44 4076.23 1800.47 0.00 

pr439_439_20 2347.51 6.27 3220.64 29.76 18.14 3222.18 194.21 18.20 2726.03 1800.09 0.00 

pr439_439_30 1716.51 2.01 3390.06 18.51 51.90 2986.84 135.48 33.84 2231.73 1800.48 0.00 

pr439_439_40 1407.62 3.21 3222.19 67.48 95.89 2674.06 99.55 62.57 1644.88 1800.42 0.00 

pr439_439_50 1226.02 3.23 3486.58 38.89 137.61 2620.23 78.16 78.57 1467.35 1800.05 0.00 

pr439_439_60 1019.99 5.76 2622.26 105.76 95.69 2575.12 63.10 92.17 1340.01 1800.03 0.00 

pr439_439_70 946.46 17.48 3222.19 102.37 161.73 2333.72 53.27 89.56 1231.11 1316.50 0.00 

pr439_439_80 853.03 54.00 3390.06 402.48 178.43 2065.49 45.97 69.64 1217.58 955.74 0.00 

pr439_439_90 739.19 21.18 2982.03 491.31 202.29 2065.49 39.70 109.38 986.47 723.38 0.00 
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emand point that is not hosting a facility, resulting in the same 

esults as the one reported in the previous section. 

. Experimental analysis 

This section is devoted to deeply analyze the parameters set- 

ings for the proposed algorithm. Specifically, we first test the ro- 

ustness and reliability of the proposed algorithm by executing 30 

imes the algorithm over the 30 instances considered in the pre- 

iminary experimentation. Differences in the objective function are 

ather large, so we use the average deviation with respect to the 

est value found in the 30 independent executions, since it is a di- 

ensionless metric. Figures 3 , 4 , and 5 , depict the associated Box 

nd Whisker plot for α = 1 , α = 2 , and α = 3 , respectively, report-

ng, for each instance, the minimum and the maximum shown at 

he far lower and upper of the chart, respectively; quartiles 1 and 

 in the far lower and upper of the box, respectively; the median 

epresented with an horizontal line inside the box; and the mean 

epresented with an horizontal dotted line. Note that the outliers 

ave been excluded. 

As can be derived from the results, the proposed algorithm 

resents a robust behavior when considering 30 independent ex- 

cutions in the instances considered for the preliminary experi- 

ents. As expected, our proposal is able to find robust solutions 

or the α − pCP independently of the α value. Specifically, in all 

he instances the mean and median values are very close, with the 

edian under the mean in most of the cases. This result indicates 

hat the algorithm is able to diversify the search to explore a larger 
152 
ortion of the search space but the intensification phase is able to 

ead the algorithm to high-quality solutions. 

We additionally conduct a sensitivity analysis. In particular, for 

ach parameter of the proposed algorithm, namely β (the bal- 

nce between greediness/ randomness of the constructive method), 

enure (the length of the tabu list), τ (the number of iterations 

ithout improvement), and δmax (the percentage of the size incre- 

ent inside Strategic Oscillation), we evaluate different possibili- 

ies while fixing the remaining parameters to the best values found 

n the preliminary experimentation. In particular, we test the same 

alues than the ones used in the preliminary experimentation, ex- 

cuting for each instance and each parameter setting 30 indepen- 

ent iterations of each algorithm. 

We use the Friedman test to evaluate whether the performance 

f the proposed algorithm varies significantly (in terms of the ob- 

ective function value) when we vary a single parameter as men- 

ioned above. To that end we use the p-value denoted as ρ- 

alue since p indicates the number of facilities in our optimiza- 

ion problem and a significance level of 5%. The statistical re- 

ults show us that β , τ , and δmax are statistically significant since 

ts ρ-values are smaller than 0.05, specifically, 0.019, 0.0 0 0 and 

.010, respectively. This implies that these parameters are sensi- 

ive. See Table 16 , 17 , and 18 where the Wilcoxon tests are re-

orted to check between which parameters are those differences. 

f we focus on Table 16 only β = 0 . 75 gets different results, and

his is the only β value that gets worse values for objective func- 

ion (see Tables 2 and 3 to check this affirmation). This state- 

ent is logical since very large β values find more greedy so- 
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Table 13 

Comparison of the results obtained by the adaptation of Chen & Chen (2013) coupled with an exhaustive local search, the multistart approach, and 

the proposed SO when considering α = 1 over the set of large instances. The original results of the continuous version are also included as a lower 

bound for the discrete problem. 

α = 1 Lower Bound Chen & Chen (2013) + LS MultiStart + LS SO 

Instance O.F. Time (s) O.F. Time (s) Dev(%) O.F. Time (s) Dev(%) O.F. Time (s) Dev(%) 

pr1002_10.txt 2472.01 1886.09 3546.83 1.32 35.89 2934.70 937.09 12.44 2610.08 1800.04 0.00 

pr1002_100.txt 715.13 1846.89 1600.78 0.48 111.57 1253.99 150.60 65.73 756.64 466.26 0.00 

pr1002_20.txt 2010.67 1823.56 2755.45 1.23 53.50 2418.67 508.37 34.73 1795.13 1800.01 0.00 

pr1002_30.txt 1640.51 1803.38 2352.13 0.93 63.39 2061.55 347.75 43.20 1439.62 1617.02 0.00 

pr1002_40.txt 1308.32 1806.87 2170.83 1.11 73.11 1806.23 276.79 44.04 1253.99 1289.79 0.00 

pr1002_50.txt 1170.07 1806.19 2280.35 0.60 107.95 1622.49 246.22 47.96 1096.59 993.45 0.00 

pr1002_60.txt 1101.14 1820.00 1900.66 0.41 90.14 1457.73 202.70 45.83 999.64 986.67 0.00 

pr1002_70.txt 1001.07 1804.61 1758.55 0.50 91.31 1430.03 179.13 55.57 919.24 895.47 0.00 

pr1002_80.txt 891.64 1852.29 1346.29 0.44 58.11 1353.69 176.82 58.98 851.47 696.52 0.00 

pr1002_90.txt 814.26 1810.06 1480.71 0.35 87.30 1253.99 168.97 58.62 790.57 561.37 0.00 

rat575_10.txt 67.93 604.34 97.42 0.35 33.45 88.40 179.77 21.10 73.00 809.91 0.00 

rat575_100.txt 16.42 8462.51 32.65 0.11 43.18 32.31 25.19 41.69 22.80 52.65 0.00 

rat575_20.txt 51.10 1800.36 103.17 0.24 103.09 65.85 92.15 29.62 50.80 478.66 0.00 

rat575_30.txt 38.72 1801.22 76.16 0.17 82.26 54.23 63.53 29.78 41.79 254.97 0.00 

rat575_40.txt 30.06 27511.44 49.82 0.13 37.02 48.37 50.98 33.03 36.36 175.37 0.00 

rat575_50.txt 25.83 3286.70 40.61 0.13 24.73 45.27 41.63 39.05 32.56 115.20 0.00 

rat575_60.txt 23.22 3667.31 40.45 0.10 36.97 40.22 36.72 36.20 29.53 96.59 0.00 

rat575_70.txt 20.86 27204.47 38.47 0.12 39.09 36.35 32.40 31.42 27.66 83.90 0.00 

rat575_80.txt 19.03 4546.50 37.48 0.12 47.02 34.82 30.77 36.58 25.50 70.72 0.00 

rat575_90.txt 17.46 2462.78 33.02 0.10 36.50 34.78 26.96 43.80 24.19 57.53 0.00 

rat783_10.txt 86.35 1807.01 98.23 1.26 15.25 102.06 448.53 19.74 85.23 1800.00 0.00 

rat783_100.txt 20.80 1949.20 44.18 0.29 63.52 38.89 66.59 43.94 27.02 219.71 0.00 

rat783_20.txt 64.19 1831.76 138.92 0.55 132.41 73.34 235.48 22.69 59.77 1263.44 0.00 

rat783_30.txt 53.50 1816.26 68.47 0.43 39.62 64.84 162.53 32.22 49.04 762.19 0.00 

rat783_40.txt 44.92 1815.66 66.61 0.30 54.74 57.28 128.81 33.07 43.05 621.21 0.00 

rat783_50.txt 40.26 1801.75 69.03 0.29 81.91 52.39 103.84 38.06 37.95 464.33 0.00 

rat783_60.txt 32.42 1800.93 51.62 0.22 48.41 48.08 98.41 38.22 34.79 412.68 0.00 

rat783_70.txt 27.67 1922.27 44.05 0.23 36.78 44.82 84.89 39.18 32.20 342.63 0.00 

rat783_80.txt 25.62 1830.71 71.87 0.34 138.90 43.04 74.05 43.07 30.08 301.16 0.00 

rat783_90.txt 22.93 1906.27 46.87 0.29 66.45 41.00 68.45 45.60 28.16 273.28 0.00 

rl1323_10.txt 3234.12 1829.81 4213.25 4.99 34.58 3580.14 2285.40 14.36 3130.67 1800.05 0.00 

rl1323_100.txt 973.52 1806.53 1325.68 1.13 50.65 1631.50 357.40 85.40 880.00 1329.81 0.00 

rl1323_20.txt 2430.07 1827.34 3119.18 3.24 49.36 2931.06 1283.05 40.35 2088.39 1800.03 0.00 

rl1323_30.txt 2023.46 1863.60 2948.00 2.83 68.87 2217.94 897.35 27.05 1745.76 1800.02 0.00 

rl1323_40.txt 1720.12 1813.06 2579.84 1.91 77.70 2073.28 714.51 42.81 1451.77 1800.01 0.00 

rl1323_50.txt 1518.40 1805.90 1925.14 1.70 49.20 2021.87 600.31 56.69 1290.32 1800.01 0.00 

rl1323_60.txt 1374.07 1805.65 2021.87 1.41 69.69 1764.64 520.06 48.10 1191.50 1800.01 0.00 

rl1323_70.txt 1186.25 1832.08 1911.26 1.66 77.65 1643.64 467.56 52.77 1075.86 1800.02 0.00 

rl1323_80.txt 1120.79 1803.55 1735.40 1.08 75.74 1631.50 425.53 65.22 987.47 1788.07 0.00 

rl1323_90.txt 1032.91 1825.12 1735.40 1.01 87.25 1631.50 388.57 76.04 926.77 1433.94 0.00 

Fig. 3. Box and Whisker plot for 30 independent executions with α = 1 . 
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Table 14 

Comparison of the results obtained by the adaptation of Chen & Chen (2013) coupled with an exhaustive local search, the multistart approach, and the proposed 

SO when considering α = 2 over the set of large instances. The original results of the continuous version are also included as a lower bound for the discrete 

problem. 

α = 2 Lower Bound Chen & Chen (2013) + LS MultiStart + LS SO 

Instance O.F. Time (s) O.F. Time (s) Dev(%) O.F. Time (s) Dev(%) O.F. Time (s) Dev(%) 

pr1002_10.txt 3641.56639 2.68 5521.0957 7.453 43.26 4373.20996 1991.881 13.48 3853.89404 1800.051 0.00 

pr1002_100.txt 979.164806 7564.59 2280.3508 0.635 111.27 1662.06995 272.082 53.99 1079.35168 1337.796 0.00 

pr1002_20.txt 2438.60823 7221.86 3628.0159 3.286 33.87 3070.01001 1058.489 13.28 2710.16602 1800.026 0.00 

pr1002_30.txt 2048.99741 7202.64 3076.1177 1.899 43.04 2616.29004 726.696 21.66 2150.5813 1800.017 0.00 

pr1002_40.txt 1781.5722 7335.57 2616.2952 1.563 44.41 2325.93994 553.193 28.38 1811.76709 1800.017 0.00 

pr1002_50.txt 1565.87409 7351.33 3640.055 1.044 124.78 2040.21997 452.728 25.99 1619.41345 180 0.0 08 0.00 

pr1002_60.txt 1429.50268 7619.14 2350.5317 0.824 64.17 1949.93005 391.611 36.19 1431.7821 180 0.0 06 0.00 

pr1002_70.txt 1214.1438 7212.5 2651.8862 0.978 96.98 1835.75 347.732 36.36 1346.29126 180 0.0 03 0.00 

pr1002_80.txt 1115.86084 7633.17 2280.3508 0.913 81.99 1700.72998 312.153 35.73 1252.99646 180 0.0 01 0.00 

pr1002_90.txt 1028.65203 7385.37 2061.5527 0.659 76.13 1662.06995 280.157 42.00 1170.46997 1696.716 0.00 

rat575_10.txt 114.063676 24.05 169.2956 0.582 44.86 119.099998 372.123 1.91 116.867447 1773.453 0.00 

rat575_100.txt 26.915694 7856.19 54.147945 0.16 72.53 41.180 0 0 03 41.388 31.21 31.3847103 122.603 0.00 

rat575_20.txt 71.344768 7896.24 96.17692 0.455 29.53 83.180 0 0 03 186.398 12.03 74.2495804 988.023 0.00 

rat575_30.txt 58.453715 7385.02 85.61542 0.319 41.11 70.4499969 125.041 16.12 60.6712456 666.002 0.00 

rat575_40.txt 49.561311 7730.75 72.00694 0.197 40.09 63.060 0 014 95.302 22.68 51.4003906 565.115 0.00 

rat575_50.txt 42.13177 9105.17 114.28473 0.284 145.67 57.0699997 76.123 22.68 46.5188141 402.004 0.00 

rat575_60.txt 38.059788 7226.7 58.821766 0.203 41.42 50.150 0 015 64.877 20.57 41.5932693 290.616 0.00 

rat575_70.txt 34.465866 8398.71 66.287254 0.155 75.85 47.6699982 57.206 26.46 37.6961555 268.171 0.00 

rat575_80.txt 31.717659 7261.39 56.0803 0.172 56.20 46.840 0 0 02 50.435 30.46 35.9026451 221.253 0.00 

rat575_90.txt 29.487913 8186.07 53.814495 0.124 60.16 42.0099983 44.63 25.03 33.6005936 158.913 0.00 

rat783_10.txt 131.846236 7.33 156.4257 3.133 12.86 144.199997 914.485 4.04 138.600143 1800.041 0.00 

rat783_100.txt 33.836169 7369.35 60.00833 0.424 60.09 48 108.821 28.06 37.4833298 536.227 0.00 

rat783_20.txt 79.312681 4819.7 123.9879 0.909 43.54 101.529999 480.244 17.54 86.3770828 1800.011 0.00 

rat783_30.txt 70.362021 7204.76 138.924 4 4 1.016 96.12 81.5999985 326.13 15.19 70.8378448 1717.016 0.00 

rat783_40.txt 58.704094 7353.28 97.082436 0.712 61.42 71.510 0 021 250.268 18.90 60.1414986 1695.858 0.00 

rat783_50.txt 51.672447 7500.51 96.0833 0.632 81.97 67.3499985 201.198 27.55 52.8015137 1212.406 0.00 

rat783_60.txt 47.04916 7212.99 78.64477 0.484 61.31 59.220 0 012 170.918 21.47 48.7544861 1044.989 0.00 

rat783_70.txt 42.138877 7338.42 93.00538 0.361 109.44 56.880 0 011 151.989 28.09 44.4072075 1038.246 0.00 

rat783_80.txt 38.892918 7368.19 84.504 4 4 0.457 99.18 53.080 0 018 132.217 25.11 42.4264069 748.929 0.00 

rat783_90.txt 36.018601 7585.51 91.787796 0.522 134.13 51.610 0 0 06 113.502 31.64 39.2045898 722.807 0.00 

rl1323_10.txt 4 4 41.01278 22.77 5545.8267 16.349 18.14 4917.31006 4680.675 4.75 4694.15479 1800.123 0.00 

rl1323_100.txt 1224.82566 7211.82 2948 2.227 127.89 2021.87 669.575 56.29 1293.63367 1800.017 0.00 

rl1323_20.txt 3028.99135 7708 4466.1147 4.186 38.40 3472.12012 2490.425 7.60 3227.00171 1800.062 0.00 

rl1323_30.txt 2496.03101 7458.43 4233.673 3.071 65.17 3084.1499 1770.238 20.32 2563.29785 1800.064 0.00 

rl1323_40.txt 2098.58495 7254.52 3474.8467 5.179 60.36 2846.3999 1400.585 31.35 2166.95557 1800.039 0.00 

rl1323_50.txt 1907.27506 7224.21 2886.6147 2.902 51.31 2525.71997 1156.037 32.40 1907.69385 1800.043 0.00 

rl1323_60.txt 1701.80347 7248.55 4473.2134 3.424 157.76 2242.68994 10 0 0.898 29.23 1735.39624 1800.024 0.00 

rl1323_70.txt 1540.88384 7591.59 3149.8882 2.881 97.46 2021.87 877.173 26.75 1595.19775 1800.042 0.00 

rl1323_80.txt 1439.20601 7258.54 4458.52 1.933 209.43 2021.87 793.622 40.32 1440.89417 1800.022 0.00 

rl1323_90.txt 1332.22127 7246.26 4415.3623 2.146 221.18 2021.87 724.1 47.08 1374.72034 1800.024 0.00 

Fig. 4. Box and Whisker plot for 30 independent executions with α = 2 . 
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Table 15 

Comparison of the results obtained by the adaptation of Chen & Chen (2013) coupled with an exhaustive local search, the multistart approach, and 

the proposed SO when considering α = 3 over the set of large instances. The original results of the continuous version are also included as a lower 

bound for the discrete problem. 

α = 3 Lower Bound Chen & Chen (2013) + LS MultiStart + LS SO 

Instance O.F. Time (s) O.F. Time (s) Dev(%) O.F. Time (s) Dev(%) O.F. Time (s) Dev(%) 

pr1002_10.txt 5268.06 0.53 6783.25 6.19 27.24 5510.89 2959.31 3.37 5331.28 1800.10 0.00 

pr1002_100.txt 1288.67 7221.12 2960.57 1.25 118.70 1830.98 382.82 35.26 1353.70 1800.00 0.00 

pr1002_20.txt 3107.09 35.85 5338.77 2.64 62.27 3734.30 1603.47 13.50 3290.14 1800.04 0.00 

pr1002_30.txt 2522.88 7259.93 4301.16 1.41 62.66 3061.04 1110.37 15.76 2644.33 1800.03 0.00 

pr1002_40.txt 2168.78 7900.26 3592.35 1.80 55.86 2728.09 841.52 18.36 2304.89 1800.03 0.00 

pr1002_50.txt 1926.85 7436.76 3658.55 1.52 81.74 2452.04 688.20 21.81 2013.08 1800.02 0.00 

pr1002_60.txt 1785.53 7220.27 3573.51 1.22 94.37 2304.88 592.94 25.37 1838.48 1800.03 0.00 

pr1002_70.txt 1644.12 7511.96 3217.53 0.98 88.13 2220.36 526.73 29.83 1710.26 1800.02 0.00 

pr1002_80.txt 1528.04 7246.86 3300.38 1.12 117.38 2050.60 465.60 35.07 1518.22 1800.01 0.00 

pr1002_90.txt 1406.77 7252.89 2651.89 0.85 83.88 1950.00 431.13 35.21 1442.22 1800.01 0.00 

rat575_10.txt 137.02 0.26 165.58 3.58 17.84 143.17 567.78 1.89 140.52 1800.01 0.00 

rat575_100.txt 35.84 7371.34 70.71 0.15 83.06 47.51 58.86 23.00 38.63 247.96 0.00 

rat575_20.txt 89.88 73.75 102.02 1.07 7.80 104.80 303.20 10.73 94.64 1800.00 0.00 

rat575_30.txt 70.13 8953.88 91.44 0.68 22.71 86.40 196.56 15.94 74.52 1101.33 0.00 

rat575_40.txt 61.99 7496.16 92.78 0.35 43.00 72.23 149.33 11.32 64.88 950.51 0.00 

rat575_50.txt 55.29 7489.35 104.24 0.24 83.07 66.75 120.46 17.23 56.94 717.39 0.00 

rat575_60.txt 49.30 7559.28 71.78 0.25 39.79 59.90 101.12 16.65 51.35 595.10 0.00 

rat575_70.txt 43.76 7247.07 63.13 0.19 31.92 57.87 85.15 20.93 47.85 494.17 0.00 

rat575_80.txt 41.21 7360.75 75.00 0.37 69.32 53.60 72.63 21.01 44.29 448.23 0.00 

rat575_90.txt 37.90 7344.80 72.17 0.18 75.56 51.24 67.33 24.64 41.11 319.13 0.00 

rat783_10.txt 160.72 0.44 195.49 5.08 17.60 172.59 1389.10 3.82 166.23 1800.05 0.00 

rat783_100.txt 43.69 7428.60 81.02 0.64 76.60 56.85 155.61 23.91 45.88 1019.60 0.00 

rat783_20.txt 106.30 261.79 132.20 2.05 17.30 125.60 746.83 11.45 112.70 1800.03 0.00 

rat783_30.txt 82.23 7878.63 142.67 2.18 61.09 99.92 498.44 12.82 88.57 1800.01 0.00 

rat783_40.txt 75.59 7229.26 139.98 1.55 84.12 86.21 369.54 13.39 76.03 1800.01 0.00 

rat783_50.txt 67.11 7285.30 131.24 0.89 98.55 77.88 305.81 17.82 66.10 1800.00 0.00 

rat783_60.txt 61.62 7309.73 134.63 1.16 124.32 70.93 258.90 18.18 60.02 1617.55 0.00 

rat783_70.txt 55.38 7548.80 92.09 0.78 66.09 67.17 221.20 21.15 55.44 1642.05 0.00 

rat783_80.txt 50.66 7498.65 131.24 0.50 154.03 64.62 193.52 25.08 51.66 1420.24 0.00 

rat783_90.txt 46.30 7614.66 90.09 0.44 85.88 61.09 185.64 26.05 48.47 1211.55 0.00 

rl1323_10.txt 6200.04 1.38 6922.07 44.67 9.63 6345.13 7899.18 0.50 6313.82 1800.23 0.00 

rl1323_100.txt 1224.83 7211.82 3778.88 6.08 133.13 2869.67 986.21 77.04 1620.92 1800.01 0.00 

rl1323_20.txt 3714.08 2832.87 5253.12 6.37 30.26 4442.68 3683.45 10.16 4032.83 1800.09 0.00 

rl1323_30.txt 3062.71 7201.48 4072.01 5.40 27.09 3553.06 2597.18 10.89 3204.16 1800.07 0.00 

rl1323_40.txt 2737.57 7219.34 4466.11 5.55 60.96 3243.26 2035.59 16.89 2774.72 1800.06 0.00 

rl1323_50.txt 2324.20 7224.81 4072.01 9.89 67.55 2945.78 1690.00 21.21 2430.27 1800.04 0.00 

rl1323_60.txt 2077.11 7607.58 4064.00 6.14 89.10 2869.67 1461.26 33.53 2149.14 1800.04 0.00 

rl1323_70.txt 1957.03 7496.61 4364.49 5.79 118.53 2869.67 1301.09 43.68 1997.22 1800.04 0.00 

rl1323_80.txt 1439.21 7258.54 4415.36 4.85 139.69 2869.67 1177.36 55.78 1842.10 1800.03 0.00 

rl1323_90.txt 1332.22 7246.26 4154.19 2.60 137.98 2869.67 1079.63 64.40 1745.58 1800.02 0.00 

Table 16 

Sensitivity analysis for β parame- 

ter of the constructive procedure. 

β RND 0.25 0.5 

RND 

0.25 0.05 

0.5 0.96 0.07 

0.75 0.12 0.01 ∗ 0.06 

Table 17 

Sensitivity analysis for τ parameter of the Tabu Search pa- 

rameter. 

τ 1 10 20 30 

1 

10 0.00003 ∗

20 0.00004 ∗ 0.168807 

30 0.00008 ∗ 0.460302 0.917632 

40 0.00008 ∗ 0.034001 ∗ 0.255989 0.20262 

l

t

T

r

n

Table 18 

Sensitivity analysis for δmax 

parameter of the Strategic 

Oscillation algorithm. 

δmax 0.1 0.2 

0.1 

0.2 0.005 ∗

0.3 0.014 ∗ 0.445 

t

t

v

τ  

s

W  

t

t

t

u

δ  

T

t

utions and this means there would be less diversity in the ini- 

ial population of solutions. On the other hand, if we analyze now 

able 17 , τ = 1 confirms that there are significant differences with 

espect to the other τ values. Obviously, if we fix the maximum 

umber of iterations without improvements as 1, we are limiting 
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he stopping criterion too much. Consequently, we have repeated 

he Friedman test without this value and we obtain that the ρ- 

alue is 0.274, that is, there are not significant differences among 

= { 10 , 20 , 30 , 40 } . To check this affirmation see Fig. 2 where is

howed the evolution of the solution quality for the τ values. 

e can see that even if τ = 1 is faster, it gets worse values for

he objective function. However, larger τ values obtain practically 

he same objective function values. Finally, observing the Table 18 , 

here are differences are between δmax = 0 . 1 and the other val- 

es. There are no significant differences between δmax = 0 . 2 and 

max = 0 . 3 and we opted for δmax = 0 . 2 because it is faster (see

able 7 ). 

However, the Friedman test gets a ρ-value of 0.869 in the 

enure paremeter which implies that this parameter does not ex- 
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Fig. 5. Box and Whisker plot for 30 independent executions with α = 3 . 

Fig. 6. Time to target plots for two representative instances of the preliminary set. 
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Table 19 

Sensitivity analysis for tenure parameter of 

the Tabu Search improvement. 

tenure 0.1 0.2 0.3 0.4 

0.1 

0.2 0.55 

0.3 0.43 0.86 

0.4 0.91 0.32 0.28 

0.5 0.75 0.23 0.28 0.31 
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F  
ibit a particular sensitivity. We recall that the choice of the tenure 

arameter was based on the deviation with respect to the mean 

nd the number of best solutions found since all the values gets 

he same performance, see Table 5 for details. 

To further investigate the performance of the proposed SO pro- 

edure, we conduct a convergence analysis by considering time- 

o-target plots (TTTPlot), which is essentially a run-time distribu- 

ion ( Aiex, Resende, & Ribeiro, 2007 ). The experimental hypoth- 

sis in TTTPlots is that running times fit a two parameter, or 

hifted, exponential distribution. Then, for a particular instance, 

he execution time needed to find an objective function value at 

east as good as a given target value is recorded. In the context 

f the heuristic optimization, the algorithm is determined a pre- 

stablished number of times on the selected instance and using the 

iven target solution. For each run, the random number genera- 

or is initialized with a different seed and therefore the executions 

re assumed to be independent. To compare the empirical and the 

heoretical distributions, we follow a standard graphical methodol- 

gy for data analysis ( Chambers, 2017 ), executing our algorithm 30 

imes, and recording for each instance/target pair the correspond- 

ng running time. Figure 6 shows the TTTPlot for a small instance 

at_48_20) and a large instance (ch_150_60) with α = { 1 , 2 , 3 } . In

hese figures, each value in the abscissa axis represents a running 

ime, while each value in the ordinate axis, reports the probability 

f obtaining the best-known value. This experiment confirms the 

xpected exponential run-time distribution of our algorithm. If we 

nalyze these instances, we can observe that the probability of SO 

o find a solution at least at good as the target value in half of the

PU time is close to 80%. Indeed, in a quarter of the total CPU time,

his probability is near 50% ( Table 19 ). 

. Conclusions 

This paper addresses the α-neighbor p-center problem. This 

ariant of the p-center problem considers real situations in which 

− 1 facilities may become unavailable so the goal is to locate 

ore than one facility close to the demand points to overcome 

hat issue. Therefore, the problem minimizes the maximum dis- 

ance between each demand point and its α − th closest facil- 

ty to tackle such type of contingency. Nevertheless, this problem 

ould handle other real situations in which a customer/user (de- 

and point) decides if he/she prefers to be served by another fa- 

ility instead of the closest one, since the alternative facility still 

eing close to him/her. 

To address this problem a GRASP algorithm as well as a post- 

rocessing method based on Strategic Oscillation are proposed. The 

mprovement for the GRASP algorithm consists in a Tabu Search 

hat is able to find high quality solutions in small computing times. 

he SO post-processing achieves even better solutions but it is very 

omputationally demanding, being suitable for those situations in 

hich the time limit is not a hard constraint. The algorithms have 

een tested in a thorough experimentation that shows the supe- 

iority of the proposal, emerging GRASP combined with SO as the 

ost competitive algorithm in the literature for the α − pCP. It is 

orth mentioning that the proposed algorithm gets slower when 
157 
he value of p increases. Although it is not a common situation for 

eal-life problems, it would be interesting to provide new search 

trategies able to deal with this drawback efficiently. In order to 

o so, new fast local improvement methods that are applied be- 

ore the proposed TS and SO procedures may help the algorithm 

o obtain high-quality results faster. Indeed, new adaptations of the 

trategies proposed for the continuous version may have a positive 

mpact on the quality of the solutions provided. Finally, an exper- 

mental analysis of the algorithm has been performed to evaluate 

he impact of each parameter in the final design of the algorithm. 

Future lines of research in this problem are focused on modify- 

ng some constraints with the aim of improving the solutions ob- 

ained. For instance, the set of demand points may not be reduced 

o N \ P and, in this case, the maximum distance to the α-closest 

acility can be given by a selected demand point even if it is al- 

eady hosting a facility. Additionally, this model can be adapted to 

pen more than one facility in the same point, or even considering 

 distributed model, such as in Brimberg et al. (2021) where it is 

dapted for the p-median problem. 
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