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Graph layout problems are a family of combinatorial optimization problems that consist of finding an em-
bedding of the vertices of an input graph into a host graph such that an objective function is optimized.
Within this family of problems falls the so-called Two-Dimensional Bandwidth Minimization Problem
(2DBMP). The 2DBMP aims to minimize the maximum distance between each pair of adjacent vertices of
the input graph when it is embedded into a grid host graph. In this paper, we present an efficient heuris-
tic algorithm based on the Iterated Greedy (IG) framework hybridized with a new local search strategy to
tackle the 2DBMP. Particularly, we propose different designs for the main IG procedures (i.e., construction,
destruction, and reconstruction) based on the trade-off between intensification and diversification. Addi-
tionally, the improvement method incorporates three advanced strategies: an efficient way to evaluate the
objective function of neighbor solutions, a tiebreak criterion to deal with “flat landscapes”, and a neigh-
borhood reduction technique. Extensive experimentation was carried out to assess the IG performance
over state-of-the-art methods, emerging our approach as the most competitive algorithm. Specifically, IG
finds the best solutions for all instances considered in considerably less execution time. Statistical tests
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corroborate the merit of our proposal.
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1. Introduction

The Two-Dimensional Bandwidth Minimization Problem
(2DBMP) belongs to a family of combinatorial optimization prob-
lems denoted as Graph Layout Problems (GLP). GLPs consist of
embedding an input graph (also known as a candidate graph) into
a host graph by defining a mathematical function that relates (or
assigns) the vertices of the input graph to the vertices of the host
graph, optimizing a particular objective function. These problems
can be classified according to the structure of the host graph.
Particularly, the most studied GLPs are those that consider a
regular host graph, such as: a path (Pardo, Garcia-Sanchez, Sevaux,
& Duarte, 2020; Pardo, Mladenovi¢, Pantrigo, & Duarte, 2013),
a cycle (Cavero, Pardo, Laguna, & Duarte, 2021b; Cavero, Pardo,
& Duarte, 2022a), or a grid (Lin & Lin, 2010; Rodriguez-Garcia,
Sanchez-Oro, Rodriguez-Tello, Monfroy, & Duarte, 2021), among
others. Also, GLPs can be classified according to the optimized
objective function. Among the most studied ones, we can find the
minimization of: the maximum cutwidth (Cavero et al., 2021b;
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Pardo et al., 2013), the linear arrangement (Petit, 2004; Rodriguez-
Tello, Hao, & Torres-Jimenez, 2008a), the maximum Bandwidth
(Ren, Hao, Rodriguez-Tello, Li, & He, 2020; Rodriguez-Tello, Hao,
& Torres-Jimenez, 2008b), or the sum of the Bandwidth (Cavero,
Pardo, Duarte, & Rodriguez-Tello, 2022b; Rodriguez-Tello, Narvaez-
Teran, & Lardeux, 2019), among others. We refer the interested
reader to surveys (Diaz, Petit, & Serna, 2002) and (Pardo, Marti, &
Duarte, 2016) for further references about GLPs.

In this paper, we deal with the 2DBMP, which consists of mini-
mizing the Bandwidth of the input graph when embedding it into
a grid host graph. The 2DBMP has a large interest for the scientific
community from either a practical and theoretical perspective. On
the one hand, real-world applications have been devised in the lit-
erature related to the problem, as compiled in Section 1.2. On the
other hand, from a theoretical perspective, there is a wide family of
optimization problems related to the embedding of graphs in reg-
ular structures (Ren, Hao, & Rodriguez-Tello, 2019; Rodriguez-Tello
et al., 2008b). In this sense, the algorithmic strategies proposed for
the 2DBMP have interest, not only for this problem, but also for
other related variants. In the following sections, we formally de-
fine the 2DBMP (Section 1.1), as well as we review the state of the
art of the problem (Section 1.2).
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Fig. 1. (a) An input graph, G. (b) A host graph, H. (c) An example of an embedding.

1.1. Problem statement

Before formalizing this problem, we introduce a basic notation.
Let G(V;, Eg) be a connected, unweighted and undirected input
graph where the set of vertices is denoted as Vg (with |Vg| =n)
and its edge set as Eg.

Similarly, let H = (Vy, Ey) be a two-dimensional grid host graph
where the set of vertices is denoted as Vy (with |Vy| = [/n] -
[¥n]) and its edge set as Ey. Grid graphs are a common type of
lattice graph, whose drawing in a Euclidean space R2 forms a regu-
lar tiling. These graphs satisfy the requirement that each vertex can
be represented as a 2-tuple (i, j) that corresponds to a point in the
plane, where 1 < i, j < [/n]. Two vertices are connected with an
edge as long as the corresponding points are at distance 1. There-
fore, this particular host graph is a unit-distance, median, and bi-
partite graph.

In Fig. 1a, we depict an example of an input graph, G,
with 7 vertices (V;={A,B,C,D,E,F,G}) and 9 edges (Ec=
{(A,B), (A,D), (A,E), (A, F), (B,F), (B,G), (C,D), (D, E), (F,G)}).
Similarly, in Fig. 1b, we show the host graph, H, needed
for the embedding of the graph depicted in Fig. 1la (i.e,
Vgl =9=[+7]-[v7]). In this case, vertices are denoted by
their (i, j) coordinates (i.e., Vy={(1,1),(1,2),...,(3,3)}), and
there is an edge between them if they are at distance 1.

As it was aforementioned, an embedding consists of defining a
mathematical function that assigns each vertex of the input graph
to a vertex of the host graph. In mathematical terms, let ¢ be an
injective function such that:

0 Vo—>Vyg, VueVeAlveVy|ep) =. (1)

Since each vertex v € Vi is defined by a 2-tuple (i, j), for the
sake of convenience, we reformulate ¢ as follows:
(/0 VG — VH, Yu c VG 3' (l,]) c VH | (p(u) = (l,])

with i, jel[1,...,[vn]]
Then, given an embedding ¢ of an input graph G, the objective
function of the 2DBMP, denoted as BW, is defined as follows:

BW(G, ) = (Lp;géc{d(w(ux ()}, (3)

where d is a function that measures the distance between two ad-
jacent vertices. In the related literature, d is computed with the
Li-norm (Lin & Lin, 2010; Rodriguez-Garcia et al., 2021), which is
also known as Taxicab norm distance or Manhattan distance (Craw,
2010; Lin & Lin, 2010). That is, the distance between two points
1,0, (") eVyis
d(, n, @, i) =1li-i1+ji-7Jl (4)
Finally, the Two-Dimensional Bandwidth Minimization Problem
(2DBMP) for a graph G consists of finding an embedding ¢* that
minimizes Eq. (3). More formally,

¢* < 2DBMP(G) = min {BW(G, ¢)}.
e

(2)

(5)
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where & represents the set of all possible embeddings of the prob-
lem.

In Fig. 1c, we show a possible embedding ¢ of G (Fig. 1a) in H
(Fig. 1b). As can be observed, all vertices of Vi; have been assigned
to a vertex of Vy through the definition of ¢. For example, ¢ (A) =
(2,2) indicates that vertex A € V is assigned to vertex (2,2) € Vy.
Similarly, ¢ (B) = (2, 3) indicates that vertex B € V; is assigned to
vertex (3,2) € Vy, and so on.

In order to evaluate the objective function of the example de-
scribed in Fig. 1, it is required to calculate the distance between
each pair of adjacent vertices in V; (i.e., for each edge of E;)
by using Eq. (4). For instance, considering vertices A and B, with
©(A) = (2,2) and ¢(B) = (2, 3), the associated distance |2 — 2|+
|2 — 3| = 1. Similarly, the distance between vertices A and D is
2, since ¢(D) = (1,3), and |2 — 1| + |2 — 3| = 2. This calculation is
performed over the rest of the edges of G. Then, the value of the
objective function is the maximum across all distances, which is 3
in this example. Therefore, in mathematical terms, the evaluation
of BW(G, ¢) in Fig. 1c is computed as follows:

BW(G, ¢) = max{d(¢(A), ¢(B)),d(¢(A), (D)), d(¢(A), ¢(E)),
d(p(A), p(F)),d(@p(B), 9(F)), d(¢(B), 9(G)),
d(¢(0), ¢(D)),d(¢(D), p(E)), d(¢(F), (G))}

max{1,2,1,2,1,1,1,3,2} = 3. (6)

1.2. Literature review

The 2DBMP has been widely used to formulate a variety of
real-world applications. In particular, it has a direct application
in the design of telecommunication architectures, where grid net-
work topologies have gained relevance. These networks are com-
monly used due to their simple structure, becoming a design that
is easy to build and extend (Bezrukov, Chavez, Harper, Rottger,
& Schroeder, 1998). The 2DBMP has also been used for very
large-scale integration (VLSI) circuit modeling (Bhatt & Thom-
son Leighton, 1984; Chung, 1988). Indeed, the L;-norm distance
was originally derived from circuit design models where connec-
tors are placed in horizontal or vertical directions, although the
paths in the VLSI design cannot overlap each other (Bhatt & Thom-
son Leighton, 1984; Lin & Lin, 2010). Other practical applications
include job scheduling for parallel processing computers, solving
systems of equations, or performing matrix decomposition, among
others (Lai & Williams, 1999; Rodriguez-Garcia et al., 2021).

The 2DBMP is closely related to other optimization problems
belonging to the Graph Layout family, such as the Bandwidth Min-
imization Problem (BMP) and the Cyclic Bandwidth Problem (CBP).
Differences among these three problems reside on the host graph.
Specifically, in the BMP, the host graph is a path, while in the CBP
it is a cycle, and in the 2DBMP it is a grid.
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BMP and CBP have been widely studied by the scientific com-
munity. The former was proved to be AP-complete for general
graphs in Papadimitriou (1976) and it has been approached from
both, exact (Del Corso & Manzini, 1999; Gurari & Sudborough,
1984) and heuristic perspectives (Mladenovic, Urosevic, Pérez-
Brito, & Garcia-Gonzalez, 2010; Rodriguez-Tello et al., 2008b). Sim-
ilarly, the CBP is also N'P-complete for general graphs as proven
in Lin (1994). It has been mainly approached by considering spe-
cial graphs (such as grids, trees, or planar graphs, among others)
and determining either lower or upper bounds (Hromkovi¢, Miiller,
Sykora, & Vrt'o, 1992; Jinjiang & Sanming, 1995). Recently, in Ren
et al. (2019, 2020) two advanced metaheuristics have been pro-
posed for the CBP.

In this paper, we focus on the 2DBMP, originally proposed in
Chung (1988), that belongs to the AP-complete class (Bhatt &
Thomson Leighton, 1984; Lin & Lin, 2010). This optimization prob-
lem has been studied from different points of view. In particu-
lar, lower bounds for regular-structured graphs were introduced
in Lin & Lin (2010, 2011). More recently, three Constraint Satis-
faction Programming (CSP) models (Tsang, 2014) were described
in Rodriguez-Garcia et al. (2021). The best model, denoted as M3,
is able to solve small and regular-structured graphs, providing
a lower bound (not necessarily tight) for medium and large in-
stances. The best previous metaheuristic procedure identified in
the related literature was introduced in Rodriguez-Garcia et al.
(2021). Specifically, the authors described an algorithm based on
the combination of the Greedy Randomized Adaptive Search Proce-
dure (GRASP) (Feo & Resende, 1995) and the Basic Variable Neigh-
borhood Search (BVNS) (Hansen & Mladenovic, 2006) methodolo-
gies. This procedure follows a multi-start strategy, where many
initial points are generated with GRASP and then improved with
BVNS. The constructive procedure uses a greedy criterion based on
the quality of the objective function, while the BVNS, based on the
idea of systematic changes of neighborhood the structure within
the search, uses two neighborhoods and a random perturbation to
escape from local optima. This procedure is currently considered
the state of the art for the 2DBMP.

1.3. Our contributions

The main contribution of this work is the proposal of
an efficient procedure based on the Iterated Greedy frame-
work. The proposed algorithm includes novel construc-
tion/destruction/reconstruction strategies, as well as advanced
improvement methods. These techniques are designed from a
general perspective, i.e., they are not only valid for the 2DBMP,
but also for any other related optimization problem. Specifi-
cally, the proposed construction, destruction, and reconstruction
strategies vary from totally random to totally greedy approaches.
In addition, a straightforward design of a local search for the
2DBMP is enriched by: a tiebreak criterion to distinguish between
same-quality solutions; fast evaluation of the objective function;
and neighborhood reduction techniques.

The proposed method is configured by a set of preliminary ex-
periments, which allow us tuning the search parameters as well
as to evaluate the influence of the proposed mechanisms. Finally,
the best identified variant is compared with state-of-the-art algo-
rithms through competitive tests. The merit of the results obtained
is supported by statistical tests.

The rest of the paper is organized as follows: Section 2 de-
scribes our algorithmic proposal. Section 3 introduces several ad-
vanced search strategies. Section 4 presents and analyses the re-
sults of the computational experiments carried out. Finally, the
conclusions are drawn in Section 5.
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2. Algorithmic proposal: Iterated greedy

In this paper, we propose a procedure based on the Iterated
Greedy (IG) metaheuristic (Ruiz & Stiitzle, 2007; Stiitzle & Ruiz,
2018). IG is a search method where solutions are gradually im-
proved through the repeated application of two main phases: a
partial destruction of a solution followed by a reconstruction to
reach a new feasible solution. These two phases are usually re-
peated for a fixed number of iterations, for a maximum number
of iterations without finding an improvement, or even for a com-
bination of the two previous criteria.

IG can be easily hybridized with other strategies, such as lo-
cal search procedures or other metaheuristics. In this case, the
destruction and reconstruction phases of IG can be understood
as a way to perturb the incumbent solution, similarly to other
well-known metaheuristics such as Iterated Local Search (ILS)
(Lourenco, Martin, & Stiitzle, 2003) or Variable neighborhood
Search (VNS) (Hansen, Mladenovic, Todosijevic, & Hanafi, 2017).
However, in the IG methodology, an important part of the pro-
cess, the reconstruction phase, uses greedy decisions rather than
stochastic ones. See Stiitzle & Ruiz (2018) for further details.

In this paper, we propose the hybridization of IG with an ef-
ficient local search procedure. The pseudocode of the proposed
method is presented in Algorithm 1. The procedure receives as

Algorithm 1 General procedure based on IG algorithm.

: Procedure IteratedGreedy (G, maxlter, maxNotImpriter)
. iter = 0, notImpriter = 0
¢ = GreedyConstructive(G)
@ < LocalSearch(G, ¢)
: while iter < maxiter do
iter = iter + 1, notlmpriter = notlmpriter + 1
¢’ < Destruction(notimpriter, @)
¢" < Reconstruction(G, ¢’)
¢@"" <« LocalSearch(G, ¢")
if BW(G, ¢"") < BW(G, ¢) then
¢ <« (p///
notlmpriter = 0
end if
if notImpriter > maxNotImpriter then
15: break
16: end if
17: end while
18: return ¢

N A R

_ o
W=

14:

parameters: the input graph, G; the maximum number of itera-
tions, maxliter; and the number of iterations without improvement
maxNotImpriter. The algorithm starts by generating an initial so-
lution with the greedy constructive procedure (line 3) that will
be introduced in Section 2.1. Then, after obtaining an improved
solution through the local search procedure (line 4), described in
Section 2.2, the procedure enters a loop (lines 5 to 17). In each it-
eration, some elements are removed from the current solution us-
ing the destruction method (line 7). Next, the solution is greedily
reconstructed (line 8) and improved again by the local search pro-
cedure (line 9). Both destruction and reconstruction methods, are
described in Section 2.3. In each iteration, IG determines (steps 10
to 13) whether the perturbed and improved solution (¢"”) is better
than the incumbent one (¢). If so, ¢ and notImpriter are updated
accordingly. These three last steps (destruction, reconstruction, and
local search) are repeated until a maximum number of iterations
is reached, unless the procedure is not able to improve the current
best solution for a number of iterations (line 14). Once the termi-
nation condition is met, IG returns the best solution found (step
18).
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2.1. Greedy constructive procedure

Constructing a solution for the 2DBMP from a greedy perspec-
tive consists of performing the best possible assignation of the ver-
tices of the input graph to the vertices of the host graph (i.e., defin-
ing ¢). To do this, we need to answer three questions: #1 which
vertices (from either the host or the input graphs) are more suit-
able to start with; #2 given a partial solution, which vertex (u)
of the input graph should be assigned next; and #3 given a par-
tial solution and u, which vertex v of the host graph should be
assigned to u. To answer each of these questions, we propose dif-
ferent strategies, which are described below.

We start by selecting a random vertex from the input graph.
Then, to perform its assignation, we need to select a ver-
tex from the host graph. In this case, we study three alter-
natives: a random vertex; a vertex placed in a corner of the
grid (ie, (1,1),(1,[vn]), ([vnl, 1), ([vn],[vn]); or a vertex
placed in the center of the grid (i.e., ([@1, [FTWD if [/n] is

odd; or ([, (Il (Il 4q, p Iy, (Il pLvely 4

D, (T 41, T 4 1) if n is even).

Given the first assignation, we already have a partial solution.
Then, we propose a greedy function, inspired by McAllister et al.
(1999) and denoted as g;, to determine which vertices of the input
graph should be assigned in the following steps to a partial solu-
tion @. In other words, g; is used to evaluate the “urgency” of any
unassigned vertex from the input graph to be assigned next.

Let us introduce some notation before defining g;. We define
the subset U; c V; as the set of vertices of the input graph that
have not been assigned yet in ¢. Then, given a vertex u e Ug,
we define A(u) as the set of adjacent vertices to u already as-
signed. More formally, A(u) ={veV;:v ¢ Us A (u,v) € Eg}. Simi-
larly, we define R(u) as the set of vertices adjacent to u that re-
main unassigned. In mathematical terms, R(u) = {v e Vg : v e Ug A
(u,v) € E¢}. It is worth mentioning that A(u) UR(u) is the set of
adjacent vertices to u. Then, g; is defined in Eq. (7) as follows:

(7)

where wy and w, are parameters that should be tuned experimen-
tally and satisfy 0 <w;,wy <1 and w; +w, = 1. These two pa-
rameters balance the relevance of having a large number of ad-
jacent vertices assigned (w; > w,) or a reduced number of adja-
cent vertices unassigned (w; < w,). Notice that if w; = wy, then
the strategy is equivalent to the original proposal introduced in
McAllister et al. (1999). Then, all unassigned vertices from the in-
put graph are evaluated, and the vertex with the largest g; value
is chosen to be assigned next (with ties broken at random).

Once the vertex of the input graph has been chosen, the second
proposed question is answered. Then, an available vertex from the
host graph must be selected to embed the selected vertex of the
input graph. In this case, we propose two approaches: one based
on graphical patterns and the other based on a greedy function.
The first approach determines the order in which host vertices are
selected on the basis of a graphical pattern. Moreover, in this work
we study three patterns: Sequential, Diagonal, and Zigzag, which
are illustrated in Fig. 2(a)-(c), respectively. In each of the figures,
the sequence is indicated by green arrows and numbers inside
each of the host vertices, being the number 1 the vertex selected
in the first iteration and number 9 the vertex selected in the last
iteration.

The second approach to select a vertex of the host graph is
based on a new greedy function, denoted as g,, that evaluates
the variation of the objective function when assigning a vertex
of the input graph. As it is well documented in the related liter-
ature (Cavero et al., 2021b), some successful strategies in graph
layout problems are related to the closeness/remoteness of adja-

g1(u, @) =wq - |JA@W)| —w; - [RW)],

1129

European Journal of Operational Research 306 (2023) 1126-1139

cent vertices. In this case, g, is used to place every candidate
vertex as close as possible to its adjacent vertices. Let Cy € Vy
be the set of vertices which distance (see Eq. (4)) to the already
assigned host vertices is 1. More formally, Cy(¢) = {(i,j) € Vy :
Yv¢Ug,d(e), (i, j)) =1}. Then, given a vertex u € Ug, a vertex
(i, j) € Cy, and a partial solution ¢, g, is formally defined as:
& (. u, (i, j)) = max{d((, j). ¢(v)}. (8)
veA(u)

Thus, all unassigned vertices from the host graph are evaluated and
the vertex (i, j) € C4(p) that minimizes g, is selected to host the
input graph vertex u, i.e.,, ¢ (u) = (i, j). The rationale behind this
strategy is that the returned value from g, corresponds to the con-
tribution of the evaluated vertex to the objective function. There-
fore, the best host vertex for an input vertex is the one that mini-
mizes Eq. (8).

In Algorithm 2 we show the pseudocode of a general greedy

Algorithm 2 Greedy constructive procedure.
1: Procedure GreedyConstructive (G, H)
2: U <« random(Vj)
3: (i, j) = GetInitialHostGraphVertex(Vy) ©> Answer to question
#1
L o) < (i j)
 Ug < Vo \ {u}
: while U; # ¢ do
U <« GetNextInputGraphVertex(g, Us) > Answer to question
#2
(i, j) < GetNextHostGraphVertex (¢, u)> Answer to question
#3
o) < (i)
Us < Ug \ {u}
end while
return ¢

N D UuoA

%

10:
11:
12:

constructive procedure which can use any of the greedy strategies
described in this section. Particularly, it receives an input graph
G = (Vg,Eg) and a host graph H = (Vy, Ey) as input parameters.
The method starts by selecting a vertex u of the input graph at
random (line 2). According to the aforementioned Question #1, in
line 3, the procedure identifies the vertex of the host graph to em-
bed u. Then, the first assignation is performed (line 4). The set of
unassigned vertices Ug for the partial solution ¢ is constructed in
line 5. While there are still elements in Ug, the greedy construc-
tive procedure selects a vertex according to g; (see Question #2)
in line 8. Next, this selected vertex is assigned to one vertex in the
host graph (see Question #3), either based on patterns (Fig. 2) or
based on g,. Finally, the partial solution and the set of unassigned
vertices are updated in lines 10 and 11, respectively. Lines 7 to 12
are repeated until generating a complete feasible solution, which is
returned at the end of the procedure (line 13). To complement the
pseudocode, we graphically illustrate the steps of the constructive
procedure in the flowchart depicted in Fig. 3. This flowchart fol-
lows the activity diagram standard described in the Unified Mod-
eling Language (Booch, 2005). Therefore, each rectangle describes
a task or activity, while each diamond expresses a condition of
the constructive procedure. Once the solution has been fully con-
structed, the evaluation of the solution is performed from scratch
following the procedure described at the end of Section 1.1.

The choice of the first vertex of the input graph might influ-
ence deeply the quality of the generated solution. Moreover, our
constructive procedure is not fully deterministic since random de-
cisions are also made to break ties in both g; and gy. Therefore,
we propose to execute the constructive procedure for a fixed num-
ber of iterations, selecting as initial solution the best one among
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Fig. 2. Examples of the order followed to assign vertices of the input graph to vertices of the host graph using the Sequential (a), Diagonal (b) and Zigzag (c) patterns.

v

Select a random

) ‘ vertex ufrom V; ’
Heuristically select
2) an initial vertex v
from Vy
3) [ Assing uto v ]
Select an unassigned
5 vertex u from Vg
according to the
greedy criteria g
Heuristically select
5) an unassigned vertex
v from Vy
6) [ Assing uto v ]
R <> Have all vertices of set
¢ V; been assigned?
Yes
8) Return the
constructed solution

L

Fig. 3. Activity diagram of the constructive procedure..

them. It is worth mentioning that this strategy has been success-
fully used not only in IG (Huerta-Mufioz, Rios-Mercado, & Ruiz,
2017; Stiitzle & Ruiz, 2018) but also in combination with VNS
(Lépez-Sanchez, Sanchez-Oro, & Hernandez-Diaz, 2019; Pérez-Pelo,
Sanchez-Oro, Gonzalez-Pardo, & Duarte, 2021), or TS (Abdinnour-
Helm & Hadley, 2000; Delmaire, Diaz, Fernandez, & Ortega, 1999),
among others. To ensure the construction of diverse solutions, the
number of iterations is always set to a value larger than the num-
ber of vertices of the input graph, guaranteeing that at least one
construction is performed starting from every vertex of the input
graph.
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2.2. Improvement strategy

Local search is a heuristic method widely used to solve hard op-
timization problems due to its ability to trade solution quality with
computation time. This procedure is based on systematic moves
from one solution to another with better quality, until reaching
a locally optimal solution (Michiels, Aarts, & Korst, 2018). Given a
predefined move operation, the set of feasible solutions reachable
by the local search starting from that solution is usually known as
neighborhood.

In the related literature, there have been proposed two different
neighborhoods for the 2DBMP based on exchange and insert moves
(see Rodriguez-Garcia et al., 2021 for further details). However, the
definition of these neighborhoods do not include the possibility of
exploring the vertices of the host graph that have not been as-
signed to vertices of the input graph in the construction phase.
In this paper, we propose a more flexible move operator, which
explores those host vertices not initially assigned, resulting in a
larger neighborhood space. Specifically, the number of vertices in
the host graph (|Vy| = [v/n] - [v/n]) is always larger than or equal
to the number of vertices in the input graph (|Vg| = n). Therefore,
¢ is an injective function, since there may exist vertices in Vy
that do not host a vertex of V;. The move operator considers this
property as follows: given a solution ¢, a vertex u € V; assigned
to (i, j) e Vy (i.e,, ¢(u) = (i, j)), and a vertex (i, j') € Vg the move
operator Move(g, u, (i’, j')) assigns u to (', j') (i.e., () = (@, j)).
In the case that a vertex v e V; was assigned to (i, j/) prior the
move, this move would also perform a new assignment for the ver-
tex v (i.e., (v) = (i, j)). Otherwise, (i, j) will not host any vertex.
This move produces a new feasible solution, which is denoted as
@' < Move(p, u, (7, j/)).

Let us illustrate this move with an example. Departing from the
solution represented in Fig. 1c, we show in Fig. 4a the situation
before performing Move(gp, B, (2,3)), where vertex B of the input
graph is assigned to vertex (3,2) prior the move. Then, in Fig. 4b,
we depict the resulting solution after the move, where B is as-
signed to (2,3) leaving (3,2) without any assignation.

Considering the aforementioned move operator, the proposed
neighborhood for the 2DBMP is defined as follows:

N(¢) = {Move(p, u, (i", j')) : VueVe. (', j) € u. o) # (', j)}.
(9)

The size of N(¢) can be determined depending on the number
of vertices of the input graph. Specifically, given an input graph
with |Vg| =n vertices and the associated host graph with |Vy| =
[v/n] - [/n] vertices, the size of N(¢) is %n([\/mz -1).

In this research, we study two well-known strategies to explore
the proposed neighborhood: best improvement and first improve-
ment (Hansen & Mladenovic¢, 2006). If a local search follows the
best improvement strategy it selects, at each iteration, the best pos-
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Move(y, B, (2,3))

Fig. 4. (a) Example of an embedding ¢. (b) The resultant embedding ¢’ obtained after the operation Move(y, B, (2, 3)) (b).

sible move which produces an improvement of the current neigh-
borhood; otherwise, in the first improvement strategy, it selects the
first solution that improves the current solution. Any of them stop
the search when no further improving moves can be performed.
We study the effectiveness of both strategies in the experiments
reported in Section 4.1.

2.3. Destruction and reconstruction procedures

The two main procedures of any IG algorithm are the destruc-
tion and reconstruction phases. The IG proposed in the context of
2DBMP, first removes a determined number of assignations of ver-
tices of the input graph to vertices of the host graph, during the
destruction phase. Then, the reconstruction phase applies a greedy
heuristic to reassign the unassigned vertices until reaching a new
feasible solution.

The number of assignations that should be removed is dynami-
cally defined depending on the current number of iterations with-
out improvement (see lines 6 and 7 of Algorithm 1). The rationale
behind this decision is to have a trade-off between search intensi-
fication and diversification. In particular, when the number of iter-
ations without improvement is large, it is expected that the proce-
dure gets stuck in a “deep basin of attraction”. Therefore, a large
number of assignations are removed (with the corresponding re-
construction steps), with the aim of moving to rather distant so-
lutions in the solution space. On the contrary, when the number
of iterations without improvement is small, a few assignations are
removed, which leads to a more localized search Stiitzle & Ruiz
(2018). In addition, to avoid the complete destruction of the solu-
tion, we set a maximum number of assignations that can be re-
moved. Specifically, this value is set to 25% of the vertices of the
instance under consideration.

In this paper, we propose three different destruction strategies.
The first one, denoted as fully randomized destruction, is a straight-
forward adaptation of the IG framework. Specifically, it consists of
randomly selecting and then removing a determined number of
assignations of vertices of the input graph to vertices of the host
graph. The second strategy, denoted as random area destruction, fo-
cuses on a specific area of the host graph. More precisely, it selects
a vertex of the host graph at random and then removes its assig-
nation, and also the assignation of all adjacent host graph vertices
(i.e., those at distance 1 to the selected initial vertex, according to
Eq. (4)). This strategy keeps on removing host adjacent vertices to
the unassigned area following a proximity criterion (i.e., first those
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at distance 2, then those at distance 3, etc.) until reaching the ex-
pected number of unassigned vertices. The third strategy, denoted
as greedy destruction, focuses on those vertices that determine the
value of the objective function. Notice that the 2DBMP consists of
minimizing a maximum value; then, the objective function is usu-
ally determined by a reduced number of assignations. This destruc-
tion strategy removes the assignation of the vertex that determines
the value of the objective function, also removing the assignations
of all its adjacent host graph vertices. As in the second strategy, it
keeps on removing vertices and their adjacent vertices in the host
graph following a proximity criterion, until reaching the expected
number of unassigned vertices.

As far as the reconstruction strategy is concerned, the Iterated
Greedy framework Stiitzle & Ruiz (2018) suggests that the recon-
struction should be governed by a greedy heuristic and, typically,
deterministic (except random tiebreaking). We therefore do not ex-
plore any random reconstruction strategy. Specifically, given a par-
tial solution obtained as the result of a destruction phase, the re-
construction of the solution is performed by following a greedy
strategy. To this end, we propose the use of three strategies, based
on the greedy criteria presented in Section 2.1: 1) unassigned ver-
tices of the input graph are selected according to g; function and
then are randomly assigned to any of the available host graph ver-
tices; 2) unassigned vertices of the input graph are randomly se-
lected and then assigned to its best host graph vertex according to
g, function; and 3) the best vertex of the input graph is selected
according to g; and it is assigned to the best host vertex selected
according to g, function.

3. Advanced search strategies for exploring the neighborhoods

As it is well documented in the related literature, most of
the computing time of a heuristic algorithm is spent by the lo-
cal search procedure. Particularly, a local search heuristic selects,
at each iteration, a move to a neighbor solution, if it results in an
improvement of the objective function. Then, it needs to explore
multiple neighbor solutions, evaluating each of them, to determine
which move should be done next. In this section, we provide three
new advanced strategies devoted to increasing the efficiency of the
proposed local search: first, we introduce an efficient strategy to
reduce the number of solutions to explore in a given neighborhood
(see Section 3.1); second, once the number of moves has been re-
duced, we propose a technique to speed up the search by opti-
mizing the calculation of the objective function after a move (see
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Fig. 5. Definition of the PSV of A for a solution ¢, with BW(G, ¢) = 2.

Section 3.2); finally, when the move results in a tie, in terms of
the objective function value, we propose a way of distinguishing
between two solutions with the same quality (see Section 3.3). It
is worth mentioning that some of these strategies can be applied
or adapted with a few modifications, not only for other Graph Lay-
out Problems, but also for other optimization problems.

3.1. Neighborhood reduction strategy

The neighborhood proposed in Section 2.2 for the 2DBMP has a
size of %n([Jﬁ]z — 1), being n the number of vertices of the input
graph. In the worst case, an exhaustive exploration requires to tra-
verse the whole neighborhood. In this section, we propose a strat-
egy to focus the search on promising solutions, avoiding to waste
time in the evaluation of solutions which produce a deterioration
in the objective function.

For each vertex of the input graph u € Vi, we can define a set
of vertices of the host graph, denoted as Promising Set of Vertices
(PSV) which can host u satisfying that the distance d (in the host
graph) from u to any of its neighbors in the input graph is equal
or smaller to the objective function value.

Given a solution ¢, and an input vertex v e Vg, let us define S¥
as the set of host vertices which satisfy that the distance d from
@(v) to any of them is smaller or equal to the BW(G, ¢). More
formally:

Sy ={(i. ) € Vy 1 d(p ). (i. ))) <BW(G. 9)}. (10)

Then, once we have defined the set SY for a single input vertex, we
can define the set PSV for an input vertex u € V; as the intersection
of the sets S for all adjacent vertices to u in the input graph (i.e.,
v e A(u)). More formally:

PSV(u, @)= (1] SY.
veA(u)

(11)

In Fig. 5 we show an example of the definition of PSV of the
vertex A. Particularly, vertices B and C are adjacent to A in the in-
put graph. For the sake of clarity, the rest of the input vertices, not
adjacent to A, have not been represented in the figure. Moreover,
let us suppose that the value of the objective function for the so-
lution ¢, represented in the figure is 2 (i.e., BW(G, ¢) = 2).

In Fig. 5a we have highlighted with light blue color
the set of host vertices placed at a distance 2 or minor
from the host vertex (2,3), which hosts B. Specifically, S‘é’ =
{(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (2,5), 3,2), 3,3),
(3.4), (4,3)}. Additionally, in Fig. 5a we have indicated, with
a number inside each host vertex, the distance d to (2,3).
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Similarly, in Fig. 5b we have highlighted in light orange
the set of host vertices placed at a distance 2 or minor
from the host vertex (3,4), which hosts C. Particularly, S?:
{(1,4),(2,3), (2,4).(2,5),(3,2),(3.3),(3,4). 3,5), (4,3), (4, 4),
(4,5), (5,4)}. Finally, in Fig. 5¢c we show the set PSV of A, ob-
tained as the intersection of the two previous sets, which contains
the host vertices placed at distance 2 or minor to any of the
adjacent vertices to A. More formally, PSV(A,¢) =S, NS¢ =
{(1,4),(2.3)(2,4),(2.5),(3.2),(3.3).(3,4), 4,3)}. Therefore,
if A is assigned to any of the vertices in PSV(A), the maximum
distance with respect to its adjacent vertices will be equal or
smaller than the BW of ¢.

Finally, we formally define Ng(¢), as the restricted neighbor-
hood of N(¢) as follows:

Nr(¢) = {Move(p,u, (i, j)) : YVu e Vg, (i, j) e PSV(u),
) # 31, )}

Then, we propose the exploration of the reduced neighborhood
instead of the whole neighborhood defined by the move operator
introduced in Section 2.2.

(12)

3.2. Efficient move calculation

For the 2DBMP, a naive straightforward evaluation of a solution
after a move consists in recalculating the value of the objective
function from scratch. This means that the contribution of every
input vertex has to be updated. However, an intelligent evaluation
could avoid reevaluating the whole solution by just updating the
elements that have been affected by the move. Therefore, we pro-
pose an efficient local search method, based on the move operator
defined in Section 2.2, which applies an efficient evaluation after a
move. Given an input graph G, a host graph H, and a solution g,
this move considers the vertex u € V; (hosted in vertex (i, j) € Vy),
and assigns it to vertex (7', j') € Vy. As it was aforementioned, if
there were a vertex v hosted in (7, j"), ie., @) = (7, j), this
move would also assign v to (i, j). Therefore, an efficient objective
function revaluation just needs to update the distance assigned to
those edges with u (also v when existing) as an endpoint.

To define the Efficient Bandwidth calculation, denoted as EBW,
of an input graph G and a solution ¢’ obtained by a move
Move(g, u, (i, j)), we first define the set of edges IZ’,(I.J) involved
in the move denoted as follows:

I? . ={(uw)eE;:VweVs}

u, (i, )
U{(v,w)eEc:Yry,weVon o) = (1, j)} (13)
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Then, the EBW(G, Move(g, u, (i’, j’)),I) can be computed as:

EBW (Gv MOV‘?(QO, u, (i/, j/)v If,(i,j)) =

max{ max {d(pw), @)}, max {d(pWw),e@)}}.
(w.2)eEG\Iy ; ;) w2)ely )

Not updated Updated

(14)

Notice that the distances of the edges that do not need to be
updated in Eq. (14) can be easily evaluated by storing the distance
associated with each edge before the move. Specifically, we use an
array of sets, where the range of the array is determined by the
possible distance values, while in each set it is stored all edges
with a the same distance value. When we consider together the
use of the aforementioned data structure and the efficient move
calculation, the running time can be reduced in two orders of mag-
nitude, on average, as we will show in the computational experi-
ence.

Let us illustrate this with an example. Particularly, we consider
again the move ¢’ < Move(gp, B, (2, 3)) depicted in Fig. 4. In order
to evaluate the objective function of the resulting solution ¢’ it is
just needed to update the distance associated to the edges with
an endpoint in B, since (2,3) is not hosting any vertex of the in-
put graph. More precisely, the edges with an endpoint in B are
(A,B), (B,F), and (B, G). Then, only the distance of those edges
needs to be re-evaluated, being the BW(G, ¢’) calculated as fol-
lows:

BW(G. ¢') = max{d(¢(A). ¢(D)). d(¢(A), p(E)).d(¢(A). ¢(F)),

d(¢(C), p(D)),d(¢ (D), (E)).d(¢(F), ¢(G)),

d(¢'(A), ¢'(B)).d(¢'(B), ¢'(F)).d(¢'(B), ¢'(G))}

max{2,1,2,1,3,21,3,1} = 3. (15)
e ——

Not updated  Updated

Notice that, in this particular example, the number of edges
evaluated is 3, while evaluating the whole solution requires 9 up-
dates. Reasonably, the impact of this strategy is larger when deal-
ing with instances composed by many vertices.

3.3. Tiebreak criterion for solutions with the same objective function
value

An optimization problem consists of maximizing or minimizing
a particular objective function. In some cases, this mathematical
function consists of computing either the maximum or minimum
value of a set of elements. Therefore, regardless the size of this
set, the maximum or the minimum value, which determines the
value of the objective function, is usually reached in more than one
element. When the goal of a problem is to minimize a function
based on a maximum value, we denote it as min-max problem.
Similarly, when the goal of a problem is to maximize a minimum
function, it is denoted as max-min problem. Max-min and min-
max problems are quite common in optimization and become a
challenge for heuristic methods because there may be many dif-
ferent solutions with the same objective function value, despite
they are different solutions. This fact is usually known as “flat land-
scape” (Marti, Pantrigo, Duarte, & Pardo, 2013; Pardo et al., 2013).
When this happens, it is difficult to determine the search direction
since there is no way, according to the objective function, to de-
termine which solution is more promising. To mitigate this prob-
lem, researchers have opted for tiebreaking criteria or alternative
objective functions (Cavero, Pardo, & Duarte, 2021a; Cavero et al.,
2021b).

The 2DBMP is a min-max optimization problem and prelim-
inary experiments corroborate the existence of flat landscapes
throughout the solution space. Furthermore, for an input graph
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with n = |Vg| vertices and a host graph with m = [/n] - [Vn]
vertices, the number of solutions in the search space is upper
bounded by m!/(m —n)!, but the range of values obtained as the
evaluation with the objective function for that solutions are inte-
ger numbers in the interval [1,2. ([«/n] —1)]. Let us remember
that the evaluation of the objective function of the 2DBMP is di-
rectly related to the distance of adjacent input vertices measured
in the host graph (see Eq. (4)). Then, the number of possible ob-
jective function values is considerably smaller than the number of
solutions. Therefore, there might be many solutions with the same
value of the objective function. To overcome this difficulty, we pro-
pose a tiebreak criterion based on the frequency of a particular dis-
tance in a solution. More formally, given an input graph G(V;, E¢)
and a solution ¢, we define f; as the number of edges (u, v) of E¢
with an associated distance in the host graph equal to I:

fi= ., v) e Eg 1 d(e), () = 1}].

Let Ihax be the maximum distance among all adjacent vertices
in the graph. It trivially holds that In.x corresponds to the objective
function value of the problem for a particular solution (i.e., Imax =
BW(G, ¢)). Then, given an input graph G and an embedding ¢, we
propose a tiebreaking function t defined as follows:

(16)

Inax

tG g)=>y n'f.

=1

(17)

This equation is inspired by previous works related to circular
layout problems (Cavero et al., 2021a; Cavero et al., 2021b). It takes
into consideration not only the maximum distance of an embed-
ding, but also additional semantic information related to promising
solutions. Specifically, when the objective function value of two so-
lutions is equal, both solutions are evaluated using the function t.
The solution with the lower value of ¢t is then chosen as the most
promising one. The rationale behind this decision is to penalize
those solutions with many edges with an associated distance close
to the value of the objective function. It is worth mentioning that
if the t value for two solutions is the same, they are considered as
equivalent (in terms of the tiebreak criterion).

Let us illustrate the use of the tiebreak criterion with an
example. To do so, we consider three different solutions ¢q,
@2, and ¢3. Let us assume that the objective function for
each solution is BW(G, ¢1) = max{1,3,1,2,3} =3, BW(G, ;) =
max{1,2,1,2,3} =3, and BW(G, ¢3) = max{2,2,1,2,3} =3, re-
spectively. Then, these three solutions are equal according to the
objective function of the problem (i.e., the maximum value across
all elements, which is 3). However, if we evaluate them with the
tiebreak criterion, we appreciate differences among the solutions:

-145%.2 =10+ 25+ 250 = 285.
.245%.1=10+50+ 125 = 185.
-34+5%.1=5+75+125=205.

t(G, @) =5'-2+52
t(G, @) =5'-2+52
t(G, @3) =5'-1+52

In this case, since t(G, ¢,) < t(G, ¢3) < t(G, ¢1), we would con-
sider ¢, as the most promising one. Similarly, we consider ¢3 more
promising than ¢;.

4. Computational results

In this section, we present the experiments carried out to em-
pirically evaluate the algorithmic proposals introduced in this pa-
per. Particularly, we first propose a set of preliminary experiments
to configure the best variant of our algorithm and to illustrate the
influence of the advanced search strategies. Then, our best vari-
ant is compared with the best previous algorithm identified in the
state of the art.
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Table 1
Influence of the initial host vertex (answer to
Question #1 in Section 2.1).

Random Corner Center
Avg. OF 13.23 13.00 u8
CPU Time (s)  0.37 0.37 0.38
Dev. (%) 6.92 5.02 11.55
#Best 7 8 6

The computational tests have been performed over 90 in-
stances previously reported in the related literature on the 2DBMP
(Rodriguez-Garcia et al., 2021). These instances are grouped into
two different subsets which include: 45 topologically diverse small
graphs (with |Vg| € [5,21] and |Eg| € [6,190]); and 45 represen-
tative graphs from the Harwell-Boeing collection (with |V;| e
[48,960] and |Eg| € [78,7442]). To ease future comparisons, all
instances have been made publicly available at https://www.
heuristicas.es/.

All experiments have been performed on an AMD EPYC 7282
16-core virtual CPU with 16GB of RAM. The operating system used
was Ubuntu 20.04.2 64 bit LTS, and all algorithms were imple-
mented in Java 16.

4.1. Preliminary experiments

In this section, we identify the best configuration of the com-
ponents of the Iterated Greedy procedure proposed in this pa-
per. Also, we illustrate the merit of the proposed advanced search
strategies. The preliminary experiments have been performed over
a reduced set of instances consisting of 15% of the total considered
instances (i.e., 13 graphs). We will refer to this subset of instances
as the preliminary set.

For each of the experiments carried out, we report the follow-
ing metrics: the average value of the objective function (Avg. OF),
the total execution time in seconds (CPU Time (s)), the average de-
viation to the best solution found in the experiment (Dev. (%)) and
the number of best solutions found in the experiment (#Best).

The first set of experiments performed is devoted to configure
the best variant of the greedy constructive procedure described
in Section 2.1, by trying to find the best answer to the questions
raised in that section. Notice that the parameters are studied one
by one, varying the values for the selected parameter and fixing
the value for the rest of parameters.

Particularly, in Table 1 we analyse the proposed strategies to
determine which is the most suitable host vertex to perform
the first assignation (denoted as the answer to Question #1 in
Section 2.1). The results reported in Table 1 correspond to a 100
of constructions where the input vertex has been chosen at ran-
dom, g; is configured with w; = 0.5 and w, = 0.5 (i.e., both have
the same weight), and g; is used as the criterion to determine the
host vertices in the following assignations. With this configuration,
starting the construction from a corner host vertex seems to be the
best alternative, since the constructive procedure is able to reach
the largest number of best solutions and the smallest deviation to
the best solution.

In this case, we do not need to perform an experiment to select
the most suitable input vertex to start the construction. This issue
has been solved by starting the construction, at least, once from
every input vertex.

Then, we analyse the influence of the parameters w; and w, in
g1 which determine the selection of the following input vertices
further than the first assignation (denoted as the answer to Ques-
tion #2 in Section 2.1). Let us remember, that w; and w, balance
the influence of the adjacent assigned/unassigned vertices respec-
tively, for every input vertex being evaluated with g1. Particularly,
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Table 2

Influence of the host vertex selected after the first assignation
based on the weights w; and w, in g; (answer to Question #3
in Section 2.1).

Diagonal  Sequential  ZigZag g»
Avg. OF 34,23 21.46 18.77 10.08
CPU Time (s)  4.68 4.51 4.48 5.79
Dev. (%) 283.19 138.11 89.66 6.15
#Best 0 0 1 12

in Fig. 6 we depict the average performance of the constructive
procedure for five different configurations of these two parame-
ters, when the number of constructions increases from 1 to 2500.
Notice that in this experiment the input/host vertices of the first
assignation are selected following the best configuration found in
the previous experiment. As we can observe in the figure, the com-
bination w; = 1.00, w, = 0.00 is systematically the best configura-
tion and therefore it will be selected for future experiments. Since
the sum of w; and w, equals 1, the selected configuration indicates
that, for this problem, the value of g; is fully determined by the al-
ready assigned adjacent vertices to the vertex being evaluated. Fur-
thermore, the benefits obtained by performing multiple construc-
tions do not improve significantly after 1500 constructions.

Finally, we analyze the influence of the strategies proposed to
select the host vertex in every assignation but the first (denoted as
the answer to Question #3 in Section 2.1). Particularly, in Table 2,
we evaluate the four strategies proposed for this task. The reported
results are obtained as the average of the best solutions found for
each instance after 1500 constructions. Again, the input/host ver-
tices of the first assignation are selected following the best config-
uration found with the criteria previously defined, and g; is con-
figured with w; =1 and w, = 0.

On the one hand, according to the selection of the vertices of
the host graph, g, is easily recognized as the best strategy since
it finds the best quality solutions (lower average of the objec-
tive function, lower deviation, and larger number of best solutions
found). Among the pattern-based strategies, zigzag is the most
prominent.

To sum up, the final configuration of our constructive procedure
has been set to be executed for 1500 constructions, and the best
overall solution is selected. Each construction starts from a differ-
ent initial input vertex (if all vertices have been used at least once,
the procedure selects a repeated vertex to start with). The initial
host vertex is set to be one of the corner vertices of the grid. The
following input vertices are selected one by one with g; config-
ured with w; =1 and w, = 0. Finally, g, is selected as the method
to determine the host vertices for any assignation performed after
the first one.

Our next preliminary experiment is devoted to test the influ-
ence of the advanced strategies proposed in Section 3 in the local
search procedure described in Section 2.2. First, we evaluated the
exploration of the neighborhood defined by the move operator fol-
lowing both: a first improvement and a best improvement strategy.
We found that both strategies reached the same average quality of
the objective function (32.54) for the preliminary data set. How-
ever, the CPU time of the local search using a best improvement
strategy was 5 times larger than using a first improvement strat-
egy. Then, we configured our local search procedure with a first
improvement strategy.

In Table 3, we report the results obtained when incorporat-
ing each of the three proposed advanced strategies to the local
search procedure (i.e., the tiebreak criterion (T), the efficient move
calculation (E), and the neighborhood reduction strategy (R)). We
also include in the comparison the original local search procedure
in isolation (LS). The results provided in the table are obtained
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Fig. 6. Evolution of the average objective function value when increasing the number of constructions for different values of w; and w, in g;.

Table 3
Contribution of advanced strategies to the local search.
LS LS+T LS+T+E  LS+T+E+R
Avg. OF 32.54 7.77 7.77 7.85
CPU Time (s)  72.51 7873.28  22.76 2.18
Dev. (%) 350.04 4.62 4.62 7.05
#Best 0 8 8 9

after a single execution of each method, where the initial solu-
tion was the same for all compared methods and it was randomly
constructed.

As we can observe in Table 3 the inclusion of the tiebreak
criterion (LS+T) drastically improves the quality of the solutions
obtained with respect to the original local search (LS) although
the time increases considerably. This increase in the time needed
by the method is due to the larger exploration of solutions per-
formed by the LS+T. As expected, LS+T and LS+T+E were able to
reach the same solutions in terms of quality, however, then the ef-
ficient move calculation reduces the time needed to reach them
in 99.71%. Finally, the method including the proposed neighbor-
hood reduction strategy, LS+T+E+R, is able to reduce by one or-
der of magnitude the time needed by LS+T+E, slightly deteriorat-
ing the average quality of the solutions obtained. Both behaviors
are explained by the fact that the number of solutions explored
is considerably smaller. We consider that LS+T+E+R is the most
promising combination as a balance between computing time and
quality.

Next, we study the best procedures for the destruction and
reconstruction phase. In this experiment, we analyse all possible
combinations of the strategies proposed in Section 2.3. Specifically,
we evaluate three destruction strategies: random assignations (ran-
dom), assignations of random areas (random area), and assigna-
tions of areas contributing to the objective function of the solu-
tion (greedy area). Additionally, as far as the reconstruction phase
is concerned, we evaluate three proposals: g; + random, random
+ g7, and g1 + &. Each proposal includes two strategies to deter-
mine the next assignation. The first strategy selects an input unas-
signed vertex, while the second strategy selects an available host
vertex.
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In Table 4, we present the results of this experiment. Particu-
larly, each Iterated Greedy configuration has been executed for a
maximum of 300 iterations, with the additional condition that the
method is halted if it does not find an improvement of the best
solution found in the last 150 iterations. The best configuration is
obtained when the destruction is made greedily (“Greedy area” in
the table) and the reconstruction is made by using the “random
+ go" criterion. The second best variant is the one where the de-
struction is made at random (“Random” in the table) and the re-
construction uses “random + g,”. However, this variant finds very
similar solutions in terms of quality in half time. Therefore, as a
trade-off between quality and time, we have selected this second
configuration for our final proposed procedure.

Finally, it is important to remark that we performed a fine-
tuning experiment to adjust the parameters: maximum number of
iterations (maxliter) and the maximum number of iterations with-
out improving (maxNotlmpriter) introduced in the Algorithm 1.
Particularly, we tested different values of maxlter in the range
[100, 1000] in steps of 50. Similarly, we studied the behavior of
maxNotImpriter) with different percentages (0.25, 0.5, and 0.75) of
the maxlter. For the sake of brevity, we do not include all the val-
ues of this experiment in here. However, among the proposed con-
figurations, we selected maxIter = 300 and maxNotImpriter = 0.75 -
maxlIter = 225 for our final design, as a balance of quality and CPU
time.

To conclude the preliminary experiments, we compare our
three main algorithmic proposals to verify if an increase in the
complexity of the method also results in an improvement in the
obtained results. Specifically, we propose two executing scenar-
ios: a single run of each method and running each method iter-
atively for 100 seconds. Notice that in this experiment, the solu-
tion produced by the greedy constructive is provided to the local
search and to the Iterated Greedy procedure. The results obtained
are reported in Table 5. As expected, in the single execution sce-
nario, the IG is the best method in terms of average of the ob-
jective function, deviation and # Best solutions found. However, it
is also the most time-consuming procedure. On the other hand,
when running all methods for 100 seconds, the differences among
the results obtained are reduced, but IG is still the best overall
method.
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Table 4
Influence of the destruction and reconstruction strategies in the performance of the greedy constructive
procedure.
Destruction Reconstruction Avg. OF CPU Time (s) Dev. (%) #Best
Random g; + random 5.46 154.21 9.29 8
random + g, 5.23 60.20 3.85 11
g1 +8& 5.46 43.13 7.37 8
Random g; + random 5.38 145.25 6.41 9
area random + g, 5.31 110.44 481 10
g1 +& 5.46 65.79 7.37 8
Greeedy g; + random 5.31 147.90 481 10
area random + g, 5.15 119.62 0.96 12
g1 +& 5.38 63.62 6.09 9
Table 5
Behaviour of the proposed strategies in a single execution and running for 100 seconds.
Single execution 100 seconds
Constructive ~ LS+T+E+R  IG Constructive ~ LS+T+E+R  IG
Avg. OF 10.08 6.00 5.23 9.08 5.38 523
CPU Time (s)  6.05 6.43 84.71 102.79 106.86 106.90
Dev. (%) 95.69 13.32 0.00 75.62 4.49 1.92
#Best 0 5 13 0 10 12

Table 6

Results obtained by the compared methods on the 41 instances of the Small graphs data set with a known optimal, and on the 45 instances of the Harwell-

Boeing data set.

Small graphs (41)

Harwell-Boeing (45)

M3 (Rodriguez-Garcia et al., 2021)

Avg. OF 2.17 232
CPU Time (s)  1957.65 3.64
Dev. (%) 0.00 12.20
#Best 41 35

BVNS (Rodriguez-Garcia et al., 2021)

IG BVNS (Rodriguez-Garcia et al., 2021)  IG
217 711 4.84
0.02  439.63 102.01
0.00 51.77 0.00
41 5 45

4.2. Final experiments

In this section, we compare our best Iterated Greedy (IG) vari-
ant with the best previous algorithms in the state of the art: the
best Constraint Satisfaction Programming (CSP) model proposed in
Rodriguez-Tello et al. (2019) (denoted M3) and the Basic Variable
Neighborhood Search (BVNS) proposed in Rodriguez-Garcia et al.
(2021). Both procedures were described in the literature review.
Notice that we have compared our procedure with the original
source code implemented and provided by the authors. To make
the fairest comparison possible, instead of directly using the re-
sults reported in Rodriguez-Garcia et al. (2021), the BVNS proce-
dure was run again with the configuration indicated by the au-
thors, in the same execution environment as the one used for our
code.

In Table 6 we report the quality indicators presented in the pre-
liminary experiment: the average deviation, the average execution
time, and the number of best solutions found for each of the sub-
sets of instances studied: the diverse small graph subset and the
Harwell-Boeing subset.

In particular, on the left side of Table 6, we compare our IG
with the BVNS and M3 over the set of diverse small graphs. Note
that M3 was unable to complete the search for 4 instances out of
45 within the established time limit (72h). Therefore, we have re-
moved those instances from this comparison to fairly illustrate the
behavior of the proposed algorithm. Additionally, in Table A.1 we
include the individual results per instance for each of the 45 in-
stances of the complete subset. We observe in Table 6 that M3
and IG were able to reach the optimal solution for the 41 instances
studied, followed by BVNS with 35. However, the time required by
IG was 5 orders of magnitude shorter than M3 and 2 orders of
magnitude shorter than BVNS.
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Similarly, on the right side of Table 6, we compare IG and BVNS
over the Harwell-Boeing subset. In this case, M3 was not able to
finish within the maximum time limit and therefore it has been
excluded from this comparison. Again, to ease future comparisons,
we include the individual of each instance in Table A.2. Based on
the results reported in Table 6 we observe that IG finds the best
solution for all the graphs studied (45) in less computational time
(102.01 s) than the BVNS procedure (439.63 s). Consequently, the
average value of the objective function is lower in the solutions
obtained by IG than in the solutions obtained by BVNS. Finally, we
highlight that BVNS has a 51.77% deviation from the best solutions
found, obtaining only five best solutions out of 45 instances.

To complement the previous experiment, we conducted a
Wilcoxon signed rank test. The resulting p-value < 0.00001 con-
firms the significance of the results obtained when comparing the
methods for the tested instances.

5. Conclusions

In this paper, we tackle the Two-Dimensional Bandwidth Mini-
mization Problem by proposing several efficient heuristic strategies
to find high-quality solutions for the problem. The 2DBMP belongs
to the graph layout family of problems, and it has been previously
approached from an exact perspective, based on Constraint Satis-
faction Programming, and from a heuristic perspective, based on
the Variable Neighborhood Search metaheuristic.

We have developed an efficient and effective Iterated Greedy al-
gorithm to deal with the 2DBMP, including an exhaustive study of
multiple greedy criteria at the destruction and reconstruction steps
within the IG framework. In addition, we introduce a novel local
search procedure based on swap moves of vertices, which includes
three advanced enhancement strategies. It is worth mentioning
that several of the strategies proposed in this paper have further
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applicability to other optimization problems, especially those re-
lated to Graph Layout Problems.

The results obtained in this paper emphasize the importance of
using a tiebreak criterion to guide the search through flat land-
scape regions. This is a key strategy when the objective function is
not useful in distinguishing between two solutions with the same
objective function value. Also, we identified that classical move op-
erators applied to Graph Layout Problems, such as the 2DBMP, usu-
ally drive to extensive neighborhoods. In this kind of scenario, lo-
cal search procedures might be inefficient when the time limit is
short. To overcome this drawback, we propose two general strate-
gies with applicability to other problems: a speed-up technique to
evaluate the objective function of neighbor solutions; and a neigh-
borhood reduction technique based on the exploration of the most
promising neighbor solutions. Moreover, the graph structure of ei-
ther the input and host graphs is key in determining the best
heuristic strategy in the context of GLPs. Particularly, the number
of adjacent vertices of each vertex tends to contribute to relevant
information at the time of constructing new solutions.

Finally, we would like to highlight that the best algorithmic
variant of our proposal has been compared to the best previous

Table A.1

European Journal of Operational Research 306 (2023) 1126-1139

method in the state of the art, over a previously reported set of
instances. The obtained results, supported by statistical tests, cor-
roborate the merit of our proposal and establish it as a new state-
of-the-art algorithm for the 2DBMP.
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Appendix A. Individual results per instance

In Table A.1 and Table A.2 we report the individual results per
instance for the Small and Harwell-Boeing data sets. These values
were used to calculate the values presented in Table 6.

Individual results per instance obtained from the small data set. Note that a symbol “-” in the table indicates that the algorithm was

not able to solve the instance in a maximum CPU time of 72h.

M3 BVNS IG
Instance Best OF CPUTime (s) Dev.(%) OF CPUTime(s) Dev.(%) OF CPUTime(s) Dev. (%)
p2p3 1 1 0.20 0.00 2 0.11 1.00 1 0.01 0.00
p3p3 1 1 0.26 0.00 2 0.38 1.00 1 0.01 0.00
p4p5 1 1 0.22 0.00 2 7.84 1.00 1 0.03 0.00
p2c3 2 2 0.24 0.00 2 0.16 0.00 2 0.01 0.00
p3c3 2 2 0.20 0.00 2 0.54 0.00 2 0.01 0.00
pac5 2 2 0.53 0.00 3 7.55 0.50 2 0.03 0.00
c3c3 2 2 0.24 0.00 2 0.83 0.00 2 0.02 0.00
c3c4 2 2 0.28 0.00 2 2.13 0.00 2 0.03 0.00
c4c5 2 2 0.28 0.00 3 9.26 0.50 2 0.04 0.00
k3k4 3 3 0.55 0.00 3 2.59 0.00 3 0.02 0.00
k4k5 4 4 74192.71 0.00 4 20.00 0.00 4 0.05 0.00
c3k4 3 3 0.60 0.00 3 2.83 0.00 3 0.03 0.00
c4k5 3 3 2.18 0.00 3 17.86 0.00 3 0.05 0.00
p3k4 2 2 0.27 0.00 2 2.58 0.00 2 0.02 0.00
p4ks 3 3 1.93 0.00 3 14.81 0.00 3 0.04 0.00
path10 1 1 0.30 0.00 1 0.44 0.00 1 0.01 0.00
path15 1 1 0.35 0.00 2 1.32 1.00 1 0.02 0.00
path20 1 1 0.31 0.00 1 4.04 0.00 1 0.02 0.00
cycle10 1 1 0.24 0.00 1 0.40 0.00 1 0.01 0.00
cycle15 2 2 0.50 0.00 2 1.19 0.00 2 0.02 0.00
cycle20 1 1 0.28 0.00 1 430 0.00 1 0.03 0.00
wheel5 2 2 0.21 0.00 2 0.12 0.00 2 0.00 0.00
wheel7 2 2 0.23 0.00 2 0.35 0.00 2 0.01 0.00
wheel10 2 2 0.41 0.00 2 1.17 0.00 2 0.02 0.00
wheel15 3 3 4444.86 0.00 3 4.11 0.00 3 0.02 0.00
wheel20 3 - - - 3 11.93 0.00 4 0.03 0.33
cyclePow10-2 2 2 0.25 0.00 2 1.12 0.00 2 0.02 0.00
cyclePow15-2 2 2 0.28 0.00 2 3.58 0.00 2 0.02 0.00
cyclePow20-2 2 2 0.30 0.00 2 9.15 0.00 2 0.04 0.00
cyclePow10-10 4 4 0.21 0.00 4 3.74 0.00 4 0.02 0.00
cyclePow15-10 6 - - - 6 15.01 0.00 6 0.04 0.00
cyclePow20-10 6 - - - 6 20.00 0.00 6 0.08 0.00
bipartite3-3 2 2 0.26 0.00 2 0.18 0.00 2 0.01 0.00
bipartite3-4 3 3 0.33 0.00 3 0.28 0.00 3 0.02 0.00
bipartite4-4 3 3 0.33 0.00 3 0.56 0.00 3 0.02 0.00
bipartite5-5 3 3 0.78 0.00 3 1.46 0.00 3 0.02 0.00
bipartite7-8 4 4 1050.31 0.00 4 9.03 0.00 4 0.04 0.00
bipartite10-10 5 - - - 5 20.00 0.00 5 0.21 0.00
petersen 2 2 0.31 0.00 2 0.77 0.00 2 0.01 0.00
complete5 2 2 0.28 0.00 2 0.12 0.00 2 0.01 0.00
complete10 4 4 14.03 0.00 4 4.15 0.00 4 0.02 0.00
tree2-2 1 1 0.31 0.00 1 0.11 0.00 1 0.01 0.00
tree2-3 2 2 0.31 0.00 2 0.99 0.00 2 0.01 0.00
tree3-2 2 2 0.25 0.00 2 1.25 0.00 2 0.02 0.00
tree2-4 2 2 546.79 0.00 2 5.93 0.00 2 0.04 0.00
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Individual results per instance obtained from the Harwell-Boeing data set.

BVNS (Rodriguez-Garcia et al., 2021)  IG
Instance Best OF  CPU Time (s) Dev. (%) OF CPU Time (s)  Dev. (%)
besstk01 5 5 48.00 0.00 5 0.35 0.00
can___62 2 3 62.00 50.00 2 0.22 0.00
nos4 4 4 100.01 0.00 4 1.13 0.00
bcspwr03 3 4 118.01 33.33 3 0.97 0.00
bcsstk04 8 9 132.01 12.50 8 33.24 0.00
besstk22 3 4 138.01 33.33 3 1.76 0.00
can__144 4 5 144.01 25.00 4 2.84 0.00
besstk05 7 7 153.01 0.00 7 13.82 0.00
can__161 4 6 161.01 50.00 4 4.31 0.00
dwt__198 4 5 198.01 25.00 4 6.49 0.00
dwt__209 5 6 209.01 20.00 5 12.95 0.00
dwt__221 4 5 221.01 25.00 4 7.26 0.00
can__229 5 7 229.01 40.00 5 11.65 0.00
dwt_234 4 4 234.01 0.00 4 11.46 0.00
nos1 3 4 237.01 33.33 3 4.68 0.00
dwt__245 4 6 245.02 50.00 4 8.69 0.00
Ishp_265 3 6 265.00 100.00 3 9.31 0.00
bespwr04 4 7 274.02 75.00 4 13.05 0.00
ash292 4 6 292.00 50.00 4 9.84 0.00
can__292 6 7 292.00 16.67 6 31.82 0.00
dwt__307 5 7 307.00 40.00 5 25.23 0.00
dwt__310 4 5 310.00 25.00 4 10.78 0.00
dwt__361 5 8 361.01 60.00 5 25.45 0.00
plat362 7 8 362.01 14.29 7 110.03 0.00
besstk07 6 9 420.01 50.00 6 298.42 0.00
bespwr05 5 5 443.01 0.00 5 29.52 0.00
can__445 7 9 445.01 28.57 7 59.74 0.00
besstk20 4 6 485.01 50.00 4 39.75 0.00
494_bus 5 6 494.01 20.00 5 41.65 0.00
dwt__503 6 8 503.01 33.33 6 83.16 0.00
Ishp_577 5 8 577.00 60.00 5 63.92 0.00
dwt__607 5 9 607.00 80.00 5 107.66 0.00
662_bus 5 7 662.01 40.00 5 56.83 0.00
nos6 5 14 960.01 180.00 5 49.94 0.00
685_bus 5 8 685.01 60.00 5 51.32 0.00
can__715 8 11 715.01 37.50 8 698.93 0.00
nos7 6 10  729.01 66.67 6 174.52 0.00
dwt__758 5 7 758.01 40.00 5 127.15 0.00
Ishp_778 4 9 778.01 125.00 4 142.28 0.00
bcsstk19 6 9 817.00 50.00 6 399.65 0.00
dwt__878 5 9 878.00 80.00 5 192.83 0.00
gr_30_30 2 9 900.01 350.00 2 4541 0.00
dwt__918 6 9 918.01 50.00 6 431.28 0.00
nos2 4 6 957.01 50.00 4 106.14 0.00
nos3 7 14 960.01 100.00 7 1032.95 0.00

References

Abdinnour-Helm, S., & Hadley, S. W. (2000). Tabu search based heuristics for multi-
-floor facility layout. International Journal of Production Research, 38(2), 365-383.

Bezrukov, S. L., Chavez, ]. D., Harper, L. H., Rottger, M., & Schroeder, U. P. (1998).
Embedding of hypercubes into grids. In L. Brim, J. Gruska, & J. Zlatuka (Eds.),
Mathematical foundations of computer science 1998. In Lecture notes in computer
science (pp. 693-701). Berlin, Heidelberg: Springer.

Bhatt, S. N., & Thomson Leighton, F. (1984). A framework for solving VLSI graph
layout problems. Journal of Computer and System Sciences, 28(2), 300-343.

Booch, G. (2005). The unified modeling language user guide. Pearson Education India.

Cavero, S., Pardo, E. G., & Duarte, A. (2021a). Influence of the alternative objec-
tive functions in the optimization of the cyclic cutwidth minimization prob-
lem. In Advances in artificial intelligence. In Lecture notes in computer science
(pp. 139-149). Cham: Springer International Publishing.

Cavero, S., Pardo, E. G., Laguna, M., & Duarte, A. (2021b). Multistart search for the
cyclic cutwidth minimization problem. Computers & Operations Research, 126,
105116.

Cavero, S., Pardo, E. G., & Duarte, A. (2022a). A general variable neighborhood search
for the cyclic antibandwidth problem. Computational Optimization and Applica-
tions, 81(2), 657-687.

Cavero, S., Pardo, E. G., Duarte, A., & Rodriguez-Tello, E. (2022b). A variable neigh-
borhood search approach for cyclic bandwidth sum problem. Knowledge-Based
Systems, 246, 108680.

Chung, F. (1988). Labelings of graphs. Selected topics in graph theory, 3, 151-168.

Craw, S. (2010). Manhattan distance (pp. 639-639)). Boston, MA: Springer US.

Del Corso, G. M., & Manzini, G. (1999). Finding exact solutions to the bandwidth
minimization problem. Computing, 62(3), 189-203.

1138

Delmaire, H., Diaz, J. A., Ferndndez, E., & Ortega, M. (1999). Reactive grasp and tabu
search based heuristics for the single source capacitated plant location problem.
INFOR: Information Systems and Operational Research, 37(3), 194-225.

Diaz, ]., Petit, ]., & Serna, M. (2002). A survey of graph layout problems. ACM Com-
puting Surveys (CSUR), 34(3), 313-356.

Feo, T. A., & Resende, M. G. (1995). Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6(2), 109-133.

Gurari, E. M., & Sudborough, I. H. (1984). Improved dynamic programming algo-
rithms for bandwidth minimization and the mincut linear arrangement prob-
lem. Journal of Algorithms, 5(4), 531-546.

Hansen, P., & Mladenovi¢, N. (2006). First vs. best improvement: An empirical study.
Discrete Applied Mathematics, 154(5), 802-817.

Hansen, P, Mladenovi¢, N., Todosijevi¢, R., & Hanafi, S. (2017). Variable neighbor-
hood search: Basics and variants. EURO Journal on Computational Optimization,
5(3), 423-454.

Hromkovi, ]., Miiller, V., Sykora, O., & Vrt'o, I. (1992). On embedding interconnec-
tion networks into rings of processors. In International conference on parallel ar-
chitectures and languages Europe (pp. 51-62). Springer.

Huerta-Muiioz, D. L., Rios-Mercado, R. Z., & Ruiz, R. (2017). An iterated greedy
heuristic for a market segmentation problem with multiple attributes. European
Journal of Operational Research, 261(1), 75-87.

Jinjiang, Y., & Sanming, Z. (1995). Optimal labelling of unit interval graphs. Applied
Mathematics, 10(3), 337-344.

Lai, Y.-L, & Williams, K. (1999). A survey of solved problems and applications
on bandwidth, edgesum, and profile of graphs. Journal of Graph Theory, 31(2),
75-94.

Lin, L, & Lin, Y. (2010). Two models of two-dimensional bandwidth problems. Infor-
mation Processing Letters, 110(11), 469-473.


http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0010
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0022

S. Cavero, E.G. Pardo and A. Duarte

Lin, L, & Lin, Y. (2011). Square-root rule of two-dimensional bandwidth problem.
RAIRO-Theoretical Informatics and Applications, 45(4), 399-411.

Lin, Y. (1994). The cyclic bandwidth problem. Journal of Systems Science and Com-
plexity, 7(3), 282-288. Cited By 12

Lourengo, H. R., Martin, O. C., & Stiitzle, T. (2003). Iterated local search. In Handbook
of metaheuristics (pp. 320-353). Springer.

Lépez-Sanchez, A., Sdnchez-Oro, J., & Herndndez-Diaz, A. (2019). GRASP and VNS for
solving the p-next center problem. Computers & Operations Research, 104, 295-
303.

Marti, R., Pantrigo, J. J., Duarte, A., & Pardo, E. G. (2013). Branch and bound for
the cutwidth minimization problem. Computers & Operations Research, 40(1),
137-149.

McAllister, A. et al. (1999). A new heuristic algorithm for the linear arrangement
problem.

Michiels, W., Aarts, E. H., & Korst, J. (2018). Theory of local search. In Handbook of
heuristics (pp. 299-339). Springer.

Mladenovic, N., Urosevic, D., Pérez-Brito, D., & Garcia-Gonzalez, C. G. (2010). Vari-
able neighbourhood search for bandwidth reduction. European Journal of Opera-
tional Research, 200(1), 14-27.

Papadimitriou, C. H. (1976). The np-completeness of the bandwidth minimization
problem. Computing, 16(3), 263-270.

Pardo, E. G., Garcia-Sdnchez, A., Sevaux, M., & Duarte, A. (2020). Basic variable
neighborhood search for the minimum sitting arrangement problem. Journal of
Heuristics, 26(2), 249-268.

Pardo, E. G, Marti, R, & Duarte, A. (2016). Linear layout problems. In R. Marti,
P. Panos, & M. G. Resende (Eds.), Handbook of heuristics (pp. 1-25). Cham:
Springer International Publishing.

Pardo, E. G., Mladenovi¢, N., Pantrigo, J. ]., & Duarte, A. (2013). Variable formulation
search for the cutwidth minimization problem. Applied Soft Computing, 13(5),
2242-2252.

1139

European Journal of Operational Research 306 (2023) 1126-1139

Pérez-Pelo, S., Sanchez-Oro, J., Gonzalez-Pardo, A., & Duarte, A. (2021). A fast vari-
able neighborhood search approach for multi-objective community detection.
Applied Soft Computing, 112, 107838.

Petit, ]. (2004). Experiments on the minimum linear arrangement problem. ACM
Journal of Experimental Algorithmics, 8, 2.3.

Ren, J., Hao, J.-K,, & Rodriguez-Tello, E. (2019). An iterated three-phase search ap-
proach for solving the cyclic bandwidth problem. IEEE Access, 7, 98436-98452.

Ren, J., Hao, J.-K., Rodriguez-Tello, E., Li, L, & He, K. (2020). A new iterated local
search algorithm for the cyclic bandwidth problem. Knowledge-Based Systems,
203, 106136.

Rodriguez-Tello, E., Hao, J.-K., & Torres-Jimenez, ]J. (2008a). An effective two-stage
simulated annealing algorithm for the minimum linear arrangement problem.
Computers & Operations Research, 35(10), 3331-3346.

Rodriguez-Tello, E., Hao, ].-K., & Torres-Jimenez, J. (2008b). An improved simulated
annealing algorithm for bandwidth minimization. European Journal of Opera-
tional Research, 185(3), 1319-1335.

Rodriguez-Tello, E., Narvaez-Teran, V., & Lardeux, F. (2019). Dynamic multi-armed
bandit algorithm for the cyclic bandwidth sum problem. IEEE Access, 7,
40258-40270.

Rodriguez-Garcia, M. A., Sanchez-Oro, ]., Rodriguez-Tello, E., Monfroy, E., &
Duarte, A. (2021). Two-dimensional bandwidth minimization problem: Exact
and heuristic approaches. Knowledge-Based Systems, 214, 106651.

Ruiz, R, & Stiitzle, T. (2007). A simple and effective iterated greedy algorithm for
the permutation flowshop scheduling problem. European Journal of Operational
Research, 177(3), 2033-2049.

Stiitzle, T., & Ruiz, R. (2018). Iterated greedy (pp. 547-577)). Cham: Springer Interna-
tional Publishing.

Tsang, E. (2014). Foundations of constraint satisfaction: The classic text. Books on De-
mand.


http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0044
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0045

	Efficient iterated greedy for the two-dimensional bandwidth minimization problem
	1 Introduction
	1.1 Problem statement
	1.2 Literature review
	1.3 Our contributions

	2 Algorithmic proposal: Iterated greedy
	2.1 Greedy constructive procedure
	2.2 Improvement strategy
	2.3 Destruction and reconstruction procedures

	3 Advanced search strategies for exploring the neighborhoods
	3.1 Neighborhood reduction strategy
	3.2 Efficient move calculation
	3.3 Tiebreak criterion for solutions with the same objective function value

	4 Computational results
	4.1 Preliminary experiments
	4.2 Final experiments

	5 Conclusions
	Acknowledgment
	Appendix A Individual results per instance
	References


