
Pattern Recognition 127 (2022) 108619

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

ELSED: Enhanced line SEgment drawing

Iago Suárez

a , b , José M. Buenaposada

c , ∗, Luis Baumela

b

a The Graffter, Campus Montegancedo s/n. Centro de Empresas, Pozuelo de Alarcón, 28223, Spain
b Departamento de Inteligencia Artificial. Universidad Politécnica de Madrid, Campus Montegancedo s/n, Boadilla del Monte, 28660, Spain
c ETSII. Universidad Rey Juan Carlos, C/ Tulipán, s/n, Móstoles, 28933,Spain

a r t i c l e i n f o

Article history:

Received 6 August 2021

Revised 17 December 2021

Accepted 28 February 2022

Available online 2 March 2022

Keywords:

Image edge detection

Efficient line segment detection

Line segment detection evaluation

a b s t r a c t

Detecting local features, such as corners, segments or blobs, is the first step in the pipeline of many Com-

puter Vision applications. Its speed is crucial for real-time applications. In this paper we present ELSED,

the fastest line segment detector in the literature. The key for its efficiency is a local segment growing

algorithm that connects gradient-aligned pixels in presence of small discontinuities. The proposed algo-

rithm not only runs in devices with very low end hardware, but may also be parametrized to foster the

detection of short or longer segments, depending on the task at hand. We also introduce new metrics

to evaluate the accuracy and repeatability of segment detectors. In our experiments with different public

benchmarks we prove that our method accounts the highest repeatability and it is the most efficient in

the literature. 1 In the experiments we quantify the accuracy traded for such gain.

© 2022 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

r

p

t

c

t

a

b

O

t

t

t

g

T

t

d

p

d

s

p

c

m

a

d

i

o

t

j

a

g

t

t

o

d

e

w

i

h

0

(

. Introduction

Detecting segments and full lines in digital images is a recur-

ent problem in Computer Vision (CV). Line segments play an im-

ortant role in understanding the geometric content of a scene as

hey are a compressed and meaningful representation of the image

ontent. Moreover, segments are still present in low-textured set-

ings where the classical methods based on corners or blobs usu-

lly fail. Segment detection has been employed in a large num-

er of CV tasks such as 3D reconstruction [1,2] , SLAM [3,4] , Visual

dometry [5] , 3D camera orientation via Vanishing Points Detec-

ion [6,7] , cable detection in air-crafts [8] , or road detection in Syn-

hetic Aperture Radar images [9] .

Nowadays CV algorithms are ubiquitous and they are expected

o run on resource-limited devices [10] . To this end, low-level al-

orithms such as the local feature detectors must be very efficient.

raditional global line detection approaches based on the Hough

ransform lack efficiency. Thus, various local methods emerged ad-

ressing the issue of efficiency. LSD [11] was one of the first ap-

roaches to achieve excellent results with a local approach. Edge

rawing methods further improve the efficiency [12–14] . In a first
∗ Corresponding author.

E-mail address: josemiguel.buenaposada@urjc.es (J.M. Buenaposada).
1 Source code: https://github.com/iago-suarez/ELSED

s

s

l

e

t

ttps://doi.org/10.1016/j.patcog.2022.108619

031-3203/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/)
tep, they work by connecting edge pixels following the direction

erpendicular to the gradient. In a second step, they fit the desired

urve, a line in the simplest case, to these edges.

The method presented in this paper improves on the drawing

ethods by fitting a line segment to the connected edge pixels

nd using its direction to guide the drawing process. Fusing the

rawing and line segment fitting in a single step saves time and

mproves the overall quality of the detected segments. In addition,

ur proposal allows to jump over gradient discontinuities and de-

ect full lines or just detect the individual linear segments without

umping. This is important because line segments are features that,

t the gradient level, can be easily broken by occlusions, shadows,

litches, etc. In this way, the user can define the type of segments

hat best suits the application. For example, we may choose to de-

ect large segments if the goal is to do Vanishing Points estimation

r short ones for reconstruction and matching.

In this paper we present an efficient method for line segment

etection termed Enhanced Line SEgment Drawing (ELSED). In our

xperiments we compare the accuracy and efficiency of ELSED

ith that of the most relevant detectors in the literature. As shown

n Fig. 1 , ELSED is not only the most efficient (note the logarithmic

cale in the speed dimension) but also the most accurate in line

egment detection and more repeatable among the fastest in the

iterature, as we show in the experimental section. It improves the

fficiency of present methods in resource-limited devices, opening

he door to new CV applications running on any type of hardware.
under the CC BY-NC-ND license

https://doi.org/10.1016/j.patcog.2022.108619
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108619&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:josemiguel.buenaposada@urjc.es
https://github.com/iago-suarez/ELSED
https://doi.org/10.1016/j.patcog.2022.108619
http://creativecommons.org/licenses/by-nc-nd/4.0/

I. Suárez, J.M. Buenaposada and L. Baumela Pattern Recognition 127 (2022) 108619

Fig. 1. Average Precision (AP) vs. execution time (ms) curve in the line segment de-

tection problem. Local features based methods are displayed with circular markers

and global ones with square markers.

2

t

w

g

m

2

e

o

t

a

w

e

q

[

a

w

e

w

a

M

p

L

a

a

t

2

p

n

a

a

o

i

s

t

C

d

c

s

l

E

C

t

t

f

t

c

o

i

e

n

u

w

o

s

E

i

f

i

g

c

v

m

i

t

2

w

s

d

l

A

o

t

p

p

b

t

H

p

p

y

d

o

t

r

s

m

t

b

d

i

t

a

f

. Previous work

In this section we review the segment detection literature. To

his end we organize it in three broad groups: full line detectors

ith global methods [15–17] , those that use local properties to

reedily detect line segments [11,13,14,18,19] and the deep line seg-

ent detectors [20–26] .

.1. Global information-based approaches

Global methods are able to detect full lines in the image with

nough edge pixels support in spite of discontinuities. These meth-

ds start with an edge detection, for example Canny [27] , and

hen they apply a Hough Transform-like [28] voting scheme. There

re well-known issues with these methods: the omission of some

eak edges, the generation of false positives in regions with high

dge density (e.g. tree leaves) or the large amount of memory re-

uired to store the accumulators.

Progressive Probabilistic Hough Transforms (PPHT)

15,29] solves the efficiency problem changing the entire im-

ge voting scheme by a random sampling scheme. More recent

orks [16] address the quantization problem and also allow an

fficient execution of the method. In [30] the direction, length, and

idth of a line segment is extracted in a closed-form that uses

 fitted quadratic polynomial curve. To generate better segments,

CMLSD [17] uses the Elder & Zucker edge detector [31] that

ropagates edge uncertainty to the Hough histogram accumulator.

ast, they split the detected full lines in line segments using

 Markov Chain Model and a standard dynamic programming

lgorithm. The main drawback of this method is the efficiency. It

akes 3.7 s to process a 640 × 480 image.

.2. Local methods

Local methods overcome some of the drawbacks of global ap-

roaches by departing from strong gradient pixels and greedily add

eighboring pixels using the gradient information. LSD [11] groups

nd validates image regions with a significant gradient magnitude

nd a similar gradient orientation in O (N) , being N the number

f image pixels. Unlike the non-maximal suppression (NMS) used

n the Canny edge detector, LSD uses a region growing process to

elect interesting pixels. Then, each region is validated based on

he expected Number of False Alarms (NFA), computed with an A-
2
ontrario statistical model [32] . LSD is efficient and it is able to

eal with areas with a high density of edge pixels (e.g. trees).

EDLines [13] is also an efficient algorithm (O (N)) based on lo-

al gradient orientations. It performs segment detection in two

teps: 1) edge detection and 2) line segment detection using a

ocal approach. The edge detection step is performed with the

dge Drawing (ED) algorithm [12] . ED applies the first three

anny steps: Gaussian filtering, gradient estimation, NMS and tries

o connect the anchor pixels (local maxima in gradient magni-

ude) with a greedy procedure. In a second step EDLines per-

orms line fitting. OTLines [18] uses an orientation transforma-

ion to improve EDLines and avoid segment detections on cir-

ular structures. AG3line [14] instead of drawing over all pixels

nly finds aligned anchors. They also implement a continuous val-

dation strategy to decide whether the segment has reached its

ndpoint and a jumping scheme to overcome gradient disconti-

uities. A key difference between AG3line and ELSED is that we

se every pixel in the image as part of the drawing process,

hich generates a chain of continuous pixels, while AG3line uses

nly the detected anchors. This makes the method fast but un-

table, needing to validate each step and thus being slower than

LSED.

The approach of Cho et al. [19] is based on linelets detection,

.e. chunks of horizontally or vertically connected pixels that result

rom line digitization. The linelet detection is O (N

2) time complex-

ty and thus it takes 16.7 s per image. Adjacent linelets are further

rouped into line segments using a probabilistic model with O (L 2)

omplexity, where L is the number of detected linelets. Last, they

alidate using a mixture of experts model learnt from the gradient

agnitudes, orientation and from the line length of the segments

n a labeled data set. They also propose a quantitative evaluation

hat we improve in our experiments (Section 4).

.3. Deep line segment detectors

A closely related problem to line segments detection is

ireframe parsing. It consists of predicting the scene’s salient

traight lines and their junctions. The ShanghaiTech Wireframe

ata set [20] contains over 50 0 0 hand-labelled images that al-

owed different methods to train obtaining competitive results.

FM [21] uses an attraction field map that is next squeezed to

btain line segments. L-CNN [22] proposes an End-to-end model

hat uses a stacked hourglass backbone to obtain a junction pro-

osal heatmap that is extensively sampled to obtain the out-

ut segments. HAWP [23] improves the L-CNN sampling step

y reparametrizing the line segments in a holistic 4-D attrac-

ion field map from which segments can be obtained faster. HT-

AWP [23] Adds some Deep Hough layers to the HAWP model im-

roving its capabilities to capture lines and slightly improving the

erformance in some benchmarks. F-Clip [24] proposes a simple

et effective approach to cast line segment detection as an object

etection problem that can be solved with a fully convolutional

ne-stage method. LERT [25] detects segments using transformers

hat replace the junction heatmap and segment proposals to di-

ectly predict the segment endpoints. SOLD

2 [26] proposes a self-

upervised way towards line detection and description that opti-

izes the repeatability of the detected segments.

Despite the good results of these deep methods, their computa-

ional requirements are still far away from the classical methods

ased on gradient. This fact makes them non-viable for limited

evices where there is no GPU or rather its battery consumption

s prohibitive. For this reason we introduce our drawing method

hat has been carefully designed to avoid floating-point operation

nd minimize its complexity, being CPU friendly and achieving the

astest execution times on the state of the art.

I. Suárez, J.M. Buenaposada and L. Baumela Pattern Recognition 127 (2022) 108619

Fig. 2. ED greedy segment growing. In (a) it only takes into account the current edge pixel. In the case of (b) the walk is coming from the blue pixel and finds a horizontal

edge pixel (pink one). Thus, it will start a walk to the left and another to the right that could give edge chains with the displayed configurations (blue-pink-yellow pixel

sequence). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3

a

3

s

t

i

h

G

t

G

L

s

e

h

t

3

s

i

t

v

G

i

o

b

3

t

3

t

i

r

fi

b

c

p

l

e

o

p

t

t

a

i

p

c

i

f

a

v

f

p

m

fi

c

F

l

i

c

c

t

T

t

Algorithm 1 Enhanced Edge Drawing Algorithm.

1: procedure EED (a, d 0)
2: Input: Anchor pixel: a . Anchor gradient direction: d 0
3: Output: S: List of Segments, P: List of edge pixels
4: P ← { a } ; S ← ∅
5: D stack ← ∅ ; D stack .push([a , d 0])
6: while D stack � = ∅ do
7: segmentFound ← false
8: nOutliers ← 0
9: c, d ← D stack .pop() � Current pixel and direction

10: p ← previousPixel(c, d) � Find previous pixel
11: while G [c] � = 0 ∧ nOutliers ≤ T outliers do
12: c, p ← drawNextPx(c, p)
13: P ← P ∪ { c}
14: if segmentFound then
15: s, nOuliers ← addPxToSegment(s, c, nOuliers)
16: else
17: s, segmentFound ← fitNewSegment(P) � Can return ∅
18: S ← S ∪ {s}
19: end if
20: end while
21: if G [c] � = 0 then
22: D stack .push([c, lastDir]) � Edge orientation change
23: if canContinueForward(s) then
24: p f , d f ← s.forwardPxAndDir(c, d)

25: D stack .push([p f , d f])

26: end if
27: if canContinueBackward(s) then
28: p b , d b ← s.backwardPxAndDir(c, d)
29: D stack .push([p b , d b])
30: end if
31: end if
32: end while
33: end procedure
. Enhanced line SEgment drawing (ELSED)

In this section we introduce our line segment detection method

nd explain the different steps in our approach.

.1. Enhanced edge drawing algorithm (EED)

The EED entails the following high-level steps: 1) Gaussian

moothing to suppress noise; 2) Gradient magnitude and orien-

ation computation; 3) Extraction of anchor pixels, local maxima

n the gradient magnitude; 4) Connect the anchors using the en-

anced routing algorithm

For the noise reduction step we use a convolution with a 5 × 5

aussian kernel and σ = 1 , for Gradient magnitude and orienta-

ion computation we first compute the horizontal, G x , and vertical,

 y , gradients by applying the Sobel operator and then we use the

 1 norm, G = | G x | + | G y | . We also define a gradient threshold and

et G = 0 for those pixels below it and quantize the gradient ori-

ntation, O , into two possible values: vertical edge, | G x | ≥ | G y | , or

orizontal edge, | G x | < | G y | . The other two steps are explained in

he next subsections.

.1.1. Extraction of anchor pixels

The anchors are pixels where the drawing process begins. We

can image pixels with G > 0 and test if it is a local maxima

n the gradient magnitude, G , along the quantized direction of

he gradient, O . If the pixel orientation O (x, y) corresponds to a

ertical edge, it is an anchor if G [x, y] − G [x − 1 , y] ≥ T anchor and

 [x, y] − G [x + 1 , y] ≥ T anchor . The same applies for horizontal edge

n vertical direction. To increase the processing speed, the number

f anchors can be limited by increasing the value of T anchor and also

y scanning pixels every SI = 2 columns and rows.

.1.2. Connecting the anchors by an enhanced routing algorithm

ED is faster than LSD’s region growing because, from an ini-

ial anchor, it only walks along a chain of edge pixels, evaluating

 neighbours at each step (see Fig. 2 a) and selecting as next step

he one with biggest gradient magnitude. The evaluations are crit-

cal for the speed of the algorithm since they are done for each

eachable edge pixel walking from an anchor point.

In our EED procedure, we perform the edge drawing and line

tting at the same time. This will enable us to save computations

y reducing the number of checked pixels. During drawing, we

onsider the previous and the current pixel. We explore the same

ixels as in ED during the walking processes (see “Go right”, “Go

eft”, “Go up” and “Go down” in Fig. 3 b) as long as the edge ori-

ntation does not change from the previous pixel to the current

ne. When the previous pixel is in a vertical edge, and the current

ixel is in a horizontal one, ED has 6 candidate pixels to be added

o the current line segment (see Fig. 3 a). This may generate situa-

ions where the algorithm would draw a corner breaking the line
3
ssumption (Fig. 2 b). The same happens when the previous pixel

s in a horizontal edge and the current is on a vertical one.

Here we introduce a different approach to treat these diagonal

ixels while following a line. We add the assumption that the edge

hain should form a line. Then, considering Bresenham’s line draw-

ng scheme, the number of checked pixels in this situation changes

rom 6 with ED (see Fig. 3 a) to only 2 with EED (see the four “di-

gonal” cases in Fig. 3 b), and remains 3 for the other possible pre-

ious pixels (non-diagonal cases). This has two advantages: 1) it is

aster than the original ED routing algorithm as it explores fewer

ixels and, 2) it avoids non-meaningful cases for finding line seg-

ents.

The second important idea is a also consequence of trying to

nd aligned edge pixels. Whereas ED changes the walking pro-

ess direction when a change of edge orientation is detected (See

ig. 4 a), EED tries to continue in the same direction following a

ine. However, any change of edge orientation is not forgotten and

t is pushed into the stack of discontinuities, D stack , for later pro-

essing (see Algorithm 1). EED tries to fit a line to the current

hain of pixels, if more than T minLength pixels have been chained and

he squared error of alignment of the pixels is lower than T LineF itErr .

he last parameter for the segment search is the T PxToSegDist that is

he maximum distance in pixels from which we consider whether

I. Suárez, J.M. Buenaposada and L. Baumela Pattern Recognition 127 (2022) 108619

Fig. 3. Drawing diagonal edges: When the previous pixel was in a different orientation (vertical vs horizontal) than the current one, original ED has 6 candidates pixels vs

EED that has 3 or 2. More than one previous edge pixel is displayed when we have the same candidates for any of the previous pixel options.

Fig. 4. Results of the drawing process for ED and EED (purple pixels) from one single anchor (blue point). Green arrows and numbers establish which segments are visited

first. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

a

i

c

o

a

b

b

o

m

t

l

o

c

p

e

d

m

m

p

m

 pixel fits or not in the current segment. This is done internally

n the function addPxToSegment in line 15 of Algorithm 1). The pro-

ess stops when no more pixels can be chained (i.e. at the limits

f the image, with only already visited pixels or weak edge pixels

s candidates) or a line edge discontinuity is detected (e.g. the gap

etween two aligned windows, a tree branch occluding part of a

uilding, etc.). In case a discontinuity was detected we execute, in

rder, the following actions:

1. If we were walking along a line segment (i.e. we have fitted a

line), try to extend it going on the line direction (the walking

process stacked using canContinueForward and forwardPxAndDir

functions in Algorithm 1 , lines 23 to 26)

2. If were walking along a line segment and we cannot continue

forward, try to extend the line segment backwards (the walk-

ing process stacked using canContinueBackward and backward-

PxAndDir functions in Algorithm 1), lines 27 to 30)
4
3. Continue in the gradient direction, that is changing in the dis-

continuity (the walking process stacked in Algorithm 1 , line 22).

This sequence of ordered actions guarantees that if a line seg-

ent is detected, all its pixels will be detected together.

We show an illustrative example in Fig. 4 b, where EED starts

wo walking processes, one upward and another downward. Un-

ike ED (see Fig. 4 a), EED detects the discontinuities in the edge

rientation of the chessboard corners and continues walking in the

urrent line direction. Each discontinuity is stored in D stack for later

rocessing. After pixels in segments (1) to (5) are chained, the next

dge orientation to process is extracted from the top of D stack . The

rawing process keeps drawing from it, linking the pixels of seg-

ents (6) to (9). The routing algorithm ends when there are no

ore edge orientation changes in D stack . Then, the next anchor

oint is processed by the routing algorithm. Detecting more seg-

ents from a single anchor is an important feature of our method

I. Suárez, J.M. Buenaposada and L. Baumela Pattern Recognition 127 (2022) 108619

t

w

3

i

c

t

f

t

c

s

c

d

d

e

i

a

d

w

l

r

w

t

m

t

e

e

e

w

d

l

c

e

B

t

s

i

e

F

g

w

C

u

e

w

b

n

b

t

e

i

d

3

t

m

l

d

r

t

t

a

t

n

o

(

s

c

t

F

i

l

v

r

3

n

t

a

t

T

d

fi

l

a

s

a

w

o

4

c

p

a

c

hat increases the detection recall with respect to EDLines as we

ill show in experiment 4.1 .

.2. The line segment discontinuities

A line segment can be interrupted by several edge discontinu-

ties. These are regions of the image where the gradient orientation

hanges or the gradient magnitude goes to zero. Whether we aim

o detect full lines or just line segments, the discontinuities of dif-

erent lengths (i.e. the number of pixels where there is no edge or

he edge direction is not aligned with the line segment) should be

orrectly skipped in a drawing process in order to detect the line

egments correctly.

Algorithm 1 naturally deals with this phenomena. Once a dis-

ontinuity is detected, our aim is to jump over it and continue

rawing in the line segment direction if possible. A priori , the

iscontinuity length is unknown and our algorithm test differ-

nt length candidates. As we are using a 5 × 5 Gaussian smooth-

ng kernel, any 1 pixel discontinuity will have effect in at least

 neighbourhood of size 5 pixels, therefore we set the minimum

iscontinuity length to 5 pixels. In the functions canContinueFord-

ard (Algorithm 1 , line 23) and canContinueBackward (Algorithm 1 ,

ine 27), different jum p lengths J are checked (in the default pa-

ameters of the algorithm we use J ∈ [5 , 7 , 9]). The drawing process

ill continue after the discontinuity if the ordered conjunction of

he following conditions is true:

1. The segment is longer than the number of pixels, J, we want to

jump.

2. The pixel, a , that is aligned with the segment and J pixels away

from current pixel, c, is inside the image and has G [a] > 0 (i.e.

is not a weak edge pixel).

3. Starting from a , EED is able to draw at least J pixels follow-

ing the edge direction. We call this set of J pixels the extension

pixels.

4. The extension pixels are well aligned with the line segment. To

check this we calculate the auto-correlation matrix of the image

gradients, M , in a small neighbourhood (we take one pixel on

each side of the extension pixels) and then, we assert that:

λ1

λ2

≥ T E igenE xt (1)

where λ1 and λ2 , (λ1 > λ2) , are the eigenvalues of the M , and

∠ (v 1 , n) ≤ T AngleExt (2)

∠ (·, ·) is the angular distance, v 1 is the first eigenvector of M

and n is a vector normal to the segment.

In Fig. 5 we show different steps of the discontinuity manage-

ent algorithm in a synthetic image. In Fig. 5 d we show the de-

ection process starting from the left side of the image, we fit the

dge pixels (blue) to a horizontal line (green). When the edge ori-

ntation changes from horizontal to vertical, we detect the last

dge pixels as outliers (orange) and thus our method detects that

e are in a discontinuity. In this case, the red pixel is the last one

etected when | E| > T ol , where T ol the maximum number of out-

iers.

Next Fig. 5 e shows the check done to decide whether we should

ontinue drawing straight or the segment has finished. Purple pix-

ls are the pixels in the discontinuity and are skipped using the

resenham’s algorithm drawing in the current line segment direc-

ion. Red pixels are drawn following the edge direction (in green)

tarting from the first pixel after the discontinuity, a . We also mark

n red the neighbor pixels used to validate the region using the

igenvalues of M if the extension pixels in function canContinue-

orward . Pixels in this synthetic example do not have a uniform
5
radient direction, thus, the process discards all extensions tested

ith lengths J ∈ [5 , 7 , 9] . In the figure we show the last one, J = 9 .

onsequently, the algorithm closes the first segment and contin-

es drawing in the dominant gradient direction upwards. When

nough pixels are gathered, we fit another segment (Fig. 5 f). When

e reach the top of the image, the segment is extended in the

ackward direction downwards. When this happens, the mecha-

ism to manage discontinuities is activated again as Fig. 5 g shows,

ut this time the region meets all the criteria defined and thus

he jump is executed. Figure 5 h and i show respectively the fitted

dges and the segments.

One of the limitations of local segment detection approaches

s the generation of many small segments produced by gradient

iscontinuities. The process described above helps us alleviate this.

.3. Validation of the generated segment candidates

After EED, we have several line segments detections, many of

hem potentially wrong (see red segments in Fig. 6). They occur

ainly in regions with a high density of edge pixels. To validate a

ine we use the segment pixels’ gradient orientation, comparing its

irection with the one normal to the segment, i.e. the angular er-

or. This validation can be performed efficiently, without damaging

he overall performance.

For a good validation we discard the pixels lying in a discon-

inuity and those near the endpoints, because they usually have

 different gradient orientation even in correct detections. Despite

his, the gradient orientation error in a true segment is a noisy sig-

al. In Fig. 7 we can see the probability distribution function (PDF)

f orientation errors for pixels on true positive segment detections

TP) (blue), false positive segments (FP) (orange) and false positives

egments detected in a random noise intensity image (green). It is

lear that the pixels on TP segments have less angular error than

hose on FP ones. However, there is a significant overlap between

P and TP distributions.

Therefore, we use a validation criteria robust to noise. We val-

date a segment if at least 50% of its pixels have an angular error

ower than a threshold, T v alid . To separate positive detections (i.e.

alid ones) from negative ones, we learn a threshold T v alid = 0 . 15

adians which keeps a high recall discarding few true detections.

.4. Parameter selection

Most ELSED parameters have been set empirically and do not

eed to be changed by the user. We use a Gaussian smoothing fil-

er (σ = 1, kernel size = 5 × 5), a gradient threshold T grad = 30 ,

nchor threshold T anchor = 8 and SI = 2, that defines the scan in-

erval of anchor every SI row/column. For the line segment fitting:

 ol = 3 , T minLength = 15 , T LineF itErr = 0 . 2 , T PxToSegDist = 1 . 5 and for vali-

ation T E igenE xt = 10 , T AngleExt = 10 ◦, T v alid = 0 . 15 radians.

However, other parameters may be tuned by the user to de-

ne the type of segments to be detected; this is the case for the

ist of jump lengths that will be tested in the discontinuity man-

gement. Since this is directly related to the size of the Gaussian

moothing kernel in the first step (5 × 5 in our implementation)

nd the size of the gradient convolution kernel (3 × 3 in our case),

e define a set of default values, (5 , 7 , 9) , that in the experiments

f Section 4.4 provide good results.

. Experiments

In this section we introduce a methodology to evaluate the ac-

uracy and repeatability of segment detectors and follow it to com-

are our detector with the best in the literature. We also present

n ablation study to analyze how each component of our algorithm

ontributes to the final result.

I. Suárez, J.M. Buenaposada and L. Baumela Pattern Recognition 127 (2022) 108619

Fig. 5. Example of ELSED discontinuity management algorithm. Gradient orientations in (c) coded with red (right direction), purple (up), cyan (left) and light green (bottom)

e

s

a

E

o

A

b

e

p

d

f

a

g

4

(

w

d

t

b

We perform our evaluation in two dimensions, accuracy and

fficiency. To this end we have grouped the algorithms in two

ets, following the two clusters in Fig. 1 . In the first set we find

lgorithms that run efficiently in CPU (LSD, EDLine, AG3line and

LSED). In the second set those that require more than one sec-

nd to process an image (MCMLSD, Linelet, HAWP, SOLD

2 , F-Clip).

lthough HAWP, SOLD

2 and F-Clip are DL methods and should

e run in GPU, we run them also on CPU to show the differ-

nt computational requirements of each approach. It is also im-

ortant to note, that most low-power devices like smartphones,

rones or IoT devices are usually not prepared to run the GPU

or long periods of time. In our experiments we compare the
6
ccuracy and efficiency of ELSED with the approaches in each

roup.

.1. Segment detection evaluation

We evaluate the segment detection in the York Urban Data set

YUD) [33] that contains indoor and outdoor man-made scenes

here some salient segments have been manually labeled. The

ata set was extensively re-labeled later in Linelet [19] , which con-

ains all segments in the scene, but also some inconsistencies.

We propose a new evaluation framework that combines the

enefits of previous evaluation protocols [17,19,22] , namely, it is

I. Suárez, J.M. Buenaposada and L. Baumela Pattern Recognition 127 (2022) 108619

Fig. 6. Positive (green) and negative (red) segments detected by ELSED. We obtain these labels comparing the ground truth segments of the YorkUrban-LineSegment data

set (blue) with unvalidated ELSED detections (magenta). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

Fig. 7. PDF of the gradient orientation error in correct segments (blue), negative segments (orange) and segments detected in a random intensity image (green). (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Comparison of (a) Structural distance used by ELSED to fill the cost matrix A and (b) point-sample based distance used by MCMLSD [17] . In (b) the detected segment

s ′ C is matched to the ground truth (GT) segment s GT while the best possible match is s C .

f

d

g

fi

fi

s

t

f

T

m

o

s

λ
h

m

g

t

ast to compute and is a fair and stable metric for line segment

etection. We ensure a good 1-to-1 match between detected and

round truth (GT) segments by using the Hungarian algorithm to

nd the optimal bipartite match. The assignation problem is de-

ned with a cost (or matching) matrix A , that is filled using the

tructural distance (see Fig. 8 a). This metric is a good trade off be-

ween perpendicular distance, misalignment and overlap. It is also

aster to compute than the matched number of sampled points.

o speed up the Hungarian algorithm and ensure a meaningful
7
atching, we require matched segments to have an intersection

ver union bigger than λov erlap = 0 . 1 , to have an angular distance

maller than λang = 15 ◦ and a perpendicular distance smaller than

dist = 2
√

2 . The pairs of segments that do not meet these criteria,

ave infinite cost in the corresponding entry of A , avoiding their

atching. Let x be the set of detected segments and y the set of

round truth segments. With the 1-to-1 assignations A ∗ between

hem we define:

I. Suárez, J.M. Buenaposada and L. Baumela Pattern Recognition 127 (2022) 108619

Fig. 9. Detected segments’ Precision-Recall with our evaluation framework in YUD with original labels.

s

Y

e

E

e

L

c

i

c

m

s

E

i

i

t

H

o

P

r

t

w

b

t

t

P

t

t

m

C

E

h

t

n

c

i

w

b

s

m

o

h

t

t

t

p

4

e

s

t

c

p

e

C

e

d

c

a

s

a

f

a

4

s

• Precision : Length of the matched intersection measured over

the detected segment x i , divided by the length of the detected

segments, P =

∑

i, j∈ A ∗ x i ∩ x i y j ∑

i | x i | .

• Recall : Length of the matched intersection measured over the

ground truth segment y j , divided by the length of the ground

truth segments, R =

∑

i, j∈ A ∗ y j ∩ y j x i ∑

j | y j | .

• Intersection over Union : Length of the matched intersection

measured over the ground truth segments, divided by length of

the matched union measured over the ground truth segments,

IoU =

∑

i, j∈ A ∗ y j ∩ y j x i ∑

i, j∈ A ∗ y j ∪ y j x i
.

In Fig. 9 we show the Precision-Recall of our algorithm and the

tate-of-the-art detectors. This curve is computed w.r.t. the original

UD data set annotations and we sort the segments produced by

ach method using the score provided by their original code. For

LSED, the score is the percentage of pixels that have an angular

rror lower than T v alid . The curve of ELSED is better than those of

SD, EDLines and AG3line, the methods able to run on CPU effi-

iently (see experiment 4.5). We obtain a better precision, reach-

ng similar or higher recall. MCMLSD gets better recall but at the

ost of very bad precision. This was expected since it is the only

ethod based on the HT and detects all full lines with enough

upport, even the hallucinated ones over highly textured regions.

LSED is able to improve AG3line because it has a better draw-

ng scheme tailored to the line segment detection problem. ELSED

s on par with the most efficient DL approaches, F-Clip (HG1), in

he range of recall where ELSED works. Deeper networks such as

AWP that needs a GPU and are far away from real-time in CPU

btain, as expected, results with better recall and precision.

In Table 1 columns 2 to 5 show the highest recall values in the

-R curve for each method. They correspond to the case where we

equire the detector to find as many segments as possible. The last

wo columns show metrics over all the P-R points of the curve. If

e look at the results with the original YUD labels, ELSED has the

est precision (0.3198), F-score (0.4148) and IoU (0.7111) among

he efficient detectors on CPU. It also obtains the best results for

he overall metrics along all the Precision-Recall points (Average

recision, AP). AP is the usual classification metric, that is biased

owards detectors with a wider recall range. Thus, we also show

he AP bounded to the recall interval where the curve of each

ethod is defined (bAP). ELSED has a bAP comparable with F-

lip (HR) and better than F-Clip (HG1). This means that, although
8
LSED detects fewer segments (lower recall range than F-Clip) it

as a precision similar to the top DL-based methods in the de-

ected segments.

We also present the results for the ”YorkUrban-LineSegment an-

otation” [19] . In the new annotation, the definition of segments

hanges to short and broken lines from the global lines in the orig-

nal YUD labels. In this case, we also show the results of ELSED

ithout jumps (ELSED-NJ). ELSED-NJ obtains competitive results,

eing the best in terms of precision and IoU in this data set. This

hows the nice property of ELSED, which allows to adapt the seg-

ent definition to the application by changing the jump length

ver discontinuities.

With these experiments we can conclude that, although ELSED

as been designed with the objective of reducing the execution

ime, it is also a competitive algorithm in terms of segment de-

ection accuracy. The reason is that the EED process is adapted to

he segment detection problem and jumps over discontinuities to

roduce outputs that match the segment length in the annotations.

.2. Wireframe parsing

This experiment presents a comparative evaluation in a differ-

nt task: Wireframe Parsing. Figure 10 a shows the evaluation re-

ults in the ShanghaiTech Wireframe dataset [34] and YUD, with

he evaluation protocol described in L-CNN [22] . Unlike the proto-

ol presented in Section 4.1 , here all segments have the same im-

ortance and the GT segments are matched to detections by near-

st neighbour.

As expected, computationally-expensive methods (HAWP and F-

lip), trained for this task, achieve top-performing results. How-

ver, when the same evaluation protocol is applied in a similar

ataset, YUD (Fig. 10 b), their precision roughly halves. Partly be-

ause YUD’s annotations are less dense, but also as result of data

cquisition and labeling biases. By contrast, general-purpose line

egment detectors generalize better. ELSED obtains the best results

mong them. This is because EED is able to retrieve more segments

rom each anchor and because the jump strategies properly man-

ge gradient noise.

.3. Repeatability

Regardless the type of segments aimed for the detection, a de-

irable property is the robustness against changes in viewpoint,

I. Suárez, J.M. Buenaposada and L. Baumela Pattern Recognition 127 (2022) 108619

Table 1

Results with our evaluation protocol (top half: efficient methods, bottom half: slow methods). We use bold for best results in each experiment. The columns

show for each method the Precision (P), Recall (R), Intersection over Union (IoU), F-Score (F_sc), Average Precision (AP) and bounded Average Precision (bAP).

Original YUD annotations YorkUrban-LineSegment annotations

Method P R IoU F_sc AP bAP P R IoU F_sc AP bAP

LSD 0.26 0.53 0.59 0.34 17.33 34.78 0.68 0.52 0.67 0.58 38.23 76.35

EDLines 0.27 0.60 0.64 0.36 18.48 43.42 0.67 0.56 0.68 0.60 36.61 76.88

AG3line 0.27 0.67 0.69 0.37 21.02 42.32 0.60 0.62 0.66 0.60 34.69 69.06

ELSED 0.32 0.66 0.71 0.41 21.17 44.94 0.68 0.53 0.68 0.58 31.01 71.69

ELSED-NJ - - - - - - 0.71 0.51 0.69 0.59 32.43 76.93

MCMLSD 0.26 0.77 0.74 0.37 21.98 37.50 0.55 0.62 0.62 0.57 30.24 57.71

Linelet 0.24 0.60 0.63 0.33 21.37 43.62 0.62 0.58 0.66 0.59 39.35 75.52

HAWP 0.49 0.60 0.83 0.51 38.53 51.41 0.65 0.30 0.70 0.40 33.48 56.84

F-Clip(HG1) 0.47 0.42 0.80 0.42 31.40 40.35 0.67 0.22 0.72 0.32 32.13 50.06

F-Clip(HR) 0.53 0.47 0.82 0.47 34.74 44.77 0.69 0.22 0.72 0.33 32.78 51.15

Fig. 10. Wireframe parsing evaluation.

s

t

d

b

m

m

i

o

c

s

r

W

m

b

m

t

t

i

λ

c

E

j

o

e

s

Table 2

Mean repeatability of each segment detector in the HPatches data

set. The higher the repeatability, the more robust the detector.

Method Length Repeatability Num Segs. Repeatability

LSD 0.53934 0.48707

EDLines 0.54352 0.47242

AG3line 0.43582 0.40002

ELSED 0.55928 0.50285

MCMLSD 0.50322 0.39440

Linelet 0.52102 0.43427

HAWP 0.40056 0.41248

SOLD

2 0.46161 0.47957

F-Clip (HG1) 0.39784 0.43560

F-Clip (HR) 0.40969 0.43413

h

i

i

4

j

g

T

t

r

l

a

m

cale, rotation or lighting. In this subsection we evaluate the de-

ectors’ repeatability. Given two images of the same scene under

ifferent conditions, the capacity to detect the same segments in

oth situations. Specifically, given two images, we define line seg-

ents repeatability as the ratio between the length of 1-to-1 seg-

ent matches and the total length of segments detected in both

mages. We take into account only the segments located in the part

f the scene present in both images, adjusting their endpoints ac-

ordingly.

We use the images of HPatches [35] where the repeatability of

egment detections in images A and B is computed as:

epeatability =

∑

i, j∈ A ∗ x

A
i

∩ x A
i

x

A|B
j

∑

i

∣
∣x

A
i

∣
∣ +

∑

j

∣
∣
∣x

A|B
j

∣
∣
∣

+

∑

i, j∈ B ∗ x

B
i

∩ x B
i

x

B|A
j

∑

i

∣
∣x

B
i

∣
∣ +

∑

j

∣
∣
∣x

B|A
j

∣
∣
∣

(3)

here x I are the segments detected in image I and x I|J the seg-

ents detected in image J , projected to I using the homography

etween them. The matching matrix A ∗ contains the 1-to-1 seg-

ent assignations between segments x A and x A|B obtained with

he matching process described in Section 4.1 and B ∗ the one be-

ween x B and x B|A .
In Table 2 the second column also shows the repeatability

n terms of the number of matched segments. We employ here

ov erlap = 0 . 5 and λdist = 5 according to Pautrat et al. [26] . It both

ases ELSED obtains the most repeatable results. This is because

ED provides stability to the edge detection and also because the

ump strategy is able to overcome small discontinuities that cause

ther local methods to fail. We have also observed that deep mod-

ls like SOLD

2 or HAWP get highly repeatable results in some

cenes and very bad results in others, this is possible because they
9
ave been trained in a quite specific problem (the wireframe pars-

ng for indoor scenes) and do not generalize well to the diverse

mages of Hpatches.

.4. Ablation study

We start with the simplest version of ELSED: no discontinuity

umps and no validation step (see Table 3). This version of the al-

orithm obtains the worst results (IoU = 0 . 646 and F_sc = 0 . 360 in

able 3) for long segment detections. When the validation is ac-

ivated, the precision increases from 0.271 to 0.307 whereas the

ecall remains high (0.59).

If we now add the discontinuity jump component with a fixed

ength of 5 pixels it removes some small detection errors. For ex-

mple, in the second row and column of Fig. 11 the broken seg-

ents of the wall in the left, with the added fixed-length jump

I. Suárez, J.M. Buenaposada and L. Baumela Pattern Recognition 127 (2022) 108619

Table 3

Results of the ablation study using our 1-to-1 evaluation protocol over the original YUD annotations. Best re-

sults in bold . Execution times measured on Intel Core i7.

Configuration Last P-R point metrics Global metrics

Jumps Jump Val. Seg. Val. P R IoU F_sc bAP Time (ms)

None 0.271 0.609 0.646 0.360 43.06 2.95

None � 0.307 0.590 0.651 0.388 44.27 4.16

Fixed (5 px) 0.278 0.702 0.712 0.383 42.46 3.25

Fixed (5 px) � 0.282 0.667 0.694 0.381 43.62 3.48

Multiple (5,7,9 px) � 0.285 0.686 0.706 0.387 43.28 4.16

Multiple (5,7,9 px) � � 0.320 0.664 0.711 0.415 44.94 5.38

Fig. 11. From left to right: No Validation no jumps, No validation with fixed size jumps (5 px) and no jump validation, No validation with fixed size jumps (5 px) and jump

validation, No validation with multi-size jumps (5, 7, 9 px) and jump validation, Validation with multi-size jumps (5, 7, 9 px) and jump validation

Table 4

Executions times for different state of art line segment detectors on dif-

ferent processors. Results are the average processing time per image, in

the YUD [33] images with size 640 × 480 .

Method Intel Core i7 Snapdragon Exynox

LSD 36.51 (±1.60) 58.68 (±0.81) 390.91 (±0.92)

EDLines 7.64 (±0.33) 13.79 (±0.15) 65.79 (±0.16)

AG3line 13.04 (±0.76) 18.57 (±0.20) 100.54 (±0.19)

ELSED-NJ 4.18 (±0.23) 8.28 (±0.03) 45.84 (±0.02)

ELSED 5.38 (±0.30) 10.20 (±0.07) 59.99 (±0.16)

MCMLSD 4.68K (±1.78K) GeForce GTX 1050

Linelet 20.9K (±10.1K)

HAWP 12.4K (±0.8K) 212.25 (±8.35)

SOLD

2 3.17K (±0.52K) 417.72 (±6.78)

F-Clip HR 7.94K (±0.15K) 47.39 (±1.46)

F-Clip HG1 6.78K (±0.22K) 11.00 (±0.47)

c

n

t

r

0

0

d

fi

t

f

c

m

m

d

i

t

s

0

4

a

i

d

o

p

1

S

S

G

m

M

i

t

L

E

v

p

r

E

L

m

m

e

b

t

o

o

t

b

m

5

a

i

s

c

w

p

e

s

o

t

apability are detected as a unique segment. On the other hand,

ow the algorithm performs some incorrect jumps going beyond

he endpoint of the segment. This effect can be observed in the

esults of Table 3 where the Recall takes a big leap (from 0.609 to

.702) and the Precision also increases moderately (from 0.271 to

.278). To fix the problem with incorrect jumps, we add the vali-

ation of the jump destination region of Section 3.2 (see the well-

tted endpoints of the third column in Fig. 11).

On the other hand, a jump of 5 pixels is not big enough if

he discontinuity is large. In this case, the jump validation is per-

ormed over pixels on the discontinuity. Thus, since discontinuities

ontain gradients in different directions to the normal of the seg-

ent, the jump validation fails. This is the reason why we add the

ulti-length jumps in the fourth column in Fig. 11 . With it, we can

eal with longer segment discontinuities. The last step is the val-

dation of the whole detected segment (see Section 3.3) shown in

he last column of Fig. 11 . Segment validation increases the preci-

ion (from 0.285 to 0.320) with a small penalty in the recall (from

.686 to 0.664).

.5. Efficiency evaluation

Nowadays CV applications not only require good accuracy, but

lso fast execution times and low energy consumption. This exper-

ment measures the average execution time in the images of YUD

ata set (Table 4) which contains 101 images with a resolution

f 640 × 480 pixels. Execution time is measured on four different
10
latforms: a laptop with an Intel Core i7 8750H CPU, 12 cores and

6GB of RAM; a smartphone Samsung J5 2017 with an Exynox Octa

 CPU, 8 cores and 2GB of RAM; a smartphone One Plus 7 Pro with

napdragon 855 CPU, 8 cores and 6GB of RAM and a GPU GeForce

TX 1050 with 4GB of RAM.

We use the implementation provided by the authors of each

ethod: LSD, EDLines AG3line and ELSED in C++, Linelet and

CMLSD in Matlab and HAWP, SOLD

2 and F-Clip in Python. ELSED

s implemented in C++ with Python bindings. To keep fast execu-

ion times we compute only L1 gradient norm, which is faster than

2, and predominant gradient direction (vertical or horizontal). In

ED we fit the segments with a least squares approach oriented

ertically or horizontally that we compute incrementally and, if

ossible, we reuse the top element from D stack to avoid memory

eallocation.

In all platforms, ELSED is around 2 × faster than AG3line, and

DLines, 6 × faster than LSD and much faster than MCMLSD and

inelet. DL methods are designed to run in the GPU, however GPU

ay not always be available in some platforms like drones, IoT or

obile phones and when it is, it usually involves unaffordable en-

rgy consumption. Looking at the CPU times, the DL methods need

etween 2300 × (HAWP) and 1200 × (F-Clip HG1) more computa-

ion than ELSED. Moreover, even when we run the DL methods

n a laptop GPU (Geforce GTX 1050) ELSED is still faster than any

f the methods. Therefore, for limited platforms, ELSED represents

he best segment detector, as it is not only faster, but also detects

etter than the other efficient methods (see Table 1) obtaining the

ost repeatable group of segments (Table 2).

. Conclusions

In this paper we have introduced ELSED, a general-purpose, fast

nd flexible line segment detector. It processes a 640x480 image

n less than 6 ms on a regular PC and around 10 ms on a modern

martphone. This efficiency arises as a result of joining the pro-

esses of edge drawing and segment detection in one single step,

ith an Enhance Edge Drawing (EED) algorithm conceived for the

roblem of line segment detection.

ELSED also includes a scheme to jump over discontinuities. This

ndows our method with a flexible strategy to cope with different

egment length requirements and improves its robustness against

cclusions, shadows and glitches, which make all efficient methods

o break down. This is important, for example, in a problem such

I. Suárez, J.M. Buenaposada and L. Baumela Pattern Recognition 127 (2022) 108619

a

a

d

r

t

b

t

e

a

T

O

D

c

i

A

0

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

I

g
(

o
i

f

H
t

a

J
g

S
f

f

s
a

P
c

v

L

a

1

a
t

C
i

s Vanishing Point estimation, where long and accurate segments

re required.

In segment-based reconstruction, repeatability is a key feature

esired in detectors. We have also introduced a repeatability met-

ic and experimentally shown that ELSED is the top performer.

Overall, ELSED is the fastest and most repeatable segment de-

ector in the literature. It is however less accurate than other DL-

ased competitors, which are computationally orders of magni-

ude less efficient. Yet, since it is a general purpose detector, it

xhibits good performance on different data sets, achieving an AP

t the same level as other algorithms orders of magnitude slower.

hese properties make it ideal for real-time applications like Visual

dometry, SLAM, or self-localization in resource-limited devices.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgment

This work was supported by Doctorado Industrial grant DI-16-

8966 and MINECO project TIN2016-75982-C2-2-R.

eferences

[1] Y. Zhou , H. Qi , Y. Zhai , Q. Sun , Z. Chen , L.-Y. Wei , Y. Ma , Learning to reconstruct

3D manhattan wireframes from a single image, in: Proc. of Int. Conf. on Comp.
Vis., 2019, pp. 7698–7707 .

[2] P. Miraldo , T. Dias , S. Ramalingam , A minimal closed-form solution for multi-

-perspective pose estimation using points and lines, in: Proc. European Conf.
on Comp. Vis., Springer, 2018, pp. 490–507 .

[3] Y. Li , N. Brasch , Y. Wang , N. Navab , F. Tombari , Structure-SLAM: low-drift
monocular SLAM in indoor environments, IEEE Rob. Autom. Lett. 5 (4) (2020)

6583–6590 .
[4] R. Gomez-Ojeda , F.-A. Moreno , D. Zuniga-Noël , D. Scaramuzza , J. Gonza-

lez-Jimenez , PL-SLAM: a stereo SLAM system through the combination of

points and line segments, IEEE Trans. Rob. 35 (3) (2019) 734–746 .
[5] R. Gomez-Ojeda , J. Briales , J. Gonzalez-Jimenez , PL-SVO: semi-direct monocular

visual odometry by combining points and line segments, in: Proc. of Int. Conf.
on Intell. Robots Systems, IEEE, 2016, pp. 4211–4216 .

[6] J. Lezama , R. Grompone von Gioi , G. Randall , J.-M. Morel , Finding vanishing
points via point alignments in image primal and dual domains, in: Proc. Conf.

on Comp. Vis. and Pattern Recogn., 2014, pp. 509–515 .

[7] S. Iago , M. Enrique , J.M.B. Luis Baumela , FSG: a statistical approach to line de-
tection via fast segments grouping, in: Proc. of Int. Conf. on Intell. Robots Sys-

tems, IEEE, 2018, pp. 97–102 .
[8] Y. Tian , C. Zhang , S. Jiang , J. Zhang , W. Duan , Noncontact cable force estima-

tion with unmanned aerial vehicle and computer vision, Comput.-Aided Civ.
Infrastruct. Eng. 36 (1) (2021) 73–88 .

[9] C. Liu , R. Abergel , Y. Gousseau , F. Tupin , LSDSAR, a Markovian a contrario

framework for line segment detection in SAR images, Pattern Recognit. 98
(2020) 107034 .

[10] I. Suárez , J.M. Buenaposada , L. Baumela , Revisiting binary local image de-
scription for resource limited devices, IEEE Rob. Autom. Lett. 6 (4) (2021)

8317–8324 .
[11] R.G. von Gioi , J. Jakubowicz , J.M. Morel , G. Randall , LSD: a fast line segment

detector with a false detection control, IEEE Trans. Pattern Anal. Match. Intell.

32 (4) (2010) 722–732 .
12] C. Topal , C. Akinlar , Edge drawing: a combined real-time edge and segment

detector, J. Vis. Commun. Image Represent. 23 (6) (2012) 862–872 .
[13] C. Akinlar , C. Topal , EDLines: a real-time line segment detector with a false

detection control, Pattern Recognit. Lett. 32 (13) (2011) 1633–1642 .
[14] Y. Zhang , D. Wei , Y. Li , AG3line: active grouping and geometry-gradient com-

bined validation for fast line segment extraction, Pattern Recognit. 113 (2021)

107834 .
[15] J. Matas , C. Galambos , J. Kittler , Robust detection of lines using the progressive

probabilistic hough transform, Comp. Vis. Image Understanding 78 (1) (20 0 0)
119–137 .

[16] R. Tal , J.H. Elder , An accurate method for line detection and manhattan frame
estimation, in: Proc. of Asian Conf. on Comp. Vis., Springer, 2012, pp. 580–593 .
11
[17] E.J. Almazan , R. Tal , Y. Qian , J.H. Elder , MCSLD: a dynamic programming ap-
proach to line segment detection, in: Proc. Conf. on Comp. Vis. and Pattern

Recogn., IEEE, 2017, pp. 5854–5862 .
[18] W. Ding , W. Wang , X. Li , OTLines: a novel line-detection algorithm without the

interference of smooth curves, Pattern Recognit. 53 (2016) 238–258 .
[19] N.-G. Cho , A. Yuille , S.-W. Lee , A novel linelet-based representation for line

segment detection, IEEE Trans. Pattern Anal. Match. Intell. (2017) .
20] K. Huang , Y. Wang , Z. Zhou , T. Ding , S. Gao , Y. Ma , Learning to parse wire-

frames in images of man-made environments, in: Proc. Conf. on Comp. Vis.

and Pattern Recogn., 2018, pp. 626–635 .
21] N. Xue , S. Bai , F. Wang , G.-S. Xia , T. Wu , L. Zhang , Learning attraction field

representation for robust line segment detection, in: Proc. Conf. on Comp. Vis.
and Pattern Recogn., 2019, pp. 1595–1603 .

22] Y. Zhou , H. Qi , Y. Ma , End-to-end wireframe parsing, in: Proc. of Int. Conf. on
Comp. Vis., 2019, pp. 962–971 .

23] N. Xue , T. Wu , S. Bai , F. Wang , G.-S. Xia , L. Zhang , P.H.S. Torr , Holistically-at-

tracted wireframe parsing, in: Proc. Conf. on Comp. Vis. and Pattern Recogn.,
2020, pp. 2788–2797 .

24] X. Dai, X. Yuan, H. Gong, Y. Ma, Fully convolutional line parsing,2021 arXiv:
2104.11207

25] Y. Xu , W. Xu , D. Cheung , Z. Tu , Line segment detection using transform-
ers without edges, in: Proc. Conf. on Comp. Vis. and Pattern Recognit., 2021,

pp. 4257–4266 .

26] R. Pautrat , J.-T. Lin , V. Larsson , M.R. Oswald , M. Pollefeys , SOLD 2 : self-super-
vised occlusion-aware line description and detection, in: Proc. Conf. on Comp.

Vis. and Pattern Recognit., 2021, pp. 11368–11378 .
27] J. Canny , A computational approach to edge detection, in: Readings in Comp.

Comp., Elsevier, 1987, pp. 184–203 .
28] D.H. Ballard , Generalizing the hough transform to detect arbitrary shapes, in:

Readings in Comp. Comp., Elsevier, 1987, pp. 714–725 .

29] N. Kiryati , Y. Eldar , A.M. Bruckstein , A probabilistic hough transform, Pattern
Recognit. 24 (4) (1991) 303–316 .

30] Z. Xu , B.-S. Shin , R. Klette , Closed form line-segment extraction using the
hough transform, Pattern Recognit. 48 (12) (2015) 4012–4023 .

31] J.H. Elder , S.W. Zucker , Local scale control for edge detection and blur estima-
tion, IEEE Trans. Pattern Anal. Match. Intell. 20 (7) (1998) 699–716 .

32] A. Desolneux , L. Moisan , J.-M. Morel , Meaningful alignments, Int. J. Comp. Vis.

40 (1) (20 0 0) 7–23 .
33] P. Denis , J.H. Elder , F.J. Estrada , Efficient edge-based methods for estimating

manhattan frames in urban imagery, in: Proc. European Conf. on Comp. Vis.,
Springer, 2008, pp. 197–210 .

34] K. Huang , Y. Wang , Z. Zhou , T. Ding , S. Gao , Y. Ma , Learning to parse wire-
frames in images of man-made environments, in: Proc. Conf. on Comp. Vis.

and Pattern Recogn., 2018, pp. 626–635 .

35] V. Balntas , K. Lenc , A. Vedaldi , K. Mikolajczyk , HPatches: a benchmark and
evaluation of handcrafted and learned local descriptors, in: Proc. Conf. on

Comp. Vis. and Pattern Recogn., 2017, pp. 5173–5182 .

ago Suárez received the BS degree in 2015 from Universidade da Coruña, MS de-

ree in 2016 and PhD degree in 2021 from the Universidad Politécnica de Madrid
UPM). He has co-founded or participated in several startups: XOIA Software Devel-

pment and The Graffter where he actually works as Computer Vision engineer. He
s also a teaching assistant in the courses of Pattern Recognition and Deep Learning

rom UPM. He works in the intersection of computer vision and machine learning.

is research interests include efficient deep learning, image matching and localiza-
ion, local features, line segment detection and vanishing point estimation, SLAM

nd SfM.

osé M. Buenaposada received the BS and MS degrees in 1999 and the PhD de-
ree in 2005 both in computer science from the Universidad Politécnica de Madrid.

ince 2003 he has been working at the Universidad Rey Juan Carlos, Spain, and
rom 2008 to 2018 he was a Contratado Doctor (Associate Professor equivalent) and

rom december 2018 he is a Profesor Titular (Associate Professor equivalent) at the

ame University. He is member of the Computer Vision and GAVAB research group
t Universidad Rey Juan Carlos. He is also an external member of the Computer

erception Group at Universidad Politécnica de Madrid. His research interests in-
lude image alignment, face image analysis, object detection and efficient computer

ision.

uis Baumela received the BS and MS degrees in 1989 and the PhD degree in 1995,
ll in computer science from the Universidad Politécnica de Madrid. From 1989 to

992, he was an engineer at Telefónica’s R&D labs. From 1997 to 2016, he has been

n Associate Professor, and since 2016 he is a Professor of computer science at
he ETSI Informáticos of the Universidad Politécnica de Madrid, where he leads the

omputer Perception Group. His research interests include image alignment, face
mage analysis, and medical imaging.

http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0002
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0002
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0002
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0002
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0004
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0004
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0004
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0004
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0004
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0004
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0005
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0005
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0005
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0005
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0007
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0007
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0007
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0007
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0010
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0010
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0010
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0010
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0012
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0012
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0012
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0013
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0013
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0013
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0014
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0014
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0014
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0014
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0015
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0015
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0015
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0015
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0016
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0016
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0016
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0017
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0017
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0017
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0017
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0017
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0018
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0018
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0018
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0018
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0019
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0019
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0019
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0019
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0022
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0022
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0022
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0022
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0023
http://arxiv.org/abs/2104.11207
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0027
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0027
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0028
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0028
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0029
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0029
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0029
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0029
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0030
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0030
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0030
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0030
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0031
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0031
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0031
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0032
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0032
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0032
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0032
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0033
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0033
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0033
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0033
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0034
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0034
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0034
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0034
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0034
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0034
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0034
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0035
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0035
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0035
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0035
http://refhub.elsevier.com/S0031-3203(22)00100-5/sbref0035

	ELSED: Enhanced line SEgment drawing
	1 Introduction
	2 Previous work
	2.1 Global information-based approaches
	2.2 Local methods
	2.3 Deep line segment detectors

	3 Enhanced line SEgment drawing (ELSED)
	3.1 Enhanced edge drawing algorithm (EED)
	3.1.1 Extraction of anchor pixels
	3.1.2 Connecting the anchors by an enhanced routing algorithm

	3.2 The line segment discontinuities
	3.3 Validation of the generated segment candidates
	3.4 Parameter selection

	4 Experiments
	4.1 Segment detection evaluation
	4.2 Wireframe parsing
	4.3 Repeatability
	4.4 Ablation study
	4.5 Efficiency evaluation

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgment
	References

