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1. Introduction

Multistability is a common phenomenon in nature [1]. From a deter-
ministic point of view, it implies the existence of different asymptotic
states in phase space for different choices of initial conditions. The set
of all the initial conditions leading to one particular fate, such as an at-
tractor or an exit of the system, is called a basin of attraction or an es-
cape basin [2]. Since the early days of chaos theory, basins have been
the object of extensive study. For example, one of the many facets of dis-
sipative chaos is the fractal nature of the basin boundaries [3,4]. Along
the last decades, a plethora of different kinds of basins with special char-
acteristics has been reported: locally connected and disconnected [3],
Wada [5], riddled [6,7], intermingled [8], and so on. At the same time,
a variety of different tools has arisen to describe and characterize
them: the uncertainty exponent [9], the lacunarity [10], the basin stabil-
ity [11], the Wada parameter [12], the Wada index [13], etc.

Among them, the basin entropy [14] integrates some previous mea-
sures in a natural way. It is extremely useful to characterize the unpre-
dictability associated to the basins in different scientific contexts
[15-19]. The present paper analyzes the different kinds of basins
(Wada, riddled, intermingled, etc.) under the viewpoint of the basin en-
tropy. From this inquiry, a classification emerges where iconic types of
basins maximize one aspect of this measure. Needless to say, the basin
taxonomy proposed here is just one of the many that can be chosen at-
tending to different criteria. Nevertheless, it is striking to observe how
well the paradigmatic basins of attraction fit into this classification.
Probably, the main contribution of the present work is to provide a
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framework to understand better the unpredictability associated to the
different types of basins. Such framework is based on the basin entropy,
and goes beyond of the mere quantification of the unpredictability: it
lays the ground to a deeper understanding of concepts such as fractality
and smoothness, Wada boundaries, riddled basins, symmetry of the ba-
sins and more.

The paper is organized as follows. In Section 2, we review the basics
of the basin entropy, its definition and interpretation. Sections 3-5 are
devoted to analyze the role of each ingredient of the basin entropy
and its relation to some of the most common types of basins. We also
dissect the relation of the basin entropy with other relevant measure-
ments for each case. Finally, in Section 6, we summarize our results pro-
viding a rational classification of the basins according to their
unpredictability, as measured by the basin entropy.

2. Basics of the basin entropy

Since its appearance [20], the basin entropy has been prolifically
used in different contexts and with different aims. For instance, it is an
efficient alternative to the box-counting algorithm for estimating the
Hausdorff dimension [21]. It also has been successfully applied to the
detection of KAM islands in conservative systems [15]. Furthermore, it
has been applied to investigate features of spatial patterns emerging
in networks with competing species, using a model inspired in the
rock-paper-scissors game [17].

Among other purposes, the basin entropy has been a response to
solve the vagueness of some affirmations concerning the unpredictabil-
ity associated to either basins of attraction or exit basins. For example,
Wada basins were typically assumed to be more unpredictable than frac-
tal basins without the Wada property [22]. Certainly, such kind of
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statements could have been received a more rigorous consideration.
Precisely, these considerations lead to a central question: how can we
quantify the intuitive notion of the unpredictability associated to the ba-
sins of attraction? The basin entropy provides some answers.

Here, we will sketch the definition of the basin entropy and some of
the main results explained in [20]. The basins of attraction can be con-
sidered as a coloring of the phase space where each initial condition is
matched to a color corresponding to an attractor. For the definition of
the basin entropy, we use a covering of size ¢ of the basins. The propor-
tion of colors in each e-ball defines the probability associated to each
color p;. Then, the Gibbs entropy of each ball can be computed as S; =
— > Na,p; log p;, where N, is the number of different colors in the
basin. The basin entropy is defined as the average of the Gibbs entropy
for all balls S, = (S;).

Although computing the basin entropy requires no extra assump-
tions but just applying the instructions of the previous paragraph, we
can delve deeper into its meaning with the following analysis. Using
the definition of the box-counting dimension, the number of &-balls cov-
ering a phase space of dimension D grows as N = nsP. This number, for
the covering of a basin boundary of dimension Dy, grows as Ny = mg™.
Also, we can assume that the basins are equally distributed around their
boundaries with identical probabilities p,. The entropy of an &-ball in
such a boundary is S; = — log my, where my, > 2 refers to the number
of basins separated by the boundary. The sum of all S; for the
boundary k is equal to Ny log my. Bringing everything back together,
we obtain the basin entropy

Kmax

n
Sp=2_ Wkgak log (my), (1)

k=1

where oy, = D — Dy is the uncertainty exponent of the k boundary. As
explained in [20], this expression reveals the main ingredients that
contribute to the basin entropy and therefore to the uncertainty
associated to the long-term prediction of the associated system. In the
following, we show the role of each of these ingredients in our attempt
to classify the most common types of basins of attraction found in non-
linear dynamics.

3. Uncertainty exponent: smoothness of the boundaries

The first obvious classification of basin boundaries is between
smooth and fractal. This distinction can be analyzed in terms of the
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uncertainty on a € neighborhood of an initial condition. If all the initial
conditions in its neighborhood lead to the same attractor, this initial
condition is called certain. If at least two initial conditions lead to dis-
tinct attractors, this is an uncertain initial condition. For an average
over the phase space, the ratio f of uncertain to the certain initial condi-
tions is a function of . The usual interpretation of f(€) is a measure of the
ignorance on the final state of initial conditions in the boundary. Smooth
basins are well behaved in the sense that, if the initial uncertainty ¢ is
decreased, f decreases proportionally. This is probably the expected be-
havior, but this is not what happens with fractal boundaries. In this case,
the ratio fdecreases as f~ =9 = &* being D the topological dimension
of the phase space and d the box-counting dimension of the basin
boundary. As a consequence, fractal boundaries have 0 < a<1, so one
might decrease the uncertainty of the initial conditions ¢ by a half (e.g.
doubling the resolution of the grid of points), and still get a ratio of un-
certain initial conditions f very similar to the original one. Indeed, in the
extreme cases when a=0, fremains constant for all the values of &. This
is exactly what happens for the case of riddled basins [6].

Therefore, the uncertainty exponent o measures the rate of growth
of the space occupied by the boundary at different magnification scales.
This parameter o does not only allows us to discern between smooth
and fractal boundaries, but also conveys information about how the
boundary fills the phase space. The closer « is to zero, the closer the
boundary is to fill completely the phase space. However, as we shall
see later, the uncertainty exponent fails to grasp other relevant aspects
of the basin boundaries.

The uncertainty exponent of each boundary appears explicitly in
Eq. (1), so the basin entropy also captures the scaling of the boundaries.
However, it can also provide an efficient test of fractality when the basin
is computed with at a single scale. The solution comes as a test [23] able
to distinguish between smooth boundaries and fractal basins. This test,
based on the basin entropy, cannot give information about the rate of
growth of the boundary, but can reveal the existence of structures visible
at a given resolution. The principle of detection is to compute the basin
entropy only at the boundary as accurately as possible with a ball of ra-
dius ¢. If the value lies within a theoretical interval, the boundary is
smooth. Otherwise, it means that it has structures below the scale ¢.

4. Lacunarity: connectedness of the basins

The factor ny/n of Eq. (1) can be identified with the size of the
boundaries, which is related to the concept of lacunarity [24],
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Fig. 1. Basins of attraction of the map z,, ; = z2 + c for parameters c = — 0.4849 + 0.4472i (left) and —0.4548 + 0.7688i (right). The two figures have fractal boundaries with the same

uncertainty exponent «=0.8.
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although it is not quite the same. To illustrate the meaning of the
lacunarity and its role in the basin entropy we can think of a simple
example. Assume we have two different systems, both with two
attractors Ny=2 and both with smooth basin boundaries, so that D=
1. The basin entropy can still be different if, for example, the basin of
an attractor is just a black disk or if it consists of N disks with the
same total area. As long as we use disks or other smooth shapes, we
would have the same uncertainty exponent av=1. Furthermore, if we
carefully keep the total area of all the disks unaltered, the basin
stability [11] would remain constant as well. Having just one disk
with area mR? means having a boundary of length | = 2nR, while
having N disks with total area mR? implies a perimeter I; = 2nR/v/N
for each disk. The total length of the boundary in this latter case can
grow indefinitely as we keep increasing the number of circles
Ir = Y1, I; = 2nRV/N. This difference in the uncertainty has its origin
in their different lacunarity.

For fractal boundaries, the lacunarity can be very different from one
basin to another. To investigate its role more in detail we will focus on
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basins with the same uncertainty exponent. For example, the Fatou
sets in Fig. 1(a) and (b) have this property, but one is a connected set
and the other one is disconnected. In Fig. 2(c), we use a colormap to
show the uncertainty exponent of Fatou sets with different values of
the complex parameter ¢, which produces a picture that resembles the
Mandelbrot set, as expected. We can observe that the same colors are
inside and outside the Mandelbrot set, meaning that the same values
of the uncertainty exponent « can be found for connected and discon-
nected sets, alike. Thus, the uncertainty exponent provides no informa-
tion about the connectivity of the basins, as stated for example in [25].
The Fatou sets depicted in Fig. 1 have the same uncertainty exponent
but different lacunarity. The sparse structure of the disconnected set in-
dicates a higher lacunarity than the connected set. Fig. 2(a) represents f
versus ¢ for the two basins in a log-log scale. Since the slope of the linear
fit estimates the uncertainty exponent, the parallel plots reveals the
same fractal dimension for the two examples. The lacunarity is some-
times interpreted as the intercept of the linear fit on the vertical axis.
This explains why the plot corresponding to the disconnected Fatou
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Fig. 2. (a) Uncertainty dimension calculation for both Fatou sets in Fig. 1. Both of them have the same uncertainty exponent (parallel curves) but their lacunarity is different. (b) Heat map
of the uncertainty exponent for different values of the complex parameter c for the Fatou sets. Although the uncertainty exponent is typically between 0 and 1, here it can take larger values
because we are dealing with Cantor-dust structures, as explained in the text. (c) Same as (b), but here the color represents the basin entropy. While for (b) many points inside and outside
the Mandelbrot set have the same color (same uncertainty exponent for connected and disconnected sets, alike), the basin entropy is clearly different for points that belong to the Man-
delbrot set. In panels (b) and (c), the values corresponding to the Fatou sets of Fig. 1(a) and (b) are represented as a circle (c = — 0.4849 + 0.4472i) and a cross (¢ = — 0.4548 + 0.7688i).
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Fig. 3. In (a), we reproduce the basins published in [26] that have the riddled property. In (b) we display the basins of the forced damped pendulum + 0.2 x + sin (x) = 1.3636 sin 0.5¢,
which is also riddled. While the two basins have the same uncertainty exponent, their fine structure clearly differs as can be observed from the figures.

with higher lacunarity (in red) is above the plot of the connected set (in
blue). The basin entropy is larger for the connected basin than for the
disconnected basin for all scales.

Although the lacunarity of the disconnected set is higher, the proba-
bility of landing in one of its islands is very small. Indeed, from a strictly
mathematical perspective, the basin entropy of all the disconnected
Fatou sets should be equal to zero, because they are zero Lebesgue mea-
sure sets (two-dimensional Cantor dusts) and the probability of ran-
domly landing exactly on a point belonging to them is exactly zero.
However, if we represent these disconnected Fatou sets with finite res-
olution, such as in Fig. 1(b), their basin entropy is different from zero
and it conveys some information about their structure. For this same
reason, the values of the basin entropy for the connected Fatou sets
are much larger than for the disconnected ones, as can be clearly seen
in Fig. 2(c).

In the previous example, both basins had the same uncertainty ex-
ponent although there was a topological distinction between connected
and disconnected boundaries. In Fig. 3, the two basins from different dy-
namical systems have an uncertainty exponent =0.! For both bound-
aries, the disconnected set fills all the phase space. Nonetheless, there
are striking differences in the texture of both basins.

The basin entropy is an average of the Gibbs entropy for boxes all
over the phase space. The restriction of this average to boxes on the
boundary is called the boundary basin entropy Spp. For riddled basins,
the boundary fills the phase space and both averages are the same: S,
= Spp. Still, the distribution of basins inside each box may vary
depending on the location of the box. Here we have to interpret the
lacunarity in a wider sense that also includes the distribution of the
basins inside each box. Fig. 3(a) was first described in Ref. [26] where
the authors have proved the riddled nature of the basins. The
computation of the basins of the forced damped pendulum in Fig. 3
(b) reveals riddled basins with an aspect very similar to white noise.
The basin entropy obtained for Fig. 3(a) is S, = 0.4 and S, = log 2 for
Fig. 3(b). This difference in the basin entropy between the two figures
reflects the fine structure of the basins that cannot be grasped with
the fractal dimension. The uncertainty is lower in one case due to the
asymmetry in the distribution of the basins of each attractor. Also, the

! In this article, =0 is considered a sufficient condition to decide if a basin is riddled,
see [4,6,7,26] for further discussions on this topic.

uncertainty is maximum in the case of the forced pendulum since the
value of the basin entropy is maximum (for two attractors).

5. Number of attractors and Wada property

The previous sections account for situations with two attractors, but
in multistable systems a large number of attractors with their corre-
sponding basins can coexist [27]. Furthermore, fractal geometry allows
for three or more basins to share a common boundary. Such situation
is often referred to as Wada basins, and many works have been devoted
to identify, prove and characterize the Wada property [12,28-30]. Its in-
terest resides precisely in the particular uncertainty of these basins: any
deviation of an initial condition lying in a Wada boundary can evolve
into any of the three or more different fates of the system. This unique
feature provokes an increase of the basin entropy since clearly the un-
certainty grows when the number of different attractors increases.

The merging method [28], one of the algorithms used to detect
Wada basins, provides some insights into the relation of the number
of attractors and the basin entropy. In Fig. 4(a), the points on the top
and its corresponding fitting line (both in red), show the basin entropy
for the Newton fractal with ten roots, i.e., ten different basins. Following
the procedure described in [28], we have merged the basins one by one,
so initially we had ten basins and at the end we only had two basins. A
possible result of this merging process is shown in the basins of Fig. 4
(b). Interestingly, Wada boundaries remain unaltered by this merging
procedure, so the only difference between the merged versions of the
basins is the number of attractors N4 (the number of different colors
of the picture). This is clearly seen in Fig. 4(a), where in the log-log
plot of the basin entropy S, versus the box size ¢, the lines for the
different merged basins have the same slope and they only differ by
their intercept. Also, going from the bottom line of Fig. 4
(a) (corresponding to two attractors) to the top line (corresponding to
ten attractors), we can see how the values of the basin entropy tend
to a limiting value as the number of attractors increases. Given that
the basins of the Newton fractal have a single boundary k=1, we have
that Eq. (1) simply becomes S, = (np/n)e* logN4. This result is in
agreement with Eq. 5 of [13], so that the unpredictability of the
system increases more when N4 changes from 2 to 3 attractors than
when it changes from 9 to 10.
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Fig. 4. (a) Basin entropy calculation for the Newton fractal with 10 attractors. Following the merging method, the number of attractors N, varies from 2 (bottom) to 10 (top). The slope is
always the same because the boundaries remain the same after the merging operation, but the slope increases with the number of attractors converging geometrically. (b) Newton fractal
for 10 attractors, where we have merged the basins creating a binary picture (Ny=2). (c) S, (in blue) and Sy, (in green) calculation for different values of the energy in the Hénon-Heiles
system. As the critical energy E=1/6 is approached (vertical line), both values converge to S, = Sp, = log 3. We have also plotted the Wada index multiplied by logN,/N4 as black circles,

showing that for Wada boundaries Eq. (3) is fulfilled.

Another important aspect of these calculations is related to symme-
try. In this case, the symmetry of the basins of the Newton fractal im-
plies the invariance of the basin entropy for any merging operation.
However, this is not true in general. Even though the boundaries remain
unaltered by the merging process, the basins do change. Since the basin
entropy measures the unpredictability associated to the basins, if they
are different, the value of the basin entropy will be different too.

Thus, the number of basins separated by the boundaries plays an im-
portant role in the basin entropy, but so does another important param-
eter: the Wada index [13]. This number accounts for the distribution of
the colors inside the boundary boxes, so that it is maximal for equiprob-
able situations. Briefly, the Wada index w for a given box of size s in
pixels can be computed as:

Om < 3

w = m T
- MZL] Pk log (py), m23,

2)

where m is the number of different attractors inside the box. The Wada
index is clearly connected to the boundary basin entropy of Eq. (1),
which is the basin entropy computed only on the boxes of the boundary.
Indeed, for Wada basins we obtain

log Ny
Ny

Spp = — w, 3)
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Table I

Summary of the classification of the different basins according to the basin entropy. The
main ingredients present in the basin entropy are listed with their typical values. The col-
umn on the right expresses a necessary condition on the basin entropy and boundary ba-
sin entropy to detect the type of basin involved. This table summarizes the extreme cases,
but the basin entropy can also compare two basins from the perspective of the unpredict-
ability in the phase space.

Basin type Ingredients values Basin entropy criterion
« lacunarity Ny

Smooth 1 - - Spy=0.439 [23]

Fractal #1 - - Spp = 0.439 [23]

Wada <1 - >3 Spp = — LMoy

Riddled 0 max Sp = Spp

Intermingled 0 max >3 Sp=Spp = — BNy
A

where W is the average of the Wada index w over the boxes covering
the boundary.

This simple relation, which only holds for Wada basins, has been nu-
merically verified for the Hénon-Heiles Hamiltonian. This paradigmatic

2D open Hamiltonian system is defined by H = 1 (Xz + y2> +3(x®+y?) +

x2y— 1y3.For an energy above its critical value, it has three exits and the
corresponding escape basins show the Wada property [22]. Varying the
total energy of the system, we can find hyperbolic or non-hyperbolic re-
gimes and the uncertainty exponent « changes accordingly, but in all
cases the escape basins present the Wada property [15]. In Fig. 4(c),
we depict the computation of the basin entropy S, (blue line) and the
boundary basin entropy Sy, (green line) for different values of the

Lacunarity
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energy E in the Hénon-Heiles system. First, the Eq. (3) holds
numerically, since the dots calculated as — ’°§,—AN"W perfectly match

the boundary basin entropy S,. Second, as the energy approaches its
critical value E.=1/6 (vertical dashed line), both the basin entropy S,
and the boundary basin entropy Sy, tend to their maximum possible
value, in this system log3 (horizontal dashed line). This result is
connected to the total fractalization of the basins taking place at the
critical value of the energy [31]. At the critical value, the boundary
occupies all the phase space, so that all the boxes are in the boundary
and therefore S, = Sp,. Also, given the 2m/3 rotational symmetry of
the system, the three basins are equiprobable. It maximizes the
possible uncertainty for Ny=3, defined by S, = S,, = log 3. This
example underscores the importance of the Wada property and the
Wada index in the unpredictability of a dynamical system.

6. Discussion

Along the previous lines we have explained the contributions of dif-
ferent ingredients to the basin entropy and, consequently, to the unpre-
dictability associated to basins of attraction in multistable systems. The
interesting point is that it opens a way to classify basins of attraction.
We can identify some of the most notable types of basins as cases
where these ingredients take extreme values. For example, basins
with smooth boundaries have a=1, which is the maximum possible
value for the uncertainty exponent and therefore they are the most pre-
dictable in this respect.

On the other side of the spectrum we find riddled basins, which have
the minimum possible value of «=0. They are the most unpredictable

>

I

I/
max
7

L,/ Lacunarity

(b)

Fig. 5. Interpretation of the basin entropy as a function of two of the important ingredients described in Eq. (1). The basin entropy is decomposed artificially into three orthogonal com-
ponents. Although these components are not independent, this picture is useful to visualize the classification between basins and their associated unpredictability. In (a) we have a
heatmap representing the value of the basin entropy on the plane lacunarity-c. The coloring is completely arbitrary, but it illustrates the correlation between the basin entropy and
these two quantities. The disconnected Fatou set is not included on this plot since its basin entropy varies depending on the resolution chosen for the representation of the points of
the set. This may lead to unintuitive situations where basins with higher lacunarity have a lower basin entropy. In (b) we have extended the plane to a three dimensional cube to include
the number of attractors in the analysis. The examples described here, such as the Wada basins obtained from the Hénon-Heiles system, have been placed on their corresponding place.
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basins in the sense of how the ratio of uncertain initial conditions grows
with resolution. Also, riddled basins have large values for the lacunarity,
given their Cantor-like disconnected structure.

Concerning the number of attractors, the Wada property maximizes
the number of basins separated by one boundary. Nevertheless, the dis-
tribution of the different probabilities plays a crucial role too. This can be
quantified by the Wada index, and its value often depends on the sym-
metry of the system. Wada boundaries are fractal boundaries so they al-
ways have a<1, but there is a case where boundaries separate all
possible basins (like Wada basins) and also has =0 (like riddled ba-
sins). This kind of basins is called intermingled [8,32,33] and they max-
imize the unpredictability in two different ways at the same time.
Although the Wada index may vary, intermingled basins are the most
unpredictable basins according to their basin entropy.

The basin entropy can be used to detect these extreme cases using
the criteria listed in Table I for each case. These necessary conditions
on Sy, Spp and W can help to identify these special basins. However,
the basin entropy remains as a valuable classification tool since it sets
a hierarchy among the basins from the point of view of the
unpredictability in the initial conditions space.

The classification can be visualized graphically in Fig. 5(a) and (b)
where the basin entropy has been decomposed artificially on three in-
dependent axis. The examples presented in this work have been repre-
sented and located on this graph. Although the lacunarity and the
uncertainty exponent are dependent of each other, this figure is illustra-
tive of the main contributions of these ingredients to the basin entropy.
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