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A B S T R A C T

The search for linguistic patterns together with stylometry and forensic linguistics has in the theory of
complex networks, its structures and its associated mathematical tools essential resources for representing and
analyzing texts. In this paper we introduce a new model able to analyze the mesoscopic relationships between
sentences, paragraphs, chapters and texts. This model is supported by several mathematical structures such
as the hypergraphs or the concept of derivative graph. The methodology raised from this perspective focuses
not only in a quantitative index but also in two peculiar mathematical structures named derivative graph
and homogeneity graph. These structures are of singular help to both: detecting the style of an author and
determining the linguistic level of a text and, eventually, also for detecting similarities and dissimilarities in
texts and even plagiarism.
1. Introduction

In the last decades the emergence of new structures and models
in the field of complex networks and the successive advances in the
study and development of their associated tools have made it possible
to model the different types of interactions between the diverse parts
of a complex system in an efficient and remarkably successful way in
practically every area of knowledge [1–6]. Complex networks have
become an essential and indispensable element in the representation
of systems for simulating the interactions and relationships between
the components of a complex system in fields as diverse as biology,
technology, and human social organization [1,5,7–14].

It is notorious that Network Science can be traced back to the
analysis of heterogeneity in real-world complex systems, both in terms
of their nature and function. Thus, the role played by some nodes in
these systems is very different from the one obtained by the classical
Erdős-Rényi model of random networks, which was a first fundamental
milestone in the modeling of real-world complex systems and in the
assumption in these models as a first level of heterogeneity [15]. The
famous scale-free model made it possible to successfully modeling real-
world complex systems by highlighting the relevant role of nodes with
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heterogeneous connectivity [15]. A second milestone consisted in the
emergence of multilayer network models having in mind that links
could also be heterogeneous in nature [7]. The third milestone is cur-
rently being developed under the consideration that the heterogeneity
of complex systems may affect not only the function of links, but also
their nature, since links may be formed by subsets of nodes of different
cardinality [16]. Many complex systems are produced by considering
interactions between more than two nodes simultaneously. Thus, from
collaborative networks to linguistic networks, including collective so-
cial interaction networks, trophic networks and biochemical regulation
networks, make the classical network theory a model that is certainly
insufficient. Therefore, the new challenge for the network community
is to find new mathematical models that fit multiparty interactions to
model complex systems with relationships of heterogeneous nature.

The emergence of new tools allowing to automatically handle and
analyze large datasets has led to the development of new approaches
in many areas of knowledge including text analysis [10,17,18].

Classical approaches for linguistic analysis of texts were based
on simple statistical studies that relied on word frequency [10,19].
However, it should be noted that in recent decades modern linguistics
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has received a major breakthrough derived from the treatment of a
language as a complex system or network, having at its disposal in
this representation all the tools, measures and procedures to obtain
a new, efficient and effective approach to the study of languages
through complex network that includes qualitative and quantitative
aspects [11,12,20–27].

Therefore, the analysis of linguistic theories based in the study
of specialized corpora and the new approach provided by complex
networks makes it possible to obtain certain stylistic and typological
characteristics together with some intrinsic properties of languages.
The perspective provided by complex networks goes beyond the use
of word adjacency or co-occurrence methods. These classical methods
successfully capture the syntactic elements of the texts [28], but do not
have the capacity to represent certain characteristics that develop at
the mesoscopic level related to the semantic relationships between the
different sentences and paragraphs.

The linguistic network model we are working with in this manuscript
emerges from the need to work with sentences or paragraphs as a group
or collection of certain words in contrast to the type of links considered
in previous works where directed and weighted links are devoted to
represent the relationships between linguistic units as in [14,21,25].
In this work, as in [29,30], instead of considering the co-occurrence
relationship between two adjacent words or linguistic units within a
sentence, we will study not only the relationship between sentences
(those that share lexical words) but also the relationship between
paragraphs or even articles, seeking to characterize, by using network
theory parameters, the style of an author of a text as well as the level
of language and/or specialization in a text. This approach leads us
to a completely different perspective from the one used, for example,
in [10], where, among many other differences, words are transformed
and reduced to their canonical forms and the text is organized in
consecutive sets of paragraphs.

In order to apply the tools described in this work, and perform a
computer processing on a linguistic corpus understood as a collection of
texts collected electronically as a representative sample of texts selected
according to a determined linguistic criteria [31]. Following this, a
corpus of texts composed of 86 extended abstracts (volumes 1–6 of the
International Journal of Complex Systems in Science (IJCSS), published
between April 2011 and November 2016 (http://www.ij-css.org)) has
been considered. This corpus provides us with a total amount of 147637
words as well as 25210 sentences, considered in this study. It should
be noted that the unit of analysis from which we start in this work
is the sentence, i.e., the words enclosed between two periods [32]. In
addition, it is important to note that commas and other punctuation
marks within the sentence have not been considered for this analysis.

The questions we addressed when we started to write this paper
were ‘‘How can the competence level of language used in a text be
characterized?’’ or ‘‘Can the style of an author be determined using
specific parameters in the linguistic network under consideration?’’.
We considered other issues such as: ‘‘What is the most frequently used
combination of words in a corpus beyond locating the most relevant
individual lexical words?’’, or even ‘‘How can the most representative
words of a text (not necessarily the most frequent) be determined?’’.

Taking into account that the English language has four major word
classes: nouns, adjectives, verbs, and adverbs, and that the main re-
maining word classes are prepositions, conjunctions, determiners, in-
terjections, or pronouns, we established in [29] a four-layer network
in order to study a specialty language. In this paper, we will focus
on words belonging to the lexical layer, i.e., those significant words
(mainly nouns and adjectives) with a specific meaning in the specialty
language under study [29,30].

Therefore, in this paper we use the tools and methodology de-
rived from some complex network structures to describe interactions
between groups of words. Each of these groups is formed by the
2

lexical words belonging to a specific sentence in the analyzed corpus l
(syntagmatic approach, from the Greek ‘‘𝜎𝜄𝜐𝜏𝛼𝛾𝜇𝛼’’, syntagma: ‘‘assem-
led group’’). It is important to note that the syntagmatic approach,
hich corresponds to the analysis presented in this paper, is different

rom the paradigmatic approach used in other works of computational
inguistics [21].

Since the syntagmatic relationship is based on the interrelationships
f words in a linguistic structure [29,30,33], it makes sense to consider
he relationships between sets of two, three or more significant words
hat appear in the same sentence, paragraph, abstract or article and
hat in some way characterize a text as belonging to an author, or
iscriminate the level of language used in it, as well as those other
ords and relations that allow distinguishing it from texts belonging

o other authors or that use a different level of language.
The methodology presented here makes it possible to determine the

anguage level in a text as well as the style of an author. It can be also
seful for analyzing and ranking sentences, abstracts, paragraphs and
exts (sets of words) according to their importance, having mind their
nterrelationships in the context of the multilayer network structure
efined in [29,30] as well as for extracting new features of a text from
he relationships between significant sets of words in the text.

High-order networks or hypergraphs are the natural generalization
f networks that takes into account the fact that a link can connect
ore than two nodes. Interest in this type of network is growing due

o the inability of classical graphical representations to describe group
nteractions. Their applicability goes beyond the field of social sci-
nces [34–36] and the study of group interactions, public cooperation
r opinion formation. In our case, we will consider its applicability in
he field of linguistics and specialty languages beyond other approaches
ased on classical complex networks, multiplex networks or multilayer
etworks [12,14,20–24,37–39].

As it can be easily understood, a property referring to a finite
et of objects (in our case, the nodes of a network), is completely
haracterized by the subset of elements that satisfy it, which in this
ase will be represented by the hyperedge formed by these elements,
aking it possible to compare and relate properties of the nodes and

he network studying and analyzing the corresponding hypergraph.
Thus, the study of the relationships between the properties of the

odes consists of mathematically analyzing the properties and typical
arameters of the associated hypergraph. Therefore, the applications
f this methodology to the field of linguistics range from the charac-
erization of an author’s style to the detection of plagiarism, including
he detection and identification of the same concept expressed in a
ifferent way. To this end, starting, in the first instance, from the
dentification of a sentence of our corpus with the hyperedge formed
y the set of lexical words of that sentence, the hypergraph will be
onstructed in which the nodes will be all the lexical words of the
orpus and the hyperedges all the sentences of the corpus, defining the
oncept of derivative of two words with respect to a set of hyperedges
nd the degree of independence of two words of a text with respect
o that set of hyperedges. This study can be extended considering as
yperedges, successively, the sets of nodes formed by the lexical words
f a paragraph, an abstract or even a chapter, taking the corresponding
equence of parameters as a feature of the text and pointing to new
pplications of this structure.

The structure of the paper is as follows. After this introduction, in
ection 2 some basic concepts and a summary of the most important
elationships between the line graph the dual hypergraph, the bipartite
raph associated to a certain hypergraph and its corresponding matrices
re introduced. Section 3 is devoted to introduce the concept of deriva-
ive of a hypergraph with respect to a set of nodes and to establish the
efinition of the homogeneity graph of a hypergraph obtaining some
emarkable results related to this new structure. In Section 4 we apply
he mathematical concepts and the structures defined in the previous
ections to obtain tools able to characterize the style and level of a
ext belonging to the linguistic hypergraph considered. In Section 5 the

exical density of the set of texts that make up the analyzed corpus

http://www.ij-css.org
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is studied, and some numerical experiments and computational results
are presented. Thus, using three different algorithms we illustrate the
diverse types of relationships that can be established between sentences
within a text and their relative importance. Section 6 is devoted to
apply the instruments and tools developed in order to obtain distinctive
characteristics that allow us to distinguish the styles of the different
authors and linguistic competence levels of the written texts included in
the corpus considered. Finally in Section 7 we present some conclusions
of this work.

2. Basic concepts and some preliminary results

A network (or graph) 𝐺 = (𝑋,𝐸) is just a finite set of vertices (or
nodes) 𝑋 = {1,… , 𝑁} connected by a set of edges (or links between
certain pairs of nodes) 𝐸 = {𝑒1,… , 𝑒𝑚}. If the edges have a direction,
we will say that 𝐺 is a directed network (or digraph). In the sequel,
we will denote by 𝑒𝑖𝑗 ∈ 𝐸 the link between the nodes 𝑖 and 𝑗, although
ometimes we will also denote the edge 𝑒𝑖𝑗 by {𝑖, 𝑗} or, if 𝐺 is a directed
etwork, by 𝑖 → 𝑗. Finally, a weighted network is a graph in which
ach edge 𝑒𝑖𝑗 has an associated numerical value 𝑤(𝑒𝑖𝑗 ) = 𝑤𝑖𝑗 called

its weight. In the same way, following [40], a hypergraph  = (𝑋, 𝜀)
is a finite set of vertices (or nodes) 𝑋 = {1,… , 𝑁} and a collection
𝜀 = {ℎ1, ℎ2,… , ℎ𝑛} of subsets of 𝑋 such that ℎ𝑖 ≠ ∅ (𝑖 = 1, 2,… , 𝑛)
and 𝑋 =

⋃𝑛
𝑖=1 ℎ𝑖. Each of these subsets is called a hyperedge. In

this way, hypergraphs appeared as the natural extensions of graphs
to describe group interactions. In the following sections, the study is
developed with undirected graphs and hypergraphs, though some of
the definitions can be easily extended to the directed case.

In order to carry out our study it is necessary to introduce the
concepts of linegraph and dual hypergraph of a hypergraph. In this
regard it should be noted that the concept of linegraph 𝐿(𝐺) associated
to a graph 𝐺 = (𝑋,𝐸) was introduced by H. Whitney in 1932 [41] and
extended for higher order networks by J.C. Bermond et al. in 1977 [42,
43]. It is important to point out that the study of these structures, as
well as the relationships between them and their applications, has been
increasing steadily in recent years (see, for example, [34,44–49]).

So, if  = (𝑋, 𝜀) is a hypergraph, the linegraph associated to  is
the graph 𝐿() = (𝜀, 𝐸′), where if ℎ𝑖, ℎ𝑗 ∈ 𝜀, then

{ℎ𝑖, ℎ𝑗} ∈ 𝐸′ ⇔ ℎ𝑖 ∩ ℎ𝑗 ≠ ∅.

It is also notorious that the linegraph 𝐿() of a hypergraph  is a graph
even though  is a hypergraph. Note that this concept is a particular
case of the concept of intersection graph [49]. On the other hand, it
is also possible to consider the dual hypergraph of a hypergraph: if
 = (𝑋, 𝜀) is a hypergraph, the dual hypergraph associated with 
is the hypergraph ∗ = (𝜀,𝑋′) in such a way that if 𝑋 = {1,… , 𝑁},
then 𝑋′ = {𝑣1,… , 𝑣𝑁} where 𝑣𝑖 = {ℎ𝑗 |𝑖 ∈ ℎ𝑗}, 𝑖 = 1,… , 𝑁 . It is not
difficult to verify that (∗)∗ = . Moreover, if 𝐼 is the incidence matrix
of , then its transpose matrix 𝐼 𝑡 is the incidence matrix of ∗. In
this context, to concretize the relationship between 𝐿() and ∗, we
consider the function 𝛱2 that turns a hypergraph  = (𝑋, 𝜀) into a
graph 𝛱2() = (𝑋,𝐸′) as follows:

{𝑖, 𝑗} ∈ 𝐸′ ⇔ ∃ℎ ∈ 𝜀 ∣ 𝑖, 𝑗 ∈ ℎ.

So, for any hypergraph  we have that 𝛱2(∗) = 𝐿(). Further-
more, if 𝐺 = (𝑋,𝐸) is a graph, with 𝑋 = {1,… , 𝑁}, we can also
consider the dual hypergraph 𝐺∗ = (𝐸, 𝜀) of 𝐺 where 𝜀 = {ℎ1,… .ℎ𝑛}
and ∀𝑖 ∈ {1,… , 𝑛} we consider the corresponding hyperedge ℎ𝑖 = {𝑒𝑗 ∈
𝐸| 𝑖 ∈ 𝑒𝑗}, and also 𝛱2(𝐺∗) = 𝐿(𝐺).

Now, if we denote by 𝐼() the incidence matrix of , then it is not
difficult to verify that

𝐼()𝑡 ⋅ 𝐼() = 𝐴() = (𝑎𝑖𝑗 ) ∈ R|𝜀|×|𝜀|

and
𝑡 𝑁×𝑁
3

𝐼() ⋅ 𝐼() = 𝐴() = (𝑎𝑖𝑗 ) ∈ R ,
where

𝑖̃𝑗 =
{

|ℎ𝑖| if 𝑖 = 𝑗,
|ℎ𝑖 ∩ ℎ𝑗 | if 𝑖 ≠ 𝑗,

and

𝑎𝑖𝑗 =
{

|{ℎ ∈ 𝜀 ∣ 𝑖 ∈ ℎ}| if 𝑖 = 𝑗,
|{ℎ ∈ 𝜀 ∣ 𝑖, 𝑗 ∈ ℎ}| if 𝑖 ≠ 𝑗.

(2.1)

In fact, if we consider in addition the bipartite network 𝐵()
associated to the hypergraph  = (𝑋, 𝜀) defined by 𝐵() = (𝑋∪𝜀, 𝐸())
then its adjacency matrix is given by

𝐴𝐵() =
(

0 𝐼()
𝐼()𝑡 0

)

and

(𝐴𝐵())2 =

(

𝐴() 0
0 𝐴()

)

.

The matrix 𝐴() = (𝑎𝑖𝑗 ) is known as the frequency matrix of
elations between the elements (nodes) of the hypergraph .

. Hypergraphs and derivative graph

Quantifying the similarity between two models or structures is one
f the most important aspects that has contributed to the development
f theories and models in science and technology. There are multiple
orks whose objective is to model generic data sets in the field of

omplex networks in order to, by using the constructed model, study
he level of similarity or coincidence of such data [50–52]. Thus,
ince the introduction of Jaccard’s index in 1901 [53], through dif-
erent adaptations and generalizations of this concept [52,54], several
ypes of indexes and generalizations have been established with the
im of quantifying the similarity between two sets or mathematical
tructures [50–52,54–56].

The basic Jaccard index to compare the degree of coincidence or
imilarity between two sets 𝐴 and 𝐵 can be obtained from the formula

=
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

.

The different applications of the Jaccard index along time made pos-
sible the development of new indexes, improving the accuracy of the
original results. So, the overlap index and the coincidence similar-
ity [51,52,56,57] are examples of additional indexes that allow to
establish similarity between certain types of models and structures, in-
cluding approaches aimed at quantifying similarity between paragraph
contents using the concept of multisets [57].

In our case, we are going to introduce a methodology to analyze and
quantify the similarity between two nodes 𝑖, 𝑗 of a hypergraph, applying
it to the study of the linguistic network built through the corpus under
study.

In this section we are going to introduce the concept of derivative
graph of a hypergraph with the idea of associating not only a numerical
index that allows us to quantify the heterogeneity and absence of
similarity between the corresponding hyperedges, but also to associate
a structure (in this case a graph) to characterize the heterogeneity and
dissimilarity of the elements of the hypergraph under consideration.
Now, we are in a good position to present the concept of derivative
graph of a hypergraph over a pair of nodes, bearing in mind this
concept is related to some of the ideas partially and briefly sketched
in [58]:

Definition 3.1. Given a hypergraph  = (𝑋, 𝜀), with 𝐴() = (𝑎𝑖𝑗 ) ∈
R𝑁×𝑁 , we will call the derivative hypergraph of  with respect to the
pair of nodes 𝑖, 𝑗 ∈ 𝑋 as the numerical value 𝜕

𝜕{𝑖,𝑗} obtained by applying
he following formula

𝜕 =
𝑎𝑖 − 𝑎𝑖𝑗 + 𝑎𝑗 − 𝑎𝑖𝑗 =

𝑎𝑖 − 2𝑎𝑖𝑗 + 𝑎𝑗 . (3.2)

𝜕{𝑖, 𝑗} 𝑎𝑖𝑗 𝑎𝑖𝑗



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 163 (2022) 112604Á. Criado-Alonso et al.

e
w
t

t
w
h
t
b

0
s
I
d
i

D
c
v

w
(

n

s
F

𝐻

n
i
g

⎛

⎜

⎜

⎜

⎜

⎝

w
a

p
c

D
w

Obviously, if there is not a hyperedge ℎ ∈ 𝜀 such that 𝑖, 𝑗 ∈ ℎ, we
will have 𝜕

𝜕{𝑖,𝑗} = ∞, and if ∀ℎ ∈ 𝜀 (𝑖 ∈ ℎ ⇔ 𝑗 ∈ ℎ) then we will have
𝜕

𝜕{𝑖,𝑗} = 0. Note that ∀𝑖, 𝑗 ∈ 𝑋 we have that 𝜕
𝜕{𝑖,𝑗} ≥ 0.

It is important to point out that the above definitions can be
xtended without difficulty to the context of a collection of sets (which
ould play the role of the hyperedges) and of the elements (respectively

he nodes) of the sets of that collection.
If we now consider each hyperedge ℎ ∈ 𝜀 as a property or a feature

hat a node may or may not have, or even as an event or affair in
hich a particular node may or may not participate, so that the entire
ypergraph is a set of features or events, the value of 𝜕

𝜕{𝑖,𝑗} characterizes
he (relative) heterogeneity of the properties 𝜀 satisfied simultaneously
y nodes 𝑖 and 𝑗, or the intensity of participation of the nodes 𝑖 and 𝑗 in

the set of events 𝜀. Moreover, the smaller the value of the derivative of
the network with respect to the set of events over the pair of nodes 𝑖, 𝑗
is, the greater identification and similarity between the corresponding
nodes 𝑖, 𝑗 with respect to the considered set of events (in fact, if 𝜕

𝜕{𝑖,𝑗} =
, these nodes, which participate in exactly the same hyperedges, are
o similar that they are, from the point of view of  indistinguishable).
n other words, the higher the value of the derivative is, the greater the
egree of unequal participation of the nodes in the hyperedges. Thus,
t makes sense to give the following definition:

efinition 3.3. Given a hypergraph  = (𝑋, 𝜀) and 𝑖, 𝑗 ∈ 𝑋, we will
all degree of independence of 𝑖 and 𝑗 with respect to  the numerical
alue of 𝜕

𝜕{𝑖,𝑗} .

Definition 3.4. Given a hypergraph  = (𝑋, 𝜀), the derivative graph
𝜕 of  is the weighted graph obtained by considering the derivative
of  with respect all the pairs of nodes 𝑖, 𝑗 ∈ 𝑋, and by setting ∀𝑖, 𝑗 ∈ 𝑋
the corresponding numerical value of 𝜕

𝜕{𝑖,𝑗} on the edge {𝑖, 𝑗}, in such a
ay that if 𝜕

𝜕{𝑖,𝑗} = 0, then the nodes 𝑖 and 𝑗 collapse into a single node
𝑖𝑗), and having in mind that if 𝜕

𝜕{𝑖,𝑗} = ∞, then the edge {𝑖, 𝑗} does not
exist in the derivative graph.

Globally, it can be said that the derivative graph 𝜕 gives us a
representation of the degree of heterogeneity of participation of nodes
on the different hyperedges of .

Assuming that if 𝑘 is any positive number then 𝑘
0 = +∞ and 𝑘

∞ = 0,
for continuity and consistency sake of the established concepts, we are
interested in defining the homogeneity matrix and homogeneity graph
of a hypergraph:

Definition 3.5. Given a hypergraph  = (𝑋, 𝜀), we will call ho-
mogeneity matrix of , to the matrix 𝐻() = (ℎ𝑖𝑗 ) ∈ R𝑁×𝑁 defined
by

ℎ𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑖 = 𝑗,
1
𝜕

𝜕{𝑖,𝑗}

if 𝑖 ≠ 𝑗.

Definition 3.6. Given a hypergraph  = (𝑋, 𝜀), the homogeneity graph
𝐻𝐺() of  is the weighted graph with the same nodes and edges as
𝜕, but considering as the weight of each edge the inverse value of the
weight corresponding to the derived graph 𝜕.

At this point it is remarkable that the application of the PageRank
algorithm on the homogeneity graph 𝐻𝐺() will allow us to extract
the most representative nodes of the hypergraph, in the sense that
the nodes located in the first places of the ranking obtained will
be the ‘‘most similar’’ (in the sense that underlies the definition of
homogeneity graph) to each other and to the rest of the nodes of the
hypergraph as it will be shown in Section 5.

To clarify the concepts and ideas introduced, let us examine the
4

following example:
Example 3.7. Consider the hypergraph  = (𝑋, 𝜀), where 𝑋 =
{1, 2, 3, 4, 5}, 𝜀 = {ℎ1, ℎ2, ℎ3}, and ℎ1 = {1, 2, 3, 5}, ℎ2 = {2, 4}, ℎ3 =
{3, 4}, represented in panel (a) of Fig. 1. We have that

𝐼()𝑡 =
⎛

⎜

⎜

⎝

1 1 1 0 1
0 1 0 1 0
0 0 1 1 0

⎞

⎟

⎟

⎠

,

𝐼() ⋅ 𝐼()𝑡 = 𝐴() =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 0 1
1 2 1 1 1
1 1 2 1 1
0 1 1 2 0
1 1 1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The values of the derivatives of  with respect to all the pair of
odes of 𝐺 are, respectively:
𝜕

𝜕{1, 5}
= 0, 𝜕

𝜕{1, 2}
= 1, 𝜕

𝜕{1, 3}
= 1, 𝜕

𝜕{1, 4}
= +∞, 𝜕

𝜕{2, 3}
= 2,

𝜕
𝜕{2, 4}

= 2, 𝜕
𝜕{2, 5}

= 1, 𝜕
𝜕{3, 4}

= 2, 𝜕
𝜕{3, 5}

= 1, 𝜕
𝜕{4, 5}

= +∞.

o that the derivative graph 𝜕 is the one represented in part (b) of
ig. 1 and the homogeneity matrix of  is:

() =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 1 0 ∞
1 0 1∕2 1∕2 1
1 1∕2 0 1∕2 1
0 1∕2 1∕2 0 0
∞ 1 1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Note that the edge {1, 4} ∈ 𝐸 has been removed in the derivative
etwork 𝜕 and that nodes 1 and 5 have collapsed into a single node
n the obtained network. So, the adjacency matrix of the homogeneity
raph 𝐻𝐺() is:

0 1 1 0
1 0 1∕2 1∕2
1 1∕2 0 1∕2
0 1∕2 1∕2 0

⎞

⎟

⎟

⎟

⎟

⎠

,

here the set of nodes of 𝐻𝐺() is ({(1, 5), 2, 3, 4}) ordered as they
ppear (panel (c) of Fig. 1).

Thus, in panel (a) of Fig. 1 it can be observed the original hy-
ergraph , in part (b) its derivative graph 𝜕 and in panel (c) its
orresponding homogeneity graph 𝐻𝐺().

It is worth noting that, in a similar way as it has been done in
efinition 3.1, it is possible to establish the derivative of a hypergraph
ith respect to a set of three or more nodes as follows:

𝜕
𝜕{𝑖, 𝑗, 𝑘}

= 1
𝑎𝑖𝑗𝑘

⋅

⎛

⎜

⎜

⎜

⎝

∑

𝑟∈{𝑖,𝑗,𝑘}
𝑎𝑟 − 2

∑

𝑟,𝑠∈{𝑖,𝑗,𝑘}
𝑟≠𝑠

𝑎𝑟𝑠 + 3𝑎𝑖𝑗𝑘

⎞

⎟

⎟

⎟

⎠

,

where 𝑎𝑖𝑗𝑘 = |{ℎ ∈ 𝜀| 𝑖, 𝑗, 𝑘 ∈ ℎ}|, and the same type of formula can be
obtained for sets of nodes of higher cardinality.

Note that the same idea can be extended to the definition of degree
of independence of several nodes as follows: Given a hypergraph  =
(𝑋, 𝜀), and 𝑖1,… , 𝑖𝑛 ∈ 𝑋, the degree of independence of 𝑖1,… , 𝑖𝑛 in 
is the numerical value 𝜕

𝜕{𝑖1 ,…,𝑖𝑛}
.

Finally, it is remarkable that the use of the PageRank algorithm on
the homogeneity graph will allow us to extract a ranking of the most
representative individuals (or nodes) of either the hypergraph or the
network under consideration.

To conclude this section, it must be noted that when both graphs
and hypergraphs are used simultaneously to model certain complex
systems, it is sometimes very useful to analyze how these structures
interact and overlap using the tools introduced in this section. In this
regard, it should be noted that the tools introduced in this section can
be used to capture intrinsic and mesoscopic characteristics of a graph
and to define new invariants of graphs and isomorphic networks. For
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Fig. 1. Hypergraph  (panel (a)), its derivative graph 𝜕 (panel (b)) and its homogeneity graph 𝐻𝐺() (panel (c)).
example, given a graph 𝐺 = (𝑋,𝐸), we can consider the hypergraph
 = (𝑋, 𝜀) such that each of its hyperedges is formed by all the nodes
that are part of a cycle, or by all the nodes that are part of a spanning
tree of 𝐺. The most accurate framework to work with the overlapping
of these structures is the use of hyperstructures.

In [59] we can find a first definition of the concept of hyperstructure
as follows:

Definition 3.8 ([59]). Given a graph 𝐺 = (𝑋,𝐸) with 𝑁 vertices and
𝑚 edges and a hypergraph  = (𝑋, 𝜀), a hyperstructure 𝑆 = (𝑋,𝐸,) is
a triple formed by the vertex set 𝑋, the edge set 𝐸 and the hyperedge
set . The hyperstructure 𝑆 is said to be compatible if for every edge
𝑒 = {𝑣,𝑤} ∈ 𝐸 there exists a hyperedge ℎ ∈ 𝜀 such that 𝑣,𝑤 ∈ ℎ.

It is not difficult to prove the following result:

Theorem 3.9. Let 𝑆 = (𝑋,𝐸,) be a hyperstructure, 𝐿(𝐺) = (𝐸,𝐸′)
the linegraph of 𝐺 = (𝑋,𝐸) and 𝛱2() = (𝑋,𝐸′′). If 𝑆 is compatible, then
𝑆′ = (𝐸,𝐸′,) and 𝑆′′ = (𝑋,𝐸′′,) are also hyperstructures.

It is important to highlight that by using the idea of derivative
we have introduced in this paper we can examine and determine
the uniformity of participation of two, three or more nodes in the
considered structure or hyperstructure, or even the binary relationships
(edges) between participants of a certain event by simply considering a
suitable hyperstructure in which the nodes be the edges of the original
graph under consideration.

Now, we can define the derivative graph of a weighted hyperstruc-
ture:

Definition 3.10. Given a hyperstructure 𝑆 = (𝑋,𝐸,), where 𝐺 =
(𝑋,𝐸,𝑊 ) is a weighted graph and  = (𝑋, 𝜀), if 𝑤𝑖𝑗 denotes the weight
of the edge 𝑒 = {𝑖, 𝑗} ∈ 𝐸, then we will call the derivative of 𝑒
with respect to the hyperstructure 𝑆 the numerical value obtained by
applying the following formula

𝜕𝑒
𝜕𝑆

= 𝑤𝑖𝑗 ⋅
(𝑎𝑖 − 2𝑎𝑖𝑗 + 𝑎𝑗

𝑎𝑖𝑗

)

.

Obviously, if there is not a hyperedge ℎ ∈  such that 𝑒 = {𝑖, 𝑗} ∈ ℎ,
we will have 𝜕𝑒

𝜕𝑆 = ∞. On the other hand, it is evident that if a
hyperstructure is compatible, the derivative of any edge with respect
to 𝑆 cannot be equal to +∞.

Definition 3.11. Given a hyperstructure 𝑆 = (𝑋,𝐸,), where 𝐺 =
(𝑋,𝐸,𝑊 ) is a weighted graph and  = (𝑋, 𝜀), if 𝑤𝑖𝑗 denotes the weight
of the edge 𝑒 = {𝑖, 𝑗}, then the derivative graph of 𝐺 with respect to 𝑆
is the weighted graph 𝜕𝐺

𝜕𝑆 obtained by setting ∀𝑒 ∈ 𝐸 the corresponding
numerical value of 𝜕𝑒

𝜕𝑆 on the edge 𝑒 = {𝑖, 𝑗}, in such a way that if
𝜕𝑒
𝜕𝑆 = 0, then the nodes 𝑖 and 𝑗 collapse into a single node (𝑖𝑗).

As a direct application of the definition, note that if we consider the
graphs 𝐺 = (𝑋,𝐸) (panel (a) of Fig. 2) and 𝐺′ = (𝑋,𝐸′) (panel (b) of
Fig. 2) and the hyperstructures 𝑆 = (𝑋,𝐸,) and 𝑆 = (𝑋,𝐸′,′) such
that each of their hyperedges is composed by all the nodes belonging
5

to a cycle formed by three or more nodes of 𝐺 and 𝐺′ respectively,
then the derived graphs 𝜕𝐺

𝜕𝑆 and 𝜕𝐺′

𝜕𝑆′ are completely different since, for
example,
𝜕{1, 2}
𝜕𝑆′ = 20

8
= 5

2
.

On the other hand, as can be seen,
𝜕{1, 2}
𝜕𝑆

= 62
20

= 31
10

,

and, obviously,
5
2
≠ 31

10
.

Note that Definition 3.11 allows us to iterate the derivatives with
respect to a hyperstructure, because if the graph derived from the
hyperstructure is 𝜕𝐺

𝜕𝑆 = (𝑋′, 𝐸′,𝑊 ′) 𝑦 𝑆′ = (𝑋′, 𝐸′,), then we
can consider the mixed derivatives of a graph 𝐺 with respect to two
different hyperstructures (which may eventually be the same) 𝑆 and
𝑆′ (in this order) as

𝜕2𝐺
𝜕𝑆′𝜕𝑆

= 𝜕
𝜕𝑆′

( 𝜕𝐺
𝜕𝑆

)

.

It is obvious that the successive derivative graphs obtained by deriving
respect a suitable chain of two or more hyperstructures allow to obtain
characteristics and properties of the system or model under study
related to the absence of similarity between the nodes.

4. A linguistic hyperstructure based on the lexical layer within a
multilayer linguistic network model

We are now ready to show the potential applications of the defined
mathematical structures and tools to the linguistic analysis of texts,
looking for the identification of signs and specific features of a style
or competence level of language considering the most significant words
and their relationships. It can be said that the English language has four
major word grammar categories: nouns, adjectives, verbs, and adverbs.
Other word classes are prepositions, conjunctions, determiners, inter-
jections or pronouns [60]. On this basis described in [29,30] we have
built a methodology close to supervised machine learning consisting
of dividing the words of the corpus under study into a multilayer
network [7] composed by four layers: lexical layer, verb layer, linking
layer and remaining words layer.

In order to discriminate between the terms (words) and to assign
them to one or another layer, a completely lexical linguistic decision
was made according to the criteria of several experts. Thus, the terms
(words) of the corpus have been distributed in the different layers
according to their morphological and lexical properties. Some other lin-
guistic aspects, such as the specific terminology of a specialty language
and the different combinations of words referring to new meanings
(called ‘‘linguistic collocations’’) have also been successfully studied
and modeled in [29,30].

In the model established in [29] interlayer relations are the ba-
sic grammatical relations in a sentence, for example, the interaction
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Fig. 2. Two graphs with the same degree distribution: Graph 𝐺 (panel (a)) and graph 𝐺′ (panel (b)).
between layers that facilitates the formation and description of spe-
cialty verbs (e.g. ‘‘cluster together’’). On the other hand, throughout
the present work, we will consider the sentences as the unit under
study, identifying each sentence in the corpus (set of words located
between two periods) with the subset of lexical words appearing in that
sentence.

For this reason, throughout this work we are going to focus on the
words (nodes) located in the lexical layer. At this point, it is remarkable
that in the lexical layer many words can act as verbs when we analyze
texts written by authors with higher language skills. For example,
within the sentence ‘‘model a network’’, the word ‘‘model’’ is a verb,
but in the expression ‘‘network model’’ the term ‘‘model’’ is a noun.

In order to set our approach, the model of the corpus analyzed is
considered as a set of texts formed by sentences (set of lexical words
between two periods). In fact, from a practical and computational point
of view, each sentence is identified with the set of lexical words that
compose it. This way, let us consider the hyperstructure in which
the nodes are the lexical words, the edges between these nodes are
established when these words appear in the same sentence, and the set
of hyperedges is the set of sentences that constitute the corpus.

It is important to point out that the linguistic hyperstructure con-
sidered is a compatible hyperstructure, since the edges are established
between words that appear in the same sentence. Therefore, from The-
orem 3.9 it is possible to study both the hyperstructure in which
the nodes are the words and the hyperedges are the sentences and,
in a complementary way, the hyperstructure in which the nodes are
the edges between words (dual graph of the original graph) and the
hyperedges are also the sentences.

On the other hand, by considering paragraphs as a set of sentences,
and the extended abstracts of our corpus as a set of paragraphs, we
can add to this model new linguistic hyperstructures that undoubtedly
allow us to characterize a text or set of texts from the derivatives of the
corresponding graphs and hypergraphs respectively.

In order to illustrate how useful are the tools presented in the
context of the linguistic analysis of texts, let us consider a text in which
the same sentence is repeated over and over again. In that case, by
deriving the linguistic hypergraph formed by the set of all the repeated
sentences with respect to the lexical words of the sentence repeated
over and over in all those sentences, the derivative graph will collapse
to a single node.

So, by calculating the derivative graph from the linguistic hyper-
graph composed by all the sentences of a corpus or a text, we will
obtain the degree of similarity between the sentences of that text,
and also the greater or lesser degree of difference between all the
sentences forming such text (or corpus), with the peculiarity that these
quantitative measures are represented in the corresponding derivative
graph.

Consequently, the derivative graph of a text or a set of texts is
a quantitative and qualitative structure of such text that is a specific
6

feature of that text (or set of texts) for real, which may be considered,
in certain cases, like a signature or specific characteristic of the style
of an author.

When analyzing the hypergraph  formed by all the sentences of
the corpus under study, we obtained 127 pairs of words that appear in
exactly the same sentences. Thus, for example

𝜕
𝜕{𝑚𝑜𝑛𝑡𝑒, 𝑐𝑎𝑟𝑙𝑜}

= 𝜕
𝜕{𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙, 𝑟𝑢𝑛𝑔𝑒𝑘𝑢𝑡𝑡𝑎}

= 𝜕
𝜕{𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟𝑦, 𝑎𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠}

= 0.

It is important to note at this point that, if three or more words in the
corpus analyzed appear in exactly the same sentences, these words have
collapsed into a single node. This has happened in 13 cases. Finally, and
by way of illustrative example, we will point out that

𝜕
𝜕{𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑠𝑦𝑠𝑡𝑒𝑚}

= 16.33,

𝜕
𝜕{𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒, 𝑓𝑜𝑟𝑚𝑎𝑙}

= 𝜕
𝜕{𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑎𝑛𝑐𝑒, 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦}

= 2,

𝜕
𝜕{𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑔𝑟𝑎𝑝ℎ}

= 28.14,

𝜕
𝜕{𝑝𝑙𝑎𝑐𝑖𝑛𝑔, 𝑚𝑜𝑑𝑒𝑙}

= +∞.

Fig. 3 shows the homogeneity graph corresponding to the corpus
considered, in which the thickness of each edge is proportional to
its weight. On the other hand, as it can be seen in the right part
of Fig. 3, there is no link between ‘‘features’’ and ‘‘properties’’ be-
cause 𝜕

𝜕{𝑓𝑒𝑎𝑡𝑢𝑟𝑒,𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠} = +∞, and the edge joining ‘‘networks’’ and
‘‘complex’’ is thicker than the rest.

Also, as it can be seen in the histogram of Fig. 4, there are more
than 103 pairs of words {𝑖, 𝑗} such that 0 ≤ 𝜕

𝜕{𝑖,𝑗} ≤ 10 and more than
106 pairs of words {𝑖, 𝑗} whose derivative is +∞ (note that in Fig. 4,
the length of the intervals of the horizontal axis is 10).

To conclude this section, we would like to point out that the
automatic extraction of the linguistic level of a corpus, the search for
lexical patterns in sentences of a given author or writer of a particular
specialty language, the search for similarities and differences in a set
of texts and the automatic classification of texts according to these
differences or similarities are some of the possible applications of the
methodology underlying this model.

5. On lexical density and three different rankings of sentences:
Computational results

As far as it is known, the personalized PageRank of a individual term
(node) 𝑖 is the 𝑖-component of the stationary state 𝜋0 ∈ R𝑛 (‖𝜋0‖ = 1)
of the random walker with transition matrix [61–64]

𝑃 = 𝛼𝑃 𝑇 + (1 − 𝛼)𝐯𝐞𝑇 ,
𝐵
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Fig. 3. Homogeneity graph 𝐻𝐺() of the corpus  under analysis. On the right side a zoom of the subgraph of neighbors of the word ‘‘network’’ is shown.
Fig. 4. Histogram clustering the number of pairs of words {𝑖, 𝑗} by the value of 𝜕
𝜕{𝑖,𝑗}

.

where 𝛼 ∈ (0, 1), 𝐵 = (𝑏𝑖𝑗 ) is the adjacency matrix of the network under
consideration, 𝐞𝑇 = (1,… , 1), 𝐯 ∈ R𝑛 (‖𝐯‖ = 1) is the personalization
vector and

𝑃𝐵 = (𝑝𝑖𝑗 ) =
( 𝑏𝑖𝑗
∑

𝑘 𝑏𝑖𝑘

)

.

To carry out our study on the hypergraph  in which the vertices
are the lexical words of the corpus, and the hyperedges are the phrases
(sets of lexical words of the corpus located between two periods), we
will use the same methodology as in [29,30] to associate its correspond-
ing PageRank to each node, with the idea of ranking the lexical words
according to their importance [61–63,65,66]. For this purpose, taking
into account that for the PageRank calculation used throughout this
work we have considered the algorithm described in [67], we will
apply this algorithm on three different structures obtained from the
application of three different criteria:

1. Ranking 1. To calculate this ranking, we first have built a graph
on which to apply the PageRank algorithm. In order to do that,
we convert each hyperedge of  into a clique to obtain the
projection graph 𝛱2(). After this, taking into account that the
average number of words of a sentence within the corpus under
study is 5.809 and that, therefore, the local lexical density is
5.809, we can deduce that the damping factor corresponding to
this configuration is 0.853, since

5.809 =E(𝓁) =
∞
∑

𝑘=0
𝑘 ⋅ P(𝓁 = 𝑘) =

∞
∑

𝑘=1
𝑘 ⋅ (1 − 𝑞) ⋅ 𝑞𝑘

=(1 − 𝑞) ⋅ 𝑞
∞
∑

𝑘 ⋅ 𝑞𝑘−1 =
𝑞

.

7

𝑘=1 1 − 𝑞
2. Ranking 2. To calculate this ranking, we will apply the PageR-
ank algorithm considered on the network 𝛱2(∗) = 𝐿() so
that, once the numerical value attributed to each phrase has
been obtained, this value is distributed proportionally among
the words that make up that sentence. It is important to note
that, in this case, the network considered is a directed network,
and that, if 𝑠1, 𝑠2 ∈ 𝐿(), these sentences will be connected
if they have at least one lexical word in common, so that the
edge weight 𝑤(𝑠1 → 𝑠2) is the number of words shared by
both sentences multiplied by the number of times that sentence
𝑠2 appears repeated in the corpus. Obviously, the edge weight
𝑤(𝑠1 → 𝑠2) may be different from 𝑤(𝑠2 → 𝑠1). Now, using the
same reasoning as in the previous case, and having in mind
that the average number of sentences of a paper included in the
corpus under study is 27.12, in this context, the damping factor
corresponding to this configuration is 0.96.

3. Ranking 3. To calculate this ranking, we will apply the PageR-
ank algorithm considered on the weighted graph 𝐻𝐺(). Taking
into account that the average number of words of a sentence is
5.756 (since, after collapsing words pairs {𝑖, 𝑗} such that 𝜕

𝜕{𝑖,𝑗} =
0, the average length of sentences decreases, albeit slightly),
the damping factor corresponding to this configuration is 0.852.
Fig. 3 shows the homogeneity graph corresponding to the corpus
considered. The size of the nodes is proportional to the compo-
nent of the PageRank vector corresponding to that node, and the
thickness of each edge is proportional to its weight.

In all of the described cases, the corresponding value of 𝑞 is the
probability that a random walker will not vary its trajectory by moving
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Fig. 5. Kendall’s tau coefficient variation by comparing the rankings in pairs among them, depending on the number of top lexical words considered in each ranking.
Table 1
Rankings of lexical words.

Ranking 1 Ranking 2 Ranking 3

1st network network network
2nd system system system
3rd model model model
4th complex complex complex
5th process number graph
6th number process process
7th information structure structure
8th graph new information
9th new information number
10th structure distribution new
11th properties properties properties
12th distribution graph distribution
13th study study dynamics
14th dynamics dynamics study
15th case interaction analysis

to a node directly connected by an edge to the current node instead of
jumping to another node in this network not necessarily connected to
the previous one. In our situation, this jump can be understood as the
end of the current sentence and the starting point of a new sentence for
Ranking 1 and Ranking 3, and as the end of the current paper and the
starting point of a new paper for Ranking 2. To complete the necessary
elements to apply the algorithm, we will point out that for Ranking
1 and Ranking 3 the personalization vector considered is the (relative)
frequency of lexical words, and for Ranking 2 the personalization vector
considered is the (relative) frequency of each sentence included in the
corpus under study.

As it can be seen in Table 1, there is hardly any difference at
the top of the three rankings. As expected, Ranking 3 gives us the
most representative words of the corpus in the sense that they are
the words at the heart of the corpus linking the largest number of
sentences together. In any case, the three rankings should not be very
different from each other, as it is actually the case (since the first four
positions are occupied by the same words in all three cases) and, as it
happens in the case under study, Ranking 1 and Ranking 3 are more
similar to each other than to Ranking 2. However, as the number of
words considered at the top of each ranking increases, the differences
between the three rankings become much more evident, as it can be
seen in Fig. 5, where we plot the differences between these rankings
by visualizing the variation of the Kendall’s tau coefficient (𝜏) [68]
egarding the number of lexical words considered in the three rankings.

. Seeking for distinctive characteristics that allow distinguishing
he styles of different authors and language levels

By considering several types and models of hypergraphs and hyper-
tructures for a given text or corpus, we can associate to that written
ext or corpus various features that allow us to identify it as if it
8

were some sort of mathematical signature associated with them. For
example, for a given text it is possible to consider a hypergraph in
which the nodes are the words and the hyperedges are the sentences,
another in which the nodes are the words and the hyperedges are the
paragraphs, another in which the nodes are the sentences and the hy-
peredges are the paragraphs, just to mention some of the possibilities.
This succession of mathematical structures and the different parameters
(such as diameter, degree distribution, centrality, efficiency, among
others, that characterize them) are, without a doubt, elements that
configure and allow us to characterize and compare different texts,
making it clear the characteristics that constitute their seal of identity
in terms of style.

7. Conclusions

We introduce and study the derivative of a hypergraph and the
homogeneity graph of a hypergraph as two new and useful structures
that can be applied to study the degree of independence of the nodes
of a hypergraph. Also, these structures may be employed to obtain
a ranking of the most representative nodes of the hypergraph in the
sense that the lexical words represented by these nodes link the most
significant ideas and concepts of the text without necessarily being
those terms usually considered as keywords.

These concepts allow us to associate not only a numerical index
useful for quantifying the heterogeneity and lack of similarity between
the nodes of the hypergraph, but also a graph aiming to characterize
the heterogeneity and dissimilarity of the different elements of the
considered hypergraph.

Moreover, these concepts also let us obtain technical characteristics
related to the styles of different authors and the language competence
level of any text written in English. Also, a possible application to text
classification, text summarization, automated translation, stylometry
and authorship detection is found.

Undoubtedly, the tools derived from the linguistic analysis obtained
by using this new tool will provide us with new models and better
instruments to typify and locate the characteristics of the style of
different authors together with the style and intrinsic linguistic charac-
teristics found in specialized texts in terms of collocations, word sense
disambiguation and syntagmatic structures.

Finally, it is important to mention that the construction of tools to
find lexical patterns of the style of an author or a text belonging to
a specialty language, the automatic classification of texts according to
their style and the automatic labeling and identification/verification of
lexical patterns are some possible additional applications of these new
tools.
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