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be adapted to nilpotent elements a with all their powers 
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completed to an sl2-triple and a is homogeneous of degree 2 
both in the Z-grading of R and in the Φ-grading given by the 
eigenspaces of adh.
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Conversely, when there are enough invertible elements in Φ, 
we will show that if a nilpotent element a can be completed 
to an sl2-triple, then all powers ak are von Neumann regular.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The study of gradings in associative and different nonassociative structures has been 
of great interest in the last decades (see for example [4], [3], [2], [5], [1] or [24]). We 
highlight the works of Patera, Zassenhaus, Havlíček and Pelantová ([17], [12] and [13]) 
who, between 1989 and 2000, performed a systematic study of fine gradings on the finite-
dimensional complex simple Lie algebras. We also remark Elduque’s and Kochetov’s 2013 
monograph devoted to gradings in Lie algebras [7]; this book contains a compilation of the 
results about classifications of gradings by arbitrary groups on simple Lie algebras over 
algebraically closed fields and unifies the terminology about gradings that had appeared 
before in the literature.

An important tool in the study of gradings on Lie algebras is the embedding of the Lie 
algebra under consideration into an associative algebra, and the study of the classification 
problem in the context of associative algebras (maybe with involution). In this line, 
Rodrigo-Escudero considered gradings by an abelian group on an associative algebra 
such that the algebra is graded-simple and satisfies the descending chain condition on 
graded left ideals, and gave necessary and sufficient conditions for the grading to be fine, 
see [18]; these results where used as a tool by Elduque, Kochetov and Rodrigo-Escudero 
to classify fine gradings on all real forms of classical simple Lie algebras up to equivalence, 
see [8].

In 1997 O. Smirnov showed in [22] that in any unital simple associative algebra R
with a finite Z-grading there exists a maximal complete system of orthogonal idem-
potents E = {e0, e1, . . . , en} that induces the grading, i.e., if R =

⊕n
k=−n Rk then 

each Rk =
∑

i−j=k eiRej . More generally, if the hypothesis of being unital is re-
moved, the grading is induced by a maximal complete orthogonal system of modules 
H = {Hp = RpR−nRn−p | p = 0, . . . , n}. In a subsequent paper [23], the same au-
thor studied a ∗-version of these results for associative algebras with involution ∗, and 
applied them to give a more precise description of associative gradings appearing in 
E. Zelmanov’s classification of simple Lie algebras with a finite Z-grading [25].

Later on, in 2006 Siles Molina revisited Smirnov’s results in [20] and showed that every 
finite Z-grading of a simple non-necessarily unital associative algebra R comes from a 
Peirce decomposition induced by a complete system of orthogonal idempotents lying in 
the maximal left quotient algebra of R.

In this paper we will show that as soon as an associative algebra R over a ring 
of scalars Φ (Φ is a commutative unital ring) contains a nilpotent element whose last 
nonzero power is von Neumann regular, there exists a complete system of idempotents in 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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the unitization R1 of R, and R is graded with respect to it. We remark that our results 
work for general associative algebras without any regularity condition.

Another way of getting a grading in an associative algebra R is the existence of an 
sl2-triple (e, h, f) such that e is nilpotent. In his work of 1958, N. Jacobson showed that 
when a nilpotent element e can be completed to an sl2-triple (e, h, f) and there exist 
enough invertible elements in Φ, the map adh : R → R given by adh(x) := hx − xh for 
every x ∈ R is semisimple and the decomposition of R into the eigenspaces of adh is an 
associative grading of R, see [14, Lemma 1] and 2.11.

We will prove that the condition of having a nilpotent element with von Neumann 
regular last nonzero power implies the existence of an sl2-triple of R with semisimple 
adjoint map adh, and that the grading of R with respect to the complete system of 
orthogonal idempotents is a refinement of the grading induced by the eigenspaces of 
adh. Conversely, if a nilpotent element a can be completed to an sl2-triple, we will show 
that ak is von Neumann regular for every k when there are enough invertible elements 
in Φ.

Similar techniques involving gradings induced by complete sets of orthogonal idempo-
tents, sl2-triples and von Neumann regularity were used by O. Smirnov in [21] to show 
that the standard conjecture of Lefschetz stating that the adjoint of the Lefschetz oper-
ator is induced by an algebraic correspondence follows from Grothendieck’s conjecture 
about the equality of the numerical and homological equivalences.

2. Preliminaries

2.1. Throughout this paper we will deal with non-necessarily unital associative algebras 
R over a ring of scalars Φ. R1 will denote the unitization of R, i.e., R1 = R + Φ1.

An element e ∈ R is an idempotent if e2 = e, and two idempotents e, f ∈ R are 
orthogonal if ef = fe = 0.

Recall that an element a ∈ R is von Neumann regular if there exists b ∈ R such that 
aba = a. We say that a nilpotent element a ∈ R is last-regular if its last nonzero power 
is von Neumann regular; more precisely, a ∈ R is nilpotent last-regular of index t + 1
if a is nilpotent of index t + 1 and at is von Neumann regular in R. Given a nilpotent 
last-regular element a ∈ R of index t +1, there exists b ∈ R such that atbat = at, batb = b

and bakb = 0 for every k = 0, . . . , t − 1 (by abuse of notation ba0b means b2), see [11, 
Lemma 2.4]. The element b is called a Rus-inverse of a.

Let R be an associative algebra with involution ∗ over a ring of scalars Φ with 1
2 ∈ Φ. 

Given an element 0 �= a ∈ H(R, ∗) ∪ Skew(R, ∗) we define the parity of a, denoted by 
|a|, as

|a| =
{

0, if a ∈ H(R, ∗)
1, if a ∈ Skew(R, ∗).
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In the following lemma we will show that when a is a symmetric or skew-symmetric 
nilpotent last-regular element of index t +1, a Rus-inverse of a can be chosen so that its 
parity coincides with that of at.

Lemma 2.2. Let R be an associative algebra with involution ∗ over a ring of scalars Φ, 
1
2 ∈ Φ. Let a ∈ H(R, ∗) ∪ Skew(R, ∗) be a nilpotent last-regular element of index t + 1. 
Then

(i) if at ∈ H(R, ∗), we can construct a Rus-inverse of a in H(R, ∗),
(ii) if at ∈ Skew(R, ∗), we can construct a Rus-inverse of a in Skew(R, ∗).

If b is a Rus-inverse of a and |at| = |b|, the element b will be called a ∗-Rus-inverse of a.

Proof. When a ∈ H(R,∗ ) is a nilpotent last-regular element, the construction of a 
symmetric Rus-inverse of a was done in [9, Lemma 3.2]. The same argument can be 
adapted when a ∈ Skew(R, ∗) and at ∈ Skew(R, ∗) ∪H(R, ∗) and we include it here for 
the sake of completeness.

Let a ∈ Skew(R, ∗) and suppose that at ∈ Skew(R, ∗) (respectively, at ∈ H(R, ∗)). 
Since at is von Neumann regular there exists c ∈ R such that atcat = at. Moreover, since 
1
2 ∈ Φ we can decompose c as c = 1

2 (c − c∗) + 1
2 (c + c∗), and therefore at = atcat =

1
2a

t(c −c∗)at+ 1
2a

t(c +c∗)at and we can replace c by 12 (c −c∗) ∈ Skew(R, ∗) (respectively, 
by 1

2 (c + c∗) ∈ H(R, ∗)) and assume without loss of generality that at, c ∈ Skew(R, ∗)
(respectively, that at, c ∈ H(R, ∗)). Now, if we consider d = catc we have

datd = d and atdat = at.

From now on, the construction of a Rus-inverse follows as in [9, Lemma 3.2]; since it is 
quite tricky, we include it here for the sake of completeness.

The proof will follow by descending induction from t to 1: Define ut = 1 − 1
2ada

t−1

and bt = utdu
∗
t = (1 − 1

2ada
t−1)d(1 − 1

2a
t−1da). Then

• atbta
t = at(1 − 1

2ada
t−1)d(1 − 1

2a
t−1da)at = atdat = at,

• bta
tbt = (1 − 1

2ada
t−1)d(1 − 1

2a
t−1da)at(1 − 1

2ada
t−1)d(1 − 1

2a
t−1da)

= (1 − 1
2ada

t−1)datd(1 − 1
2a

t−1da) = (1 − 1
2ada

t−1)d(1 − 1
2a

t−1da) = bt,

• bta
t−1bt = utd(1 − 1

2a
t−1da)at−1(1 − 1

2ada
t−1)du∗

t

= utda
t−1du∗

t −
1
2utda

tdat−1du∗
t −

1
2utda

t−1datdu∗
t = 0.
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Let us suppose that there exists bi+1 such that

atbi+1a
t = at, bi+1a

tbi+1 = bi+1, and bi+1a
sbi+1 = 0, for s = i, . . . , t− 1.

Let us construct bi such that

atbia
t = at, bia

tbi = bi, and bia
sbi = 0, for s = i− 1, . . . , t− 1.

Define ui = 1 − 1
2a

t−i+1bi+1a
i−1 and bi = uibi+1u

∗
i . Then for any s = i, . . . , t − 1

• atbia
t = at(1 − 1

2a
t−i+1bi+1a

i−1)bi+1(1 − 1
2a

i−1bi+1a
t−i+1)at = atbi+1a

t = at,

• bia
tbi = uibi+1(1 − 1

2a
i−1bi+1a

t−i+1)at(1 − 1
2a

t−i+1bi+1a
i−1)bi+1u

∗
i

= uibi+1a
tbi+1u

∗
i = uibi+1u

∗
i = bi,

• bia
sbi = uibi+1(1 − 1

2a
i−1bi+1a

t−i+1)as(1 − 1
2a

t−i+1bi+1a
i−1)bi+1u

∗
i

= uibi+1a
sbi+1u

∗
i −

1
2uibi+1a

i−1bi+1a
t−i+1+sbi+1u

∗
i

− 1
2uibi+1a

t−i+1+sbi+1a
i−1bi+1u

∗
i

+ 1
4uibi+1a

i−1bi+1a
2t−2i+2+sbi+1a

i−1bi+1u
∗
i = 0,

• bia
i−1bi = uibi+1(1 − 1

2a
i−1bi+1a

t−i+1)ai−1(1 − 1
2a

t−i+1bi+1a
i−1)bi+1u

∗
i

= uibi+1(ai−1 − 1
2a

i−1bi+1a
t)(1 − 1

2a
t−i+1bi+1a

i−1)bi+1u
∗
i

= uibi+1a
i−1bi+1u

∗
i −

1
2uibi+1a

i−1bi+1a
tbi+1u

∗
i −

1
2uibi+1a

tbi+1a
i−1bi+1u

∗
i = 0.

The element b1 satisfies the claim. �
2.3. Let us recall the notion of local algebra of an associative algebra at an element u
(see [10]): let R be an associative algebra over a ring of scalars Φ and let u ∈ R. The 
Φ-module uRu with product given by

uxu ·u uyu := uxuyu

is again an associative algebra, denoted by Ru and called the local algebra of R at u. 
If R has an involution ∗ and u ∈ H(R, ∗) ∪ Skew(R, ∗), the map � : Ru → Ru given by 
(uxu)� = (−1)|u|ux∗u is an involution on Ru.

When e is an idempotent of R, the local algebra Re of R at e coincides with the corner 
eRe.
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In the following proposition we recall that any nilpotent last-regular element a in an 
associative algebra R gives rise to a family of matrix units and that certain subalgebra 
of R is isomorphic to a matrix algebra over a local algebra of R at some element, [11, 
Theorem 2.6] (the construction of the same family of matrix units associated to a nilpo-
tent element with some extra conditions was done by J. Levitzki in [16, Theorem 2.1]); 
these results can be extended to associative algebras with involution.

Proposition 2.4. Let R be an associative algebra over a ring of scalars Φ. Let a ∈ R be a 
nilpotent last-regular element of index t + 1 and let b be a Rus-inverse of a. Then

(1) {eij := ai−1bat+1−j}t+1
i,j=1 is a family of matrix units, i.e., eijekl = δjkeil (where 

δ denotes the Kronecker delta). If we denote ei = eii, then eia = aei−1 for i =
2, . . . , t + 1.

(2) The idempotent e =
∑t+1

i=1 ei satisfies ea = ae =
∑t

i=1 ei+1,i and the subalgebra eRe

is isomorphic to Mt+1(Reij ) for any i, j ∈ {1, . . . , t + 1}.
(3) (ea)t = et+1,1 = atbat = at.

Moreover, if R has an involution ∗, 1
2 ∈ Φ, a ∈ H(R, ∗) ∪ Skew(R, ∗) and b is a ∗-

Rus inverse of a, then for any r, s such that ers ∈ H(R, ∗) ∪ Skew(R, ∗) (for instance 
et+1,1 = at), eRe and Mt+1(Rers) are ∗-isomorphic under the map

Ψ : Mt+1(Rers) → eRe defined by Ψ(
∑
ij

xijEij) =
t+1∑
i,j=1

eirxijesj

where each xij = ersxijers ∈ Rers , and where the involution ∗ in Mt+1(Rers) is given 
by

A∗ = C−1ĀtrC for any A ∈ Mt+1(Rers)

for C =
∑t+1

i=1(−1)i|a|Ei,t+2−i and Ātr =
∑

ij(a�ij)Eji for every A =
∑

ij aijEij ∈
Mt+1(Rers).

The idempotent e will be called Rus-idempotent (respectively, ∗-Rus-idempotent) as-
sociated to a and its Rus-inverse b (respectively, to a and its ∗-Rus-inverse b).

Proof. Items (1), (3) and (2) in the particular case of the corner e11Re11 were shown in 
[11, Theorem 2.6]. Notice that the corner e11Re11, the local algebra Re11 and the local 
algebras Reij at each of the matrix units eij are all isomorphic (under the isomorphism 
ϕ : Reij → e11Re11 given by ϕ(eijxeij) = e11e1ieijxeijej1e11), so (2) holds in general.

Suppose that R is an associative algebra with involution ∗, let a ∈ H(R, ∗) ∪
Skew(R, ∗), let b be a ∗-Rus inverse of a and let us compute e∗ij :

• If a ∈ Skew(R, ∗), e∗ij = (−1)i−jet+2−j,t+2−i: indeed, e∗ij = (ai−1bat+1−j)∗ =
(−1)t+1−j+i−1+|b|at+1−jbai−1 = (−1)t+i−j+|b|et+2−j,t+2−i where |b| = 0 if b ∈
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H(R, ∗) and |b| = 1 if b ∈ Skew(R, ∗). Since b ∈ H(R, ∗) when t is even and 
b ∈ Skew(R, ∗) when t is odd, we conclude that e∗ij = (−1)i−jet+2−j,t+2−i.

• If a ∈ H(R, ∗) then e∗ij = et+2−j,t+2−i.

Summarizing, if a ∈ H(R, ∗) ∪ Skew(R, ∗) then e∗ij = (−1)(i−j)|a|et+2−j,t+2−i.
Let ers be a symmetric or skew-symmetric matrix unit (in particular, r+s = t +2 and 

(−1)(r−s)|a| = (−1)|ers|) and consider the local algebra Rers of R at ers. Since {eij}t+1
i,j=1

is a family of matrix units, the map

(ersxers)Eij �→ eir(ersxers)esj ∈ eRe

defines a ∗-isomorphism between Mt+1(Rers) and eRe. Moreover, since

(eir(ersxers)esj)∗ = e∗sjersx
∗erse

∗
ir

= (−1)(s−j+i−r)|a|et+2−j,t+2−s(ersx∗ers)et+2−r,t+2−i

= (−1)(s−j+i−r)|a|et+2−j,r(ersx∗ers)es,t+2−i

= (−1)(i−j)|a|et+2−j,r((−1)(s−r)|a|ersx
∗ers)es,t+2−i

= (−1)(i−j)|a|et+2−j,r(ersxers)�es,t+2−i,

we have that

Ψ(((ersxers)Eij)∗) = Ψ((−1)(i−j)|a|(ersxers)�Et+2−j,t+2−i)

so the involution in Mt+1(Rers) is given by

A∗ = C−1ĀtrC

where C =
∑t+1

i=1(−1)i|a|Ei,t+2−i and

Ātr =
∑
ij

a�ijEji for every A =
∑
ij

aijEij ∈ Mt+1(Rers). �

Remark 2.5. The ∗-isomorphism described in Proposition 2.4 has already appeared in 
[6, 3.1] in a particular situation. In that case t was even and eRe was shown to be 
∗-isomorphic to Mt+1(S) where S = e t+2

2
Re t+2

2
(when t is even, e t+2

2
∈ H(R, ∗)).

2.6. Suppose that a ∈ R is nilpotent of index t + 1 and all the powers ak, k ≤ t, are von 
Neumann regular. By [11, 2.10] there exists a family of nonzero orthogonal idempotents 
{e(i)}mi=1 that commute with a and such that a =

∑m
i=1 e

(i)a and the elements e(i)a

are nilpotent last-regular of decreasing indices ti + 1, t1 = t > t2 > · · · > tm, each 
e(i)a ∈ e(i)Re(i) and e(i) is a Rus-idempotent for e(i)a.
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2.7. Let G be a group. A G-grading on R is a family Γ = {Rg}g∈G of Φ-modules, called 
homogeneous components, such that R =

⊕
g∈G Rg and RgRg′ ⊂ Rgg′ for all g, g′ ∈ G. 

We denote by Γ : R =
⊕

g∈G Rg and call (R, Γ) a G-graded algebra. The support, 
denoted Supp Γ, is the set {g ∈ G | Rg �= {0}}. We say that a grading is finite if it 
has finite support. The most frequently encountered gradings are finite gradings by the 
group Z, and will be called finite Z-gradings. Any group homomorphism α : G → H

gives a functor from G-graded algebras to H-graded ones: for R =
⊕

g∈G Rg we define 
the H-graded algebra R where R is the same Φ-algebra but equipped with the H-grading 
R =

⊕
h∈H R′

h where R′
h =

⊕
g∈α−1(h) Rg. If the G-grading on R is denoted by Γ, we 

will write αΓ for the corresponding H-grading on R. A G-grading Γ : R =
⊕

g∈G Rg is 
said to be a refinement of an H-grading Γ′ : R =

⊕
h∈H R′

h (or Γ′ a coarsening of Γ) if, 
for any g ∈ G, there exists h ∈ H such that Rg ⊂ R′

h. If the inclusion is proper for at 
least one g ∈ Supp Γ, the refinement (or the coarsening) is called proper. For example, 
if α : G → H is a group homomorphism, then αΓ is a coarsening of Γ, which is proper 
if and only if α is not injective on the support of Γ.

A complete finite family of orthogonal idempotents in R1 is a finite family E =
{e0, . . . , en} of elements of R1 such that eiej = δijei, i, j = 0, . . . , n, (where δ denotes the 
Kronecker delta) and such that 

∑n
i=0 ei = 1. Notice that every complete finite family of 

orthogonal idempotents E in R1 induces a finite Z-grading ΓE on R whose homogeneous 
submodules are given by Rk =

∑
i−j=k eiRej , k = 0, ±1, . . . , ±n.

2.8. Let R be an associative algebra over a ring of scalars Φ. An sl2-triple (ê, ̂h, f̂) of R
consists on three elements ê, ̂h, f̂ ∈ R such that

[ê, f̂ ] = ĥ, [ĥ, ê] = 2ê and [ĥ, f̂ ] = −2f̂

where [x, y] := xy − yx for every x, y ∈ R. Given x ∈ R1, the map adx : R → R is given 
by adx(y) = [x, y], y ∈ R. We say that ê ∈ R can be completed to an sl2-triple if there 
exists f̂ ∈ R such that (ê, ̂h, f̂) is an sl2-triple (recall that ĥ = [ê, f̂ ]).

In Lie theory, sl2-triples are usually denoted with the letters e, h and f . We have 
denoted the elements of an sl2-triple by ê, ĥ and f̂ to avoid confusions with the notation 
of idempotents in the previous results, which naturally arises from the usual notation 
eij of matrix units and the usual ring theory notation of idempotents with the letters e
and f .

Lemma 2.9. Let R be an associative algebra over Φ. Let F = {fi | i ∈ Δ ⊂ Z} be a 
complete finite family of orthogonal idempotents in R1 and let h =

∑
i∈Δ ifi ∈ R1. Then 

adh : R → R is semisimple and induces a Φ-grading Γh on R given by the eigenspaces 
of adh : R → R, which is a coarsening of the finite Z-grading ΓF induced by F under 
the natural homomorphism ϕ : Z → Φ.

Proof. We can easily show that every homogeneous submodule of the Z-grading induced 
by the family F is contained in an eigenspace of adh. Indeed, for every x ∈ R
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adh(fjxfk) = hfjxfk − fjxfkh = (
∑
i∈Δ

ifi)fjxfk − fjxfk(
∑
i∈Δ

ifi)

= jfjxfk − kfjxfk = (j − k)fjxfk,

so fjRfk is contained in the eigenspace of adh associated to the eigenvalue j − k. �
Lemma 2.10. Let R be an associative algebra over Φ and suppose that (2t)! is invertible 
in Φ. Let {ek | k = −t, . . . , t} and {fk | k = −t, . . . , t} be two families of orthogonal 
idempotents and suppose that 

∑t
k=−t kek =

∑t
k=−t kfk. Then fk = ek for every k �= 0.

Proof. Multiply 
∑t

k=−t kek =
∑t

k=−t kfk on the left by ei, so iei =
∑

k keifk. Then 
multiply on the right by fs: ieifs = seifs, i.e., (i − s)eifs = 0. If i �= s then eifs = 0
because i −s is invertible in Φ. Hence iei =

∑
k keifk = ieifi, and when i �= 0 this means 

that ei = eifi.
Multiplying 

∑t
k=−t kek =

∑t
k=−t kfk on the right by ei we get iei =

∑t
k=−t kfkei, 

and multiplying on the left by fs, ifsei = sfsei. As before, if i �= s, fsei = 0, so 
iei = ifiei, i.e., ei = fiei when i �= 0.

Exchanging the roles of ei and fi in the argument above we get fi = eifi = fiei. Thus 
ei = fi, for every i �= 0. �
2.11. When (t + 1)! is invertible in Φ, N. Jacobson showed in [14, Lemma 1] that if a 
nilpotent element ê ∈ R of index t + 1 can be completed to an sl2-triple (ê, ̂h, f̂), then ĥ
satisfies the polynomial

f(X) :=
t∏

j=−t

(X − j) ∈ Φ[X].

If (2t)! is invertible in Φ, for every i, j ∈ {−t, . . . , 0, . . . , t}, i �= j, the monomials X − i

and X − j are coprime. Let us define qk(X) := f(X)/(X − k), k = 0, ±1, . . . , ±t. Then 
there exist rk(X) ∈ Φ[X], k = 0, ±1, . . . , ±t, such that 

∑t
k=−t rk(X)qk(X) = 1 (recall 

that if a(X) is coprime to b(X) and to c(X), then a(X) is coprime to b(X)c(X)). Let

F = {fk := rk(ĥ)qk(ĥ) | k = −t, . . . , t},

which is a complete finite family of orthogonal idempotents in R1. Since (ĥ−k)qk(ĥ) = 0, 
ĥfk = kfk, so ĥ = ĥ(

∑t
k=−t fk) =

∑t
k=−t kfk. By Lemma 2.9, the map adĥ : R → R

is semisimple and the Φ-grading Γĥ on R given by the eigenspaces of adĥ : R → R is a 
coarsening (under the natural homomorphism) of the Z-grading ΓF induced by F on R.

3. Main

3.1. Let a ∈ R be a nilpotent last-regular element of index t +1, and let b be a Rus-inverse 
of a. Consider the family of matrix units (defined in Proposition 2.4(1))
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{eij := ai−1bat+1−j}t+1
i,j=1

associated to a and b. Denote ei := eii, i = 1, . . . , t + 1. Let e = e1 + · · · + et+1 be the 
Rus-idempotent associated to a and its Rus-inverse b. For convenience, let us rename the 
idempotents e1, . . . , et+1 and consider the following family of orthogonal idempotents:

Fea = {f−t+2(i−1) := ei | i = 1, . . . , t + 1} = {f−t, f−t+2, . . . , ft−2, ft}. (3.1)

If Fea is not a complete family of orthogonal idempotents in R1 we complete this family 
defining a new f0 as follows: If t is even, replace f0 by f0 + (1 − e) and if t is odd, define 
f0 as (1 − e). Let us denote by F̂ea this complete family of orthogonal idempotents in 
R1:

F̂ea = Fea ∪ {f0 = 1 − e}, if t is odd;
F̂ea = {f−t+2(i−1) ∈ Fea | i �= t

2 + 1} ∪ {f0 = 1 − e + e t
2 +1}, otherwise. (3.2)

Proposition 3.2. Let R be an associative algebra over Φ and let a ∈ R be a nilpotent 
last-regular element of index t + 1. Let e be a Rus-idempotent associated to a and its 
Rus-inverse b, and let Fea be the finite family of idempotents given in 3.1. Then ea
can be completed to an sl2-triple (ea, ̂h, f̂) of R with ĥ =

∑
kfk where the f ′

ks are the 
idempotents of Fea (and also of F̂ea).

Proof. Let b be a Rus-inverse associated to the nilpotent last-regular element a. Let 
{eij := ai−1bat+1−j}t+1

i,j=1 be the family of matrix units associated to the nilpotent last-
regular element a and its Rus-inverse b defined in Proposition 2.4(1), and let ei := eii, 
i = 1, . . . , t + 1. Define e =

∑t+1
i=1 ei (the Rus-idempotent associated to a and b) and

f̂ :=
t∑

i=1
i(t + 1 − i)ei,i+1, (3.3)

and let us see that ĥ := [ea, f̂ ] satisfies [ĥ, ea] = 2ea and [ĥ, f̂ ] = −2f̂ . Firstly, let us 
compute ĥ in terms matrix units:

ĥ = [ea, f̂ ] =
t∑

i=1
i(t + 1 − i)ei+1 −

t∑
i=1

i(t + 1 − i)ei

=
t+1∑
i=2

(i− 1)(t + 2 − i)ei −
t∑

i=1
i(t + 1 − i)ei

= −te1 +
t∑

i=2
((i− 1)(t + 2 − i) − i(t + 1 − i))ei + tet+1

= −te1 +
t∑

(2i− t− 2)ei + tet+1 =
t+1∑

(−t + 2(i− 1))ei.

(3.4)
i=2 i=1
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In particular, since Fea is just a translation in the indices of the elements ei (see equation 
(3.1)), we get that ĥ =

∑
fk∈Fea

kfk. This sum also holds taking the idempotents fk in 

F̂ea because the completion of the family Fea to F̂ea only affects the idempotent f0, 
which is multiplied by the coefficient 0 in the expression of ĥ as a sum of idempotents. 
Moreover,

[ĥ, ea] =
t+1∑
i=2

(−t + 2(i− 1))ei,i−1 −
t∑

i=1
(−t + 2(i− 1))ei+1,i

=
t∑

i=1
(−t + 2i)ei+1,i −

t∑
i=1

(−t + 2(i− 1))ei+1,i

=
t∑

i=1
2ei+1,i = 2ea.

Similarly,

[ĥ, f̂ ] =
t∑

i=1
(−t + 2(i− 1))i(t + 1 − i)ei,i+1 −

t∑
i=1

i(t + 1 − i)(−t + 2i)ei,i+1

= −2
t∑

i=1
i(t + 1 − i)ei,i+1 = −2f̂ ,

i.e., (ea, ̂h, f̂) is an sl2-triple of R. �
Remark 3.3. The family F̂ea induces the following finite Z-grading in R

Γea : R = R−2t ⊕ · · · ⊕R0 ⊕ · · · ⊕R2t (3.5)

where each Rk :=
∑

i−j=k fiRfj . With respect to this grading

ea ∈ R2, (1 − e)a ∈ R0 and at ∈ R2t

because, by Proposition 2.4,

• ea =
t∑

i=1
ei+1,i =

t∑
i=1

f−t+2i ei+1,if−t+2(i−1) ∈ R2,

• (1 − e)a = f0(1 − e)af0 ∈ R0,

• at = et+1,1 = ftet+1,1f−t ∈ R2t.

This grading (R, Γea) will be called the finite Z-grading of R induced by the nilpotent 
last-regular element a and its Rus-inverse b.
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If R has an involution ∗ and a ∈ Skew(R, ∗) ∪ H(R, ∗) we will assume that 1
2 ∈ Φ

and that b is a ∗-Rus-inverse of a. Then f∗
i = f−i for every i, the idempotent e is 

symmetric, F̂ea is a ∗-complete family of orthogonal idempotents in R1 and the above 
grading (R, Γea) is compatible with the involution (for each k, R∗

k ⊂ Rk).

Example 3.4. Suppose that a is a nilpotent last-regular element of index 3. This means 
that a3 = 0 and a2 is von Neumann regular. Let b be a Rus-inverse of a. In this case 
e1 = ba2, e2 = aba and e3 = a2b. Let e = e1 + e2 + e3. Then

F̂ea = {f−2 = e1, f0 = e2, f2 = e3}, and

F̂ea = {f−2, f0 = 1 − e + e2, f2}

is a complete system of orthogonal idempotents in R1 and induces the grading

Γea : R = R−4 ⊕R−2 ⊕R0 ⊕R2 ⊕R4

with Rk =
∑

i−j=k fiRfj , k = 0, ±2, ±4. Clearly, ea ∈ R2, a2 ∈ R4 and (1 − e)a ∈ R0.
More generally, if we have a nilpotent last-regular element of odd index t + 1, we get 

a grading Γea on R from R−2t to R2t with

Sup Γea = {±2i | i = 0, . . . , t}

by Proposition 2.4(2) because the subalgebra eRe has nonzero elements in each submod-
ule of R±2i, i = 0, . . . , t.

Example 3.5. Suppose that a is a nilpotent last-regular element of index 4. This means 
that a4 = 0 and a3 is von Neumann regular. Let b be a Rus-inverse of a. In this case 
e1 = ba3, e2 = aba2, e3 = a2ba and e4 = a3b. Let e = e1 + e2 + e3 + e4. Then

Fea = {f−3 = e1, f−1 = e2, f1 = e3, f3 = e4}, and

F̂ea = {f−3, f−1, f0 = 1 − e, f1, f3}

is a complete system of orthogonal idempotents in R1 and induces the grading

Γea : R = R−6 ⊕R−4 ⊕R−3 ⊕R−2 ⊕R−1 ⊕R0 ⊕R1 ⊕R2 ⊕R3 ⊕R4 ⊕R6

with Rk =
∑

i−j=k fiRfj , k = 0, ±1, ±2, ±3, ±4, ±6. Notice that R5 and R−5 do not 
appear in this grading. Clearly, ea ∈ R2, a3 ∈ R6 and (1 − e)a ∈ R0.

More generally, if we have a nilpotent last-regular element of even index t +1, we get 
a grading Γea on R from R−2t to R2t with

Sup Γea ⊂ {±2i | i = 0, . . . , t} ∪ {±j | j = 1, . . . , t},
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and also {±2i | i = 0, . . . , t} ⊂ Sup Γea by Proposition 2.4(2) because the subalgebra 
eRe has nonzero elements in each submodule of R±2i, i = 0, . . . , t.

3.6. Let a be a nilpotent element of index t + 1 such that ak is regular for every k ∈
{1, ..., t}. By 2.6 there exists a family of nonzero orthogonal idempotents {e(i)}mi=1 that 
commute with a and such that a =

∑m
i=1 e

(i)a and the elements e(i)a are nilpotent last-
regular of decreasing indices ti + 1, t1 = t > t2 > · · · > tm. For each e(i)a, let us denote 
by F (i)

e(i)a
the non-necessarily complete family of idempotents given in 3.1.

Let us consider the following family of idempotents

Fa = {fj :=
m∑
i=1

f
(i)
j | j = −t, . . . , t where f

(i)
j ∈ F(i)

e(i)a
and f

(i)
j = 0 if |j| > ti}. (3.6)

If this family Fa is not complete in R1, let us complete it by defining a new f0 as follows: 
If f0 ∈ Fa we replace f0 by f0 + (1 − e(1) − · · · − e(m)) and if f0 /∈ Fa (this happens if 
all t′is are odd) we define f0 := 1 − e(1) − · · · − e(m). Let us denote by F̂a this complete 
family of orthogonal idempotents, i.e.,

F̂a = Fa ∪ {f0 := 1 − e}, if f0 /∈ Fa;
F̂a = {fj ∈ Fa | j = −t, . . . , t, j �= 0} ∪ {f0 + 1 − e}, if f0 ∈ Fa

(3.7)

where e := e(1) + · · · + e(m).

Proposition 3.7. Let R be an associative algebra over Φ and let a ∈ R be a nilpotent 
element of index t + 1 such that all the powers ak, k = 1, . . . , t, are von Neumann 
regular. Then the element a can be completed to an sl2-triple (a, ̂h, f̂) with ĥ =

∑
j jfj

where the f ′
js are the idempotents of the family Fa (and also of the family F̂a).

Proof. Let us suppose that ak is von Neumann regular for every k = 1, . . . , t. By 2.6
there exists a family {e(i)}mi=1 of nonzero orthogonal idempotents that commute with a
and such that a =

∑m
i=1 e

(i)a, and every e(i)a is a nilpotent last-regular element of index 
ti + 1 with t = t1 > t2 · · · > tm. For each i, by Proposition 3.2 there exist ĥ(i) and f̂ (i)

such that each e(i)a is part of an sl2-triple (e(i)a, ̂h(i), f̂ (i)). If we define ĥ =
∑m

i=1 ĥ
(i)

and f̂ =
∑m

i=1 f̂
(i) we have that (a, ̂h, f̂) is an sl2-triple of R.

Moreover, by Proposition 3.2, each ĥ(i) =
∑

f
(i)
j ∈F(i)

e(i)a
jf

(i)
j , so

ĥ =
m∑
i=1

ĥ(i) =
m∑
i=1

∑
f
(i)
j ∈F(i)

e(i)a

jf
(i)
j =

∑
fj∈Fa

jfj .

This sum also holds taking the idempotents fk in F̂a because the completion of the 
family Fa to F̂a only affects the idempotent f0, which is multiplied by the coefficient 0 
in the expression of ĥ as a sum of idempotents. �
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Remark 3.8. The family F̂a induces the following finite Z-grading on R:

Γa : R = R−2t ⊕ · · · ⊕R0 ⊕ · · · ⊕R2t (3.8)

where each Rk :=
∑

i−j=k fiRfj . With respect to this grading Γa,

a ∈ R2 and at ∈ R2t.

If R has an involution ∗ and a ∈ Skew(R, ∗) ∪H(R, ∗) we will assume that 1
2 ∈ Φ and 

that the Rus-inverses b1, . . . , bk associated to e(1)a, . . . , e(m)a are ∗-Rus-inverses. Then 
f∗
j = f−j for every j, the idempotents e(i) are all symmetric, F̂a is a ∗-complete family 

of orthogonal idempotents in R1, and the above grading Γa in R is compatible with the 
involution (for each k, R∗

k ⊂ Rk).

Remark 3.9. In 3.3 and 3.8 we have built complete finite families of orthogonal idem-
potents in R1 and the finite Z-gradings Γea and Γa induced by them on R. We have 
also built the sl2-triples (êa, ̂h, f̂) (Proposition 3.2) and (â, ̂h, f̂) (Proposition 3.7) where 
ĥ has a precise form. Lemma 2.9 can be applied to compare the Z-grading Γea (Re-
mark 3.3) with the Φ-grading Γh of the sl2-triple (êa, ̂h, f̂) of Proposition 3.2; similarly, 
it can be applied to compare the Z-grading Γa (Remark 3.8) with the Φ-grading Γh of 
the sl2-triple (â, ̂h, f̂) of Proposition 3.7.

In the rest of the section we will prove the converse of Proposition 3.7. Let us begin 
with a technical result.

Lemma 3.10. Let R be an associative algebra over a ring of scalars Φ and let G be a 
group. Suppose that R is graded by G and let a ∈ Rg be a homogeneous nilpotent last-
regular element of index t + 1. Then we can take a homogeneous Rus-inverse b of a in 
Rg−t . In particular, the associated Rus-idempotent e =

∑t+1
i=1 a

i−1bat+1−i belongs to Ru

where u ∈ G denotes the identity of the group G.

Proof. The construction of a homogeneous Rus-inverse of a follows [11, Lemma 2.4] but 
takes into account that R has a G-grading and that a ∈ Rg: Since at is von Neumann 
regular there exists b ∈ R such that atbat = at. By grading, at ∈ Rgt implies that b can 
be taken in Rg−t . Clearly b′ = batb ∈ Rg−t satisfies

atb′at = at b′atb′ = b′.

We use a recursive argument: by decreasing induction on s = t − 1, . . . , 0 suppose that 
there exists b ∈ Rg−t such that for every k = s + 1, . . . , t − 1 we have that

atbat = at, batb = b and bakb = 0.
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Denote d := 1 − at−sbas ∈ R1 and define c := db ∈ R. Then c = b − (at−sbas)b ∈ Rg−t

because at−sbas ∈ Ru, and satisfies akc = akb, k = s + 1, . . . , t, since at+1 = 0, and

• atcat = atbat = at,

• catc = catb = dbatb = db = c,

• cakc = cakb = dbakb = 0, and

• casc = cas(1 − at−sbas)b = casb− casat−sbasb

= dbasb− dbatbasb = 0.

The result follows by recursion. �
Theorem 3.11. Let R be an associative algebra over a ring of scalars Φ with (3t)! invertible 
in Φ and let a ∈ R be a nilpotent element of index t + 1. If a can be completed to an 
sl2-triple (a, ̂h, f̂) of R, then ak is von Neumann regular for every k ≤ t.

Proof. Suppose that (a, ̂h, f̂) is an sl2-triple (recall ĥ = [a, f̂ ] = af̂ − f̂a). We will show 
that a is nilpotent last regular of index t + 1. To do so, let us first prove by induction 
that for every k ∈ {1, 2, . . . , t} we have that

akf̂kat = k! ĥ(ĥ− 1) · · · (ĥ− k + 1)at.

Indeed,

• af̂at = ĥat,

• af̂af̂at = af̂ ĥat = af̂ [ĥ, at] + af̂atĥ = 2af̂at + ĥatĥ = 2ĥat + ĥ[at, ĥ] + ĥ2at

= 2ĥat − 2ĥat + ĥ2at = ĥ2at,

• a2f̂2at = a(af̂)f̂at = a[a, f̂ ]f̂at + af̂af̂at = [a, [a, f̂ ]]f̂at + [a, f̂ ]af̂at

+ af̂af̂at = −2af̂at + ĥ2at + ĥ2at = −2ĥat + 2ĥ2at = 2ĥ(ĥ− 1)at,

• [a, f̂k] =
k−1∑
i=0

f̂ i[a, f̂ ]f̂k−1−i (because ada acts as a derivation on f̂k),

•
k−1∑
i=0

[akf̂ i+1, [a, f̂ ]] =
k−1∑
i=0

[akf̂ i+1, ĥ]

=
k−1∑
i=0

(−2(k − i− 1))akf̂ i+1 (because adĥ acts as a derivation),

• akf̂af̂kat = akf̂ [a, f̂k]at = akf̂

k−1∑
f̂ i[a, f̂ ]f̂k−1−iat =

k−1∑
[akf̂ i+1, [a, f̂ ]]f̂k−1−iat
i=0 i=0
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+
k−1∑
i=0

[a, f̂ ]akf̂kat =
k−1∑
i=0

(−2(k − i− 1))akf̂kat + kĥakf̂kat

= −k(k − 1)akf̂kat + kĥakf̂kat.

If we suppose that akf̂kat = k! ̂h(ĥ− 1) · · · (ĥ− k + 1)at, then:

ak+1f̂k+1at = ak(af̂)f̂kat

= ak[a, f̂ ]f̂kat + akf̂af̂kat = [ak, [a, f̂ ]]f̂kat + [a, f̂ ]akf̂kat + akf̂af̂kat

= −2kakf̂kat + ĥakf̂kat − k(k − 1)akf̂kat + kĥakf̂kat

= −k(k + 1)akf̂kat + (k + 1)ĥakf̂kat = (k + 1)(ĥ− k)akf̂kat

= (k + 1)!ĥ(ĥ− 1) · · · (ĥ− k + 1)(ĥ− k)at.

In particular, if we define the polynomial q(X) =
∏t−1

i=0(X − i) ∈ Φ[X], we have that

1
t!a

tf̂ tat = ĥ(ĥ− 1) · · · (ĥ− (t− 1))at = q(ĥ)at.

Since for any polynomial ϕ(X) ∈ Φ[X] we have that ϕ(ĥ)ak = akϕ(ĥ + 2k) for every 
k ∈ N (see [14, §2.(3)]), we get that q(ĥ)at = atq(ĥ + 2t).

On the other hand, by 2.11, ĥ satisfies the polynomial p(X) =
∏t

j=−t(X − j).
In general, given three polynomials a(X), b(X) and c(X) ∈ Φ[X] such that λ1a(X) +

μ1b(X) = 1 and λ2a(X) + μ2c(X) = 1 for some λ1, λ2, μ1, μ2 ∈ Φ[X], then

1 = λ1λ2a(X)2 + λ1μ2a(X)c(X) + μ1λ2b(X)a(X) + μ1μ2b(X)c(X)

= (λ1λ2a(X) + λ1μ2c(X) + μ1λ2b(X)) a(X) + μ1μ2 b(X)c(X),

i.e., a(X) and b(X)c(X) satisfy a Bezout-like identity in Φ[X].
Since (3t)! is invertible in Φ, for every i, j ∈ {−2t, . . . , 0, . . . , t}, i �= j, the monomials 

X − i and X − j satisfy a Bezout-like identity: 1
j−i (X − i) + 1

i−j (X − j) = 1 ∈ Φ[X]. 
Thus the polynomials q(X + 2t) and p(X) satisfy a Bezout-like identity, and there exist 
r(X), s(X) ∈ Φ[X] such that r(X)q(X+2t) +s(X)p(X) = 1. Since r(ĥ−2t)at = atr(ĥ),

1
t!a

tf̂ tr(ĥ− 2t)at = 1
t!a

tf̂ tatr(ĥ) = q(ĥ)atr(ĥ)

= atq(ĥ + 2t)r(ĥ) = at(q(ĥ + 2t)r(ĥ) + s(ĥ)p(ĥ))

= at, i.e., at( f̂
tr(ĥ− 2t)

t! )at = at.

Therefore, at is a von Neumann regular element of R and a is nilpotent last-regular of 
index t + 1.
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By 2.11, adĥ : R → R is semisimple and R has a finite Φ-grading with respect to the 
eigenspaces of adĥ. In particular, a ∈ R(2) and ĥ ∈ R(0). By Lemma 3.10 there exists 
a Rus inverse b ∈ R(−2t) of a and e =

∑t+1
i=1 a

i−1bat+1−i ∈ R(0). Since ea ∈ eRe ∼=
Mt+1(ek0Rek0) for any fixed k0 ∈ {1, . . . , t + 1} we get that every power (ea)k is von 
Neumann regular in eRe for each k ∈ N.

The element (1 −e)a is nilpotent of index t2+1 < t +1 by 2.6. Let a′ = (1 −e)a(1 −e) ∈
R(2), h′ = (1 − e)ĥ(1 − e) ∈ R(0) and f ′ = (1 − e)f̂(1 − e) ∈ R(−2). Then (a′, h′, f ′) is an 
sl2 triple:

h′ = (1 − e)[a, f̂ ](1 − e) = (1 − e)(af̂ − f̂a)(1 − e)

= (1 − e)a(1 − e)f̂(1 − e) − (1 − e)f̂(1 − e)a(1 − e) = [a′, f ′],

[h′, a′] = (1 − e)ĥ(1 − e)a(1 − e) − (1 − e)a(1 − e)ĥ(1 − e)

= (1 − e)[ĥ, (1 − e)a(1 − e)](1 − e) = 2a′,

[h′, f ′] = (1 − e)ĥ(1 − e)f̂(1 − e) − (1 − e)f̂(1 − e)ĥ(1 − e)

= (1 − e)[ĥ, (1 − e)f̂(1 − e)](1 − e) = −2f ′.

With the same argument as above we can show that (1 − e)a is nilpotent last-regular of 
index t2 + 1 and there exists an idempotent e(2), e(2)e = 0 = ee(2), such that e(2)a =
ae(2) ∈ e(2)Re(2) ∼= Mt2+1(S) for certain corner S of R, and therefore each power of 
e(2)a is von Neumann regular in e(2)Re(2). Repeating this process we can find a family of 
orthogonal idempotents e(1) = e, e(2),. . . , e(m) such that a = e(1)a + e(2)a + · · · + e(m)a

where the e(i)a′s are nilpotent of decreasing indices ti + 1 and all the powers of each 
e(i)a are von Neumann regular in the subalgebra e(i)Re(i). In particular, all the powers 
ak of a are von Neumann regular in R. �

In the hypothesis of the last theorem we have two complete families of idempotents: 
the one arising from the sl2-triple (see 2.11) and the one arising from a and all its regular 
powers (see 3.6). By Lemma 2.10 they coincide.

The following corollary is a generalized version of the well-known Jacobson-Movoroz 
lemma, which has appeared in the literature with different restrictive hypothesis such 
as finite-dimension, zero characteristic or index of ad-nilpotence less than or equal to 
three (see for example [19, Lemma V.8.2]). Jacobson’s original proof [15, pag. 99], which 
refers to an argument of Morozov, holds in a more general context. We combine here 
Jacobson’s original argument, replacing the hypothesis of finite-dimensionality by the 
ad-nilpotence of the element ê and relate the torsion of the ring of scalars Φ with the 
index of ad-nilpotence of e.

First, we need a technical lemma.

Lemma 3.12. Let R be an associative algebra over a ring of scalars Φ. Let ê ∈ R be a 
nilpotent element of index t + 1 and suppose that (2t + 1)! is invertible in Φ. If (ê, ̂h, f̂)
is an sl2-triple, then f̂ t+1 = 0.
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Proof. Let (ê, ̂h, f̂) be an sl2-triple. As we have shown in 2.11, there exists a complete 
family of idempotents F = {fk := rk(ĥ)qk(ĥ) | k = −t, . . . , t} in R1 that induces a finite 
Z-grading ΓF on R with support from −2t to 2t.

The invertibility of (2t + 1)! in Φ assures that f̂ ∈ R−2 in this Z-grading: Indeed, 
since 

∑
fk = 1 then f̂ = (

∑
k fk)f̂(

∑
k fk) =

∑
kl fkf̂fl. On the other hand, from 

ĥ =
∑t

k=−t kfk and [ĥ, f̂ ] = ĥf̂ − f̂ ĥ = −2f̂ we get

ĥf̂ =
t∑

k=−t

kfkf̂ and f̂ ĥ =
t∑

k=−t

kf̂fk, so

[ĥ, f̂ ] =
t∑

r=−t

rfrf̂ −
t∑

s=−t

sf̂fs = −2
∑
rs

frf̂fs.

Multiplying on the left by fi and on the right by fj (i, j ∈ {0, ±1, . . . , ±t}) we get

ifif̂fj − jfif̂fj = (i− j)fif̂fj = −2fif̂fj .

If 0 �= i − j + 2 we have that fif̂fj = 0 because i − j + 2 is invertible in Φ, and therefore

f̂ =
∑

i−j=−2
fif̂fj ∈

⊕
i−j=−2

fiRfj = R−2.

In particular (f̂)t+1 = 0. �
Corollary 3.13. Let L be a Lie algebra over a ring of scalars Φ and let ê ∈ L with 
(adê)t+1 = 0. Suppose that (t + 1)! is invertible in Φ and there exists z ∈ L such that 
[[ê, z], ̂e] = 2ê. Then there exists f̂ ∈ L such that (ê, ̂h, f̂) is an sl2-triple of L. Moreover, 
if (2t + 1)! is invertible in Φ, (adf̂ )t+1 = 0.

Proof. Let ĥ = [ê, z]. In the first part of this proof we will reproduce Jacobson’s argument 
of [15, pag. 99] and show that there exists f̂ ∈ L with [ê, f̂ ] = h, [h, ̂e] = 2ê and 
[h, f̂ ] = −2f̂ : Let us work in the associative algebra EndL, and let us denote by capital 
letters the adjoint maps of elements of L: E := adê, H := adh and Z := adz. Then

[E,Z] = [adê, adz] = ad[ê,z] = H and

[H,E] = [ad[ê,z], adê] = ad[[ê,z],ê] = 2E.

For every i ∈ N

[Ei, Z] = i(H − (i− 1) id)Ei−1. (∗)

Indeed,
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[Ei, Z] = Ei−1[E,Z] + Ei−2[E,Z]E + · · · + [E,Z]Ei−1

= Ei−1H + Ei−2HE + · · · + HEi−1

= iHEi−1 − 2((i− 1) + (i− 2) + · · · + 1)Ei−1

= i(H − (i− 1) id)Ei−1

because EkH = HEk−2kEk for each k = 1, . . . , i −1. Define the family of Φ-submodules 
Si = KerE ∩ Ei(L), i = 0, . . . , t + 1. From the formula (∗) we get that (H − (i −
1) id)(Si−1) ⊂ Si if i is invertible in Φ: if b = Ei−1(a) ∈ KerE then (H − (i − 1) id)(b) ∈
KerE and

i(H − (i− 1) id)(b) = i(H − (i− 1) id)Ei−1(a) = [Ei, Z](a) = EiZ(a) ∈ Ei(L).

Thus

(H − t id) . . . (H − id)H(KerE) ⊂ (H − t id) . . . (H − id)(S1)

⊂ · · · ⊂ (H − t id)(St) ⊂ St+1 = 0

because E0 = KerE and Et+1 = 0. Up to this point we have only needed the invertibility 
of (t + 1)! in Φ. In particular, the map H : KerE → KerE has eigenvalues in the set 
{0, 1, . . . , t} and therefore the map H + 2 id : KerE → KerE is a Φ-module automor-
phism. Take any v ∈ KerE such that (H +2 id)(v) = (H +2 id)(z) and define f̂ = z− v. 
Then [ê, f̂ ] = ĥ and [ĥ, f̂ ] = −2f̂ .

Let us denote F := adf̂ , so (E, H, F ) is an sl2-triple of the associative algebra EndL

and Et+1 = 0. By 3.12, since (2t + 1)! is invertible in Φ, F t+1 = 0. �
Remark 3.14. In the particular case t + 1 = 3, we recover the well-known result of 
Seligman [19, Lemma V.8.2], which requires 1

2 , 
1
3 , 

1
5 ∈ Φ.
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