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a b s t r a c t

The scientific and business communities are proposing new authentication methods more robust
than traditional solutions relying on a single security point such as passwords (i.e. ‘‘something you
know’’). User and Entity Behavior Analysis (UEBA) has postulated as an excellent solution to improve
authentication systems by performing continuous authentication to extend the authentication process
over time. UEBA is based on detecting anomalies in the intrinsic behaviour of each user or entity
(i.e. it is based on ‘‘something you are/do’’). This paper presents a method for performing continuous
authentication using UEBA techniques that allows combining information from multiple sources at
the feature level. This combination is achieved through a novel Symbolic Aggregate approximation
(SAX) using Random Trees Embeddings for each information source, producing a sequence of symbols.
Then, these sequences of symbols are combined into a single sequence using temporal information.
The resulting sequence of symbols feeds a density-based clustering model that uses a distance
based on DNA sequence alignment techniques to extract behavioural cores. Finally, new samples are
compared against these cores to detect anomalies using a risk model that evaluates if a behaviour
is anomalous (suspected user impersonation). The model has been extensively tested and evaluated
against well-known state-of-the-art datasets.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The theft of credentials using phishing, or session hijacking,
re only two examples of spoofing or impersonation attacks that
llow adversaries to access personal information or to act in
he name of a legitimate user. Applications and services usually
ave a single point of authentication where users enter their
asswords. From that moment onward, the system trusts that
he users are whom they claim to be. Sometimes, these appli-
ations and services include a second authentication factor, by
ending the user a One-Time Password (OTP) to the smartphone
r by using a hardware token to perform the initial login or
o perform high-risk activities [1]. However, a session hijacking
ttack, among other patterns, can make these additional secu-
ity mechanisms insufficient, and they should be complemented
ith continuous authentication systems to provide the desired
ecurity levels.
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Continuous authentication consists of extending the authen-
tication process over time, not considering it a one-time action
performed just once at the beginning of the session. This enables
the systems to authenticate a user as many times as necessary
during the session. An effective way of performing continuous au-
thentication is analysing behavioural information [2]. Integrating
this behavioural information into systems increases the security
by moving from a one-time use of ‘‘something the user knows’’
(passwords) or ‘‘something the user has’’ (OTP on a smartphone
or hardware token) to a continuous checking of ‘‘something the
user is or does’’ (the exhibited behaviour), making it even more
difficult to impersonate a user.

UEBA is a scientific discipline that appears as a good so-
lution for improving authentication systems. It is focused on
understanding, modelling and predicting past, present and future
behaviours of users and entities [3]. UEBA relies on Machine
Learning (ML) to define and extract behavioural features, charac-
terise the normal behaviours for each user, and detect anomalous
behaviours that could indicate a cyber-attack. Subsequently, this
problem can be framed as an anomaly detection problem [4].

Moreover, thanks to the evolution of technology and the in-
crease of computational resources, the use of any device, service,
or application generates a multitude of new behavioural dy-
namics that can be analysed. Thus, keystroke dynamics, mouse
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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dynamics, the use of sensors in smart devices such as smart-
phones or even the dynamics of the sensors themselves with
the advent of Internet of Things (IoT) are in the spotlight today.
These new behavioural dynamics are integrated into solutions
for companies or even for the end-user to improve the security
of technological systems [5,6]. In addition, these solutions are
starting to be used in federated identity management solutions,
which further increases the interest in them [7].

Several approaches analyse the best behavioural features to
se depending on the information source (keystrokes, mouse
nteractions, smartphone sensors, etc.) or evaluate different ML
odels to identify the one showing the best performance. How-
ver, few proposals combine information from different sources
ue to the complexity of the problem, despite the consolidated
enefits in terms of efficiency, effectiveness, and performance [8].
The combination of this behavioural information can be per-

ormed at two levels [9]. First, at the decision level, a ML model is
enerated for each of the information sources. Then, the outputs
f these models are combined to give a prediction at a given
ime. Second, at the feature level, the behavioural characteristics
xtracted from each information source are combined to feed a
nique ML model. Thus, the interactions when a user switches
rom one information source to another can also be considered
imultaneously.
The main motivation of this work is to increase the security

evels that any agent (i.e. service or application) provides to end-
sers in terms of continuous authentication, using UEBA tech-
iques. More specifically, nowadays, there are some approaches
n this area to solve continuous authentication. However, there
s still a long way to go, especially using information combi-
ation techniques to develop more accurate methods for better
ntegration in real environments.

This paper proposes a method to accomplish continuous au-
hentication that allows combining user behavioural informa-
ion at the feature level. Furthermore, this method is evaluated
hrough multiple experiments on well-known state-of-the-art
atasets obtaining promising results. The main contributions of
his paper are summarised as follows:

• The combination of information from heterogeneous infor-
mation sources using a novel representation of behavioural
information.

• The proposal of DNA sequence alignment techniques to
calculate similarities between behavioural dynamics.

• The proposal of density-based clustering techniques to ex-
tract behavioural cores.

• The development of a risk model based on the proposed
techniques to detect behavioural anomalies and enable con-
tinuous authentication.

Thus, this method provides an agent with the necessary mech-
nisms to use behavioural analysis combining information gath-
red from heterogeneous data sources to improve end-user se-
urity levels. This is in line with passwordless authentication
ethods, which are currently being developed and implemented
y academia and companies such as Microsoft and Google [10]. A
lear use case implementing these methods can be seen in [7].
his approach proposes a workflow to integrate methods such
s the one presented here, in the main federated identity man-
gement schemes like OpenID Connect [11], which are becoming
oday the most used architectures to perform identity manage-
ent.
The rest of the paper is organised as follows. Section 2 presents

n overview of the related work. Section 3 details the proposed
ethod. Section 4 addresses the experiments and analyses the
btained results describing the strength and weaknesses of the
roposal. Finally, Section 5 concludes and introduces future lines
f research.
2

2. Related work

This section introduces the approaches from the literature
related to the proposal. The adopted UEBA techniques, the ML
models and the feature extraction processes are exhibited. Three
categories are analysed depending on the selected information
source. First, the keystroke dynamics, which compile behavioural
information retrieved from the keyboard interactions made by
users. Then, the mouse dynamics, which use behavioural infor-
mation retrieved from the mouse movements. Subsequently, it is
addressed the combination of behavioural information retrieved
from multiple sources. Lastly, the main challenges addressed
related to the proposal are analysed.

2.1. Keystroke dynamics

The analysis of behavioural information for authentication
purposes began in the 1980s with the study of keystroke dynam-
ics [12]. A multitude of works arose that tried to solve the prob-
lem using Bayesian qualifiers [13], Neural Networks (NNs) [14]
and clustering techniques [15].

These models have been evolving, and new techniques and
more exhaustive experiments continue to be carried out. For
instance, in [4], 14 ML detectors, including Mahalanobis distance,
Manhattan distance, K-Nearest Neighbors (KNN), NNs, K-means,
Fuzzy logic, and SVM, are compared. In [16], an Ant Colony (AC) is
used to perform a feature selection step, allowing choosing non-
conventional features in the scope. Later, an SVM is implemented,
obtaining quite good results. In [17], a novel method to extract
features adaptively for each user to feed later a Gaussian density
estimation model, Parzen window density estimation, One-Class
SVM (OC-SVM), KNN, and K-means is accomplished. In [18], it is
shown that heterogeneous (i.e. non-aggregated) feature vectors
are more discriminating in distinguishing keyboard dynamics.
Subsequently, they use Naïve Bayes (NB), Tree Augmented Naïve
Bayes (TANB), KNN, and ridge logistic regression to detect im-
postors obtaining much better results by combining both types
of vectors. In [19], the feature vectors are transformed into fre-
quency spectrograms to transform both frequency and time data
into an image. Then, a Gauss–Newton-based Neural Network
classifier is used to classify each image into genuine users or
impostors. In [20], convolutional and recurrent NNs are com-
bined to build a model for the Buffalo Dataset [21] that obtains
encouraging results. In [22] a Kernel Density Estimation (KDE)
is considered and compared to other well-known state-of-the-
art algorithms using the Clarkson, Torino, and Buffalo Datasets.
In [23], an Instance-based Tail Area Density (ITAD) metric is
proposed to reduce the number of keystrokes required to au-
thenticate users. This method improves efficiency and reduces
latency.

In the case of the feature extraction process for keystroke
dynamics, it can be organised into two types of events that are re-
trieved for each user interaction [24]. Firstly, the KeyDown event,
which contains the timestamp of when the keystroke is initiated,
and secondly, the KeyUp event, which includes the timestamp
when the key is released. Thus, the interactions are joined to-
gether with a sliding window of size 2, forming di-graphs. Note
that each di-graph is formed by four events that include four
timestamps (for each interaction a KeyUpX and KeyDownX, where
X represents the number of interactions). In this way, six features
are usually extracted:

1. H1 (keyUp1-KeyDown1): Time elapsed for the first interac-
tion.

2. H2 (KeyUp2-KeyDown2): Time elapsed for the second inter-
action.
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3. RP (KeyDown2-KeyUp1): Time elapsed between the release
of the first interaction and the initiation of the second.

4. PP (KeyDown2-KeyDown1): Time elapsed between the ini-
tiation of the two interactions.

5. RR (KeyUp2-KeyUp1): Time elapsed between the release of
the two interactions.

6. PR (KeyUp2-KeyDown1): Time elapsed between the initia-
tion of the first interaction and the release of the second.

.2. Mouse dynamics

The analysis of mouse dynamics for authentication purposes
merged in the 2000s [25]. In [26], movement speed, movement
irection, action type, travelled distance, and elapsed time fea-
ures are used to feed a NNs obtaining good results. In [27],
onvolutional NNs, recurrent NNs, and a hybrid model which
ombines both types of NNs using the layer-wise relevance prop-
gation algorithm are used to detect impostors across two well-
nown state-of-the-art datasets. In [28], mouse features are cate-
orised into holistic and procedural. Then, the performance for
he authentication task of both types of features is compared
hrough an OC-SVM. The research in [29] uses Progress-Adjusted
ynamic Time Wraping (PADTW) algorithm, along with a seg-
entation algorithm to tune the features that later feed an SVM
lassifier. In [30], the mouse dynamics are converted to images
sing their mapping function to perform data augmentation then.
ater, these images feed a convolutional NNs.
Regarding the mouse dynamics feature extraction process,

ach mouse interaction is formed by the coordinates, timestamps,
nd events. The coordinates represent the x and y pixel positions
n the screen. The timestamp represents the time at which the
vent occurs. Regarding the retrieved events, the most common
nes are the MouseMovement and the MouseClick. In this way, as
n keyboard dynamics, interactions are linked via a sliding win-
ow to form di-graphs. Thus, the elapsed time, distance, velocity,
ngle, and angular velocity are usually calculated. Nevertheless,
hese di-graphs usually have high variability, causing many users
o generate very similar values. For this reason, a series of di-
raphs spaced in time are usually grouped to form strokes [31].
hus, a mouse stroke is an aggregation of di-graphs where more
ggregated features can be calculated. The length of a stroke can
e selected according to a time interval (e.g. every 5 s) or by
he occurrence of a given event (e.g. from one MouseClick to the
ext one). The mean, median, maximum, minimum, and standard
eviation (among other aggregation measures) can be calculated
or each one of the above features. Moreover, velocities, distances,
r the number of di-graphs for each direction (i.e. categorising the
ngle feature) can also be calculated.

.3. Combination of behavioural information

A new line of research is currently emerging that attempts to
ombine data from multiple information sources simultaneously.
enerally speaking, there are two ways to combine information:
t the decision and feature levels. Both ways of combining infor-
ation have a multitude of advantages over the use of a single
ynamic. For example, it allows detecting impostor users over a
ider time spectrum. In [32], the basis for behavioural biometrics

nformation fusion are established. They addressed the feature
evel and decision level information fusion for face, fingerprint,
nd hand verification, improving the results of previous works.
At decision level combination, the objective is to have an

ndependent model for each information source. Subsequently,
he predictions of all models are combined to give a single pre-
iction at a given time. In [33], it is implemented a Trust Model

TM) based on combining the outputs of different ML models for

3

eystroke and mouse dynamics using weights adjusted by genetic
lgorithms. The models used are NNs and Counter-Propagation
rtificial Neural Networks. A SVM is used to achieve the combina-
ion of both models. It is also proposed another scenario in which
hey used different distance metrics to achieve their objective
ithout using impostor data in the training phase. In [34], a
ombination of NB to map each behavioural dynamic to the
ecision space is proposed. Then, a SVM for the classification task
s considered. In [35], a Bayesian network (BN) is trained for each
ehavioural dynamic, and then Bayes Fusion Scheme (BFS) is used
o combine the outcomes of each independent model. In [36],
F, SVM, Decision Trees (DTs), and BN are evaluated for the
ame purposes. In [8], it is proposed to combine session context
nformation with behavioural features to enhance authentication
erformance using the The Wolf of SUTD (TWOS) dataset [24]. To
chieve this, first, a model that predicts using only session con-
ext information is implemented. Then, a model that combines
oth keyboard and mouse behavioural features during a session
s developed. The combination of both models is accomplished
sing three different methods; a Parametric Linear Combination
PLC), a RF classifier, and an SVM classifier.

Regarding the feature level combination, in [37] it is used
Multi-kernel Learning Method (MKL) for combining keystroke
nd mouse dynamics features, and it is evaluated against DT, RF,
B, OC-SVM, and SVM models obtaining very promising results.
n [9], it is compared both types of combinations. First, for the
ecision level, it is used the BN for keystroke dynamics and SVM
or mouse dynamics to perform an ensemble J48 decision tree
odel that combines the obtained results. Regarding the feature

evel combination, Principal Component Analysis (PCA) is used
o train and test the performance of BN, J48, and SVM mod-
ls independently. Note that this approach combines keystroke,
ouse movements, and the graphical user interfaces interac-

ions sources. Moreover, the fusion at the feature level has also
een accomplished recently using smartphone sensors, obtaining
xcellent results and providing a new line for researchers im-
roving the results, again, of previous works in the scope [38].
his reaffirms that combining information is a major advance in
mproving the performance of these types of behavioural-based
uthentication systems.
The method proposed in the present paper combines infor-

ation at the feature level. RTEs are used to transform the be-
avioural features extracted of all available information sources
nto comparable sequences of characters achieving a novel SAX.
hen, DNA sequence alignment techniques are used to measure
he distance between these sequences. Subsequently, Density-
ased Spatial Clustering of Applications with Noise (DBSCAN) is
sed to obtain behavioural cores for each user. Finally, a risk
odel is developed to measure new samples with the behavioural
ores previously extracted.
In this sense, the present work combines information at the

eature level. This type of combination is uncommon in the ap-
roaches of the state-of-the-art, although it brings important
dvantages. Examples of these advantages include increased ac-
uracy in detecting security breaches and system up-time, which
llows security breaches to be detected over a longer period of
ime. In addition, to the best of the author’s knowledge, DNA
equence alignment techniques have not been used to detect
nomalous behaviour in the area of continuous authentication.
he use of this type of techniques opens up new lines of future
esearch that can, as the proposed method does, increase the per-
ormance in detecting anomalous behaviour for some scenarios.
he use of density-based algorithms to filter information from
rusted information sources is another novel aspect. This tech-
ique improves the method’s efficiency by establishing specific
ehavioural cores that narrow down the search for atypical be-
aviours when training and predicting. Moreover, the method is
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Table 1
Comparison of previous works. C refers to context information. KD and MD represent keystroke dynamics and mouse dynamics respectively. RM is risk model.
Work Behavioural

dynamic
Method Combination

level
Dataset Free

interaction

[4] KD 14 classifiers – .tie5Roanl No
[16] KD DT+SVM+AC – Own Yes
[17] KD Gauss+Parzen+

OC-SVM+k-NN+K-means
– Own Yes

[18] KD NB+TANB+KNN+RLR – Own No
[19] KD Spectograms+NNs – Own No
[20] KD NNs – Buffalo Yes
[22] KD KDE – Buffalo+Clarkson+Torino Yes
[23] KD ITAD – Buffalo Yes
[26] MD NNs – Own Yes
[27] MD NNs – Balabit+TWOS Yes
[28] MD OC-SVM – Own No
[29] MD PADTW – Own+[28] No
[30] MD NNs – Balabit Yes
[33] KD+MD TM+NNs+SVM Decision Own Yes
[34] KD+MD NB+SVM Decision Own Yes
[35] KD+MD BN+BFS Decision Own Yes
[36] KD+MD RF+SVM+DT+BN Decision Own Yes
[8] KD+MD+C RF+SVM+PLC Decision TWOS Yes
[37] KD+MD MKL+DT+RF+NB+

OC-SVM+SVM
Feature Own Yes

[9] KD+MD BN+J48+SVM Decision+Feature Own Yes
Our KD+MD RTE-SAX+DNA-SA+

DBSCAN+RM
Feature [39]+TWOS Yes
scalable, that is, the method can be adapted to consider more in-
formation sources by simply increasing the number of characters
to be used during the SAX process.

On the other hand, the main disadvantage of the proposed
ethod consists of the development of the method may be more
omplex, which may lead to overhead when implementing it. In
ddition, the use of DNA sequence alignment techniques may
ntroduce some added latencies that can be addressed by using
arallel processing techniques.
Table 1 shows the most relevant works related to the current

pproach. Those proposals that only use one of the dynamics
i.e. keystroke or mouse dynamics) are bounded due to their high
umber in the scope. Few works that combine information using
ther biometric information or behavioural dynamics are also
onsidered. As it can be seen, the number of approaches that
ombine information sources is scarce.

. Proposed method

In this section, the proposed method to perform continuous
uthentication is detailed. It has been specifically designed to
ombine temporal data from heterogeneous information sources.
urthermore, the method does not make assumptions regarding
he temporal distribution of the data. That is, it does not require
he information to have a fixed frequency or pattern.

.1. Research challenges and overview

The analysis of the related work allows us to identify some
hallenges in the area. The main one is to obtain an accurate rep-
esentation of behavioural information from heterogeneous infor-
ation sources. This representation may be based on categorising

he information using multivariate SAX. Note that SAX allows
epresenting temporal information into sequences of symbols,
ut any process of discretisation induces a loss of information.
n this way, improving the obtained representation will lead to
etter results.
A novel technique to archive multivariate SAX using RTEs is

roposed. This technique is based on using a tree-based clas-
ifier to perform the discretisation process. This technique is

elected since tree-based techniques have been demonstrated

4

to outperform other techniques such as clustering techniques
(e.g. K-means) and also require less computational time [40].

Another challenge detected is to achieve an accurate compar-
ison between behavioural dynamics. Note that, thanks to SAX,
these behavioural dynamics are represented into sequences of
symbols. Thus, this challenge can be translated as a problem
of comparison between character sequences. Multiple distance
metrics could be used in this scope, such as the Levenshtein
distance or the Hamming distance [41]. Nevertheless, it is re-
quired to detect intrinsic patterns in the sequences in this pro-
posal. In this way, DNA sequence alignment techniques have been
demonstrated to fit the desired requirements [42].

Finally, the last challenge is to reduce response time, given the
performance requirements of the domain application. To achieve
this, the number of samples to be considered by the model is
reduced. The idea behind this approach is that the method only
considers the information relevant to the model (i.e. behavioural
cores), and therefore discards the non-relevant information that
introduces unnecessary latencies when training and predicting.
Any clustering technique is suitable for this purpose. However,
density-based clustering techniques easily determine which are
the relevant clusters based on the distribution of the distances
of the samples. Therefore, the DBSCAN [43] algorithm has been
selected in this proposal.

The whole method is illustrated in Fig. 1. The method is
composed of four main tasks. The first task combines the infor-
mation from each information source into a sequence of n-grams.
This task is described in Section 3.2 and it is based on a novel
SAX implementation using RTEs. Then, the next task, detailed
in Section 3.3, constructs a distance matrix from the n-grams
using DNA alignment techniques. This distance matrix is used to
train a density-based clustering model to define the behavioural
cores of each user in Section 3.4. Next, the risk model, described
in Section 3.5, detects anomalous behaviour by weighting new
samples against the cores of each user. Finally, in Section 3.6
it is detailed how to set the necessary parameters to achieve
reproducibility.

3.2. Representation of information from multiple sources

First, the raw data coming from the keyboard and mouse
interactions are processed into features. As previously stated, the
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Fig. 1. Overview of the proposed method for combining behavioural information.
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eystroke dynamics are grouped into di-graphs. In this way, H1,
2, RP, PP, RR, and PR are calculated (see Section 2.1). Regarding
he mouse dynamics, strokes of length 5 s are selected based
n practical experience. The number of interactions in the stroke
s retrieved. Also, the mean, minimum, maximum, and standard
eviation values of the elapsed time, distance, velocity, angle
nd angular velocity features are calculated. Thus, a vector of 21
eatures is obtained for each mouse stroke (i.e. the number of
terations in the stroke and four dispersion measures calculated
or each one of the five features).

Once the features have been extracted and selected, the next
ask is to transform them into an appropriate representation.
n this proposal, an approach to combine temporal data from
eterogeneous sources (e.g. keyboard and mouse) into a tabular
epresentation suitable for traditional ML models is presented.
he new combination procedure is based on multivariate SAX.
n particular, it is implemented using RTEs [44,45]. RTEs consist
f a vector that indicates, for each tree, the number of the leaf
here an observation belongs. That is, the position n in the
mbedding vector indicates the number of the leaf (counting from
eft to right) where the observation falls in the DT number n.
lternatively, this embedding vector is often represented by using
binary vector whose length is the number of leaves in the RTE
nd whose value is 1 if the observation falls in that leave and 0
therwise.
The embeddings from the RTEs are mapped into symbols to

ase the comparisons and processing. However, the number of re-
uired symbols for each RTE grows exponentially with its number
f leaves. Despite this fact, most symbols will rarely occur. Con-
equently, this limitation can be overcome by using the symbols
ased on the number of occurrences of that embedding in the
raining set and assigning the ‘‘rare’’ embeddings to a particular
ymbol. For example, the embedding with more occurrences gets
haracter A, the second B, and so on, until all symbols are used.
hus, if two samples have fallen in the same leaves, they are
ssigned to the same symbol. When all the determined symbols
re used, the remaining embeddings are mapped to an arbitrary
pecial symbol.
The process explained above is executed for each available

nformation source. That is, each information source has its RTE
nd unique set of symbols. The information extracted from the
eyboard is represented by using uppercase symbols and low-
rcase in the case of the mouse. Once all the data from the
nformation sources are converted into sequences of symbols,
hey are merged based on the temporal information of each
ymbol (e.g. when a particular key was pressed or the mouse was
 t

5

oved). Finally, the merged sequence of symbols is converted in
-grams whose size is defined by the parameter n − gramlength
ngl). The feature combination process for multiple information
ources is illustrated in Fig. 2.

.3. Distance matrix generation

This task is focused on obtaining a distance matrix that rep-
esents the dissimilarities between the behavioural dynamics
enerated by each user. Precisely, the pairwise distances between
he n-grams that represent the behaviour of a user is calculated.
his results in a NxN matrix where N is the number of n-grams
or a specific user.

In the present method, the distance between two n-grams is
alculated using DNA sequence alignment techniques [42], more
recisely, the global sequence alignment algorithm. This algo-
ithm is applied to all available sequences for each user in pairs.
he alignment algorithm returns a score denoting the similarity
etween two sequences taking into account the length of the
arget sequence and the obtained match, miss and gap penalty
cores. Then, this value is transformed into distances by first
ormalising it in the range [0, 1], with 1 being the maximum sim-
larity value (i.e. a sequence compared to itself) and 0 being the
inimum. Subsequently, 1-similarity score is applied to obtain the
istance value. The distance value obtained is also in the range
f values [0, 1], being 0 the minimum distance (i.e. a sequence
ompared with itself) and 1 the maximum distance.

.4. Extracting the behavioural cores

Once the distance matrix has been calculated, the next task is
o define the core behaviour of each user. Correctly identifying
hese behavioural cores is one of the most critical tasks to be
ble to perform continuous authentication since it is the source
f knowledge that will be used to compare the new samples ar-
iving. Most of the state-of-the-art works use all the information
vailable for each of the users. However, in the users’ behaviour,
here may be outliers that can weigh down the classifier’s perfor-
ance. In addition, using all the available data will also generate

atency when training and predicting since each sample has to
e compared with a more extensive set of observations, making
he classifier less efficient. Thus, the ideal would be to obtain
ehavioural cores as small as possible, as long as these cores
orrectly represent the user’s behaviour so that the classifier can
eneralise correctly.
In this proposal, the DBSCAN algorithm [43] is used to obtain
he behavioural cores for each user. In order to train the DBSCAN,
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Fig. 2. Summary of the SAX process using RTEs for multiple information sources.
wo hyper-parameters have to be fixed. First, the maximum dis-
ance between two samples to be considered as neighbours. This
yper-parameter is named EPS and is the most critical parameter

of DBSCAN. Secondly, the minimum number of points that a
neighbourhood must have to be considered as a cluster. This
hyper-parameter is named MINS. Note that DBSCAN does not
need information about the number of desired clusters. This is
consistent with the fact that a priory, it is impossible to know
how many behavioural cores (i.e. clusters) will be obtained for a
specific user.

The distance matrix (which contains only genuine behaviour)
feeds the DBSCAN. The high-density regions obtained represent
the core behaviour, while the low-density regions represent atyp-
ical behaviours performed by the user. Atypical behaviours are
discarded (for the moment, but not removed) so that new obser-
vations cannot be compared.

In Fig. 3, an excerpt of the cores extracted (blue points) and
atypical behaviours (red points) for a specific user is illustrated.
These points are represented using the first two components of
Multidimensional Scaling [46]. It can be seen that as the points
move away from the central core (displayed at the bottom), the
distribution becomes more heterogeneous (i.e. it contains more
outliers). This corroborates that DBSCAN is correctly discarding
behaviours that deviate from the assumed distribution for this
user.

Above, it was mentioned that the atypical behaviours are dis-
carded to establish the core behaviour, but they are not removed.
This is due to combat the ageing behaviour (i.e. the behavioural
habits of the same user can be modified over time [47]). For
example, this is caused by users becoming accustomed to using
a system in the way they consider optimal or changing the
system interface, among others. Therefore, continuous authenti-
cation systems must retrain or update their parameters over time
in order to continue to maintain their performance. Thus, these
atypical behaviours may not be a behavioural core at a given time
but may form a behavioural core in the future.
6

3.5. Risk model

At this point, the only thing remaining is to predict the new
observations. A risk model is built with this objective. First, these
new observations are processed in order to obtain the sequence
of n-grams. Then, a vector of distances is calculated for each new
sequence. This vector contains the distance between the new
sequence and all the sequences retrieved in the behavioural cores.

The risk associated with the observation is calculated as the
mean of the retrieved vector distance. A low-risk value denotes
that the new sequence is close to the cores and, therefore, it
is likely to belong to the genuine user. In the opposite case, a
high-risk value is likely to correspond to an impostor user. This
allows comparing each new observation individually. However,
multiple samples will arrive, and they do so in a temporally
ordered manner. The obtained risk values are sorted temporally
to analyse the changes in risk over time, building a risk buffer
(see Fig. 4(a)). As can be seen, the risk value is very changeable
over time, resulting in many false positives and false negatives.
For this reason, the risk curve is smoothed calculating the EMA
as follows:

EMAt =

{
Y1, if t = 1
αYt + (1 − α) · EMAt−1, if t > 1

where EMAt is the exponential moving average at time t , Yt is
the value at a given time t , and α is the smoothing coefficient
between [0, 1]. A low value of α weights higher older observation,
while high values of α overpasses older observations faster.

The α coefficient is usually calculated according to the number
of observations to be taken into account [48]. In this case, it is
calculated based on the WinSize parameter as follows:

α = 2/(WinSize + 1)

where WinSize is the number of values in the risk sequence. Once
EMA is applied, the values change from being highly changeable
to being more stable over time (see Fig. 4(b)). This means that a
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Fig. 3. Excerpt of cores extracted for a specific user using Multidimensional Scaling.
Fig. 4. Instance of risk values for an user.
single observation does not decide whether a user is who claims
to be, but the set of WinSize observations that does (i.e. the
history of the user’s behaviour). Thereby, in selecting the WinSize
arameter, there is a trade-off between the performance of the
ethod and its usefulness in a real environment. A high value
f this WinSize smooths the risk curve better, considering more

information, which translates into better accuracy in detecting
impostors. On the other hand, a low value of WinSize makes
t worse at detecting impostors, but it can make predictions
onsidering less information and, therefore, be more useable in
real environment.
Once the risk curve is calculated, the last task of the risk model

s to detect anomalous behaviour to classify the new samples
nto genuine or impostors. A decision barrier (i.e. threshold) is
alculated by taking into account the values of the risk curve
see Fig. 5). Thus, the risk values lower than the threshold are
lassified into genuine samples, while those above are considered
mpostor samples.

The way to set an optimal threshold is by setting it to the value
hat produces the Equal Error Rate (EER) value, which is the point
7

Fig. 5. Thresholds across risk values over time for a specific user using the EMA.
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Fig. 6. Example of the predictions for n − gramlength = 3 and WinSize = 4.

efined by the intersection between the False Acceptance Rate
FAR) and the False Rejection Rate (FRR). The FAR refers to the
robability that an unauthorised user is accepted. On the other
and, the FRR is defined as the probability that an authorised
ser is rejected when trying to access. Multiple FAR and FRR
alues can be obtained depending on the determined threshold.
hus, an extreme value of the threshold results in obtaining
ore restrictive outcomes (lower FAR but higher FRR), or more
ermissive outcomes (lower FRR but higher FAR) but never both
ower simultaneously. Thus, the EER can be considered as the
ptimal point to set the threshold because it is the point where
minimum value is obtained between the pair FAR and FRR

imultaneously.
Finally, it should be noted that when building the n-grams,

he adjacent sequence is the same as the previous one except
or the first and last characters. Thereby, the present method can
ake a prediction for each single user interaction (i.e. a single
eystroke or a single mouse movement) once there is at least
inSize number of interactions (see Fig. 6).

.6. Parameter selection

The method needs to define a total of two parameters and
our hyper-parameters (see Table 2). The correct selection of
hese parameters is linked to the results to be obtained in the
xperiments. For this reason, it is necessary to make special at-
ention to understanding and defining each of them correctly. To
ummarise, the parameters required are the ngl and the WinSize.
The value of the ngl defines the number of interactions (key-

oard, mouse, or both) to be compared at each instant to obtain a
rediction. An extreme selection of the value of the ngl can result
n underfitting (for low values) or overfitting (for high values).
his value has been limited to the values [5, 10, 20, 30] based on
ractical experience.
The WinSize defines how much historical information (in the

orm of sequences) is taken into account to make a predic-
ion. The purpose of this parameter is to smooth the risk curve.
he search for this parameter has been narrowed to the values
5, 10, 20, 50, 100] based on practical experience.

Regarding the RTE algorithm, two hyper-parameters have to
e fixed: the number of trees and the maximum depth. These
yper-parameters decide the length of the alphabet in which
ach observation is categorised. Thus, a high value of both can
ead to overfitting, as an extended alphabet will be generated.
onsequently, the sequences generated will be very different
rom each other. On the other hand, a low value of both results
n a very limited alphabet; for example, with one tree of depth
wo, the observations will be mapped only to two characters,
hich makes all the sequences generated very similar to each

ther and, therefore, non-discriminatory (underfitting). To map

8

he observations to lower and upper cases, the search of these
yper-parameters is fixed to the range of [2, 5] based on practical

experience.
For the DBSCAN algorithm, two hyper-parameters have to be

also set: EPS and MINS. These hyper-parameters are set based
on a grid search. The search for the parameters has been nar-
rowed down to make the training more efficient. Thus, the hyper-
parameter EPS will be in the range [0 : f100], where f100 repre-
ents the first 100 non-zero lowest distances calculated for the
istance matrix. The MINS parameter is limited to the values

[2, 10, 50, 100] based on practical experience.
Fixing these parameters correctly will depend largely on the

particular requirements of the data on which the method is
applied. However, the larger the ngl and WinSize parameters se-
lected, the better results will be obtained in detecting anomalous
behaviour. This is because more information will be considered
in a row to make a prediction. Note that this also increases the
time interval needed to make a prediction.

On the other hand, a grid search is recommended to set the
hyper-parameters of the RTE and DBSCAN. First of all, for the RTE,
the search values should be set to avoid overfitting and underfit-
ting. Regarding the DBSCAN, the hyper-parameters must be set
based on the final clusters obtained. For example, assumptions
can be made to discard a fixed percentage of the data, or it can
be deeply analysed the distributions of the distance matrix to
narrow down the search values.

4. Experiments

This section details the experiments that have been carried
out to validate the proposal. In this case, two experiments are
considered. Firstly, the Keystroke and Mouse Dynamics from the
UEBA Dataset [39] are used to analyse and validate the method.
Secondly, the TWOS dataset [24] is used to evaluate the method
and compare the results with other well-known proposals of the
state-of-the-art.

Three use cases are performed for each experiment. The first
two use cases consider each source of information indepen-
dently (i.e. keystroke and mouse dynamics separately). The third
use case evaluates the keystroke dynamics and the mouse dy-
namics simultaneously (i.e. the combination of both information
sources). Note that the use of multiple information sources re-
dounds in considering more interactions from users. This is an
advantage over methods that only cover an information source
independently. For instance, generally speaking, it could be better
a 5% error method that can make predictions during 100% of
user interactions than a 1% error method that can only make
predictions during 10% of the user interactions.

The FAR, FRR, EER, Accuracy, Specificity, Negative Predictive
Value (NPV), and F1− score metrics are used to evaluate the
results. These metrics are defined as follows:

• FAR: FP/(FP + TN)
• FRR: FN/(FN + TP)
• EER: Value of the intersection of FAR and FRR considering

multiple classification thresholds.
• Accuracy: (TN+TP)/(TP+TN+FP+FN)
• Specificity: TN/(TN+FP)
• NPV: TN/(TN+FN)
• F1−

= 2 ·
NPV·Specificity
NPV+Specificity

where TP is the True Positives value (genuine users authenti-
cated correctly), TN is the True Negatives value (impostor users
correctly kicked out), FP is the False Positives value (impostor
users that are incorrectly authenticated as genuine users), and
FN are the False Negatives value (genuine users that are incor-
rectly considered impostors and they are kicked out). Specificity
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Table 2
Summary of parameters and hyper-parameters of the proposed method. f100 represents the first 100 non-zero lowest distances
calculated for the distance matrix.
Name Description Values

ngl N-gram length [5, 10, 20, 30]

WinSize Historical information considered in the form of
sequences

[5, 10, 20, 50, 100]

Number of trees Number of trees to be generated in the RTE [2, 5]
Maximum depth Maximum depth of each tree in the RTE [2, 5]

EPS Maximum distance between two samples to be
considered as neighbours in DBSCAN

[0 : f100]

MINS Minimum number of points that a neighbourhood
must have to be considered as a cluster in DBSCAN

[2, 10, 50, 100]
is the proportion of impostors correctly identified, that is, the
recall for the group of impostors. NPV is the effectiveness of the
method when predicting impostors, which is the precision for
the group of impostors. F1− score is a trade-off metric between
NPV and Specificity [49]. Henceforth, the val suffix on these
metrics, (e.g. FAR_val or FRR_val) indicates that the metric has
been obtained over the validation set.

4.1. Keystroke and Mouse Dynamics for UEBA Dataset

The Keystroke and Mouse Dynamics for UEBA Dataset was
collected through a web chat application. A total of 11 members
of a research team with different ages, gender and usage profiles
were analysed interacting with the application for five days. This
interaction produced data that contained behavioural dynamics
from the keyboard and mouse peripherals. It consists of 113,471
records for keystroke dynamics and 29,220 records for mouse
dynamics.

First, the feature extraction process is accomplished. Subse-
quently, the train, test, and validation sets are generated for each
user. The train sets are composed of only genuine samples and
represent the 70% of the complete information. The test sets
are composed of genuine and impostor samples. In the case of
the genuine samples (i.e. 30% of the remaining data), a 60% is
selected for testing (i.e. 18% of all genuine data). For the impostor
samples, the same number is randomly selected from the other
users (i.e. the other users act as impostors for a genuine user).
Note that it is ensured that these random samples come from
more than a single source of information. Finally, the validation
sets are obtained from the remaining genuine data (i.e. 12% of all
genuine data) and from the impostor data. As above, the same
number of impostor samples are randomly selected.

The train set is used for each user to calculate the mean
and standard deviation of each extracted feature to scale the
other corresponding sets (i.e. test and validation sets). Then, the
train set feeds the RTE training process, obtaining a sequence of
characters. This sequence is separated into n-grams whose length
is determined by the ngl parameter. These n-grams represent
the retrieved behavioural dynamics, and they are used to build
a distance matrix. The DNA sequence alignment algorithm is
adopted to pairwise evaluate the distance between the n-grams.
The obtained distance matrix feeds the DBSCAN algorithm. Thus,
the result is a set of behavioural cores which represents the
genuine behaviour of the user.

Once the training process concludes, each test set is eval-
uated through the RTE previously trained and separated into
n-grams. Next, the distance between the obtained n-grams and
the extracted behavioural cores is calculated. These distances
are grouped according to the WinSize parameter. This allows
obtaining the risk values of a sequence of n-grams. Lastly, the risk
values are analysed to set an optimal threshold (see Section 3.5).

Each validation set is used to test the method against sam-
ples that have never been considered before. This step allows
9

Table 3
Obtained results for the keystroke dynamics use case for each combination of
parameters for the UEBA Dataset.
ngl WinSize EER FAR FRR FAR_val FRR_val

5 5 0.457 0.457 0.457 0.442 0.397
5 10 0.423 0.423 0.423 0.439 0.392
5 20 0.356 0.356 0.366 0.420 0.287
5 50 0.268 0.239 0.282 0.323 0.207
5 100 0.000 0.000 0.048 0.250 0.062

10 5 0.384 0.381 0.386 0.303 0.453
10 10 0.343 0.333 0.343 0.189 0.414
10 20 0.276 0.276 0.286 0.122 0.250
10 50 0.059 0.059 0.074 0.015 0.167
10 100 0.000 0.000 0.047 0.000 0.186

20 5 0.304 0.301 0.305 0.297 0.141
20 10 0.226 0.228 0.226 0.230 0.030
20 20 0.145 0.145 0.147 0.163 0.019
20 50 0.050 0.051 0.050 0.043 0.027
20 100 0.000 0.000 0.011 0.003 0.026

30 5 0.267 0.267 0.270 0.236 0.254
30 10 0.177 0.175 0.178 0.142 0.097
30 20 0.091 0.090 0.091 0.038 0.038
30 50 0.006 0.000 0.008 0.000 0.002
30 100 0.000 0.000 0.012 0.000 0.009

analysing the robustness, the generalisation capability, and the
performance of the method. This set is evaluated using the pre-
viously obtained threshold.

Once the train, test and validation sets are built, the method
is evaluated through the three use cases. The results of these use
cases are shown in Tables 3, 4, and 5. All the possible combina-
tions of the parameters are illustrated. The displayed results cor-
respond to the mean of all users. The best results are highlighted
in bold for each metric considered.

In all the use cases, the values of EER, FAR, and FRR decrease
(i.e. improves the performance) when the ngl or WinSize param-
eters increase. Notice that the method uses more information for
the predictions as the value of the parameters increases. Thus, the
maximum values of EER for each use case (0.457, 0.438 and 0.397
respectively) are obtained for ngl = 5 and WinSize = 5. On the
other hand, nearly perfect predictions are obtained for ngl = 30
and WinSize = 100. In this way, if the WinSize is set to 100, good
results are obtained for any ngl. However, these results become
more robust for the validation sets as ngl increases.

The best performance for the test and validation sets simulta-
neously is obtained for combining both information sources. This
corroborates that the combination of information enhances the
performance of the method in the continuous authentication task.

4.2. TWOS dataset evaluation

In this section, the TWOS dataset is used to evaluate the
method. This dataset was collected during the competition or-
ganised by the Singapore University of Technology and Design.
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Table 4
Obtained results for the mouse dynamics use case for each combination of
parameters for the UEBA Dataset.
ngl WinSize EER FAR FRR FAR_val FRR_val

5 5 0.438 0.438 0.438 0.308 0.390
5 10 0.392 0.392 0.396 0.234 0.359
5 20 0.347 0.343 0.351 0.146 0.280
5 50 0.265 0.265 0.265 0.031 0.076
5 100 0.034 0.024 0.065 0.506 0.513

10 5 0.354 0.354 0.358 0.329 0.306
10 10 0.306 0.302 0.306 0.261 0.176
10 20 0.202 0.198 0.202 0.129 0.129
10 50 0.090 0.090 0.094 8.000 0.000
10 100 0.000 0.000 0.031 0.500 0.500

20 5 0.147 0.139 0.151 0.133 0.223
20 10 0.077 0.073 0.081 0.112 0.050
20 20 0.034 0.030 0.034 0.053 0.000
20 50 0.000 0.000 0.016 0.000 0.000
20 100 0.000 0.000 0.026 0.000 0.000
30 5 0.090 0.090 0.090 0.080 0.049
30 10 0.025 0.025 0.025 0.013 0.006
30 20 0.004 0.000 0.012 0.000 0.011
30 50 0.000 0.000 0.007 0.000 0.041
30 100 0.000 0.000 0.011 0.000 0.092

Table 5
Obtained results for the combination of information sources use case for each
combination of parameters for the UEBA Dataset.
ngl WinSize EER FAR FRR FAR_val FRR_val

5 5 0.397 0.397 0.397 0.342 0.486
5 10 0.364 0.364 0.366 0.294 0.501
5 20 0.320 0.317 0.320 0.273 0.484
5 50 0.229 0.223 0.232 0.131 0.489
5 100 0.112 0.115 0.112 0.049 0.448

10 5 0.289 0.284 0.292 0.322 0.329
10 10 0.219 0.222 0.219 0.284 0.296
10 20 0.141 0.138 0.144 0.154 0.263
10 50 0.029 0.024 0.032 0.019 0.100
10 100 0.000 0.000 0.007 0.000 0.019

20 5 0.167 0.167 0.169 0.117 0.146
20 10 0.080 0.075 0.085 0.052 0.070
20 20 0.006 0.006 0.010 0.016 0.015
20 50 0.000 0.000 0.006 0.000 0.008
20 100 0.000 0.000 0.008 0.000 0.011

30 5 0.128 0.128 0.131 0.217 0.116
30 10 0.054 0.068 0.054 0.165 0.030
30 20 0.020 0.014 0.023 0.098 0.001
30 50 0.000 0.000 0.006 0.000 0.008
30 100 0.000 0.000 0.004 0.000 0.000

The data comes from six information sources: keystrokes, mouse,
host monitor, network traffic, SMTP logs, and logon. These data
are completed with additional information from a psychological
personality questionnaire. All the behavioural dynamics were
collected in a free environment.

Regarding the information sources, the behavioural dynamics
athered from the keystrokes and mouse have been considered
nalogously to the first experiment. The 24 users are considered
or five days.

The train, test and validation sets are obtained following the
ame steps achieved in the previous experiment. In conclusion,
he behavioural cores are obtained, and a risk model for each
ser is produced. Once these tasks are accomplished, the three
se cases are evaluated.
Tables 6–8 show the results obtained for each use case re-

pectively for the test and validation sets. It is considered all the
ossible combinations of parameters shown in Section 3.6. The
isplayed results correspond to the mean of all users. The best

esults are highlighted in bold for each metric considered.
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Table 6
Obtained results for the keystroke dynamics use case for each combination of
parameters for the TWOS Dataset.
ngl WinSize EER FAR FRR FAR_val FRR_val

5 5 0.414 0.413 0.415 0.407 0.414
5 10 0.386 0.386 0.386 0.375 0.384
5 20 0.341 0.343 0.341 0.346 0.353
5 50 0.269 0.269 0.269 0.268 0.233
5 100 0.214 0.219 0.214 0.189 0.131

10 5 0.362 0.362 0.362 0.380 0.382
10 10 0.337 0.335 0.339 0.340 0.320
10 20 0.305 0.304 0.307 0.282 0.237
10 50 0.217 0.217 0.217 0.180 0.126
10 100 0.133 0.133 0.134 0.044 0.052

20 5 0.317 0.318 0.317 0.346 0.302
20 10 0.259 0.257 0.259 0.305 0.245
20 20 0.189 0.189 0.191 0.227 0.172
20 50 0.080 0.078 0.082 0.110 0.072
20 100 0.008 0.008 0.008 0.018 0.019

30 5 0.299 0.299 0.299 0.293 0.288
30 10 0.231 0.231 0.232 0.222 0.224
30 20 0.156 0.156 0.156 0.139 0.139
30 50 0.055 0.054 0.055 0.060 0.052
30 100 0.007 0.007 0.007 0.000 0.015

Table 7
Obtained results for the mouse dynamics use case for each combination of
parameters for the TWOS Dataset.
ngl WinSize EER FAR FRR FAR_val FRR_val

5 5 0.433 0.433 0.434 0.400 0.432
5 10 0.404 0.403 0.404 0.375 0.400
5 20 0.371 0.370 0.372 0.313 0.351
5 50 0.317 0.316 0.318 0.252 0.286
5 100 0.266 0.265 0.266 0.205 0.260

10 5 0.420 0.419 0.420 0.406 0.394
10 10 0.392 0.392 0.393 0.369 0.356
10 20 0.355 0.354 0.355 0.290 0.315
10 50 0.285 0.285 0.285 0.263 0.209
10 100 0.180 0.176 0.180 0.250 0.126

20 5 0.377 0.376 0.379 0.362 0.388
20 10 0.336 0.335 0.337 0.311 0.347
20 20 0.286 0.285 0.288 0.255 0.287
20 50 0.174 0.173 0.174 0.153 0.211
20 100 0.088 0.086 0.101 0.086 0.117

30 5 0.359 0.357 0.361 0.338 0.352
30 10 0.313 0.312 0.314 0.308 0.302
30 20 0.250 0.250 0.251 0.237 0.243
30 50 0.136 0.136 0.137 0.141 0.146
30 100 0.051 0.049 0.089 0.047 0.073

The results for the independent sources (i.e. keystroke and
mouse dynamics) and their combination are promising and ro-
bust. The method’s performance increases when more informa-
tion is considered (i.e. ngl or WinSize increase). Regarding the
keystroke dynamics use case, the EER values go from 0.41 to
0.007, obtaining FAR and FRR values in the validation set of 0.400
and 0.432 respectively for the worst combination of parameters,
and 0 and 0.015 for the best combination of parameters. On
the other hand, the results of the mouse dynamics use case are
slightly worse. The EER values range between 0.433 and 0.051,
obtaining FAR and FRR values in the validation set of 0.400
and 0.432 for the worst case, and 0.047 and 0.073 for the best
case. The best results are obtained for the combination of both
information sources. EER values are in the range between 0.407
and 0.006 achieving FAR and FRR values in the validation set of
0.409 and 0.410 respectively for the worst parameter selection,
and 0.014 and 0.004 for the best case.

In the particular case of the keyboard dynamics, each character
of the sequence (i.e. di-graph) has an average execution time
of 0.227 s. In the case of the mouse dynamics, each character
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Table 8
Obtained results for the combination of information sources use case for each
combination of parameters for the TWOS Dataset.
ngl WinSize EER FAR FRR FAR_val FRR_val

5 5 0.407 0.407 0.407 0.409 0.410
5 10 0.380 0.380 0.380 0.381 0.375
5 20 0.335 0.335 0.335 0.343 0.321
5 50 0.257 0.257 0.257 0.270 0.228
5 100 0.177 0.177 0.176 0.197 0.150

10 5 0.359 0.359 0.359 0.371 0.349
10 10 0.320 0.319 0.319 0.335 0.307
10 20 0.263 0.262 0.263 0.289 0.245
10 50 0.169 0.168 0.169 0.213 0.159
10 100 0.082 0.082 0.082 0.140 0.099

20 5 0.295 0.295 0.296 0.310 0.306
20 10 0.226 0.226 0.226 0.267 0.230
20 20 0.156 0.156 0.157 0.206 0.157
20 50 0.066 0.065 0.067 0.098 0.080
20 100 0.022 0.022 0.022 0.041 0.018

30 5 0.268 0.268 0.268 0.282 0.285
30 10 0.201 0.200 0.201 0.227 0.211
30 20 0.121 0.122 0.121 0.168 0.110
30 50 0.038 0.037 0.038 0.076 0.020
30 100 0.006 0.006 0.006 0.014 0.004

represents a stroke of 5 s. This means that for ngl of size 10,
pproximately 2.27 and 50 s of information are used to make a
eyboard and mouse prediction, respectively. Thus, 22.7 and 500
of historical information are used to predict a WinSize value of
00. In the case of the combination of the information sources, the
roportion of keystroke dynamics is 73%, while mouse dynamics
epresent the 27% of the data on average for all users. With ngl
quals to 10, a mean vector would have 7 characters from the
eyboard and 3 characters from the mouse. This vector represents
n average time of 16.589 s. A WinSize value of 100 would
over on average 151.571 s of historical information. Although all
his information is considered, predictions are made every 0.227
nd 5 s on average. This is because the evaluated information
onsists of n-grams in which the adjacent sequence is equal to
he subsequent one except for the first and last characters (see
ig. 6).
Finally, SVM and RF have been selected as representative algo-

ithms of the state-of-the-art to compare the effectiveness of the
roposed method. Thus, to train these algorithms, a preprocessing
f the raw data has been performed to use the parameters ngl
nd WinSize, as the proposed method does. Firstly, the raw data is
lustered into subgroups of size ngl. Then, the models are trained
y performing a grid parameter search. The obtained predictions
re clustered into time windows using the WinSize parameter and
pplying EMA. To obtain a model that combines information to
ompare with the combination of the proposed method, the best
odel was selected independently for each information source

i.e. keystroke and mouse dynamics) and its predictions were
ombined at the decision level. For this purpose, the predictive
robability values have been normalised in the same range so
hat they can fill the same risk buffer. Furthermore, the proposed
ethod is also compared with two well-known approaches that
se the TWOS dataset [8,27].
The results are shown in Table 9. Analogously to previous

ables, the displayed results for the proposed method correspond
o the mean of all users. Thus, the results for the method are the
nes obtained for a pair of parameters that achieved better results
han the approaches for each use case in the validation set. That
s, the pairs (30, 100), (20, 100), (5, 100), and (20, 50) are selected
espectively for the ngl and WinSize parameters. These sets of
arameters are also used to train the SVM and the RF. Note that
he proposed method improves the results of state-of-the-art pro-

osals when enough information is considered (i.e. large ngl and
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WinSize values). Note that as mentioned in Section 3.5, a trade-off
has to be made between the information to be considered and the
usability in a specific environment.

Comparing the results in [27] with the ones in Table 7, ngl =

30 and WinSize = 50 values get similar results for the mouse use
case. Moreover, considering more information, such as a selection
of the pairs (20, 100) or (30, 100) considerably improves the
results. Analysing the [8] approach, the results are comparable
to a selection of the pairs, (5, 100), (10, 50), (20, 20), and (30,
20) (see Table 8). If context information (i.e. another source of
information) is taken into account, the results can be evened
out by setting the parameters to (20, 50) or improved by the
presented method using only keystroke dynamics and mouse
dynamics by setting the parameters to (20, 100), (30, 50) and (30,
100). On the other hand, the algorithms of SVM and RF obtain
satisfactory results. However, these results are always improved
by the proposed method in terms of EER on equal conditions.

Regarding the efficiency of the proposed method, it can make
predictions for each user interaction. As mentioned above, that
is 0.27 and 5 s on average for keystroke and mouse dynamics
respectively. Making predictions in such short time intervals can
lead to significant computational overhead that decreases the
efficiency of the method. However, the method can be trivially
adapted to perform predictions at more spaced time intervals
by decreasing the windows to be processed. Note that the latter
could also lead to a loss in the accuracy of detecting impostors
because less information will be considered. Other proposals,
such as [8] perform predictions for each session, that is, from the
time the user clicks the log-in button until he clicks the log-out
button. In the [27] approach, they use different sequence lengths.
For example, a fixed time interval of 10 s or the traversed distance
to determine the size of the sequences, so that this distance
represents at least a percentage of the display resolution. Finally,
they also considered 2D-windows of a certain size. In summary,
they use both fixed and variable sequence sizes. Taking all this
into account, it could be said that the proposed method is within
the efficiency standards of the state-of-the-art proposals.

It is also worth mentioning that the results obtained for the
TWOS dataset are, in general, worse than those obtained for the
UEBA dataset. This is because the UEBA dataset is much smaller
and therefore, for this particular case, the data distributions are
a priory more differentiating, thus obtaining better results. Note
that this does not mean that as the volume of data increases, the
method performs worse, but that when testing, taking a larger
number of impostor users to evaluate a genuine user, it is more
likely that a particular impostor is more similar to the genuine
sample, lowering the results in consequence.

5. Conclusions

A method to combine information from multiple sources de-
voted to enhancing continuous authentication solutions has been
presented. It includes a novel technique to represent temporal
information based on SAX implementing through RTEs. This en-
ables the production of a sequence of symbols that discretise
the information. DNA sequence alignment techniques have been
used to compare them accurately. Then, behavioural cores are ex-
tracted using a density-based clustering model to discard outliers
samples. Finally, a risk model has been specified to evaluate new
behavioural dynamics.

The proposed method has empirically shown that the use of
the RTE technique provides a very accurate representation de-
spite the loss of information during the discretisation process. It
has been demonstrated that combining information at the feature
level enhances the results of previous approaches and provides
new insights for further research. However, the implementation
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Table 9
Results of the several approaches used to compare the proposal. The results displayed for [27] are the ones obtained for the 2D-CNN,
while for the combination in [8] are the ones obtained for the SVM classifier. C refers to context information retrieved from an
external dataset. KD and MD represent keystroke dynamics and mouse dynamics respectively. RF+RF represent a combination model
at the decision level using for both information sources the RF algorithm. Acc is Accuracy and Spec is Specificity.
Work Source EER FAR_val FRR_val F1−_val Acc_val NPV_val Spec_val

SVM KD 0.136 0.158 0.151 0.850 0.845 0.858 0.842
RF KD 0.084 0.093 0.174 0.860 0.865 0.819 0.907
Our KD 0.007 0.000 0.015 0.968 0.979 0.945 0.993
SVM MD 0.171 0.180 0.063 0.882 0.877 0.955 0.820
RF MD 0.109 0.141 0.081 0.890 0.888 0.925 0.859
[27] MD 0.130 0.136 0.149 – – – –
Our MD 0.088 0.086 0.117 0.900 0.909 0.888 0.914
RF+RF KD+MD 0.180 0.228 0.169 0.814 0.800 0.861 0.772
[8] KD+MD – – – 0.806 0.751 0.932 0.710
Our KD+MD 0.177 0.197 0.150 0.828 0.826 0.856 0.803
RF+RF KD+MD 0.121 0.126 0.152 0.860 0.860 0.848 0.874
[8] KD+MD+C – – – 0.914 0.915 0.874 0.912
Our KD+MD 0.066 0.098 0.080 0.912 0.915 0.921 0.902
of this method may introduce some overhead in the training of
the proposed models and in the predicting tasks, which may re-
sult in added latencies in the operation of the system in which the
solution is integrated. Nevertheless, this overhead translates into
a considerable improvement in the security levels, so it is likely
that many services or applications will choose to implement it.

Future research will focus on testing more information sources
nd improving the scalability and performance of the proposed
ethods. In this sense, IoT devices, smartphone sensors and
earables are interesting to consider. Regarding the performance,
cost-sensitive measure for weighting the penalty of mismatch of
he characters could be considered in the global alignment tech-
ique. A variation of the Breiman proximity measure [50] could
e used, for example, to provide different levels of similarity.
Furthermore, categorising behavioural information may sim-

lify the complexity of the problem without affecting perfor-
ance. Fuzzy logic techniques and NNs to produce embeddings
re noteworthy options to test in the future.
Finally, it should be noted that the techniques presented in the

roposal are very specific to the application domain of continuous
uthentication. However, special mention should be made of SAX.
his technique based on RTE has proven to discretise different
ongitudinal data satisfactorily. This fact has led to including it in
any other domains such as time series. In this sense, detection
f temporal anomalies in the stock market, or in the field of health
o monitor changes in heart rate are well-known examples of its
sability.
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