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C. Castillo-Botón a, D. Casillas-Pérez b,*, C. Casanova-Mateo c, S. Ghimire d, E. Cerro-Prada e, 
P.A. Gutierrez f, R.C. Deo d, S. Salcedo-Sanz a 
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A B S T R A C T   

Atmospheric low-visibility events are usually associated with fog formation. Extreme low-visibility events deeply 
affect the air and ground transportation, airports and motor-road facilities causing accidents and traffic problems 
every year. Machine Learning (ML) algorithms have been successfully applied to many fog formation and low- 
visibility prediction problems. The associated problem can be formulated either as a regression or as a classi-
fication task, which has an impact on the type of ML approach to be used and on the quality of the predictions 
obtained. In this paper we carry out a complete analysis of low-visibility events prediction problems, formulated 
as both regression and classification problems. We discuss the performance of a large number of ML approaches 
in each type of problem, and evaluate their performance under a common comparison framework. According to 
the obtained results, we will provide indications on what the most efficient formulation is to tackle low-visibility 
predictions and the best performing ML approaches for low-visibility events prediction.   

1. Introduction 

Fog plays a crucial role in different natural and human systems, such 
as agriculture (Shrestha et al., 2018; Baldocchi and Waller, 2014), 
ecosystems management (Anber et al., 2015) and transportation (Fab-
bian et al., 2007; Bartoková et al., 2015; Peng et al., 2018), among 
others. In areas affected by drought or water deficits, fogs may also be 
used to improve the water availability (Klemm et al., 2012; Montecinos 
et al., 2018). In turn, low-visibility events, usually associated with such 
fog accumulations deeply affect the transportation and facilities such as 
airports (Fabbian et al., 2007; Miao et al., 2012; Guerreiro et al., 2020) 
and roads (Peng et al., 2018; Bartok et al., 2012; Wu et al., 2018). Ac-
curate prediction of fog events, and their associated low-visibility epi-
sodes, is therefore a very important problem, with underlying 
consequences on different aspects of meteorological and aviation 

applications, algorithmic development for accurate predictions and 
economic impact assessment based on accidents and other weather 
events resulting from increased fog and reduced atmospheric visibility. 

Fog events prediction has been the objective task in a number of 
research works in literature, representing an area of research that has 
been more intense in recent years. There are research works dealing with 
the study of fog event prediction and its relationship with the persis-
tence, usually circumscribed to specific, yet isolated, events (Belo-Per-
eira, 2016), on region-dependent orographic characteristics (Bendix, 
2002), studying physical-chemist features affecting fog events duration 
(Stolaki et al., 2015) and, more recently, dealing with fog persistence 
from a statistical point of view (Räsänen et al., 2018; Cornejo-Bueno 
et al., 2020; Salcedo-Sanz et al., 2021). There are also different works 
that have focused on fog events prediction in specific areas and cities (da 
Rocha et al., 2015; Dey, 2018) with recent publications dealing with 
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alternative approaches for this problem. Examples of this are works 
involving Numerical Weather Prediction (NWP) for fog prediction, 
usually within meso-scale numerical models. In (Bergot et al., 2007) an 
intercomparison of six numerical model simulations of fog is carried out 
for the Paris-Charles de Gaulle airport. The main goal of this inter-
comparison is to identify the capabilities of different NWM models to 
forecast fog accurately. This work recognizes that the prediction of fog 
with NWM is still a difficult problem, in which NWM need to be 
improved. In (van der Velde et al., 2010) two NWM, i.e. the WRF and 
HIRLAM models, are evaluated against detailed observations in a 
problem of fog forecasting in the Netherlands. It is shown that both 
NWM considered have problems to correctly modelling the fog event. In 
(Zhou et al., 2011) the performance of WRF-NMM NWM for low- 
visibility events due to fog is evaluated in North America. This works 
shows that the performance of the low visibility/fog forecasts from 
NWM models was still poor in comparison to those of precipitation 
forecasts from the same models. In (Román-Cascón et al., 2012) is 
another work that states that the prediction of fogs is one of the pro-
cesses not well reproduced by the NWP models. In that particular paper 
observational analysis of three different periods with fogs at the Spanish 
Northern Plateau is carried out. The WRF numerical model is used, and 
comparison with different parameterizations is detailed. In (Steeneveld 
et al., 2015) two NWM (HARMONIE and WRF) are compared in the 
prediction of two warm fog events in the Netherlands. The work con-
cludes that the NWP of radiation fog is challenging, since many NWM 
show large biases for the timing of the onset and dispersal of the fog, and 
also fail predicting the depth and liquid water content. In (Román- 
Cascón et al., 2016) fog simulation by the WRF model in terms of liquid 
water content is carry out for two different sites, Valladolid (Spain) and 
Cabauw (The Netherland). The WRF model was able to simulate radia-
tion fog when properly configured at a high resolution. However, it 
failed in simulating several properties of the fog such as the onset, 
dissipation and its vertical extent. In (Román-Cascón et al., 2019) the 
fog-forecasting skill of two mesoscale models (WRF and HARMONIE) is 
evaluated for the Spanish Northern plateau, specifically in Valladolid, 
where radiation fog is usual in autumn and winter months. Finally, in 
(Fernández-González et al., 2019) the HARMONIE-AROME model is 
tested for the prediction of poor-visibility episodes in Tenerife island, 
Spain. This work reports a good performance of the NWM in the pre-
diction of fog, with false alarm rate around 35%. Note, however, that all 
the previous works discussed show that the forecasting of fog events by 
NWM is particularly difficult, due to the extremely local characteristic of 
some events, and also because these phenomenon are extremely sensi-
tive to small-scale variations in atmospheric variables (Tapiador et al., 
2019). 

In view of the difficulties of NWM for fog events prediction, in this 
study we focus on Machine Learning (ML) prediction of fog events. 
Specifically, we present new results and discuss the predictive ap-
proaches that deal with statistical and ML methods in fog events pre-
diction. Historically, the very first attempts in this area backdates to the 
80′ where researchers proposed the use of a linear regression algorithm 
to this prediction task albeit with a limited amount of success (Koziara 
et al., 1983). To address the limitations in conventional (e.g., linear 
methods), ML-based algorithms have also been successfully applied in 
the last decade to many of the fog prediction problems. In (Fabbian 
et al., 2007), a multi-layer perceptron (MLP) method was tested in a 
problem of fog events prediction at Canberra International Airport in 
Australia using meteorological observations. The data from Australian 
Bureau of Meteorology were used to train and test a neural networks 
model, obtaining promising results. In (Miao et al., 2012) a fog predic-
tion system formed by fuzzy logic-based predictors was proposed and 
analyzed at Perth airport (Australia). The fuzzy logic predictor works on 
the outputs of a meso-scale numerical model (LAPS125) outputs, with 
the objective of refining the predictions obtained by the numerical 
model. This fog prediction model was operational at the airport by 
averaging the outcomes of two other fog forecasting methods by means 

of a majority voting approach. In (Bartoková et al., 2015) a decision tree 
induction ML algorithm was proposed for fog events prediction in Dubai, 
improving the results previously obtained by numerical model ap-
proaches. In (Colabone et al., 2015) the performance of MLPs with back- 
propagation training procedure in a fog event prediction problem at 
Academia da Força Aérea (Brasil) is analyzed. In (Boneh et al., 2015) a 
Bayesian network is applied to a fog prediction problem at Melbourne 
airport. In this case the problem is tackled as a prediction time horizon of 
8-h, and 34 years of data have been used to train the network. This fog 
prediction system has obtained better results than the previous system 
becoming operational for fog prediction at the Melbourne airport. In 
(Cornejo-Bueno et al., 2017) different ML regression techniques have 
also been tested in the fog prediction problem at Valladolid airport in 
Spain. In this case, radiation-type fog events were the most common the 
zone, so the prediction problem was restricted to winter months. The 
authors reported successful results in fog event prediction using Support 
Vector Regressions (SVR) and Extreme Learning Machines (ELM) 
approach. In (Durán-Rosal et al., 2018) a evolutionary neural network 
was considered for a problem of fog events classification from meteo-
rological input variables. Several types of evolutionary neural networks 
were considered by selecting different basic activaton functions such as 
sigmoidal, product and radial functions. A multi-target training pro-
cedure was considered, obtaining excellent results in the fog event 
classification problem considered. In (Guijo-Rubio et al., 2018) a prob-
lem of low-visibility events due to fog was tackled by applying ordinal 
classification methods. Three classes were considered (i.e., fog, mist and 
no-fog), and different ordinal classifiers successfully tested in this 
problem of fog event prediction. Recently, in (Miao et al., 2020) the 
performance of an Long Short-Term Memory network was evaluated in a 
problem of fog prediction particularly using the classification task 
approach for the study region in Anhui, China. 

In this paper we discuss some relevant ML models, and their per-
formance in a fog event prediction problem. We consider the visibility 
values at the ground level in order to characterize these fog events, and 
from these data we consider different tasks to define the associated 
prediction problem as: (i) exact prediction of visibility (regression 
problem), (ii) thresholding visibility values, (iii) separation into their 
classes as a classification problem, and (iv) a classification problem 
considering the order among the classes considering ordinal classifica-
tions. For each prediction task we evaluate the performance of a number 
of ML techniques and then carry out a comprehensive inter-comparison. 
To the best the the author’s knowledge this is the first work dealing with 
fog events (or its associated low-visibility effect) prediction that com-
pares the performance of several ML techniques when the problem is 
defined in terms of these different tasks, providing s clarification on 
what is the best way of defining a fog prediction problem, and what are 
the best ML techniques for each of these cases. More specifically, the 
novelty and important contributions of the research paper are the 
following:  

• We provide an exhaustive benchmarking for both the regression and 
the classification problem definitions in low-visibility events pre-
diction due to fog, considering a large set of ML methods.  

• By defining the low-visibility prediction problem as a regression task 
we study the sensitivity of each ML model to the standardization and 
normalization of the input or predictor variables and a feature 
reduction analysis trough Principal Component Analysis (PCA).  

• Considering classification tasks, we include a robust study of the 
most common balancing techniques applied to solve the highly un-
balance characteristic of the problem. We also discuss whether the 
ordinal classification, or otherwise, is a robust way to define and 
tackle the problem in this case.  

• According to the results of the present study, we give further insights 
on the best combination of normalization and standardization 
methods in our regression methods and we obtain significantly ac-
curate predictions with this problem formulation by applying neural 
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computation approaches. In the classification of fog events, we 
discuss the optimal techniques that should be used for facing the 
problem as a classification task. We have found that the ordinal 
classification algorithms do not provide good results and therefore 
warrants discarding this way of defining the problem to obtain 
acceptable and quality solution. 

The rest of the paper has been structured as follows: the next section 
describes the fog events database made available to this study, focused 
on Mondoñedo weather station, Galicia, Spain. Section 3 summarizes 
the most important characteristic of the regression, classification and 
ordinal classification methods compared in this paper. Section 4 pre-
sents the experimental part of the study with comprehensive experi-
ments and comparisons utilising the different ML techniques considered 
in this problem of fog events prediction. Section 5 closes the paper with 
some final conclusions and remarks on the research carried out. Ap-
pendix A shows a list of acronyms to facilitate the reading of the article. 

2. Fog events database 

We consider real visibility data that were acquired at the Mondoñedo 
weather station, Galicia, Spain (43.3841∘N, 7.3692∘W). The Mondoñedo 
area is known to experience frequent low-visibility events caused by 
orografic fog coming from the Cantabrian sea. Fog events in this area are 
so deep and intense that they usually cause partial or total motor-roads 
closures providing consequential economic and social impacts for the 
entire zone. A statistical analysis of the visibility in this zone has also 
been recently presented in (Cornejo-Bueno et al., 2021). 

We use the visibility data acquired by a Biral WS-100 visibility sensor 
at the Mondoñedo weather station to set the fog-even prediction as a 
regression and a classification problem. The sensor operates between 
0 to 2000 m, hence, the limit for a fog event detection using this sensor 
has been set to 2000m. The sample period has been set to 30 minutes. 
Fig. 1 shows an example of the data acquired by the sensor in a window 
step. For the regression problem we directly use as the target variable (i. 
e., ground truth) which is the visibility series obtained by this sensor. We 
considered a time series of 23 months of these data from 1st January 
2018 to 30th November 2019. In this study we also include the exoge-
nous meteorological variables registered by the same weather station 
that collects information about the atmospheric states. In order to 
consider the problem as a classification task, a number of classes have 

been introduced by considering a statistical analysis (Abdel-Aty et al., 
2015) [the table with the International classification of visibility 
developed by the the Meteorological Office published in 1969] to 
determine which were the best class thresholds to classify the low- 
visibility events. Note that we have modified these thresholds slightly 
to accord with the frequency in the data and intensity values in the 
present zone of study. Specifically, the classes for this work have been 
obtained applying the following piece-wise function where vs stands for 
the visibility in meters: 

Ci =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, vs < 40 i = 0•
1, 40£vs < 200 i = 1•
2, 200£vs < 500 i = 2•
3, 500£vs < 2000 i = 3•
4, vs32000 i = 4•

(1) 

Fig. 2 represents the correspondence between the visibility values 
(measured in meters) obtained from the sensor and the five classes used 
in the classification problem. To obtain this representation the raw 
visibility values have been sorted in ascending order and then plotted. 
The x-axis shows the ordering of each visibility value inside the whole 
dataset. The y-axis shows the whole range of the visibility variable, from 
0 meters to 2000 meters. By presenting it this way, we can see how the 
visibility ranges can translate into the classes (see Eq. (1)). From this 
figure we can obtain important information related to the problem at 
hand. First, if we were to project each color into the x-axis, we would 
obtain the number of instances for each class. As it can be seen, we have 
a highly imbalanced problem, where more than half of the instances 
belong to a single class and the rest of the classes represent a minority of 
the data. The great majority of the time the visibility is excellent, with a 
visibility of at least 2 kilometers. On the contrary, if we observe the 
amount of instances of class 0 we see that they are minuscule. If we add 
classes 1 and 2 then we have a bigger share of the data, but it is still 
much less than half. As it usually happens with imbalanced data, we are 
interested in the underrepresented values, which is the event of our 
interest, i.e., low visibility. We want to learn when and how fog appears, 
and to predict these rare events and further take preventive measures on 
the roads and airports. In Subsection 3.5 we discuss about how we dealt 
with the data imbalance issues. Second, if we project the colors on the y- 
axis, depending on how long along the y-axis a class appears in the 
graph, the more range of the visibility is included in that class. From this 
we can see that we are not dealing with a linear correspondence, which 

Fig. 1. Visibility time series (ground truth) at the Mondoñedo measuring station.  
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makes the problem particularly difficult. As it is explained later, this, 
among the other reasons, justifies the preference for non-linear models. 
To sum up, we are treating a regression problem also as a classification 
problem precisely to account for the frequency of the underlying phe-
nomena and also to try to correct the inherent imbalanced nature of the 
data. We are also trying to use the knowledge provided by using classes 
to measure the degree in which the visibility is affected and take 
cautionary actions in foresight. 

The reader might have noticed that the same threshold applied to the 
target variable could be applied to the output of a regression model, 
which could be used as a class prediction. We think that in training 
different methods with different methodologies, namely regression and 
classification, we can see which methods perform better as the training 
process is correcting for different errors in each case and one strategy 
may improve the final forecast. 

Table 1 summarizes all the predictive variables (inputs) considered 
in this work. It is worthy of mention and clarification that, as mentioned 
earlier, we predict the value of visibility in the next half hour, so we are 
using xt to predict yt+1, meaning the we use the data we have now (xt) to 
predict the target in the next half hour (yt+1). This required to shift the 
visibility value from the raw data, vs, with respect to the other input 
variables, x to get the target variable y. To improve the predictions we 
are using the visibility in instant t, vst also as an input variable to predict 
the visibility target (be it in the regression or classification problem). 

The variable presented in Table 1 as vs is the input visibility from the 
current instant, (the one included in xt), although the distribution of 
both variables is the same except y is missing one value from the shift. 

Table 2 summarizes the principal descriptive statistics of each pre-
dictive variable (see Table 1) for each of the considered classes. 

In Fig. 3 a violin-plot of all predictive variables is shown. In this plot 
the distribution of each variable, disaggregated and colored differently 
for each visibility class, is shown. In other words, for each variable the 
samples with the same visibility class are taken into account jointly, and 
the distribution for the respective variable is calculated and plotted 
separately. Inside each of the “violins”, a boxplot is also included so that 
it shows the median and Interquartile range (IQR). The dots outside the 
violin denote the outlier values. The shapes of the violin also show the 
modes of the distribution, so we can see that in some variables, e.g. at 
and td, the distribution for class 0 has two modes while all the other 
classes have unimodal distributions. We can also see that some variables 
have a very narrow interval of values regardless of the class considered, 
like qpRa, sa, hr (except for class 4) and wd, in which most of the dis-
tributions overlap. It can be seen that, in general, there are no clear 
differences in the distribution of any variable for each class, which 
means that in the data there are no clear indicators of what the visibility 
value will be in the next hour from the values of a single variable. 
Generally, the medians of each variable are pretty close and have a 
similar distribution regardless of the class. The variables that are more 
clearly distinct in their distribution for each class are td, wd, in which the 
medians do not overlap, but in any case there is still too much overlap in 
the rest of the distribution to confidently predict or to deduct any rela-
tion with the class based on a single variable. 

Some of the reasoning applied in the last paragraph with violin-plots 
can also be seen in Fig. 4, which shows a correlation plot between all 
variables. In this case we can see that the input variables are in general 
not very correlated with each other, which provides important infor-
mation when facing a prediction problem. First, as there are no cases of 
high correlation between variables, we can see that there are no 
redundant variables, and no variable should be deleted. Also, if we 
compare the distribution (Fig. 3) of variables with high correlation 
values, namely at with st and td, and st with td and gr, we can see that the 
overall shape of distributions is somewhat close and similar for each 
class, but still different enough so that each variable introduces different 
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Fig. 2. Correspondence of the visibility measured with the sensor data acquisition in meters, to each of the five classes.  

Table 1 
Predictive variables (inputs) used for the low-visibility event prediction at 
Mondoñedo, Galicia, Spain.  

Variable Abbreviation Units 

Accumulated precipitation qpRa mm/24 h 
Air temperature at ∘C 
Atmospheric pressure ap hPa 
Dew temperature td ∘C 
Floor temperature st ∘C 
Global solar radiation gr W/m2 

Relative Humidity hr % 
Salinity sa % 
Visibility vs m 
Wind direction wd Degrees 
Wind speed ws km/h  
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information into the problem. Second, we can see that there is no direct 
nor linear correlation between the chosen input variables and the cur-
rent value of visibility (variable vs) which means that, most likely, linear 
prediction models will not suffice to obtain good enough predictions, 
and that non-linear prediction models should work better when working 
with this dataset. 

As for correlations between pairs of variables, we can see that vs has a 
negative correlation with relative humidity (hr) (the higher hr is, the 
lower vs is in general, as expected, since in a fog event hr = 100%), and 
positive with solar radiation (gr) (the higher is gr, the higher is the vs). 

Note, however, that individual correlation among variables is only an 
indicative parameter and must be taken with caution, since there are 
non-linear interactions among meteorological variables which trigger 
the fog events. 

3. Supervised ML methods compared 

In this work we carry out an exhaustive comparison among several 
state-of-the-art ML methods for classification and regression in a prob-
lem of low-visibility events prediction due to fog. We classify the 

Table 2 
Summary of the most important distribution moments of each predictive variable per classes.  

Class. Metr. qpRa sa vs hr at st td gr ws wd ap 

0 

min 0.00 0.0 20.66 100.0 2.60 4.54 2.59 9.00 0.00 0.83 1001.0 
mean 0.09 0.0 36.38 100.0 13.82 16.30 13.81 42.08 4.98 239.18 1021.9 
med. 0.00 0.0 34.16 100.0 14.40 16.37 14.39 10.00 5.03 323.33 1021.3 
max 6.90 0.0 987.00 100.0 19.76 30.57 19.75 594.00 9.96 359.33 1036.0 
std 0.39 0.0 30.81 0.0 2.74 3.53 2.74 59.95 1.51 133.00 3.8 

1 

min 0.00 0.00 25.16 68.16 − 4.73 − 2.49 − 4.74 8.83 0.00 0.66 984.0 
mean 0.74 0.31 170.14 99.97 10.28 12.88 10.26 47.64 4.99 190.26 1021.6 
med 0.00 0.00 69.66 100.00 10.96 13.48 10.95 10.00 4.60 168.66 1022.0 
max 32.60 100.00 2000.00 100.00 22.13 41.66 22.11 731.66 19.01 358.83 1040.0 
std 2.52 3.97 307.49 0.53 4.40 5.92 4.40 72.09 2.65 125.97 6.6 

2 

min 0.00 0.00 29.00 71.50 − 4.44 − 1.84 − 4.51 9.00 0.00 0.50 981.1 
mean 2.29 0.56 808.50 99.79 8.72 11.05 8.68 59.53 6.17 185.05 1018.4 
med. 0.25 0.00 495.83 100.00 8.43 9.68 8.41 10.00 5.33 166.00 1020.0 
max 46.06 100.00 2000.00 100.00 21.79 48.41 21.77 949.00 23.03 357.66 1037.0 
std 4.69 5.30 711.48 1.39 4.52 6.84 4.52 96.28 4.24 97.02 8.4 

3 

min 0.00 0.00 38.00 39.33 − 4.12 − 1.73 − 4.89 8.83 0.00 1.33 975.0 
mean 2.78 0.49 1355.65 99.33 8.64 11.20 8.52 78.67 6.22 185.15 1017.6 
med. 0.30 0.00 1694.41 100.00 8.35 9.75 8.30 10.00 5.38 168.50 1019.0 
max 46.75 100.00 2000.00 100.00 25.99 50.50 22.78 915.50 22.01 358.00 1040.0 
std 5.29 5.08 710.96 2.77 4.76 7.61 4.75 125.25 4.20 95.39 9.3 

4 

min 0.00 0.00 139.66 18.33 − 4.32 − 2.67 − 11.98 8.83 0.00 0.66 975.0 
mean 2.32 0.73 1968.04 87.35 10.29 15.21 8.00 200.05 6.44 190.65 1018.7 
med. 0.10 0.00 2000.00 92.33 9.76 12.25 7.56 56.33 5.46 174.16 1020.0 
max 49.51 100.00 2000.00 100.00 31.57 58.38 23.09 1222.50 27.73 358.83 1039.6 
std 5.31 7.59 173.02 14.88 5.23 11.04 4.87 257.89 4.38 90.39 9.2  

ws wd ap

at st td gr

qpRa sa vs hr
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Fig. 3. Violin plot of all the predictive variables in the low-visibility prediction problem considered.  
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evaluated methods in four different categories: linear methods described 
in Section 3.3, ensemble methods, detailed in Section 3.1, Artificial 
Neural Network-based methods (ANN), described in Section 3.2 and 
regular ML methods, which have been presented in Section 3.4. Table 3 
summarizes the evaluated ML methods for classification and regression 
problems using this categorization. Some of them are commonly used in 
both classification and regression problems, but others have been 
restricted to one of them (in this particular problem), as can be seen the 
third column of Table 3. 

3.1. Ensemble methods 

Ensemble methods train a set of several base ML models and assume 
that their collective predictions can surpass the accuracy of the indi-
vidual ones, or even improve properties such as the robustness or 
generalizability. The ensemble methods follow a learning paradigm 
which is summarized with the expression “better together”, and in many 
cases, they are able to overcome the predictions of other more complex 
ML methods, such as, the ANNs, which involve a huge number of pa-
rameters. The base learners which form the ensemble are called learners. 

There exists a wide variety of ensemble algorithms, most of them are 
grouped into two categories: The bagging and boosting methods. One of 
the most extended ensemble methods used in ML for both classification 
and regression is Random Forest (RF) (Breiman, 2001). In this work, we 
evaluate several ensemble methods, specifically: Bagging (Bagg) of de-
cision trees, Adaboost (AB), Gradient Boosting (GB) and Random Forest 
(RF). 

3.1.1. Bagging 
Bootstrap aggregating or simply bagging are the simpler ensemble 

technique to train multiple learners and provide an unified output. 
Bagging considers an ensemble composed by learners with equal ar-
chitecture, that is, with same topology, number of input-output vari-
ables and parameters. The most common learners for creating the 
bagging ensemble method are decision trees, with same branches, pa-
rameters to train and input-output variables, as illustrated in Fig. 5. 

Note that the ensemble model provides the output by applying a 
decision rule which combines the individual outputs of each model: 
averaging their outputs (regression) or by majority voting (classifica-
tion) (Mohandes et al., 2018). 

3.1.2. Random forest 
Random Forest (RF) (Breiman, 2001) is arguably among the most 

renowned bagging-like techniques for classification and regression 
problems. The method specifically uses decision or regression trees as 
the learners, and then creates subsets from the bootstrap aggregating 
technique as the bagging method, but differs from the pure bagging 
technique in the topology of the trees changes among them. Trees of the 
ensemble (the forest) may have different length, topology or use 
different input variables which greatly increase the variability of the 
learners, but it is contrary to the bagging paradigm from a theoretical 
point of view. 

3.1.3. Boosting 
Boosting methods are a kind of ensemble algorithm which follows a 

special procedure for training their learners. They obtain excellent 
performance in both classification and regression problems (Ferreira 
and Figueiredo, 2012). All boosting methods establish the same struc-
ture for all the learners involved in the ensemble, that is, same archi-
tecture, number of parameters, or input-output variables. After creating 

Fig. 4. Correlation matrix of the predictive variables.  

Table 3 
Summary of the evaluated ML methods in both classification and regression 
tasks. We structured the considered ML methods in three different categories: 
ensemble methods (Section 3.1), ANN-based methods (Section 3.2) and regular 
ML methods (Section 3.4).  

Category Method Type Abbreviation 

Ensemble 

AdaBoost Class / Reg AB 
Gradient Boosting Class / Reg GB 
Random Forest Class / Reg RF 
Bagging Class Bagg 

ANN-based 
Multilayer Perceptron Reg MLP 
Extreme Learning Machine Reg ELM 

Linear 
Linear Regressor Reg LREG 
ElaticNet Regressor Reg EREG 
Generalized Linear Model Class GLM 

Other 

Support Vector Regression Reg SVR 
Support Vector Machine Class SVM 
Gaussian Process Reg GP 
Gaussian Naive Bayes Class GNB 
K Nearest Neighbours Class KNN 
Decision Tree Class DT  
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the ensemble structure, the learners are trained sequentially, in such a 
way that each new learner requires that the previous learner had been 
trained before, see Fig. 6. 

Adaptive Boosting (AdaBoost) is a kind of boosting method that 
proposes to train each of these machines iteratively, in such a way that 
each learner focuses on the data that was misclassified by its predeces-
sor, to iteratively adapt its parameters and achieve better results (Fer-
reira and Figueiredo, 2012; González et al., 2020). Fig. 6 shows an 
outline of the Adaboost algorithm for multi-class classification. 

Gradient Boost (Friedman, 2001) (GB) also combines a set of learners 
to create an stronger ensemble. Here, the residual of the a learner in the 
chain becomes the input for the next consecutive learner, and hence it is 
an additive model. The residuals are used in a step-by-step manner by 
the learners, in order to capture the maximum variance within the data. 

3.2. ANN-based methods 

We also briefly summarize here the description two ANN-based 
methods considered in this work: the Multi-Layer perceptron (MLP), 
and the Extreme Learning Machine (ELM). 

3.2.1. Multi layer perceptron 
A multi-layer perceptron (MLP) is a particular class of ANN which 

has been successfully applied to solve a large variety of non-linear 
classification and regression problems (Haykin and Network, 2004; 
Bishop et al., 1995). The multi-layer perceptron consists of an input 
layer, several hidden layers, and an output layer, which all are built by a 
number of special processing units called neurons. Layers are placed 
consecutively, and each neuron of a layer is connected to the other 
neurons of the consecutive layer by means of weighted links, see Fig. 7. 

Classifier /
Regressor

Ensemble

test data

1

Classifier /
Regressor 2

Classifier /
Regressor N

bootstrap samples

training data

Outcome

Fig. 5. Bagging technique for classification or regression problems.  
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Fig. 6. Diagram of the AdaBoost algorithm exemplified for multi-class classification problems. Different size circles stand for samples with more associated weight 
(w) due to misclassification in the previous step (marked with X). 
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It is the called feed-forward MLP. The values of these weights are related 
to the capacity of the MLP to learn the problem, and they are learnt from 
a sufficiently long number of examples. The process of assigning values 
to these weights from labelled examples is known as the training process 
of the perceptron. Obtaining adequate values for the weights minimizes 
the error between the output given by the MLP and the corresponding 
expected output in the training set. The number of neurons in the hidden 
layer is also a parameter to be optimized (Haykin and Network, 2004; 
Bishop et al., 1995). The well-known Stochastic Gradient Descent (SGD) 
algorithm is often applied to train the MLP (Rumelhart et al., 1986). 
There are also alternative training algorithms for MLPs which have 
shown excellent performance in different problems such as the 
Levenberg-Marquardt algorithm (Hagan and Menhaj, 1994). 

3.2.2. Extreme learning machines 
An Extreme Learning Machine (ELM) (Huang et al., 2006) is a type of 

training method for MLPs (see Section 3.2.1), characterized by being 
computationally faster than traditional gradient back-propagation. In 
the ELM algorithm the weights between the inputs and the hidden nodes 
are set at random, usually by using a uniform probability distribution. 
Then, it establishes the output matrix of the hidden layer and computes 
the Moore-Penrose pseudo-inverse of this matrix. The optimal values of 
the weights belonging to the output layer are directly obtained by 
multiplying the computed pseudo-inverse matrix with the target (see 
(Huang et al., 2011) for details). The ELM obtains competitive results 
with respect to other classical training methods, while its training 
computation efficiency overcomes other classifiers or regression ap-
proaches such as SVM algorithms or MLPs (Huang et al., 2011). 

3.3. Linear methods: Linear models, ElasticNet and the Generalized 
Linear Model 

In this category we have included all linear models for both classi-
fication and regression problems, specifically we include Linear 
Regression (LREG), ElasticNet Regression (EREG) and Generalized 
Linear Model (GLM). 

LREG (Freedman, 2009) is the simplest ML method for both regres-
sion and estimation tasks. The model assumes that there exists a linear 
relationship between the dependent variable y and the explanatory 
variables (the independent variables) x = (x1,⋯,xn) ∈ ℝN which are 
expressed as follows: 

y = ωTx+ ε, (2)  

where ω = (ω0,…,ωn) are the coefficient vector of the linear regression 
and x = (1, x) represents the extender predictive variable vector. The 
variable ε is a random variable with zero mean that measures how far 
the linear model is from the real function f. 

Linear models are attractive since the relationship between co-
efficients and feature importance is direct, and it is more interpretable. 
The linear regressor computes its coefficients minimizing the mean 
squared error of the residuals: 

R =
1
N
∑N

i=1
ri =

1
N
∑N

i=1
(yi − ŷi)

2
=

1
N
∑N

i=1

(
yi − ωTxi

)2
. (3) 

Minimizing this error directly drives to a the following closed-form 
solution: 

ω =
(
XT X

)− 1XT Y, (4)  

where XT = (x1,…,xN) is a matrix of the observations (the predictive 
variables of the observations) and Y = (yi) are the corresponding 
response variable of a training set D =

{(
xi, yi

)⃒
⃒1 ≤ i ≤ N

}
. 

Linear regression has some important disadvantages. One of the most 
straightforward is that the model does not consider the possible corre-
lation of the predictive variables {xi}. Also, the mean squared error of 
the residuals is strongly sensitive to outliers. For solving both issues, 
instead of minimizing the mean squared of the residuals, the ElasticNet 
model (EREG) (Zou and Hastie, 2005) minimizes a function which in-
volves both L1 and L2 regularization as follows: 

L =
1
N

∑N

i=1

(
yi − ωTxi

)2
+ α ‖ ω‖

2
2 + β ‖ ω‖1, (5)  

where α and β are hyperparameters that balance the amount in which 
both norms are involved in the function, and ‖ ⋅ ‖2 and ‖ ⋅ ‖1 refers to the 
norms: 

‖ x‖2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
1 + ⋯ + x2

n

√

‖ x‖1 = ∣x1∣ + ⋯ + ∣xn∣
. (6) 

The hyperparameters α and β must be fitted from a validation 
dataset. In this work, a grid search with a validation partition has been 
used in order to discover the best values for both hyperparameters. 
Observe that if α and β are zero, then an ElasticNet becomes a plain 
linear regressor, see Eq. (4). If the parameter β = 0, then the resultant 
regressor is a Ridge regressor (Hoerl et al., 1975), which removes 
correlated input variables. If the parameter α = 0, then we have a LASSO 
regressor (Tibshirani, 1996), which is less sensitive to possible outliers. 
ElasticNet generalizes all these regressors in one by introducing these 
two regularization terms in the problem. 

A GLM is a generalization of ordinary linear regression. This gener-
alized linear model includes a link function which describes the distri-
bution of the response variable. So if we had a binary classification 
problem, a Binomial distribution would be needed as the link function. 
The link functions are chosen from distributions belonging to the 
Exponential family of distributions. This allows to, as the name implies, 
use a linear model with the same parameterization as a linear regression 
to be used with all kinds of target values, generalizing the concept of 
linear regression further than a regression problem where the predicted 
variable y ∈ ℝ and ∼ N

(
μ, σ2) . 

They were proposed in the work (Nelder and Wedderburn, 1972) to 
unify some other statistical ML models, including Poisson, logistic or 
linear regression in one single model. The GLM has the following 
expression: 

y = g− 1(μ) = g− 1(ωT x
)

(7) 

The GLM includes three main elements:  

1. The response variable y is assumed to be a random variable that 
follows one of the probability distribution of the exponential family, 
which include Poisson, gamma, binomial and normal distributions. 
This property generalizes the linear regression model that assumes 
that the response variable is a Gaussian variable. 

Fig. 7. Structure of a MLP, with one hidden layer.  
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2. The domain of the link function g− 1(⋅) remains to be a linear pre-
dictor μ = ωTx, which eases the computation of the coefficients.  

3. The link function g− 1(⋅) provides the relationship between the linear 
predictor μ = ωTx and the mean of the distribution function E[y|x] =
g− 1(μ). 

In this work, the GLM used for fog events classification tasks uses a 
multinomial link function. This enables the model to work in multiclass 
classification problems, namely, a problem where there are more than 
two classes. 

3.4. Statistical-based and other regression and classification methods 

In this category we have included all the evaluated ML methods for 
regression and classification tasks related to fog event prediction, which 
are not strictly ensemble, ANN-based or linear methods. We include 
statistical-based approaches such as Gaussian Process (GP) and the 
Gaussian Naïve Bayes (GNB), and other classical algorithms for classi-
fication and regression such as Support Vector Machine (SVM) and 
Support Vector Regression (SVR), K-nearest neighbours algorithm 
(KNN) and Decision Tree (DT). 

3.4.1. Support vector machines 
The Support Vector Machine (SVM) (Schölkopf et al., 2002; 

Schölkopf et al., 2000) is a learning algorithm for classification problems 
defined as follows: Notationally, given a labelled training data set {xi, 
yi}i=1

n, where xi ∈ ℝN and yi ∈ {− 1,+1}, and given a nonlinear mapping 
ϕ(⋅), the SVM method solves the following problem: 

min
w,ξi ,b

{
1
2
‖ w‖2 +C

∑n

i=1
ξi

}

(8)  

constrained to: 

yi(〈ϕ(Xi) ,w〉+ b ) ≥ 1 − ξi∀i = 1,…, n (9)  

ξi ≥ 0∀i = 1,…, n (10)  

where w and b define a linear classifier in the feature space, and ξi are 
positive slack variables enabling to deal with permitted errors (Fig. 8). 
Appropriate choice of nonlinear mapping ϕ guarantees that the trans-
formed samples are more likely to be linearly separable in the (higher 
dimension) feature space. The regularization parameter C controls the 
generalization capability of the classifier, and it must be selected by the 

user. Details on the solution process for the SVM algorithm and its tuning 
and optimization can be found in (Schölkopf et al., 2002). 

3.4.2. Support vector regression 
The Support Vector Regression (SVR) (Smola and Schölkopf, 2004) is 

a well-established algorithm for regression and function approximation 
problems. The SVR takes into account an error approximation to the 
data, as well as the capability to improve the prediction of the model 
when a new dataset is evaluated. Although there are several versions of 
the SVR algorithm, we use the classical model (ε-SVR) described in 
detail in (Smola and Schölkopf, 2004), which has been used for a large 
number of problems and applications in science and engineering (Sal-
cedo-Sanz et al., 2014). Fig. 9 shows an example of the process of a SVR 
for a two-dimensional regression problem, with an ε-insensitive loss 
function. Details on the solution process for the SVR algorithm and its 
tuning and optimization can be found in (Smola and Schölkopf, 2004). 

3.4.3. Gaussian process 
Gaussian Processes (GP) (Rasmussen, 2003) are non-parametric 

kernel-based probabilistic ML models for both regression and classifi-
cation problems. The Gaussian process models a continuous random 
process f(x) where the variable x is dense. Similar to the linear regres-
sion, which estimates the output y from the input variables x trough a 
linear relation y = ωTx + ε where ε ∼ N

(
μ, σ2), GP models predict the 

response y by introducing a set of latent variables {f(xi)}i=1
n from a 

Gaussian process, and explicit basis functions, h(⋅). Details on the solu-
tion process for the GP algorithm and its tuning and optimization can be 
found in (Rasmussen, 2003). 

3.4.4. K-Nearest neighbours 
K-nearest neighbour (KNN) (Shakhnarovich et al., 2008) is a non- 

parametric ML method which looks for a set of K observations of the 
training set which are the closest to the new test observation. The term 
“closest” to an observation xi is measured with respect to a metric or 
distance d(⋅) which fulfils:  

• d(xi,xj) ≥ 0 ∀ i, j and d(xi,xj) = 0 ⇐ xi = xj  
• d(xi,xj) = d(xj,xi)  
• d(xi,xj) ≤ d(xi,xk) + d(xk,xj) 

The most frequent distance used in the KNN is the Euclidean 
distance. 

3.4.5. Decision trees 
Decision Trees (DT) (Rokach and Maimon, 2005), although also a 

common tool used for decision making, are a kind of ML method which 
builds a tree that follows branching decision paths to reach a classifi-
cation. A graphical representation of a decision tree can be seen in 
Fig. 10. In ML Decision Trees, the training data is used to calculate the 
thresholds that better split the data according to a partition criterion. 
This criterion searches for the best gain of information possible in the 
current node, meaning, what is the optimum split on which variable so 
that it allows for a better prediction of the target. 

3.4.6. Gaussian Naive Bayes 
Naive Bayes methods (Zhang, 2004) are supervised learning methods 

based on the Bayes’ theorem. These methods assume the “naive” con-
dition of independence among every pair of features given the value of 
the class variable. The Bayes theorem states the following relationship, 
given class variable y and dependent feature vector x1 trough xn: 

P(y|x1,…, xn) =
P(x1,…, xn|y)P(y)

P(x1,…, xn)
(11) 

Assuming the independence of the random variables xi, we can ex-
press the previous equation as follows: 

Fig. 8. Illustration of the SVM process: Linear decision hyperplanes in a non-
linearly transformed, feature space, where slack variables ξi are included to deal 
with errors. 
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P(y|x1,…, xn) =
P(y)Πn

i=1P(xi|y)
P(x1,…, xn)

. (12) 

Naive Bayes classifier retrieves the maximum argument of the pre-
vious expression, the called Maximum a Posteriori, or simply MAP, 

considering that P(x1,…,xn) is constant: 

ŷ = argmaxyP(y|x1,…, xn) = argmaxyP(y)Πn
i=1P(xi|y) (13) 

Gaussian Naive Bayes (GNB) simply assumes that each xi ∣ y is a 

Fig. 9. Example of a Support-Vector-Regression process for a two-dimensional-regression problem, with an ε-insensitive loss function.  

Fig. 10. Graphic representation of a decision tree trained on the Iris dataset with a maximum depth of three levels.  

Fig. 11. Original dataset.  
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normal random variable: 

P(xi|y) =
1
̅̅̅̅̅
2π

√
σy

e
−
(xi − μy)

2

2σ2
y (14)  

3.5. Balancing techniques 

The fog event database considered in this work is highly imbalanced, 
meaning there are a huge amount of high visibility events compared to 
the amount of low visibility events, as seen Fig. 11. For class 4, the one 
with highest visibility, we have almost 16000 samples, for class 1 we 
have about 5000 samples and for each of the other classes we usually 
have about 2000. As seen previously in Section 2 with Fig. 2 this 
imbalance is in the underlying nature of the phenomena. 

It is well known that this leads to many problems when dealing with 
classification tasks. There are a number of different ways of approaching 
imbalance in classification problems (López et al., 2013), and all of them 
have some associated problems. The three most common ways to treat 
imbalanced problems are:  

1. Cost-sensitive classification: the error for the minority classes is 
weighted higher than the error for the majority class to make 
learning these classes a priority during training. With this method, 
finding the right weighting is difficult and is in the end an heuristic 
process.  

2. Algorithmic modification: modifying the algorithm so that it takes into 
account different sets of the data. The most commonly used and well 
known are ensemble methods, where many weak learners, such as 
decision trees, are combined, and each is trained with different 
samplings of the data. With this method there is no explicit enforcing 
to consider the under-represented classes as such, but the weak 
learners are trained with different samplings that are likely to 
contain more samples of minority classes than of the majority class 
for some of the underlying weak models used. 

3. Resampling: resampling the different classes to achieve a better bal-
ance. This can mean generating new samples, oversampling, or de-
leting existing samples, undersampling. Oversampling generates new 
non-existing samples close to existing ones. When dealing with 
multidimensionality, generated samples could be created in prob-
lematic regions where the decision boundary is not clear which may 
lead to introducing misinformation in the data, but in general new 
samples are generated in regions where they would be likely to exist. 
As for undersampling, when removing samples is not done carefully 
important and representative data may be removed. 

In this paper, in order to treat the imbalance problem, we have 
combined two approaches: we have used mostly ensemble methods as 
classifiers and regressors (detailed in Section 3.1), but as the differences 
among classes are so vast we have considered that in this case it would 
be also be important to balance the number of samples we have per class, 
so we have used techniques based on sample generation and reduction. 
Specifically we use three balancing strategies on the original data:  

1. Oversampling the minority classes  
2. Undersampling the majority class  
3. Hybrid method: undersampling the majority class and oversampling 

the minority classes 

Table 4 summarizes the balancing techniques employed including 
their abbreviations as used from here on, and their original publications. 
These methods will be explained next. 

The oversampling procedure consists of increasing the number of 
observations of all the under-represented classes by generating new data 
samples. When performing oversampling it is important that the statis-
tics of each class remain the same. The algorithm must create new 

samples that remain in the same “class region” inside the problem’s 
feature space and do not cross the decision boundaries into other classes 
as this would introduce misinformation that would taint the data. In this 
work, we use the most common oversampling technique, the SMOTE 
(SMT) algorithm (Chawla et al., 2002), which creates new samples 
taking into account the existing ones, diminishing the risk of creating 
samples in “wrong” areas. 

On the contrary, undersampling methods decrease the number of 
observations of the majority classes by removing samples. As it happens 
with oversampling, undersampling has to reduce the number of samples 
while also maintaining the statistical properties of the classes, so it 
should remove, when possible, redundant information. In this work, we 
consider four different undersampling techniques:  

1. Condensed Nearest Neighbours (CoNN): This algorithm uses a 1-NN 
rule to iteratively decide if a sample of the majority class should be 
removed or not based on whether or not it is missclasified. This 
method is mostly focused on removing samples.  

2. Neighbourhood Cleaning Rule (NCR): The data is undersampled using 
the neighbourhood cleaning rule: all the minority samples are kept, 
and using instance based methods such as k-NN the samples from the 
majority class that are ambiguous are identified and removed. NCR 
places less emphasis on removing redundant examples than cleaning 
the data and keeping the neighbourhood of the samples “clean”, so 
this results on the final number of removed samples not being as big 
as with CoNN.  

3. Tomek Links (TL): This method finds in the data the so called tomek’s 
links, samples where the distance to samples of another class is less 
than to samples of its own class. The sample that belongs to the 
majority class is removed. This method performs a cleaning of the 
boundary between classes.  

4. Random UnderSampler (RUS): As the name implies, samples are 
deleted randomly without attending to their characteristics, posi-
tioning or values. It is mostly used as a baseline method to compare 
how the others perform. It’s main benefit is that it is very fast 
compared to the previous methods which are very computationally 
expensive. 

As mentioned earlier, in this work we combine both undersampling 
and oversampling techniques in order to evaluate what combination 
works best for the evaluated classification methods. The results of 
applying these resampling methods to the dataset are shown in Fig. 12: 
on the top row the undersampling methods are included, in the bottom, 
the oversampling with SMOTE on the previously undersampled datasets. 
So in Fig. 12e SMOTE is shown, and then in Fig. 12f, g and h the hybrid 
methods that include both oversampling and undersampling. This way, 
the columns have the same undersampling method and the differences 
can be easily compared. The colors and the axis are the same as in 
Fig. 11, so the classes are incremental from left to right. 

As it can be seen in Fig. 12a, CoNN is an aggressive undersampling 
procedure, and it removes almost all of the instances of the majority 
class, which surprisingly leaves class 4 to be the minority class. This is 
the reason why on the lower row there is no oversampling applied to this 

Table 4 
Summary of the balancing techniques used.  

Over./Under. Balancing Technique Abbreviation Work 

Oversampling SMOTE SMT (Chawla et al., 
2002) 

Undersampling 

Condensed Nearest 
Neighbours CoNN (Hart, 1968) 

Neighbourhood Cleaning 
Rule NCR 

(Laurikkala, 
2001) 

Tomek Links TL (Tomek et al., 
1976) 

Random UnderSampler RUS –  
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method, just using CoNN has balanced the dataset. As seen in Fig. 12b 
and c, the amount of undersampling achieved by NCR and TL is not too 
different, although as there is a difference in the methods, the selected 
data is also different; the difference is not quantitative as much as 
qualitative. Lastly, RUS, in Fig. 12d, has removed a higher number of 
instances than the previous methods although we are not as certain of 
the quality of the resulting data. 

As for oversampling methods, we have decided to equalize the 
number of instances for all minority classes, as seen in Fig. 12e. The 
remaining Fig. 12f, g and 12 h show the results of applying SMT to their 
respective undersampling methods which are shown in the upper row, 
namely Fig. 12b, c and d. 

All this resulting datasets have been used in the classification prob-
lem and are discussed in Section 4.2.2. 

3.6. Data normalization 

Predictions obtained by the different ML classification and regression 
techniques considered are affected by the type of normalization applied 
over the predictive variables. In this work, we evaluate three different 
types of normalization, described below:  

1. Min-Max Normalization: Min-Max normalization maps the whole 
range of each input variable into the interval [0,1] using the 
following formula 

x̃j =
xj − min

i
xi

max
i

xi − min
i

xi
, ∀j (15)    

2. Standardization: The standardization treats each input variable as a 
random variable. The standardization process consists of removing 
the mean of each variable and then normalize the result by its 
standardization as follows: 

x̃j =
xj −

1
n

∑N
1 xi

(

1
n

∑N
l=1

(

xi −
1
n

∑N
m=1xm

)2)1
2
, ∀j (16) 

Observe that the standardization technique does not necessary map 
the range of each variable to the interval [− 1,1]. Only the most probable 
observations, i.e. those which are close to the mean, are mapped to this 

interval.  

3. Robust Standardization: The robust standardization works with 
the median and the deviations from the median to compress 

x̃j =
xj − medixi

medj
⃒
⃒xj − medixi

⃒
⃒
, ∀j (17) 

It is less sensitive to outliers than the standard deviation. As the 
standardization technique, it does not necessary map the range of each 
variable to the [− 1,1] interval. 

In this work, we also use the PCA of the input data matrix X. PCA 
directly standardizes the data before obtaining the principal compo-
nents, so we cannot use other types of normalization in this case. 

4. Experiments and results 

In this section we carry out an exhaustive comparison between the 
different ML algorithms considered (Section 3) in the low-visibility 
event prediction problem described in Section 2. We first describe the 
metrics used to evaluate the regression and classification methods 
compared, see Section 4.1. Then the results obtained are reported: we 
first discuss the results of the ML regression techniques in Section 4.2.1 
and then the ML classification methods are presented and evaluated in 
Section 4.2.2. 

4.1. Evaluation metrics 

For measuring the performance of the regression methods we 
consider three common metrics: Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE) and coefficient of determination (R2), which 
are briefly described here: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑n

i=1
(yi − ŷi)

2

√

MAE =
1
N
∑n

i=1
∣yi − ŷi∣

R2 = 1 −

∑

i
(yi − ŷi)

2

∑

i
(yi − y)2

, (18) 

Fig. 12. Different evaluated balancing techniques over the original dataset.  
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where y is the ground truth, y is the average value of y, and ŷ represents 
the prediction of the regressor. The subscript i is used to refer to a single 
sample yi = y[i]. 

The formulation of the coefficient of determination, R2, makes an 
assumption that the predictions come from a linear model (Colin 
Cameron and Windmeijer, 1997), so it should be used only for linear 
regressors. When using this statistic with non-linear regressors, prob-
lematic behaviour may arise such as values greater than 1 or lower than 
0 as this metric is defined as R2 ∈ [0,1]. Even if this is the case, we have 
left it for all regressors as another performance comparison metric. 

Regarding the classification task, we use four different metrics: Ac-
curacy (ACC), F1-score (F1), Recall (REC) and Quadratic Weighted 
Kappa (QWK), which have the following expressions: 

ACC =
TP + TN

P + N

F1 =
2TP

2TP + FP + FN

Recall =
TP

TP + FN

QWK = 1 −

∑

i,j
wi,jOi,j

∑

i,j
wi,jEi,j

(19)  

where TP and TN are the true positives and the true negatives achieved 
by the method, respectively; and P and N are the total amount of positive 
and negative test samples. 

Note that most of the metrics above are defined for binary classifi-
cation, however, they can be used for multi-class classification by 
adopting a “One vs Rest” or “One vs All” scheme to transform a multi- 
class problem into multiple binary problems. With this scheme we 
iteratively take one class, which we consider the positive class, and 
consider the rest of the classes as the negative class. We then average all 
the binary problems and have an equivalent to multi-class. 

With regards to the F1-score, we use a weighted average to account 
for the imbalance present in the classes. This average is computed with 
the support of each class and serves to equally represent all classes in the 
final score even if some have a less samples. So classes with less samples 
are weighted with a higher value than classes with more samples. With 
this weighting we can be assured that we are not getting a very high 
score just because the classifier is predicting all the samples from the 
majority class and omitting the minority classes, which would give us a 
trivial classifier that could not predict the event of interest. For this 
reasons this metric has been chosen as the main comparison metric for 
classification in Section 4.2.2. We also use a weighted recall by support 
when comparing classification results, following the same reasoning. In 
this case, using recall directly gives us a numeric representation of the 
number of positive (or relevant) samples classified out of all the positive 
samples; we see how many samples of class i were correctly predicted as 
belonging to class i. 

Regarding QWK, O is the N × N confusion matrix, E is the expected 
matrix and w is the weight matrix. Each coefficient of the confusion 
matrix Oij represents the number of predictions of the class i when the 
true class was j. The expectation matrix is computed as: 

E = hthT
p , (20)  

where hp and ht are the histograms of the prediction and the ground 
truth, respectively, and the super-index T refers to the transpose. Finally, 
the weight matrix with quadratic weights is computed as follows: 

wi,j =
(i − j)2

(N − 1)2, (21)  

where N is the number of classes. 
The closer to 1 these metrics are, the better the performance of the 

analyzed methods. ACC, REC and F1 score are all nominal metrics, that 
is, they do not consider an ordering of the classes. On the other hand, 
QWK considers the ordering of the classes by penalizing errors with the 
quadratic of the distance between classes. 

4.2. Results 

The results obtained are presented and discussed in this section, 
which is structured into two subsections: we first discuss the results of 
the regression methods in Section 4.2.1, and then the results of the ML 
classification techniques in Section 4.2.2. 

4.2.1. ML regression results 
Tables 5, 6, 7 and 8 detail the performance of the ensemble, the ANN- 

based, linear and statistical-based (named as others in Section 3.4) 
regression methods respectively, including all variations of the input 
variable normalization/standarizations (see Section 3.6), and if we use 
PCA or not to reduce the number of predictive variables. There could be 
large differences in performance of the ML regressors depending on the 
normalization considered, including (or not) PCA, and, of course, among 
the different techniques. 

It is well known that some methods require previous normalization 
of the input data, and also that some of the methods are more sensitive to 
the changes in the normalization method than others. As it can be seen in 
Table 5 and in Table 6, changing the data normalization can greatly alter 
the results obtained for different algorithms; it can produce an excellent 
or a bad performance, as is the case when using Min-Max normalization 
in RF and in MLPbig. RF seems to be less affected by normalization of 
input data than MLP-based approaches. SVR and Gaussian Processes, 
Table 8, seem to have a poor performance in this problem, worse than 
the other regression techniques evaluated in this work. 

Table 5 specifically details the performance of the evaluated 
ensemble methods: RF, GB and ADBMLP. For RF and GB, we have used 
the hyperparameters that appear on the original study, which is cited in 
the description of every problem (implemented in sklearn (Pedregosa 
et al., 2011)), but for computing time and resources we have used only 
10 MLP estimators for ADBMLP. Out of all the algorithms considered, RF 
obtains the best RMSE, MAE and R2 for all the evaluated normalizations 
without considering the one using PCA. The best RF result in terms of 
RMSE, MAE and R2 is obtained with the Min-Max normalization with 
values of 340.55, 175.36 and 0.8288 respectively. We do not perceive 
significant differences among the evaluated input normalizations in RF, 
but it seems that PCA negatively affects its performance; after applying 
PCA, RF obtains the worst performance among all the evaluated 
ensemble methods. The reason behind this is that RF benefits from the 
different regression trees structure. Since PCA reduces the number of 

Table 5 
Evaluated ensemble methods for regression. We classify the methods according 
to the kind of scaling we apply to the inputs and if they use the original data or 
PCA decomposition. We sort the methods in ascending order of their RMSE.  

Model Scaling PCA RMSE MAE R2 

RF MinMax No 340.55 175.36 0.8288 
RF Standard No 341.59 176.28 0.8278 
RF Robust No 341.59 175.53 0.8278 
GB Standard Yes 344.71 187.32 0.8246 
GB Robust No 344.71 187.33 0.8246 
GB Robust No 344.73 187.33 0.8246 
GB Standard No 344.78 187.52 0.8246 
ADBMLP Standard Yes 383.09 265.91 0.7834 
ADBMLP Robust No 400.27 286.93 0.7636 
ADBMLP Standard No 403.54 298.73 0.7597 
ADBMLP MinMax No 419.81 325.78 0.7399 
RF Standard Yes 737.64 537.06 0.1972  
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variables in the input data, and in turn the tree length of RF, the vari-
ability of the ensemble is also reduced, and its performance worsens in 
consequence. GB obtains similar results to RF for all evaluated nor-
malizations with or without PCA, with a RMSE, MAE and R2 of around 
344.7, 187.3 and 0.8246, respectively. The GB algorithm computes the 
residuals of one tree to feed the following tree. There is no variability on 
the topology of the trees in the ensemble, and therefore it remains robust 
even if we apply PCA. ADBMLP obtains by far worse results than the 
previous ensembles for all the normalizations, with RMSE, MAE and R2 

values of 383.09, 265.91 and 0.7834 respectively (the best case uses 
standard scaling with PCA). We observe an improvement using PCA 
since it may avoid a possible overfitting in the MLP. 

Table 6 focuses on the performance of the evaluated ANN-based 
methods: MLP and ELM. We evaluate three different MLPs according 

to the number of neurons and the number of hidden layers. We refer to 
the biggest MLP as MLPbig, to the medium as MLP, and to the one with 
less parameters as MLPsimp. Both MLPbig and MLP have been optimized 
varying the number of hidden layers from 1 to 3 and the number of 
neurons per layers from 50 to 150, and as the number of layers of the 
network increased the number of neurons per layer decreased 
(remaining MLPbig more dense than MLP). Besides the architecture, we 
also use both ADAM and SGD in order to determine what is the best 
training algorithm, and also change the activation function, using tanh 
and logistic. To better train the network we have also used an adaptive 
learning rate, early stopping and various initial learning rate values (1 ×
10− 4,7.5 × 10− 4, 5 × 10− 3). MLPsimp represents the sklearn library 
implementation (Pedregosa et al., 2011) but changing the training pa-
rameters: training, we used an adaptive learning rate and early stopping. 
The number of neurons in the ELM hidden layer has been set by using a 
grid search. We indicate this with the subscript GS. Note that the MLP 
obtains excellent results in this problem. The best out of this ANN-based 
category is also the best-over-all for all the evaluated regression 
methods. As it can be seen, the MLP is very sensitive to the different 
normalizations applied. The best results have been obtained with the 
MLPbig and the standard scaling, with values of RMSE, MAE and R2 of 
327.55, 164.30 and 0.8416 respectively. The worst result has been ob-
tained with the Min-Max normalization. The MLP is the most accurate 
method in this study. Regarding the size of the MLP, we observe that a 
MLP with a high number of neurons in the hidden layers obtains better 
results than the one with less neurons because we have enough data with 
enough complexity to require some architectural complexity. We also 
observe that using PCA does not improve the results in the MLP case. In 
the case of the ELM, it obtains the best results with the Min-Max 
normalization, with RMSE, MAE and R2 of 360.68, 215.22 and 0.8080 
respectively. 

Table 7 shows the performance of the linear regression methods 
considered: LREG and EREG. The parameter α of the elasticnet regula-
rization has been tuned using a grid search. We only show the regressor 
with the coefficient that obtained the best results in the grid search. The 
LREG obtains the best results in this category with RMSE, MAE and R2 of 
389.51, 240.95 and 0.7761, respectively. It is worthy of attention that 
the same results are obtained independently of the normalizations or use 
of PCA for many of the linear models, which can sometimes happen in 
linear models when an optimum is achieved. EREG, which includes 
weight regularization, obtains close results to the LREG for all types of 
normalization. It does not seem that the regularization has a very big 
effect for this the regressors for this dataset. However, including PCA in 
the EREG worsens the results. The best value found for the α parameter 
of the elasticnet regularization is α = 1, for which the regularization is 
equal to the Lasso regularization. Note that any of these linear regressors 
obtain better results than the statistical-based evaluated ML methods, 
which is somehow surprising, mainly for the poor performance of 
statistical-based algorithms in this problem. 

Table 8 shows the performance of two statistical-based methods for 
regression: SVR and GP. SVRsimp uses the default hyperparameters, and 
the SVR’s have been selected from a grid search. We have used two 
kernels, RBF and sigmoid, For the GP we have used: multiple kernel 
functions: dot product, dot product + white noise, RBF, RBF + white 
noise, and have used a range of values for the α parameter. The SVR has 
obtained the best results in this category, but it is far from those obtained 
by the other evaluated ML methods. We observe a big sensitivity to the 
different normalizations in the case of the SVR. The best result for the 
SVR is obtained with the Min-Max normalization with RMSE, MAE and 
R2 of 407.97, 12.27 and 0.7544 respectively. Other normalizations 
decrease the performance of this technique. GP obtains worse results 
than SVR. Only the MaxMin normalization produces adequate results 
combined with the GP. The rest of the evaluated normalizations produce 
poor results, with GP obtaining very high values of RMSE and MAE, 
1624.30 and 1400.51 respectively (with standarization and PCA). It is 
also surprising that GP is the method which obtains the worst results in 

Table 6 
Evaluated ANN-based methods for regression. We classify the methods accord-
ing to the kind of scaling we apply to the inputs and if they use the original data 
or PCA decomposition. We sort the methods in ascending order of their RMSE.  

Model Scaling PCA RMSE MAE R2 

MLPbig Standard No 327.55 164.30 0.8416 
MLP Standard No 340.64 179.11 0.8288 
MLPbig Robust No 347.96 183.36 0.8213 
MLP Robust No 348.68 187.09 0.8206 
MLP MinMax No 350.51 188.52 0.8187 
MLPsimp Standard Yes 359.32 210.89 0.8095 
ELMGS MinMax No 360.68 215.22 0.8080 
MLPsimp Standard No 371.83 211.98 0.7960 
ELMGS Standard No 375.79 217.05 0.7916 
ELMGS Robust No 380.69 221.51 0.7861 
MLPsimp Robust No 381.23 227.44 0.7855 
MLPbig Standard Yes 389.35 242.63 0.7763 
MLPsimp MinMax No 395.73 246.03 0.7689 
MLP Standard Yes 409.30 260.97 0.7528 
MLPbig MinMax No 824.82 759.17 − 0.0037  

Table 7 
Evaluated linear methods. We classify the methods according to the kind of 
scaling we apply to the inputs and if they use the original data or PCA decom-
position. We sort the methods in ascending order of their RMSE.  

Model Scaling PCA RMSE MAE R2 

LREG Standard Yes 389.51 240.95 0.7761 
LREG MinMax No 389.51 240.95 0.7761 
LREG Standard No 389.51 240.95 0.7761 
LREG Robust No 389.51 240.95 0.7761 
EREG Robust No 389.52 240.94 0.7761 
EREG MinMax No 389.52 240.94 0.7761 
EREG Standard No 389.61 240.93 0.7760 
EREG Standard Yes 405.61 247.10 0.7572  

Table 8 
Evaluated statistical-based regression methods. We classify the methods ac-
cording to the type of scaling we apply to the inputs and if they use the original 
data or PCA decomposition. We sort the methods in ascending order of their 
RMSE.  

Model Scaling PCA RMSE MAE R2 

SVR MinMax No 407.97 212.27 0.7544 
SVRsimp MinMax No 407.98 212.26 0.7544 
SVRsimp Standard Yes 426.58 188.05 0.7315 
SVR Standard Yes 434.47 189.11 0.7214 
SVR Standard No 448.78 331.49 0.7028 
SVRsimp Standard No 477.95 322.77 0.6629 
GP MinMax No 484.77 258.40 0.6532 
SVR Robust No 690.34 560.44 0.2968 
SVRsimp Robust No 879.17 559.62 − 0.1404 
GP Standard No 974.58 626.15 − 0.4013 
GP Robust No 1015.74 677.53 − 0.5221 
GP Standard Yes 1624.30 1400.51 − 2.8925  
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this study. This could be because of the approach taken for time series in 
this work; maybe its performance would have been better if the time 
series had been considered sequentially. It is also in this particular case 
when it becomes apparent that the R2 is not well suited for non-linear 
regressors, we see negative values appear, and some are very big, like 
the last GP which has a R2 = − 2.8925. 

Table 9 details the performance of the best methods evaluated for 
each category, corresponding to RF, MLPbig, LREG and SVR, respec-
tively, see Tables 5, 6, 7 and 8. Note that the best version of the RF uses 
the Min-Max normalization, and both MLP and LReg the standardization 
of the input variables. We can observe that the MLPbig achieves the most 
accurate results for visibility prediction, with the lowest RMSE. RF ob-
tains an acceptable result, and the LREG is far away from the other two 
ML approaches, as expected. 

Fig. 13 shows the prediction of three of these approaches in a chosen 
fragment of about 250 samples of the test set. We can observe that all the 
models can predict the vertical transitions in visibility and most follow 
the continuous values pretty well. The MLPbig is the one that better 
approximates the top and bottom areas of the visibility variable followed 
by the RF, whereas the LREG is unable to reach the full range of values of 
the target variable. We can observe this in the places where the visibility 
value is constant in a few consecutive samples, the LREG predictions 
introduce a lot of noise and never quite reach the bottom or top target 
value. This may be because the linear model is not complex enough to 
model the target variable from the predictors used, so this model would 
have a high bias and a high variance, its linear assumption is wrong and 
small changes in the data create big changes in the prediction. As the 
linear models have been regularized we can conclude that a linear model 
is not suited for this task. In the non-linear models shown we can see that 
there is not much difference between the MLPbig and the RF, and at a 
glance it may seem that the MLPbig has a higher error in the predictions 
compared to the RF, but when carefully observing the predictions we 
can see that RF has trouble following sudden changes in the ground truth 
values, we can see very big spikes, which mean that it can’t get the 
amount of visibility correct after a sudden change while the MLPbig can 
better assess what the value after a sudden change will be. It can also be 
seen when carefully observing that RF has a tendency to hold values and 
can not subtly change its predictions at the extremes. As for the MLPbig 
we can observe that the error seems a bit high and that model has a little 
bit of trouble when the target values are close to 0, introducing some 
noise in the predictions, but in every other section of the target variable 
it performs extremely well, modelling sudden changes and continuous 
high visibility values much better than the any of the other models used. 

4.2.2. Classification results 
In this section we analyze the classification results and provide an 

exhaustive discussion on the performance of the ordinal and the nominal 
classification methodologies in this problem. The purpose of this is to 
deduce which of the methodologies are better for the classification task 
with this dataset. In order to carry out this study, we consider a GLM 
model, which is simple, easy to train and has nominal and ordinal ver-
sions readily available. This enables us to carry out a quick and fair 
comparison. To explore the performance of this technique in each 
classification task, the GLM model has been trained varying two pa-
rameters: first, we evaluate all combinations of the balancing techniques 

described in Section 3.5; then, we use a grid search to select the best 
hyper-parameters for the regularization term. We test α values ranging 
from 0 (which is equal to ridge regularization (L2 norm)) to 1 (which is 
Lasso regularization (L1 norm)): 

L =‖ y − f (ω; x)‖2 +α ‖ ω‖1 +(1 − α) ‖ ω‖2 (22) 

This results in 11 α values and 9 datasets which provides a total of 99 
combinations in the grid search process for each (i.e., the nominal and 
the ordinal) task. The complete results of all 99 combinations are shown 
in Figs. 14 and 15, but for the sake of brevity in Tables 10 and 11 only 
the best results (the model with the best performing α) for each dataset 
and for the nominal and ordinal problem are shown; we present 18 
combinations: for each of the datasets the best nominal and ordinal 
GLM. 

Table 10 shows the accuracy (ACC), quadratic weighed kappa 
(QWK) and weighted F1-score (F1w) metrics for the best hyper- 
parameters found on the grid search, in both nominal and ordinal 
classification problems. The trained GLMs have been sorted in 
descending according to the weighted F1-score (F1w) value achieved in 
the test partition. The best performance for all rebalancing techniques 
and both ordinal and nominal version has been consistently obtained 
when α = 1, namely, when using Lasso regularization. This informs us 
that in this particular problem it is better to prune some input variables 
for simple models that may suffer from redundant information (Tib-
shirani, 1996). 

We observe that nominal GLMs consistently obtain better results 
than ordinal GLMs for all metrics shown, including an ordinal metric like 
QWK, and a metric fit for imbalanced data like weighted F1-score (F1w). 
This difference in results also happens for all balancing techniques 
combinations; even when using the original dataset without rebalanc-
ing, the nominal version outperforms the ordinal, with the single 
exception of the CoNN undersampling technique which scores lower 
values than two ordinal predictions, and this is possibly because of the 
aggressive nature of CoNN’s undersampling, which turned class 4 into 
the minority class. So, in this particular case, we can clearly see that 
there is no benefit or improvement when treating the problem as an 
ordinal classification task. 

The best results in terms of ACC are obtained by the nominal GLM 
using RUS without any oversampling method, with a value of 0.8275. 
However, given the nature of the data and the underlying problem the 
other two metrics are more trustworthy because we know that ACC is 
only taking into account the amount of correct predictions and in this 
case, as there is no oversampling, there are less samples of minority 
classes which means that the model is not making a better prediction 
across classes, it is just mostly predicting class 4 with a lower share of 

Table 9 
Comparison of the best methods of the ensemble, ANN-based and Linear and 
statistical-based regression methods. MLPbig with the standard input normali-
zation obtains the best results in terms of RMSE, MAE and R2.  

Model Scaling PCA RMSE MAE R2 

MLPbig Standard No 327.56 164.30 0.8417 
RF Min-Max No 340.55 175.35 0.8288 
LREG Standard Yes 389.51 240.95 0.7761 
SVR Min-Max No 407.97 212.27 0.7544  

Fig. 13. Predictions obtained by the best ensemble (RF), ANN-based (MLPbig) 
and Linear regression method (LReg), in the prediction of low-visibility events 
with regression approaches. 
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samples of the minority classes. The best results in terms of QWK and 
F1w were obtained by the nominal GLM using both NCR undersampling 
and SMT oversampling method with a value of 0.9310 and 0.7998, 
respectively. The worst nominal GLM results have been obtained for the 
CoNN undersampling technique. This method drastically reduces the 
number of samples in the majority class leaving it as the class with least 
samples, as seen previously in Fig. 12a. For the nominal task the ACC, 
QWK and F1w scores range between 0.75 − 0.827, 0.909 − 0.931 and 
0.76 − 0.799, respectively. 

We now show an exhaustive comparison of both GLMs with all the 
combinations tried during the grid search, namely all datasets and all 
alpha values, showing the values of weighted F1 score (F1w) in 
descending order. In Fig. 14 we show the nominal GLM F1 score and in 
Fig. 15 we show the ordinal ones. In both figures the colors represent the 
dataset used, and the x-axis value shows the alpha values. 

It is noticeable in Figs. 14 and 15 that the best values of the F1w are 
obtained for each dataset when the regularization parameter α = 1.0, so, 
in all of the GLM tables with the results presented, we have omitted the 
unity value of alpha. In both nominal and ordinal GLMs, the NCR with 
SMT is the balancing technique method that obtains the best F1w value. 

It is noteworthy from Fig. 14 that the CoNN method is the worst 
undersampling technique for the particular nominal task, having all 
appearances at the very end of the sorted values, but on the contrary, for 
the ordinal task, as seen in Fig. 15 it is among the best performing. This 
perhaps means that when treating the problem as ordinal situation, we 
need to more clearly delimit the classes, which would then require us 
performing a higher undersampling on the majority class to equalize the 
number of samples of all classes. 

Table 11 shows the recall per class parameter for the best GLMs 

obtained from the grid search process and this has been sorted out by 
average weighted Recall. As we are not only interested in having very 
high scores in these metrics but also having a balanced prediction of 
when the fog appears and the actual level of visibility, we use the Recall 
weighted by support, which accounts for class imbalance. We use this 
metric because the main problem when working with this dataset is 
correctly recognizing the samples from minority classes, and this metric 
represents the amount of samples correctly classified for each class, so 
we are measuring for each class how many samples out of all the samples 
belonging to this class are predicted correctly. This way we can ensure 
that we are not being deceived by a high metric value that hides within it 
a poor classification performance in minority of the classes. 

Overall, we observe that, as previously seen in Table 10, the nominal 
GLM generally obtains better results than the ordinal GLMs for all 
classes. The first peculiar feature is that that there is no overall best 
combination that achieves the highest values across all classes although 
by choosing this metric for comparison, we can be certain that we have a 
sorting by performance across all classes. For the best combination 
achieved, nominal GLM with NCR and SMT data, the highest overall 
values are achieved for class 0 and 2, but this comes at the cost of 
decreasing the performance in other classes like 1, 3 and 4, where other 
other combinations make better predictions. For this best model we can 
see that the performance is excellent in classes 0 and 4, so we are 
correctly discerning very high visibility and very low visibility, but for 
the classes in between there is more difficulty. In general, we can also see 
that for classes 4 and 1 some other combinations obtain better results, 
like Ordinal GLMs, that achieve values of 0.97 and 0.8 respectively more 
consistently, but their performance for other classes is not as good, 
specially with classes 2, 3 where the values are very low, and for class 

Fig. 14. F1 score of the evaluated GLMs in the nominal version. We show all combinations of alpha value and the balancing techniques studied.  
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0 when comparing with nominal GLMs. 
Focusing on the nominal GLMs, the best Recall metrics have been 

obtained for the class 0 with 0.9544 and the class 4 with 0.9844 using 
the NCR with SMT and OG, respectively. These are quite good Recall 
values for detecting the positives cases. Both classes correspond to the 

highest and the lower visibility classes, respectively. Nominal GLMs get 
worse Recall results for the class 1 with 0.8586 in case of RUS under-
sampling, and definitely even worse Recall metrics for classes 2 and 3, 
with maximum values of 0.3408 and 0.2530 with NCR and SMT 
balancing technique. As we can see, nominal GLMs do not obtain good 
results predicting positives for classes 2 and 3 which have similar 
characteristics. Regarding the ordinal GLMs, the behaviour is similar but 
they obtain worse results. Maximum Recalls for classes 0 and 4 are 
0.7900 and 0.9814 for the same balancing technique that in the nominal 
case NCR with SMT and OG, respectively. The Recall metric for the class 
1 is better than in case of ordinal with 0.8790 using CoNN, but for classes 
2 and 3 the results are poor. The best recalls for both classes are 0.3160 
and 0.2718 obtained using no balancing technique, and CoNN over-
sampling, respectively. 

Overall the best linear classification model we have achieved is the 
one that was nominal uses Lasso regularization and was trained with 
NCR performing undersampling and then oversampling with SMOTE. 
With this configuration we can achieve an good average relation be-
tween detecting relevant samples and discerning different classes. As for 
the ordinal task we do not think that it is fruitful to carry on with that 
approach. 

We now select the best GLM methods in both ordinal and nominal 
versions, which are the GLM with NCR and SMT in versions (referred as 
GLMn and GLMo for the nominal and ordinal versions repectively) and 
carry out a comparison including more complex classifiers in the 
experimentation. Specifically, we include: GB, RF, Bagg, KNN, DT, AB 
and GNM, together with the GLMn and GLMo, discussed previously in 
Section 3.1. We use these ensemble methods because we think that their 
underlying structure and methodology may be able to sort some of the 

Fig. 15. F1 score of the evaluated GLMs in the ordinal version. We show all combinations of alpha value and the balancing techniques studied.  

Table 10 
Accuracy, quadratic weighed kappa and F1 score of the best grid search of the 
GLM. The best performance of the GLM method for all balancing techiniques and 
both ordinal and nominal versioan has been obtained fixing the hyper-
paramenter α to 1. Nominal GLM generally obtains better results than the 
ordinal GLM.  

UnderS. OverS. Ord./Nom. ACC QWK F1_w 

NCR SMT Nom. 0.8064 0.9310 0.7998 
RUS SMT Nom. 0.8036 0.9297 0.7995 
TL SMT Nom. 0.8056 0.9296 0.7970 
NCR – Nom. 0.8225 0.9206 0.7950 
TL – Nom. 0.8265 0.9193 0.7944 
– SMT Nom. 0.8059 0.9287 0.7939 
RUS – Nom. 0.8275 0.9184 0.7933 
– – Nom. 0.8247 0.9144 0.7861 
NCR SMT Ord. 0.7779 0.9177 0.7681 
TL SMT Ord. 0.7778 0.9172 0.7668 
CNN – Nom. 0.7505 0.9090 0.7648 
– SMT Ord. 0.7767 0.9158 0.7642 
CNN – Ord. 0.7706 0.9086 0.7634 
NCR – Ord. 0.7922 0.9064 0.7594 
RUS SMT Ord. 0.7732 0.9150 0.7588 
RUS – Ord. 0.7933 0.9056 0.7573 
TL – Ord. 0.7934 0.9050 0.7569 
– – Ord. 0.7951 0.9041 0.7562  
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pitfalls present in the data that add great difficulty for other kinds of 
models. Just as we did with GLMs, for all of these classifiers, we have 
previously evaluated all combinations of balancing techniques described 

in Section 3.5. We have chosen the best combination for presenting the 
results. The complete comparison with all the datasets is shown in 
Fig. 17 but as previously we have decided to show only the best dataset 

Table 11 
Recall per classes of the the best grid search of the GLM. The best performance of the GLM method for all balancing techiniques and both ordinal and nominal versioan 
has been obtained fixing the hyperparamenter α to 1. Nominal GLM generally obtains better results than the ordinal GLM.  

UnderS. OverS. Ord./Nom. Recall 0 Recall 1 Recall 2 Recall 3 Recall 4 

NCR SMT Nom. 0.9544 0.6519 0.3408 0.2530 0.9530 
RUS SMT Nom. 0.9544 0.6642 0.3340 0.2718 0.9431 
TL SMT Nom. 0.9544 0.6503 0.3408 0.2231 0.9560 
NCR – Nom. 0.8495 0.8521 0.1106 0.1663 0.9681 
TL – Nom. 0.8594 0.8545 0.1128 0.1217 0.9780 
– SMT Nom. 0.9544 0.6511 0.3386 0.1784 0.9619 
RUS – Nom. 0.8693 0.8586 0.1128 0.0993 0.9799 
OG – Nom. 0.8435 0.8513 0.1106 0.0709 0.9844 
NCR SMT Ord. 0.7900 0.5784 0.3137 0.1764 0.9609 
TL SMT Ord. 0.7881 0.5751 0.3182 0.1643 0.9629 
CNN – Nom. 0.8752 0.8627 0.1151 0.4543 0.8067 
– – Ord. 0.7900 0.5678 0.3160 0.1501 0.9651 
CNN – Ord. 0.4811 0.8627 0.1422 0.2718 0.9085 
NCR – Ord. 0.3821 0.8790 0.1106 0.1277 0.9728 
RUS SMT Ord. 0.8455 0.5580 0.2370 0.1602 0.9626 
RUS – Ord. 0.4000 0.8766 0.1106 0.0933 0.9772 
TL – Ord. 0.3861 0.8807 0.1128 0.0933 0.9777 
OG – Ord. 0.3861 0.8823 0.1083 0.0851 0.9814  

Fig. 16. (a) Accuracy, (b) Quadratic Weighted Kappa and (c) F1 score of the best classifiers methods analyzed. We choose the best balancing technique for each 
method in order to report the accuracy, a total of 9 different classifiers. 
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for each model for the sake of brevity. As for the model’s hyper-
parameters, we have choosen the ones appearing in the original works 
where they first appeared, and as they are included in the sklearn library 
(Pedregosa et al., 2011). 

Fig. 16 and Table 12 show the ACC, the QWK and the F1w for the best 
ML classification methods for this problem including GB, RF, Bagg, 
GLMn, KNN, DT, GLMo, AB and GNB. 

GB obtains the best result in terms of ACC, QWK and F1w scores with 
0.8258, 0.9359 and 0.8285 respectively. RF and Bagg closely follow the 
performance of the GB on these metrics. The best results are obtained by 
the ensemble ML methods, except for AB that obtains the second worst 
result. GB and RF obtain the best performance with an NCR under-
sampling followed by a SMOTE oversampling. Bagging’s best configu-
ration is achieved when only training with a TL undersampling. There is 
a gap between the previous ML methods and the results by the next set of 
classification methods, formed by GLMn and KNN, although GLMn is the 
second best in QWK. In both cases, the ACC, QWK and F1w have been 
reduced at least 2%. It is curious that the combination of NCR and SMT 
undersampling-oversampling technique reaches the best result (the 
same was obtained by RG and RF). DT and GLMo obtain similar results in 
terms of ACC, QWK and F1w but perform worse than the previous one. 
Finally, AB and GNB obtain the worst results. AB is specially sensitive to 
the way in which the weighting of the samples is propagated in the 
sequence of the learners. And GNB has pretty strong constraints and 
assumptions such as the normality of the input variables, or the inde-
pendence which are not true in this problem. 

Fig. 17 shows the F1 score provided by the evaluated classifiers for 
the studied balancing techniques. We can see that in almost all the 
classifiers, the different balancing techniques do not lead to a substantial 
improvement on the F1w metric. The colored bars, denoting the model, 
appear contiguous, and we can see that almost all of them are grouped 
together for all cases. We can deduct from this that, to some extent, the 
model used is more important in the quality of the final predictions than 
the dataset used, although the dataset clearly improve to a considerable 
degree the predictions made by the model. This is to say that carefully 
choosing the models is crucial to get a good performance, and that 
having good data to train on improves the resulting predictions. We can 
also see that the CoNN undersampling technique gets the worst results in 
terms of F1 score for almost all classifiers, decreasing significantly the 
predictions obtained when trained on the original imbalanced data. We 
conclude that this technique, as remarked previously in Section 3.5, is 
not apt for this problem. 

Finally, Table 13 shows the recall per class for the best set of clas-
sification methods. For all methods, the recall in classes 0 and 4 is quite 
good. Even GNB, GLMo and GLMn obtain the best recall metrics for these 
classes. However, for class 2, their recall is significantly reduced 
compared to the other methods which surpass them. It is worthy of 
mention that GNB has the best value of recall for class 0 and the second 
best for class 4, which means that for a binarized problem it would most 
likely have a very good performance, but it is unable to discern different 
levels of visibility. As we can see, the values of recall strongly drop for all 

methods on classes 2 and 3. Distinguish these classes with the input 
variables given is a very difficult task. In the best case, with GB we are 
able to correctly detect about half of instances of a visibility of class 2 
and a third of occurrences of class 3. For class 3, AB, RF and GB obtain 
the best recall metric, around 0.31, clearly a very low value. But on the 
other hand we can very confidently predict with GB and RF instances of 
very low visibility, classes 0 and 1 recognizing about 88% and 75% of 
relevant cases, and periods of very high visibility, class 4 with a recall of 
94% of relevant cases. 

Fig. 18a and b show the aggregate recall and F1w score by class for all 
classifiers. These cumulative Figures allow us to graphically see each 
individual Recall and F1 score per class and the relations between them. 
On the x-axis the model and the dataset is shown. The ordering is ac-
cording to the weighted F1 on both cases, so that is the reason for the 
non-monotonic decreasing order. This way we can see that the order 
changes between the aggregate and the weighted average used. 

In this figures we can see that on both metrics the values for class 4 
are very high and are almost equal across all classifiers, with a value 
close to 1. For class 0 the values also tend to be quite high although we 
can see some inverse relation of the high values in classes 0 and 1 and 
low values on classes 2 and 3. For classes 2 and 3, we see a considerable 
reduction of the Recall and F1 score for all metrics in accordance with 
the ordering of the classifiers. 

4.3. Final discussion and remarks 

The prediction of low-visibility events associated to fog, either 
defined as a regression or a classification problem, is generally more 
difficult than some of the other prediction problems associated with 
meteorological events such as wind speed, solar radiation and even the 
precipitation events. This is attributable to the extreme local charac-
teristics of the fog events. In spite of this challenge, any advancement 
towards accurate techniques to improve the explicit variance of low- 
visibility event prediction is crucial for the characterization and accu-
rate prediction of these events, and the respective application of such 
predictive models in fog modelling. According to the results obtained, 
important conclusions can be drawn from these experimental work 
carried out with a number of competing ML algorithms. In respect to the 
regression problem, we have obtained the following conclusions:  

• Considering the four ML model categories that were explored, i.e., 
ensemble, ANN-based, linear and statistical ML methods (and the 
others) we conclude that the ANN-based methods are the most 
appropriate methods to solve a fog-events regression problem, 
particularly the MLP method that was able to obtain the best results 
in all of the regression metrics reported. The RF and GB methods 
were seen to obtain close the results to those of the ANN-based 
methods but were still relatively inferior. In general, these tech-
niques appeared to have a better performance in the classification 
task formulation than in the regression problem. The rest of the ML 
methods are not suitable for tackling this low-visibility event pre-
diction problem as a regression task.  

• This study reveals that ML methods are influenced differently from 
the standarization and the normalization of the input variables 
depending upon the considered ML method. Some of them are 
strongly sensitive, such as the MLP, which reported the best results 
with a simple standarization but a worse result with the MinMax 
normalizationm equation. However, the other algorithms, such as 
the ensemble-based approaches seem to be robust against different 
standarizations and normalization for the regression taskas assigned.  

• The linear regressors were seen to generate a poor result, and these 
were even worse with the regularization (EREG) method. Our results 
clearly point out to a highly non-linear structure of the fog-event 
datasets in the regression problem. 

In respect to the classification problem associated to low-visibility 

Table 12 
Accuracy, quadratic weighed kappa and F1 score of the best classification 
methods. Best GLMs in both ordinal and nominal version have been obtained 
fixing the hyperparamenter α to 1.  

Model UnderS. OverS. ACC QWK F1_w 

GB NCR SMT 0.8258 0.9359 0.8285 
RF NCR SMT 0.8202 0.9304 0.8235 
Bagg TL – 0.8205 0.9212 0.8134 
GLMn NCR SMT 0.8064 0.9310 0.7998 
KNN TL – 0.8022 0.9120 0.7899 
DT NCR – 0.7749 0.9003 0.7837 
GLMo NCR SMT 0.7779 0.9177 0.7681 
AB – SMT 0.7486 0.9071 0.7490 
GNB NCR – 0.7071 0.8937 0.6813  
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events prediction, the following conclusions can be drawn:  

• For this case we have analyzed four ML categories for this particular 
classification (ensemble, ANN-based, linear and statistical ML 
methods) and in this case we conclude that the ensemble methods 
are the most suitable for fog-event classification problem, particu-
larly the GB and RF, which obtains the best results. It is easy to see 
that in both ensemble methods, the learners are tree structures, 
which behave good for fog-events classification. ADB with MLPs as 
learners produces a poorer behaviour in this problem.  

• Since the fog-event classification problem is highly unbalanced, 
several balancing techniques have been evaluated in order to 
determine what is the best combination. As a result, we conclude that 
balancing techniques do not condition the ML performance of the 
evaluated ML methods. CoNN is an undersampling method to avoid, 
since it produces a worsen of the result for all the methods consid-
ered. NCR with a SMT seems to be a good combination of under-
sampling and oversampling for the ML methods, but slightly 
improves the performance, except for CoNN.  

• We have carried out an analysis of nominal classifiers versus ordinal 
classifiers in this problem, finding out that ordinal version of the 
classifiers did not obtain good results for low-visibility classification. 
This indicates that taken into account the natural ordering in the 
classes does not contribute to improve the results obtained, and in 
this particular problem, ordinal classifiers are not a good option.  

• We have chosen 5 different classes according to the 5 different low- 
visibility categories considered in this application. We have shown 
that all ML methods struggle classifying classes 2 and 3. We found 
out that input variables for both classes are very similar, leading to 
misclassification of these samples. Improving the recall and F1 score 
metrics for these particular classes is still a challenge after the pre-
sent work, but it opens a room of opportunity. We suggest to intro-
duce new variables which allow a better separation of both classes. 

Finally, a note on the use of ML approaches versus NWM in fog 
events and low-visibility events prediction. As we have shown in this 
paper, ML approaches are able to obtain excellent results in terms of 
specific aspects of the event, for example, visibility prediction (as in our 
work). On the other hand, NWM usually analyze fog events in more 

Fig. 17. F1 score of the evaluated classification methods. We show all possible combination of classifiers and balancing techniques study. GB obtains the best F1 
score above 0.8 with almost all balancing techniques employed (blue bars). GNB obtains the worst results with F1 score below 0.6. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this article.) (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Table 13 
Recall per class for the best classification methods. Best GLMs in both ordinal and nominal version have been obtained fixing the hyperparamenter α to 1.  

Model UnderS. OverS. Recall 0 Recall 1 Recall 2 Recall 3 Recall 4 

GB NCR SMT 0.8772 0.7540 0.4762 0.3062 0.9426 
RF NCR SMT 0.8673 0.7834 0.4176 0.3103 0.9317 
Bagg TL – 0.8435 0.8202 0.3115 0.2150 0.9473 
GLMn NCR SMT 0.9544 0.6519 0.3408 0.2535 0.9530 
KNN TL – 0.7128 0.8022 0.2550 0.1784 0.9493 
DT NCR – 0.7940 0.7205 0.3273 0.2758 0.8989 
GLMo NCR SMT 0.7900 0.5784 0.3137 0.1764 0.9609 
AB – SMT 0.8633 0.4722 0.2957 0.3265 0.9189 
GNB NCR – 0.9960 0.1805 0.2415 0.1034 0.9550  
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details and from different aspects related to physical properties of the 
event, but in many occasions the accuracy of NWM in visibility pre-
diction is not so good as ML methods, as discussed in the introduction of 
the paper. Note that, in short prediction time-horizons ML approaches 
are able to exploit their ability to extract information from data, whereas 
NWM usually fail or do not reproduce the event with enough accuracy to 
provide a reliable prediction of the visibility event in the short-time. 
Another important aspect of ML approaches which must be taken into 
account is that the proposed ML algorithms may be run in a general 
purpose PC or even laptop, whereas NWM, even meso-scale models, are 
difficult to be tuned and very difficult to be run in a PC, since they 
usually require data assimilation and they are computationally 
demanding. 

5. Conclusions 

Fog events prediction is a significant task in aviation, road transport 
and several of the daily life activities in both urban and rural areas. 
Forecasting fog events is difficult due to its intermittent nature 
depending on the vertical mixing of atmospheric air with surface 
moisture which can change in very short timescales such as seconds. 
However, its proper prediction is extremely important as proper pre-
diction of fog events can enable people to be better prepared to avoid 
delays for work and in many cases avoiding traffic jams, prevention of 
accidents at airports etc. In this paper we have carried out a compre-
hensive comparison of different ML classification and regression 
methods in a problem of hourly low-visibility events prediction due to 
fog. We have considered a problem of hill-fog prediction through its 
related low-visibility events, using visibility and atmospheric predictive 
variables from a motor-road in Lugo, Spain. ML classification and 
regression techniques have been compared in this particular problem, 
considering different types of input data normalization, feature reduc-
tion through a PCA algorithm and, in classification problems, including 
different balancing techniques (oversampling and undersampling ap-
proaches). In the analysis carried out with ML classifiers, we have shown 
that nominal classification techniques obtain better results for this 

problem than ordinal classification. The unbalanced nature of the clas-
sification problem is an important issue to obtain competitive results in 
this prediction problem with classification techniques, though the 
Gradient Boosting with oversampling has obtained the best results 
among all ML classifiers analyzed. On the other hand, regression tech-
niques have the advantage of not needing any re-balancing techniques, 
obtaining accurate prediction results with absolute errors around 350 m 
in the best results obtained with a Multi-Layer Perceptron. 
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zation, Methodology, Software, Validation, Investigation, Resources, 
Writing – original draft, Writing – review & editing, Visualization. C. 
Casanova-Mateo: Conceptualization, Resources, Supervision. S. Ghi-
mire: Data curation, Writing – review & editing. E. Cerro-Prada: Re-
sources, Data curation. P.A. Gutierrez: Investigation, Project 
administration, Funding acquisition. R.C. Deo: Data curation, Writing – 
review & editing, Funding acquisition. S. Salcedo-Sanz: Methodology, 
Validation, Investigation, Resources, Supervision, Project administra-
tion, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This research has been partially supported by Spanish Ministry of 
Science and Innovation (MICINN), through Project Number PID2020- 
115454GB-C21.  

Appendix A. Acronyms 

Table A.1 shows a list of alphabetically ordered acronyms that appear in this paper.  

Fig. 18. Recall and F1 score per classes and total of the best classifiers methods.  
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Table A.1 
List of acronyms.  

Acronym Full name 

AB Adaboost 
ACC Accuracy 
ANN Artificial Neural Network 
Bagg Bagging 
CoNN Condensed Nearest Neighbours 
DT Decision Tree 
ELM Extreme Learning Machines 
EREG ElasticNet Regression 
F1 F1-score 
GB Gradient Boosting 
GLM Generalized Linear Model 
GNB Gaussian Naïve Bayes 
GP Gaussian Process 
IQR Interquartile range 
KNN K-nearest neighbours 
LREG Linear Regression 
MAE Mean Absolute Error 
ML Machine Learning 
MLP Multi-Layer perceptron 
NCR Neighbourhood Cleaning Rule 
NWP Numerical Weather Prediction 
PCA Principal Component Analysis 
QWK Quadratic Weighted Kappa 
R2 Coefficient of Determination 
REC Recall 
RF Random Forest 
RMSE Root Mean Squared Error 
RUS Random UnderSampler 
SGD Stochastic Gradient Descent 
SMT SMOTE 
SVM Support Vector Machine 
SVR Support Vector Regressions 
TL Tomek Links 
TN True Negatives 
TP True Positives  
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