
European Journal of Operational Research 306 (2023) 1126–1139

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Efficient iterate d gree dy for the two-dimensional bandwidth

minimization problem

Sergio Cavero, Eduardo G. Pardo

∗, Abraham Duarte

Universidad Rey Juan Carlos, C/Tulipán, s/n, Mstoles, 28933, Madrid, Spain

a r t i c l e i n f o

Article history:

Received 21 January 2022

Accepted 5 September 2022

Available online 9 September 2022

Keywords:

Heuristics

Graph layout problem

Iterated greedy

Combinatorial optimization

Bandwidth

a b s t r a c t

Graph layout problems are a family of combinatorial optimization problems that consist of finding an em-

bedding of the vertices of an input graph into a host graph such that an objective function is optimized.

Within this family of problems falls the so-called Two-Dimensional Bandwidth Minimization Problem

(2DBMP). The 2DBMP aims to minimize the maximum distance between each pair of adjacent vertices of

the input graph when it is embedded into a grid host graph. In this paper, we present an efficient heuris-

tic algorithm based on the Iterated Greedy (IG) framework hybridized with a new local search strategy to

tackle the 2DBMP. Particularly, we propose different designs for the main IG procedures (i.e., construction,

destruction, and reconstruction) based on the trade-off between intensification and diversification. Addi-

tionally, the improvement method incorporates three advanced strategies: an efficient way to evaluate the

objective function of neighbor solutions, a tiebreak criterion to deal with “flat landscapes”, and a neigh-

borhood reduction technique. Extensive experimentation was carried out to assess the IG performance

over state-of-the-art methods, emerging our approach as the most competitive algorithm. Specifically, IG

finds the best solutions for all instances considered in considerably less execution time. Statistical tests

corroborate the merit of our proposal.

© 2022 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

(

l

e

a

a

g

c

P

r

&

a

&

S

o

o

m

P

P

T

(

&

P

T

r

D

m

a

c

t

e

o

o

u

e

t

h

0

(

. Introduction

The Two-Dimensional Bandwidth Minimization Problem

2DBMP) belongs to a family of combinatorial optimization prob-

ems denoted as Graph Layout Problems (GLP). GLPs consist of

mbedding an input graph (also known as a candidate graph) into

 host graph by defining a mathematical function that relates (or

ssigns) the vertices of the input graph to the vertices of the host

raph, optimizing a particular objective function. These problems

an be classified according to the structure of the host graph.

articularly, the most studied GLPs are those that consider a

egular host graph, such as: a path (Pardo, García-Sánchez, Sevaux,

 Duarte, 2020; Pardo, Mladenovi ́c, Pantrigo, & Duarte, 2013),

 cycle (Cavero, Pardo, Laguna, & Duarte, 2021b; Cavero, Pardo,

 Duarte, 2022a), or a grid (Lin & Lin, 2010; Rodríguez-García,

ánchez-Oro, Rodriguez-Tello, Monfroy, & Duarte, 2021), among

thers. Also, GLPs can be classified according to the optimized

bjective function. Among the most studied ones, we can find the

inimization of: the maximum cutwidth (Cavero et al., 2021b;
∗ Corresponding author.

E-mail addresses: sergio.cavero@urjc.es (S. Cavero), eduardo.pardo@urjc.es (E.G.

ardo), abraham.duarte@urjc.es (A. Duarte) .

o

fi

a

ttps://doi.org/10.1016/j.ejor.2022.09.004

377-2217/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/)
ardo et al., 2013), the linear arrangement (Petit, 2004; Rodriguez-

ello, Hao, & Torres-Jimenez, 2008a), the maximum Bandwidth

 Ren, Hao, Rodriguez-Tello, Li, & He, 2020; Rodriguez-Tello, Hao,

 Torres-Jimenez, 2008b), or the sum of the Bandwidth (Cavero,

ardo, Duarte, & Rodriguez-Tello, 2022b; Rodriguez-Tello, Narvaez-

eran, & Lardeux, 2019), among others. We refer the interested

eader to surveys (Díaz, Petit, & Serna, 2002) and (Pardo, Martí, &

uarte, 2016) for further references about GLPs.

In this paper, we deal with the 2DBMP, which consists of mini-

izing the Bandwidth of the input graph when embedding it into

 grid host graph. The 2DBMP has a large interest for the scientific

ommunity from either a practical and theoretical perspective. On

he one hand, real-world applications have been devised in the lit-

rature related to the problem, as compiled in Section 1.2 . On the

ther hand, from a theoretical perspective, there is a wide family of

ptimization problems related to the embedding of graphs in reg-

lar structures (Ren, Hao, & Rodriguez-Tello, 2019; Rodriguez-Tello

t al., 2008b). In this sense, the algorithmic strategies proposed for

he 2DBMP have interest, not only for this problem, but also for

ther related variants. In the following sections, we formally de-

ne the 2DBMP (Section 1.1), as well as we review the state of the

rt of the problem (Section 1.2).
under the CC BY-NC-ND license

https://doi.org/10.1016/j.ejor.2022.09.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.09.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sergio.cavero@urjc.es
mailto:eduardo.pardo@urjc.es
mailto:abraham.duarte@urjc.es
https://doi.org/10.1016/j.ejor.2022.09.004
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Fig. 1. (a) An input graph, G . (b) A host graph, H. (c) An example of an embedding.

1

L

g

a

w

�

l

l

b

p

e

f

p

w

{
S

f

|

t

t

m

t

i

ϕ

s

ϕ

w

f

B

w

j

L

a

2

(

d

(

m

ϕ

w

l

(

t

(

S

v

s

e

b

ϕ

|

2

p

o

i

o

B

1

r

i

w

m

i

&

l

s

w

t

p

s

i

s

o

b

i

D

S

i

.1. Problem statement

Before formalizing this problem, we introduce a basic notation.

et G (V G , E G) be a connected, unweighted and undirected input

raph where the set of vertices is denoted as V G (with | V G | = n)

nd its edge set as E G .

Similarly, let H = (V H , E H) be a two-dimensional grid host graph

here the set of vertices is denoted as V H (with | V H | = � √

n � ·

√

n �) and its edge set as E H . Grid graphs are a common type of

attice graph, whose drawing in a Euclidean space R

2 forms a regu-

ar tiling. These graphs satisfy the requirement that each vertex can

e represented as a 2-tuple (i, j) that corresponds to a point in the

lane, where 1 ≤ i, j ≤ � √

n � . Two vertices are connected with an

dge as long as the corresponding points are at distance 1. There-

ore, this particular host graph is a unit-distance, median, and bi-

artite graph.

In Fig. 1 a, we depict an example of an input graph, G ,

ith 7 vertices (V G = { A , B , C , D , E , F , G }) and 9 edges (E G =
 (A , B) , (A , D) , (A , E) , (A , F) , (B , F) , (B , G) , (C , D) , (D , E) , (F , G) }).
imilarly, in Fig. 1 b, we show the host graph, H, needed

or the embedding of the graph depicted in Fig. 1 a (i.e.,

 V H | = 9 = � √

7 � · � √

7 �). In this case, vertices are denoted by

heir (i, j) coordinates (i.e., V H = { (1 , 1) , (1 , 2) , . . . , (3 , 3) }), and

here is an edge between them if they are at distance 1.

As it was aforementioned, an embedding consists of defining a

athematical function that assigns each vertex of the input graph

o a vertex of the host graph. In mathematical terms, let ϕ be an

njective function such that:

 : V G → V H , ∀ u ∈ V G ∃ ! v ∈ V H | ϕ(u) = v . (1)

Since each vertex v ∈ V H is defined by a 2-tuple (i, j) , for the

ake of convenience, we reformulate ϕ as follows:

 : V G → V H , ∀ u ∈ V G ∃ ! (i, j) ∈ V H | ϕ(u) = (i, j) . (2)

ith i, j ∈ [1 , . . . , � √

n �] .
Then, given an embedding ϕ of an input graph G , the objective

unction of the 2DBMP, denoted as BW, is defined as follows:

W (G, ϕ) = max
(u, v) ∈ E G

{ d(ϕ (u) , ϕ (v)) } , (3)

here d is a function that measures the distance between two ad-

acent vertices. In the related literature, d is computed with the

 1 -norm (Lin & Lin, 2010; Rodríguez-García et al., 2021), which is

lso known as Taxicab norm distance or Manhattan distance (Craw,

010; Lin & Lin, 2010). That is, the distance between two points

i, j) , (i ′ , j ′) ∈ V H is

((i, j) , (i ′ , j ′)) = | i − i ′ | + | j − j ′ | . (4)

Finally, the Two-Dimensional Bandwidth Minimization Problem

2DBMP) for a graph G consists of finding an embedding ϕ

� that

inimizes Eq. (3) . More formally,

� ← 2DBMP (G) = min

ϕ∈ �
{ BW (G, ϕ) } , (5)
1127
here � represents the set of all possible embeddings of the prob-

em.

In Fig. 1 c, we show a possible embedding ϕ of G (Fig. 1 a) in H

 Fig. 1 b). As can be observed, all vertices of V G have been assigned

o a vertex of V H through the definition of ϕ . For example, ϕ (A) =
2 , 2) indicates that vertex A ∈ V G is assigned to vertex (2 , 2) ∈ V H .

imilarly, ϕ(B) = (2 , 3) indicates that vertex B ∈ V G is assigned to

ertex (3 , 2) ∈ V H , and so on.

In order to evaluate the objective function of the example de-

cribed in Fig. 1 , it is required to calculate the distance between

ach pair of adjacent vertices in V G (i.e., for each edge of E G)

y using Eq. (4) . For instance, considering vertices A and B, with

(A) = (2 , 2) and ϕ(B) = (2 , 3) , the associated distance | 2 − 2 | +
 2 − 3 | = 1 . Similarly, the distance between vertices A and D is

, since ϕ(D) = (1 , 3) , and | 2 − 1 | + | 2 − 3 | = 2 . This calculation is

erformed over the rest of the edges of G . Then, the value of the

bjective function is the maximum across all distances, which is 3

n this example. Therefore, in mathematical terms, the evaluation

f BW (G, ϕ) in Fig. 1 c is computed as follows:

W (G, ϕ) = max { d(ϕ(A) , ϕ(B)) , d(ϕ(A) , ϕ(D)) , d(ϕ(A) , ϕ(E)) ,

d(ϕ(A) , ϕ(F)) , d(ϕ(B) , ϕ(F)) , d(ϕ(B) , ϕ(G)) ,

d(ϕ(C) , ϕ(D)) , d(ϕ(D) , ϕ(E)) , d(ϕ(F) , ϕ(G)) }
= max { 1 , 2 , 1 , 2 , 1 , 1 , 1 , 3 , 2 } = 3 . (6)

.2. Literature review

The 2DBMP has been widely used to formulate a variety of

eal-world applications. In particular, it has a direct application

n the design of telecommunication architectures, where grid net-

ork topologies have gained relevance. These networks are com-

only used due to their simple structure, becoming a design that

s easy to build and extend (Bezrukov, Chavez, Harper, Röttger,

 Schroeder, 1998). The 2DBMP has also been used for very

arge-scale integration (VLSI) circuit modeling (Bhatt & Thom-

on Leighton, 1984; Chung, 1988). Indeed, the L 1 -norm distance

as originally derived from circuit design models where connec-

ors are placed in horizontal or vertical directions, although the

aths in the VLSI design cannot overlap each other (Bhatt & Thom-

on Leighton, 1984; Lin & Lin, 2010). Other practical applications

nclude job scheduling for parallel processing computers, solving

ystems of equations, or performing matrix decomposition, among

thers (Lai & Williams, 1999; Rodríguez-García et al., 2021).

The 2DBMP is closely related to other optimization problems

elonging to the Graph Layout family, such as the Bandwidth Min-

mization Problem (BMP) and the Cyclic Bandwidth Problem (CBP).

ifferences among these three problems reside on the host graph.

pecifically, in the BMP, the host graph is a path, while in the CBP

t is a cycle, and in the 2DBMP it is a grid.

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

m

g

b

1

B

i

i

c

a

S

e

p

C

T

l

l

i

f

i

i

a

s

t

(

t

d

b

g

i

B

t

i

t

e

t

1

a

w

t

i

g

b

c

s

I

2

s

a

p

a

t

r

i

s

v

s

c

2

G

2

p

p

r

p

o

b

c

d

a

w

(

S

H

c

s

fi

m

A

1

1

1

1

1

1

p

t

m

l

b

s

S

e

i

r

c

d

t

t

a

l

i

b

n

BMP and CBP have been widely studied by the scientific com-

unity. The former was proved to be N P -complete for general

raphs in Papadimitriou (1976) and it has been approached from

oth, exact (Del Corso & Manzini, 1999; Gurari & Sudborough,

984) and heuristic perspectives (Mladenovic, Urosevic, Pérez-

rito, & García-González, 2010; Rodriguez-Tello et al., 2008b). Sim-

larly, the CBP is also N P -complete for general graphs as proven

n Lin (1994) . It has been mainly approached by considering spe-

ial graphs (such as grids, trees, or planar graphs, among others)

nd determining either lower or upper bounds (Hromkovi ̌c, Müller,

 ̀ykora, & Vrt’o, 1992; Jinjiang & Sanming, 1995). Recently, in Ren

t al. (2019 , 2020) two advanced metaheuristics have been pro-

osed for the CBP.

In this paper, we focus on the 2DBMP, originally proposed in

hung (1988) , that belongs to the N P -complete class (Bhatt &

homson Leighton, 1984; Lin & Lin, 2010). This optimization prob-

em has been studied from different points of view. In particu-

ar, lower bounds for regular-structured graphs were introduced

n Lin & Lin (2010, 2011) . More recently, three Constraint Satis-

action Programming (CSP) models (Tsang, 2014) were described

n Rodríguez-García et al. (2021) . The best model, denoted as M3,

s able to solve small and regular-structured graphs, providing

 lower bound (not necessarily tight) for medium and large in-

tances. The best previous metaheuristic procedure identified in

he related literature was introduced in Rodríguez-García et al.

2021) . Specifically, the authors described an algorithm based on

he combination of the Greedy Randomized Adaptive Search Proce-

ure (GRASP) (Feo & Resende, 1995) and the Basic Variable Neigh-

orhood Search (BVNS) (Hansen & Mladenovi ́c, 2006) methodolo-

ies. This procedure follows a multi-start strategy, where many

nitial points are generated with GRASP and then improved with

VNS. The constructive procedure uses a greedy criterion based on

he quality of the objective function, while the BVNS, based on the

dea of systematic changes of neighborhood the structure within

he search, uses two neighborhoods and a random perturbation to

scape from local optima. This procedure is currently considered

he state of the art for the 2DBMP.

.3. Our contributions

The main contribution of this work is the proposal of

n efficient procedure based on the Iterated Greedy frame-

ork. The proposed algorithm includes novel construc-

ion/destruction/reconstruction strategies, as well as advanced

mprovement methods. These techniques are designed from a

eneral perspective, i.e., they are not only valid for the 2DBMP,

ut also for any other related optimization problem. Specifi-

ally, the proposed construction, destruction, and reconstruction

trategies vary from totally random to totally greedy approaches.

n addition, a straightforward design of a local search for the

DBMP is enriched by: a tiebreak criterion to distinguish between

ame-quality solutions; fast evaluation of the objective function;

nd neighborhood reduction techniques.

The proposed method is configured by a set of preliminary ex-

eriments, which allow us tuning the search parameters as well

s to evaluate the influence of the proposed mechanisms. Finally,

he best identified variant is compared with state-of-the-art algo-

ithms through competitive tests. The merit of the results obtained

s supported by statistical tests.

The rest of the paper is organized as follows: Section 2 de-

cribes our algorithmic proposal. Section 3 introduces several ad-

anced search strategies. Section 4 presents and analyses the re-

ults of the computational experiments carried out. Finally, the

onclusions are drawn in Section 5 .
1

1128
. Algorithmic proposal: Iterated greedy

In this paper, we propose a procedure based on the Iterated

reedy (IG) metaheuristic (Ruiz & Stützle, 2007; Stützle & Ruiz,

018). IG is a search method where solutions are gradually im-

roved through the repeated application of two main phases: a

artial destruction of a solution followed by a reconstruction to

each a new feasible solution. These two phases are usually re-

eated for a fixed number of iterations, for a maximum number

f iterations without finding an improvement, or even for a com-

ination of the two previous criteria.

IG can be easily hybridized with other strategies, such as lo-

al search procedures or other metaheuristics. In this case, the

estruction and reconstruction phases of IG can be understood

s a way to perturb the incumbent solution, similarly to other

ell-known metaheuristics such as Iterated Local Search (ILS)

 Lourenço, Martin, & Stützle, 2003) or Variable neighborhood

earch (VNS) (Hansen, Mladenovi ́c, Todosijevi ́c, & Hanafi, 2017).

owever, in the IG methodology, an important part of the pro-

ess, the reconstruction phase, uses greedy decisions rather than

tochastic ones. See Stützle & Ruiz (2018) for further details.

In this paper, we propose the hybridization of IG with an ef-

cient local search procedure. The pseudocode of the proposed

ethod is presented in Algorithm 1 . The procedure receives as

lgorithm 1 General procedure based on IG algorithm.

1: Procedure IteratedGreedy (G , maxIter , maxNotImprIter)

2: iter = 0 , notImprIter = 0

3: ϕ = GreedyConstructive (G)

4: ϕ ← LocalSearch (G, ϕ)

5: while iter < maxIter do

6: iter = iter + 1 , notImprIter = notImprIter + 1

7: ϕ

′ ← Destruction (notImprIter , ϕ)

8: ϕ

′′ ← Reconstruction (G, ϕ

′)
9: ϕ

′′′ ← LocalSearch (G, ϕ

′′)
0: if BW (G, ϕ

′′′) < BW (G, ϕ) then

11: ϕ ← ϕ

′′′
2: notImprIter = 0

3: end if

4: if notImprIter > maxNotImprIter then

5: break
6: end if

17: end while

18: return ϕ

arameters: the input graph, G ; the maximum number of itera-

ions, maxIter ; and the number of iterations without improvement

axNotImprIter . The algorithm starts by generating an initial so-

ution with the greedy constructive procedure (line 3) that will

e introduced in Section 2.1 . Then, after obtaining an improved

olution through the local search procedure (line 4), described in

ection 2.2 , the procedure enters a loop (lines 5 to 17). In each it-

ration, some elements are removed from the current solution us-

ng the destruction method (line 7). Next, the solution is greedily

econstructed (line 8) and improved again by the local search pro-

edure (line 9). Both destruction and reconstruction methods, are

escribed in Section 2.3 . In each iteration, IG determines (steps 10

o 13) whether the perturbed and improved solution (ϕ

′′′) is better

han the incumbent one (ϕ). If so, ϕ and notImprIter are updated

ccordingly. These three last steps (destruction, reconstruction, and

ocal search) are repeated until a maximum number of iterations

s reached, unless the procedure is not able to improve the current

est solution for a number of iterations (line 14). Once the termi-

ation condition is met, IG returns the best solution found (step

8).

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

2

t

t

i

v

a

o

t

a

f

T

t

n

g

p

o

1

T

(

g

t

u

t

h

w

s

l

m

(

a

g

w

t

r

j

c

t

M

p

i

p

h

i

o

T

s

w

a

t

e

i

i

b

t

o

a

l

c

v

b

a

∀

(

g

T

t

i

s

t

f

m

A

1

1

c

d

G

T

r

l

b

u

l

t

i

h

b

v

a

r

p

p

l

e

a

t

s

f

e

c

c

w

b

.1. Greedy constructive procedure

Constructing a solution for the 2DBMP from a greedy perspec-

ive consists of performing the best possible assignation of the ver-

ices of the input graph to the vertices of the host graph (i.e., defin-

ng ϕ). To do this, we need to answer three questions: #1 which

ertices (from either the host or the input graphs) are more suit-

ble to start with; #2 given a partial solution, which vertex (u)

f the input graph should be assigned next; and #3 given a par-

ial solution and u , which vertex v of the host graph should be

ssigned to u . To answer each of these questions, we propose dif-

erent strategies, which are described below.

We start by selecting a random vertex from the input graph.

hen, to perform its assignation, we need to select a ver-

ex from the host graph. In this case, we study three alter-

atives: a random vertex; a vertex placed in a corner of the

rid (i.e., (1 , 1) , (1 , � √

n �) , (� √

n � , 1) , (� √

n � , � √

n �); or a vertex

laced in the center of the grid (i.e., (� �
√

n �
2 � , � �

√

n �
2 �) if � √

n � is

dd; or (� �
√

n �
2 � , � �

√

n �
2 �) , (� �

√

n �
2 � + 1 , � �

√

n �
2 �) , (� �

√

n �
2 � , � �

√

n �
2 � +

) , (� �
√

n �
2 � + 1 , � �

√

n �
2 � + 1) if n is even).

Given the first assignation, we already have a partial solution.

hen, we propose a greedy function, inspired by McAllister et al.

1999) and denoted as g 1 , to determine which vertices of the input

raph should be assigned in the following steps to a partial solu-

ion ϕ. In other words, g 1 is used to evaluate the “urgency” of any

nassigned vertex from the input graph to be assigned next.

Let us introduce some notation before defining g 1 . We define

he subset U G ⊂ V G as the set of vertices of the input graph that

ave not been assigned yet in ϕ. Then, given a vertex u ∈ U G ,

e define A (u) as the set of adjacent vertices to u already as-

igned. More formally, A (u) = { v ∈ V G : v / ∈ U G ∧ (u, v) ∈ E G } . Simi-

arly, we define R (u) as the set of vertices adjacent to u that re-

ain unassigned. In mathematical terms, R (u) = { v ∈ V G : v ∈ U G ∧
u, v) ∈ E G } . It is worth mentioning that A (u) ∪ R (u) is the set of

djacent vertices to u . Then, g 1 is defined in Eq. (7) as follows:

 1 (u, ϕ) = w 1 · | A (u) | − w 2 · | R (u) | , (7)

here w 1 and w 2 are parameters that should be tuned experimen-

ally and satisfy 0 ≤ w 1 , w 2 ≤ 1 and w 1 + w 2 = 1 . These two pa-

ameters balance the relevance of having a large number of ad-

acent vertices assigned (w 1 > w 2) or a reduced number of adja-

ent vertices unassigned (w 1 < w 2). Notice that if w 1 = w 2 , then

he strategy is equivalent to the original proposal introduced in

cAllister et al. (1999) . Then, all unassigned vertices from the in-

ut graph are evaluated, and the vertex with the largest g 1 value

s chosen to be assigned next (with ties broken at random).

Once the vertex of the input graph has been chosen, the second

roposed question is answered. Then, an available vertex from the

ost graph must be selected to embed the selected vertex of the

nput graph. In this case, we propose two approaches: one based

n graphical patterns and the other based on a greedy function.

he first approach determines the order in which host vertices are

elected on the basis of a graphical pattern. Moreover, in this work

e study three patterns: Sequential, Diagonal, and Zigzag, which

re illustrated in Fig. 2 (a)–(c), respectively. In each of the figures,

he sequence is indicated by green arrows and numbers inside

ach of the host vertices, being the number 1 the vertex selected

n the first iteration and number 9 the vertex selected in the last

teration.

The second approach to select a vertex of the host graph is

ased on a new greedy function, denoted as g 2 , that evaluates

he variation of the objective function when assigning a vertex

f the input graph. As it is well documented in the related liter-

ture (Cavero et al., 2021b), some successful strategies in graph

ayout problems are related to the closeness/remoteness of adja-
1129
ent vertices. In this case, g 2 is used to place every candidate

ertex as close as possible to its adjacent vertices. Let C H ⊆ V H
e the set of vertices which distance (see Eq. (4)) to the already

ssigned host vertices is 1. More formally, C H (ϕ) = { (i, j) ∈ V H :

 v / ∈ U G , d(ϕ(v) , (i, j)) = 1 } . Then, given a vertex u ∈ U G , a vertex

i, j) ∈ C H , and a partial solution ϕ, g 2 is formally defined as:

 2 (ϕ, u, (i, j)) = max
v ∈ A (u)

{ d((i, j) , ϕ(v)) } . (8)

hus, all unassigned vertices from the host graph are evaluated and

he vertex (i, j) ∈ C H (ϕ) that minimizes g 2 is selected to host the

nput graph vertex u , i.e., ϕ(u) = (i, j) . The rationale behind this

trategy is that the returned value from g 2 corresponds to the con-

ribution of the evaluated vertex to the objective function. There-

ore, the best host vertex for an input vertex is the one that mini-

izes Eq. (8) .

In Algorithm 2 we show the pseudocode of a general greedy

lgorithm 2 Greedy constructive procedure.

1: Procedure GreedyConstructive (G , H)

2: u ← random (V G)
3: (i, j) = GetInitialHostGraphVertex (V H) � Answer to question

#1

4: ϕ(u) ← (i, j)

5: U G ← V G \ { u }
6: while U G � = ∅ do

7: u ← GetNextInputGraphVertex (ϕ, U G) � Answer to question

#2

8: (i, j) ← GetNextHostGraphVertex (ϕ, u)� Answer to question

#3

9: ϕ(u) ← (i, j)

0: U G ← U G \ { u }
11: end while

2: return ϕ

onstructive procedure which can use any of the greedy strategies

escribed in this section. Particularly, it receives an input graph

 = (V G , E G) and a host graph H = (V H , E H) as input parameters.

he method starts by selecting a vertex u of the input graph at

andom (line 2). According to the aforementioned Question #1, in

ine 3, the procedure identifies the vertex of the host graph to em-

ed u . Then, the first assignation is performed (line 4). The set of

nassigned vertices U G for the partial solution ϕ is constructed in

ine 5. While there are still elements in U G , the greedy construc-

ive procedure selects a vertex according to g 1 (see Question #2)

n line 8. Next, this selected vertex is assigned to one vertex in the

ost graph (see Question #3), either based on patterns (Fig. 2) or

ased on g 2 . Finally, the partial solution and the set of unassigned

ertices are updated in lines 10 and 11, respectively. Lines 7 to 12

re repeated until generating a complete feasible solution, which is

eturned at the end of the procedure (line 13). To complement the

seudocode, we graphically illustrate the steps of the constructive

rocedure in the flowchart depicted in Fig. 3 . This flowchart fol-

ows the activity diagram standard described in the Unified Mod-

ling Language (Booch, 2005). Therefore, each rectangle describes

 task or activity, while each diamond expresses a condition of

he constructive procedure. Once the solution has been fully con-

tructed, the evaluation of the solution is performed from scratch

ollowing the procedure described at the end of Section 1.1 .

The choice of the first vertex of the input graph might influ-

nce deeply the quality of the generated solution. Moreover, our

onstructive procedure is not fully deterministic since random de-

isions are also made to break ties in both g 1 and g 2 . Therefore,

e propose to execute the constructive procedure for a fixed num-

er of iterations, selecting as initial solution the best one among

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Fig. 2. Examples of the order followed to assign vertices of the input graph to vertices of the host graph using the Sequential (a), Diagonal (b) and Zigzag (c) patterns.

Fig. 3. Activity diagram of the constructive procedure..

t

f

2

(

S

H

a

n

b

c

g

2

t

c

f

a

p

b

n

n

(

d

e

s

I

e

l

t

t

ϕ
t

p

t

o

I

m

t

T

ϕ

s

b

g

w

s

n

N .

o

w

�
t

m

b

hem. It is worth mentioning that this strategy has been success-

ully used not only in IG (Huerta-Muñoz, Ríos-Mercado, & Ruiz,

017; Stützle & Ruiz, 2018) but also in combination with VNS

 López-Sánchez, Sánchez-Oro, & Hernández-Díaz, 2019; Pérez-Peló,

ánchez-Oro, Gonzalez-Pardo, & Duarte, 2021), or TS (Abdinnour-

elm & Hadley, 20 0 0; Delmaire, Díaz, Fernández, & Ortega, 1999),

mong others. To ensure the construction of diverse solutions, the

umber of iterations is always set to a value larger than the num-

er of vertices of the input graph, guaranteeing that at least one

onstruction is performed starting from every vertex of the input

raph.
1130
.2. Improvement strategy

Local search is a heuristic method widely used to solve hard op-

imization problems due to its ability to trade solution quality with

omputation time. This procedure is based on systematic moves

rom one solution to another with better quality, until reaching

 locally optimal solution (Michiels, Aarts, & Korst, 2018). Given a

redefined move operation, the set of feasible solutions reachable

y the local search starting from that solution is usually known as

eighborhood.

In the related literature, there have been proposed two different

eighborhoods for the 2DBMP based on exchange and insert moves

see Rodríguez-García et al., 2021 for further details). However, the

efinition of these neighborhoods do not include the possibility of

xploring the vertices of the host graph that have not been as-

igned to vertices of the input graph in the construction phase.

n this paper, we propose a more flexible move operator, which

xplores those host vertices not initially assigned, resulting in a

arger neighborhood space. Specifically, the number of vertices in

he host graph (| V H | = � √

n � · � √

n �) is always larger than or equal

o the number of vertices in the input graph (| V G | = n). Therefore,

is an injective function, since there may exist vertices in V H
hat do not host a vertex of V G . The move operator considers this

roperty as follows: given a solution ϕ, a vertex u ∈ V G assigned

o (i, j) ∈ V H (i.e., ϕ(u) = (i, j)), and a vertex (i ′ , j ′) ∈ V H the move

perator Move (ϕ, u, (i ′ , j ′)) assigns u to (i ′ , j ′) (i.e., ϕ(u) = (i ′ , j ′)).
n the case that a vertex v ∈ V G was assigned to (i ′ , j ′) prior the

ove, this move would also perform a new assignment for the ver-

ex v (i.e., ϕ(v) = (i, j)). Otherwise, (i, j) will not host any vertex.

his move produces a new feasible solution, which is denoted as

′ ← Move (ϕ, u, (i ′ , j ′)) .
Let us illustrate this move with an example. Departing from the

olution represented in Fig. 1 c, we show in Fig. 4 a the situation

efore performing Move (ϕ, B , (2 , 3)) , where vertex B of the input

raph is assigned to vertex (3,2) prior the move. Then, in Fig. 4 b,

e depict the resulting solution after the move, where B is as-

igned to (2,3) leaving (3,2) without any assignation.

Considering the aforementioned move operator, the proposed

eighborhood for the 2DBMP is defined as follows:

(ϕ) = { Move (ϕ, u, (i ′ , j ′)) : ∀ u ∈ V G , (i ′ , j ′) ∈ V H , ϕ(u) � = (i ′ , j ′) }
(9)

The size of N(ϕ) can be determined depending on the number

f vertices of the input graph. Specifically, given an input graph

ith | V G | = n vertices and the associated host graph with | V H | =

√

n � · � √

n � vertices, the size of N(ϕ) is 1
2 n (�

√

n � 2 − 1) .

In this research, we study two well-known strategies to explore

he proposed neighborhood: best improvement and first improve-

ent (Hansen & Mladenovi ́c, 2006). If a local search follows the

est improvement strategy it selects, at each iteration, the best pos-

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Fig. 4. (a) Example of an embedding ϕ. (b) The resultant embedding ϕ ′ obtained after the operation Move (ϕ, B , (2 , 3)) (b).

s

b

fi

t

W

r

2

t

2

t

d

h

f

c

o

b

fi

a

d

n

c

l

o

r

(

t

m

i

T

f

r

a

g

c

a

n

(

E

t

a

p

a

v

m

a

t

t

o

k

g

n

G

s

d

p

t

c

s

o

t

t

t

l

g

a

a

3

t

c

a

i

m

w

n

p

r

(

d

m

ible move which produces an improvement of the current neigh-

orhood; otherwise, in the first improvement strategy, it selects the

rst solution that improves the current solution. Any of them stop

he search when no further improving moves can be performed.

e study the effectiveness of both strategies in the experiments

eported in Section 4.1 .

.3. Destruction and reconstruction procedures

The two main procedures of any IG algorithm are the destruc-

ion and reconstruction phases. The IG proposed in the context of

DBMP, first removes a determined number of assignations of ver-

ices of the input graph to vertices of the host graph, during the

estruction phase. Then, the reconstruction phase applies a greedy

euristic to reassign the unassigned vertices until reaching a new

easible solution.

The number of assignations that should be removed is dynami-

ally defined depending on the current number of iterations with-

ut improvement (see lines 6 and 7 of Algorithm 1). The rationale

ehind this decision is to have a trade-off between search intensi-

cation and diversification. In particular, when the number of iter-

tions without improvement is large, it is expected that the proce-

ure gets stuck in a “deep basin of attraction”. Therefore, a large

umber of assignations are removed (with the corresponding re-

onstruction steps), with the aim of moving to rather distant so-

utions in the solution space. On the contrary, when the number

f iterations without improvement is small, a few assignations are

emoved, which leads to a more localized search Stützle & Ruiz

2018) . In addition, to avoid the complete destruction of the solu-

ion, we set a maximum number of assignations that can be re-

oved. Specifically, this value is set to 25% of the vertices of the

nstance under consideration.

In this paper, we propose three different destruction strategies.

he first one, denoted as fully randomized destruction , is a straight-

orward adaptation of the IG framework. Specifically, it consists of

andomly selecting and then removing a determined number of

ssignations of vertices of the input graph to vertices of the host

raph. The second strategy, denoted as random area destruction , fo-

uses on a specific area of the host graph. More precisely, it selects

 vertex of the host graph at random and then removes its assig-

ation, and also the assignation of all adjacent host graph vertices

i.e., those at distance 1 to the selected initial vertex, according to

q. (4)). This strategy keeps on removing host adjacent vertices to

he unassigned area following a proximity criterion (i.e., first those
1131
t distance 2, then those at distance 3, etc.) until reaching the ex-

ected number of unassigned vertices. The third strategy, denoted

s greedy destruction , focuses on those vertices that determine the

alue of the objective function. Notice that the 2DBMP consists of

inimizing a maximum value; then, the objective function is usu-

lly determined by a reduced number of assignations. This destruc-

ion strategy removes the assignation of the vertex that determines

he value of the objective function, also removing the assignations

f all its adjacent host graph vertices. As in the second strategy, it

eeps on removing vertices and their adjacent vertices in the host

raph following a proximity criterion, until reaching the expected

umber of unassigned vertices.

As far as the reconstruction strategy is concerned, the Iterated

reedy framework Stützle & Ruiz (2018) suggests that the recon-

truction should be governed by a greedy heuristic and, typically,

eterministic (except random tiebreaking). We therefore do not ex-

lore any random reconstruction strategy. Specifically, given a par-

ial solution obtained as the result of a destruction phase, the re-

onstruction of the solution is performed by following a greedy

trategy. To this end, we propose the use of three strategies, based

n the greedy criteria presented in Section 2.1 : 1) unassigned ver-

ices of the input graph are selected according to g 1 function and

hen are randomly assigned to any of the available host graph ver-

ices; 2) unassigned vertices of the input graph are randomly se-

ected and then assigned to its best host graph vertex according to

 2 function; and 3) the best vertex of the input graph is selected

ccording to g 1 and it is assigned to the best host vertex selected

ccording to g 2 function.

. Advanced search strategies for exploring the neighborhoods

As it is well documented in the related literature, most of

he computing time of a heuristic algorithm is spent by the lo-

al search procedure. Particularly, a local search heuristic selects,

t each iteration, a move to a neighbor solution, if it results in an

mprovement of the objective function. Then, it needs to explore

ultiple neighbor solutions, evaluating each of them, to determine

hich move should be done next. In this section, we provide three

ew advanced strategies devoted to increasing the efficiency of the

roposed local search: first, we introduce an efficient strategy to

educe the number of solutions to explore in a given neighborhood

see Section 3.1); second, once the number of moves has been re-

uced, we propose a technique to speed up the search by opti-

izing the calculation of the objective function after a move (see

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Fig. 5. Definition of the PSV of A for a solution ϕ, with BW (G, ϕ) = 2 .

S

t

b

i

o

o

3

s

g

v

e

t

i

o

(

g

o

a

ϕ

f

S

T

c

o

v

P

v

p

a

l

l

t

f

{
(

a

S

t

f

{
(

t

t

a

{

i

d

s

h

N

i

i

3

a

f

i

c

e

p

d

m

t

a

t

m

f

t

o

M

i

I

ection 3.2); finally, when the move results in a tie, in terms of

he objective function value, we propose a way of distinguishing

etween two solutions with the same quality (see Section 3.3). It

s worth mentioning that some of these strategies can be applied

r adapted with a few modifications, not only for other Graph Lay-

ut Problems, but also for other optimization problems.

.1. Neighborhood reduction strategy

The neighborhood proposed in Section 2.2 for the 2DBMP has a

ize of 1
2 n (�

√

n � 2 − 1) , being n the number of vertices of the input

raph. In the worst case, an exhaustive exploration requires to tra-

erse the whole neighborhood. In this section, we propose a strat-

gy to focus the search on promising solutions, avoiding to waste

ime in the evaluation of solutions which produce a deterioration

n the objective function.

For each vertex of the input graph u ∈ V G , we can define a set

f vertices of the host graph, denoted as Promising Set of Vertices

PSV) which can host u satisfying that the distance d (in the host

raph) from u to any of its neighbors in the input graph is equal

r smaller to the objective function value.

Given a solution ϕ, and an input vertex v ∈ V G , let us define S
ϕ
v

s the set of host vertices which satisfy that the distance d from

(v) to any of them is smaller or equal to the BW (G, ϕ) . More

ormally:

ϕ
v = { (i, j) ∈ V H : d(ϕ(v) , (i, j)) ≤ BW (G, ϕ) } . (10)

hen, once we have defined the set S
ϕ
v for a single input vertex, we

an define the set PSV for an input vertex u ∈ V G as the intersection

f the sets S
ϕ
v for all adjacent vertices to u in the input graph (i.e.,

 ∈ A (u)). More formally:

SV (u, ϕ) =

⋂

v ∈ A (u)

S
ϕ
v . (11)

In Fig. 5 we show an example of the definition of PSV of the

ertex A. Particularly, vertices B and C are adjacent to A in the in-

ut graph. For the sake of clarity, the rest of the input vertices, not

djacent to A, have not been represented in the figure. Moreover,

et us suppose that the value of the objective function for the so-

ution ϕ, represented in the figure is 2 (i.e., BW (G, ϕ) = 2).

In Fig. 5 a we have highlighted with light blue color

he set of host vertices placed at a distance 2 or minor

rom the host vertex (2,3), which hosts B. Specifically, S
ϕ
B

=

 (1 , 2) , (1 , 3) , (1 , 4) , (2 , 1) , (2 , 2) , (2 , 3) , (2 , 4) , (2 , 5) , (3 , 2) , (3 , 3) ,

3 , 4) , (4 , 3) } . Additionally, in Fig. 5 a we have indicated, with

 number inside each host vertex, the distance d to (2,3).
1132
imilarly, in Fig. 5 b we have highlighted in light orange

he set of host vertices placed at a distance 2 or minor

rom the host vertex (3,4), which hosts C. Particularly, S
ϕ
C

=

 (1 , 4) , (2 , 3) , (2 , 4) , (2 , 5) , (3 , 2) , (3 , 3) , (3 , 4) , (3 , 5) , (4 , 3) , (4 , 4) ,

4 , 5) , (5 , 4) } . Finally, in Fig. 5 c we show the set PSV of A, ob-

ained as the intersection of the two previous sets, which contains

he host vertices placed at distance 2 or minor to any of the

djacent vertices to A. More formally, PSV (A , ϕ) = S
ϕ
B

∩ S
ϕ
C

=
 (1 , 4) , (2 , 3)(2 , 4) , (2 , 5) , (3 , 2) , (3 , 3) , (3 , 4) , (4 , 3) } . Therefore,

f A is assigned to any of the vertices in PSV(A), the maximum

istance with respect to its adjacent vertices will be equal or

maller than the BW of ϕ.

Finally, we formally define N R (ϕ) , as the restricted neighbor-

ood of N(ϕ) as follows:

 R (ϕ) = { Move (ϕ, u, (i, j)) : ∀ u ∈ V G , (i, j) ∈ PSV (u) ,

ϕ(u) � = (i, j) } . (12)

Then, we propose the exploration of the reduced neighborhood

nstead of the whole neighborhood defined by the move operator

ntroduced in Section 2.2 .

.2. Efficient move calculation

For the 2DBMP, a naive straightforward evaluation of a solution

fter a move consists in recalculating the value of the objective

unction from scratch. This means that the contribution of every

nput vertex has to be updated. However, an intelligent evaluation

ould avoid reevaluating the whole solution by just updating the

lements that have been affected by the move. Therefore, we pro-

ose an efficient local search method, based on the move operator

efined in Section 2.2 , which applies an efficient evaluation after a

ove. Given an input graph G , a host graph H, and a solution ϕ,

his move considers the vertex u ∈ V G (hosted in vertex (i, j) ∈ V H),

nd assigns it to vertex (i ′ , j ′) ∈ V H . As it was aforementioned, if

here were a vertex v hosted in (i ′ , j ′) , i.e., ϕ(v) = (i ′ , j ′) , this

ove would also assign v to (i, j) . Therefore, an efficient objective

unction revaluation just needs to update the distance assigned to

hose edges with u (also v when existing) as an endpoint.

To define the Efficient Bandwidth calculation, denoted as EBW,

f an input graph G and a solution ϕ

′ obtained by a move

ove (ϕ, u, (i, j)) , we first define the set of edges I
ϕ
u, (i, j)

involved

n the move denoted as follows:

ϕ
u, (i, j)

= { (u, w) ∈ E G : ∀ w ∈ V G }
∪{ (v , w) ∈ E G : ∀ v , w ∈ V G ∧ ϕ(v) = (i, j) } . (13)

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

T

E

u

a

a

p

w

u

c

n

e

a

t

j

a

p

(

n

l

B

e

d

i

3

v

a

f

v

s

v

e

b

S

f

m

c

f

t

s

W

s

t

l

o

2

i

t

w

v

b

e

g

t

r

i

j

s

v

p

t

a

w

i

f

B

p

t

l

i

d

s

l

T

p

t

t

i

e

e

ϕ
e

m

s

o

a

t

t

t

t

s

p

4

p

p

t

i

a

s

hen, the EBW (G, Move (ϕ, u, (i ′ , j ′)) , I) can be computed as:

BW (G, Move (ϕ, u, (i ′ , j ′) , I ϕ
u, (i, j)

) =

max { max
(w,z) ∈ E G \ I ϕ u, (i, j)

)
{ d(ϕ(w) , ϕ(z)) }

︸ ︷︷ ︸
Not updated

, max
(w,z) ∈ I ϕ

u, (i, j)
)
{ d(ϕ(w) , ϕ(z)) }}

︸ ︷︷ ︸
Updated

.

(14)

Notice that the distances of the edges that do not need to be

pdated in Eq. (14) can be easily evaluated by storing the distance

ssociated with each edge before the move. Specifically, we use an

rray of sets, where the range of the array is determined by the

ossible distance values, while in each set it is stored all edges

ith a the same distance value. When we consider together the

se of the aforementioned data structure and the efficient move

alculation, the running time can be reduced in two orders of mag-

itude, on average, as we will show in the computational experi-

nce.

Let us illustrate this with an example. Particularly, we consider

gain the move ϕ

′ ← Move (ϕ, B , (2 , 3)) depicted in Fig. 4 . In order

o evaluate the objective function of the resulting solution ϕ

′ it is

ust needed to update the distance associated to the edges with

n endpoint in B, since (2,3) is not hosting any vertex of the in-

ut graph. More precisely, the edges with an endpoint in B are

 A , B) , (B , F) , and (B , G) . Then, only the distance of those edges

eeds to be re-evaluated, being the BW (G, ϕ

′) calculated as fol-

ows:

W (G, ϕ

′) = max { d(ϕ(A) , ϕ(D)) , d(ϕ(A) , ϕ(E)) , d(ϕ(A) , ϕ(F)) ,

d(ϕ(C) , ϕ(D)) , d(ϕ(D) , ϕ(E)) , d(ϕ(F) , ϕ(G)) ,

d(ϕ

′ (A) , ϕ

′ (B)) , d(ϕ

′ (B) , ϕ

′ (F)) , d(ϕ

′ (B) , ϕ

′ (G)) }
= max { 2 , 1 , 2 , 1 , 3 , 2 ︸ ︷︷ ︸

Not updated

1 , 3 , 1 ︸ ︷︷ ︸
Updated

} = 3 . (15)

Notice that, in this particular example, the number of edges

valuated is 3, while evaluating the whole solution requires 9 up-

ates. Reasonably, the impact of this strategy is larger when deal-

ng with instances composed by many vertices.

.3. Tiebreak criterion for solutions with the same objective function

alue

An optimization problem consists of maximizing or minimizing

 particular objective function. In some cases, this mathematical

unction consists of computing either the maximum or minimum

alue of a set of elements. Therefore, regardless the size of this

et, the maximum or the minimum value, which determines the

alue of the objective function, is usually reached in more than one

lement. When the goal of a problem is to minimize a function

ased on a maximum value, we denote it as min-max problem.

imilarly, when the goal of a problem is to maximize a minimum

unction, it is denoted as max-min problem. Max-min and min-

ax problems are quite common in optimization and become a

hallenge for heuristic methods because there may be many dif-

erent solutions with the same objective function value, despite

hey are different solutions. This fact is usually known as “flat land-

cape ” (Martí, Pantrigo, Duarte, & Pardo, 2013; Pardo et al., 2013).

hen this happens, it is difficult to determine the search direction

ince there is no way, according to the objective function, to de-

ermine which solution is more promising. To mitigate this prob-

em, researchers have opted for tiebreaking criteria or alternative

bjective functions (Cavero, Pardo, & Duarte, 2021a; Cavero et al.,

021b).

The 2DBMP is a min-max optimization problem and prelim-

nary experiments corroborate the existence of flat landscapes

hroughout the solution space. Furthermore, for an input graph
1133
ith n = | V G | vertices and a host graph with m = � √

n � · � √

n �
ertices, the number of solutions in the search space is upper

ounded by m ! / (m − n)! , but the range of values obtained as the

valuation with the objective function for that solutions are inte-

er numbers in the interval [1 , 2 · (� √

n � − 1)] . Let us remember

hat the evaluation of the objective function of the 2DBMP is di-

ectly related to the distance of adjacent input vertices measured

n the host graph (see Eq. (4)). Then, the number of possible ob-

ective function values is considerably smaller than the number of

olutions. Therefore, there might be many solutions with the same

alue of the objective function. To overcome this difficulty, we pro-

ose a tiebreak criterion based on the frequency of a particular dis-

ance in a solution. More formally, given an input graph G (V G , E G)

nd a solution ϕ, we define f l as the number of edges (u, v) of E G
ith an associated distance in the host graph equal to l:

f l = |{ (u, v) ∈ E G : d(ϕ (u) , ϕ (v)) = l}| . (16)

Let l max be the maximum distance among all adjacent vertices

n the graph. It trivially holds that l max corresponds to the objective

unction value of the problem for a particular solution (i.e., l max =

W (G, ϕ)). Then, given an input graph G and an embedding ϕ, we

ropose a tiebreaking function t defined as follows:

(G, ϕ) =

l max ∑

l=1

n

l · f l . (17)

This equation is inspired by previous works related to circular

ayout problems (Cavero et al., 2021a; Cavero et al., 2021b). It takes

nto consideration not only the maximum distance of an embed-

ing, but also additional semantic information related to promising

olutions. Specifically, when the objective function value of two so-

utions is equal, both solutions are evaluated using the function t .

he solution with the lower value of t is then chosen as the most

romising one. The rationale behind this decision is to penalize

hose solutions with many edges with an associated distance close

o the value of the objective function. It is worth mentioning that

f the t value for two solutions is the same, they are considered as

quivalent (in terms of the tiebreak criterion).

Let us illustrate the use of the tiebreak criterion with an

xample. To do so, we consider three different solutions ϕ 1 ,

 2 , and ϕ 3 . Let us assume that the objective function for

ach solution is BW (G, ϕ 1) = max { 1 , 3 , 1 , 2 , 3 } = 3 , BW (G, ϕ 2) =
ax { 1 , 2 , 1 , 2 , 3 } = 3 , and BW (G, ϕ 3) = max { 2 , 2 , 1 , 2 , 3 } = 3 , re-

pectively. Then, these three solutions are equal according to the

bjective function of the problem (i.e., the maximum value across

ll elements, which is 3). However, if we evaluate them with the

iebreak criterion, we appreciate differences among the solutions:

(G, ϕ 1) = 5

1 · 2 + 5

2 · 1 + 5

3 · 2 = 10 + 25 + 250 = 285 .

(G, ϕ 2) = 5

1 · 2 + 5

2 · 2 + 5

3 · 1 = 10 + 50 + 125 = 185 .

(G, ϕ 3) = 5

1 · 1 + 5

2 · 3 + 5

3 · 1 = 5 + 75 + 125 = 205 .

In this case, since t(G, ϕ 2) < t(G, ϕ 3) < t(G, ϕ 1) , we would con-

ider ϕ 2 as the most promising one. Similarly, we consider ϕ 3 more

romising than ϕ 1 .

. Computational results

In this section, we present the experiments carried out to em-

irically evaluate the algorithmic proposals introduced in this pa-

er. Particularly, we first propose a set of preliminary experiments

o configure the best variant of our algorithm and to illustrate the

nfluence of the advanced search strategies. Then, our best vari-

nt is compared with the best previous algorithm identified in the

tate of the art.

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Table 1

Influence of the initial host vertex (answer to

Question #1 in Section 2.1).

Random Corner Center

Avg. OF 13.23 13.00 u8

CPU Time (s) 0.37 0.37 0.38

Dev. (%) 6.92 5.02 11.55

#Best 7 8 6

s

(

t

g

t

[

i

h

1

w

m

4

p

p

s

a

i

a

i

t

v

t

t

i

r

b

t

d

t

S

o

d

t

h

s

b

t

t

t

h

e

g

f

t

t

t

Table 2

Influence of the host vertex selected after the first assignation

based on the weights w 1 and w 2 in g 1 (answer to Question #3

in Section 2.1).

Diagonal Sequential ZigZag g 2

Avg. OF 34.23 21.46 18.77 10.08

CPU Time (s) 4.68 4.51 4.48 5.79

Dev. (%) 283.19 138.11 89.66 6.15

#Best 0 0 1 12

i

p

t

N

a

t

b

t

t

t

r

t

t

s

t

w

r

e

t

u

fi

t

i

t

f

p

h

o

e

t

h

f

u

t

t

e

s

e

l

W

t

e

s

e

i

i

s

c

a

i

The computational tests have been performed over 90 in-

tances previously reported in the related literature on the 2DBMP

 Rodríguez-García et al., 2021). These instances are grouped into

wo different subsets which include: 45 topologically diverse small

raphs (with | V G | ∈ [5 , 21] and | E G | ∈ [6 , 190]); and 45 represen-

ative graphs from the Harwell-Boeing collection (with | V G | ∈

48 , 960] and | E G | ∈ [78 , 7442]). To ease future comparisons, all

nstances have been made publicly available at https://www.

euristicas.es/ .

All experiments have been performed on an AMD EPYC 7282

6-core virtual CPU with 16GB of RAM. The operating system used

as Ubuntu 20.04.2 64 bit LTS, and all algorithms were imple-

ented in Java 16.

.1. Preliminary experiments

In this section, we identify the best configuration of the com-

onents of the Iterated Greedy procedure proposed in this pa-

er. Also, we illustrate the merit of the proposed advanced search

trategies. The preliminary experiments have been performed over

 reduced set of instances consisting of 15% of the total considered

nstances (i.e., 13 graphs). We will refer to this subset of instances

s the preliminary set.

For each of the experiments carried out, we report the follow-

ng metrics: the average value of the objective function (Avg. OF),

he total execution time in seconds (CPU Time (s)), the average de-

iation to the best solution found in the experiment (Dev. (%)) and

he number of best solutions found in the experiment (#Best).

The first set of experiments performed is devoted to configure

he best variant of the greedy constructive procedure described

n Section 2.1 , by trying to find the best answer to the questions

aised in that section. Notice that the parameters are studied one

y one, varying the values for the selected parameter and fixing

he value for the rest of parameters.

Particularly, in Table 1 we analyse the proposed strategies to

etermine which is the most suitable host vertex to perform

he first assignation (denoted as the answer to Question #1 in

ection 2.1). The results reported in Table 1 correspond to a 100

f constructions where the input vertex has been chosen at ran-

om, g 1 is configured with w 1 = 0 . 5 and w 2 = 0 . 5 (i.e., both have

he same weight), and g 2 is used as the criterion to determine the

ost vertices in the following assignations. With this configuration,

tarting the construction from a corner host vertex seems to be the

est alternative, since the constructive procedure is able to reach

he largest number of best solutions and the smallest deviation to

he best solution.

In this case, we do not need to perform an experiment to select

he most suitable input vertex to start the construction. This issue

as been solved by starting the construction, at least, once from

very input vertex.

Then, we analyse the influence of the parameters w 1 and w 2 in

 1 which determine the selection of the following input vertices

urther than the first assignation (denoted as the answer to Ques-

ion #2 in Section 2.1). Let us remember, that w 1 and w 2 balance

he influence of the adjacent assigned/unassigned vertices respec-

ively, for every input vertex being evaluated with g1 . Particularly,
1134
n Fig. 6 we depict the average performance of the constructive

rocedure for five different configurations of these two parame-

ers, when the number of constructions increases from 1 to 2500.

otice that in this experiment the input/host vertices of the first

ssignation are selected following the best configuration found in

he previous experiment. As we can observe in the figure, the com-

ination w 1 = 1 . 00 , w 2 = 0 . 00 is systematically the best configura-

ion and therefore it will be selected for future experiments. Since

he sum of w 1 and w 2 equals 1, the selected configuration indicates

hat, for this problem, the value of g 1 is fully determined by the al-

eady assigned adjacent vertices to the vertex being evaluated. Fur-

hermore, the benefits obtained by performing multiple construc-

ions do not improve significantly after 1500 constructions.

Finally, we analyze the influence of the strategies proposed to

elect the host vertex in every assignation but the first (denoted as

he answer to Question #3 in Section 2.1). Particularly, in Table 2 ,

e evaluate the four strategies proposed for this task. The reported

esults are obtained as the average of the best solutions found for

ach instance after 1500 constructions. Again, the input/host ver-

ices of the first assignation are selected following the best config-

ration found with the criteria previously defined, and g 1 is con-

gured with w 1 = 1 and w 2 = 0 .

On the one hand, according to the selection of the vertices of

he host graph, g 2 is easily recognized as the best strategy since

t finds the best quality solutions (lower average of the objec-

ive function, lower deviation, and larger number of best solutions

ound). Among the pattern-based strategies, zigzag is the most

rominent.

To sum up, the final configuration of our constructive procedure

as been set to be executed for 1500 constructions, and the best

verall solution is selected. Each construction starts from a differ-

nt initial input vertex (if all vertices have been used at least once,

he procedure selects a repeated vertex to start with). The initial

ost vertex is set to be one of the corner vertices of the grid. The

ollowing input vertices are selected one by one with g 1 config-

red with w 1 = 1 and w 2 = 0 . Finally, g 2 is selected as the method

o determine the host vertices for any assignation performed after

he first one.

Our next preliminary experiment is devoted to test the influ-

nce of the advanced strategies proposed in Section 3 in the local

earch procedure described in Section 2.2 . First, we evaluated the

xploration of the neighborhood defined by the move operator fol-

owing both: a first improvement and a best improvement strategy.

e found that both strategies reached the same average quality of

he objective function (32.54) for the preliminary data set. How-

ver, the CPU time of the local search using a best improvement

trategy was 5 times larger than using a first improvement strat-

gy. Then, we configured our local search procedure with a first

mprovement strategy.

In Table 3 , we report the results obtained when incorporat-

ng each of the three proposed advanced strategies to the local

earch procedure (i.e., the tiebreak criterion (T), the efficient move

alculation (E), and the neighborhood reduction strategy (R)). We

lso include in the comparison the original local search procedure

n isolation (LS). The results provided in the table are obtained

https://www.heuristicas.es/

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Fig. 6. Evolution of the average objective function value when increasing the number of constructions for different values of w 1 and w 2 in g 1 .

Table 3

Contribution of advanced strategies to the local search.

LS LS + T LS + T+E LS + T+E+R

Avg. OF 32.54 7.77 7.77 7.85

CPU Time (s) 72.51 7873.28 22.76 2.18

Dev. (%) 350.04 4.62 4.62 7.05

#Best 0 8 8 9

a

t

c

c

o

t

b

f

r

fi

i

h

d

i

a

i

p

q

r

c

w

d

t

t

i

+

m

s

v

l

m

m

s

o

t

+

s

c

s

t

c

t

i

o

P

[

m

t

u

fi

m

t

t

c

o

i

a

t

s

a

n

j

i

w

t

m

fter a single execution of each method, where the initial solu-

ion was the same for all compared methods and it was randomly

onstructed.

As we can observe in Table 3 the inclusion of the tiebreak

riterion (LS+T) drastically improves the quality of the solutions

btained with respect to the original local search (LS) although

he time increases considerably. This increase in the time needed

y the method is due to the larger exploration of solutions per-

ormed by the LS+T. As expected, LS+T and LS+T+E were able to

each the same solutions in terms of quality, however, then the ef-

cient move calculation reduces the time needed to reach them

n 99.71%. Finally, the method including the proposed neighbor-

ood reduction strategy, LS+T+E+R, is able to reduce by one or-

er of magnitude the time needed by LS+T+E, slightly deteriorat-

ng the average quality of the solutions obtained. Both behaviors

re explained by the fact that the number of solutions explored

s considerably smaller. We consider that LS+T+E+R is the most

romising combination as a balance between computing time and

uality.

Next, we study the best procedures for the destruction and

econstruction phase. In this experiment, we analyse all possible

ombinations of the strategies proposed in Section 2.3 . Specifically,

e evaluate three destruction strategies: random assignations (ran-

om), assignations of random areas (random area), and assigna-

ions of areas contributing to the objective function of the solu-

ion (greedy area). Additionally, as far as the reconstruction phase

s concerned, we evaluate three proposals: g 1 + random, random

 g 2 , and g 1 + g 2 . Each proposal includes two strategies to deter-

ine the next assignation. The first strategy selects an input unas-

igned vertex, while the second strategy selects an available host

ertex.
1135
In Table 4 , we present the results of this experiment. Particu-

arly, each Iterated Greedy configuration has been executed for a

aximum of 300 iterations, with the additional condition that the

ethod is halted if it does not find an improvement of the best

olution found in the last 150 iterations. The best configuration is

btained when the destruction is made greedily (“Greedy area” in

he table) and the reconstruction is made by using the “random

 g 2 ” criterion. The second best variant is the one where the de-

truction is made at random (“Random” in the table) and the re-

onstruction uses “random + g 2 ”. However, this variant finds very

imilar solutions in terms of quality in half time. Therefore, as a

rade-off between quality and time, we have selected this second

onfiguration for our final proposed procedure.

Finally, it is important to remark that we performed a fine-

uning experiment to adjust the parameters: maximum number of

terations (maxIter) and the maximum number of iterations with-

ut improving (maxNotImprIter) introduced in the Algorithm 1 .

articularly, we tested different values of maxIter in the range

100 , 1000] in steps of 50. Similarly, we studied the behavior of

axNotImprIter) with different percentages (0.25, 0.5, and 0.75) of

he maxIter . For the sake of brevity, we do not include all the val-

es of this experiment in here. However, among the proposed con-

gurations, we selected maxIter = 300 and maxNotImprIter = 0 . 75 ·
axIter = 225 for our final design, as a balance of quality and CPU

ime.

To conclude the preliminary experiments, we compare our

hree main algorithmic proposals to verify if an increase in the

omplexity of the method also results in an improvement in the

btained results. Specifically, we propose two executing scenar-

os: a single run of each method and running each method iter-

tively for 100 seconds. Notice that in this experiment, the solu-

ion produced by the greedy constructive is provided to the local

earch and to the Iterated Greedy procedure. The results obtained

re reported in Table 5 . As expected, in the single execution sce-

ario, the IG is the best method in terms of average of the ob-

ective function, deviation and # Best solutions found. However, it

s also the most time-consuming procedure. On the other hand,

hen running all methods for 100 seconds, the differences among

he results obtained are reduced, but IG is still the best overall

ethod.

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Table 4

Influence of the destruction and reconstruction strategies in the performance of the greedy constructive

procedure.

Destruction Reconstruction Avg. OF CPU Time (s) Dev. (%) #Best

Random g 1 + random 5.46 154.21 9.29 8

random + g 2 5.23 60.20 3.85 11

g 1 + g 2 5.46 43.13 7.37 8

Random

area

g 1 + random 5.38 145.25 6.41 9

random + g 2 5.31 110.44 4.81 10

g 1 + g 2 5.46 65.79 7.37 8

Greeedy

area

g 1 + random 5.31 147.90 4.81 10

random + g 2 5.15 119.62 0.96 12

g 1 + g 2 5.38 63.62 6.09 9

Table 5

Behaviour of the proposed strategies in a single execution and running for 100 seconds.

Single execution 100 seconds

Constructive LS + T+E+R IG Constructive LS + T+E+R IG

Avg. OF 10.08 6.00 5.23 9.08 5.38 5.23

CPU Time (s) 6.05 6.43 84.71 102.79 106.86 106.90

Dev. (%) 95.69 13.32 0.00 75.62 4.49 1.92

#Best 0 5 13 0 10 12

Table 6

Results obtained by the compared methods on the 41 instances of the Small graphs data set with a known optimal, and on the 45 instances of the Harwell-

Boeing data set.

Small graphs (41) Harwell-Boeing (45)

M3 (Rodríguez-García et al., 2021) BVNS (Rodríguez-García et al., 2021) IG BVNS (Rodríguez-García et al., 2021) IG

Avg. OF 2.17 2.32 2.17 7.11 4.84

CPU Time (s) 1957.65 3.64 0.02 439.63 102.01

Dev. (%) 0.00 12.20 0.00 51.77 0.00

#Best 41 35 41 5 45

4

a

b

R

N

(

N

s

t

s

d

t

c

l

t

s

H

w

t

4

m

b

i

s

a

s

I

m

o

fi

e

w

t

s

(

a

o

h

f

W

fi

m

5

m

t

t

a

f

t

g

m

w

s

t

.2. Final experiments

In this section, we compare our best Iterated Greedy (IG) vari-

nt with the best previous algorithms in the state of the art: the

est Constraint Satisfaction Programming (CSP) model proposed in

odriguez-Tello et al. (2019) (denoted M3) and the Basic Variable

eighborhood Search (BVNS) proposed in Rodríguez-García et al.

2021) . Both procedures were described in the literature review.

otice that we have compared our procedure with the original

ource code implemented and provided by the authors. To make

he fairest comparison possible, instead of directly using the re-

ults reported in Rodríguez-García et al. (2021) , the BVNS proce-

ure was run again with the configuration indicated by the au-

hors, in the same execution environment as the one used for our

ode.

In Table 6 we report the quality indicators presented in the pre-

iminary experiment: the average deviation, the average execution

ime, and the number of best solutions found for each of the sub-

ets of instances studied: the diverse small graph subset and the

arwell-Boeing subset.

In particular, on the left side of Table 6 , we compare our IG

ith the BVNS and M3 over the set of diverse small graphs. Note

hat M3 was unable to complete the search for 4 instances out of

5 within the established time limit (72h). Therefore, we have re-

oved those instances from this comparison to fairly illustrate the

ehavior of the proposed algorithm. Additionally, in Table A.1 we

nclude the individual results per instance for each of the 45 in-

tances of the complete subset. We observe in Table 6 that M3

nd IG were able to reach the optimal solution for the 41 instances

tudied, followed by BVNS with 35. However, the time required by

G was 5 orders of magnitude shorter than M3 and 2 orders of

agnitude shorter than BVNS.

t

1136
Similarly, on the right side of Table 6 , we compare IG and BVNS

ver the Harwell-Boeing subset. In this case, M3 was not able to

nish within the maximum time limit and therefore it has been

xcluded from this comparison. Again, to ease future comparisons,

e include the individual of each instance in Table A.2 . Based on

he results reported in Table 6 we observe that IG finds the best

olution for all the graphs studied (45) in less computational time

102.01 s) than the BVNS procedure (439.63 s). Consequently, the

verage value of the objective function is lower in the solutions

btained by IG than in the solutions obtained by BVNS. Finally, we

ighlight that BVNS has a 51.77% deviation from the best solutions

ound, obtaining only five best solutions out of 45 instances.

To complement the previous experiment, we conducted a

ilcoxon signed rank test. The resulting p -value < 0 . 0 0 0 01 con-

rms the significance of the results obtained when comparing the

ethods for the tested instances.

. Conclusions

In this paper, we tackle the Two-Dimensional Bandwidth Mini-

ization Problem by proposing several efficient heuristic strategies

o find high-quality solutions for the problem. The 2DBMP belongs

o the graph layout family of problems, and it has been previously

pproached from an exact perspective, based on Constraint Satis-

action Programming, and from a heuristic perspective, based on

he Variable Neighborhood Search metaheuristic.

We have developed an efficient and effective Iterated Greedy al-

orithm to deal with the 2DBMP, including an exhaustive study of

ultiple greedy criteria at the destruction and reconstruction steps

ithin the IG framework. In addition, we introduce a novel local

earch procedure based on swap moves of vertices, which includes

hree advanced enhancement strategies. It is worth mentioning

hat several of the strategies proposed in this paper have further

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

a

l

u

s

n

o

e

a

c

s

g

e

b

p

t

h

o

i

v

m

i

r

o

A

C

B

m

(

a

t

u

A

i

pplicability to other optimization problems, especially those re-

ated to Graph Layout Problems.

The results obtained in this paper emphasize the importance of

sing a tiebreak criterion to guide the search through flat land-

cape regions. This is a key strategy when the objective function is

ot useful in distinguishing between two solutions with the same

bjective function value. Also, we identified that classical move op-

rators applied to Graph Layout Problems, such as the 2DBMP, usu-

lly drive to extensive neighborhoods. In this kind of scenario, lo-

al search procedures might be inefficient when the time limit is

hort. To overcome this drawback, we propose two general strate-

ies with applicability to other problems: a speed-up technique to

valuate the objective function of neighbor solutions; and a neigh-

orhood reduction technique based on the exploration of the most

romising neighbor solutions. Moreover, the graph structure of ei-

her the input and host graphs is key in determining the best

euristic strategy in the context of GLPs. Particularly, the number

f adjacent vertices of each vertex tends to contribute to relevant

nformation at the time of constructing new solutions.

Finally, we would like to highlight that the best algorithmic

ariant of our proposal has been compared to the best previous

w

Table A.1

Individual results per instance obtained from the small data set. Note

not able to solve the instance in a maximum CPU time of 72h.

M3 BVNS

Instance Best OF CPU Time (s) Dev. (%) OF

p2p3 1 1 0.20 0.00 2

p3p3 1 1 0.26 0.00 2

p4p5 1 1 0.22 0.00 2

p2c3 2 2 0.24 0.00 2

p3c3 2 2 0.20 0.00 2

p4c5 2 2 0.53 0.00 3

c3c3 2 2 0.24 0.00 2

c3c4 2 2 0.28 0.00 2

c4c5 2 2 0.28 0.00 3

k3k4 3 3 0.55 0.00 3

k4k5 4 4 74192.71 0.00 4

c3k4 3 3 0.60 0.00 3

c4k5 3 3 2.18 0.00 3

p3k4 2 2 0.27 0.00 2

p4k5 3 3 1.93 0.00 3

path10 1 1 0.30 0.00 1

path15 1 1 0.35 0.00 2

path20 1 1 0.31 0.00 1

cycle10 1 1 0.24 0.00 1

cycle15 2 2 0.50 0.00 2

cycle20 1 1 0.28 0.00 1

wheel5 2 2 0.21 0.00 2

wheel7 2 2 0.23 0.00 2

wheel10 2 2 0.41 0.00 2

wheel15 3 3 4444.86 0.00 3

wheel20 3 - - - 3

cyclePow10-2 2 2 0.25 0.00 2

cyclePow15-2 2 2 0.28 0.00 2

cyclePow20-2 2 2 0.30 0.00 2

cyclePow10-10 4 4 0.21 0.00 4

cyclePow15-10 6 - - - 6

cyclePow20-10 6 - - - 6

bipartite3-3 2 2 0.26 0.00 2

bipartite3-4 3 3 0.33 0.00 3

bipartite4-4 3 3 0.33 0.00 3

bipartite5-5 3 3 0.78 0.00 3

bipartite7-8 4 4 1050.31 0.00 4

bipartite10-10 5 - - - 5

petersen 2 2 0.31 0.00 2

complete5 2 2 0.28 0.00 2

complete10 4 4 14.03 0.00 4

tree2-2 1 1 0.31 0.00 1

tree2-3 2 2 0.31 0.00 2

tree3-2 2 2 0.25 0.00 2

tree2-4 2 2 546.79 0.00 2

1137
ethod in the state of the art, over a previously reported set of

nstances. The obtained results, supported by statistical tests, cor-

oborate the merit of our proposal and establish it as a new state-

f-the-art algorithm for the 2DBMP.

cknowledgment

This research has been partially supported by the Ministerio de

iencia, Innovación y Universidades (Grant Ref. PGC2018-095322-

-C22, PID2021-125709OA-C22 and FPU19/04098) and by the Co-

unidad de Madrid and the European Regional Development Fund

Grant Ref. P2018/TCS-4566). We also thank M.A. Rodrguez et al.,

uthors of the previous most competitive method in the state of

he art Rodríguez-García et al. (2021) for sharing their code with

s.

ppendix A. Individual results per instance

In Table A.1 and Table A.2 we report the individual results per

nstance for the Small and Harwell-Boeing data sets. These values

ere used to calculate the values presented in Table 6 .
that a symbol “-” in the table indicates that the algorithm was

 IG

CPU Time (s) Dev. (%) OF CPU Time (s) Dev. (%)

0.11 1.00 1 0.01 0.00

0.38 1.00 1 0.01 0.00

7.84 1.00 1 0.03 0.00

0.16 0.00 2 0.01 0.00

0.54 0.00 2 0.01 0.00

7.55 0.50 2 0.03 0.00

0.83 0.00 2 0.02 0.00

2.13 0.00 2 0.03 0.00

9.26 0.50 2 0.04 0.00

2.59 0.00 3 0.02 0.00

20.00 0.00 4 0.05 0.00

2.83 0.00 3 0.03 0.00

17.86 0.00 3 0.05 0.00

2.58 0.00 2 0.02 0.00

14.81 0.00 3 0.04 0.00

0.44 0.00 1 0.01 0.00

1.32 1.00 1 0.02 0.00

4.04 0.00 1 0.02 0.00

0.40 0.00 1 0.01 0.00

1.19 0.00 2 0.02 0.00

4.30 0.00 1 0.03 0.00

0.12 0.00 2 0.00 0.00

0.35 0.00 2 0.01 0.00

1.17 0.00 2 0.02 0.00

4.11 0.00 3 0.02 0.00

11.93 0.00 4 0.03 0.33

1.12 0.00 2 0.02 0.00

3.58 0.00 2 0.02 0.00

9.15 0.00 2 0.04 0.00

3.74 0.00 4 0.02 0.00

15.01 0.00 6 0.04 0.00

20.00 0.00 6 0.08 0.00

0.18 0.00 2 0.01 0.00

0.28 0.00 3 0.02 0.00

0.56 0.00 3 0.02 0.00

1.46 0.00 3 0.02 0.00

9.03 0.00 4 0.04 0.00

20.00 0.00 5 0.21 0.00

0.77 0.00 2 0.01 0.00

0.12 0.00 2 0.01 0.00

4.15 0.00 4 0.02 0.00

0.11 0.00 1 0.01 0.00

0.99 0.00 2 0.01 0.00

1.25 0.00 2 0.02 0.00

5.93 0.00 2 0.04 0.00

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

Table A.2

Individual results per instance obtained from the Harwell-Boeing data set.

BVNS (Rodríguez-García et al., 2021) IG

Instance Best OF CPU Time (s) Dev. (%) OF CPU Time (s) Dev. (%)

bcsstk01 5 5 48.00 0.00 5 0.35 0.00

can___62 2 3 62.00 50.00 2 0.22 0.00

nos4 4 4 100.01 0.00 4 1.13 0.00

bcspwr03 3 4 118.01 33.33 3 0.97 0.00

bcsstk04 8 9 132.01 12.50 8 33.24 0.00

bcsstk22 3 4 138.01 33.33 3 1.76 0.00

can__144 4 5 144.01 25.00 4 2.84 0.00

bcsstk05 7 7 153.01 0.00 7 13.82 0.00

can__161 4 6 161.01 50.00 4 4.31 0.00

dwt__198 4 5 198.01 25.00 4 6.49 0.00

dwt__209 5 6 209.01 20.00 5 12.95 0.00

dwt__221 4 5 221.01 25.00 4 7.26 0.00

can__229 5 7 229.01 40.00 5 11.65 0.00

dwt__234 4 4 234.01 0.00 4 11.46 0.00

nos1 3 4 237.01 33.33 3 4.68 0.00

dwt__245 4 6 245.02 50.00 4 8.69 0.00

lshp_265 3 6 265.00 100.00 3 9.31 0.00

bcspwr04 4 7 274.02 75.00 4 13.05 0.00

ash292 4 6 292.00 50.00 4 9.84 0.00

can__292 6 7 292.00 16.67 6 31.82 0.00

dwt__307 5 7 307.00 40.00 5 25.23 0.00

dwt__310 4 5 310.00 25.00 4 10.78 0.00

dwt__361 5 8 361.01 60.00 5 25.45 0.00

plat362 7 8 362.01 14.29 7 110.03 0.00

bcsstk07 6 9 420.01 50.00 6 298.42 0.00

bcspwr05 5 5 443.01 0.00 5 29.52 0.00

can__445 7 9 445.01 28.57 7 59.74 0.00

bcsstk20 4 6 485.01 50.00 4 39.75 0.00

494_bus 5 6 494.01 20.00 5 41.65 0.00

dwt__503 6 8 503.01 33.33 6 83.16 0.00

lshp_577 5 8 577.00 60.00 5 63.92 0.00

dwt__607 5 9 607.00 80.00 5 107.66 0.00

662_bus 5 7 662.01 40.00 5 56.83 0.00

nos6 5 14 960.01 180.00 5 49.94 0.00

685_bus 5 8 685.01 60.00 5 51.32 0.00

can__715 8 11 715.01 37.50 8 698.93 0.00

nos7 6 10 729.01 66.67 6 174.52 0.00

dwt__758 5 7 758.01 40.00 5 127.15 0.00

lshp_778 4 9 778.01 125.00 4 142.28 0.00

bcsstk19 6 9 817.00 50.00 6 399.65 0.00

dwt__878 5 9 878.00 80.00 5 192.83 0.00

gr_30_30 2 9 900.01 350.00 2 45.41 0.00

dwt__918 6 9 918.01 50.00 6 431.28 0.00

nos2 4 6 957.01 50.00 4 106.14 0.00

nos3 7 14 960.01 100.00 7 1032.95 0.00

R

A

B

B

B

C

C

C

C

C
C

D

D

D

F

G

H

H

H

H

J

L

L

eferences

bdinnour-Helm, S., & Hadley, S. W. (20 0 0). Tabu search based heuristics for multi-

-floor facility layout. International Journal of Production Research, 38 (2), 365–383 .
ezrukov, S. L., Chavez, J. D., Harper, L. H., Röttger, M., & Schroeder, U. P. (1998).

Embedding of hypercubes into grids. In L. Brim, J. Gruska, & J. Zlatuka (Eds.),
Mathematical foundations of computer science 1998 . In Lecture notes in computer

science (pp. 693–701). Berlin, Heidelberg: Springer .
hatt, S. N., & Thomson Leighton, F. (1984). A framework for solving VLSI graph

layout problems. Journal of Computer and System Sciences, 28 (2), 300–343 .

ooch, G. (2005). The unified modeling language user guide . Pearson Education India .
avero, S., Pardo, E. G., & Duarte, A. (2021a). Influence of the alternative objec-

tive functions in the optimization of the cyclic cutwidth minimization prob-
lem. In Advances in artificial intelligence . In Lecture notes in computer science

(pp. 139–149). Cham: Springer International Publishing .
avero, S., Pardo, E. G., Laguna, M., & Duarte, A. (2021b). Multistart search for the

cyclic cutwidth minimization problem. Computers & Operations Research, 126 ,

105116 .
avero, S., Pardo, E. G., & Duarte, A. (2022a). A general variable neighborhood search

for the cyclic antibandwidth problem. Computational Optimization and Applica-
tions, 81 (2), 657–687 .

avero, S., Pardo, E. G., Duarte, A., & Rodriguez-Tello, E. (2022b). A variable neigh-
borhood search approach for cyclic bandwidth sum problem. Knowledge-Based

Systems, 246 , 108680 .

hung, F. (1988). Labelings of graphs. Selected topics in graph theory, 3 , 151–168 .
raw, S. (2010). Manhattan distance (pp. 639–639)). Boston, MA: Springer US .

el Corso, G. M., & Manzini, G. (1999). Finding exact solutions to the bandwidth
minimization problem. Computing, 62 (3), 189–203 .
1138
elmaire, H., Díaz, J. A., Fernández, E., & Ortega, M. (1999). Reactive grasp and tabu

search based heuristics for the single source capacitated plant location problem.
INFOR: Information Systems and Operational Research, 37 (3), 194–225 .

íaz, J., Petit, J., & Serna, M. (2002). A survey of graph layout problems. ACM Com-
puting Surveys (CSUR), 34 (3), 313–356 .

eo, T. A., & Resende, M. G. (1995). Greedy randomized adaptive search procedures.

Journal of Global Optimization, 6 (2), 109–133 .
urari, E. M., & Sudborough, I. H. (1984). Improved dynamic programming algo-

rithms for bandwidth minimization and the mincut linear arrangement prob-
lem. Journal of Algorithms, 5 (4), 531–546 .

ansen, P., & Mladenovi ́c, N. (2006). First vs. best improvement: An empirical study.
Discrete Applied Mathematics, 154 (5), 802–817 .

ansen, P., Mladenovi ́c, N., Todosijevi ́c, R., & Hanafi, S. (2017). Variable neighbor-

hood search: Basics and variants. EURO Journal on Computational Optimization,
5 (3), 423–454 .

romkovi ̌c, J., Müller, V., S ̀ykora, O., & Vrt’o, I. (1992). On embedding interconnec-
tion networks into rings of processors. In International conference on parallel ar-

chitectures and languages Europe (pp. 51–62). Springer .
uerta-Muñoz, D. L., Ríos-Mercado, R. Z., & Ruiz, R. (2017). An iterated greedy

heuristic for a market segmentation problem with multiple attributes. European

Journal of Operational Research, 261 (1), 75–87 .
injiang, Y., & Sanming, Z. (1995). Optimal labelling of unit interval graphs. Applied

Mathematics, 10 (3), 337–344 .
ai, Y.-L., & Williams, K. (1999). A survey of solved problems and applications

on bandwidth, edgesum, and profile of graphs. Journal of Graph Theory, 31 (2),
75–94 .

in, L., & Lin, Y. (2010). Two models of two-dimensional bandwidth problems. Infor-

mation Processing Letters, 110 (11), 469–473 .

http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0010
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0022

S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139

L

L

L

L

M

M

M

M

P

P

P

P

P

P

R

R

R

R

R

R

R

S

T

in, L., & Lin, Y. (2011). Square-root rule of two-dimensional bandwidth problem.
RAIRO-Theoretical Informatics and Applications, 45 (4), 399–411 .

in, Y. (1994). The cyclic bandwidth problem. Journal of Systems Science and Com-
plexity, 7 (3), 282–288 . Cited By 12

ourenço, H. R., Martin, O. C., & Stützle, T. (2003). Iterated local search. In Handbook
of metaheuristics (pp. 320–353). Springer .

ópez-Sánchez, A., Sánchez-Oro, J., & Hernández-Díaz, A. (2019). GRASP and VNS for
solving the p-next center problem. Computers & Operations Research, 104 , 295–

303 .

artí, R., Pantrigo, J. J., Duarte, A., & Pardo, E. G. (2013). Branch and bound for
the cutwidth minimization problem. Computers & Operations Research, 40 (1),

137–149 .
cAllister, A. et al. (1999). A new heuristic algorithm for the linear arrangement

problem.
ichiels, W., Aarts, E. H., & Korst, J. (2018). Theory of local search. In Handbook of

heuristics (pp. 299–339). Springer .

ladenovic, N., Urosevic, D., Pérez-Brito, D., & García-González, C. G. (2010). Vari-
able neighbourhood search for bandwidth reduction. European Journal of Opera-

tional Research, 200 (1), 14–27 .
apadimitriou, C. H. (1976). The np-completeness of the bandwidth minimization

problem. Computing, 16 (3), 263–270 .
ardo, E. G., García-Sánchez, A., Sevaux, M., & Duarte, A. (2020). Basic variable

neighborhood search for the minimum sitting arrangement problem. Journal of

Heuristics, 26 (2), 24 9–26 8 .
ardo, E. G., Martí, R., & Duarte, A. (2016). Linear layout problems. In R. Martí,

P. Panos, & M. G. Resende (Eds.), Handbook of heuristics (pp. 1–25). Cham:
Springer International Publishing .

ardo, E. G., Mladenovi ́c, N., Pantrigo, J. J., & Duarte, A. (2013). Variable formulation
search for the cutwidth minimization problem. Applied Soft Computing, 13 (5),

2242–2252 .
1139
érez-Peló, S., Sánchez-Oro, J., Gonzalez-Pardo, A., & Duarte, A. (2021). A fast vari-
able neighborhood search approach for multi-objective community detection.

Applied Soft Computing, 112 , 107838 .
etit, J. (2004). Experiments on the minimum linear arrangement problem. ACM

Journal of Experimental Algorithmics, 8 , 2.3 .
en, J., Hao, J.-K., & Rodriguez-Tello, E. (2019). An iterated three-phase search ap-

proach for solving the cyclic bandwidth problem. IEEE Access, 7 , 98436–98452 .
en, J., Hao, J.-K., Rodriguez-Tello, E., Li, L., & He, K. (2020). A new iterated local

search algorithm for the cyclic bandwidth problem. Knowledge-Based Systems,

203 , 106136 .
odriguez-Tello, E., Hao, J.-K., & Torres-Jimenez, J. (2008a). An effective two-stage

simulated annealing algorithm for the minimum linear arrangement problem.
Computers & Operations Research, 35 (10), 3331–3346 .

odriguez-Tello, E., Hao, J.-K., & Torres-Jimenez, J. (2008b). An improved simulated
annealing algorithm for bandwidth minimization. European Journal of Opera-

tional Research, 185 (3), 1319–1335 .

odriguez-Tello, E., Narvaez-Teran, V., & Lardeux, F. (2019). Dynamic multi-armed
bandit algorithm for the cyclic bandwidth sum problem. IEEE Access, 7 ,

40258–40270 .
odríguez-García, M. A., Sánchez-Oro, J., Rodriguez-Tello, E., Monfroy, E., &

Duarte, A. (2021). Two-dimensional bandwidth minimization problem: Exact
and heuristic approaches. Knowledge-Based Systems, 214 , 106651 .

uiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for

the permutation flowshop scheduling problem. European Journal of Operational
Research, 177 (3), 2033–2049 .

tützle, T., & Ruiz, R. (2018). Iterated greedy (pp. 547–577)). Cham: Springer Interna-
tional Publishing .

sang, E. (2014). Foundations of constraint satisfaction: The classic text . Books on De-
mand .

http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0044
http://refhub.elsevier.com/S0377-2217(22)00716-0/sbref0045

	Efficient iterated greedy for the two-dimensional bandwidth minimization problem
	1 Introduction
	1.1 Problem statement
	1.2 Literature review
	1.3 Our contributions

	2 Algorithmic proposal: Iterated greedy
	2.1 Greedy constructive procedure
	2.2 Improvement strategy
	2.3 Destruction and reconstruction procedures

	3 Advanced search strategies for exploring the neighborhoods
	3.1 Neighborhood reduction strategy
	3.2 Efficient move calculation
	3.3 Tiebreak criterion for solutions with the same objective function value

	4 Computational results
	4.1 Preliminary experiments
	4.2 Final experiments

	5 Conclusions
	Acknowledgment
	Appendix A Individual results per instance
	References

