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a b s t r a c t 

Detecting local features, such as corners, segments or blobs, is the first step in the pipeline of many Com- 

puter Vision applications. Its speed is crucial for real-time applications. In this paper we present ELSED, 

the fastest line segment detector in the literature. The key for its efficiency is a local segment growing 

algorithm that connects gradient-aligned pixels in presence of small discontinuities. The proposed algo- 

rithm not only runs in devices with very low end hardware, but may also be parametrized to foster the 

detection of short or longer segments, depending on the task at hand. We also introduce new metrics 

to evaluate the accuracy and repeatability of segment detectors. In our experiments with different public 

benchmarks we prove that our method accounts the highest repeatability and it is the most efficient in 

the literature. 1 In the experiments we quantify the accuracy traded for such gain. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Detecting segments and full lines in digital images is a recur- 

ent problem in Computer Vision (CV). Line segments play an im- 

ortant role in understanding the geometric content of a scene as 

hey are a compressed and meaningful representation of the image 

ontent. Moreover, segments are still present in low-textured set- 

ings where the classical methods based on corners or blobs usu- 

lly fail. Segment detection has been employed in a large num- 

er of CV tasks such as 3D reconstruction [1,2] , SLAM [3,4] , Visual

dometry [5] , 3D camera orientation via Vanishing Points Detec- 

ion [6,7] , cable detection in air-crafts [8] , or road detection in Syn-

hetic Aperture Radar images [9] . 

Nowadays CV algorithms are ubiquitous and they are expected 

o run on resource-limited devices [10] . To this end, low-level al- 

orithms such as the local feature detectors must be very efficient. 

raditional global line detection approaches based on the Hough 

ransform lack efficiency. Thus, various local methods emerged ad- 

ressing the issue of efficiency. LSD [11] was one of the first ap- 

roaches to achieve excellent results with a local approach. Edge 

rawing methods further improve the efficiency [12–14] . In a first 
∗ Corresponding author. 

E-mail address: josemiguel.buenaposada@urjc.es (J.M. Buenaposada). 
1 Source code: https://github.com/iago-suarez/ELSED 
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tep, they work by connecting edge pixels following the direction 

erpendicular to the gradient. In a second step, they fit the desired 

urve, a line in the simplest case, to these edges. 

The method presented in this paper improves on the drawing 

ethods by fitting a line segment to the connected edge pixels 

nd using its direction to guide the drawing process. Fusing the 

rawing and line segment fitting in a single step saves time and 

mproves the overall quality of the detected segments. In addition, 

ur proposal allows to jump over gradient discontinuities and de- 

ect full lines or just detect the individual linear segments without 

umping. This is important because line segments are features that, 

t the gradient level, can be easily broken by occlusions, shadows, 

litches, etc. In this way, the user can define the type of segments 

hat best suits the application. For example, we may choose to de- 

ect large segments if the goal is to do Vanishing Points estimation 

r short ones for reconstruction and matching. 

In this paper we present an efficient method for line segment 

etection termed Enhanced Line SEgment Drawing (ELSED). In our 

xperiments we compare the accuracy and efficiency of ELSED 

ith that of the most relevant detectors in the literature. As shown 

n Fig. 1 , ELSED is not only the most efficient (note the logarithmic 

cale in the speed dimension) but also the most accurate in line 

egment detection and more repeatable among the fastest in the 

iterature, as we show in the experimental section. It improves the 

fficiency of present methods in resource-limited devices, opening 

he door to new CV applications running on any type of hardware. 
under the CC BY-NC-ND license 
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Fig. 1. Average Precision (AP) vs. execution time (ms) curve in the line segment de- 

tection problem. Local features based methods are displayed with circular markers 

and global ones with square markers. 
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. Previous work 

In this section we review the segment detection literature. To 

his end we organize it in three broad groups: full line detectors 

ith global methods [15–17] , those that use local properties to 

reedily detect line segments [11,13,14,18,19] and the deep line seg- 

ent detectors [20–26] . 

.1. Global information-based approaches 

Global methods are able to detect full lines in the image with 

nough edge pixels support in spite of discontinuities. These meth- 

ds start with an edge detection, for example Canny [27] , and 

hen they apply a Hough Transform-like [28] voting scheme. There 

re well-known issues with these methods: the omission of some 

eak edges, the generation of false positives in regions with high 

dge density (e.g. tree leaves) or the large amount of memory re- 

uired to store the accumulators. 

Progressive Probabilistic Hough Transforms (PPHT) 

15,29] solves the efficiency problem changing the entire im- 

ge voting scheme by a random sampling scheme. More recent 

orks [16] address the quantization problem and also allow an 

fficient execution of the method. In [30] the direction, length, and 

idth of a line segment is extracted in a closed-form that uses 

 fitted quadratic polynomial curve. To generate better segments, 

CMLSD [17] uses the Elder & Zucker edge detector [31] that 

ropagates edge uncertainty to the Hough histogram accumulator. 

ast, they split the detected full lines in line segments using 

 Markov Chain Model and a standard dynamic programming 

lgorithm. The main drawback of this method is the efficiency. It 

akes 3.7 s to process a 640 × 480 image. 

.2. Local methods 

Local methods overcome some of the drawbacks of global ap- 

roaches by departing from strong gradient pixels and greedily add 

eighboring pixels using the gradient information. LSD [11] groups 

nd validates image regions with a significant gradient magnitude 

nd a similar gradient orientation in O (N) , being N the number 

f image pixels. Unlike the non-maximal suppression (NMS) used 

n the Canny edge detector, LSD uses a region growing process to 

elect interesting pixels. Then, each region is validated based on 

he expected Number of False Alarms (NFA), computed with an A- 
2 
ontrario statistical model [32] . LSD is efficient and it is able to 

eal with areas with a high density of edge pixels (e.g. trees). 

EDLines [13] is also an efficient algorithm ( O (N) ) based on lo- 

al gradient orientations. It performs segment detection in two 

teps: 1) edge detection and 2) line segment detection using a 

ocal approach. The edge detection step is performed with the 

dge Drawing (ED) algorithm [12] . ED applies the first three 

anny steps: Gaussian filtering, gradient estimation, NMS and tries 

o connect the anchor pixels (local maxima in gradient magni- 

ude) with a greedy procedure. In a second step EDLines per- 

orms line fitting. OTLines [18] uses an orientation transforma- 

ion to improve EDLines and avoid segment detections on cir- 

ular structures. AG3line [14] instead of drawing over all pixels 

nly finds aligned anchors. They also implement a continuous val- 

dation strategy to decide whether the segment has reached its 

ndpoint and a jumping scheme to overcome gradient disconti- 

uities. A key difference between AG3line and ELSED is that we 

se every pixel in the image as part of the drawing process, 

hich generates a chain of continuous pixels, while AG3line uses 

nly the detected anchors. This makes the method fast but un- 

table, needing to validate each step and thus being slower than 

LSED. 

The approach of Cho et al. [19] is based on linelets detection, 

.e. chunks of horizontally or vertically connected pixels that result 

rom line digitization. The linelet detection is O (N 

2 ) time complex- 

ty and thus it takes 16.7 s per image. Adjacent linelets are further 

rouped into line segments using a probabilistic model with O (L 2 ) 

omplexity, where L is the number of detected linelets. Last, they 

alidate using a mixture of experts model learnt from the gradient 

agnitudes, orientation and from the line length of the segments 

n a labeled data set. They also propose a quantitative evaluation 

hat we improve in our experiments ( Section 4 ). 

.3. Deep line segment detectors 

A closely related problem to line segments detection is 

ireframe parsing. It consists of predicting the scene’s salient 

traight lines and their junctions. The ShanghaiTech Wireframe 

ata set [20] contains over 50 0 0 hand-labelled images that al- 

owed different methods to train obtaining competitive results. 

FM [21] uses an attraction field map that is next squeezed to 

btain line segments. L-CNN [22] proposes an End-to-end model 

hat uses a stacked hourglass backbone to obtain a junction pro- 

osal heatmap that is extensively sampled to obtain the out- 

ut segments. HAWP [23] improves the L-CNN sampling step 

y reparametrizing the line segments in a holistic 4-D attrac- 

ion field map from which segments can be obtained faster. HT- 

AWP [23] Adds some Deep Hough layers to the HAWP model im- 

roving its capabilities to capture lines and slightly improving the 

erformance in some benchmarks. F-Clip [24] proposes a simple 

et effective approach to cast line segment detection as an object 

etection problem that can be solved with a fully convolutional 

ne-stage method. LERT [25] detects segments using transformers 

hat replace the junction heatmap and segment proposals to di- 

ectly predict the segment endpoints. SOLD 

2 [26] proposes a self- 

upervised way towards line detection and description that opti- 

izes the repeatability of the detected segments. 

Despite the good results of these deep methods, their computa- 

ional requirements are still far away from the classical methods 

ased on gradient. This fact makes them non-viable for limited 

evices where there is no GPU or rather its battery consumption 

s prohibitive. For this reason we introduce our drawing method 

hat has been carefully designed to avoid floating-point operation 

nd minimize its complexity, being CPU friendly and achieving the 

astest execution times on the state of the art. 
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Fig. 2. ED greedy segment growing. In (a) it only takes into account the current edge pixel. In the case of (b) the walk is coming from the blue pixel and finds a horizontal 

edge pixel (pink one). Thus, it will start a walk to the left and another to the right that could give edge chains with the displayed configurations (blue-pink-yellow pixel 

sequence). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

3

a

3

s

t

i

h

G

t

G

L  

s

e  

h  

t

3

s  

i

t  

v  

G  

i

o

b

3

t

3  

t

i

r

fi

b

c

p

l  

e

o

p  

t

t

a

i

p

c

i

f  

a

v

f

p

m

fi

c

F

l

i

c

c

t

T

t

Algorithm 1 Enhanced Edge Drawing Algorithm. 

1: procedure EED ( a, d 0 ) 
2: Input: Anchor pixel: a . Anchor gradient direction: d 0 
3: Output: S: List of Segments, P: List of edge pixels 
4: P ← { a } ; S ← ∅ 
5: D stack ← ∅ ; D stack .push([ a , d 0 ]) 
6: while D stack � = ∅ do 
7: segmentFound ← false 
8: nOutliers ← 0 
9: c, d ← D stack .pop() � Current pixel and direction 

10: p ← previousPixel( c, d) � Find previous pixel 
11: while G [ c] � = 0 ∧ nOutliers ≤ T outliers do 
12: c, p ← drawNextPx( c, p) 
13: P ← P ∪ { c} 
14: if segmentFound then 
15: s, nOuliers ← addPxToSegment(s, c, nOuliers) 
16: else 
17: s, segmentFound ← fitNewSegment( P) � Can return ∅ 
18: S ← S ∪ {s} 
19: end if 
20: end while 
21: if G [ c] � = 0 then 
22: D stack .push([ c, lastDir]) � Edge orientation change 
23: if canContinueForward(s) then 
24: p f , d f ← s.forwardPxAndDir( c, d) 

25: D stack .push([ p f , d f ]) 

26: end if 
27: if canContinueBackward(s) then 
28: p b , d b ← s.backwardPxAndDir( c, d) 
29: D stack .push([ p b , d b ]) 
30: end if 
31: end if 
32: end while 
33: end procedure 
. Enhanced line SEgment drawing (ELSED) 

In this section we introduce our line segment detection method 

nd explain the different steps in our approach. 

.1. Enhanced edge drawing algorithm (EED) 

The EED entails the following high-level steps: 1) Gaussian 

moothing to suppress noise; 2) Gradient magnitude and orien- 

ation computation; 3) Extraction of anchor pixels, local maxima 

n the gradient magnitude; 4) Connect the anchors using the en- 

anced routing algorithm 

For the noise reduction step we use a convolution with a 5 × 5 

aussian kernel and σ = 1 , for Gradient magnitude and orienta- 

ion computation we first compute the horizontal, G x , and vertical, 

 y , gradients by applying the Sobel operator and then we use the 

 1 norm, G = | G x | + | G y | . We also define a gradient threshold and

et G = 0 for those pixels below it and quantize the gradient ori- 

ntation, O , into two possible values: vertical edge, | G x | ≥ | G y | , or

orizontal edge, | G x | < | G y | . The other two steps are explained in

he next subsections. 

.1.1. Extraction of anchor pixels 

The anchors are pixels where the drawing process begins. We 

can image pixels with G > 0 and test if it is a local maxima

n the gradient magnitude, G , along the quantized direction of 

he gradient, O . If the pixel orientation O (x, y ) corresponds to a

ertical edge, it is an anchor if G [ x, y ] − G [ x − 1 , y ] ≥ T anchor and

 [ x, y ] − G [ x + 1 , y ] ≥ T anchor . The same applies for horizontal edge

n vertical direction. To increase the processing speed, the number 

f anchors can be limited by increasing the value of T anchor and also 

y scanning pixels every SI = 2 columns and rows. 

.1.2. Connecting the anchors by an enhanced routing algorithm 

ED is faster than LSD’s region growing because, from an ini- 

ial anchor, it only walks along a chain of edge pixels, evaluating 

 neighbours at each step (see Fig. 2 a) and selecting as next step

he one with biggest gradient magnitude. The evaluations are crit- 

cal for the speed of the algorithm since they are done for each 

eachable edge pixel walking from an anchor point. 

In our EED procedure, we perform the edge drawing and line 

tting at the same time. This will enable us to save computations 

y reducing the number of checked pixels. During drawing, we 

onsider the previous and the current pixel. We explore the same 

ixels as in ED during the walking processes (see “Go right”, “Go 

eft”, “Go up” and “Go down” in Fig. 3 b) as long as the edge ori-

ntation does not change from the previous pixel to the current 

ne. When the previous pixel is in a vertical edge, and the current 

ixel is in a horizontal one, ED has 6 candidate pixels to be added

o the current line segment (see Fig. 3 a). This may generate situa- 

ions where the algorithm would draw a corner breaking the line 
3 
ssumption ( Fig. 2 b). The same happens when the previous pixel 

s in a horizontal edge and the current is on a vertical one. 

Here we introduce a different approach to treat these diagonal 

ixels while following a line. We add the assumption that the edge 

hain should form a line. Then, considering Bresenham’s line draw- 

ng scheme, the number of checked pixels in this situation changes 

rom 6 with ED (see Fig. 3 a) to only 2 with EED (see the four “di-

gonal” cases in Fig. 3 b), and remains 3 for the other possible pre- 

ious pixels (non-diagonal cases). This has two advantages: 1) it is 

aster than the original ED routing algorithm as it explores fewer 

ixels and, 2) it avoids non-meaningful cases for finding line seg- 

ents. 

The second important idea is a also consequence of trying to 

nd aligned edge pixels. Whereas ED changes the walking pro- 

ess direction when a change of edge orientation is detected (See 

ig. 4 a), EED tries to continue in the same direction following a 

ine. However, any change of edge orientation is not forgotten and 

t is pushed into the stack of discontinuities, D stack , for later pro- 

essing (see Algorithm 1 ). EED tries to fit a line to the current 

hain of pixels, if more than T minLength pixels have been chained and 

he squared error of alignment of the pixels is lower than T LineF itErr . 

he last parameter for the segment search is the T PxToSegDist that is 

he maximum distance in pixels from which we consider whether 
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Fig. 3. Drawing diagonal edges: When the previous pixel was in a different orientation (vertical vs horizontal) than the current one, original ED has 6 candidates pixels vs 

EED that has 3 or 2. More than one previous edge pixel is displayed when we have the same candidates for any of the previous pixel options. 

Fig. 4. Results of the drawing process for ED and EED (purple pixels) from one single anchor (blue point). Green arrows and numbers establish which segments are visited 

first. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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 pixel fits or not in the current segment. This is done internally 

n the function addPxToSegment in line 15 of Algorithm 1 ). The pro- 

ess stops when no more pixels can be chained (i.e. at the limits 

f the image, with only already visited pixels or weak edge pixels 

s candidates) or a line edge discontinuity is detected (e.g. the gap 

etween two aligned windows, a tree branch occluding part of a 

uilding, etc.). In case a discontinuity was detected we execute, in 

rder, the following actions: 

1. If we were walking along a line segment (i.e. we have fitted a 

line), try to extend it going on the line direction (the walking 

process stacked using canContinueForward and forwardPxAndDir 

functions in Algorithm 1 , lines 23 to 26) 

2. If were walking along a line segment and we cannot continue 

forward, try to extend the line segment backwards (the walk- 

ing process stacked using canContinueBackward and backward- 

PxAndDir functions in Algorithm 1 ), lines 27 to 30) 
4 
3. Continue in the gradient direction, that is changing in the dis- 

continuity (the walking process stacked in Algorithm 1 , line 22). 

This sequence of ordered actions guarantees that if a line seg- 

ent is detected, all its pixels will be detected together. 

We show an illustrative example in Fig. 4 b, where EED starts 

wo walking processes, one upward and another downward. Un- 

ike ED (see Fig. 4 a), EED detects the discontinuities in the edge 

rientation of the chessboard corners and continues walking in the 

urrent line direction. Each discontinuity is stored in D stack for later 

rocessing. After pixels in segments (1) to (5) are chained, the next 

dge orientation to process is extracted from the top of D stack . The 

rawing process keeps drawing from it, linking the pixels of seg- 

ents (6) to (9). The routing algorithm ends when there are no 

ore edge orientation changes in D stack . Then, the next anchor 

oint is processed by the routing algorithm. Detecting more seg- 

ents from a single anchor is an important feature of our method 



I. Suárez, J.M. Buenaposada and L. Baumela Pattern Recognition 127 (2022) 108619 

t

w

3

i

c

t

f

t

c

s

c

d

d

e

i

a

d

w

l

r  

w

t

 

m  

t

e

e

e

w  

d

l

c

e

B

t

s

i

e

F

g

w  

C

u

e

w

b

n

b

t

e

i

d

3

t

m

l

d

r

t

t

a

t

n

o

(

s

c

t

F

i

l

v  

r

3

n

t  

a

t

T  

d

fi

l

a

s

a

w  

o

4

c

p

a

c

hat increases the detection recall with respect to EDLines as we 

ill show in experiment 4.1 . 

.2. The line segment discontinuities 

A line segment can be interrupted by several edge discontinu- 

ties. These are regions of the image where the gradient orientation 

hanges or the gradient magnitude goes to zero. Whether we aim 

o detect full lines or just line segments, the discontinuities of dif- 

erent lengths (i.e. the number of pixels where there is no edge or 

he edge direction is not aligned with the line segment) should be 

orrectly skipped in a drawing process in order to detect the line 

egments correctly. 

Algorithm 1 naturally deals with this phenomena. Once a dis- 

ontinuity is detected, our aim is to jump over it and continue 

rawing in the line segment direction if possible. A priori , the 

iscontinuity length is unknown and our algorithm test differ- 

nt length candidates. As we are using a 5 × 5 Gaussian smooth- 

ng kernel, any 1 pixel discontinuity will have effect in at least 

 neighbourhood of size 5 pixels, therefore we set the minimum 

iscontinuity length to 5 pixels. In the functions canContinueFord- 

ard ( Algorithm 1 , line 23) and canContinueBackward ( Algorithm 1 , 

ine 27), different jum p lengths J are checked (in the default pa- 

ameters of the algorithm we use J ∈ [5 , 7 , 9] ). The drawing process

ill continue after the discontinuity if the ordered conjunction of 

he following conditions is true: 

1. The segment is longer than the number of pixels, J, we want to 

jump. 

2. The pixel, a , that is aligned with the segment and J pixels away 

from current pixel, c, is inside the image and has G [ a ] > 0 (i.e.

is not a weak edge pixel). 

3. Starting from a , EED is able to draw at least J pixels follow- 

ing the edge direction. We call this set of J pixels the extension 

pixels. 

4. The extension pixels are well aligned with the line segment. To 

check this we calculate the auto-correlation matrix of the image 

gradients, M , in a small neighbourhood (we take one pixel on 

each side of the extension pixels) and then, we assert that: 

λ1 

λ2 

≥ T E igenE xt (1) 

where λ1 and λ2 , (λ1 > λ2 ) , are the eigenvalues of the M , and 

∠ ( v 1 , n ) ≤ T AngleExt (2) 

∠ (·, ·) is the angular distance, v 1 is the first eigenvector of M 

and n is a vector normal to the segment. 

In Fig. 5 we show different steps of the discontinuity manage- 

ent algorithm in a synthetic image. In Fig. 5 d we show the de-

ection process starting from the left side of the image, we fit the 

dge pixels (blue) to a horizontal line (green). When the edge ori- 

ntation changes from horizontal to vertical, we detect the last 

dge pixels as outliers (orange) and thus our method detects that 

e are in a discontinuity. In this case, the red pixel is the last one

etected when | E| > T ol , where T ol the maximum number of out- 

iers. 

Next Fig. 5 e shows the check done to decide whether we should 

ontinue drawing straight or the segment has finished. Purple pix- 

ls are the pixels in the discontinuity and are skipped using the 

resenham’s algorithm drawing in the current line segment direc- 

ion. Red pixels are drawn following the edge direction (in green) 

tarting from the first pixel after the discontinuity, a . We also mark 

n red the neighbor pixels used to validate the region using the 

igenvalues of M if the extension pixels in function canContinue- 

orward . Pixels in this synthetic example do not have a uniform 
5 
radient direction, thus, the process discards all extensions tested 

ith lengths J ∈ [5 , 7 , 9] . In the figure we show the last one, J = 9 .

onsequently, the algorithm closes the first segment and contin- 

es drawing in the dominant gradient direction upwards. When 

nough pixels are gathered, we fit another segment ( Fig. 5 f). When 

e reach the top of the image, the segment is extended in the 

ackward direction downwards. When this happens, the mecha- 

ism to manage discontinuities is activated again as Fig. 5 g shows, 

ut this time the region meets all the criteria defined and thus 

he jump is executed. Figure 5 h and i show respectively the fitted 

dges and the segments. 

One of the limitations of local segment detection approaches 

s the generation of many small segments produced by gradient 

iscontinuities. The process described above helps us alleviate this. 

.3. Validation of the generated segment candidates 

After EED, we have several line segments detections, many of 

hem potentially wrong (see red segments in Fig. 6 ). They occur 

ainly in regions with a high density of edge pixels. To validate a 

ine we use the segment pixels’ gradient orientation, comparing its 

irection with the one normal to the segment, i.e. the angular er- 

or. This validation can be performed efficiently, without damaging 

he overall performance. 

For a good validation we discard the pixels lying in a discon- 

inuity and those near the endpoints, because they usually have 

 different gradient orientation even in correct detections. Despite 

his, the gradient orientation error in a true segment is a noisy sig- 

al. In Fig. 7 we can see the probability distribution function (PDF) 

f orientation errors for pixels on true positive segment detections 

TP) (blue), false positive segments (FP) (orange) and false positives 

egments detected in a random noise intensity image (green). It is 

lear that the pixels on TP segments have less angular error than 

hose on FP ones. However, there is a significant overlap between 

P and TP distributions. 

Therefore, we use a validation criteria robust to noise. We val- 

date a segment if at least 50% of its pixels have an angular error 

ower than a threshold, T v alid . To separate positive detections (i.e. 

alid ones) from negative ones, we learn a threshold T v alid = 0 . 15

adians which keeps a high recall discarding few true detections. 

.4. Parameter selection 

Most ELSED parameters have been set empirically and do not 

eed to be changed by the user. We use a Gaussian smoothing fil- 

er ( σ = 1, kernel size = 5 × 5), a gradient threshold T grad = 30 ,

nchor threshold T anchor = 8 and SI = 2, that defines the scan in- 

erval of anchor every SI row/column. For the line segment fitting: 

 ol = 3 , T minLength = 15 , T LineF itErr = 0 . 2 , T PxToSegDist = 1 . 5 and for vali-

ation T E igenE xt = 10 , T AngleExt = 10 ◦, T v alid = 0 . 15 radians. 

However, other parameters may be tuned by the user to de- 

ne the type of segments to be detected; this is the case for the 

ist of jump lengths that will be tested in the discontinuity man- 

gement. Since this is directly related to the size of the Gaussian 

moothing kernel in the first step ( 5 × 5 in our implementation) 

nd the size of the gradient convolution kernel ( 3 × 3 in our case), 

e define a set of default values, (5 , 7 , 9) , that in the experiments

f Section 4.4 provide good results. 

. Experiments 

In this section we introduce a methodology to evaluate the ac- 

uracy and repeatability of segment detectors and follow it to com- 

are our detector with the best in the literature. We also present 

n ablation study to analyze how each component of our algorithm 

ontributes to the final result. 
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Fig. 5. Example of ELSED discontinuity management algorithm. Gradient orientations in (c) coded with red (right direction), purple (up), cyan (left) and light green (bottom) 
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We perform our evaluation in two dimensions, accuracy and 

fficiency. To this end we have grouped the algorithms in two 

ets, following the two clusters in Fig. 1 . In the first set we find

lgorithms that run efficiently in CPU (LSD, EDLine, AG3line and 

LSED). In the second set those that require more than one sec- 

nd to process an image (MCMLSD, Linelet, HAWP, SOLD 

2 , F-Clip). 

lthough HAWP, SOLD 

2 and F-Clip are DL methods and should 

e run in GPU, we run them also on CPU to show the differ-

nt computational requirements of each approach. It is also im- 

ortant to note, that most low-power devices like smartphones, 

rones or IoT devices are usually not prepared to run the GPU 

or long periods of time. In our experiments we compare the 
6 
ccuracy and efficiency of ELSED with the approaches in each 

roup. 

.1. Segment detection evaluation 

We evaluate the segment detection in the York Urban Data set 

YUD) [33] that contains indoor and outdoor man-made scenes 

here some salient segments have been manually labeled. The 

ata set was extensively re-labeled later in Linelet [19] , which con- 

ains all segments in the scene, but also some inconsistencies. 

We propose a new evaluation framework that combines the 

enefits of previous evaluation protocols [17,19,22] , namely, it is 
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Fig. 6. Positive (green) and negative (red) segments detected by ELSED. We obtain these labels comparing the ground truth segments of the YorkUrban-LineSegment data 

set (blue) with unvalidated ELSED detections (magenta). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 7. PDF of the gradient orientation error in correct segments (blue), negative segments (orange) and segments detected in a random intensity image (green). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Comparison of (a) Structural distance used by ELSED to fill the cost matrix A and (b) point-sample based distance used by MCMLSD [17] . In (b) the detected segment 

s ′ C is matched to the ground truth (GT) segment s GT while the best possible match is s C . 
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ast to compute and is a fair and stable metric for line segment 

etection. We ensure a good 1-to-1 match between detected and 

round truth (GT) segments by using the Hungarian algorithm to 

nd the optimal bipartite match. The assignation problem is de- 

ned with a cost (or matching) matrix A , that is filled using the 

tructural distance (see Fig. 8 a). This metric is a good trade off be- 

ween perpendicular distance, misalignment and overlap. It is also 

aster to compute than the matched number of sampled points. 

o speed up the Hungarian algorithm and ensure a meaningful 
7 
atching, we require matched segments to have an intersection 

ver union bigger than λov erlap = 0 . 1 , to have an angular distance

maller than λang = 15 ◦ and a perpendicular distance smaller than 

dist = 2 
√ 

2 . The pairs of segments that do not meet these criteria, 

ave infinite cost in the corresponding entry of A , avoiding their 

atching. Let x be the set of detected segments and y the set of 

round truth segments. With the 1-to-1 assignations A ∗ between 

hem we define: 
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Fig. 9. Detected segments’ Precision-Recall with our evaluation framework in YUD with original labels. 
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• Precision : Length of the matched intersection measured over 

the detected segment x i , divided by the length of the detected 

segments, P = 

∑ 

i, j∈ A ∗ x i ∩ x i y j ∑ 

i | x i | . 

• Recall : Length of the matched intersection measured over the 

ground truth segment y j , divided by the length of the ground 

truth segments, R = 

∑ 

i, j∈ A ∗ y j ∩ y j x i ∑ 

j | y j | . 

• Intersection over Union : Length of the matched intersection 

measured over the ground truth segments, divided by length of 

the matched union measured over the ground truth segments, 

IoU = 

∑ 

i, j∈ A ∗ y j ∩ y j x i ∑ 

i, j∈ A ∗ y j ∪ y j x i 
. 

In Fig. 9 we show the Precision-Recall of our algorithm and the 

tate-of-the-art detectors. This curve is computed w.r.t. the original 

UD data set annotations and we sort the segments produced by 

ach method using the score provided by their original code. For 

LSED, the score is the percentage of pixels that have an angular 

rror lower than T v alid . The curve of ELSED is better than those of

SD, EDLines and AG3line, the methods able to run on CPU effi- 

iently (see experiment 4.5 ). We obtain a better precision, reach- 

ng similar or higher recall. MCMLSD gets better recall but at the 

ost of very bad precision. This was expected since it is the only 

ethod based on the HT and detects all full lines with enough 

upport, even the hallucinated ones over highly textured regions. 

LSED is able to improve AG3line because it has a better draw- 

ng scheme tailored to the line segment detection problem. ELSED 

s on par with the most efficient DL approaches, F-Clip (HG1), in 

he range of recall where ELSED works. Deeper networks such as 

AWP that needs a GPU and are far away from real-time in CPU 

btain, as expected, results with better recall and precision. 

In Table 1 columns 2 to 5 show the highest recall values in the 

-R curve for each method. They correspond to the case where we 

equire the detector to find as many segments as possible. The last 

wo columns show metrics over all the P-R points of the curve. If 

e look at the results with the original YUD labels, ELSED has the 

est precision (0.3198), F-score (0.4148) and IoU (0.7111) among 

he efficient detectors on CPU. It also obtains the best results for 

he overall metrics along all the Precision-Recall points (Average 

recision, AP). AP is the usual classification metric, that is biased 

owards detectors with a wider recall range. Thus, we also show 

he AP bounded to the recall interval where the curve of each 

ethod is defined (bAP). ELSED has a bAP comparable with F- 

lip (HR) and better than F-Clip (HG1). This means that, although 
8 
LSED detects fewer segments (lower recall range than F-Clip) it 

as a precision similar to the top DL-based methods in the de- 

ected segments. 

We also present the results for the ”YorkUrban-LineSegment an- 

otation” [19] . In the new annotation, the definition of segments 

hanges to short and broken lines from the global lines in the orig- 

nal YUD labels. In this case, we also show the results of ELSED 

ithout jumps ( ELSED-NJ ). ELSED-NJ obtains competitive results, 

eing the best in terms of precision and IoU in this data set. This 

hows the nice property of ELSED, which allows to adapt the seg- 

ent definition to the application by changing the jump length 

ver discontinuities. 

With these experiments we can conclude that, although ELSED 

as been designed with the objective of reducing the execution 

ime, it is also a competitive algorithm in terms of segment de- 

ection accuracy. The reason is that the EED process is adapted to 

he segment detection problem and jumps over discontinuities to 

roduce outputs that match the segment length in the annotations. 

.2. Wireframe parsing 

This experiment presents a comparative evaluation in a differ- 

nt task: Wireframe Parsing. Figure 10 a shows the evaluation re- 

ults in the ShanghaiTech Wireframe dataset [34] and YUD, with 

he evaluation protocol described in L-CNN [22] . Unlike the proto- 

ol presented in Section 4.1 , here all segments have the same im- 

ortance and the GT segments are matched to detections by near- 

st neighbour. 

As expected, computationally-expensive methods (HAWP and F- 

lip), trained for this task, achieve top-performing results. How- 

ver, when the same evaluation protocol is applied in a similar 

ataset, YUD ( Fig. 10 b), their precision roughly halves. Partly be- 

ause YUD’s annotations are less dense, but also as result of data 

cquisition and labeling biases. By contrast, general-purpose line 

egment detectors generalize better. ELSED obtains the best results 

mong them. This is because EED is able to retrieve more segments 

rom each anchor and because the jump strategies properly man- 

ge gradient noise. 

.3. Repeatability 

Regardless the type of segments aimed for the detection, a de- 

irable property is the robustness against changes in viewpoint, 
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Table 1 

Results with our evaluation protocol (top half: efficient methods, bottom half: slow methods). We use bold for best results in each experiment. The columns 

show for each method the Precision (P), Recall (R), Intersection over Union (IoU), F-Score (F_sc), Average Precision (AP) and bounded Average Precision (bAP). 

Original YUD annotations YorkUrban-LineSegment annotations 

Method P R IoU F_sc AP bAP P R IoU F_sc AP bAP 

LSD 0.26 0.53 0.59 0.34 17.33 34.78 0.68 0.52 0.67 0.58 38.23 76.35 

EDLines 0.27 0.60 0.64 0.36 18.48 43.42 0.67 0.56 0.68 0.60 36.61 76.88 

AG3line 0.27 0.67 0.69 0.37 21.02 42.32 0.60 0.62 0.66 0.60 34.69 69.06 

ELSED 0.32 0.66 0.71 0.41 21.17 44.94 0.68 0.53 0.68 0.58 31.01 71.69 

ELSED-NJ - - - - - - 0.71 0.51 0.69 0.59 32.43 76.93 

MCMLSD 0.26 0.77 0.74 0.37 21.98 37.50 0.55 0.62 0.62 0.57 30.24 57.71 

Linelet 0.24 0.60 0.63 0.33 21.37 43.62 0.62 0.58 0.66 0.59 39.35 75.52 

HAWP 0.49 0.60 0.83 0.51 38.53 51.41 0.65 0.30 0.70 0.40 33.48 56.84 

F-Clip(HG1) 0.47 0.42 0.80 0.42 31.40 40.35 0.67 0.22 0.72 0.32 32.13 50.06 

F-Clip(HR) 0.53 0.47 0.82 0.47 34.74 44.77 0.69 0.22 0.72 0.33 32.78 51.15 

Fig. 10. Wireframe parsing evaluation. 
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Table 2 

Mean repeatability of each segment detector in the HPatches data 

set. The higher the repeatability, the more robust the detector. 

Method Length Repeatability Num Segs. Repeatability 

LSD 0.53934 0.48707 

EDLines 0.54352 0.47242 

AG3line 0.43582 0.40002 

ELSED 0.55928 0.50285 

MCMLSD 0.50322 0.39440 

Linelet 0.52102 0.43427 

HAWP 0.40056 0.41248 

SOLD 

2 0.46161 0.47957 

F-Clip (HG1) 0.39784 0.43560 

F-Clip (HR) 0.40969 0.43413 

h

i

i

4

j

g  

T

t

r

l

a

m

cale, rotation or lighting. In this subsection we evaluate the de- 

ectors’ repeatability. Given two images of the same scene under 

ifferent conditions, the capacity to detect the same segments in 

oth situations. Specifically, given two images, we define line seg- 

ents repeatability as the ratio between the length of 1-to-1 seg- 

ent matches and the total length of segments detected in both 

mages. We take into account only the segments located in the part 

f the scene present in both images, adjusting their endpoints ac- 

ordingly. 

We use the images of HPatches [35] where the repeatability of 

egment detections in images A and B is computed as: 

epeatability = 

∑ 

i, j∈ A ∗ x 

A 
i 

∩ x A 
i 

x 

A|B 
j 

∑ 

i 

∣
∣x 

A 
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∣
∣ + 

∑ 
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∣
∣
∣x 

A|B 
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∣
∣
∣
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i, j∈ B ∗ x 

B 
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∩ x B 
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B|A 
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∑ 

i 

∣
∣x 

B 
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∣
∣ + 

∑ 
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∣
∣
∣x 

B|A 
j 

∣
∣
∣

(3) 

here x I are the segments detected in image I and x I|J the seg- 

ents detected in image J , projected to I using the homography 

etween them. The matching matrix A ∗ contains the 1-to-1 seg- 

ent assignations between segments x A and x A|B obtained with 

he matching process described in Section 4.1 and B ∗ the one be- 

ween x B and x B|A . 
In Table 2 the second column also shows the repeatability 

n terms of the number of matched segments. We employ here 

ov erlap = 0 . 5 and λdist = 5 according to Pautrat et al. [26] . It both

ases ELSED obtains the most repeatable results. This is because 

ED provides stability to the edge detection and also because the 

ump strategy is able to overcome small discontinuities that cause 

ther local methods to fail. We have also observed that deep mod- 

ls like SOLD 

2 or HAWP get highly repeatable results in some 

cenes and very bad results in others, this is possible because they 
9 
ave been trained in a quite specific problem (the wireframe pars- 

ng for indoor scenes) and do not generalize well to the diverse 

mages of Hpatches. 

.4. Ablation study 

We start with the simplest version of ELSED: no discontinuity 

umps and no validation step (see Table 3 ). This version of the al- 

orithm obtains the worst results (IoU = 0 . 646 and F_sc = 0 . 360 in

able 3 ) for long segment detections. When the validation is ac- 

ivated, the precision increases from 0.271 to 0.307 whereas the 

ecall remains high (0.59). 

If we now add the discontinuity jump component with a fixed 

ength of 5 pixels it removes some small detection errors. For ex- 

mple, in the second row and column of Fig. 11 the broken seg- 

ents of the wall in the left, with the added fixed-length jump 
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Table 3 

Results of the ablation study using our 1-to-1 evaluation protocol over the original YUD annotations. Best re- 

sults in bold . Execution times measured on Intel Core i7. 

Configuration Last P-R point metrics Global metrics 

Jumps Jump Val. Seg. Val. P R IoU F_sc bAP Time (ms) 

None 0.271 0.609 0.646 0.360 43.06 2.95 

None � 0.307 0.590 0.651 0.388 44.27 4.16 

Fixed (5 px) 0.278 0.702 0.712 0.383 42.46 3.25 

Fixed (5 px) � 0.282 0.667 0.694 0.381 43.62 3.48 

Multiple (5,7,9 px) � 0.285 0.686 0.706 0.387 43.28 4.16 

Multiple (5,7,9 px) � � 0.320 0.664 0.711 0.415 44.94 5.38 

Fig. 11. From left to right: No Validation no jumps, No validation with fixed size jumps (5 px) and no jump validation, No validation with fixed size jumps (5 px) and jump 

validation, No validation with multi-size jumps (5, 7, 9 px) and jump validation, Validation with multi-size jumps (5, 7, 9 px) and jump validation 

Table 4 

Executions times for different state of art line segment detectors on dif- 

ferent processors. Results are the average processing time per image, in 

the YUD [33] images with size 640 × 480 . 

Method Intel Core i7 Snapdragon Exynox 

LSD 36.51 ( ±1.60) 58.68 ( ±0.81) 390.91 ( ±0.92) 

EDLines 7.64 ( ±0.33) 13.79 ( ±0.15) 65.79 ( ±0.16) 

AG3line 13.04 ( ±0.76) 18.57 ( ±0.20) 100.54 ( ±0.19) 

ELSED-NJ 4.18 ( ±0.23) 8.28 ( ±0.03) 45.84 ( ±0.02) 

ELSED 5.38 ( ±0.30) 10.20 ( ±0.07) 59.99 ( ±0.16) 

MCMLSD 4.68K ( ±1.78K) GeForce GTX 1050 

Linelet 20.9K ( ±10.1K) 

HAWP 12.4K ( ±0.8K) 212.25 ( ±8.35) 

SOLD 

2 3.17K ( ±0.52K) 417.72 ( ±6.78) 

F-Clip HR 7.94K ( ±0.15K) 47.39 ( ±1.46) 

F-Clip HG1 6.78K ( ±0.22K) 11.00 ( ±0.47) 
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apability are detected as a unique segment. On the other hand, 

ow the algorithm performs some incorrect jumps going beyond 

he endpoint of the segment. This effect can be observed in the 

esults of Table 3 where the Recall takes a big leap (from 0.609 to

.702) and the Precision also increases moderately (from 0.271 to 

.278). To fix the problem with incorrect jumps, we add the vali- 

ation of the jump destination region of Section 3.2 (see the well- 

tted endpoints of the third column in Fig. 11 ). 

On the other hand, a jump of 5 pixels is not big enough if 

he discontinuity is large. In this case, the jump validation is per- 

ormed over pixels on the discontinuity. Thus, since discontinuities 

ontain gradients in different directions to the normal of the seg- 

ent, the jump validation fails. This is the reason why we add the 

ulti-length jumps in the fourth column in Fig. 11 . With it, we can

eal with longer segment discontinuities. The last step is the val- 

dation of the whole detected segment (see Section 3.3 ) shown in 

he last column of Fig. 11 . Segment validation increases the preci- 

ion (from 0.285 to 0.320) with a small penalty in the recall (from 

.686 to 0.664). 

.5. Efficiency evaluation 

Nowadays CV applications not only require good accuracy, but 

lso fast execution times and low energy consumption. This exper- 

ment measures the average execution time in the images of YUD 

ata set ( Table 4 ) which contains 101 images with a resolution 

f 640 × 480 pixels. Execution time is measured on four different 
10 
latforms: a laptop with an Intel Core i7 8750H CPU, 12 cores and 

6GB of RAM; a smartphone Samsung J5 2017 with an Exynox Octa 

 CPU, 8 cores and 2GB of RAM; a smartphone One Plus 7 Pro with

napdragon 855 CPU, 8 cores and 6GB of RAM and a GPU GeForce 

TX 1050 with 4GB of RAM. 

We use the implementation provided by the authors of each 

ethod: LSD, EDLines AG3line and ELSED in C++, Linelet and 

CMLSD in Matlab and HAWP, SOLD 

2 and F-Clip in Python. ELSED 

s implemented in C++ with Python bindings. To keep fast execu- 

ion times we compute only L1 gradient norm, which is faster than 

2, and predominant gradient direction (vertical or horizontal). In 

ED we fit the segments with a least squares approach oriented 

ertically or horizontally that we compute incrementally and, if 

ossible, we reuse the top element from D stack to avoid memory 

eallocation. 

In all platforms, ELSED is around 2 × faster than AG3line, and 

DLines, 6 × faster than LSD and much faster than MCMLSD and 

inelet. DL methods are designed to run in the GPU, however GPU 

ay not always be available in some platforms like drones, IoT or 

obile phones and when it is, it usually involves unaffordable en- 

rgy consumption. Looking at the CPU times, the DL methods need 

etween 2300 × (HAWP) and 1200 × (F-Clip HG1) more computa- 

ion than ELSED. Moreover, even when we run the DL methods 

n a laptop GPU (Geforce GTX 1050) ELSED is still faster than any 

f the methods. Therefore, for limited platforms, ELSED represents 

he best segment detector, as it is not only faster, but also detects 

etter than the other efficient methods (see Table 1 ) obtaining the 

ost repeatable group of segments ( Table 2 ). 

. Conclusions 

In this paper we have introduced ELSED, a general-purpose, fast 

nd flexible line segment detector. It processes a 640x480 image 

n less than 6 ms on a regular PC and around 10 ms on a modern

martphone. This efficiency arises as a result of joining the pro- 

esses of edge drawing and segment detection in one single step, 

ith an Enhance Edge Drawing (EED) algorithm conceived for the 

roblem of line segment detection. 

ELSED also includes a scheme to jump over discontinuities. This 

ndows our method with a flexible strategy to cope with different 

egment length requirements and improves its robustness against 

cclusions, shadows and glitches, which make all efficient methods 

o break down. This is important, for example, in a problem such 



I. Suárez, J.M. Buenaposada and L. Baumela Pattern Recognition 127 (2022) 108619 

a

a

d

r

t

b

t

e

a

T

O

D

c

i

A

0

R

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

 

 

 

[  

[  

[  

[  

[

[  

[  

[

[

[

[  

[  

[  

[

[  

[  

I

g
(

o
i

f

H
t

a

J
g

S
f

f

s
a

P
c

v

L  

a

1  

a
t

C
i

s Vanishing Point estimation, where long and accurate segments 

re required. 

In segment-based reconstruction, repeatability is a key feature 

esired in detectors. We have also introduced a repeatability met- 

ic and experimentally shown that ELSED is the top performer. 

Overall, ELSED is the fastest and most repeatable segment de- 

ector in the literature. It is however less accurate than other DL- 

ased competitors, which are computationally orders of magni- 

ude less efficient. Yet, since it is a general purpose detector, it 

xhibits good performance on different data sets, achieving an AP 

t the same level as other algorithms orders of magnitude slower. 

hese properties make it ideal for real-time applications like Visual 

dometry, SLAM, or self-localization in resource-limited devices. 
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