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a b s t r a c t

In this paper, a spectral approach is used to formulate and solve robust optimal control
problems for compartmental epidemic models, allowing the uncertainty propagation
through the optimal control model to be represented by a polynomial expansion of
its stochastic state variables. More specifically, a statistical moment-based polynomial
chaos expansion is employed. The spectral expansion of the stochastic state variables
allows the computation of their main statistics to be carried out, resulting in a compact
and efficient representation of the variability of the optimal control model with respect
to its random parameters. The proposed robust formulation provides the designers
of the optimal control strategy of the epidemic model the capability to increase the
predictability of the results by simply adding upper bounds on the variability of the state
variables. Moreover, this approach yields a way to efficiently estimate the probability
distributions of the stochastic state variables and conduct a global sensitivity analysis.
To show the practical implementation of the proposed approach, a mathematical
model of COVID-19 transmission is considered. The numerical results show that the
spectral approach proposed to formulate and solve robust optimal control problems for
compartmental epidemic models provides healthcare systems with a valuable tool to
mitigate and control the impact of infectious diseases.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Optimal control is a research field with many applications in economics [1], logistics [2], transportation [3], engi-
eering [4], biology [5], and biomedicine [6]. It deals with the optimization of some performance index imposed on
n underlying dynamical system subject to constraints. In this framework, controls are functions of time that describe
llowable external influences on the system that induce a system response and, based on this response, an objective
unctional is evaluated that is considered as a measure of the performance of the system’s behavior. Optimal control
ddresses the question of finding the controls that steer the dynamical system from an initial to a final state while
ptimizing this objective functional.
External disturbances and model uncertainties affect the solutions of optimal control problems. However, they are

ifficult to include in a deterministic mathematical description of the system. Stochastic models must be used, in which
he dynamical system is described by a set of stochastic Ordinary Differential Equations (ODE), which, in this paper, are
epresented by a set of ODE with random parameters. Optimal Control Problems (OCP) for this class of systems, called
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stochastic dynamical systems, are usually referred to as stochastic optimal control problems. Stochastic optimal control
problems require robust solutions to be found, that is, solutions in which the control task is accomplished independently
of the realization of the random parameters. This entails including statistical moments and probabilities of events in the
constraints or the objective functional of stochastic optimal control problems, converting them into robust optimal control
problems.

There are different methods for dealing with robust OCP, such as integral averaging [7], adjustable uncertainty sets [8],
daptive dynamic programming [9], and neural networks [10]. In this paper, a spectral approach is employed to formulate
nd solve robust OCP for compartmental epidemic models, which allows the uncertainty propagation through the optimal
ontrol model to be represented by means of a polynomial expansion of its stochastic state variables. In particular, a
olynomial Chaos Expansion (PCE) [11] is used to convert the robust OCP with stochastic ODE and stochastic constraints
nto an equivalent deterministic OCP with deterministic ODE and deterministic constraints. The PCE is a probabilistic
ethod that consists in the projection of the optimal control model on a basis of orthogonal stochastic polynomials in

he random parameters. This stochastic projection provides a compact and efficient representation of the variability of
he optimal control model with respect to the random parameters.

The mitigation and control of the spread of an epidemic disease has all the characteristics of an OCP. The aim
s to minimize some objective functional usually related to the number of infectious individuals or the cost of the
harmacological control measures of the disease, while the underlying dynamical system describes the progression of
he disease transmission and its interactions with the mitigation and control strategies. A paradigmatic case is to find the
ptimal vaccination schedule when vaccination supplies are limited. In this paper, an objective functional that combines
he number of infected individuals with the vaccination cost is considered in the presence of an upper bound on the
aily number of vaccinated people expressed as a percentage of the susceptible individuals. The goal is to determine the
ptimal vaccination strategy.
One of the main approaches to the mathematical modeling of epidemic diseases consist in describing the disease

ransmission by means of compartmental models, in which the population is subdivided into compartments [12]. In
he last two decades, the analysis of the evolution of different epidemic outbreaks has relied on these models [13–16].
ore recently, various research works based on compartmental epidemic models have been carried out to study different
spects of the spread, mitigation, and control of the COVID-19 disease. They include a classification of models [17], an
stimation of the size of the epidemic [18], a study of the effects of pharmacological measures [19], and the analysis of
he spread of the COVID-19 disease focused on the decrease in susceptible individuals [20], the impact of superspreaders
21], and the different non-pharmaceutical containment and mitigation strategies, such as testing, contact tracing, and
ocial distancing [22,23].
The optimal control approach has been widely used to study compartmental epidemic models. For the sake of brevity,

he following recent works are highlighted. A nonlinear epidemic model on complex networks is introduced in [24] in
rder to better understand and utilize the quarantine control when encountering outbreaks of infectious diseases. In [25],
n isolation problem for a specific epidemic model describing the spread of AIDS is explicitly solved by means of optimal
mpulse control. A reaction–diffusion model is studied in [26] to derive an efficient vaccination strategy for influenza
utbreaks. In [27], a COVID-19 disease spread model with free terminal optimal time is defined in which the goal is
o reduce the size of susceptible, infected, exposed, and asymptomatic groups in order to consequently eradicate the
nfection by using quarantine and treatment of infected people. In [28], the effects of non-pharmacological strategies
uch as quarantine, isolation, and public health education are studied as time-dependent interventions to ascertain their
ontributions to the transmission dynamics of COVID-19. Optimal control strategies for the Zika infection with mutations
hat cause defects in the newly birth for infected pregnant woman are formulated in [29].

Fewer works have been devoted to the robust optimal control of compartmental epidemic models. In [30], the
volutionary dynamics of HIV in the presence of drug therapy is modeled by means of a class of positive systems in
hich the control signal enters bilinearly with the state. In [31], a general heterogeneous susceptible–infected–susceptible
odel is considered by taking into account noisy transition rates. In [32], the optimal policy for controlling the COVID-
9 epidemic dynamics using both lockdown and detection intervention levers is identified, which takes into account
he trade-off between the sanitary and the socio-economic cost of the pandemic, together with the limited capacity of
ntensive care units. In [33], a co-infection model is developed for human papillomavirus and Chlamydia trachomatis with
ost-effectiveness optimal control analysis.
In this paper, the problem of finding optimal control strategies for compartmental models in epidemiology is studied.

he problem is modeled as a robust optimal control problem, and a spectral approach is used to represent the uncertainty
ropagation through the optimal control epidemic model using its PCE. More specifically, the statistical moment-based
CE introduced in [34] is employed as a surrogate model of the compartments of the epidemic model, in which a spectral
xpansion of the stochastic state variables is used, which permits the computation of their main statistics to be carried
ut in terms of the deterministic state variables. The availability of these statistics allows the robust formulation of the
tochastic OCP to be solved. This problem is reformulated as a deterministic OCP with deterministic ODE and deterministic
onstraints, and is numerically solved using a direct transcription technique. More specifically, the Hermite–Simpson
ollocation method [35] is employed. The resulting Nonlinear Programming (NLP) problem is solved using the NLP solver
POPT [36] with the AMPL interface.

The proposed robust formulation of the OCP provides the designers of the strategy of the optimal control epidemic
odel the capability to increase the predictability of the results by simply adding upper bounds on the variability of the
2
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state variables. Furthermore, the probability distributions of the stochastic state variables can be efficiently estimated
and a global sensitivity analysis, based on the variance of the random parameters of the optimal control model, can be
conducted, with the goal of determining which random parameters have the greatest impact on the variability of the state
variables at each time instant and at a low computational cost.

To show the effectiveness of the proposed approach, the mathematical model of the SARS-CoV-2 virus transmission
ynamics introduced in [37] and modified in [38] is considered, which includes a vaccination strategy. In particular,
ssuming the implementation of a vaccination plan with a constraint on the daily available vaccines, the effects of the
ncertainty in the implementation of social distancing measures and the testing of susceptible individuals are quantified
ith the aim of finding the optimal vaccination strategy. The results of various numerical experiments show that the
pectral approach to the robust OCP formulation of compartmental epidemic models provides healthcare systems with a
aluable tool to mitigate and control the impact of infectious diseases.
This paper is organized as follows. In Section 2, starting from the definition of a continuous deterministic OCP, in

hich the presence of uncertainties in some of its parameters is assumed, the general formulation of the robust OCP
s presented. The PCE technique, which is used to represent the propagation of these uncertainties through the optimal
ontrol model, is then introduced in Section 3. The methodology employed to compute the main statistics, reformulate
he robust OCP, estimate the distributions of the stochastic state variables, and conduct a global sensitivity analysis
s described in Section 4. The reformulation of the robust OCP as a deterministic OCP through the PCE technique is
resented in Section 5. The mathematical model of the SARS-CoV-2 virus transmission, used to show the effectiveness of
he proposed procedure, is described in Section 6. The robust optimal control of COVID-19 transmission dynamics with
ixed state-control constraint is formulated in Section 7. In Section 8, the results of several numerical experiments are

eported and analyzed. Finally, some conclusions are drawn in Section 9.

. Robust optimal control

In this section, following [39], the formulation of the robust OCP considered in this paper is presented, which is based
n the definition of a deterministic continuous OCP.

.1. Statement of the deterministic optimal control problem

The deterministic OCP considered in this paper can be stated as follows:

min
u(t)

J (x(t),u(t)) = M(x(tF )) +

∫ tF

tI

L(x(t),u(t)) dt, (1a)

subject to:
ẋ(t) = f(x(t),u(t)), (1b)
u(t) · x(t) ≤ 0, (1c)
x(tI ) = xI , x(tF ) = xF , (1d)

where t denotes time, x(t) is the vector of state variables, and u(t) is the vector of control variables. The initial and final
times are denoted by tI and tF , and xI and xF represent the vector of initial and final states, respectively. The objective
functional J (·) in (1a) is given in Bolza form, that is, it is expressed as a combination of a Mayer term M(·), which
represents a terminal cost, and a Lagrange term L(·), which represents a running cost. The set of differential equations that
represents the dynamical system is described by Eq. (1b), Eq. (1c) denotes the so-called mixed state-control constraints,
and the initial and final conditions, that is, the boundary conditions, are represented by Eq. (1d).

Note that, without loss of generality, the objective functional J (·) can be formulated in Mayer form, since the Lagrange
term can be transformed into a Mayer term by introducing a new state variable, xM(t), and adding a new differential
equation together with its corresponding initial condition, as follows:

ẋM(t) = L(x(t),u(t)), (2a)
xM(tI ) = 0. (2b)

Then, the Lagrange term in the objective functional (1a) can be replaced by the term xM(tF ).

2.2. Numerical resolution of the deterministic optimal control problem

In general, it is very difficult to find an analytical solution to a nonlinear OCP. Thus, the common practice is to use
numerical methods to obtain solutions. In this work, a direct numerical method is employed to transcribe the deterministic
OCP defined in (1) into a NLP problem. More specifically, the Hermite–Simpson direct collocation method is used [35].
The set of constraints of the resulting NLP problem includes the Hermite–Simpson system constraints that correspond to
the differential constraint (1b) and the discretized versions of the other constraints of the OCP. They include the mixed
state-control constraints (1c) and the boundary conditions (1d). To solve the resulting NLP problem, the open source IPOPT

solver [36] with the AMPL interface has been employed.

3
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2.3. Statement of the stochastic optimal control problem

Let (Ω,Λ,Γ ) be a probability space, where Ω is the space of events, Λ is a σ -algebra, and Γ is a probability measure.
Then, if uncertainties are to be taken into account, a probabilistic version of the deterministic OCP defined in (1) must be
considered, which can be stated as follows:

min
u(t)

J (x(t, ξ),u(t), ξ) (3a)

subject to:
ẋ(t, ξ) = f(x(t, ξ),u(t), ξ) a.s., (3b)
x(t, ξ) · u(t) ≤ 0 a.s., (3c)
x(tI , ξ) = xI , x(tF , ξ) = xF a.s., (3d)

where ξ ∈ Ω denotes the vector of random parameters that describe the uncertainties, and the rest of the functions and
variables are defined as in (1). Thus, the objective functional, the differential equations, and the constraints functions in
(3) are stochastic functions. Note that, in this formulation, the control variables u(t) remain deterministic, while the state
variables x(t, ξ) are functions of both the time t and the vector of random variables ξ, and the stochastic relations are
assumed to be satisfied almost surely (a.s.).

2.4. Statement of the robust optimal control problem

A robust version of the OCP stated in (1) can be derived from the stochastic OCP defined in (3). On the one hand, the
robustness of the objective functional (1a) can be achieved by considering a weighted sum of the mean value and the
standard deviation of the stochastic objective functional (3a). On the other hand, the robustness of the mixed state-control
constraints (1c) and the boundary values (1d) can be modeled by splitting the mean and standard deviation conditions.
Thus, the mean values of the stochastic constraints (3c) and the boundary conditions (3d) are forced to satisfy the same
requirements stated in the deterministic OCP defined in (1), whereas the standard deviation of these stochastic constraints
and boundary conditions are forced to satisfy the upper bounds specified by the designers of the optimal control model.

Thus, the robust OCP considered in this work can be stated as follows:

min
u(t)

µ (J (x(t, ξ),u(t), ξ))+ κ0 · σ (J (x(t, ξ),u(t), ξ)) , (4a)

subject to:
ẋ(t, ξ) = f(x(t, ξ),u(t), ξ) a.s., (4b)
u(t) · µ (x(t, ξ)) ≤ 0, σ (x(t, ξ)) ≤ εS, (4c)
µ (x(tI , ξ)) = xI , σ (x(tI , ξ)) ≤ εI , µ (x(tF , ξ)) = xF , σ (x(tF , ξ)) ≤ εF , (4d)

here µ(·) and σ (·) denote the expected value and the standard deviation operators, respectively, and the remaining
ariables and functions are defined as in (1) and (3). As mentioned above, the constant coefficient κ0 in (4a) and the
onstant upper bounds εS , εI , and εF for the standard deviations in constraints (4c) and boundary conditions (4d), must
e specified by the designers of the optimal control model.

. Moment-based arbitrary polynomial chaos expansion

In this section, following [34], the technique used to model the propagation of the uncertainties through the stochastic
CP defined in (3) is presented.

.1. Polynomial chaos expansion

Let ξ = (ξ1, ξ2, . . . , ξNU ) be a vector of NU independent random variables in the probability space (Ω,Λ,Γ ) introduced
n Section 2.3. Then, a multi-dimensional polynomial expansion dependent on the random vector ξ can be defined to
epresent the vector of stochastic state variables x(t, ξ) of the stochastic OCP defined in (3).

In particular, from a theoretical point of view, the vector x(t, ξ) can be expressed as a linear combination of stochastic
ultivariate orthonormal polynomials Ψ k(ξ), such that

x(t, ξ) = x(t; ξ1, ξ2, . . . , ξNU ) =

∞∑
k=1

αk(t) · Ψ k(ξ1, ξ2, . . . , ξNU ), (5)
ith deterministic coefficients αk(t) [11].

4
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v

In practice, from a computational point of view, a truncated version of the expansion (5) must be considered. Thus,

ector x(t, ξ) can be approximated by a linear combination of NP stochastic multivariate orthonormal polynomials as
follows:

x(t, ξ) = x(t; ξ1, ξ2, . . . , ξNU ) ≈

NP∑
k=1

αk(t) · Ψ k(ξ1, ξ2, . . . , ξNU ). (6)

Each of the multivariate orthonormal polynomials Ψ k(ξ), k = 1, 2, . . . ,NP , in (6) can be built as a product of univariate
orthonormal polynomials ψ i

j (ξi), i = 1, 2, . . . ,NU , j = 1, 2, . . . , p, where index i refers to the random variable and index
j refers to the order of the univariate orthonormal polynomial.

For k = 1, 2, . . . ,NP , each polynomial Ψ k(ξ) of the expansion (6) can be calculated as

Ψ k(ξ) = Ψ k(ξ1, ξ2, . . . , ξNU ) =

NU∏
i=1

ψ i
Ii
k
(ξi), with

NU∑
i=1

I i
k ≤ NP ,

where the index matrix I i
k represents a graded lexicographic ordering, that is, the rows of the index matrix I i

k indicate
which order of each univariate polynomial contributes to a particular multivariate polynomial. Note that, if a full tensor
product is used, the number of terms NP in (6), for an expansion of order p, is

NP =
(NU + p)!
NU !p!

.

The orthogonality condition implies that, for each univariate random variable ξi, i = 1, 2, . . . ,NU , the corresponding
univariate orthonormal polynomials ψ i

j (ξi) for j = 1, 2, . . . , p with ψ i
0 = 1 must fulfill∫

ξi∈Ω

ψ i
m(ξi)ψ

i
n(ξi)dΓi(ξi) = δmn, for all m, n = 0, 1, . . . , p,

with δmn the Kronecker delta and where the nth orthonormal polynomial for each random variable ξi is defined by means
of its n + 1 coefficients pin,j as

ψ i
n(ξi) =

n∑
j=0

pin,jξ
j
i for n = 0, 1, . . . , p.

Due to the orthonormality of the polynomials, the coefficients αk(t), k = 1, 2, . . . ,NP , of the expansion (6) can be
obtained as

αk(t) =

∫
ξ∈Ω

x(t, ξ)Ψk(ξ)dΓ (ξ). (7)

In practice, integral (7) can be solved by means of Galerkin projection, collocation, or numerical integration, among others.
In this paper, a numerical integration based on the Gaussian quadrature rule has been employed.

3.2. Gaussian quadrature rule based on statistical moments

A Gaussian quadrature rule is a well-known approach that provides the collocation points ζ i and weights ωi, i =

1, 2, . . . , p, for the numerical integration of a univariate function f (ξ ) defined on a measure space and, thus, on a
probability space (Ω,Λ,Γ ). This Gaussian numerical integration gives an approximation of an integral of the form∫ d

c
f (ξ )dΓ (ξ ) ≈

p∑
i=1

ωif (ζ i).

Note that, for the sake of clarity of exposition, in this section the dependency of function f on time t has been omitted.
In case of multiple random variables, multivariate quadrature formulas can be obtained from one dimensional

quadrature rules. The most natural and straightforward extension of the one dimensional quadrature rules to the
multivariate quadrature case is the full tensor product quadrature rule. Given a vector of NU independent random variables
ξ = (ξ1, ξ2, . . . , ξNU ), the full tensor product quadrature formula for a multivariate function f (ξ) can be expressed as∫ d1

c1

· · ·

∫ dNU

cNU

f (ξ) dΓ (ξ) ≈

p1∑
i1=1

· · ·

pNU∑
iNU =1

f
(
ζ i1 , . . . , ζ

iNU
)(
ωi1 ⊗ · · · ⊗ ωiNU

)
. (8)

Note that, on the one hand, the optimal values of the collocation points and weights, and their corresponding
orthogonal polynomials basis, can be obtained for a large number of parametric distributions using the generalized
Polynomial Chaos (gPC) expansion method introduced in [11]. On the other hand, a more general approach is provided by
5
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the arbitrary Polynomial Chaos (aPC) expansion [40], which allows different kind of descriptors to be considered, including
data sets without a known parametric probability distribution.

Given a random variable ξ ∈ Ω , in the methodology proposed in [40], the PCE is obtained from the Hankel matrix of
oments, which can be defined as

M =

⎡⎢⎢⎣
µ0 µ1 · · · µp
µ1 µ2 · · · µp+1
...

...
. . .

...

µp µp+1 · · · µ2p

⎤⎥⎥⎦ ,
here the entry µk, k = 0, 1, . . . , 2p, denotes the kth raw statistical moment of random variable ξ . Since it is a positive
efinite matrix, a Cholesky decomposition of the Hankel matrix of the form M = RTR can be computed, where

R =

⎡⎢⎢⎣
r11 r12 · · · r1,p+1

r22 · · · r2,p+1

0
. . .

...

rp+1,p+1

⎤⎥⎥⎦ .
et the inverse of matrix R be

R−1
=

⎡⎢⎢⎣
s11 s12 · · · s1,p+1

s22 · · · s2,p+1

0
. . .

...

sp+1,p+1

⎤⎥⎥⎦ .
hen, as shown in [41], the entries of matrix R−1 form an orthogonal system of polynomials ψj(ξ ) such that

ψj(ξ ) = s0jξ 0 + s1jξ 1 + s2jξ 2 + · · · + sjjξ j, j = 0, 1, . . . , p.

In order to avoid the inversion of the matrix R, explicit analytic formulas can be derived to obtain the polynomial
oefficients sij of the orthogonal polynomials ψj directly from the entries rij of the matrix R. In particular, the elements rij
an be used to determine the coefficients aj and bj of the following three-term recurrence relation

ξψj−1(ξ ) = bj−1ψj−2(ξ ) + ajψj−1(ξ ) + bjψj(ξ ), j = 1, 2, . . . , p,

where ψ−1(ξ ) = 0 and ψ0(ξ ) = 1. More specifically, coefficients aj and bj can be expressed in terms of entries rij as
follows

aj =
rj,j+1

rj,j
−

rj−1,j

rj−1,j−1
and bj =

rj+1,j+1

rj,j
, j = 1, 2, . . . , p,

with r0,0 = 1 and r0,1 = 0.
The optimal collocation points and weights for the orthogonal polynomials ψj(ξ ) can be efficiently calculated using

the coefficients aj and bj. The above three-term recurrence relation can be rewritten by means of the positive definite
symmetric tri-diagonal Jacobi matrix

J =

⎡⎢⎢⎢⎢⎢⎢⎣

a1 b1
b1 a2 b2 0

b2 a3 b3
. . .

. . .
. . .

0 bp−2 ap−1 bp−1
bp−1 ap

⎤⎥⎥⎥⎥⎥⎥⎦ .

In this way, on the one hand, the roots of the polynomial of order p are obtained directly as the eigenvalues ζ i,
i = 1, 2, . . . , p, of matrix J . On the other hand, the weights can be calculated as

ωi = ν21,i,

where ν1,i, i = 1, 2, . . . , p, represents the first component of the normalized eigenvector corresponding to the ith
eigenvalue of matrix J .

Note that, when the number of random variables NU grows, the full tensor Gaussian quadrature rule (8) becomes
expensive from a computational point of view. The usual approach to overcome this drawback is to consider quadrature
rules based on sparse grids, which reduce significantly the number of nodes and weights, while keeping a reasonable
accuracy level. The most common sparse grid quadrature rule is the Smolyak quadrature rule based on sparse tensor
product spaces [42].
6
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4. Uncertainty quantification

One of the main advantages of the PCE approach is its computational efficiency in both calculating the statistics and
istributions of the optimal control model (3) and analyzing its sensitivity to the presence of uncertainties through the
urrogate model (6).

.1. Statistics of the state variables

Given the multi-dimensional polynomial expansion (6), the statistics of the stochastic vector of state variables x(t, ξ)
can be expressed in terms of the coefficients αk(t) in a straightforward manner. For example, the mean and variance of
the stochastic vector of state variables x(t, ξ) can be calculated using the following expressions

µx = α1(t) and σ 2
x =

NP∑
k=2

α2
k (t). (9)

Moreover, the quadrature rule described in Section 3.2 provides another simple and computationally efficient way to
calculate the statistics of x(t, ξ) by means of scalar products of vectors. In particular, the statistics of x(t, ξ) based on
the computation of its moments E

[
x(t, ξ)k

]
can be efficiently computed through the integration rule (8) since, for every

k ∈ N, the following equation holds

E
[
x(t, ξ)k

]
=

∫ b1

a1

· · ·

∫ bNU

aNU

(
x(t, ξ) − E

[
x(t, ξ)k−1]) dΓ (ξ).

For instance, the mean and variance of the stochastic vector of state variables x(t, ξ) can be obtained as

µx = x
(
t; ζ i1 , . . . , ζ iNU

)
· ω and σ 2

x =

(
x
(
t; ζ i1 , . . . , ζ iNU

)
− µx

)2
· ω, (10)

with i = 1, 2, . . . , p, and ω denoting the vector of Gaussian quadrature weights.

4.2. Distributions of the state variables

The surrogate model provided by the multi-dimensional polynomial expansion (6) can be employed to estimate, at
a low computational cost, the PDF of the stochastic vector of state variables x(t, ξ). First, a data smoothing problem is
formulated and then a kernel density estimation approach [43] is conducted, in which the data are extracted from the
surrogate model. The Cumulative Density Function (CDF) of the stochastic vector of state variables x(t, ξ) can be estimated
in a similar way.

4.3. Sensitivity analysis

The multi-dimensional polynomial expansion (6) can be also employed to perform a global sensitivity analysis based
on the variance of the stochastic vector of state variables x(t, ξ), with the aim of quantifying how much of the variance
of x(t, ξ) is explained by the variance of each random variable. Under the assumptions that the stochastic vector of
state variables x(t, ξ) is square integrable and the components of the vector of random variables ξ are independent, this
analysis is based on the calculation of the so-called Sobol indices [44]. Sobol’ indices can be also directly obtained from
the coefficients αk(t) of the aPC expansion (6). More specifically, the Sobol’ index Si(t) for the ith component of the vector
of random variables ξ can be computed, following [45], as

Si(t) =
1
σ 2
x

∑
k∈Ji,k̸=0

α2
k(t),

here σ 2
x is the variance calculated in (9) and Ji denotes the set of multi-indices such that the computation of the Sobol’

ndex Si(t) only includes terms that depend on the random variable ξi, i = 1, 2, . . . ,NU , namely,

Ji =
{
k ∈ NNU : |k| ≤ NP | ki > 0, kj̸=i = 0

}
.

5. Reformulation of the robust optimal control problem

Following [39], the numerical resolution of the robust OCP stated in (4) is based on the reformulation of the objective
functional (4a), the stochastic differential Eqs. (4b), the constraints (4c), and the boundary conditions (4d) in terms of the
aPC expansion described in Section 3.
7
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Let ζ i1 , ζ i2 , . . . , ζ iNU , i = 1, 2, . . . , p, be the set of nodes provided by the aPC expansion of order p of the stochastic
tate vector x(t, ξ) with respect to the random vector ξ = (ξ1, ξ2, . . . , ξNU ). Then, the robust OCP defined in (4) can be
ewritten as follows:

min
u(t)

αM1 (tF ) + κ0 ·

( NP∑
k=2

α2
Mk

(tF )

)1/2

, (11a)

subject to:
ẋ1(t, ξ1) = f(x(t, ξ1),u(t), ξ1), (11b)
ẋ2(t, ξ2) = f(x(t, ξ2),u(t), ξ2), (11c)
· · ·

ẋp(t, ξp) = f(x(t, ξp),u(t), ξp), (11d)

u(t) · α1(t) ≤ 0,

( NP∑
k=2

α2
k (t)

)1/2

≤ εS, (11e)

α1(tI ) = xI ,

( NP∑
k=2

α2
k (tI )

)1/2

≤ εI , α1(tF ) = xF ,

( NP∑
k=2

α2
k (tF )

)1/2

≤ εF , (11f)

here ξi = (ζ i1 , ζ i2 , . . . , ζ iNU ), i = 1, 2 . . . , p, and αMk (t), k = 1, 2, . . . ,NP , are the coefficients of the aPC expansion of
he state variable xM introduced in (2).

Note that from (9) and (10) it is easy to see that the terms αM1 (tF ),
∑NP

k=2 α
2
Mk

(tF ), α1(t), and
∑NP

k=2 α
2
k (t) only

epend on the deterministic state vector x(t). Thus, the optimal control problem (11) is a deterministic OCP, which can
e numerically solved by using the techniques described in Section 2.2. More specifically, the computational strategy
mployed to calculate the optimal controls u∗(t) and state variables x∗(t, ξ) of the robust OCP (4) is schematized in Fig. 1.

. Mathematical model of COVID-19 transmission

The availability of various effective COVID-19 vaccines, which represent an effective pharmacological measure against
his pandemic, permits new strategies to be implemented, in which non-pharmaceutical public health measures and
accination are combined. A mathematical model of the SARS-CoV-2 virus transmission dynamics with vaccination
trategy is considered in this paper, which takes into account the testing of susceptible individuals and the implementation
f social distancing measures. There are inherent uncertainties in the sensitivity and specificity of COVID-19 tests, as well
s about the degree of application of social distancing measures, that should be taken into consideration in order to obtain
more realistic model. However, the presence of uncertainties in the application of these non-pharmacological strategies
esults in a complex stochastic nonlinear model that is difficult to solve.

A modified SEIR model, whose parameters are adjusted using data from the World Health Organization (WHO), is
onsidered in this work following [37]. This model, schematically shown in Fig. 2, is denoted as SEIsIaQR and has 6
ompartments. It has been shown in [37] that the SEIsIaQR model is non-chaotic and asymptotically stable and has a
nique equilibrium state. It is represented by the following set of Ordinary Differential Equations (ODE):

Ṡ(t) = −
θ

Tinf

Is(t) + αIa(t)
N(t)

S(t) − v(t)S(t), (12a)

Ė(t) =
θ

Tinf

Is(t) + αIa(t)
N(t)

S(t) −
E(t)
Tlat

, (12b)

İs(t) = (1 − β)
E(t)
Tlat

−

(
κs +

1
Tinf

)
Is(t), (12c)

İa(t) = β
E(t)
Tlat

−

(
κa +

1
Tinf

)
Ia(t), (12d)

Q̇ (t) = κsIs(t) + κaIa(t) −
Q (t)
Tser

, (12e)

Ṙ(t) =
Is(t) + Ia(t)

Tinf
+

Q (t)
Tser

+ v(t)S(t). (12f)

Note that, following [38] a vaccination term has been included as a control variable. Thus, the dynamical system (12) has
7 state variables, 1 control input, and 8 parameters.

The state variables of the dynamical system are S, E, Is, Ia, Q , and R, which represent the number of susceptible,
xposed, symptomatic, asymptomatic, isolated, and recovered individuals, respectively, and N , which represents the total
8
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Fig. 1. Computational strategy for the resolution of the robust OCP stated in (4).

population. Thus, the following condition must be satisfied:

N(t) = S(t) + E(t) + Is(t) + Ia(t) + Q (t) + R(t), for all t ∈ [0, tF ],

with tF denoting the final time considered in the ODE system.
The control variable of the system is v(t), which represents the daily vaccination rate. It ranges from 0 to vU , where

coefficient vU is an upper bound that must be specified by the designers of the optimal control model. Thus, the vaccination
strategy in model (12) is defined by the term v(t)S(t).

The parameters in model (12) that are independent of the mitigation strategies are the mean serial time interval, Tser ,
the mean incubation period, Tlat , the infectious period, Tinf = Tser −Tlat , the ratio between infectiousness of asymptomatic
and symptomatic individuals, α, and the population ratio that remains asymptomatic, β . These parameters have been set
at the same values as in [38].

The parameters in model (12) related to the use of non-pharmacological mitigation measures are the replication factor,
θ , the isolation rate of symptomatic individuals, κs, and the identification and isolation rate of asymptomatic individuals,
κa. Thus, assuming the availability of an effective vaccine and following [38], in this paper, an immunization term is added
to the model proposed in [37], a robust OCP is formulated, and the effects on the disease transmission of the uncertainty
in the mitigation measures represented by parameters θ , κs, and κa are quantified. In addition, surrogate models for the
compartments of the model (12) are computed, which are used to estimate the probability distributions of the stochastic
state variables. Furthermore, a global sensitivity analysis is performed to determine the random parameters that have the
greatest impact on the variability of the stochastic state variables.
9
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Fig. 2. Schematic representation of the SEIsIaQR compartmental model with vaccination strategy [38].

. Robust optimal control of COVID-19 transmission

Depending on the kind of objective functional considered and the constraints imposed, different strategies to control
he spread of COVID-19 represented by the model (12) can be defined. According to [46], the objective functional to be
inimized has been assumed to be a combination of the number of infectious individuals and the overall cost of the
accination during a fixed time period, that is,

J (Is(t), Ia(t), v(t)) =

∫ tF

tI

(
A · (Is(t) + Ia(t))+ v2(t)

)
dt, (13)

where A is a weighting parameter that must be specified by the designers of the optimal control model. Note that,
larger values of A give less importance to the vaccination cost. Additionally, following [47], an upper bound on the daily
available vaccines has been imposed. This limitation on the number of daily available vaccines must be introduced when
the vaccination time interval [tI , tF ] is large enough or the capability to vaccinate each day may dictate the need for a
constraint on the number of daily vaccinated people. Thus, the following constraint has been considered

v(t)S(t) ≤ V0, with t ∈ [tI , tF ], (14)

where parameter V0 denotes an upper bound on the number of daily vaccinated people. Note that expression (14) is
a mixed state-control constraint of the form (1c). Therefore, the robust optimal control of the SEIsIaQR compartmental
model (12) with mixed state-control constraint can be stated as follows:

min
v(t)

µ (J (Is(t, ξ), Ia(t, ξ), v(t), ξ))+ κ0 · σ (J (Is(t, ξ), Ia(t, ξ), v(t), ξ)) , (15a)

subject to:

Ṡ(t, ξ) = −
θ

Tinf

Is(t, ξ) + αIa(t, ξ)
N

S(t, ξ) − v(t)S(t, ξ) a.s., (15b)

Ė(t, ξ) =
θ

Tinf

Is(t, ξ) + αIa(t, ξ)
N

S(t, ξ) −
E(t, ξ)
Tlat

a.s., (15c)

İs(t, ξ) = (1 − β)
E(t, ξ)
Tlat

−

(
κs +

1
Tinf

)
Is(t, ξ) a.s., (15d)

İa(t, ξ) = β
E(t, ξ)
Tlat

−

(
κa +

1
Tinf

)
Ia(t, ξ) a.s., (15e)

Q̇ (t, ξ) = κsIs(t, ξ) + κaIa(t, ξ) −
Q (t, ξ)

a.s., (15f)

Tser

10
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Table 1
95% confidence intervals for the maximum percentages of individuals in compartments E, Is , Ia , and Q that correspond
to different values of the upper bound εS .

E Is Ia Q

εS = 10−3 (0.3006, 1.0356)% (0.0085, 0.0290)% (0.0445, 0.1777)% (0.2618, 0.8037)%
εS = 10−4 (0.2166, 0.5141)% (0.0059, 0.0144)% (0.0324, 0.0882)% (0.1795, 0.3963)%
εS = 10−5 (0.1970, 0.3197)% (0.0056, 0.0090)% (0.0301, 0.0549)% (0.1564, 0.2407)%

Ṙ(t, ξ) =
Is(t, ξ) + Ia(t, ξ)

Tinf
+

Q (t, ξ)
Tser

+ v(t)S(t, ξ) a.s., (15g)

v(t)µ (S(t))− V0 ≤ 0, σ (S(t)) ≤ εS, (15h)
µ (S(tI , ξ)) = SI , µ (E(tI , ξ)) = EI , µ (Is(tI , ξ)) = IsI , (15i)

µ (Ia(tI , ξ)) = IaI , µ (Q (tI , ξ)) = QI , µ (R(tI , ξ)) = RI , (15j)

σ (S(tI , ξ)) ≤ εI , σ (E(tI , ξ)) ≤ εI , σ (Is(tI , ξ)) ≤ εI , (15k)
σ (Ia(tI , ξ)) ≤ εI , σ (Q (tI , ξ)) ≤ εI , σ (R(tI , ξ)) ≤ εI , (15l)

where J (Is(t, ξ), Ia(t, ξ), v(t), ξ) is defined as in (13), v(t) ∈ [0, vU ], and ξ = (θ, κs, κa).

. Numerical experiments

Several numerical experiments are conducted to illustrate the application of the proposed spectral approach to the
esolution and uncertainty quantification of the robust OCP defined in (15). According to the numerical experiments
resented in [38], a non-dimensionalized version of the system (12) is considered in all these experiments, namely,
(t) = 1, and the following initial conditions are assumed at time instant t = 0:

(S0 = 0.84908, E0 = 0.00102, Is0 = 0.0002, Ia0 = 0.0008,Q0 = 0, R0 = 0.1489).

Moreover, it is assumed that, in order to develop immunity, two doses of vaccine are required and 95% vaccine efficacy,
with an upper bound of V0 = 0.0015 on the proportion of susceptible daily vaccinated people.

8.1. Case Study 1

In this case study, the upper bound on the daily vaccination rate is set to vU = 0.0035 and the numerical experiments
are solved assuming that social distancing actions are barely applied and the number of daily tests allow both infected
asymptomatic and symptomatic individuals to be identified and isolated. In particular, according to [38], θ is assumed to
follow a gamma distribution G(3500, 0.001), κs a beta distribution B(160, 10), and κa a beta distribution B(160, 160), as
shown in Fig. 3. Then, these three random parameters are modeled using an aPC expansion of order p = 4, the constant
bounds for the standard deviations in the boundary conditions (15k)–(15l) are set to εI = εF = 10−6, and the weighting
parameters κ0 and A are set to 1 and 0.01, respectively.

Three solutions for the robust OCP (15) have been computed using three different values for the upper bound εS .
The mean value of the state variables that describe each compartment of the model obtained in these solutions are
represented, together with a 95% confidence envelope, in Fig. 4, whereas the corresponding control variables, which
represent daily vaccination rates, are depicted in Fig. 5. The curves for εS = 10−3, εS = 10−4, and εS = 10−5 are shown in
red, blue, and green, respectively. For the sake of comparison, Figs. 4 and 5 also show in black dashed lines the solution
obtained by solving the deterministic version of the robust OCP (15), in which the random parameters ξ = (θ, κs, κa) have
been replaced by their mean values.

Fig. 4 shows that there are significant differences in the solutions obtained using the three different values for εS .
These differences are noticeable in both the shape of the curves and the dispersion of their envelopes. Lower values
of εS correspond to lower peaks and less dispersion of the corresponding curves. For example, Table 1 shows the 95%
confidence intervals for the maximum percentages of individuals in compartments E, Is, Ia, and Q . It is worth noting
that, in the worst-case scenario, the percentage of symptomatic individuals in a single day rises to 0.0290%, 0.0144%,
and 0.0090% for εS = 10−3, εS = 10−4, and εS = 10−5, respectively. While the percentage in the first case could place
considerable stress on the healthcare system, the last two cases could be managed by a sufficiently resilient healthcare
system.

Furthermore, this solution implies that (16.93, 17.59)%, (31.74, 32.55)%, and (41.42, 41.83)% of the susceptible
individuals become immune through vaccination and, after six months, the percentage of immunized individuals is
(39.77, 50.55)%, (50.65, 54.55)%, and (58.64, 59.88)% for εS = 10−3, εS = 10−4, and εS = 10−5, respectively. This last
estimation would be close to, but fall just short of, 66.7%, the estimated threshold for achieving herd immunity [48].

It is worth mentioning that the solution obtained by solving the deterministic version of the robust OCP (15) can be
regarded as a reference solution, which provides a tool to analyze the effects of the upper bound ε on the behavior of
S
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Fig. 3. PDF of the random parameters related to the use of non-pharmacological mitigation strategies.

he optimal control and state variables. It can be seen in Figs. 4 and 5 that, assuming εS = 10−3, the optimal control and
he mean of the optimal state variables obtained by solving the robust OCP are very similar to those obtained by solving
he deterministic OCP. Thus, the robust constraint on the variance of the sate variable S in (15h) is irrelevant if the value
f the upper bound εS is greater than or equal to 10−3.
In Fig. 6, the solution obtained using the proposed robust OCP-based methodology is compared to other two solutions.

irst, the ODE system (12) has been solved assuming a constant vaccination rate v(t) = 0.0025, for all t ∈ [tI , tF ], and
upposing that the parameters θ, κs, and κa are the same random parameters as those considered in the statement of the
obust OCP. The corresponding results, which are non-optimal solutions, are represented in green lines. Then, the same
tochastic ODE system has been solved removing the vaccination term v(t)S(t), namely setting the control input to zero.
he corresponding state variables of the uncontrolled system are represented in red lines. The optimal state variables
btained by solving the robust OCP with εS = 10−4 are represented in blue lines.
It can be seen in Fig. 6 that the implementation of a non-optimal vaccination strategy would imply a significant increase

n both the proportion of symptomatic and asymptomatic infected individuals and the dispersion of their corresponding
urves. Moreover, in the absence of a vaccination strategy, a noticeable outbreak of the infectious disease would occur,
hich could place considerable stress on the healthcare system.
Consider variable Is shown in Fig. 7, obtained in the solution to the numerical experiment with εS = 10−4. This variable

epresents the proportion of symptomatic individuals provided by the solution to this experiment. A Gaussian kernel
stimator is employed to approximate the distributions of Is at time instants t = 10 days, t = 50 days, and t = 90
ays. Fig. 8 shows the estimated PDF and CDF of these three random variables. Many different statistical analyses can
e conducted using these distributions. For example, at time instant t = 50 days, the probability that the percentage of
ymptomatic individuals will exceed 0.015% of the population, is 0.0200, whereas this probability rises to 0.7373 if the
xperiment is solved assuming εS = 10−3.
Similarly, a multivariate statistical analysis can be carried out. For instance, the correlation matrix for the distributions

f symptomatic individuals at time instants t = 10 days, t = 50 days, and t = 90 days, is(1.0000 0.8729 0.8662
0.8729 1.0000 0.8992
0.8662 0.8992 1.0000

)
.

hus, despite their separation in time, these three distributions show a strong linear association. Moreover, the estimated

oint PDF and CDF of variable Is at time instants t = 10 days and t = 50 days, which are shown in Fig. 9, allow conditional

12
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Fig. 4. Case Study 1. Mean values of the proportions of individuals in each compartment obtained for different values of the upper bound εS ,
ogether with the corresponding 95% confidence envelopes. The curves for εS = 10−3 , εS = 10−4 , and εS = 10−5 are shown in red, blue, and green,
espectively. Proportions in dashed black lines correspond to the solution of the associated deterministic OCP.

Fig. 5. Case Study 1. Daily vaccination rate v(t) obtained for different values of the upper bound εS . The curves for εS = 10−3 , εS = 10−4 , and
S = 10−5 are represented in red, blue, and green colors, respectively. The vaccination rate in dashed black line corresponds to the solution of the
ssociated deterministic OCP.
13
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Fig. 6. Case Study 1. Mean values of the proportions of individuals in each compartment, together with the corresponding 95% confidence envelopes,
obtained by solving the robust OCP with εS = 10−4 (blue), the ODE system with constant control (green), and the uncontrolled ODE system (red).

Fig. 7. Case Study 1. Time slices t = 10 days (red), t = 50 days (orange), and t = 90 days (green) of variable Is , and the corresponding 95%
confidence envelope in the solution of the experiment with εS = 10−4 .
14
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Fig. 8. Case Study 1. PDF and CDF of variable Is at time instants t = 10 days (red), t = 50 days (orange), and t = 90 days (green) in the solution
o the experiment with εS = 10−4 .

Fig. 9. Case Study 1. Joint PDF and CDF of variable Is obtained in the solution to the experiment with εS = 10−4 at time instants t = 10 days and
= 50 days.

robabilities to be calculated. For instance, assuming that at time instant t = 10 days, the observed percentage of
ymptomatic individuals of the population exceeds 0.008%, the probability that at time instant t = 50 days, the percentage
f symptomatic individuals exceeds 0.015% would be 0.9073.
The Sobol’ indices of all the state variables obtained in the solution to the experiments are plotted in Fig. 10, where

he indices computed assuming that εS = 10−3, εS = 10−4, and εS = 10−5 are shown using dashed, solid, and dotted
lines, respectively. The Sobol’ indices corresponding to the random parameters θ , κs, and κa are plotted in blue, orange,
and green colors, respectively. Note that, for all the state variables, the proportion of variance explained by the variance
of parameter κs is negligible, whereas between 60 and 80 percent of the variance is due to the variance of parameter κa.
Moreover, for all the state variables, there are no significant differences between the Sobol’ indices computed from the
models using the three different values of the upper bound εS . Thus, the proportion of variance of the state variables due
to the variance of each random parameter does not change when the upper bound εS changes.

8.2. Case Study 2

In this case study, the effects of a decrease in the rate of identification and isolation of asymptomatic individuals,
κa, on the behavior of the optimal control and state variables is analyzed. In particular, κa is assumed to follow a beta
distribution B(40, 160) instead of a beta distribution B(160, 160), as shown in Fig. 11. Moreover, the upper bound on the
daily vaccination rate is set to vU = 0.006. The rest of random and deterministic parameters are assumed to take the
same values as in Case Study 1.

Three solutions for the robust OCP (15) have been computed using three different values for the upper bound εS .
The mean value of the state variables that describe each compartment of the model obtained in these solutions are
represented, together with a 95% confidence envelope, in Fig. 12, whereas the corresponding control variables, which
represent daily vaccination rates, are depicted in Fig. 13. The curves for εS = 10−3, εS = 10−4, and εS = 10−5 are shown
in red, blue, and green, respectively.

It can be seen in Fig. 12 that a huge outbreak of the infectious disease occurs when the upper bound in (15h) is set to
εS = 10−3, which would imply an overwhelmed healthcare system and a dramatic proportion of deaths. This is due to the
fact that the corresponding optimal vaccination strategy shown in Fig. 13 is not enough to make up for the decrease in
the rate of identification and isolation of asymptomatic individuals. Therefore, in order to achieve a satisfactory optimal
15
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c

Fig. 10. Case Study 1. Sobol’ indices for the numerical experiments with εS = 10−3 (dashed), εS = 10−4 (solid), and εS = 10−5 (dotted). The
orresponding Sobol’ indices for the random parameters θ , κs , and κa are plotted in blue, orange, and green, respectively.

Fig. 11. PDFs of the identification and isolation rate of asymptomatic individuals, κa , for Case Study 1 (right) and Case Study 2 (left).
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Fig. 12. Case Study 2. Mean values of the proportions of individuals in each compartment obtained for different values of the upper bound εS ,
ogether with the corresponding 95% confidence envelopes. The curves for εS = 10−3 , εS = 10−4 , and εS = 10−5 are shown in red, blue, and green,
espectively.

Fig. 13. Case Study 2. Daily vaccination rate v(t) obtained for different values of the upper bound εS . The curves for εS = 10−3 , εS = 10−4 , and
S = 10−5 are represented in red, blue, and green colors, respectively.
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Table 2
Summary of the computational time and the iteration and function evaluation counts for each numerical experiment.

ct #ite #ofe #oge #ece #ice #ecje #icje #lhe

Case Study 1
εS = 10−3 102.16 s 35 48 36 48 48 36 36 35
εS = 10−4 106.51 s 36 52 37 52 52 37 37 36
εS = 10−5 95.62 s 33 50 34 50 50 34 34 33

Case Study 2
εS = 10−3 92.48 s 28 37 29 37 37 29 29 28
εS = 10−4 95.90 s 33 50 34 50 50 34 34 33
εS = 10−6 98.41 s 34 48 35 48 48 35 35 34

Case Study 3
A = 0.01 106.51 s 36 52 37 52 52 37 37 36
A = 0.10 102.08 s 34 51 35 51 51 35 35 34
A = 1.00 108.50 s 35 53 36 53 53 36 36 35

vaccination strategy, it is necessary to find a small enough threshold for the dispersion of the state variable S. Indeed,
t can be seen in Fig. 12 that the optimal vaccination strategies obtained for εS = 10−4 and εS = 10−5, which grow at
high rate during the first 60–80 days, are able to compensate the decrease in the rate of identification and isolation
f asymptomatic individuals. However, to obtain these optimal vaccination profiles it is necessary to increase the upper
ound on the daily vaccination rate vU . In fact, the robust OCP (15) is infeasible if κa is assumed to follow a beta distribution
(40, 160) but the upper bound on the daily vaccination rate remains the same as in Case Study 1, namely vU = 0.0035.
hese results supports the hypothesis that the early identification and isolation of asymptomatic individuals may reduce
he undesirable effects of the pandemic, while saving the amount of administered vaccines.

.3. Case Study 3

In this case study, the sensitivity of the robust OCP (15) to the weighting parameter A of the objective functional (13)
s analyzed. More specifically, three solutions of the robust OCP described in the Case Study 1 are computed using three
ifferent values of the weighting parameter A, namely 0.01, 0.1, and 1, and assuming that the upper bound in (15h) is set
o εS = 10−4.

The mean value of the state variables that describe each compartment of the model obtained in these solutions are
epresented, together with a 95% confidence envelope, in Fig. 14, whereas the corresponding control variables, which
epresent daily vaccination rates, are depicted in Fig. 15. The curves for A = 0.01, A = 0.1, and A = 1 are shown in blue,
ed, and green, respectively.

Fig. 14 shows that there are significant differences in the solutions obtained using the three different values of the
eighting parameter A. As already mentioned in Section 7, larger values of A give less importance to the vaccination
erm and more importance to the number of infectious individuals in minimizing the objective functional (13). Indeed, it
an be seen in Fig. 14 that larger values of A correspond to lower peaks of the curves of both infected symptomatic
nd asymptomatic individuals. Moreover, the larger the value of A, the lower the dispersion of the envelopes of the
orresponding curves.

.4. Computational aspects

The numerical experiments have been carried out on a desktop computer with a 4 GHz i7 processor with 16 GB RAM
nder Mac OS X 10.12 operating system. Each one of these numerical experiments consists of 39241 variables, 38880
quality constraints, and 540 inequality constraints.
Table 2 shows, for each numerical experiment, the computation time along with the number of iterations (#ite), the

umber of objective function evaluations (#ofe), the number of objective gradient evaluations (#oge), the number of
quality constraint evaluations (#ece), the number of inequality constraint evaluations (#ice), the number of equality
onstraint Jacobian evaluations (#ecje), the number of inequality constraint Jacobian evaluations (#icje), and the number
f Lagrangian Hessian evaluations (#lhe).

. Conclusions

In this paper, the formulation and numerical resolution of robust optimal control problems for compartmental epidemic
odels using a spectral approach have been presented. The proposed methodology has been described assuming the
resence of mixed state-control constraints in the optimal control problem. However, it could be extended to more general
ormulations with arbitrary algebraic constraints.

To illustrate the effectiveness of the proposed approach, a mathematical model of COVID-19 transmission that includes
vaccination strategy has been considered, in which uncertainties involving the replication factor and the isolation rates of
ymptomatic and asymptomatic individuals have been assumed in an effort to find a robust optimal vaccination strategy.
Three solutions to the robust optimal control problem have been computed using three different values of the upper
ound on the standard deviation of the proportion of susceptible individuals. In these numerical experiments several
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r

A

Fig. 14. Case Study 3. Mean values of the proportions of individuals in each compartment obtained for different values of the weighting parameter
A, together with the corresponding 95% confidence envelopes. The curves for A = 0.01, A = 0.1, and A = 1 are shown in blue, red, and green,
espectively.

Fig. 15. Case Study 3. Daily vaccination rate v(t) obtained for different values of the weighting parameter A. The curves for A = 0.01, A = 0.1, and
= 1 are represented in blue, red, and green colors, respectively.
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aspects of the solutions have been studied. First, the percentages of symptomatic individuals in a single day has been
estimated to assess if they place undue stress on the healthcare system. Then, the proportion of susceptible individuals that
would become immune through vaccination over a certain time period has been estimated to determine if herd immunity
could be reached or not in this period. The probability that, at a given time instant, the percentage of symptomatic
individuals exceeds a given threshold has been also calculated. In addition, a multivariate statistical analysis has also
been conducted, more specifically, the correlation matrix for the distributions of symptomatic individuals at given time
instants has been calculated. Furthermore, conditional probabilities have been estimated, in particular, the probability that
the percentage of symptomatic individuals at a given time instant exceeds a given threshold assuming that this percentage
exceeded another threshold at a preceding time instant. Finally, the Sobol’ indices have been calculated to understand
which random parameters have a greater influence on the variability of the state variables at a given time instant.

Additional numerical experiments have been conducted in order to assess the effects of a decrease in the rate of
dentification and isolation of asymptomatic individuals on the behavior of the optimal control and state variables.
oreover, the sensitivity of the robust optimal control problem to the weighting parameter of the objective functional
as also been analyzed.
The possibility of imposing an upper bound on the standard deviation of the state variables to reduce their variability,

nd the availability of several analysis tools, demonstrate that this methodology is a valuable tool to control and mitigate
he effects of infectious diseases.
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