
The Journal of Systems & Software 193 (2022) 111439

F
C
E

o
p
b
t
d
s
n
v
t
c

m
W
2
(
W

m
i

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Cost-effective load testing ofWebRTC applications✩

rancisco Gortázar ∗, Micael Gallego, Michel Maes-Bermejo, Iván Chicano-Capelo,
arlos Santos
scuela Técnica Superior de Ingeniería Informática, Universidad Rey Juan Carlos, Spain

a r t i c l e i n f o

Article history:
Received 8 April 2021
Received in revised form 30 April 2022
Accepted 14 July 2022
Available online 2 August 2022

Keywords:
Testing
Load testing
WebRTC

a b s t r a c t

Background: Video conference applications and systems implementing the WebRTC W3C standard
are becoming more popular and demanded year after year, and load testing them is of paramount
importance to ensure they can cope with demand. However, this is an expensive activity, usually
involving browsers to emulate users.
Goal : to propose browser-less alternative strategies for load testing WebRTC services, and to study
performance and costs of those strategies when compared with traditional ones.
Method: (a) Exploring the limits of existing and novel strategies for load testing WebRTC services from
a single machine. (b) Comparing the common strategy of using browsers with the best of our proposed
strategies in terms of cost in a load testing scenario.
Results: We observed that, using identical machines, our proposed strategies are able to emulate more
users than traditional strategies. We also found a huge saving in expenditure for load testing, as our
strategy suppose a saving of 96% with respect to usual browser-based strategies. We also found there
are almost no differences between the traditional strategies considered.
Conclusion: We provide details on scalability of different load testing strategies in terms of users
emulated, as well as CPU and memory used. We could reduce the expenditure of load tests of WebRTC
applications.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the rise of remote jobs, businesses transiting online,
r online courses, video conferencing has become an integral
art of our lives. Video conference applications and systems are
ecoming more popular and demanded year after year. On top of
his, the video conferencing market is experiencing high growth
uring the coronavirus outbreak. Whether this situation will per-
ist after the coronavirus crisis or not is still something we do
ot know, nevertheless, the demand is pushing companies in the
ideo conferencing market into a situation in which load testing
heir solutions is of paramount importance to ensure solutions
an cope with demand.
Among the different technologies for real time video com-

unication over the Internet, the World Wide Web’s (W3C)
eb Real-Time Communications (WebRTC) standard (WebRTC,
022) is a popular one. Video conference tools like BigBlueButton
2022), Jitsi (2022), Whereby (2022), among others all rely on the
ebRTC standard to enable video calls for a set of users.

✩ Editor: Prof Raffaela Mirandola.
∗ Corresponding author.

E-mail addresses: francisco.gortazar@urjc.es (F. Gortázar),
icael.gallego@urjc.es (M. Gallego), michel.maes@urjc.es (M. Maes-Bermejo),

van.chicano@urjc.es (I. Chicano-Capelo), carlos.santos@urjc.es (C. Santos).
ttps://doi.org/10.1016/j.jss.2022.111439
164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
WebRTC is a set of protocols and APIs that provides web
browsers and mobile applications with Real-Time Communica-
tions (RTC) capabilities over peer-to-peer connections. It was
conceived to allow connecting browsers without intermediate
helpers or services, but in practice this P2P model falls short when
trying to create more complex applications. For this reason, in
most cases a central media server is required. Conceptually, a
WebRTC media server is just a multimedia middleware where
media traffic passes through when moving from source(s) to
destination(s). Media servers are capable of processing incoming
media streams and offer different outcomes, such as:

• Group Communications: Distributing among several
receivers the media stream that one peer generates, i.e. act-
ing as a Selective Forwarding Unit (‘‘SFU’’).
• Mixing: Transforming several incoming streams into one

single composite stream, i.e. acting as a Multipoint Confer-
encing Units (‘‘MCU’’).
• Transcoding: On-the-fly adaptation of codecs and formats

between incompatible clients.
• Recording: Storing in a persistent way the media exchanged

among peers.

In WebRTC, users of a group call (from now on session) are
usually browsers exchanging real-time video and audio through
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2022.111439
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111439&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:francisco.gortazar@urjc.es
mailto:micael.gallego@urjc.es
mailto:michel.maes@urjc.es
mailto:ivan.chicano@urjc.es
mailto:carlos.santos@urjc.es
https://doi.org/10.1016/j.jss.2022.111439
http://creativecommons.org/licenses/by/4.0/

F. Gortázar, M. Gallego, M. Maes-Bermejo et al. The Journal of Systems & Software 193 (2022) 111439

a
d
(
b
u
w
f
s
f
w
p
g
u

w

a
n
b

e
n

t
m
r
c
(
t
s
n
i
a
s

c
l
O
p
d
o
a
c

w
c
b
P
m
a
i
o
t
S

a WebRTC media server. The number of users can vary, and the
media server is usually able to handle many of such sessions.
Testing group calls is usually expensive. Test cases are usually
executed using several browsers to impersonate real users by
exchanging preconfigured video and audio in real-time through
a media server. Web browsers are heavy resource consumers,
and usually a single browser impersonates a single user thus
limiting scalability and a better use of resources. The challenges
of testing video conference systems have been discussed in the
past in the literature (García et al., 2017a; Gouaillard and Roux,
2017; Bertolino et al., 2020; Garcia et al., 2017b).

In this paper: (a) we propose two new testing strategies that
void the need of a browser, and significantly reduces the expen-
iture of testing WebRTC based video conference applications;
b) we present an open source framework for load testing We-
RTC applications in the cloud that greatly simplifies this task,
sing any of the 5 testing strategies considered in this work; (c)
e perform a comparative study of different testing strategies

or real-time group communications at scale using the WebRTC
tandard. In the study, we used the OpenVidu WebRTC plat-
orm (OpenVidu, 2022), which is open source, and experiments
ere conducted in the cloud using Amazon Web Services.1 We
aid attention to benefits and drawbacks of the scrutinized strate-
ies, the performance in terms of number of users per session, the
se of resources, and the total expenditure of the tests.
We decided to compare traditional WebRTC testing strategies

ith our new proposals with two aims:
(1) To measure the scalability of each testing strategy within
single AWS machine (instance in AWS jargon) in terms of
umber of users that can be impersonated from that machine,
y answering the following research questions:

• RQ1a: What is the strategy that is able to emulate more users
into sessions? Is this consistent with the session size?
• RQ1b: How do each of the strategies perform in terms of CPU

and memory with respect to the number of users?

(2) To compare the costs of our most promising testing strat-
gy with traditional browser-based strategies in a load test sce-
ario, where multiple machines are needed to impersonate users:

• RQ2: Are there any cost savings for using our proposals
with respect to using browsers when doing load testing of
a WebRTC platform?

With the first set of research questions we try to understand
he scalability and limits of each of the strategies in a single
achine, and the correlation of the strategy with the use of

esources. We used different testing scenarios, where a scenario
onsists of a given number of WebRTC sessions of a certain size
all sessions have the same size). This information is later used
o answer the final research question, by conducting a load test
cenario with the most promising testing strategy. In this sce-
ario, several testing machines are used, up to the limits defined
n the first set of research questions, to explore the capacity of
WebRTC server in terms of users, and determining the cost

avings of the strategies considered.
The rest of the paper is structured as follows: Section 2 dis-

usses previous research in WebRTC testing (including load or
oad testing of WebRTC services). In Section 3 we introduce the
penVidu platform. Traditional testing strategies, and our new
roposals for WebRTC load testing are presented in Section 4. We
escribe the methodology used in the study in Section 5. Results
f applying the methodology are reported in Section 6, including
discussion on the threats to validity. Finally, Section 7 draws
onclusions and presents further research.

1 https://aws.amazon.com/.
2

2. Background

Testing and quality assurance of web applications has the
challenge of having to test heterogeneous applications (Li et al.,
2014; Bertolino, 2007). According to Di Lucca and Fasolino (2006),
the main testing activities for non-functional requirements that
a Web application is usually required to accomplish are: perfor-
mance testing, load testing, compatibility testing, usability test-
ing, accessibility testing and security testing. In the remaining of
the section strategies and tools from the literature (including gray
literature) focused on generic testing, as well as load and load
testing, are presented.

2.1. Generic WebRTC testing tools

Among the WebRTC testing tools, Selenium2 is one of the most
idely used, as was reported previously by Garcia et al. (Gar-
ía et al., 2017a). Selenium enables programmatic managing of
rowsers using different programming languages, such as Java,
ython, PHP or JavaScript. As most browsers currently imple-
ent the WebRTC stack, any WebRTC-enabled Selenium man-
ged browser can be used to impersonate users for WebRTC test-
ng. However, using browsers implies a considerable expenditure
f computational resources. To avoid investment in infrastruc-
ure, users can resort to commercial providers of browsers such as
aucelabs,3 BrowserStack4 and Nightwatch.js,5 in a pay-per-use

approach.
The Kurento Testing Framework (KTF) (García et al., 2016)

provides a set of browser-based tools for testing WebRTC appli-
cations. It allows to automatically evaluate functional parameters
such as media events or color detection (for instance, to build
oracles based on video synchronization), it collects performance
statistics, and it is able to extract quality of experience metrics
(by evaluating audio quality). This testing framework is a part of
Kurento (Kurento Media Server, 2022), a WebRTC platform, and
it again uses Selenium for the connection with the browsers.

ElasTest6 is a comprehensive open source platform that aims
to significantly improve the efficiency and effectiveness of testing
complex systems. It is a generic tool, not exclusively focused
on WebRTC testing, although it includes interesting features for
WebRTC testing. One of its strengths is observability, ElasTest
platform provides a complete monitoring system for the software
under test. When confronted with WebRTC testing, ElasTest, in
addition to provide Selenium controlled browsers, it automat-
ically obtains specific metrics of the WebRTC connection that
browsers make available for inspection (the WebRTC stats defined
within the WebRTC W3C standard).

KITE (Gouaillard and Roux, 2017) is another framework for
WebRTC peer-to-peer test automation supported and managed
by companies actively involved in the development of the We-
bRTC standard. It is supported by other technologies such as
Selenium and browser vendors. It allows interoperability testing
between different browsers and operating systems. The main
purpose of the project is to detect the level of compliance of each
browser vendor with the WebRTC standard.

2.2. WebRTC load testing tools

Some well-known load testing tools for web application such
as Apache JMeter, Artillery or Gatling cannot be used for WebRTC

2 https://www.selenium.dev/.
3 https://saucelabs.com/.
4 https://www.browserstack.com/.
5 https://nightwatchjs.org/.
6 https://elastest.io/.

https://aws.amazon.com/
https://www.selenium.dev/
https://saucelabs.com/
https://www.browserstack.com/
https://nightwatchjs.org/
https://elastest.io/

F. Gortázar, M. Gallego, M. Maes-Bermejo et al. The Journal of Systems & Software 193 (2022) 111439

t
2
o
f
m
b
t
p
s

W
m
t
J
p
s
t
m
t
t
f
t
b

c
i
u
t
b

2

i
e
d
(
o
o
t

T
e
a
a
i
p
t

4
K
A
s
a
f
i
n
t
i

testing, as they do not use a browser or any implementation of
the WebRTC stack. Therefore, these tools are out of scope. Other
approaches like (Shariff et al., 2019) allow for a better utilization
of resources by using waits in a browser for running several tests
in parallel, however this would not work in WebRTC, as the media
flows as a continuum, and there are no waits.

However, there are other tools in the literature aimed at load
esting a WebRTC media server. WebRTCBench (Taheri et al.,
015) is a WebRTC benchmark which measures performance
n peer-to-peer communication, allowing to evaluate the per-
ormance across different platforms and devices, including the
ost popular browsers for desktop and Android platforms. The
enchmark is limited to two peers, and therefore cannot be used
o analyze the performance of media servers at scale, where many
eers are connected simultaneously arranged into different media
essions.
In Amirante et al. (2016), the authors introduced JAttack, a
ebRTC load testing tool for performance analysis of the WebRTC
edia server Janus. This tool uses a modified Janus media server

o generate multiple WebRTC connections in order to load the
anus media server (Amirante et al., 2014). Although the authors
erformed some experiments loading a Janus WebRTC media
erver, they only reported CPU usage of the testing tool and
he media server. Furthermore, both the load testing tool (the
odified Janus server) and the Janus media server were running

ogether in the same machine, which raises some concerns about
he validity of the results they got. Additionally, they did not per-
orm a comparison and in depth analysis of the costs compared
o traditional browser-based approaches. Finally, JAttack has not
een released to the public.
The main commercial option is testRTC (2022), which in-

ludes a wide variety of solutions for WebRTC application testing,
ncluding load testing where network conditions can be config-
red to build realistic scenarios. As far as the authors can tell,
estRTC prices are not publicly available, so cost analysis cannot
e performed.

.3. Testing in the cloud

Cloud computing can provide users cost-effective and flex-
ble scalable computing power and services. According to Gao
t al. (2011), the main benefits of cloud-based testing are: re-
uced costs of computing resources by leveraging them to clouds
using virtualized resources and shared infrastructure), existing
n-demand test services for large-scale and effective real-time
nline validation and easily leverage scalable cloud system infras-
ructure to test and evaluate system performance and scalability.

Bertolino et al. (2019) did a systematic review on cloud testing.
hey divided their study into testing in the cloud (leveraging the
lasticity of cloud for testing), testing of the cloud (testing cloud
pplications) and testing of the cloud in the cloud (mixing both
pproaches). The authors conclude that testing in the cloud has
ndeed received much attention, being test execution the most
rominent usage of cloud providers in the context of the different
esting activities.

In André et al. (2018), the authors tested the scalability of
WebRTC media servers (Medooze, Jitsi, Janus, and OpenVidu/
urento), giving details of the infrastructure used. They used the
WS Elastic Compute Cloud (EC2) service, separating the media
erver and the web clients on different instances. Specifically, the
uthors used the c4.4xlarge (8 vCPUs, 30 GB RAM) instance type
or the media servers and the c4.xlarge (4 vCPUs, 7.5 GB RAM)
nstance type for the clients. The paper focuses mainly on the
umber of users supported by each media server, using KITE as
he WebRTC testing platform. No analysis of costs was included
n the work.
3

3. WebRTC testing strategies

Before introducing the different WebRTC testing strategies
considered in the study, we present an overview of the architec-
ture of WebRTC services and applications. In this section, we first
sketch how WebRTC applications work and the services involved,
and then we resort to detail how they are tested. Finally, we
present our proposals for cost-effective load testing of WebRTC
applications.

3.1. Anatomy of a WebRTC application

A WebRTC application comprises several components: (1) the
application itself, running in the browser; (2) a library that en-
ables the application to embed videoconference into the page;
and (3) a media server that receives and routes streams of audio
and video to all users in a session. The library in (2) makes trans-
parent for the application how the WebRTC protocols are used,
thus easing the embedding of video into the app. For instance, the
library instructs the browser to fetch video and audio through the
corresponding devices (camera and microphone) and it sends the
streams to a media server through the WebRTC API.

Usually, media servers are able to handle multiple sessions
running in parallel. For each session, a user in the session (con-
nected through a browser) sends audio and video streams to the
media server, which in turn, sends the video and audio streams
that it receives from all other users in the same session to the
user. Given a set of users in a session N, |N| = n, each user
x ∈ N sends 2 streams and receives 2 ∗ (n − 1) streams from
the other n− 1 users, y ∈ N, y ̸= x in the session. Depending on
how the application is implemented, this might impose a limit
on the number of users that a browser is able to handle for the
session. For instance, Whereby limits to 50 the number of users
in a session.

At the media server, the number of streams to be managed
grows with the number of users in a session. For a session with
2 users, the media server receives 4 streams (2 per user), and
it sends 2 streams to each user. With 3 users, the media server
receives 6 streams, and it sends 4 streams to each user. This
means 4 ∗ 3 = 12 streams to be sent in total to 3 different
users. Therefore, the number of streams s to be sent depends
quadratically on the number of users: s = 2n∗ (n−1) = 2n2

−2n.
It is therefore of paramount importance to properly plan the

size of the machine hosting and running the media server, as it
will have to route many streams to different users in different
sessions. In order to do so, proper load tests need to be performed
on the media server. As it was mentioned in Section 2, traditional
approaches are based on web browsers to impersonate users in
media sessions. This strategy works well, but it has a considerable
cost. It is worth noticing that this load testing might be needed for
many scenarios, with different number of users in each session.

3.2. OpenVidu WebRTC platform

In order to study testing strategies for WebRTC we need a
WebRTC application. OpenVidu (2022) is an open source platform
to enable embedding video conferencing capabilities into modern
web and mobile applications. It provides both the browser library
and the media server (the Kurento Media Server, KMS). In this
section, we describe the OpenVidu architecture and how we
leverage it to perform load tests in order to find the limits of
the platform. We will conduct our comparative study using the
OpenVidu platform and the OpenVidu Loadtest Tool (OVLT).

The OpenVidu platform comprises three modules as shown in
Fig. 1:

F. Gortázar, M. Gallego, M. Maes-Bermejo et al. The Journal of Systems & Software 193 (2022) 111439

b
a
t
m
t
f
t
m
T
w
t

Fig. 1. OpenVidu architecture. The OpenVidu platform consists of a master node and one or more media nodes. An application using the OpenVidu platform consists
of a backend and a frontend. The openvidu-browser library is used by the frontend of the application to make use of OpenVidu WebRTC capabilities. The backend is
usually used to provide security. Upon client authentication (green line), negotiation between the openvidu-browser library and the master node (blue line) results in
a media node selection with whom the media will be exchanged with the help of the browser’s implementation of the WebRTC stack (red line). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
• openvidu-browser: A JavaScript library for the browser. It
allows developers to embed video in their own applications.
It is responsible for the control plane and leverages to the
WebRTC stack provided by the browser for the media plane.
• OpenVidu master node: Executes an application that con-

trols one or more media nodes. It takes care of the control
plane, and it manages sessions, forwarding events and mes-
sages to clients and distributing the load across the available
media nodes.
• OpenVidu media node: Executes the media server respon-

sible for the media plane. OpenVidu currently uses the
Kurento Media Server, an open source implementation of an
WebRTC media server. OpenVidu platform can use several
media nodes. They are the actual bottleneck of the OpenVidu
platform and their number and size determine its capac-
ity: more media nodes means more concurrent sessions
possible, which results in an increased spending.

OpenVidu provides a basic application, but developers can
uild their own application using the OpenVidu APIs. A WebRTC
pplication based on OpenVidu consists on a backend and a fron-
end. In the backend, authentication and authorization of users is
anaged. The frontend requests session joins for a user through

he backend, and upon authorization, a token is returned to the
rontend. This token is used by openvidu-browser to connect to
he master node asking for a specific session to join, and the
aster node selects which media node to use for the session.
hus, the master node is in charge of the control plane, managing
here each session is hosted (i.e., in which media node). When
he media node is selected, openvidu-browser uses the browser
4

WebRTC API to negotiate how to exchange media between the
browser and the media server. The media server and the browser
WebRTC API are in charge of the media plane.

Notice that all the users of a session must all be connected to
the same media node. That is, a session is fully contained into a
single media node. A media node is able to handle several ses-
sions concurrently. The specific number of sessions that a media
node is able to handle depends on the number of users connected
to the session (the session size) and is somehow difficult and cost
ineffective to calculate. Hence, we are interested in researching
new cost-effective strategies for finding the limits of a media
node for different session sizes that might be more cost-effective
and result in less expenditure.

3.3. OpenVidu load testing

Little attention has been paid in the WebRTC arena on eas-
ing the task of load testing WebRTC applications, with a few
exceptions (Amirante et al., 2016; André et al., 2018). Most load
testing approaches are still based on user impersonation through
browsers, thus emulating a video conference session by starting
several web browsers that are connected into a single session
through a media server. This approach has several advantages:
it is possible to record the video conference session in each
browser and apply state-of-the-art Quality of Experience (QoE)
algorithms to automatically determine quality, or even record the
browser window to gain better insight on how the application
is performing from the users’ perspective. However, it also has
severe drawbacks: a browser is a big piece of software consuming
a considerable amount of resources. Specifically, browsers tend

F. Gortázar, M. Gallego, M. Maes-Bermejo et al. The Journal of Systems & Software 193 (2022) 111439

o

t
s
b
r
i
r

i
i
p
m
a
T
m
a

Fig. 2. OpenVidu testing scenario for sessions with 5 users. Notice how each user sends a stream to the media node, and receives 4 streams from it (one per any
ther user in the session). The session is completely hosted in a single media node. The media node can host several of these sessions.
o consume a lot of CPU and memory just to show a video on-
creen. Considering that an important number of browsers will
e needed in order to load a media server, this is a huge use of
esources. When these load testing strategies are to be considered
n the cloud within a continuous integration pipeline, the cost of
unning so many browsers is also something to take into account.

Despite the drawbacks, this is the most common way of test-
ng WebRTC applications, and the one in use in OpenVidu. There
s a specific load test performed frequently at the OpenVidu
roject: estimating the number of users supported by a single
edia node, which is a recurrent question in order to plan in
dvance the number of media nodes needed for a given load.
o perform such a load test, the master node is deployed on a
achine in the cloud, and a single media node is started and
ttached to cluster.
5

Then, a Test Orchestrator is responsible for starting browsers
and connecting them to the media node until this media node
is not able to handle more connections. Usually this condition is
detected by the Test Orchestrator as a browser request to join
a session that does not receive any response. At this moment,
the test finishes, and the Test Orchestrator reports the number
of sessions that were properly connected to the media server,
i.e., those sessions for which all users successfully joined their
respective sessions.

Usually, this load test is performed on AWS, where machines
running browsers can be requested on demand. As shown in
Fig. 2, the OpenVidu load test starts EC2 instances (virtual ma-
chines) on demand in an AWS environment. Each instance hosts a
single Chrome browser managed through Selenium. This strategy
is very resource consuming, as many instances might be needed
before it can be determined that the media server is not able

F. Gortázar, M. Gallego, M. Maes-Bermejo et al. The Journal of Systems & Software 193 (2022) 111439

t
s
n

4

W
m
c
i
T
t

t
t
e
s
t

L
l
m
a
p
t
e
w
p
s
s

s
a
A
s
d

c
s
S
w
t
m
f
T
b
i

Fig. 3. The emulator service presents a simple API to the Test Orchestrator and hides the specificities of the strategy being used.
o handle more connections. Even for media servers running on
mall instances, dozens of instances hosting browsers might be
eeded.

. Load testing strategies for WebRTC applications

In this paper we propose new load testing techniques for
ebRTC applications, and adaptations of existing ones, that opti-
ize the use of resources, hence reducing costs for testing video
onference applications. All the strategies depicted here were
mplemented and are available in the OpenVidu Loadtest Tool.7
his tool is another contribution of the paper, and enables load
esting of WebRTC applications with ease.

The OpenVidu Loadtest Tool consists of a Test Orchestrator,
hat is responsible for starting all the user emulators according to
he test scenario defined in its configuration file, and a browser
mulator that is responsible for joining users into WebRTC ses-
ions using the configured strategy. All the configuration is done
hrough files that the tool reads at start up.

It is important to note that the only piece in the OpenVidu
oadtest Tool that depends on the media server is the openvidu-
ibrary. This library assumes a control plane protocol that the
edia server must provide so that the openvidu-library can make
user join a specific session. Given that it requires some ex-
erience working with the media server internals for someone
o implement such a protocol, for this paper we chose to rely
xclusively on the Kurento media server used by OpenVidu, with
hich the authors have an extensive experience. However, it is
ossible to use the OpenVidu Loadtest Tool with other media
ervers as well, although relevant experience on the target media
erver is needed.
We made an effort within the OpenVidu Loadtest Tool to make

trategies interchangeable, by sharing some pieces. Specifically,
ll the strategies run a user emulator service that exposes a REST
PI to the Test Orchestrator that can be used to join users to
essions (see Fig. 3). The specificities of how users are joined
epend on the different strategies as described below.
The test scenario is configured via a file that the Test Or-

hestrator reads at start up, and this file configures the session
izes and number of sessions that we want to run in our tests.
everal session sizes can be provided and the Test Orchestrator
ill run a different test case for each session size. The tool can run
he strategies locally (for instance, starting browsers in the same
achine), or it can use AWS EC2 virtual machines, which allows

or running bigger scenarios. Additionally, the OpenVidu Load
est Tool is able to send metrics to an ElasticSearch server, just
y providing the corresponding URL of the ElasticSearch service
n the configuration file.

7 https://github.com/OpenVidu/openvidu-loadtest.
6

4.1. Selenium driven browsers

The first strategy considered is the one described above of us-
ing web browsers to impersonate users in a video call. However,
we can devise three slightly different ways in which this strategy
can be applied that might result in different scalability, use of
resources and costs: browser, browser with recording and headless
browser.

In the most usual browser strategy we considered imper-
sonating users using Chrome web browsers controlled through
Selenium running in Docker containers as shown in Fig. 4. When
using this strategy, a new Chrome browser is started for each user
joining the session. Browsers run a small test app, as shown in
Fig. 4 that uses the openvidu-browser library to join a specific
session and sends a specific video and audio, instead of using the
webcam and microphone, in order to have more control on the
video being shared.

There is a second browser-based strategy, namely browser with
recording, similar to the previous one except that the open source
ffmpeg8 tool is used to record the Chrome browser window.
This approach might require some more resources, as the ffmpeg
tool is recording the window, encoding it in a suitable format
and saving the video to disk. All while the browser is emitting
and receiving video. Although in this paper we do not use the
recorded videos in any way, we understand that in many cases
these videos are used for acceptance testing. That is why we
decided to consider recording the browser window.

Finally, there is still a third strategy involving browsers that
consists on running the browsers in headless mode. A headless
browser is a standard browser without a UI. Everything within the
browser works as usual except that the browser does not show
the page on a graphical widget. We expect this headless mode to
result in a reduction on the use of resources as page contents are
not rendered on the screen.

In all these three strategies, each user is emulated through
its own Chrome browser. The process is as follows: the Test
Orchestrator sends a request to the user emulator service, speci-
fying which session should the user join. The user emulator will
then start a Docker container with a Chrome browser running a
test application, configured to join the session specified. The test
application leverages the openvidu-library to join the session and,
once joined, a predefined video and audio available within the
Docker container is sent to the media node.

4.2. Cost-effective testing solutions for WebRTC

In order to reduce the costs when load testing WebRTC ser-
vices, we propose two new strategies that do not need to rely
on a web browser. Notice that not using browsers would make

8 https://www.ffmpeg.org/.

https://github.com/OpenVidu/openvidu-loadtest
https://www.ffmpeg.org/

F. Gortázar, M. Gallego, M. Maes-Bermejo et al. The Journal of Systems & Software 193 (2022) 111439

t
s
a
a
b
t
W
W

u
T
J
W
u
W
o

4

J
i
p
w
s

a
a
w
a
n
t
a

Fig. 4. OpenVidu Loadtest Tool using browsers to impersonate users. Each browser is running in a Docker container and controlled through Selenium.
p
t
W
T
l
a
t
s
r
s
o
w
p
u
t

p
t

browser-dependent failures to go unnoticed. However, in this
work we are interested in cost-effective solutions for load test-
ing, and we assume that browser-dependent failures would be
detected in other test suites.

Traditionally, browsers are used for WebRTC testing because
hey already implement the WebRTC APIs needed to establish and
hare media among peers. Therefore, it is relatively easy to build
small test application code to run in the browser that will join
specific WebRTC session. However, if we want to remove the
rowser from the test scenario in order to save some resources,
hen we need to consider a replacement that understand the
ebRTC API, so that video and audio can be exchanged with the
ebRTC service.
In this section we describe two new strategies that do not

se browsers, to impersonate users to a WebRTC media server.
he first of these strategies, namely node-webrtc leverages a
avascript WebRTC API implementation to impersonate users to a
ebRTC media server. The second strategy, namely kms-webrtc,
ses the Kurento WebRTC media server (that implements the
ebRTC API) to impersonate users. This strategy is an adaptation
f JAttack (Amirante et al., 2016), already described in Section 2.

.2.1. The node-webrtc approach
Our new proposal, node-webrtc, consists on using the WebRTC

avaScript library9 that implements the WebRTC APIs. This library
s able to impersonate many users from a single lightweight
rocess (see Fig. 5). To enable this library to send video and audio,
e implemented a video and audio generator that generates and
ends the media through the library.
This strategy is one of the main contributions of this work,

nd it is completely different to the previous ones. No browsers
re used in this strategy. Instead, the node-webrtc library, that
raps the standard libwebrtc library for the Node platform, is
ble to impersonate users by directly connecting to a media
ode. The library implements parts of the WebRTC API, enabling
he openvidu-browser library to use it as if it were the API of
real browser, thus doing the necessary configuration to send

9 https://github.com/node-webrtc/node-webrtc.
 s

7

and receive video. With this strategy we get rid of browsers,
thus we hypothesize that using this library should result in im-
portant savings in CPU and memory. Notice that node-webrtc
library provides the standard WebRTC API found in browsers, so
any WebRTC based library could be used instead of openvidu-
browser with that strategy. Therefore, the results presented here
can be considered valid regardless the media server used, as we
are basically interested in reducing the testing costs implied by
impersonating users with web browsers.

4.2.2. The kms-webrtc approach
The second of our contributions is the kms-webrtc strategy,

inspired partially in Garcia et al. (2017b) and JAttack (Amirante
et al., 2016). The kms-webrtc approach uses the Kurento media
server to impersonate users. The Kurento media server imple-
ments de WebRTC protocol, and is able to exchange video and
audio with other WebRTC peers through this protocol. On top of
that we implemented a developed library that implements the
WebRTC API, so that a test can use Kurento as if it was a browser,
in the same way that node-webrtc works (see Fig. 6).

Thus, the main difference of our kms-webrtc strategy with
revious strategies is that we implemented a library that wraps
he specificities of the media server and provides the standard
ebRTC API found in browsers, as in the node-webrtc strategy.
he openvidu-browser library (or any other WebRTC signaling
ibrary) can then be used unmodified with kms-webrtc. This is
huge difference with the JAttack approach that needs specific

est code in order to deal with the WebRTC protocol that media
ervers understand. Other differences worth mentioning with
espect to JAttack are the following: (a) we used an unmodified
tandard Kurento Media Server, instead of a modified version
f Janus media server (i.e., no modification of the media server
as needed); (b) video and audio generation is integrated in our
roposal, reducing the complexity of the setup; and (c) in order to
se JAttack, a component called Controller has to be implemented
o adapt the signaling to a specific media server (Janus).

In the proposed OpenVidu Loadtest Tool the Test Orchestrator
lays the role of the JAttack Controller. However, in our case
he Test Orchestrator already implements typical load testing

cenarios that can be selected with a high level configuration. The

https://github.com/node-webrtc/node-webrtc

F. Gortázar, M. Gallego, M. Maes-Bermejo et al. The Journal of Systems & Software 193 (2022) 111439

a
c
c

5

m
s
p
t
p
q

p
u
t
w
W

F

Fig. 5. OpenVidu Loadtest Tool using the node-webrtc implementation to impersonate users.
Fig. 6. OpenVidu Loadtest Tool using the kms-webrtc strategy to impersonate users.
a

uthors would have considered JAttack in our final experiment
omparison, but this tool is closed source, and according to its
reators it will not be open-sourced in a near future.10

. Methodology

Our comparison study has two parts: a preliminary experi-
entation and a final experimentation. Given a number of cloud
ervers that will be used to load test a WebRTC service, in our
reliminary experimentation we determined the limits of each
esting strategy, defined as the number of users they can emulate
er cloud server. We do it by answering the following research
uestions:

• RQ1a: What is the strategy that is able to emulate more users
into sessions? Is this consistent with the session size?
• RQ1b: How do each of the strategies perform in terms of CPU

and memory with respect to the number of users?

In our final experimentation, we studied the cost of the most
romising strategy and compared it with a traditional strategy
sing browsers in a real load test scenario, and used the results
o answer RQ2 (Are there any cost savings for using our proposals
ith respect to using browsers when doing load testing of a
ebRTC platform?). Both experiments were performed in AWS,

10 https://groups.google.com/g/meetecho-janus/c/HwdfG82kZ_M/m/
Vzq8dp1EAAJ.
8

and consisted on: (1) an OpenVidu deployment (master node and
media nodes), and (2) deployment of the necessary infrastructure
for each strategy, as discussed in the rest of this section.

5.1. Preliminary experiment

First, we study how each of the proposed testing strategies
perform in terms of: (a) number of users that can be imperson-
ated; and (b) memory and cpu usage as we increase the number
of users.

Given that the number of media streams exchanged grows up
quadratically with the number of users in a session, as described
in Section 3, we considered four different scenarios with different
session sizes: 2, 3, 5, and 8 users per session. Each scenario has
therefore a fixed session size (all sessions have the same size).
Then, for each testing strategy, we run four different scenarios
with a different session size each. Therefore, by performing the
experiment with different session sizes we captured the overall
behavior of the testing strategies and by analyzing the results we
can answer RQ1a. Notice that we had to run 20 tests in total, as
we had to run four scenarios for each of the five testing strategies
(browser, browser with recording, headless browser, node-webrtc
nd kms-webrtc).
In RQ1a we are interested in measuring the scalability of the

different strategies defined as the number of sessions each strat-
egy can emulate in a single instance of a given size, for different
session sizes. Therefore, we considered a single AWS instance to
impersonate all the users, namely the testing instance. The testing

https://groups.google.com/g/meetecho-janus/c/HwdfG82kZ_M/m/FVzq8dp1EAAJ
https://groups.google.com/g/meetecho-janus/c/HwdfG82kZ_M/m/FVzq8dp1EAAJ

F. Gortázar, M. Gallego, M. Maes-Bermejo et al. The Journal of Systems & Software 193 (2022) 111439

a
a
p
T
A

p
a
u
S
t
c
l

i
s
A
a
o

p

1
1
1
1
1
1
1
1
1
1
2
2
2

s
u
s
5
s
p
u
s
t
a
c
i
s
b

instance size chosen was a AWS t3.xlarge instance with 4 vCPUs
nd 16 Gb of memory, big enough to ensure all strategies were
ble to hold at least one session in the biggest scenario (8 users
er session). We used the same video for all the users emulated.
he video had a resolution of 640× 480, at 30 frames per second.
ll the details can be found in the reproduction package.
The OpenVidu platform (master and media nodes) was de-

loyed on a sufficiently big instance so that the media nodes
re never loaded (we are interested in estimating the number of
sers each testing strategy can handle in the given instance size).
pecifically, we used c5.xlarge (4 vCPUs, 8 Gb) instances for both
he master node and the media node. We carefully monitored the
pu and memory usage of media nodes to ensure they are never
oaded.

All the instances used in the experiment were properly mon-
tored, by running probes in each instance, and metrics were
ent to and stored in an Elasticsearch11 deployed in a different
WS instance. Data stored in this Elasticsearch was used for
nswering all RQs, and has been exported and made available in
ur reproduction package.
Each of the 20 tests to run consisted of a testing code that

roceeded as shown in Algorithm 1.

Algorithm 1 Preliminary experimentation testing procedure

1: procedure getusersAndSessionsCreated(t , sessionSize)
2: p← 0 ▷ Number of users
3: ns← 0 ▷ Number of sessions
4: stop← false
5: while !stop do
6: sessionId← newSession()
7: i← 0
8: for i← 1, sessionSize do
9: stop← addUser(t, sessionId)
0: if !stop then
1: p← p+ 1
2: else
3: break
4: end if
5: wait(3)
6: end for
7: if !stop then
8: ns← ns+ 1
9: end if
0: end while
1: return (p, ns)
2: end procedure

The algorithm introduces load by increasing the number of
essions and for each session, by increasing users until no more
sers can be added. Specifically, in the Algorithm t is the testing
trategy, sessionSize is the number of users for each session (2, 3,
, or 8), p is the total number of users already added (across all
essions) and ns is the number of complete sessions. The variables
and ns are increased during the test execution each time a new
ser is added and a new session is completed, respectively. A ses-
ion is considered complete whenever all users have been added
o the session (i.e., if the scenario consists on 5 users per sessions,
ll 5 users have been successfully added). The newSession method
reates a new session in the OpenVidu platform and returns its
d. Then, we resort to add users to this new session until all
essionSize users have been added. There is a waiting time of 3 s
etween one user and the next one in the session to give some

11 https://www.elastic.co/elasticsearch/.
9

time to the session to stabilize after adding the new user. If at any
time addUser fails to add a new user, the test stops, and reports
the number of users added and the number of complete sessions
successfully created. Notice that when the test stops there is a
session yet to be completed. The maximum number of sessions
completed ns for the strategy t will be used in the second part of
our study.

Notice that after we successfully complete a session we wait
for a reasonable time. This is to give some time to a new con-
nection to stabilize. If we immediately request a new user to be
added, the request might fail even when there are still available
resources for the new user. This is due to the instance still
working on adding the new user and the new streams to the other
users in the same session. Therefore, to avoid stopping the test
before the machine has been exhausted, we wait for some time,
then we resume with the next session.

As was mentioned above, the addUser method works differ-
ently depending on the strategy t to use. For browser-based
strategies, it uses Selenium to start a new browser for the new
user within the AWS instance. This method returns a value indi-
cating the stop condition when: (a) Selenium is not able to start
the browser; or (b) the browser is not able to join the session
(the request times out). For node-webrtc, the addUser method
uses the node-webrtc API to instruct the library to add a new
user. Similarly, for the kms-webrtc strategy, the addUser method
uses the KMS API to instruct KMS to connect to a session. The
error conditions for these two strategies are the same as for
browser-based strategies.

In order to answer RQ1b, during the experiment we collected
CPU time and memory consumption metrics, using a metricbeat
agent12 that was run in the testing instance.

5.2. Final experiment

In our final experiment we performed a load test against the
OpenVidu platform using two different testing strategies: the
most common strategy (browser) and the most scalable one ac-
cording to our preliminary experiment (kms-webrtc). In this case
we do not want to exhaust the testing instances, but to actually
load the media server, with the aim of studying the differences
in costs of both strategies (browser and kms-webrtc).

For this experiment we considered a single scenario with
sessionSize = 5. Given we do not want to overload testing
instances, we did not want to use the theoretical maximum
number of sessions determined by the preliminary experiment.
Indeed, we wanted to ensure that all the sessions would have
good quality. Therefore, before resorting to our final experiment,
we run both methods with a session size of 5 participants, but for
each session, one of the participants was started on a different
instance as a Chrome browser, and its window was recorded.
We used the videos for both methods to assess at which session
the quality decayed. Three of the authors independently watched
the videos of each session and method, and gave a score from 1
(worst) to 5 (best) in a Likert scale. All the authors agreed that
the quality of the videos recorded of the browser strategy already
degraded when the second session started, whereas the quality
of the videos recorded of the kms-webrtc strategy degraded at
session 12. Therefore, we could conclude that the maximum
practical values in number of sessions for both methods, browser
and kms-webrtc, are 1 and 11, respectively. Notice that we used
these values for the final experiment.

The OpenVidu deployment consisted on a master node
(c5.2xlarge instance with 8 vCPUs and 16 GB of memory) and two

12 https://www.elastic.co/beats/metricbeat.

https://www.elastic.co/elasticsearch/
https://www.elastic.co/beats/metricbeat

F. Gortázar, M. Gallego, M. Maes-Bermejo et al. The Journal of Systems & Software 193 (2022) 111439

a
8

c
U
s
t
t
t
a
r
t
e

i
n
r
o
m
t
u
l
s
w
a
s
c
s

r
a
s
n
w

c
s

Fig. 7. OpenVidu Loadtest Tool with several instances to perform load testing against an OpenVidu cluster with two media nodes.
dditional c5.xlarge instances for the media nodes (4 vCPUs and
GB of memory).
The load test in this case added sessions until no more sessions

ould be started, i.e., until the platform became unresponsive.
sually, the number of sessions needed to make the system unre-
ponsive are much more than the number of sessions that a single
esting instance can hold. Therefore, for this experiment, several
esting instances were used. In our final experiment, we run the
wo strategies mentioned above on a representative scenario,
nd recorded the total number of sessions and users added, the
unning time of the test, and the number of instances used in
otal to impersonate those users. The topology of the final testing
xperiment is shown in Fig. 7.
In this experiment, the test uses several instances, and it will

ntroduce load by adding sessions to each of them in turn until
o more sessions can be added. The process is depicted in Algo-
ithm 2, where t is the testing strategy, sessionSize is the number
f users per session for this test execution, maxSessions is the
aximum number of complete sessions to be started within each

esting instance, and IPs is a list of IPs of available instances to be
sed to impersonate users. Notice that we started a sufficiently
arge number of instances in advance, and that the test does not
tart instances on demand (to save some time that otherwise
ould require starting each instance before being available). The
lgorithm then proceeds to initialize the number of users joined,
essions started and instances used to zero. Then, while users
an be added it proceeds by choosing the first IP (line 8), and
tartingmaxSessionswithin that instance (lines 9–25), one session
at a time (lines 10–24), and waiting until the session stabilizes
(line 18), just like in our preliminary experiment. When all the
maxSessions have been started, we resort to the next instance
(line 8). During the process we update the number of users (line
14), sessions completed (line 21) and instances used (line 7). The
method addUser is exactly the same as in Algorithm 1 and will
eturn a code indicating a stopping condition under the same
ssumptions. The test returns the number of users that were
uccessfully added, the number of complete sessions and the
umber of instances used. Externally, we also recorded the CPU
all clock time of the test execution.
With the outcome of this experiment we could calculate the

ost of each testing scenario with the two testing strategies
elected. As the cost of the master and media nodes is fixed,
10
Algorithm 2 Final experimentation testing procedure

1: procedure openviduloadTest(t , sessionSize. maxSessions, IPs)
2: p← 0 ▷ Number of users
3: ns← 0 ▷ Number of sessions
4: ni← 0 ▷ Number of instances used
5: stop← false
6: while !stop do
7: ni← ni+ 1
8: IP ← IPs[ni]
9: for j← 1,maxSessions do

10: sessionId← newSession(IP)
11: for k← 1, sessionSize do
12: stop← addUser(IP, t, sessionId)
13: if !stop then
14: p← p+ 1
15: else
16: break
17: end if
18: wait(3)
19: end for
20: if !stop then
21: ns← ns+ 1
22: else
23: break
24: end if
25: end for
26: end while
27: return (p, ns, ni)
28: end procedure

we considered exclusively the cost of the instances hosting the
user emulators. We considered costs of the eu-west-1 AWS region
where the experiments were run. All testing strategies made use
of the same instance size (t3.xlarge), which had a cost of 0.1824
$ per hour, 0.00304 $ per minute at the time of the experiment.
Let mt be the number of test instances needed for strategy t until
the test stops, time be the time that it takes to complete the test
(in minutes) and X be the cost of the instance (in $/min), then the
cost of strategy t can be calculated as cost = time ∗ X ∗m .
t t

F. Gortázar, M. Gallego, M. Maes-Bermejo et al. The Journal of Systems & Software 193 (2022) 111439

o
d
t
s
t
(
e

g
o
s
a

6

g
i
p
s
s
e
t
b
b
d
t
s
t
a
s
m

t
t
a
k
t
p
a
i

s
s
w
b
o
t
2
s
t
o
8
b

w
A
i
t
p
v
s
r
i
d
t
w
i
t
v
v
r
t
m

Table 1
Results for the preliminary experiment.
Session size Testing strategies Max complete sessions Max users

2

browser 6 12 (12)
browser w/recording 5 10 (11)
headless browser 7 14 (14)
node-webrtc 18 36 (37)
kms-webrtc 64 128 (129)

3

browser 4 12 (12)
browser w/recording 3 9 (10)
headless browser 4 12 (14)
node-webrtc 13 39 (40)
kms-webrtc 26 78 (78)

5

browser 2 10 (12)
browser w/recording 2 10 (10)
headless browser 2 10 (11)
node-webrtc 5 25 (26)
kms-webrtc 12 60 (62)

8

browser 1 8 (13)
browser w/recording 1 8 (10)
headless browser 1 8 (11)
node-webrtc 1 8 (15)
kms-webrtc 2 16 (21)

6. Experiment results

All the experiments were performed on AWS, using instances
f different sizes as described in Section 5. We performed two
ifferent experiments. In our preliminary experimentation we
ried to find the limits of each of the load testing strategies on a
ingle AWS instance. In our final experimentation we tried to find
he limits of the OpenVidu platform, using two of the strategies
the most common one and the best one from the preliminary
xperimentation) with the aim of compare the spending of each.
We always used the same instance size for the testing strate-

ies (i.e., all strategies have the same number of CPUs and mem-
ry available), and the same video (i.e., all users are sending the
ame video), except the node-webrtc strategy that could not send
real video, and a new fake one was specifically generated for it.

.1. Preliminary experiment

In the preliminary experiment we considered the five strate-
ies described in Section 4, namely browser, browser with record-
ng, headless browser, node-webrtc and kms-webrtc. Table 1 re-
orts the session size (number of users per session), the testing
trategy, the maximum number of completed sessions that each
trategy could manage for each session size before starting to
rror when adding new users, and the maximum number of users
hat successfully joined their sessions. The number before the
rackets denote the number of users considering only those that
elong to a complete session, whereas the number in brackets
enote the actual number of users, of which some might belong
o a session not yet completed. For instance, for session size 2 the
trategy browser with recording reported 10 users (corresponding
o the 5 users in each of the 2 complete sessions), but 11 were
ble to join. The last one corresponds to a new, incomplete,
ession that only one user could join before the stop criteria was
et.
As shown in the table, the number of complete sessions that a

3.xlarge instance can hold decreases with the session size in all
he strategies. In general, using browsers we were able to gener-
te less load than using our proposed strategies node-webrtc and
ms-webrtc. When the session size goes beyond 3 users, that is, in
he case for 5 and 8 users per session, the number of sessions sup-
orted by any of the browser-based strategies remain the same (2
nd 1 respectively), indicating that there is little overhead in us-
ng the UI or recording the browser. Therefore, when considering
11
exclusively browser-based strategies, one could choose browsers
with recordings, with the benefits of having a recording of each
browser window.

The differences between the browser-based strategies and
the other two strategies are huge, with kms-webrtc being the
trategy that is able to generate more load (handle more complete
essions) in a single machine. This is even more clear in Fig. 8
here the number of sessions supported by each strategy can
e graphically compared. The kms-webrtc strategy systematically
utperforms any other strategy no matter the session size. No-
ice how for a session size of 8, kms-webrtc successfully joined
1 users, more than 2 and a half sessions. For small session
izes kms-webrtc is able to handle 6 to 10 times more sessions
han browser-based strategies. Our node-webrtc proposal also
utperforms strategies based on browsers (except for session size
where they tie), handling 2 to 3 times more sessions than

rowsers.
To understand the differences between node-webrtc and kms-

ebrtc we need to dive on how these strategies handle video.
ll the strategies need some prerecorded video that clients use
n place of a real video from a real cam. When using a browser,
he browser can be fed with a prerecorded video. This is a ca-
ability built in the browser when doing testing. However, these
ideos are handled differently in the node-webrtc and kms-webrtc
trategies. In node-webrtc each client needs to read the video. The
eading is performed by a ffmpeg process, which means the video
s read many times and there are many ffmpeg processes. This is
ue to the way this approach works: the video is read from within
he JavaScript code, and this code is invoked once per client we
ant to emulate. Furthermore, in node-webrtc the video is needed

n a specific codec, and ffmpeg needs to transcode the video into
he format required by node-webrtc. However, in kms-webrtc, the
ideo is read once by the Kurento media server, and the same
ideo can be used by different clients. Moreover, the video is
ead in VP8, the codec needed by WebRTC, without a need for
ranscoding it into a different format. We believe these are the
ain reasons why kms-webrtc outperforms node-webrtc.

RQ1a: ‘‘What is the strategy that is able to emulate more
sessions? Is this consistent with the session size?’’ The
two strategies proposed that avoid the use of browsers
outperform any browser-based strategy. The strategy with
better scalability (the highest number of sessions and
users) is kms-webrtc. It is able to handle 64 sessions of
2 users, 26 sessions of 3 users, 12 sessions of 5 users
and 2 sessions of 8 users, and it is consistent with the
session size, being always above any other strategy. When
compared to the most usual strategy of using browsers,
kms-webrtc is able to handle at least twice the sessions
of the browser-based strategies. For small session sizes
(2 and 3 users), it is able to handle about an order of
magnitude more sessions.

In addition to retrieve the number of sessions and users,
each AWS instance was running a probe for monitoring CPU and
memory usage. In Fig. 9 we reported the usage of resources for
each session size and strategy. We present the evolution of both
metrics with the number of users.

Results show that kms-webrtc is again consistently below any
other strategy in terms of CPU and memory usage. When con-
sidering session size 8, node-webrtc begins with a lower CPU and
memory consumption, but as the number of users increase, kms-
webrtc stays below node-webrtc. Browser-based strategies quickly

F. Gortázar, M. Gallego, M. Maes-Bermejo et al. The Journal of Systems & Software 193 (2022) 111439

s

t

Fig. 8. A comparison of the number of sessions supported by each strategy.

Table 2
Results from our final experiment comparing costs of browser and kms-webrtc
trategies.
Strategy Max complete

sessions
Max users Workers Test time Cost

browser 28 140 (144) 32 60 min 5.8368$
kms-webrtc 33 165 (167) 3 22 min 0.20064$

get to a situation where the CPU is at 100%, and their memory
consumption grows quickly, hence the differences in Table 1.

RQ1b: ‘‘How do each of the strategies perform in terms
of CPU and memory with respect to the number of
users?’’ The two proposed strategies node-webrtc and
kms-webrtc perform much better than any browser-based
strategy in terms of memory. However, in terms of CPU,
kms-webrtc performs much better than any of its com-
petitors. When looking at the CPU, node-webrtc performs
similarly to browser-based strategies. The steeper curves
that strategies based on browsers expose in terms of
memory are a clear indication that their scalability is poor,
which means that not many browsers can be used within
a single instance.

6.2. Final experiment

In our final experiment, we study the costs of a load test using
he usual browser-based strategy and the kms-webrtc, which is
the strategy that performed best in our preliminary experiment.
As described in Section 5, in this case the Test Orchestrator used
several testing instances for emulating clients.

Table 2 shows the results for the final experiment. For each
strategy and session size the table reports the number of com-
plete sessions before the OpenVidu platform started to fail, the
number of users (the number between brackets is to be inter-
preted as in Table 1), the number of workers (number of testing
instances that were used to host the sessions), the test time,
and the cost. The cost is calculated as described in Section 5.2.
The browser strategy needed 28 complete sessions to load the
OpenVidu platform. To host all those sessions 32 workers were
required, running for a total time of 60 min. The total cost of the
load test with browser (rounded to the nearest hundredth) was
5.84$. When using the kms-webrtc strategy, 33 complete sessions
were needed to load the OpenVidu platform. These 33 sessions
were hosted in 3 instances, with a total expenditure of 0.20$. This
means a 3.4% of the spending of the test using browsers.
12
In order to ensure a fair comparison, we recorded the CPU and
memory usage of the master and media nodes. Graphs in Fig. 10
report these metrics, where data of the media nodes is averaged
over the two nodes (hence a single graph for both media nodes).
The CPU on the master node is below 60%, something expected
as the master node is not handling the media, just forwarding
users to one of the media nodes. However, the average CPU of the
media nodes increases with the number of users. The behavior
is similar in both strategies. The memory consumption is about
40% in the master node, without many variations. In the media
nodes, it remains slightly below 40% and slowly increases with
the number of users. As shown in the graphs, media nodes are
CPU bound, that is, the number of users managed by a media node
have a bigger impact on CPU than in memory.

RQ2: ‘‘Are there any cost savings for using our proposals
with respect to using browsers when doing load testing
of a WebRTC platform?’’ Definitely, there is a huge cost
saving by using kms-webrtc. Expenditures can be cut off
by 96.6%, due to using much fewer instances: 3 instances
were needed by our proposal, 32 instances were needed
by the usual strategy of using browsers.

6.3. Threats to validity

Our studies are subject to construct validity issues, mostly due
to the load testing strategies chosen. The most common testing
strategies use a browser to impersonate users, sometimes record-
ing the browser window. In the state of the art we could not
find any reference to the use of headless browsers, nevertheless,
we considered this an interesting strategy. Authors believe the
strategies described for load testing WebRTC services are the
usual ones. The usage of a single media server in our experiments
is also a construct validity issue. Different media servers might
support different congestion control protocols, which might im-
pact the network bandwidth usage. This could have an impact
on the workers used to generate load, as more clients could be
impersonated per worker if the quality is dynamically adjusted.
This is because the client might require less CPU and memory to
decode the frames received, as these would have lower quality.
However, using our tool with different media servers would have
required an adapter on top of each of them, something that
requires knowledge of the target media servers.

Our results are also subject to internal validity issues, due
to how browsers adapt to environmental changes, mainly CPU
available. In our preliminary experimentation, when the stop
criteria is met, the test instance is reporting a CPU at 100%. This
might cause the quality of the video to drop, and hence, the load
over the media nodes decreases accordingly. To avoid this issue,
we estimated the QoE by recording videos and did a manual
assessment of their quality. Another internal validity threat is the
stopping criteria itself in the preliminary experiment. In this ex-
periment, we stop as soon as it is reported that one of the clients
cannot join its session. This usually happens because the CPU is
at 100%. In some cases, this might be just a peak, and the worker
might reduce its load after a few seconds. Therefore, an addi-
tional attempt to recreate this client might succeed, and the total
number of clients supported by the worker might be different. To
limit the impact of this issue, we wait 3 s since one user joins its
session before the next one is attempted. Furthermore, given the
huge difference in terms of clients supported between the two
approaches selected for our final experimentation, with 10 clients
supported by the browser approach versus 60 supported by the
kms-webrtc approach, even if the issue materializes it is unlikely

that it would invalidate the results.

F. Gortázar, M. Gallego, M. Maes-Bermejo et al. The Journal of Systems & Software 193 (2022) 111439

e
s
W
h
m
a

Fig. 9. A comparison on the use of resources (CPU and memory) by session size for each of the strategies.
Finally, we also have external validity issues. We run our
xperiments in AWS instances (virtual machines) that possibly
hare the host machine with other instances (not owned by us).
hen the host is under a huge load, the situation might some-
ow impact the metrics we took during the test executions. The
etrics we took, however, are consistent with what we expected,
nd we do not think that this issue materialized.
13
7. Conclusions

In this paper we have proposed cost-effective testing strate-
gies for load testing WebRTC applications, we have developed
and open sourced a testing framework for load testing WebRTC
applications with any of the 5 testing strategies studied in this
work, and we have studied the scalability and cost of these

F. Gortázar, M. Gallego, M. Maes-Bermejo et al. The Journal of Systems & Software 193 (2022) 111439
Fig. 10. CPU and memory usage of the master node and the two media nodes (averaged).
strategies, with a strong focus on comparing the new strategies
proposed with the usual browser-based strategies in the field.

The main contributions of this paper are:

• A discussion of the most common browser-based strate-
gies for load testing videoconference applications based on
the WebRTC standard, and under which circumstances one
strategy should be chosen over another. Our data confirms
there is a big difference in terms of costs between browser-
based and other strategies, with the latter being more cost-
effective without impacting quality.
• A proposal of a new strategy, node-webrtc, not based on

browsers, that is more efficient in terms of use of resources,
number of users emulated, than the browser-based ones.
• An improvement over a previous proposal (Amirante et al.,

2016) based on the usage of a media server to emulate
users. Our strategy, kms-webrtc, includes improvements like
adapting our strategy to the WebRTC APIs, or removing the
need to implement ad-hoc testing code, among others. This
strategy outperforms any other strategy in terms of num-
ber of users emulated. It also outperforms the node-webrtc
strategy.
• An open source load testing tool (the OpenVidu Loadtest

Tool) that automates the process of generating load through
any of these five strategies to an OpenVidu deployment. This
tool automatically starts and stops nodes in AWS to inject
load into the application under test.
• A study of the scalability of each strategy in terms of number

of users, as well as CPU and memory usage. These results
suggest that there is little overhead between browsers with
and without recording, a conclusion that could be used to
favor the former and using the recorded videos as oracles in
load testing WebRTC services.
• Our kms-webrtc proposal can save up to 96% of monetary

costs when performing load testing of WebRTC services. Ac-
cording to these results, developers could use cost-effective
strategies such as kms-webrtc in their daily CI jobs to en-
sure there are no regressions with respect to the load the
14
application can handle, while expensive strategies such as
browser-based ones could be used from time to time in
order to spot UI bugs.

We tried to perform the studies in similar conditions for all
the strategies. However, it might be interesting to research, for in-
stance, how different methods behave under different conditions
(like network issues).

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

A repository with the OpenVidu Loadtest Tool repository is
available in GitHub.13 Additionally, a reproduction package (Bel-
las et al., 2021) is available in Zenodo with raw results and a copy
of the OpenVidu Loadtest Tool repository.

The authors would like to thank the reviewers for their in-
sightful comments that helped improve the paper. This work
has been supported by the Government of Spain through project
‘‘BugBirth’’ (RTI2018-101963-B-100), by the Regional Govern-
ment of Madrid (Spain) (CM) through project EDGEDATA-CM
(P2018/TCS-4499) cofunded by FSE & FEDER, and by the European
Commission under the H2020 project ‘‘MICADO’’ (GA-822717).

References

Amirante, A., Castaldi, T., Miniero, L., Romano, S.P., 2014. Janus: a general purpose
WebRTC gateway. In: Proceedings of the Conference on Principles, Systems
and Applications of IP Telecommunications. pp. 1–8.

13 https://github.com/OpenVidu/openvidu-loadtest.

https://github.com/OpenVidu/openvidu-loadtest

F. Gortázar, M. Gallego, M. Maes-Bermejo et al. The Journal of Systems & Software 193 (2022) 111439

A

B

B

B

B

2
D

G

G

Amirante, A., Castaldi, T., Miniero, L., Romano, S., 2016. Jattack: a WebRTC
load testing tool. In: 2016 Principles, Systems and Applications of IP
Telecommunications (IPTComm). IEEE, pp. 1–6.

ndré, E., Le Breton, N., Lemesle, A., Roux, L., Gouaillard, A., 2018. Comparative
study of WebRTC open source SFUs for video conferencing. In: 2018 Princi-
ples, Systems and Applications of IP Telecommunications (IPTComm). IEEE,
pp. 1–8.

ellas, F.G., Carrillo, M.G., Bermejo, M.M., Chicano, I., Santos, C., 2021. Dataset
of paper ‘‘Cost-effective load testing of WebRTC applications’’. http://dx.doi.
org/10.5281/zenodo.5553261.

ertolino, A., 2007. Software testing research: Achievements, challenges, dreams.
In: Future of Software Engineering (FOSE’07). IEEE, pp. 85–103.

ertolino, A., Angelis, G.D., Gallego, M., García, B., Gortázar, F., Lonetti, F.,
Marchetti, E., 2019. A systematic review on cloud testing. ACM Comput. Surv.
52 (5), http://dx.doi.org/10.1145/3331447.

ertolino, A., Calabró, A., De Angelis, G., Gortázar, F., Lonetti, F., Maes, M.,
Tuñón, G., 2020. Quality-of-Experience driven configuration of WebRTC
services through automated testing. In: 20th International Conference on
Software Quality, Reliability and Security (QRS). IEEE, pp. 152–159.

022. Bigbluebutton. https://bigbluebutton.org/ (accessed August 16, 2022).
i Lucca, G.A., Fasolino, A.R., 2006. Testing Web-based applications: The state of

the art and future trends. Inf. Softw. Technol. 48 (12), 1172–1186.
ao, J., Bai, X., Tsai, W.-T., 2011. Cloud testing-issues, challenges, needs and

practice. Softw. Eng.: Int. J. 1 (1), 9–23.
arcía, B., Gallego, M., Gortázar, F., Jiménez, E., 2017a. WebRTC testing: State of

the art. In: ICSOFT. pp. 363–371.
15
Garcia, B., Gortazar, F., Lopez-Fernandez, L., Gallego, M., Paris, M., 2017b. WebRTC
testing: challenges and practical solutions. IEEE Commun. Stand. Mag. 1 (2),
36–42.

García, B., López-Fernández, L., Gallego, M., Gortázar, F., 2016. Testing framework
for WebRTC services. In: Proceedings of the 9th EAI International Conference
on Mobile Multimedia Communications. pp. 40–47.

Gouaillard, A., Roux, L., 2017. Real-time communication testing evolution
with WebRTC 1.0. In: 2017 Principles, Systems and Applications of IP
Telecommunications (IPTComm). IEEE, pp. 1–8.

2022. Jitsi. https://meet.jit.si (accessed August 16, 2022).
2022. Kurento media server. http://kurento.org (accessed August 16, 2022).
Li, Y.-F., Das, P.K., Dowe, D.L., 2014. Two decades of web application testing—A

survey of recent advances. Inf. Syst. 43, 20–54.
2022. Openvidu. https://openvidu.io (accessed August 16, 2022).
Shariff, S.M., Li, H., Bezemer, C.-P., Hassan, A.E., Nguyen, T.H., Flora, P., 2019.

Improving the testing efficiency of selenium-based load tests. In: 2019
IEEE/ACM 14th International Workshop on Automation of Software Test
(AST). IEEE, pp. 14–20.

Taheri, S., Beni, L.A., Veidenbaum, A.V., Nicolau, A., Cammarota, R., Qiu, J.,
Lu, Q., Haghighat, M.R., 2015. WebRTCbench: a benchmark for performance
assessment of webrtc implementations. In: 2015 13th IEEE Symposium on
Embedded Systems for Real-Time Multimedia (ESTIMedia). pp. 1–7. http:
//dx.doi.org/10.1109/ESTIMedia.2015.7351769.

2022. testRTC. https://testrtc.com/ (accessed August 16, 2022).
2022. Webrtc. https://webrtc.org/ (accessed August 16, 2022).
2022. Whereby. https://whereby.com/ (accessed August 16, 2022).

http://refhub.elsevier.com/S0164-1212(22)00138-8/sb2
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb2
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb2
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb2
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb2
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb3
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb3
http://dx.doi.org/10.5281/zenodo.5553261
http://dx.doi.org/10.5281/zenodo.5553261
http://dx.doi.org/10.5281/zenodo.5553261
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb5
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb5
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb5
http://dx.doi.org/10.1145/3331447
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb7
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb7
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb7
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb7
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb7
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb7
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb7
https://bigbluebutton.org/
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb10
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb10
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb10
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb11
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb11
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb11
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb12
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb14
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb14
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb14
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb14
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb14
https://meet.jit.si
http://kurento.org
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb17
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb17
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb17
https://openvidu.io
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb19
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb19
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb19
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb19
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb19
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb19
http://refhub.elsevier.com/S0164-1212(22)00138-8/sb19
http://dx.doi.org/10.1109/ESTIMedia.2015.7351769
http://dx.doi.org/10.1109/ESTIMedia.2015.7351769
http://dx.doi.org/10.1109/ESTIMedia.2015.7351769
https://testrtc.com/
https://webrtc.org/
https://whereby.com/

	Cost-effective load testing of WebRTC applications
	Introduction
	Background
	Generic WebRTC testing tools
	WebRTC load testing tools
	Testing in the cloud

	WebRTC testing strategies
	Anatomy of a WebRTC application
	OpenVidu WebRTC platform
	OpenVidu load testing

	Load testing strategies for WebRTC applications
	Selenium driven browsers
	Cost-effective testing solutions for WebRTC
	The node-webrtc approach
	The kms-webrtc approach

	Methodology
	Preliminary experiment
	Final experiment

	Experiment results
	Preliminary experiment
	Final experiment
	Threats to validity

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

