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Graph layout problems are a family of combinatorial optimization problems that consist of finding an em- 

bedding of the vertices of an input graph into a host graph such that an objective function is optimized. 

Within this family of problems falls the so-called Two-Dimensional Bandwidth Minimization Problem 

(2DBMP). The 2DBMP aims to minimize the maximum distance between each pair of adjacent vertices of 

the input graph when it is embedded into a grid host graph. In this paper, we present an efficient heuris- 

tic algorithm based on the Iterated Greedy (IG) framework hybridized with a new local search strategy to 

tackle the 2DBMP. Particularly, we propose different designs for the main IG procedures (i.e., construction, 

destruction, and reconstruction) based on the trade-off between intensification and diversification. Addi- 

tionally, the improvement method incorporates three advanced strategies: an efficient way to evaluate the 

objective function of neighbor solutions, a tiebreak criterion to deal with “flat landscapes”, and a neigh- 

borhood reduction technique. Extensive experimentation was carried out to assess the IG performance 

over state-of-the-art methods, emerging our approach as the most competitive algorithm. Specifically, IG 

finds the best solutions for all instances considered in considerably less execution time. Statistical tests 

corroborate the merit of our proposal. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The Two-Dimensional Bandwidth Minimization Problem 

2DBMP) belongs to a family of combinatorial optimization prob- 

ems denoted as Graph Layout Problems (GLP). GLPs consist of 

mbedding an input graph (also known as a candidate graph) into 

 host graph by defining a mathematical function that relates (or 

ssigns) the vertices of the input graph to the vertices of the host 

raph, optimizing a particular objective function. These problems 

an be classified according to the structure of the host graph. 

articularly, the most studied GLPs are those that consider a 

egular host graph, such as: a path ( Pardo, García-Sánchez, Sevaux, 

 Duarte, 2020; Pardo, Mladenovi ́c, Pantrigo, & Duarte, 2013 ), 

 cycle ( Cavero, Pardo, Laguna, & Duarte, 2021b; Cavero, Pardo, 

 Duarte, 2022a ), or a grid ( Lin & Lin, 2010; Rodríguez-García, 

ánchez-Oro, Rodriguez-Tello, Monfroy, & Duarte, 2021 ), among 

thers. Also, GLPs can be classified according to the optimized 

bjective function. Among the most studied ones, we can find the 

inimization of: the maximum cutwidth ( Cavero et al., 2021b; 
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ardo et al., 2013 ), the linear arrangement ( Petit, 2004; Rodriguez- 

ello, Hao, & Torres-Jimenez, 2008a ), the maximum Bandwidth 

 Ren, Hao, Rodriguez-Tello, Li, & He, 2020; Rodriguez-Tello, Hao, 

 Torres-Jimenez, 2008b ), or the sum of the Bandwidth ( Cavero, 

ardo, Duarte, & Rodriguez-Tello, 2022b; Rodriguez-Tello, Narvaez- 

eran, & Lardeux, 2019 ), among others. We refer the interested 

eader to surveys ( Díaz, Petit, & Serna, 2002 ) and ( Pardo, Martí, &

uarte, 2016 ) for further references about GLPs. 

In this paper, we deal with the 2DBMP, which consists of mini- 

izing the Bandwidth of the input graph when embedding it into 

 grid host graph. The 2DBMP has a large interest for the scientific 

ommunity from either a practical and theoretical perspective. On 

he one hand, real-world applications have been devised in the lit- 

rature related to the problem, as compiled in Section 1.2 . On the 

ther hand, from a theoretical perspective, there is a wide family of 

ptimization problems related to the embedding of graphs in reg- 

lar structures ( Ren, Hao, & Rodriguez-Tello, 2019; Rodriguez-Tello 

t al., 2008b ). In this sense, the algorithmic strategies proposed for 

he 2DBMP have interest, not only for this problem, but also for 

ther related variants. In the following sections, we formally de- 

ne the 2DBMP ( Section 1.1 ), as well as we review the state of the

rt of the problem ( Section 1.2 ). 
under the CC BY-NC-ND license 

https://doi.org/10.1016/j.ejor.2022.09.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.09.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sergio.cavero@urjc.es
mailto:eduardo.pardo@urjc.es
mailto:abraham.duarte@urjc.es
https://doi.org/10.1016/j.ejor.2022.09.004
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. Cavero, E.G. Pardo and A. Duarte European Journal of Operational Research 306 (2023) 1126–1139 

Fig. 1. (a) An input graph, G . (b) A host graph, H. (c) An example of an embedding. 
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.1. Problem statement 

Before formalizing this problem, we introduce a basic notation. 

et G ( V G , E G ) be a connected, unweighted and undirected input 

raph where the set of vertices is denoted as V G (with | V G | = n )

nd its edge set as E G . 

Similarly, let H = ( V H , E H ) be a two-dimensional grid host graph 

here the set of vertices is denoted as V H (with | V H | = � √ 

n � ·
 

√ 

n � ) and its edge set as E H . Grid graphs are a common type of

attice graph, whose drawing in a Euclidean space R 

2 forms a regu- 

ar tiling. These graphs satisfy the requirement that each vertex can 

e represented as a 2-tuple (i, j) that corresponds to a point in the

lane, where 1 ≤ i, j ≤ � √ 

n � . Two vertices are connected with an

dge as long as the corresponding points are at distance 1. There- 

ore, this particular host graph is a unit-distance, median, and bi- 

artite graph. 

In Fig. 1 a, we depict an example of an input graph, G ,

ith 7 vertices ( V G = { A , B , C , D , E , F , G } ) and 9 edges ( E G =
 ( A , B ) , ( A , D ) , ( A , E ) , ( A , F ) , ( B , F ) , ( B , G ) , ( C , D ) , ( D , E ) , ( F , G ) } ). 
imilarly, in Fig. 1 b, we show the host graph, H, needed 

or the embedding of the graph depicted in Fig. 1 a (i.e., 

 V H | = 9 = � √ 

7 � · � √ 

7 � ). In this case, vertices are denoted by

heir (i, j) coordinates (i.e., V H = { (1 , 1) , (1 , 2) , . . . , (3 , 3) } ), and

here is an edge between them if they are at distance 1. 

As it was aforementioned, an embedding consists of defining a 

athematical function that assigns each vertex of the input graph 

o a vertex of the host graph. In mathematical terms, let ϕ be an 

njective function such that: 

 : V G → V H , ∀ u ∈ V G ∃ ! v ∈ V H | ϕ(u ) = v . (1)

Since each vertex v ∈ V H is defined by a 2-tuple (i, j) , for the

ake of convenience, we reformulate ϕ as follows: 

 : V G → V H , ∀ u ∈ V G ∃ ! (i, j) ∈ V H | ϕ(u ) = (i, j) . (2)

ith i, j ∈ [1 , . . . , � √ 

n � ] . 
Then, given an embedding ϕ of an input graph G , the objective 

unction of the 2DBMP, denoted as BW, is defined as follows: 

W (G, ϕ) = max 
(u, v ) ∈ E G 

{ d(ϕ (u ) , ϕ (v )) } , (3)

here d is a function that measures the distance between two ad- 

acent vertices. In the related literature, d is computed with the 

 1 -norm ( Lin & Lin, 2010; Rodríguez-García et al., 2021 ), which is 

lso known as Taxicab norm distance or Manhattan distance ( Craw, 

010; Lin & Lin, 2010 ). That is, the distance between two points 

i, j) , (i ′ , j ′ ) ∈ V H is 

((i, j) , (i ′ , j ′ )) = | i − i ′ | + | j − j ′ | . (4)

Finally, the Two-Dimensional Bandwidth Minimization Problem 

2DBMP) for a graph G consists of finding an embedding ϕ 

� that 

inimizes Eq. (3) . More formally, 

 

� ← 2DBMP (G ) = min 

ϕ∈ �
{ BW (G, ϕ) } , (5) 
1127 
here � represents the set of all possible embeddings of the prob- 

em. 

In Fig. 1 c, we show a possible embedding ϕ of G ( Fig. 1 a) in H

 Fig. 1 b). As can be observed, all vertices of V G have been assigned

o a vertex of V H through the definition of ϕ . For example, ϕ ( A ) =
2 , 2) indicates that vertex A ∈ V G is assigned to vertex (2 , 2) ∈ V H .

imilarly, ϕ( B ) = (2 , 3) indicates that vertex B ∈ V G is assigned to

ertex (3 , 2) ∈ V H , and so on. 

In order to evaluate the objective function of the example de- 

cribed in Fig. 1 , it is required to calculate the distance between 

ach pair of adjacent vertices in V G (i.e., for each edge of E G )

y using Eq. (4) . For instance, considering vertices A and B, with 

( A ) = (2 , 2) and ϕ( B ) = (2 , 3) , the associated distance | 2 − 2 | +
 2 − 3 | = 1 . Similarly, the distance between vertices A and D is

, since ϕ( D ) = (1 , 3) , and | 2 − 1 | + | 2 − 3 | = 2 . This calculation is

erformed over the rest of the edges of G . Then, the value of the

bjective function is the maximum across all distances, which is 3 

n this example. Therefore, in mathematical terms, the evaluation 

f BW (G, ϕ) in Fig. 1 c is computed as follows: 

W (G, ϕ) = max { d(ϕ( A ) , ϕ( B )) , d(ϕ( A ) , ϕ( D )) , d(ϕ( A ) , ϕ( E )) ,

d(ϕ( A ) , ϕ( F )) , d(ϕ( B ) , ϕ( F )) , d(ϕ( B ) , ϕ( G )) , 

d(ϕ( C ) , ϕ( D )) , d(ϕ( D ) , ϕ( E )) , d(ϕ( F ) , ϕ( G )) } 
= max { 1 , 2 , 1 , 2 , 1 , 1 , 1 , 3 , 2 } = 3 . (6)

.2. Literature review 

The 2DBMP has been widely used to formulate a variety of 

eal-world applications. In particular, it has a direct application 

n the design of telecommunication architectures, where grid net- 

ork topologies have gained relevance. These networks are com- 

only used due to their simple structure, becoming a design that 

s easy to build and extend ( Bezrukov, Chavez, Harper, Röttger, 

 Schroeder, 1998 ). The 2DBMP has also been used for very 

arge-scale integration (VLSI) circuit modeling ( Bhatt & Thom- 

on Leighton, 1984; Chung, 1988 ). Indeed, the L 1 -norm distance 

as originally derived from circuit design models where connec- 

ors are placed in horizontal or vertical directions, although the 

aths in the VLSI design cannot overlap each other ( Bhatt & Thom- 

on Leighton, 1984; Lin & Lin, 2010 ). Other practical applications 

nclude job scheduling for parallel processing computers, solving 

ystems of equations, or performing matrix decomposition, among 

thers ( Lai & Williams, 1999; Rodríguez-García et al., 2021 ). 

The 2DBMP is closely related to other optimization problems 

elonging to the Graph Layout family, such as the Bandwidth Min- 

mization Problem (BMP) and the Cyclic Bandwidth Problem (CBP). 

ifferences among these three problems reside on the host graph. 

pecifically, in the BMP, the host graph is a path, while in the CBP 

t is a cycle, and in the 2DBMP it is a grid. 
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BMP and CBP have been widely studied by the scientific com- 

unity. The former was proved to be N P -complete for general 

raphs in Papadimitriou (1976) and it has been approached from 

oth, exact ( Del Corso & Manzini, 1999; Gurari & Sudborough, 

984 ) and heuristic perspectives ( Mladenovic, Urosevic, Pérez- 

rito, & García-González, 2010; Rodriguez-Tello et al., 2008b ). Sim- 

larly, the CBP is also N P -complete for general graphs as proven 

n Lin (1994) . It has been mainly approached by considering spe- 

ial graphs (such as grids, trees, or planar graphs, among others) 

nd determining either lower or upper bounds ( Hromkovi ̌c, Müller, 

 ̀ykora, & Vrt’o, 1992; Jinjiang & Sanming, 1995 ). Recently, in Ren 

t al. (2019 , 2020) two advanced metaheuristics have been pro- 

osed for the CBP. 

In this paper, we focus on the 2DBMP, originally proposed in 

hung (1988) , that belongs to the N P -complete class ( Bhatt & 

homson Leighton, 1984; Lin & Lin, 2010 ). This optimization prob- 

em has been studied from different points of view. In particu- 

ar, lower bounds for regular-structured graphs were introduced 

n Lin & Lin (2010, 2011) . More recently, three Constraint Satis- 

action Programming (CSP) models ( Tsang, 2014 ) were described 

n Rodríguez-García et al. (2021) . The best model, denoted as M3, 

s able to solve small and regular-structured graphs, providing 

 lower bound (not necessarily tight) for medium and large in- 

tances. The best previous metaheuristic procedure identified in 

he related literature was introduced in Rodríguez-García et al. 

2021) . Specifically, the authors described an algorithm based on 

he combination of the Greedy Randomized Adaptive Search Proce- 

ure (GRASP) ( Feo & Resende, 1995 ) and the Basic Variable Neigh- 

orhood Search (BVNS) ( Hansen & Mladenovi ́c, 2006 ) methodolo- 

ies. This procedure follows a multi-start strategy, where many 

nitial points are generated with GRASP and then improved with 

VNS. The constructive procedure uses a greedy criterion based on 

he quality of the objective function, while the BVNS, based on the 

dea of systematic changes of neighborhood the structure within 

he search, uses two neighborhoods and a random perturbation to 

scape from local optima. This procedure is currently considered 

he state of the art for the 2DBMP. 

.3. Our contributions 

The main contribution of this work is the proposal of 

n efficient procedure based on the Iterated Greedy frame- 

ork. The proposed algorithm includes novel construc- 

ion/destruction/reconstruction strategies, as well as advanced 

mprovement methods. These techniques are designed from a 

eneral perspective, i.e., they are not only valid for the 2DBMP, 

ut also for any other related optimization problem. Specifi- 

ally, the proposed construction, destruction, and reconstruction 

trategies vary from totally random to totally greedy approaches. 

n addition, a straightforward design of a local search for the 

DBMP is enriched by: a tiebreak criterion to distinguish between 

ame-quality solutions; fast evaluation of the objective function; 

nd neighborhood reduction techniques. 

The proposed method is configured by a set of preliminary ex- 

eriments, which allow us tuning the search parameters as well 

s to evaluate the influence of the proposed mechanisms. Finally, 

he best identified variant is compared with state-of-the-art algo- 

ithms through competitive tests. The merit of the results obtained 

s supported by statistical tests. 

The rest of the paper is organized as follows: Section 2 de- 

cribes our algorithmic proposal. Section 3 introduces several ad- 

anced search strategies. Section 4 presents and analyses the re- 

ults of the computational experiments carried out. Finally, the 

onclusions are drawn in Section 5 . 
1

1128 
. Algorithmic proposal: Iterated greedy 

In this paper, we propose a procedure based on the Iterated 

reedy (IG) metaheuristic ( Ruiz & Stützle, 2007; Stützle & Ruiz, 

018 ). IG is a search method where solutions are gradually im- 

roved through the repeated application of two main phases: a 

artial destruction of a solution followed by a reconstruction to 

each a new feasible solution. These two phases are usually re- 

eated for a fixed number of iterations, for a maximum number 

f iterations without finding an improvement, or even for a com- 

ination of the two previous criteria. 

IG can be easily hybridized with other strategies, such as lo- 

al search procedures or other metaheuristics. In this case, the 

estruction and reconstruction phases of IG can be understood 

s a way to perturb the incumbent solution, similarly to other 

ell-known metaheuristics such as Iterated Local Search (ILS) 

 Lourenço, Martin, & Stützle, 2003 ) or Variable neighborhood 

earch (VNS) ( Hansen, Mladenovi ́c, Todosijevi ́c, & Hanafi, 2017 ). 

owever, in the IG methodology, an important part of the pro- 

ess, the reconstruction phase, uses greedy decisions rather than 

tochastic ones. See Stützle & Ruiz (2018) for further details. 

In this paper, we propose the hybridization of IG with an ef- 

cient local search procedure. The pseudocode of the proposed 

ethod is presented in Algorithm 1 . The procedure receives as 

lgorithm 1 General procedure based on IG algorithm. 

1: Procedure IteratedGreedy ( G , maxIter , maxNotImprIter) 

2: iter = 0 , notImprIter = 0 

3: ϕ = GreedyConstructive (G ) 

4: ϕ ← LocalSearch (G, ϕ) 

5: while iter < maxIter do 

6: iter = iter + 1 , notImprIter = notImprIter + 1 

7: ϕ 

′ ← Destruction ( notImprIter , ϕ) 

8: ϕ 

′′ ← Reconstruction (G, ϕ 

′ ) 
9: ϕ 

′′′ ← LocalSearch (G, ϕ 

′′ ) 
0: if BW (G, ϕ 

′′′ ) < BW (G, ϕ) then 

11: ϕ ← ϕ 

′′′ 
2: notImprIter = 0 

3: end if 

4: if notImprIter > maxNotImprIter then 

5: break 
6: end if 

17: end while 

18: return ϕ 

arameters: the input graph, G ; the maximum number of itera- 

ions, maxIter ; and the number of iterations without improvement 

axNotImprIter . The algorithm starts by generating an initial so- 

ution with the greedy constructive procedure (line 3) that will 

e introduced in Section 2.1 . Then, after obtaining an improved 

olution through the local search procedure (line 4), described in 

ection 2.2 , the procedure enters a loop (lines 5 to 17). In each it-

ration, some elements are removed from the current solution us- 

ng the destruction method (line 7). Next, the solution is greedily 

econstructed (line 8) and improved again by the local search pro- 

edure (line 9). Both destruction and reconstruction methods, are 

escribed in Section 2.3 . In each iteration, IG determines (steps 10 

o 13) whether the perturbed and improved solution ( ϕ 

′′′ ) is better 

han the incumbent one ( ϕ). If so, ϕ and notImprIter are updated 

ccordingly. These three last steps (destruction, reconstruction, and 

ocal search) are repeated until a maximum number of iterations 

s reached, unless the procedure is not able to improve the current 

est solution for a number of iterations (line 14). Once the termi- 

ation condition is met, IG returns the best solution found (step 

8). 
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.1. Greedy constructive procedure 

Constructing a solution for the 2DBMP from a greedy perspec- 

ive consists of performing the best possible assignation of the ver- 

ices of the input graph to the vertices of the host graph (i.e., defin-

ng ϕ). To do this, we need to answer three questions: #1 which 

ertices (from either the host or the input graphs) are more suit- 

ble to start with; #2 given a partial solution, which vertex ( u )

f the input graph should be assigned next; and #3 given a par- 

ial solution and u , which vertex v of the host graph should be

ssigned to u . To answer each of these questions, we propose dif- 

erent strategies, which are described below. 

We start by selecting a random vertex from the input graph. 

hen, to perform its assignation, we need to select a ver- 

ex from the host graph. In this case, we study three alter- 

atives: a random vertex; a vertex placed in a corner of the 

rid (i.e., (1 , 1) , (1 , � √ 

n � ) , (� √ 

n � , 1) , (� √ 

n � , � √ 

n � ); or a vertex

laced in the center of the grid (i.e., (� � 
√ 

n � 
2 � , � � 

√ 

n � 
2 � ) if � √ 

n � is

dd; or (� � 
√ 

n � 
2 � , � � 

√ 

n � 
2 � ) , (� � 

√ 

n � 
2 � + 1 , � � 

√ 

n � 
2 � ) , (� � 

√ 

n � 
2 � , � � 

√ 

n � 
2 � +

) , (� � 
√ 

n � 
2 � + 1 , � � 

√ 

n � 
2 � + 1) if n is even). 

Given the first assignation, we already have a partial solution. 

hen, we propose a greedy function, inspired by McAllister et al. 

1999) and denoted as g 1 , to determine which vertices of the input 

raph should be assigned in the following steps to a partial solu- 

ion ϕ. In other words, g 1 is used to evaluate the “urgency” of any 

nassigned vertex from the input graph to be assigned next. 

Let us introduce some notation before defining g 1 . We define 

he subset U G ⊂ V G as the set of vertices of the input graph that

ave not been assigned yet in ϕ. Then, given a vertex u ∈ U G ,

e define A (u ) as the set of adjacent vertices to u already as-

igned. More formally, A (u ) = { v ∈ V G : v / ∈ U G ∧ (u, v ) ∈ E G } . Simi-

arly, we define R (u ) as the set of vertices adjacent to u that re-

ain unassigned. In mathematical terms, R (u ) = { v ∈ V G : v ∈ U G ∧
u, v ) ∈ E G } . It is worth mentioning that A (u ) ∪ R (u ) is the set of

djacent vertices to u . Then, g 1 is defined in Eq. (7) as follows: 

 1 (u, ϕ) = w 1 · | A (u ) | − w 2 · | R (u ) | , (7)

here w 1 and w 2 are parameters that should be tuned experimen- 

ally and satisfy 0 ≤ w 1 , w 2 ≤ 1 and w 1 + w 2 = 1 . These two pa-

ameters balance the relevance of having a large number of ad- 

acent vertices assigned ( w 1 > w 2 ) or a reduced number of adja-

ent vertices unassigned ( w 1 < w 2 ). Notice that if w 1 = w 2 , then

he strategy is equivalent to the original proposal introduced in 

cAllister et al. (1999) . Then, all unassigned vertices from the in- 

ut graph are evaluated, and the vertex with the largest g 1 value 

s chosen to be assigned next (with ties broken at random). 

Once the vertex of the input graph has been chosen, the second 

roposed question is answered. Then, an available vertex from the 

ost graph must be selected to embed the selected vertex of the 

nput graph. In this case, we propose two approaches: one based 

n graphical patterns and the other based on a greedy function. 

he first approach determines the order in which host vertices are 

elected on the basis of a graphical pattern. Moreover, in this work 

e study three patterns: Sequential, Diagonal, and Zigzag, which 

re illustrated in Fig. 2 (a)–(c), respectively. In each of the figures, 

he sequence is indicated by green arrows and numbers inside 

ach of the host vertices, being the number 1 the vertex selected 

n the first iteration and number 9 the vertex selected in the last 

teration. 

The second approach to select a vertex of the host graph is 

ased on a new greedy function, denoted as g 2 , that evaluates 

he variation of the objective function when assigning a vertex 

f the input graph. As it is well documented in the related liter- 

ture ( Cavero et al., 2021b ), some successful strategies in graph 

ayout problems are related to the closeness/remoteness of adja- 
1129 
ent vertices. In this case, g 2 is used to place every candidate 

ertex as close as possible to its adjacent vertices. Let C H ⊆ V H 
e the set of vertices which distance (see Eq. (4) ) to the already

ssigned host vertices is 1. More formally, C H (ϕ) = { (i, j) ∈ V H :

 v / ∈ U G , d(ϕ(v ) , (i, j)) = 1 } . Then, given a vertex u ∈ U G , a vertex

i, j) ∈ C H , and a partial solution ϕ, g 2 is formally defined as: 

 2 (ϕ, u, (i, j)) = max 
v ∈ A (u ) 

{ d((i, j) , ϕ(v )) } . (8)

hus, all unassigned vertices from the host graph are evaluated and 

he vertex (i, j) ∈ C H (ϕ) that minimizes g 2 is selected to host the

nput graph vertex u , i.e., ϕ(u ) = (i, j) . The rationale behind this

trategy is that the returned value from g 2 corresponds to the con- 

ribution of the evaluated vertex to the objective function. There- 

ore, the best host vertex for an input vertex is the one that mini- 

izes Eq. (8) . 

In Algorithm 2 we show the pseudocode of a general greedy 

lgorithm 2 Greedy constructive procedure. 

1: Procedure GreedyConstructive ( G , H) 

2: u ← random (V G ) 
3: (i, j) = GetInitialHostGraphVertex (V H ) � Answer to question 

#1 

4: ϕ(u ) ← (i, j) 

5: U G ← V G \ { u } 
6: while U G � = ∅ do 

7: u ← GetNextInputGraphVertex (ϕ, U G ) � Answer to question 

#2 

8: (i, j) ← GetNextHostGraphVertex (ϕ, u )� Answer to question 

#3 

9: ϕ(u ) ← (i, j) 

0: U G ← U G \ { u } 
11: end while 

2: return ϕ 

onstructive procedure which can use any of the greedy strategies 

escribed in this section. Particularly, it receives an input graph 

 = (V G , E G ) and a host graph H = (V H , E H ) as input parameters.

he method starts by selecting a vertex u of the input graph at 

andom (line 2). According to the aforementioned Question #1, in 

ine 3, the procedure identifies the vertex of the host graph to em- 

ed u . Then, the first assignation is performed (line 4). The set of 

nassigned vertices U G for the partial solution ϕ is constructed in 

ine 5. While there are still elements in U G , the greedy construc- 

ive procedure selects a vertex according to g 1 (see Question #2) 

n line 8. Next, this selected vertex is assigned to one vertex in the 

ost graph (see Question #3), either based on patterns ( Fig. 2 ) or

ased on g 2 . Finally, the partial solution and the set of unassigned 

ertices are updated in lines 10 and 11, respectively. Lines 7 to 12 

re repeated until generating a complete feasible solution, which is 

eturned at the end of the procedure (line 13). To complement the 

seudocode, we graphically illustrate the steps of the constructive 

rocedure in the flowchart depicted in Fig. 3 . This flowchart fol- 

ows the activity diagram standard described in the Unified Mod- 

ling Language ( Booch, 2005 ). Therefore, each rectangle describes 

 task or activity, while each diamond expresses a condition of 

he constructive procedure. Once the solution has been fully con- 

tructed, the evaluation of the solution is performed from scratch 

ollowing the procedure described at the end of Section 1.1 . 

The choice of the first vertex of the input graph might influ- 

nce deeply the quality of the generated solution. Moreover, our 

onstructive procedure is not fully deterministic since random de- 

isions are also made to break ties in both g 1 and g 2 . Therefore,

e propose to execute the constructive procedure for a fixed num- 

er of iterations, selecting as initial solution the best one among 
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Fig. 2. Examples of the order followed to assign vertices of the input graph to vertices of the host graph using the Sequential (a), Diagonal (b) and Zigzag (c) patterns. 

Fig. 3. Activity diagram of the constructive procedure.. 
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hem. It is worth mentioning that this strategy has been success- 

ully used not only in IG ( Huerta-Muñoz, Ríos-Mercado, & Ruiz, 

017; Stützle & Ruiz, 2018 ) but also in combination with VNS 

 López-Sánchez, Sánchez-Oro, & Hernández-Díaz, 2019; Pérez-Peló, 

ánchez-Oro, Gonzalez-Pardo, & Duarte, 2021 ), or TS ( Abdinnour- 

elm & Hadley, 20 0 0; Delmaire, Díaz, Fernández, & Ortega, 1999 ), 

mong others. To ensure the construction of diverse solutions, the 

umber of iterations is always set to a value larger than the num- 

er of vertices of the input graph, guaranteeing that at least one 

onstruction is performed starting from every vertex of the input 

raph. 
1130 
.2. Improvement strategy 

Local search is a heuristic method widely used to solve hard op- 

imization problems due to its ability to trade solution quality with 

omputation time. This procedure is based on systematic moves 

rom one solution to another with better quality, until reaching 

 locally optimal solution ( Michiels, Aarts, & Korst, 2018 ). Given a 

redefined move operation, the set of feasible solutions reachable 

y the local search starting from that solution is usually known as 

eighborhood. 

In the related literature, there have been proposed two different 

eighborhoods for the 2DBMP based on exchange and insert moves 

see Rodríguez-García et al., 2021 for further details). However, the 

efinition of these neighborhoods do not include the possibility of 

xploring the vertices of the host graph that have not been as- 

igned to vertices of the input graph in the construction phase. 

n this paper, we propose a more flexible move operator, which 

xplores those host vertices not initially assigned, resulting in a 

arger neighborhood space. Specifically, the number of vertices in 

he host graph ( | V H | = � √ 

n � · � √ 

n � ) is always larger than or equal

o the number of vertices in the input graph ( | V G | = n ). Therefore,

is an injective function, since there may exist vertices in V H 
hat do not host a vertex of V G . The move operator considers this 

roperty as follows: given a solution ϕ, a vertex u ∈ V G assigned 

o (i, j) ∈ V H (i.e., ϕ(u ) = (i, j) ), and a vertex (i ′ , j ′ ) ∈ V H the move

perator Move (ϕ, u, (i ′ , j ′ )) assigns u to (i ′ , j ′ ) (i.e., ϕ(u ) = (i ′ , j ′ ) ).
n the case that a vertex v ∈ V G was assigned to (i ′ , j ′ ) prior the

ove, this move would also perform a new assignment for the ver- 

ex v (i.e., ϕ(v ) = (i, j) ). Otherwise, (i, j) will not host any vertex.

his move produces a new feasible solution, which is denoted as 

 

′ ← Move (ϕ, u, (i ′ , j ′ )) . 
Let us illustrate this move with an example. Departing from the 

olution represented in Fig. 1 c, we show in Fig. 4 a the situation 

efore performing Move (ϕ, B , (2 , 3)) , where vertex B of the input

raph is assigned to vertex (3,2) prior the move. Then, in Fig. 4 b,

e depict the resulting solution after the move, where B is as- 

igned to (2,3) leaving (3,2) without any assignation. 

Considering the aforementioned move operator, the proposed 

eighborhood for the 2DBMP is defined as follows: 

(ϕ) = { Move (ϕ, u, (i ′ , j ′ )) : ∀ u ∈ V G , (i ′ , j ′ ) ∈ V H , ϕ(u ) � = (i ′ , j ′ ) }
(9) 

The size of N(ϕ) can be determined depending on the number 

f vertices of the input graph. Specifically, given an input graph 

ith | V G | = n vertices and the associated host graph with | V H | =
 

√ 

n � · � √ 

n � vertices, the size of N(ϕ) is 1 
2 n (� 

√ 

n � 2 − 1) . 

In this research, we study two well-known strategies to explore 

he proposed neighborhood: best improvement and first improve- 

ent ( Hansen & Mladenovi ́c, 2006 ). If a local search follows the 

est improvement strategy it selects, at each iteration, the best pos- 
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Fig. 4. (a) Example of an embedding ϕ. (b) The resultant embedding ϕ ′ obtained after the operation Move (ϕ, B , (2 , 3)) (b). 
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ible move which produces an improvement of the current neigh- 

orhood; otherwise, in the first improvement strategy, it selects the 

rst solution that improves the current solution. Any of them stop 

he search when no further improving moves can be performed. 

e study the effectiveness of both strategies in the experiments 

eported in Section 4.1 . 

.3. Destruction and reconstruction procedures 

The two main procedures of any IG algorithm are the destruc- 

ion and reconstruction phases. The IG proposed in the context of 

DBMP, first removes a determined number of assignations of ver- 

ices of the input graph to vertices of the host graph, during the 

estruction phase. Then, the reconstruction phase applies a greedy 

euristic to reassign the unassigned vertices until reaching a new 

easible solution. 

The number of assignations that should be removed is dynami- 

ally defined depending on the current number of iterations with- 

ut improvement (see lines 6 and 7 of Algorithm 1 ). The rationale 

ehind this decision is to have a trade-off between search intensi- 

cation and diversification. In particular, when the number of iter- 

tions without improvement is large, it is expected that the proce- 

ure gets stuck in a “deep basin of attraction”. Therefore, a large 

umber of assignations are removed (with the corresponding re- 

onstruction steps), with the aim of moving to rather distant so- 

utions in the solution space. On the contrary, when the number 

f iterations without improvement is small, a few assignations are 

emoved, which leads to a more localized search Stützle & Ruiz 

2018) . In addition, to avoid the complete destruction of the solu- 

ion, we set a maximum number of assignations that can be re- 

oved. Specifically, this value is set to 25% of the vertices of the 

nstance under consideration. 

In this paper, we propose three different destruction strategies. 

he first one, denoted as fully randomized destruction , is a straight- 

orward adaptation of the IG framework. Specifically, it consists of 

andomly selecting and then removing a determined number of 

ssignations of vertices of the input graph to vertices of the host 

raph. The second strategy, denoted as random area destruction , fo- 

uses on a specific area of the host graph. More precisely, it selects 

 vertex of the host graph at random and then removes its assig- 

ation, and also the assignation of all adjacent host graph vertices 

i.e., those at distance 1 to the selected initial vertex, according to 

q. (4) ). This strategy keeps on removing host adjacent vertices to 

he unassigned area following a proximity criterion (i.e., first those 
1131 
t distance 2, then those at distance 3, etc.) until reaching the ex- 

ected number of unassigned vertices. The third strategy, denoted 

s greedy destruction , focuses on those vertices that determine the 

alue of the objective function. Notice that the 2DBMP consists of 

inimizing a maximum value; then, the objective function is usu- 

lly determined by a reduced number of assignations. This destruc- 

ion strategy removes the assignation of the vertex that determines 

he value of the objective function, also removing the assignations 

f all its adjacent host graph vertices. As in the second strategy, it 

eeps on removing vertices and their adjacent vertices in the host 

raph following a proximity criterion, until reaching the expected 

umber of unassigned vertices. 

As far as the reconstruction strategy is concerned, the Iterated 

reedy framework Stützle & Ruiz (2018) suggests that the recon- 

truction should be governed by a greedy heuristic and, typically, 

eterministic (except random tiebreaking). We therefore do not ex- 

lore any random reconstruction strategy. Specifically, given a par- 

ial solution obtained as the result of a destruction phase, the re- 

onstruction of the solution is performed by following a greedy 

trategy. To this end, we propose the use of three strategies, based 

n the greedy criteria presented in Section 2.1 : 1) unassigned ver- 

ices of the input graph are selected according to g 1 function and 

hen are randomly assigned to any of the available host graph ver- 

ices; 2) unassigned vertices of the input graph are randomly se- 

ected and then assigned to its best host graph vertex according to 

 2 function; and 3) the best vertex of the input graph is selected 

ccording to g 1 and it is assigned to the best host vertex selected 

ccording to g 2 function. 

. Advanced search strategies for exploring the neighborhoods 

As it is well documented in the related literature, most of 

he computing time of a heuristic algorithm is spent by the lo- 

al search procedure. Particularly, a local search heuristic selects, 

t each iteration, a move to a neighbor solution, if it results in an 

mprovement of the objective function. Then, it needs to explore 

ultiple neighbor solutions, evaluating each of them, to determine 

hich move should be done next. In this section, we provide three 

ew advanced strategies devoted to increasing the efficiency of the 

roposed local search: first, we introduce an efficient strategy to 

educe the number of solutions to explore in a given neighborhood 

see Section 3.1 ); second, once the number of moves has been re- 

uced, we propose a technique to speed up the search by opti- 

izing the calculation of the objective function after a move (see 
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Fig. 5. Definition of the PSV of A for a solution ϕ, with BW (G, ϕ) = 2 . 
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ection 3.2 ); finally, when the move results in a tie, in terms of 

he objective function value, we propose a way of distinguishing 

etween two solutions with the same quality (see Section 3.3 ). It 

s worth mentioning that some of these strategies can be applied 

r adapted with a few modifications, not only for other Graph Lay- 

ut Problems, but also for other optimization problems. 

.1. Neighborhood reduction strategy 

The neighborhood proposed in Section 2.2 for the 2DBMP has a 

ize of 1 
2 n (� 

√ 

n � 2 − 1) , being n the number of vertices of the input

raph. In the worst case, an exhaustive exploration requires to tra- 

erse the whole neighborhood. In this section, we propose a strat- 

gy to focus the search on promising solutions, avoiding to waste 

ime in the evaluation of solutions which produce a deterioration 

n the objective function. 

For each vertex of the input graph u ∈ V G , we can define a set

f vertices of the host graph, denoted as Promising Set of Vertices 

PSV) which can host u satisfying that the distance d (in the host 

raph) from u to any of its neighbors in the input graph is equal

r smaller to the objective function value. 

Given a solution ϕ, and an input vertex v ∈ V G , let us define S 
ϕ 
v 

s the set of host vertices which satisfy that the distance d from 

(v ) to any of them is smaller or equal to the BW (G, ϕ) . More

ormally: 

 

ϕ 
v = { (i, j) ∈ V H : d(ϕ(v ) , (i, j)) ≤ BW (G, ϕ) } . (10)

hen, once we have defined the set S 
ϕ 
v for a single input vertex, we

an define the set PSV for an input vertex u ∈ V G as the intersection

f the sets S 
ϕ 
v for all adjacent vertices to u in the input graph (i.e.,

 ∈ A (u ) ). More formally: 

SV (u, ϕ) = 

⋂ 

v ∈ A (u ) 

S 
ϕ 
v . (11) 

In Fig. 5 we show an example of the definition of PSV of the 

ertex A. Particularly, vertices B and C are adjacent to A in the in-

ut graph. For the sake of clarity, the rest of the input vertices, not 

djacent to A, have not been represented in the figure. Moreover, 

et us suppose that the value of the objective function for the so- 

ution ϕ, represented in the figure is 2 (i.e., BW (G, ϕ) = 2 ). 

In Fig. 5 a we have highlighted with light blue color 

he set of host vertices placed at a distance 2 or minor 

rom the host vertex (2,3), which hosts B. Specifically, S 
ϕ 
B 

= 

 (1 , 2) , (1 , 3) , (1 , 4) , (2 , 1) , (2 , 2) , (2 , 3) , (2 , 4) , (2 , 5) , (3 , 2) , (3 , 3) , 

3 , 4) , (4 , 3) } . Additionally, in Fig. 5 a we have indicated, with

 number inside each host vertex, the distance d to (2,3). 
1132 
imilarly, in Fig. 5 b we have highlighted in light orange 

he set of host vertices placed at a distance 2 or minor 

rom the host vertex (3,4), which hosts C. Particularly, S 
ϕ 
C 

= 

 (1 , 4) , (2 , 3) , (2 , 4) , (2 , 5) , (3 , 2) , (3 , 3) , (3 , 4) , (3 , 5) , (4 , 3) , (4 , 4) , 

4 , 5) , (5 , 4) } . Finally, in Fig. 5 c we show the set PSV of A, ob-

ained as the intersection of the two previous sets, which contains 

he host vertices placed at distance 2 or minor to any of the 

djacent vertices to A. More formally, PSV ( A , ϕ) = S 
ϕ 
B 

∩ S 
ϕ 
C 

=
 (1 , 4) , (2 , 3)(2 , 4) , (2 , 5) , (3 , 2) , (3 , 3) , (3 , 4) , (4 , 3) } . Therefore,

f A is assigned to any of the vertices in PSV(A), the maximum 

istance with respect to its adjacent vertices will be equal or 

maller than the BW of ϕ. 

Finally, we formally define N R (ϕ) , as the restricted neighbor- 

ood of N(ϕ) as follows: 

 R (ϕ) = { Move (ϕ, u, (i, j)) : ∀ u ∈ V G , (i, j) ∈ PSV (u ) , 

ϕ(u ) � = (i, j) } . (12) 

Then, we propose the exploration of the reduced neighborhood 

nstead of the whole neighborhood defined by the move operator 

ntroduced in Section 2.2 . 

.2. Efficient move calculation 

For the 2DBMP, a naive straightforward evaluation of a solution 

fter a move consists in recalculating the value of the objective 

unction from scratch. This means that the contribution of every 

nput vertex has to be updated. However, an intelligent evaluation 

ould avoid reevaluating the whole solution by just updating the 

lements that have been affected by the move. Therefore, we pro- 

ose an efficient local search method, based on the move operator 

efined in Section 2.2 , which applies an efficient evaluation after a 

ove. Given an input graph G , a host graph H, and a solution ϕ,

his move considers the vertex u ∈ V G (hosted in vertex (i, j) ∈ V H ),

nd assigns it to vertex (i ′ , j ′ ) ∈ V H . As it was aforementioned, if

here were a vertex v hosted in (i ′ , j ′ ) , i.e., ϕ(v ) = (i ′ , j ′ ) , this

ove would also assign v to (i, j) . Therefore, an efficient objective 

unction revaluation just needs to update the distance assigned to 

hose edges with u (also v when existing) as an endpoint. 

To define the Efficient Bandwidth calculation, denoted as EBW, 

f an input graph G and a solution ϕ 

′ obtained by a move 

ove (ϕ, u, (i, j)) , we first define the set of edges I 
ϕ 
u, (i, j) 

involved

n the move denoted as follows: 

 

ϕ 
u, (i, j) 

= { (u, w ) ∈ E G : ∀ w ∈ V G } 
∪{ (v , w ) ∈ E G : ∀ v , w ∈ V G ∧ ϕ(v ) = (i, j) } . (13) 
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hen, the EBW (G, Move (ϕ, u, (i ′ , j ′ )) , I) can be computed as: 

BW (G, Move (ϕ, u, (i ′ , j ′ ) , I ϕ 
u, (i, j) 

) = 

max { max 
(w,z) ∈ E G \ I ϕ u, (i, j) 

) 
{ d(ϕ(w ) , ϕ(z)) } 

︸ ︷︷ ︸ 
Not updated 

, max 
(w,z) ∈ I ϕ 

u, (i, j) 
) 
{ d(ϕ(w ) , ϕ(z)) }} 

︸ ︷︷ ︸ 
Updated 

. 

(14) 

Notice that the distances of the edges that do not need to be 

pdated in Eq. (14) can be easily evaluated by storing the distance 

ssociated with each edge before the move. Specifically, we use an 

rray of sets, where the range of the array is determined by the 

ossible distance values, while in each set it is stored all edges 

ith a the same distance value. When we consider together the 

se of the aforementioned data structure and the efficient move 

alculation, the running time can be reduced in two orders of mag- 

itude, on average, as we will show in the computational experi- 

nce. 

Let us illustrate this with an example. Particularly, we consider 

gain the move ϕ 

′ ← Move (ϕ, B , (2 , 3)) depicted in Fig. 4 . In order

o evaluate the objective function of the resulting solution ϕ 

′ it is 

ust needed to update the distance associated to the edges with 

n endpoint in B, since (2,3) is not hosting any vertex of the in-

ut graph. More precisely, the edges with an endpoint in B are 

 A , B ) , ( B , F ) , and ( B , G ) . Then, only the distance of those edges

eeds to be re-evaluated, being the BW (G, ϕ 

′ ) calculated as fol- 

ows: 

W (G, ϕ 

′ ) = max { d(ϕ( A ) , ϕ( D )) , d(ϕ( A ) , ϕ( E )) , d(ϕ( A ) , ϕ( F )) ,

d(ϕ( C ) , ϕ( D )) , d(ϕ( D ) , ϕ( E )) , d(ϕ( F ) , ϕ( G )) , 

d(ϕ 

′ ( A ) , ϕ 

′ ( B )) , d(ϕ 

′ ( B ) , ϕ 

′ ( F )) , d(ϕ 

′ ( B ) , ϕ 

′ ( G )) } 
= max { 2 , 1 , 2 , 1 , 3 , 2 ︸ ︷︷ ︸ 

Not updated 

1 , 3 , 1 ︸ ︷︷ ︸ 
Updated 

} = 3 . (15)

Notice that, in this particular example, the number of edges 

valuated is 3, while evaluating the whole solution requires 9 up- 

ates. Reasonably, the impact of this strategy is larger when deal- 

ng with instances composed by many vertices. 

.3. Tiebreak criterion for solutions with the same objective function 

alue 

An optimization problem consists of maximizing or minimizing 

 particular objective function. In some cases, this mathematical 

unction consists of computing either the maximum or minimum 

alue of a set of elements. Therefore, regardless the size of this 

et, the maximum or the minimum value, which determines the 

alue of the objective function, is usually reached in more than one 

lement. When the goal of a problem is to minimize a function 

ased on a maximum value, we denote it as min-max problem. 

imilarly, when the goal of a problem is to maximize a minimum 

unction, it is denoted as max-min problem. Max-min and min- 

ax problems are quite common in optimization and become a 

hallenge for heuristic methods because there may be many dif- 

erent solutions with the same objective function value, despite 

hey are different solutions. This fact is usually known as “flat land- 

cape ” ( Martí, Pantrigo, Duarte, & Pardo, 2013; Pardo et al., 2013 ). 

hen this happens, it is difficult to determine the search direction 

ince there is no way, according to the objective function, to de- 

ermine which solution is more promising. To mitigate this prob- 

em, researchers have opted for tiebreaking criteria or alternative 

bjective functions ( Cavero, Pardo, & Duarte, 2021a; Cavero et al., 

021b ). 

The 2DBMP is a min-max optimization problem and prelim- 

nary experiments corroborate the existence of flat landscapes 

hroughout the solution space. Furthermore, for an input graph 
1133 
ith n = | V G | vertices and a host graph with m = � √ 

n � · � √ 

n �
ertices, the number of solutions in the search space is upper 

ounded by m ! / (m − n )! , but the range of values obtained as the

valuation with the objective function for that solutions are inte- 

er numbers in the interval [1 , 2 · (� √ 

n � − 1)] . Let us remember

hat the evaluation of the objective function of the 2DBMP is di- 

ectly related to the distance of adjacent input vertices measured 

n the host graph (see Eq. (4) ). Then, the number of possible ob- 

ective function values is considerably smaller than the number of 

olutions. Therefore, there might be many solutions with the same 

alue of the objective function. To overcome this difficulty, we pro- 

ose a tiebreak criterion based on the frequency of a particular dis- 

ance in a solution. More formally, given an input graph G (V G , E G )

nd a solution ϕ, we define f l as the number of edges (u, v ) of E G 
ith an associated distance in the host graph equal to l: 

f l = |{ (u, v ) ∈ E G : d(ϕ (u ) , ϕ (v )) = l}| . (16)

Let l max be the maximum distance among all adjacent vertices 

n the graph. It trivially holds that l max corresponds to the objective 

unction value of the problem for a particular solution (i.e., l max = 

W (G, ϕ) ). Then, given an input graph G and an embedding ϕ, we

ropose a tiebreaking function t defined as follows: 

(G, ϕ) = 

l max ∑ 

l=1 

n 

l · f l . (17) 

This equation is inspired by previous works related to circular 

ayout problems ( Cavero et al., 2021a; Cavero et al., 2021b ). It takes

nto consideration not only the maximum distance of an embed- 

ing, but also additional semantic information related to promising 

olutions. Specifically, when the objective function value of two so- 

utions is equal, both solutions are evaluated using the function t . 

he solution with the lower value of t is then chosen as the most 

romising one. The rationale behind this decision is to penalize 

hose solutions with many edges with an associated distance close 

o the value of the objective function. It is worth mentioning that 

f the t value for two solutions is the same, they are considered as 

quivalent (in terms of the tiebreak criterion). 

Let us illustrate the use of the tiebreak criterion with an 

xample. To do so, we consider three different solutions ϕ 1 , 

 2 , and ϕ 3 . Let us assume that the objective function for 

ach solution is BW (G, ϕ 1 ) = max { 1 , 3 , 1 , 2 , 3 } = 3 , BW (G, ϕ 2 ) =
ax { 1 , 2 , 1 , 2 , 3 } = 3 , and BW (G, ϕ 3 ) = max { 2 , 2 , 1 , 2 , 3 } = 3 , re-

pectively. Then, these three solutions are equal according to the 

bjective function of the problem (i.e., the maximum value across 

ll elements, which is 3). However, if we evaluate them with the 

iebreak criterion, we appreciate differences among the solutions: 

(G, ϕ 1 ) = 5 

1 · 2 + 5 

2 · 1 + 5 

3 · 2 = 10 + 25 + 250 = 285 . 

(G, ϕ 2 ) = 5 

1 · 2 + 5 

2 · 2 + 5 

3 · 1 = 10 + 50 + 125 = 185 . 

(G, ϕ 3 ) = 5 

1 · 1 + 5 

2 · 3 + 5 

3 · 1 = 5 + 75 + 125 = 205 . 

In this case, since t(G, ϕ 2 ) < t(G, ϕ 3 ) < t(G, ϕ 1 ) , we would con-

ider ϕ 2 as the most promising one. Similarly, we consider ϕ 3 more 

romising than ϕ 1 . 

. Computational results 

In this section, we present the experiments carried out to em- 

irically evaluate the algorithmic proposals introduced in this pa- 

er. Particularly, we first propose a set of preliminary experiments 

o configure the best variant of our algorithm and to illustrate the 

nfluence of the advanced search strategies. Then, our best vari- 

nt is compared with the best previous algorithm identified in the 

tate of the art. 
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Table 1 

Influence of the initial host vertex (answer to 

Question #1 in Section 2.1 ). 

Random Corner Center 

Avg. OF 13.23 13.00 u8 

CPU Time (s) 0.37 0.37 0.38 

Dev. (%) 6.92 5.02 11.55 

#Best 7 8 6 
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Table 2 

Influence of the host vertex selected after the first assignation 

based on the weights w 1 and w 2 in g 1 (answer to Question #3 

in Section 2.1 ). 

Diagonal Sequential ZigZag g 2 

Avg. OF 34.23 21.46 18.77 10.08 

CPU Time (s) 4.68 4.51 4.48 5.79 

Dev. (%) 283.19 138.11 89.66 6.15 

#Best 0 0 1 12 
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The computational tests have been performed over 90 in- 

tances previously reported in the related literature on the 2DBMP 

 Rodríguez-García et al., 2021 ). These instances are grouped into 

wo different subsets which include: 45 topologically diverse small 

raphs (with | V G | ∈ [5 , 21] and | E G | ∈ [6 , 190] ); and 45 represen-

ative graphs from the Harwell-Boeing collection (with | V G | ∈ 

48 , 960] and | E G | ∈ [78 , 7442] ). To ease future comparisons, all

nstances have been made publicly available at https://www. 

euristicas.es/ . 

All experiments have been performed on an AMD EPYC 7282 

6-core virtual CPU with 16GB of RAM. The operating system used 

as Ubuntu 20.04.2 64 bit LTS, and all algorithms were imple- 

ented in Java 16. 

.1. Preliminary experiments 

In this section, we identify the best configuration of the com- 

onents of the Iterated Greedy procedure proposed in this pa- 

er. Also, we illustrate the merit of the proposed advanced search 

trategies. The preliminary experiments have been performed over 

 reduced set of instances consisting of 15% of the total considered 

nstances (i.e., 13 graphs). We will refer to this subset of instances 

s the preliminary set. 

For each of the experiments carried out, we report the follow- 

ng metrics: the average value of the objective function (Avg. OF), 

he total execution time in seconds (CPU Time (s)), the average de- 

iation to the best solution found in the experiment (Dev. (%)) and 

he number of best solutions found in the experiment (#Best). 

The first set of experiments performed is devoted to configure 

he best variant of the greedy constructive procedure described 

n Section 2.1 , by trying to find the best answer to the questions

aised in that section. Notice that the parameters are studied one 

y one, varying the values for the selected parameter and fixing 

he value for the rest of parameters. 

Particularly, in Table 1 we analyse the proposed strategies to 

etermine which is the most suitable host vertex to perform 

he first assignation (denoted as the answer to Question #1 in 

ection 2.1 ). The results reported in Table 1 correspond to a 100 

f constructions where the input vertex has been chosen at ran- 

om, g 1 is configured with w 1 = 0 . 5 and w 2 = 0 . 5 (i.e., both have

he same weight), and g 2 is used as the criterion to determine the 

ost vertices in the following assignations. With this configuration, 

tarting the construction from a corner host vertex seems to be the 

est alternative, since the constructive procedure is able to reach 

he largest number of best solutions and the smallest deviation to 

he best solution. 

In this case, we do not need to perform an experiment to select 

he most suitable input vertex to start the construction. This issue 

as been solved by starting the construction, at least, once from 

very input vertex. 

Then, we analyse the influence of the parameters w 1 and w 2 in 

 1 which determine the selection of the following input vertices 

urther than the first assignation (denoted as the answer to Ques- 

ion #2 in Section 2.1 ). Let us remember, that w 1 and w 2 balance

he influence of the adjacent assigned/unassigned vertices respec- 

ively, for every input vertex being evaluated with g1 . Particularly, 
1134 
n Fig. 6 we depict the average performance of the constructive 

rocedure for five different configurations of these two parame- 

ers, when the number of constructions increases from 1 to 2500. 

otice that in this experiment the input/host vertices of the first 

ssignation are selected following the best configuration found in 

he previous experiment. As we can observe in the figure, the com- 

ination w 1 = 1 . 00 , w 2 = 0 . 00 is systematically the best configura-

ion and therefore it will be selected for future experiments. Since 

he sum of w 1 and w 2 equals 1, the selected configuration indicates 

hat, for this problem, the value of g 1 is fully determined by the al- 

eady assigned adjacent vertices to the vertex being evaluated. Fur- 

hermore, the benefits obtained by performing multiple construc- 

ions do not improve significantly after 1500 constructions. 

Finally, we analyze the influence of the strategies proposed to 

elect the host vertex in every assignation but the first (denoted as 

he answer to Question #3 in Section 2.1 ). Particularly, in Table 2 ,

e evaluate the four strategies proposed for this task. The reported 

esults are obtained as the average of the best solutions found for 

ach instance after 1500 constructions. Again, the input/host ver- 

ices of the first assignation are selected following the best config- 

ration found with the criteria previously defined, and g 1 is con- 

gured with w 1 = 1 and w 2 = 0 . 

On the one hand, according to the selection of the vertices of 

he host graph, g 2 is easily recognized as the best strategy since 

t finds the best quality solutions (lower average of the objec- 

ive function, lower deviation, and larger number of best solutions 

ound). Among the pattern-based strategies, zigzag is the most 

rominent. 

To sum up, the final configuration of our constructive procedure 

as been set to be executed for 1500 constructions, and the best 

verall solution is selected. Each construction starts from a differ- 

nt initial input vertex (if all vertices have been used at least once, 

he procedure selects a repeated vertex to start with). The initial 

ost vertex is set to be one of the corner vertices of the grid. The

ollowing input vertices are selected one by one with g 1 config- 

red with w 1 = 1 and w 2 = 0 . Finally, g 2 is selected as the method

o determine the host vertices for any assignation performed after 

he first one. 

Our next preliminary experiment is devoted to test the influ- 

nce of the advanced strategies proposed in Section 3 in the local 

earch procedure described in Section 2.2 . First, we evaluated the 

xploration of the neighborhood defined by the move operator fol- 

owing both: a first improvement and a best improvement strategy. 

e found that both strategies reached the same average quality of 

he objective function (32.54) for the preliminary data set. How- 

ver, the CPU time of the local search using a best improvement 

trategy was 5 times larger than using a first improvement strat- 

gy. Then, we configured our local search procedure with a first 

mprovement strategy. 

In Table 3 , we report the results obtained when incorporat- 

ng each of the three proposed advanced strategies to the local 

earch procedure (i.e., the tiebreak criterion (T), the efficient move 

alculation (E), and the neighborhood reduction strategy (R)). We 

lso include in the comparison the original local search procedure 

n isolation (LS). The results provided in the table are obtained 

https://www.heuristicas.es/
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Fig. 6. Evolution of the average objective function value when increasing the number of constructions for different values of w 1 and w 2 in g 1 . 

Table 3 

Contribution of advanced strategies to the local search. 

LS LS + T LS + T+E LS + T+E+R 

Avg. OF 32.54 7.77 7.77 7.85 

CPU Time (s) 72.51 7873.28 22.76 2.18 

Dev. (%) 350.04 4.62 4.62 7.05 

#Best 0 8 8 9 
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fter a single execution of each method, where the initial solu- 

ion was the same for all compared methods and it was randomly 

onstructed. 

As we can observe in Table 3 the inclusion of the tiebreak 

riterion (LS+T) drastically improves the quality of the solutions 

btained with respect to the original local search (LS) although 

he time increases considerably. This increase in the time needed 

y the method is due to the larger exploration of solutions per- 

ormed by the LS+T. As expected, LS+T and LS+T+E were able to 

each the same solutions in terms of quality, however, then the ef- 

cient move calculation reduces the time needed to reach them 

n 99.71%. Finally, the method including the proposed neighbor- 

ood reduction strategy, LS+T+E+R, is able to reduce by one or- 

er of magnitude the time needed by LS+T+E, slightly deteriorat- 

ng the average quality of the solutions obtained. Both behaviors 

re explained by the fact that the number of solutions explored 

s considerably smaller. We consider that LS+T+E+R is the most 

romising combination as a balance between computing time and 

uality. 

Next, we study the best procedures for the destruction and 

econstruction phase. In this experiment, we analyse all possible 

ombinations of the strategies proposed in Section 2.3 . Specifically, 

e evaluate three destruction strategies: random assignations (ran- 

om), assignations of random areas (random area), and assigna- 

ions of areas contributing to the objective function of the solu- 

ion (greedy area). Additionally, as far as the reconstruction phase 

s concerned, we evaluate three proposals: g 1 + random, random 

 g 2 , and g 1 + g 2 . Each proposal includes two strategies to deter-

ine the next assignation. The first strategy selects an input unas- 

igned vertex, while the second strategy selects an available host 

ertex. 
1135 
In Table 4 , we present the results of this experiment. Particu- 

arly, each Iterated Greedy configuration has been executed for a 

aximum of 300 iterations, with the additional condition that the 

ethod is halted if it does not find an improvement of the best 

olution found in the last 150 iterations. The best configuration is 

btained when the destruction is made greedily (“Greedy area” in 

he table) and the reconstruction is made by using the “random 

 g 2 ” criterion. The second best variant is the one where the de- 

truction is made at random (“Random” in the table) and the re- 

onstruction uses “random + g 2 ”. However, this variant finds very 

imilar solutions in terms of quality in half time. Therefore, as a 

rade-off between quality and time, we have selected this second 

onfiguration for our final proposed procedure. 

Finally, it is important to remark that we performed a fine- 

uning experiment to adjust the parameters: maximum number of 

terations ( maxIter ) and the maximum number of iterations with- 

ut improving ( maxNotImprIter ) introduced in the Algorithm 1 . 

articularly, we tested different values of maxIter in the range 

 

100 , 1000 ] in steps of 50. Similarly, we studied the behavior of 

axNotImprIter ) with different percentages (0.25, 0.5, and 0.75) of 

he maxIter . For the sake of brevity, we do not include all the val-

es of this experiment in here. However, among the proposed con- 

gurations, we selected maxIter = 300 and maxNotImprIter = 0 . 75 ·
axIter = 225 for our final design, as a balance of quality and CPU 

ime. 

To conclude the preliminary experiments, we compare our 

hree main algorithmic proposals to verify if an increase in the 

omplexity of the method also results in an improvement in the 

btained results. Specifically, we propose two executing scenar- 

os: a single run of each method and running each method iter- 

tively for 100 seconds. Notice that in this experiment, the solu- 

ion produced by the greedy constructive is provided to the local 

earch and to the Iterated Greedy procedure. The results obtained 

re reported in Table 5 . As expected, in the single execution sce- 

ario, the IG is the best method in terms of average of the ob- 

ective function, deviation and # Best solutions found. However, it 

s also the most time-consuming procedure. On the other hand, 

hen running all methods for 100 seconds, the differences among 

he results obtained are reduced, but IG is still the best overall 

ethod. 
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Table 4 

Influence of the destruction and reconstruction strategies in the performance of the greedy constructive 

procedure. 

Destruction Reconstruction Avg. OF CPU Time (s) Dev. (%) #Best 

Random g 1 + random 5.46 154.21 9.29 8 

random + g 2 5.23 60.20 3.85 11 

g 1 + g 2 5.46 43.13 7.37 8 

Random 

area 

g 1 + random 5.38 145.25 6.41 9 

random + g 2 5.31 110.44 4.81 10 

g 1 + g 2 5.46 65.79 7.37 8 

Greeedy 

area 

g 1 + random 5.31 147.90 4.81 10 

random + g 2 5.15 119.62 0.96 12 

g 1 + g 2 5.38 63.62 6.09 9 

Table 5 

Behaviour of the proposed strategies in a single execution and running for 100 seconds. 

Single execution 100 seconds 

Constructive LS + T+E+R IG Constructive LS + T+E+R IG 

Avg. OF 10.08 6.00 5.23 9.08 5.38 5.23 

CPU Time (s) 6.05 6.43 84.71 102.79 106.86 106.90 

Dev. (%) 95.69 13.32 0.00 75.62 4.49 1.92 

#Best 0 5 13 0 10 12 

Table 6 

Results obtained by the compared methods on the 41 instances of the Small graphs data set with a known optimal, and on the 45 instances of the Harwell- 

Boeing data set. 

Small graphs (41) Harwell-Boeing (45) 

M3 ( Rodríguez-García et al., 2021 ) BVNS ( Rodríguez-García et al., 2021 ) IG BVNS ( Rodríguez-García et al., 2021 ) IG 

Avg. OF 2.17 2.32 2.17 7.11 4.84 

CPU Time (s) 1957.65 3.64 0.02 439.63 102.01 

Dev. (%) 0.00 12.20 0.00 51.77 0.00 

#Best 41 35 41 5 45 
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.2. Final experiments 

In this section, we compare our best Iterated Greedy (IG) vari- 

nt with the best previous algorithms in the state of the art: the 

est Constraint Satisfaction Programming (CSP) model proposed in 

odriguez-Tello et al. (2019) (denoted M3) and the Basic Variable 

eighborhood Search (BVNS) proposed in Rodríguez-García et al. 

2021) . Both procedures were described in the literature review. 

otice that we have compared our procedure with the original 

ource code implemented and provided by the authors. To make 

he fairest comparison possible, instead of directly using the re- 

ults reported in Rodríguez-García et al. (2021) , the BVNS proce- 

ure was run again with the configuration indicated by the au- 

hors, in the same execution environment as the one used for our 

ode. 

In Table 6 we report the quality indicators presented in the pre- 

iminary experiment: the average deviation, the average execution 

ime, and the number of best solutions found for each of the sub- 

ets of instances studied: the diverse small graph subset and the 

arwell-Boeing subset. 

In particular, on the left side of Table 6 , we compare our IG

ith the BVNS and M3 over the set of diverse small graphs. Note 

hat M3 was unable to complete the search for 4 instances out of 

5 within the established time limit (72h). Therefore, we have re- 

oved those instances from this comparison to fairly illustrate the 

ehavior of the proposed algorithm. Additionally, in Table A.1 we 

nclude the individual results per instance for each of the 45 in- 

tances of the complete subset. We observe in Table 6 that M3 

nd IG were able to reach the optimal solution for the 41 instances 

tudied, followed by BVNS with 35. However, the time required by 

G was 5 orders of magnitude shorter than M3 and 2 orders of 

agnitude shorter than BVNS. 

t

1136 
Similarly, on the right side of Table 6 , we compare IG and BVNS

ver the Harwell-Boeing subset. In this case, M3 was not able to 

nish within the maximum time limit and therefore it has been 

xcluded from this comparison. Again, to ease future comparisons, 

e include the individual of each instance in Table A.2 . Based on 

he results reported in Table 6 we observe that IG finds the best 

olution for all the graphs studied (45) in less computational time 

102.01 s) than the BVNS procedure (439.63 s). Consequently, the 

verage value of the objective function is lower in the solutions 

btained by IG than in the solutions obtained by BVNS. Finally, we 

ighlight that BVNS has a 51.77% deviation from the best solutions 

ound, obtaining only five best solutions out of 45 instances. 

To complement the previous experiment, we conducted a 

ilcoxon signed rank test. The resulting p -value < 0 . 0 0 0 01 con-

rms the significance of the results obtained when comparing the 

ethods for the tested instances. 

. Conclusions 

In this paper, we tackle the Two-Dimensional Bandwidth Mini- 

ization Problem by proposing several efficient heuristic strategies 

o find high-quality solutions for the problem. The 2DBMP belongs 

o the graph layout family of problems, and it has been previously 

pproached from an exact perspective, based on Constraint Satis- 

action Programming, and from a heuristic perspective, based on 

he Variable Neighborhood Search metaheuristic. 

We have developed an efficient and effective Iterated Greedy al- 

orithm to deal with the 2DBMP, including an exhaustive study of 

ultiple greedy criteria at the destruction and reconstruction steps 

ithin the IG framework. In addition, we introduce a novel local 

earch procedure based on swap moves of vertices, which includes 

hree advanced enhancement strategies. It is worth mentioning 

hat several of the strategies proposed in this paper have further 
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pplicability to other optimization problems, especially those re- 

ated to Graph Layout Problems. 

The results obtained in this paper emphasize the importance of 

sing a tiebreak criterion to guide the search through flat land- 

cape regions. This is a key strategy when the objective function is 

ot useful in distinguishing between two solutions with the same 

bjective function value. Also, we identified that classical move op- 

rators applied to Graph Layout Problems, such as the 2DBMP, usu- 

lly drive to extensive neighborhoods. In this kind of scenario, lo- 

al search procedures might be inefficient when the time limit is 

hort. To overcome this drawback, we propose two general strate- 

ies with applicability to other problems: a speed-up technique to 

valuate the objective function of neighbor solutions; and a neigh- 

orhood reduction technique based on the exploration of the most 

romising neighbor solutions. Moreover, the graph structure of ei- 

her the input and host graphs is key in determining the best 

euristic strategy in the context of GLPs. Particularly, the number 

f adjacent vertices of each vertex tends to contribute to relevant 

nformation at the time of constructing new solutions. 

Finally, we would like to highlight that the best algorithmic 

ariant of our proposal has been compared to the best previous 

w

Table A.1 

Individual results per instance obtained from the small data set. Note 

not able to solve the instance in a maximum CPU time of 72h. 

M3 BVNS

Instance Best OF CPU Time (s) Dev. (%) OF 

p2p3 1 1 0.20 0.00 2 

p3p3 1 1 0.26 0.00 2 

p4p5 1 1 0.22 0.00 2 

p2c3 2 2 0.24 0.00 2 

p3c3 2 2 0.20 0.00 2 

p4c5 2 2 0.53 0.00 3 

c3c3 2 2 0.24 0.00 2 

c3c4 2 2 0.28 0.00 2 

c4c5 2 2 0.28 0.00 3 

k3k4 3 3 0.55 0.00 3 

k4k5 4 4 74192.71 0.00 4 

c3k4 3 3 0.60 0.00 3 

c4k5 3 3 2.18 0.00 3 

p3k4 2 2 0.27 0.00 2 

p4k5 3 3 1.93 0.00 3 

path10 1 1 0.30 0.00 1 

path15 1 1 0.35 0.00 2 

path20 1 1 0.31 0.00 1 

cycle10 1 1 0.24 0.00 1 

cycle15 2 2 0.50 0.00 2 

cycle20 1 1 0.28 0.00 1 

wheel5 2 2 0.21 0.00 2 

wheel7 2 2 0.23 0.00 2 

wheel10 2 2 0.41 0.00 2 

wheel15 3 3 4444.86 0.00 3 

wheel20 3 - - - 3 

cyclePow10-2 2 2 0.25 0.00 2 

cyclePow15-2 2 2 0.28 0.00 2 

cyclePow20-2 2 2 0.30 0.00 2 

cyclePow10-10 4 4 0.21 0.00 4 

cyclePow15-10 6 - - - 6 

cyclePow20-10 6 - - - 6 

bipartite3-3 2 2 0.26 0.00 2 

bipartite3-4 3 3 0.33 0.00 3 

bipartite4-4 3 3 0.33 0.00 3 

bipartite5-5 3 3 0.78 0.00 3 

bipartite7-8 4 4 1050.31 0.00 4 

bipartite10-10 5 - - - 5 

petersen 2 2 0.31 0.00 2 

complete5 2 2 0.28 0.00 2 

complete10 4 4 14.03 0.00 4 

tree2-2 1 1 0.31 0.00 1 

tree2-3 2 2 0.31 0.00 2 

tree3-2 2 2 0.25 0.00 2 

tree2-4 2 2 546.79 0.00 2 

1137 
ethod in the state of the art, over a previously reported set of 

nstances. The obtained results, supported by statistical tests, cor- 

oborate the merit of our proposal and establish it as a new state- 

f-the-art algorithm for the 2DBMP. 
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ppendix A. Individual results per instance 

In Table A.1 and Table A.2 we report the individual results per 

nstance for the Small and Harwell-Boeing data sets. These values 

ere used to calculate the values presented in Table 6 . 
that a symbol “-” in the table indicates that the algorithm was 

 IG 

CPU Time (s) Dev. (%) OF CPU Time (s) Dev. (%) 

0.11 1.00 1 0.01 0.00 

0.38 1.00 1 0.01 0.00 

7.84 1.00 1 0.03 0.00 

0.16 0.00 2 0.01 0.00 

0.54 0.00 2 0.01 0.00 

7.55 0.50 2 0.03 0.00 

0.83 0.00 2 0.02 0.00 

2.13 0.00 2 0.03 0.00 

9.26 0.50 2 0.04 0.00 

2.59 0.00 3 0.02 0.00 

20.00 0.00 4 0.05 0.00 

2.83 0.00 3 0.03 0.00 

17.86 0.00 3 0.05 0.00 

2.58 0.00 2 0.02 0.00 

14.81 0.00 3 0.04 0.00 

0.44 0.00 1 0.01 0.00 

1.32 1.00 1 0.02 0.00 

4.04 0.00 1 0.02 0.00 

0.40 0.00 1 0.01 0.00 

1.19 0.00 2 0.02 0.00 

4.30 0.00 1 0.03 0.00 

0.12 0.00 2 0.00 0.00 

0.35 0.00 2 0.01 0.00 

1.17 0.00 2 0.02 0.00 

4.11 0.00 3 0.02 0.00 

11.93 0.00 4 0.03 0.33 

1.12 0.00 2 0.02 0.00 

3.58 0.00 2 0.02 0.00 

9.15 0.00 2 0.04 0.00 

3.74 0.00 4 0.02 0.00 

15.01 0.00 6 0.04 0.00 

20.00 0.00 6 0.08 0.00 

0.18 0.00 2 0.01 0.00 

0.28 0.00 3 0.02 0.00 

0.56 0.00 3 0.02 0.00 

1.46 0.00 3 0.02 0.00 

9.03 0.00 4 0.04 0.00 

20.00 0.00 5 0.21 0.00 

0.77 0.00 2 0.01 0.00 

0.12 0.00 2 0.01 0.00 

4.15 0.00 4 0.02 0.00 

0.11 0.00 1 0.01 0.00 

0.99 0.00 2 0.01 0.00 

1.25 0.00 2 0.02 0.00 

5.93 0.00 2 0.04 0.00 
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Table A.2 

Individual results per instance obtained from the Harwell-Boeing data set. 

BVNS ( Rodríguez-García et al., 2021 ) IG 

Instance Best OF CPU Time (s) Dev. (%) OF CPU Time (s) Dev. (%) 

bcsstk01 5 5 48.00 0.00 5 0.35 0.00 

can___62 2 3 62.00 50.00 2 0.22 0.00 

nos4 4 4 100.01 0.00 4 1.13 0.00 

bcspwr03 3 4 118.01 33.33 3 0.97 0.00 

bcsstk04 8 9 132.01 12.50 8 33.24 0.00 

bcsstk22 3 4 138.01 33.33 3 1.76 0.00 

can__144 4 5 144.01 25.00 4 2.84 0.00 

bcsstk05 7 7 153.01 0.00 7 13.82 0.00 

can__161 4 6 161.01 50.00 4 4.31 0.00 

dwt__198 4 5 198.01 25.00 4 6.49 0.00 

dwt__209 5 6 209.01 20.00 5 12.95 0.00 

dwt__221 4 5 221.01 25.00 4 7.26 0.00 

can__229 5 7 229.01 40.00 5 11.65 0.00 

dwt__234 4 4 234.01 0.00 4 11.46 0.00 

nos1 3 4 237.01 33.33 3 4.68 0.00 

dwt__245 4 6 245.02 50.00 4 8.69 0.00 

lshp_265 3 6 265.00 100.00 3 9.31 0.00 

bcspwr04 4 7 274.02 75.00 4 13.05 0.00 

ash292 4 6 292.00 50.00 4 9.84 0.00 

can__292 6 7 292.00 16.67 6 31.82 0.00 

dwt__307 5 7 307.00 40.00 5 25.23 0.00 

dwt__310 4 5 310.00 25.00 4 10.78 0.00 

dwt__361 5 8 361.01 60.00 5 25.45 0.00 

plat362 7 8 362.01 14.29 7 110.03 0.00 

bcsstk07 6 9 420.01 50.00 6 298.42 0.00 

bcspwr05 5 5 443.01 0.00 5 29.52 0.00 

can__445 7 9 445.01 28.57 7 59.74 0.00 

bcsstk20 4 6 485.01 50.00 4 39.75 0.00 

494_bus 5 6 494.01 20.00 5 41.65 0.00 

dwt__503 6 8 503.01 33.33 6 83.16 0.00 

lshp_577 5 8 577.00 60.00 5 63.92 0.00 

dwt__607 5 9 607.00 80.00 5 107.66 0.00 

662_bus 5 7 662.01 40.00 5 56.83 0.00 

nos6 5 14 960.01 180.00 5 49.94 0.00 

685_bus 5 8 685.01 60.00 5 51.32 0.00 

can__715 8 11 715.01 37.50 8 698.93 0.00 

nos7 6 10 729.01 66.67 6 174.52 0.00 

dwt__758 5 7 758.01 40.00 5 127.15 0.00 

lshp_778 4 9 778.01 125.00 4 142.28 0.00 

bcsstk19 6 9 817.00 50.00 6 399.65 0.00 

dwt__878 5 9 878.00 80.00 5 192.83 0.00 

gr_30_30 2 9 900.01 350.00 2 45.41 0.00 

dwt__918 6 9 918.01 50.00 6 431.28 0.00 

nos2 4 6 957.01 50.00 4 106.14 0.00 

nos3 7 14 960.01 100.00 7 1032.95 0.00 
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