Information Sciences 619 (2023) 208-234

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins .

Unconventional application of k-means for distributed 7))
approximate similarity search ™ e

Felipe Ortega **, Maria Jesus Algar®, Isaac Martin de Diego*®, Javier M. Moguerza

2 DSLAB, Research Centre for Intelligent Information Technologies (CETINIA), Rey Juan Carlos University, C/Tulipdn s/n, Mdstoles, 28933 Madrid, Spain

ARTICLE INFO ABSTRACT
Article history: Similarity search based on a distance function in metric spaces is a fundamental problem
Received 28 July 2022 for many applications. Queries for similar objects lead to the well-known machine learning

Received in revised form 6 November 2022
Accepted 8 November 2022
Available online 15 November 2022

task of nearest-neighbours identification. Many data indexing strategies, collectively
known as Metric Access Methods (MAM), have been proposed to speed up these queries.
Moreover, since exact approaches to solving similarity queries can be complex and time-
consuming, alternative options have emerged to reduce query execution time, such as
returning approximate results or resorting to distributed computing platforms. In this
paper, we introduce MASK (Multilevel Approximate Similarity search with k-means), an
unconventional application of the k-means algorithm as the foundation of a multilevel

Keywords:

Data indexing

Approximate similarity search
Metric distance

Unsupervised learning index structure for approximate similarity search suitable for metric spaces. We show that
Distributed computing this method leverages inherent properties of k-means for this purpose, like representing
k-means high-density data areas with fewer prototypes. An implementation of this new indexing

procedure is evaluated using a synthetic dataset and two real-world datasets in high-

dimensional and high-sparsity spaces. Experimental tests show that MASK performs better

than alternative algorithms for approximate similarity search. Results are promising and

underpin the applicability of this novel indexing method in multiple domains.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Similarity search, also known as proximity search, [1-3] is a cornerstone for applications in many different fields, such as
databases, information retrieval [4], distributed data processing, computer vision [5] and bioinformatics [6], among others.
Elements from a dataset are represented by feature vectors in a multidimensional space, and the goal is to find which ele-
ments are similar (close) to a given query object, subject to a certain measure of similarity or, conversely, dissimilarity.

More formally, let 2 be the domain of elements represented by p descriptive features and s : 2 x 2 — R a similarity func-
tion that, for each pair of elements a, b € Z, returns s(a, b) € R, a similitude score between these two elements. In some cases,
it is more convenient to define an equivalent dissimilarity function é: 2 x 2 — R so that for a,b,c € 2, it holds that
s(a,b) > s(a,c) < d(a,b) < d(a, c). The pair (%, 5) is known as a dissimilarity space, a kind of topological space [7]. In addition,

* This work was supported by the following research grants of the Spanish Ministry of Science and Innovation: MODAS-IN (Ref. RTI2018-094269-B-100)
and XMIDAS (Ref. PID2021-1226400B-100).
* Corresponding author.
E-mail addresses: felipe.ortega@urjc.es (F. Ortega), mariajesus.algar@urjc.es (M.]. Algar), isaac.martin@urjc.es (1. Martin de Diego), javier.moguerza@urjc.
es (J.M. Moguerza).

https://doi.org/10.1016/j.ins.2022.11.024
0020-0255/© 2022 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2022.11.024&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ins.2022.11.024
http://creativecommons.org/licenses/by/4.0/
mailto:felipe.ortega@urjc.es
mailto:mariajesus.algar@urjc.es
mailto:isaac.martin@urjc.es
mailto:javier.moguerza@urjc.es
mailto:javier.moguerza@urjc.es
https://doi.org/10.1016/j.ins.2022.11.024
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

& is a metric, usually termed as a distance [8], if it satisfies the properties: 5(a,b) > 0 (non-negativity); é(a,a) = 0 (reflexiv-
ity); d(a,b) = é(b,a) (symmetry); and dé(a,b) + 6(b,c) = d(a,c) (triangle inequality).
Given a query object q € 2, the goal of similarity search is to resolve some of the following queries [2]:

e Point query: Finding elements in 2 with exactly the same feature values as q.

e Range query: Retrieving a subset of elements {o0;} € 2 whose feature values lie within the scope of a given similarity
threshold r around g, so that Vo;, §(0i,q) <T.

e Nearest-neighbours query: Recovering elements in 2 whose features are the most similar to the feature vector represent-
ing g. In this case, we may be interested in finding the single most similar element to q (nearest neighbour), denoted by
NNy, or the k closest elements to q (k-nearest neighbours), denoted by k — NNj.

Numerous data indexing methods, collectively known as access methods, have been proposed to speed up similarity
queries. These methods create an index structure to partition the whole domain 2 into different regions according to a dis-
tance function. After this, users employ different search algorithms to solve similarity queries using this index. There is a
wide range of access methods, including exact approaches, approximate solutions and variants tailored to distributed com-
puting systems.

Exact similarity search methods identify the completely accurate result set for a query. In vector spaces, multi-attribute
access methods use the absolute position of objects to group elements and search for similar instances. In a p-dimensional
Euclidean space, these indexing structures are jointly known as multidimensional access methods. These can be classified as
Point Access Methods (PAM) for elements without a spatial extension and Spatial Access Methods (SAM) to search extended
elements such as lines, polygons or higher-dimensional polyhedra. In the research literature, the general acronym SAM com-
monly designates both classes of indexing strategies in vector spaces [4].

However, SAM present several limitations. First, in applications like textual and multimedia databases, bioinformatics or
pattern recognition, elements in 2 cannot always be described in a vector space. Second, to compare the similarity between
any two elements, we must use a distance function that avoids introducing any correlation between feature values [9]. A
general distance function that meets this requirement is the Minkowski distance [8]. The Manhattan or city block distance
(L, norm), the Euclidean distance (L, norm) and the Chebyshev distance (L., norm) are typical instances of this family. Third,
SAM are prepared for data with spatial components or represented in a vector space with a relatively low number of dimen-
sions. In high-dimensional spaces, their data partition algorithms become unusable due to the curse of dimensionality [10].
Hence, all elements tend to be very far apart, regardless of the distance function chosen for the index.

Feature selection or dimensionality reduction techniques, like multidimensional scaling, can mitigate this problem [11].
However, these approaches are only helpful for elements represented in a relatively low number of dimensions. The so-

called intrinsic dimensionality of a dataset 2" accounts for this notion of “effective dimensions”, and is given by p = % where
W and o2 are the mean and variance of the distribution of distance values between any pair of elements in 2, respectively.

Metric Access Methods (MAM) provide a more general framework for similarity search problems in metric spaces [1,3]. If
d: Z x 2 — Ris a distance function (hence, a metric), then the pair (%, d) defines a metric space. In this setting, MAM exploit
the triangle inequality to partition the metric space into subspaces to filter out portions of the dataset that cannot contain
valid results. This more general framework subsumes SAM, since every normed vector space induces a metric. Additionally,
alternative frameworks can leverage different properties, like Ptolemaic Access Methods [12], that substitute the triangle
inequality for Ptolemy’s inequality and use distances where it is applicable.

Nevertheless, MAM also present limitations. There is no topological information about the application domain in certain
complex problems. Therefore, only non-metric similarity or dissimilarity functions are available [13]. Examples include
cosine similarity in information retrieval, dynamic time warping in time series and various edit distances in computational
biology. This lack of information about the underlying problem impedes the development of MAM for those cases. Addition-
ally, MAM exact search can be expensive in terms of computation time and updating the index structure due to dynamic
data. Moreover, in high-dimensional problems, MAM indexes have serious issues narrowing down the search for candidate
elements in a query. As a result, these methods usually default to a sequential scan. In this situation, users will accept a
trade-off solution sacrificing accuracy for a significant reduction in search time.

Approximate indexing methods implement compromise solutions for similarity search that may introduce some error in
results, although not necessarily. In exchange, they provide faster response time by computing fewer distance values or
decreasing the usage of computing resources to complete the search. These methods apply to either vector spaces or metric
spaces [14]. This paper introduces MASK (Multilevel Approximate Similarity search with k-means), a novel indexing method
based on a multilevel design for approximate similarity search. This method involves an unconventional application of the k-
means partitioning algorithm [15,16] to quickly reduce the number of regions to check when searching for results. The input
to k-means is always a fixed number of k prototype points or centroids which, following an iterative process, eventually divide
the dataset into k groups (Voronoi cells) by assigning each point to its closest centroid, according to a given distance function.

Let us assume Cq,Cy, ..., Cg represent K sets, each containing the indices of observations belonging to each cluster. These
sets must satisfy that C; UC, U...Cx = {1,...,n}. That is, each data element must be assigned to at least one of the K clus-
ters. Moreover, for any two clusters k and ks, the clusters do not overlap between them so that no data element can be
assigned to more than one cluster, that is, C, N Cy, = &. The goal of k-means is to minimize the within-cluster variation,

209

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

denoted as W(C,) and defined as the amount by which observations corresponding to a cluster C, differ from each other,
given by:

K
argmin{ZW(Ck) }
{af Uk=1

For instance, in the specific case of the Euclidean distance between elements in R?, the optimization problem set out in k-
means is:

K 1 p

argmin ST (g - by)* .

X | =1 |C a.beCy j=1

The typical choice in clustering problems is finding a low value of k that generates different groups in the dataset. In con-
trast, MASK adopts an unconventional approach to initialize k-means. Instead of setting a low number of k centroids for each
level, as it would be customary in clustering problems, we force k-means to generate a high number of centroids. Each cen-
troid, as a prototype point, represents all elements assigned to its cluster. Thus, by creating a high number of centroids, we
represent underlying data points with finer detail. In the same way, our indexing method applies to any metric space, includ-
ing the particular case of vector spaces. We show that this unusual application of k-means, different from its standard usage
in clustering problems, has attractive properties and renders superior performance, even with high-dimensional datasets
residing in feature spaces that are usually sparse.

Scalability is another severe limitation for many indexing methods that struggle to work with large datasets [17]. Indexes
following a top-down data partition strategy are inadequate for big data problems in distributed systems, where it is unfea-
sible to centralize metadata on a single node. Instead, successful indexing methods for large datasets usually follow a
bottom-up partitioning strategy. We propose the same approach in MASK, which makes it suitable for distributed computing
applications. In this case, an independent, multilevel index structure can be created for each data partition without the need
for any information exchange between computing nodes to build the indexes or solve queries. At search time, the top-level
index on each node discards partitions that cannot contain a valid answer to speed up the retrieval of candidate elements.

The rest of the paper is organized as follows. Section 2 reviews previous research related to multidimensional data index-
ing, particularly MAM and, within them, those based on clustering algorithms. Section 3 describes MASK, the novel indexing
method based on an unconventional application of k-means. Section 4 presents the results of two empirical experiments to
gain intuition about the properties exploited by this new indexing method and evaluate its performance in high-
dimensional, high-sparsity problems. In addition, it shows performance results of MASK compared with other alternative
algorithms for approximate similarity search. Section 5 discusses design considerations and possible applications of this
indexing method, such as for similarity search on distributed computing platforms. Finally, in Section 6, we recap the main
conclusions for this work and lay out promising lines for future work.

1.1. Contributions

MASK follows a multilevel, bottom-up design, similar to several methods found in previous research (see Section 2 for
further details). However, unlike existing proposals for approximate indexing, it is based on an unconventional application
of the k-means algorithm that can take advantage of increased resources in modern computing systems and distributed plat-
forms. This strategy assigns data points to closer k-means centroids distributed in the feature space according to data density
in different regions. This way, MASK improves the performance of similarity search queries in high-dimensional problems,
which often exhibit high sparsity. In consequence, two distinctive traits characterize this novel algorithm:

e A bottom-up approach drives the creation of the multilevel structure of clusters. As a result, index construction can be
distributed among several computing nodes, where each node stores one or several data partitions. Furthermore, we
show that this procedure lets the index recover underlying patterns in the dataset represented, in the general case, via
pairwise dissimilarities between elements that define a dissimilarity space [7].

e Rather than determining a restrained number of prototype points (k-means centroids) to cluster elements at each level,
our indexing method bombards each data partition with as many centroids as available resources on each computing node
can afford. After centroids reach their final location, they become the new set of elements to be clustered at the next layer
above, using again as many centroids as possible. MASK repeats this procedure at each index level until the set of cen-
troids at the final top level reaches a manageable size.

2. Background and related work

This section outlines the main concepts and strategies that constitute the basis for different similarity search methods. It
also describes featured access methods related to MASK. The main goal is to contextualize our work with previous research
in this area and highlight the major novelties introduced by MASK compared with existing approaches.

210

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234
2.1. Exact similarity search

As described above, access methods for exact similarity search include SAM (Spatial Access Methods) and MAM (Metric
Access Methods). Extensive surveys exist comparing dozens of SAM indexing algorithms [18,10]. Archetypal examples
include the B-Tree [19], Bloom filters [20], the k-d tree [21], as well as the R-tree [22] and its variants.

Except for a few exceptions, these methods perform poorly when partitioning high-dimensional representation spaces.
Experiments by Nene and Kayar [23] suggest that they become unusable for more than 15 dimensions. In that case, or when
there is no explicit representation of elements in the set and only a distance function is available to compare any pair of
them, it is necessary to resort to MAM.

There is a wide variety of MAM to implement indexing structures and query operations in metric spaces. Some use clus-
tering algorithms, like k-means [16], to recursively partition the whole set of elements, creating a hierarchical structure
(tree) of nested clusters. The creation of this tree of clusters usually follows a top-down approach. Furthermore, in all cases,
using the k-means algorithm for index building involves estimating a restricted number of centroids and grouping nested
subsets of elements around them at each level, following the standard procedure.

As in the case of SAM, several surveys [24] and monographs [2,3] provide thorough comparisons among alternative MAM
and their properties. [25] introduces general properties of these indexing structures, along with an initial taxonomy to clas-
sify MAM according to two possible data partition strategies:

e Ball partitioning: These indexing methods select a subset of featured elements (sometimes referred to as vantage points)
{vi} € #,i=1,...,nand define a ball of radius r around each of them, with r = median(d(#;, a)), Va € . As aresult, each
ball defines a data partition separating all points within the scope of the ball from all other points outside the ball. For a
dataset distributed uniformly over the metric space, this method creates many partitions intersected by the query region,
providing poor performance in many similarity search problems [25,26].

o Generalized hyperplane partitioning: This class relies on a data partitioning scheme that defines a set of generalized hyper-
planes (GH). Given two elements v;,v,€ 9 |vi#v,, a GH is defined as the subset of elements
{q;} € ¥ 1d(q;, v1) = d(q;, v2), Vi. In consequence, each GH partitions the space into two regions, one for all elements clo-
ser to v; and the rest for elements closer to z,. This strategy can produce more balanced partitioning schemes with GH
calculated using randomly sampled elements.

One of the most popular algorithms for metric space indexing, the M-Tree [27], is a prominent example of a ball parti-
tioning algorithm (although it partially incorporates some aspects of GH methods). In contrast, the generalized hyperplane
tree (GHT) [25] and its extension into an m-ary tree, the GNAT [26], are two featured examples of GH-based indexing
methods.

Complementing the previous taxonomy, [1] presents a coherent framework to analyze data indexing methods in metric
spaces, mainly from the point of view of multimedia databases and information retrieval systems, and introduces an alter-
native classification of MAM with two groups:

e Pivoting algorithms: They identify a subset of reference elements {7;} € &, i =1,...,n (known as pivots), then classify all
remaining objects according to their distances from the pivot objects. Clearly, ball partitioning methods fall in this cate-
gory, as do other MAM that precompute distance matrices between pairs of elements in the dataset.

e Compact partitioning algorithms: These methods partition the metric space into clusters, according to the proximity of ele-
ments to each cluster centroid. They guarantee that each element is associated with its closest cluster centre, whereas in
pivoting algorithms that may not be the case for elements associated with certain pivots. Methods based on the GH strat-
egy, like GHT and GNAT, pertain to this category, along with algorithms defining a tree of nested clusters.

Uhlmann introduces in [25] the metric tree, whose design is further extended in the VP-Tree [28], introducing the alter-
native term vantage point to name the pivots. In contrast, the hierarchical k-means tree [29] is one of the first examples of a
compact partitioning algorithm. Most of these indexing methods are designed for static datasets, and they are not well-
prepared for frequent insertions and deletions. Recent MAM variants have emerged specifically for dynamic data, such as
the DBM-Tree [30], whose index structure adapts to the density of local data regions. As a result, the tree height is higher
in denser areas to achieve a trade-off solution.

2.2. Approximate similarity search

The approach proposed in this paper to resolve similarity queries belongs to the class of approximate search methods.
Previous research works have introduced multiple examples such kind of algorithms. They usually aim at situations in which
exact methods cannot provide a fast answer, such as in high-dimensional problems or using big data, where exact techniques
default to a full scan of the entire dataset.

It is possible to find approximate similarity search methods conceived for either vector spaces or metric spaces. [31]
introduces a unified framework to study fast similarity search methods that can be either exact or approximate. Besides,

211

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

[14] presents a comparative summary of relevant approximate methods, introducing a taxonomy to classify them according
to relevant traits: the target space (vector, metric); the strategy to obtain approximate results (changing the representation
space, reduced number of comparisons); guarantees provided on results quality (no guarantees, deterministic, probabilistic);
and interaction degree with users (static, interactive).

One of the first algorithms for approximate similarity search in metric spaces is FastMap [32]. It is based on a method to
obtain a fast projection of elements in the original dataset into a k-dimensional space, where k is a user-defined parameter,
and the projection preserves the distance between pairs of elements. Thus, it can reach an approximate answer via dimen-
sionality reduction.

Certain approximate algorithms combine different strategies. An interesting example is the Integrated Progressive Search
[33], which aims at vector spaces. This method first applies dimensionality reduction methods and, later, uses conventional
k-means clustering on the resulting data points in a lower dimension space. This approach reduces the number of distance
comparison calculations. However, in general, it is not straightforward to find a dimensionality reduction technique that
works well for any problem. As we will see later, MASK takes a different approach, taking advantage of some properties
of the core k-means algorithm [34] to reach an approximate result without the need to reduce the number of dimensions
of the original feature space. In contrast, the DAHC-Tree [35] is an approximate indexing method aimed at high-
dimensional problems in metric spaces. It is easy to construct and valid for static and dynamic datasets. Therefore, it offers
a versatile compromise solution for similarity search.

2.3. Scalable similarity search

Several indexing methods for similarity search have been designed to work with distributed systems [24], handling large
and complex datasets. An early example is the Metric Chord (M-Chord) [36]. Later, implementations in software products
began to emerge. MD-HBase [37] integrates multidimensional indexing into the open-source key-value store HBase, focusing
on location-based services.Another example is D-Cache [38], which caches distance information that distributed systems can
leverage to speed up similarity queries.

Nowadays, distributed systems involving big data and high-dimensional, high-sparsity problems have proliferated. Tech-
nological frameworks like Apache Spark have been crucial for the widespread adoption of cluster-based systems in many
areas, including machine learning. Recent advances show promising implementations of SAM on Apache Spark, specifically
for similarity search with spatial data and IoT applications [39]. However there is no straightforward implementation of
more general MAM in modern distributed data processing frameworks to date. As described in Section 3, the approximate
similarity search method proposed in this paper can be naturally implemented on distributed computing platforms. The
multilevel, bottom-up approach to index building can be independently executed in each data partition on different nodes.
Furthermore, the index construction does not imply any exchange of information or metadata between nodes storing differ-
ent data partitions. The only coordination requirement would be to maintain the top-level layer of representative points to
help decide which nodes should be involved in resolving a particular query.

2.4. Machine learning and similarity search

As we have seen, there is a close connection between machine learning and similarity search indexing. The foundations
for designing data access methods rely on familiar concepts in machine learning classification, such as dissimilarity spaces
and distance functions. They are also affected by the same limitations, namely the curse of dimensionality and the challenge
of identifying the actual intrinsic dimensionality governing some problems.

Clustering algorithms play a central role in many indexing methods for similarity search. The k-means algorithm [15]
stands out as a recurring solution for building indexing structures, starting with hierarchical k-means [29]. In fact, according
to [2], the GHT and GNAT indexing methods can be regarded as special cases of a broader class of hierarchical clustering
methods. However, the pivots selected by GNAT are not necessarily k-means centroids, which are k points that may not
belong to ¥ and minimise the sum of squared distances of individual objects to their closest centroid.

Interestingly, the applicability of k-means for constructing hierarchical indexing structures is already described, albeit
without implementation details, by [15]. This application entails building tree clusters in a top-down fashion so that the
within-cluster variance does not exceed an upper threshold R. The set of centroids at each level acts as a fair representation
of data objects, effectively summarising the clusters of all lower levels. Likewise, MacQueen also demonstrates that k-means
can be readily extended beyond vector spaces to the general case of metric spaces. A recent application of k-means and Vor-
onoi diagrams for multidimensional data indexing and spatial data query processing in sensor networks [40] confirms the
validity of multilevel k-means indexing for contemporary distributed data problems.

Nevertheless, this approach for building hierarchical indexes with k-means clusters establishes an upper limit R for
within-cluster variance. In fact, this is an alternative formulation of the typical problem in partitioning clustering, namely
selecting the appropriate number of clusters that must be identified in the dataset. Different methods have arisen to solve
this problem (see, for instance, [41] for a detailed discussion), some of which rely on fixing a within-cluster variability
threshold.

To avoid these practical issues, it would be desirable to let the multilevel clustering algorithm adapt itself to the density of
objects in different regions of the metric space to be indexed. In a certain way, this resembles the idea behind the DBM-Tree

212

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

discussed in Section 2.1, but considering a tree of clusters. Our indexing algorithm introduces an unconventional application
of k-means because it eliminates the restriction of determining the optimal number of clusters in advance. Instead, we pro-
pose to create as many centroids at each level as our computational resources can afford.

As shown in Section 3, we can take advantage of minimising the sum of squared distances from each object to the closest
centroid to adjust the prototypes position for each cluster according to the density of elements in different metric space
regions. In a certain way, this approach also follows the recent strategy of learned indexes in databases [42]. This approach
states that multiple levels of machine learning algorithms can substitute traditional indexing structures to approximate the
underlying data distribution. The Z-order Model (ZM) index is an example application of the learned index strategy to spatial
index structures (for instance, the R-tree). In our method, we let the k-means algorithm determine good locations to place
the centroids representing each cluster, assuming that a sufficiently large number of centroids map the set &.

3. Multilevel k-means structure for data indexing

This section describes the MASK method for approximate similarity search in metric spaces using a multilevel index
structure. It also explains the rationale behind the unconventional application of the k-means clustering algorithm. This
method can be implemented in distributed systems, independently creating sections of the multilevel index that map data
partitions stored on different nodes.

3.1. Multilevel index design

Fig. 1 represents the design principles of MASK. At the lowest level, we have the data points in 2 to be indexed. Blue boxes
in the diagram represent different data partitions or groups. These groups could be stored on different cluster nodes,
although in this case, data partitions reside on the same node for simplicity.

As described in Section 2 above, several MAM rely on building a hierarchy of clusters using unsupervised machine learn-
ing algorithms like k-means. In MASK, the multilevel structure of k-means centroids is created following a bottom-up
approach. Algorithm1 details the construction of this multilevel index structure using k-means. The first level of centroids
(identified as n; in Fig. 1) summarises the data points at the lowest level so that each k-means prototype (centroid) repre-
sents all points assigned to its cluster. The second level (identified as n,) corresponds to centroids representing the proto-
types calculated at the first level, n;. The same procedure is repeated, creating additional layers of prototypes
summarizing the immediately lower group of centroids. The method stops when the number of centroids at the top layer
of this multilevel index structure becomes manageable.

Algorithm 1: Multilevel index construction

Algorithm 1: Multilevel index construction
Input: data, lengthGroup, nCentroids
Output: layerPoints, layerLabels, layers

ngroups < lengthData/lengthGroup;
vector < split(data,ngroups);
Initialize lists layer Points and layer Labels, and variable idLayer;
while ngroups > 1 do
// Initialize groupsPoints, groupsLabels and points
for idGroup = 1 to ngroups do
points < vector[idGroupl;
groupsPoints.add(kmeans (nCentroids, points));
groupsLabels.add(kmeans.labels);

layer Points.add(groupsPoints);
layer Labels.add(groups Labels);
ngroups < length(groupsPoints)/lengthGroup;
if ngroups > 1 then
L vector < split (layerPoints, ngroups);

| tdLayer +=1;
layers < idLayer — 1

The assembly process requires two initial parameters: the group length (lengthGroup) and the number of centroids cal-
culated for each group (nCentroids). The group length refers to the number of elements in each data partition at the lowest
level. In general, we assume that all partitions will have the same size, although this condition is not strictly necessary.
Besides, the size of partitions should depend on available computing power and the number of nodes in distributed comput-
ing systems.

Fig. 1 shows a simple example: 80 points in the dataset at the lowest level, with lengthGroup = 10 and nCentroids = 5.
Thus, the algorithm assumes 8 groups of 10 points at the first level. In each group, the algorithm builds 5 clusters using

213

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

k — means, - ° . o ° .
Pl N
i - "
ny centroids Preg .
”’/’ \\\\
’¢’, \N\\
-7 RS
/” s
k — means; [1
= ° ° ° ° ° ° ° ° ° °
ng3 centroids . 3 . <
‘ \ 7 \
/ \ / \,
/ \ / \,
/ . / \
/ \, / \
/ \, / .
/ ., 4 3
4) ’ N
4 3, ’ \,
k — means, f Y f 3
n, centroids © o © o o © 06 © o o © © © o o © © © o o
’ \ i ' i \
\

k —means; |
ny centroids

[peccoco 0o cofccooo o000

Fig. 1. Conceptual representation of the multilevel structure approach followed in MASK.

k-means. Depending on their distance to the corresponding centroid, a different number of points may fall in each cluster.
For this reason, regions with higher data density will also tend to receive more centroids. This clustering at the first level
reduces the initial number of data points by a particular proportion, the data summarization ratio. The relationship between
the values of lengthGroup and nCentroids determines this ratio. In this example, this ratio is 2:1. Hence, the size of each data
group is shrunk by half, from 80 to 40.

At the second level, the algorithm takes 4 groups of 10 points (since lengthGroup = 10), and k-means is applied to each
group to obtain 5 new clusters, each represented by a centroid. This procedure is repeated recursively until the number
of points at the top level is small enough. The stop condition implemented in this case is that the total number of centroids
at the top level must be less than or equal to lengthGroup. Therefore, the problem’s computational complexity decreases as
the total number of points drops after each iteration.

Nevertheless, the critical aspect of determining the optimal number of centroids at each level remains open. In general,
previous indexes based on trees of clusters generate a limited number of centroids at each level. In contrast, recent methods
for metric spaces, such as DBM-Tree [30], adapt the height of the indexing tree to changes in the data density of different
regions in 2. However, the downside of the latter approach is that we may not attain consistent search performance because
the algorithm must traverse more or fewer levels depending on the density of the target region for each query. The core nov-
elty in MASK to overcome this issue is an unconventional application of the k-means algorithm, tailored to the specific case
of information indexing on modern computing platforms, that departs from the traditional strategy suggested in clustering

problems.
3.2. A new approach for information indexing using k-means

A typical usage of k-means in unsupervised machine learning must find the appropriate number of clusters for a given

problem beforehand, where a centroid represents each cluster. Therefore, the number of centroids should not be too high
since they would not summarise the underlying data effectively or too low, which would group unrelated data points. In
practice, different techniques allow determining the optimal number of centroids, such as the elbow method, through a plot
of the total within-cluster sum of squares for different k, the Silhouette Coefficient Algorithmor the Gap statistic. Neverthe-
less, the final result can be pretty sensitive to the choice of initial locations of cluster centroids. To circumvent this limitation,
algorithms such as k-means++ [34] propose spreading the initial random centroids more evenly, generally leading to better
results.
However, the goal pursued by MASK is approximate data indexing, not clustering. As more powerful computational
infrastructures become available, providing larger memory and storage capacity, prior restrictions about the number of clus-
ters to maintain at each level become less relevant. It is interesting to check what happens in this new scenario when the
dataset is bombarded with a high number of k-means centroids, as large as the computing infrastructure can afford.

A conceptual experiment can be helpful to illustrate this approach on a dataset comprising 4 clouds generated from a t-
distribution in R?, with 12 degrees of freedom and different means for each cloud so that they clearly separate from each

other. The experiment consists of two tests:
e The first test generates an increasing number of k-means centroids (from 4 to 128) on the complete dataset, following a
top-down approach. That is, k-means receives the complete set of points to calculate the centroids’ positions in each case.

214

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

4 8 16
101 |] - Eas B L]
° (] 3 S .-.. .0 S THES ° : O.'
" y
01 () ° o o
] . o ®
-5
> 32 64 128
10 [] L] L
i o S .
e ® e ‘ %'.o " ?o
° . . O
. ...’ OIS . . . 0. !. ° ® 0.&': X
51 .
Q ., LS “
. 2 op. ®
0 e, o o". N '...‘.Q\ .5&..
s
PR LI .;.:o RO
-4 0 4 8 12 -4 0 4 8 12 -4 4 8 12

Fig. 2. Results of bombarding 4 data clouds with an increasing number of k-means centroids, following a top-down approach. Labels on each pane indicate
the total number of centroids generated for each case.

o The second test randomly assigns data points to 4 different data partitions (groups), simulating the situation MASK would
find in a distributed system. Then, a growing number of k-means centroids independently bombard each group so that
the aggregated number of centroids in all groups is the same as in the first test. This procedure represents a bottom-
up indexing strategy.

The experiment aims to demonstrate that it is possible to accomplish comparable results regardless of the data indexing
approach. Fig. 2 shows the result of the first test. All panels depict the same 4 t-distribution clouds bombarded with increas-
ingly more k-means centroids (in black). Interestingly, as the number of centroids increases, more of them tend to concen-
trate in denser data regions. This behaviour is in line with known results on the consistency of the k-means method [43].
Moreover, when using a vast number of centroids, some even gravitate towards outliers, providing effective coverage for
extreme data points.

Fig. 3 represents the bottom-up indexing procedure in a single case of the second test (8 centroids per group). As
explained above, each group may have points that belong to any of the 4 initial clouds. Partial outcomes from each group
shown in Fig. 3a are combined to create the final result exhibited in Fig. 3b.

Fig. 4 presents the results for all cases in the second test. In each case, the k-means algorithm is run independently on
each group, using a growing value of nCentroids, from 1 to 32. The panes in Fig. 4 depict the aggregation of partial results
from groups. Pane labels indicate the values of nCentroids, chosen to ensure that the total number of centroids in each case
is the same as in the first experiment. Outcomes from this second test are comparable to those presented in Fig. 2, provided
that the indexing structure generates a high enough number of centroids. These results demonstrate that different nodes can
store separate data partitions, and then each node can create independent indexing structures. Hence, MASK can scale up to
handle problems involving big data distributed in parallel computing clusters.

3.3. Searching and data insertion

The index based on the multilevel structure with k-means centroids in MASK can accelerate similarity search queries. The
centroids hierarchy can help discard sections of the dataset where it is unlikely to find candidate results. However, the k-
means algorithm usually provides a local optimum solution and cannot guarantee finding the global optimum for the cen-
troids location. Consequently, we cannot assure that the search process using our multilevel index returns exact results.

For this reason, our algorithm belongs to the class of approximate similarity search methods. Despite this apparent lim-
itation, we will show that the time and resources required to build the index are affordable. In addition, depending on the
dataset characteristics to index, the accuracy of results can be sufficiently high for many practical applications.

To solve any type of query using this multilevel index, we start at the top level of the centroids hierarchy, steering the
search according to the distance between the centroids at each level and the target query object q € 2. Then, we adapt this
general approach to solving a specific query.

215

F. Ortega, M.J. Algar, 1. Martin de Diego et al.

Information Sciences 619 (2023) 208-234

group1 group2
10 g
. L ¥ * ‘-u.‘.iy‘ao T o ol
01 . g \¢ ?, .
-5
s group3 group4
7
- 2ok » -y
% e . e .
r % L]
0 oRE S L . b1 &
¥ .
-5 - ! ! : .
4 0 4 8 12 0 4 8 12

(a) Partial results of generating 8 centroids (in black) in each group
(data partition). Points from the 4 original clouds are randomly as-

signed to each group.

10 1
2% %
oMo -
. e e %
' i group
51 group1
> group2
group3
P group4
o o s T 2
04 s :”?v ¥ i b'-t .
8 L - P&
.
.
-5 T T T v
-4 0 4 8 12

X

(b) Aggregation of partial results from (a) in a single plot. Data points
are coloured according to their data partition. A total of 32 centroids

(in black) are created.

Fig. 3. Indexing in a single case of the second test, using 32 k-means centroids (8 centroids per group). Partial results in (a) are combined in a single plot in

(b) for comparison with the equivalent case in the first test.

Point query. At the top level, calculate the distance from each centroid to g, and select the centroid with the minimum
distance value. Then, at the next level, only consider the subset of centroids represented by the one previously selected at
the top level. Calculate the distance from each centroid in this subset to q again and choose the nearest centroid. Repeat
the same procedure in subsequent iterations over the remaining levels, focusing on children of the selected centroid at
the prior level and taking the closest child to q. Eventually, the algorithm reaches the subset of data points represented

216

F. Ortega, MJ. Algar, I. Martin de Diego et al. Information Sciences 619 (2023) 208-234

1 2 4
10 1
5 -
0 -
group

5 group1

> group2

° group3

107 group4
5 -
O -

-5

x

Fig. 4. Results of bombarding the same dataset with an increasing number of k-means centroids, following a bottom-up approach with separate data
partitions. Points are coloured according to the data partition (group) to which they have been assigned. Labels on each pane indicate the number of
centroids generated in each group.

by the selected centroid at the lowest index layer. At this stage, it is easy to perform a full scan over this small subset of data
points that returns the one with the lowest distance to g as the point query result. Fig. 5 illustrates this process, marking the
centroid selected at each index level with arrows. This procedure is almost equivalent to the nearest-neighbour search
described in Algorithm 2 below. The only difference is that the point query algorithm seeks a perfect match within the data
partition reached at the end of the search process.

Nearest neighbour and k-nearest neighbours queries. The nearest neighbour search proceeds similarly to resolving the point
query. However, the closest element to q in the data partition is returned instead of looking for an exact coincidence. In k-
nearest neighbours queries, the final subset of data points is ranked according to their distance from q. Then, the query
returns the k members with the lowest distances from the rank. Algorithm 2 illustrates the case of the k-nearest neighbour
search.

Algorithm2: k-NN search algorithm.

Algorithm 2: k-NN search algorithm.
Input: layerPoints, spoint, layers, nCentroids

for idLayer = layers to 1 do
if idLayer # layers then
| @dGroup < searchGroup (layer Labels, id Layer)
else
| idGroup < 0
centroids < layer Points|id Layer][idGroup);
matrizD < euclideanDistance (spoint, centroids);
posCentroid < searchPosMin(matrizD);
// Correction of the centroid identifier
if idLayer # layers then
1dGroup < posCentroid/nCentroids;
L idCentroid < posCentroid — (idGroup x nCentroids);
else
idGroup + 0;
idCentroid < posCentroid;

// Data layer

selecPoints < layer Points[idGroup|[idCentroid;
matrizD < euclideanDistance (spoint, selecPoints);
idK Points < searchKNN (matrizD,k);

217

Information Sciences 619 (2023) 208-234

F. Ortega, MJ. Algar, I. Martin de Diego et al.
new data
/.
k — means,, a5 . ° ° Ny
" ~,
ny, centroids P .
/” \\\
»* S
o ~,
’/"” \\\\\
. <
k — means; [\ 1
i o o o o o o ° ° o
ng3 centroids . 3 . .
; .. ; \
/ \ / N
74 % 2 \
/ N
/ N / \
/ \ 7 |
k— / N / \
means, £ 4 f y
n, centroids o e o o o © o © o o ° ! o o o o 0o o o o
i N j \ i \ i \
ll \\ ll \\ ll ‘\ ll \\
/ \ / \ / \ / \
/ \ / \ / \ / \
! \ 1 \ ! 4 \ 1 Ay
1 Ay 7 Ay 7 AY i Ay
/ \ / \ / \ / \
/ \ \ \ \
! N ! N g N J N
k —means; \ f \) S
nl centroids 00000 oooo0o 00000 oo0o00 o000 .h.. ooooo o0000
a % 7 \ 7 N, Va . ; N, ’ .\ 7 \, 3 S,
3 . 4 N v A & \ 0 N 9 N '8 N // X
5 L4 N N N B N i NS Y
il 3 4 \ 4 / \ S
| —7

Fig. 5. Procedure to perform a point search using the proposed multilevel index based on k-means.

Range query. At each level, consider the subset of children centroids whose distance to q lies within a ball r around q. Then,
follow the same search path for every child selected in the lower layer. Finally, we obtain a set of candidate groups of points, and
the query returns the point collection that matches the query condition in each candidate set. Algorithm 3 details this approach.

Algorithm3: Range search algorithm.

Algorithm 3: Range search algorithm.
Input: layerPoints, spoint, layers, nCentroids, radius

// Top layer

idGroup « 0;
centroids < layerPoints|layers][idGroup);

matrizD < euclideanDistance (spoint, centroids);
sortVecCentroids < sortDist (matrizD);
vecCandidates <— selectCandidates (sortVecCentroids, radius);
for idLayer = layers — 1 to 1 do

// Initialize newCandidates, vecChildren

for candidate € vecCandidates do

idGroup < searchGroup (layerLabels, idLayer);
centroids < layer Points[id Layer][idGroupl;

matrizD < euclideanDistance (spoint, centroids);
sortVecCentroids < sortDist (matrizD);

vecChildren <
selectCandidates (sortVecCentroids, radius);

// Correction of the centroid identifier

for pos € vecChildren do
1dGroup < pos/nCentroids;

newCandidates <
posCentroid — (idGroup x nCentroids);

vecCandidates <— newCandidates;

// Data layer
matrizD < euclideanDistance (spoint, centroids);

sortVecCentroids < sortDist (matrizD);
idRangePoints < selectCandidates (sortVecCentroids, radius)

Besides, MASK can also be applied to dynamic datasets since new points can be stored using the index structure with a

simple procedure:
o First, select the k-mean prototype at the top level with the minimum distance to the new point.
e Then, choose the k-means centroid again with the minimum distance to the data point from the centroids at the second

level, which are children of the selected prototype at the top level.
218

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

e Repeat these steps, iterating over the multilevel index layers until we reach one of the data points groups with bounded
within-group variance, and assign the new point to that group.

It is pertinent to note that if many new elements are added to 2 following this procedure, the size of data partitions at the
bottom of the hierarchy may become quite uneven. However, this is not a major problem since new points fall next to other
similar elements, guided by the multilayer structure of centroids. As a result, if one partition grows beyond a certain thresh-
old, it can be split into smaller data groups. After this, just the local part of the index covering that specific region needs
reconstruction without affecting the rest of the structure.

3.4. Indexing distributed datasets

MASK can be implemented in parallel and distributed computing systems, as shown in Fig. 6. In this example, the dataset
consists of 4 element subsets separated from each other in the feature space. Moreover, let us assume that this dataset is split
into several partitions, and each partition is stored in a different node. Hence, every partition receives points from any of the
4 original sets. Each node works with its data partitions using MASK in parallel with the rest of the nodes. The algorithm is
executed following a bottom-up approach to obtain a local multilevel index structure in each node. Then, at the management
level of the distributed system, like the primary cluster node, only the top-level centroids from each node need to be
recorded. MASK uses these metadata to decide which nodes will be involved in resolving search queries.

It is possible to search on all nodes in parallel or restrict the inquiry to nodes with centroids whose distance to the target
query object is lower than a given threshold €. In the example of Fig. 6, MASK creates 4 centroids at the top level of each
node. In addition, it creates 2 groups with 4 centroids per group at the lower indexing level of each node. The algorithm sum-
marises the original dataset effectively using this distributed index structure. As a result, the size of hierarchical metadata
maintained by the centralized cluster management service to speed up the similarity search shrinks.

Of course, each particular application can tune several design parameters to adapt the multilevel index construction pro-
cedure to the peculiarities of any specific dataset:

o At the lowest index level, it is advisable to bombard data partitions with as many k-means centroids as can be reasonably
afforded by available computational resources. As explained in Fig. 4, the higher the number of centroids calculated on
the data points, the better the accuracy of MASK to find the actual position of points, effectively mapping high-density
regions, sparse regions or outliers.

-
/3
8.
, . o/ % ‘E
4 o =1 Jﬂ — : °
| | . 8 :
Dataset 1 5 " : &
erver
3 L
| A Agl
e
3 ool
o /m e
x | 63a *
8.2 | o®axk Y
- = o//8 2 AcHE @ ore
A o9 74 *. n
‘ ;) * 3 oA ®
| s
- o Dataset 2 Server2 : ; 'GA.‘
b)
» Cluster Master i : . Original dataset
Original g , :
dataset : : ; 3 B @ @: cluster centroids
X
%
: e
- 0/ W =
« -)p) : ~
o "I o\s 1
B 88
Datasetn 8.3
Servern o .5
N -
0

Fig. 6. Schematic application of the MASK indexing method on a distributed dataset.

219

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

e At higher index levels, there must be a compromise between indexing accuracy and data reduction. The data summariza-
tion ratio of centroids between one layer and its adjacent level above determines this trade-off. For the experiments
described in Section 4, we have fixed a value of 2:1 for such a ratio in adjacent layers, effectively halving the number
of centroids to calculate in each new iteration. However, further analyses must be conducted to evaluate the impact of
this configuration parameter on the MASK performance.

3.5. Complexity analysis

To analyse the complexity of MASK, we consider index construction time to create the multilevel structure and approx-
imate nearest neighbour search time.

Regarding the index construction complexity, it is well-known that the optimisation problem involved in the k-means
algorithm is NP-hard [44]. In practice, truncated versions of this algorithm are applied so that a rough worst-case bound
can be assumed to be O(I x k+ nx p) [8], where I is the maximum number of iterations, k is the selected number of cen-
troids, and p is the number of dimensions of the problem space. Thus, since I is fixed, for large enough values of k, the com-
plexity of building each level in the MASK index is O(knp). Let us assume the creation of a balanced multilevel index, easily
attained by selecting appropriate values for the lengthGroup and nCentroids configuration parameters. In that case, the num-
ber of levels in the index structure, denoted as L, will be L = logn/log k (of course, for k > 0). Thus, the total cost of building
the MASK index is O(knp(logn/logk)).

As for approximate nearest neighbours search time complexity, MASK must traverse log n/log k levels, plus one additional
search in a leaf node (a group of actual data points). MASK examines at most k centroids at each index level to choose the one
with the minimum distance to the query point, an operation whose cost is O(kp). If we choose the value of lengthGroup to be
a multiple of k, then the final search cost within the group of points at the bottom of the structure is also O(kp). As a result,
the global cost for the approximate nearest neighbours search in MASK is O(kp(1 + (logn/logk))). These results for index con-
struction and nearest neighbour search are comparable to those of previous tree-based algorithms using k-means [33,5].

However, in contrast with previous approaches, one of the main advantages of our proposed algorithm is the bottom-up
design for index construction. This strategy lets us directly parallelise index building and similarity searches, distributing
sections of the multilevel structure on different nodes. As the algorithm does not require any synchronisation between nodes
for these two operations, increasing the number of available node reduces execution time drastically. In turn, this also allows
increasing the value of k substantially, improving approximate similarity search precision even with very large datasets.

4. Experimental results
Several experiments have been conducted to evaluate the performance of MASK using three different datasets:

o The first experiment employs a synthetic dataset, including 8 Gaussian clouds, generated using the standard procedure
described in [45]. In this case, the main goal is to illustrate the behaviour of MASK against a dataset that exhibits
well-known theoretical properties.

e We use the Reuters-21578 dataset [46] for the second experiment, a popular benchmark for high-dimensional and high-
sparsity text classification obtained from the UCI repository. Here, we aim to evaluate the capacity of MASK to map and
retrieve elements in an adverse scenario for many other alternative algorithms.

o The third experiment involves the MNIST_784 dataset ', a standard benchmark in similarity search research. We compare
MASK performance in approximate nearest neighbours search with respect to existing algorithms for this purpose.

All experiments have been executed on a server equipped with 2 AMD EPYC 7451 microprocessors (24 cores/48 threads,
2.30 GHz, 64 MB L3 cache), 128 GB of DDR4 RAM and an SSD Intel D3-S4510 (capacity 480 GB) for secondary storage. The
following section describes the methodology developed to undertake these empirical tests, including metrics to assess MASK
performance. After this, we present the experimental results.

4.1. Performance evaluation

The main advantage of MASK is providing a rapid answer to queries at the expense of returning approximate results.
Thus, a straightforward strategy to assess the performance of this algorithm is to undertake an exhaustive search of all ele-
ments in a given dataset 2. Then, the proportion of data points that were correctly retrieved can be determined. This is the
common approach to all evaluation experiments developed in this study.

Besides, MASK performance could be improved even more by relocating points not correctly identified after the first build
of the multilevel structure of k-means centroids. Intuitively, when the point search reaches a partition at the tree bottom,
and the target element is not found in that group, if the target point is reassigned to that partition, it will join other close
elements according to the distance function. Then, similar points are placed together after rebuilding the multilevel index,

T http://yann.lecun.com/exdb/mnist/

220

http://yann.lecun.com/exdb/mnist/

F. Ortega, MJ. Algar, I. Martin de Diego et al. Information Sciences 619 (2023) 208-234

facilitating that the point search retrieves more elements correctly than with the previous index version. Our experiments
perform several iterations of data relocation and index rebuilding to check whether this strategy can help or not decrease the
error rate in some cases.

Table 1 summarizes the main characteristics of the datasets used for performance evaluation experiments in this study.

The first experiment evaluates the capacity of MASK to provide good approximations for similarity search, using a syn-
thetic dataset with 8 Gaussian clouds in R?. This dataset is a common benchmark in many previous studies on data indexing
since it is well-characterised from a theoretical point of view [45,8]. It is possible to adjust the mean and standard deviation
of each Gaussian distribution to control the percentage of overlap between adjacent clouds. As a result, we created 3 differ-
ent versions of this dataset:

o In the first version, the Gaussian clouds have a clear separation, as depicted in Fig. 7a. This is a baseline test, where most
data points should be correctly retrieved. This dataset is identified as Z'cno in experiments.

Table 1

Notation and description of datasets used to evaluate the performance of MASK.
Id Name n d Sparsity
Z6No Gaussian clouds (no overlap) 800,000 2 Low
2 oMo Gaussian clouds (moderate overlap) 800,000 2 Low
2 Gro Gaussian clouds (remarkable overlap) 800,000 2 Low
A REUT Reuters-21578 (UCI repository) 21,578 5,532 High
L vnist MNIST_784 (OpenML) 70,000 784 High

o 354
40 4
0 ® o, ©
°

° o @ 30

30 4 «diiie g &%
on)
- . v}
. [

o 254
o] * il 3
20

10 4
151

T u T 10 = T T T T T

0 5 1‘0 1‘5 20 25 30 5 10 15 20 25 30
® cloud0 coudl @ cloud2 @ cloud3 @ cloudd @ cloud5 coud6 @ cloud7 ® clouwd0 coudl @ cloud2 @ cloud3 @ cloudd @ cloud5 cloud6 @ cloud7
(a) Dataset Xgno (no overlap). (b) Dataset Xgapo (moderate overlap).

354

30 4

251

20 A

15 4

T T
5 10 15 20 25 30 35
©® clouwd0 cloudl @ cloud2 @ cloud3 @ cloudd @ cloud5 cloud6 @ cloud7

(c) Dataset Xgro (remarkable overlap).

Fig. 7. Synthetic datasets used in the first experiment, comprising 8 Gaussian clouds with 200 points each and different degrees of overlap between
adjacent groups.

221

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

e The second version represents a compromise benchmark, with a moderate overlap between contiguous Gaussian clouds,
as shown in Fig. 7b. Our experiments evaluating the effect of problem size or configuration parameters on MASK perfor-
mance use this version. This dataset is identified as Zcyo in our evaluation tests.

e The third version, depicted in Fig. 7c, consists of Gaussian clouds with substantial overlap. In this case, the error rate in
point search should rise noticeably since it is more difficult for MASK to accurately retrieve data points inside overlapping
regions. In experiments, this dataset is referred to as Z'cro.

It is expected that MASK should retrieve, without problems, most data points in 2'gno With clearly separated clouds. How-
ever, the error rate should also grow as the degree of overlap between contiguous clouds increases in datasets 2 gpo and 2 cro-
In theory, for an exact indexing algorithm, the error rate should tend to the Bayes (irreducible) error of the whole dataset [8].
In this case, the 8 overlapping regions between contiguous clouds determine the classification error [47]. In practice, MASK
will incur in certain additional error for an exhaustive point search on top of this threshold.

MASK performance in a real-world scenario is assessed in the second experiment using a high-dimensional and high-
sparsity problem. Many competing algorithms for similarity search in metric spaces struggle to deal with datasets of this
kind. The Reuters-21578 dataset [46] from the UCI repository represents a compelling case study. It is a widely used bench-
mark in supervised text classification, with a collection of more than 10,000 news documents published in 1987 and cate-
gorised into 90 different topics. Some of these topics are very similar and present substantial overlap among them. Besides
the results for topic categorisation, this experiment measures the performance of MASK for indexing purposes. Henceforth,
this dataset is identified as 2 reyr.

Finally, we use the MNIST_784 dataset available online ? to compare MASK performance with respect to other existing
algorithms for approximate nearest neighbours search. This dataset is identified as 2'ynisr. It contains 70,000 samples of hand-
written digits, which have been size-normalised and centred in a fixed-size image, described by 784 features. Besides its high
dimensionality, the dataset also exhibits high sparsity. It is considered a classical benchmark in the field of similarity search.

Fig. 8a visualises a subset of three categories ('money-supply’, 'coffee’ and ’oilseed’) from the Z'rryr dataset. Fig. 8b pre-
sents another visualisation corresponding to the complete 2 ynst dataset. These graphs have been obtained by calculating
the first 50 components from a PCA dimensionality reduction [11] for both datasets, then applying the t-SNE tool [48] to
visualise high-dimensional data. In both cases, we can see the complexity of these problems that exhibit substantial overlap
among data elements from different categories.

4.2. Synthetic dataset results

The first experiment compares MASK performance against the two opposite versions of the synthetic dataset: 2¢no (N0
overlap, see Fig. 7a) and % ¢zo (remarkable overlap, see Fig. 7¢). In this execution, 8 Gaussian clouds in R? are generated for
each dataset, with 200 points per cloud. The distance function to measure dissimilarity between data elements is the Eucli-
dean metric. The initial configuration parameters for MASK are lengthGroup = 16 and nCentroids = 8, which render a data
summarization ratio between adjacent index levels of 2:1. In both cases, MASK divides the initial dataset of 1,600 points into
100 groups, with 16 points per group. All data points are randomly assigned to one of these groups so that each partition
(group) may contain points from any of the 8 clouds. This simulates the situation in a distributed dataset, where data par-
titions are processed separately.

After creating the data groups, we build the multilevel index. At the bottom level, the algorithm obtains 8 centroids per
group, calculating 800 centroids in this first layer. The algorithm repeats this procedure at the next level, summarizing the
800 centroids obtained before. Hence, the centroids from the previous level are assigned to a new centroid at the next level
above, using k-means and the Euclidean distance.

The algorithm eventually generates a multilevel index of k-means centroids, with a final depth of 8 layers, since the stop
condition is that the number of centroids at the top layer must be lower than lengthGroup. Now, the index is ready to accept
point queries that systematically search for all points in the original dataset, following Algorithm 2 to seek a perfect match. In
the case of dataset Zno, the indexing method correctly finds all points without errors, as the original clouds are well-
separated from each other. Due to this, there is no need to perform any iterations to relocate data points since the error rate
cannot be further reduced.

Nonetheless, the error rate increases noticeably working with dataset % ggo. In this case, the multilevel index cannot accu-
rately retrieve elements in proximity or inside overlapping regions, producing an error rate of 40.5% for a point search of all
elements in Zggo.

As mentioned above, an option to reduce this error rate is relocating data points not correctly found in the corresponding
partition, reached at the end of the point search algorithm. After rebuilding the multilevel index, we repeat the exhaustive
point search through all dataset elements to obtain the new error rate. Following this approach, the error rate decreases from
40.5% at iteration 0 to 30.31% at iteration 3. Fig. 9 represents the error rate values corresponding to each iteration to relocate
data points. The error fluctuates around the best asymptotic solution due to the iterative optimization method to implement

2 http://yann.lecun.com/exdb/mnist/

222

http://yann.lecun.com/exdb/mnist/

F. Ortega, MJ. Algar, I. Martin de Diego et al. Information Sciences 619 (2023) 208-234

%
10| %0 o 8
u -
5 0ot o LR .
4 \
2 0 g lle i f Tz 0 °
PO .
Q
Q
a 5
2 5 :
a . ." 0
& '0,‘»
-10 y %
e O .
o 1 ., ® ‘q,
_15 o 2 .;‘o L e
-10 -5 0 5 10

tsne-pca3-one

(a) Visualisation of a subset of vectors repre-
senting documents for categories 'money-supply’,
‘coffee’ and ’oilseed’ in XppyT.

10
5
[«
2| ee
o 0 e 4
S ® 7 X
g)
= e O
2 e 6
= e 2
e 3
e 9
e 5
-10 . 1
-100 -75 -50 -25 0.0 25 50 75 10.0
tsne-pca50-one
(b) Visualisation for dataset Xy nrsT-
Fig. 8. Visualisation of datasets Z'reyr and Z'ynisr using t-SNE.
100
75
i)
&
+ 50
[
. \/\//_
25

0 2 4 6 8
Iteration

Fig. 9. Error rates for each iteration to relocate data points with dataset Z'cgo.

223

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

k-means. From these results, we can conclude that the algorithm converges to its best result very fast, even if it can still not
determine the correct partition for some points on overlapping areas.

4.2.1. Influence of the dataset size

Since MASK is suitable for distributed computing platforms, evaluating how the problem size affects its performance is
crucial. The dataset Z'cgo leads to a significant error rate caused by the considerable overlap between Gaussian clouds. This
high error may conceal the effects of other sources of variation on index performance, such as the size of the dataset or
changes in configuration parameters. For this reason, from this point, we compare the performance between datasets
Zeno (see Fig. 8 and Zeumo (see Fig. 7b). Different points per cloud are considered for both datasets (200, 1,000, 10,000 and
100,000) in order to analyze how this variation affects the error rate and computation time of MASK. All simulations have
been performed with lengthGroup = 16 and nCentroids = 8.

In the case of dataset Z'¢no, Fig. 10a displays the total time consumed during the index construction stage (tree time) and
the time required to search the whole set of points (search time) for each problem size. Table 2 presents the numerical results
along with the corresponding error rates. The conclusion is that the error rate remains very low for any dataset size. How-
ever, as the problem size grows, the computation time for index construction and exhaustive point search also increases.

We undertake the same analysis with dataset Z'¢cyo (moderate overlap). It is clear, from computation times represented in
Fig. 10b and shown in Table 3, that when the problem size grows, the time spent by MASK building the tree and searching for
all points also increases. The error rate only exhibits a slight variation, mainly due to the overlap between clouds. As the
number of points per cloud grows, the overlapping region expands, thereby increasing the error rate.

Fig. 11 compares the error rate obtained from datasets Z'cno and Z'cnmo. As expected, the error rate is higher for the mod-
erate overlap case but does not rise significantly for larger problem sizes with any of these two datasets. Therefore, the
degree of overlap between adjacent clouds has a more relevant impact on the error rate than the size of the problem.

10000 10000

1000 1000

g Algorithm E Algorithm
E Search E Search
F 100 - Tree F 100 =& Tree

g g

10 10
npc=200 npc=1000 npc=10000 npc=100000 npc=200 npc=1000 npc=10000 npc=100000
Problem size (number of points per cloud) Problem size (number of points per cloud)
(a) Dataset Xgno (no overlap). (b) Dataset Xgpro (moderate overlap).

Fig. 10. Comparison of tree time and search time (log scale) for different values of problem size.

Table 2
Index construction time (tree time), exhaustive point search duration (search time) for all elements in Z'gyo (no overlap) and error rate, with different dataset
sizes. The number of points per cloud in each problem (npc) is also indicated.

Problem size Problem size Problem size Problem size

npc = 200 npc = 1,000 npc = 10,000 npc = 100,000

Tree time (sec.) 5.905 28.601 287.674 2863.450
Search time (sec.) 2.250 13.892 293.547 12415.074
Error rate(%) 0.0 0.11 0.09 0.05

Table 3
Index construction time (tree time), exhaustive point search duration (search time) for all elements in Z'¢yo (moderate overlap) and error rate, with different
dataset sizes. The number of points per cloud in each problem (npc) is also indicated.

Problem size Problem size Problem size Problem size

npc = 200 npc = 1,000 npc = 10,000 npc = 100,000

Tree time (sec.) 5.842 28.861 288.439 2874.815
Search time (sec.) 2.284 14.382 313.715 13730.897
Error rate (%) 11.937 14.212 14.087 16.334

224

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

4.2.2. Impact of configuration parameters

The evaluation continues analysing the influence of configuration parameters, lengthGroup and nCentroids, on MASK per-
formance. Again, datasets Zcnvo and Zcumo are used in these tests, fixing the number of points per cloud to 10,000 in both
cases.

Fig. 12 compares the computation time for the tree-building phase and the exhaustive point search for dataset 2’cno, using
different values of lengthGroup and nCentroids. In all cases, the data summarization ratio between these two configuration
parameters is kept at 2:1. As lengthGroup and nCentroids increase their values, the time to build the multilevel index
decreases moderately, suggesting an inverse relationship between these magnitudes. At the same time, since the number
of indexing levels decreases when the group length and the number of centroids grow, a slight reduction in search time
can be achieved in some cases. Table 4 explores these differences in more detail.

A similar situation occurs when MASK is applied to dataset 2cwo, using the same series of increasing values for
lengthGroup and nCentroids and keeping the data summarization ratio between them at 2:1 for all cases. Fig. 13 and Table 5
present the results. As lengthGroup and nCentroids values increase, the computation time required by MASK for tree construc-
tion tends to decrease, as does the time needed for an exhaustive point search of the entire dataset. The values in column tree
depth show that the number of layers in the multilevel index drops from 13 to 10 levels. This is the leading cause of time
reduction in tree construction and point search. The total time spent on exhaustive point search drops since every individual
point query must traverse fewer layers to return a result.

Moderate Overlap

a a4
N W B
53
q

npc=200 npc=1000 npc=10000 npc=100000

No overlap

Log Error rate

o
o
(=

0.09
0.06
0.03
npc=200 npc=1000 npc=10000 npc=100000
Problem size (number of points per cloud)

Fig. 11. Error rate comparison when there is no overlap between dataset clouds (bottom panel) and when there is some overlap between them (top panel).

Search
2650
2600
2550 & s
g2s00 \,,/”“
e 10:5 30:15 50:25 70:35 90:45 110:55
E Tree
o
o
|
330
320
310
300

10:5 30:15 50:25 70:35 90:45 110:55
Group length : number of centroids

Fig. 12. Computation time spent in multilevel index construction (tree) and exhaustive point query (search), for different values of lengthGroup and
nCentroids, with dataset Zno (10,000 points per cloud).

225

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

Table 4
Computation time required for multilevel index construction (tree time) and exhaustive point query (search time), for different values of lengthGroup and
nCentroids, with dataset Zcno (10,000 points per cloud). The number of levels created by the index structure in each case (tree depth) is also indicated.

Tree time (sec.) Tree depth Search time (sec.) Error rate(%)
lengthGroup = 10 nCentroids = 5 337.450 13 2653.897 0.158
lengthGroup = 30 nCentroids = 15 321.383 12 2525.883 0.125
lengthGroup = 50 nCentroids = 25 318.820 11 2550.783 0.06
lengthGroup = 70 nCentroids = 35 312.977 11 2543.880 0.053
lengthGroup = 90 nCentroids = 45 300.070 10 2491.706 0.061
lengthGroup = 110 nCentroids = 55 301.053 10 2518.820 0.055
Search
2900 *
2800
o ——————
2700
n
@
e 10:5 30:15 50:25 70:35 90:45 110:55
E Tree
D 325
|
320 —
315
310
10:5 30:15 50:25 70:35 90:45 110:55

Group length : number of centroids

Fig. 13. Computation time spent in multilevel index construction (tree) and exhaustive point query (search), for different values of lengthGroup and
nCentroids, with dataset % cvo (10,000 points per cloud).

Table 5

Results for the computation time required for multilevel index construction (tree time) and exhaustive point query (search time), for different values of
lengthGroup and nCentroids, with dataset Z'cvo (10,000 points per cloud). The number of levels created by the index structure in each case (tree depth) is also
indicated.

Tree time (sec.) Tree depth Search time (sec.) Error rate(%)
lengthGroup = 10 nCentroids = 5 325.294 13 2891.359 13.791
lengthGroup = 30 nCentroids = 15 322.588 12 2762.296 13.631
lengthGroup = 50 nCentroids = 25 318.593 11 2769.591 12.775
lengthGroup = 70 nCentroids = 35 317.898 11 2745472 11.853
lengthGroup = 90 nCentroids = 45 318.403 10 2618.803 11.712
lengthGroup = 110 nCentroids = 55 309.307 10 2676.827 11.448

The main effect when the values of lengthGroup and nCentroids grow is the progressive improvement of the error rate in
exhaustive point search. Fig. 14 compares the error rate variation for datasets % gno (no overlap) and 2'cyo (moderate over-
lap). Even though the error rate values for dataset 2gno are much lower than for Zgyo, as lengthGroup and nCentroids values
rise, we observe similar trends in both graphs. It stems from these results that the influence of both lengthGroup and nCen-
troids on MASK performance is consistent, disregarding the degree of overlap between the Gaussian clouds. Index structures
with fewer layers need less time to be constructed, leading to a more precise point search with a lower error rate. Therefore,
MASK has a performance advantage when configuring larger groups (partitions). Despite this, the error rate levels off after a
certain point, and it is not possible to achieve further improvement.

4.2.3. Role of the data summarization ratio

So far, the data summarization ratio between lengthGroup and nCentroids has been 2:1 in all experiments. Here, we
explore how changes in this data summarization ratio affect MASK performance using the Z'cno and Z'cumo Synthetic datasets
again. In both cases, we generate 10,000 points per cloud.

226

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

Moderate Overlap

135 "
13.0
12.5
12.0
—

11.5
10:5 30:15 50:25 70:35 90:45 110:55

No overlap

Log Error rate

o
<
[T
o

0.125
0.100
0.075
0.050

105 30:15 50:25 70:35 90:45 110:55
Group length : number of centroids

Fig. 14. Comparison of changes in the error rate values with dataset Zcvo (no overlap) and Z¢vo (moderate overlap), as lengthGroup and nCentroids are
increased.

Three situations are studied, corresponding to lengthGroup = 10,50 and 90, respectively. Fig. 15 presents the results for
Zeno (no overlap case). The left panel displays changes in computation time for tree assembly (blue line) and during the
search process (red line) for lengthGroup = 10. On the horizontal axis, nCentroids gets values of 2,5 and 8, respectively.
The graph shows that computation time for both stages directly depends on the number of centroids per group, as expected.
If the number of centroids increases, the computation time rises for index construction and exhaustive point search. The
same effect occurs in the other two cases with lengthGroup = 50 and 90. When lengthGroup = 50, nCentroids is set to
10,25 and 40, and when lengthGroup = 90, the number of centroids is 18,45 and 72. In this way, the sequence of data sum-
marization ratios is the same as in the case of lengthGroup = 10. The difference between computation time during the index
construction stage and for the search process remains approximately constant over the three cases of lengthGroup.

Fig. 16 displays the computation time for the moderate overlap case (dataset Zcmo). The same three scenarios with
lengthGroup = 10,50 and 90 are considered, with identical variations in the number of centroids for each case. Results are
very similar to those in Fig. 15. Therefore, the overlap between adjacent clouds does not affect computation time for tree
building or search queries with different data summarization ratios.

1g=10 1g=50 1g=90
3000 1

< .
;8,1 000 1 Algorithm
g =@ Search
= =& Tree
o
o
3

3001

100 1

2 5 8 10 25 40 18 45 72
nCentroids

Fig. 15. Computation time during multilevel index building (tree) and exhaustive point search (red), for different values of the data summarization ratio
between lengthGroup and nCentroids, with dataset 2'cno (10,000 points per cloud). Each panel represents the computation time for a fixed lengthGroup (lg)
and different values of nCentroids.

227

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

1g=10 1g=50 1g=90

3000 1

g
Algorithm

§%1ooo- 9
£ =@ Search
L - Tree
Le))
o
i |

3001

1001

2 5 8 10 25 40 18 45 2
nCentroids

Fig. 16. Computation time for multilevel index building (tree) and exhaustive point search (red), with different values of the data summarization ratio
between lengthGroup and nCentroids, using dataset Z'cmo (10,000 points per cloud). Each panel represents computation time for a fixed lengthGroup (lg) and
different values of nCentroids.

Fig. 17 displays changes in the error rate for datasets % gno (no overlap) and Z gvo (moderate overlap) in the three previous
situations (with lengthGroup = 10,50 and 90), respectively. As seen above, the error rate decreases when lengthGroup and
nCentroids increase their values. This difference becomes remarkable in the case of moderate overlap. In spite of this, if
we keep the value of lengthGroup constant, the error rate drops or remains stable when the number of centroids per group
increases. Therefore, a data summarization ratio of 2:1 is a satisfactory compromise solution between computation time (for
index construction and search) and the error rate.

4.3. High-dimensional and sparse dataset results

One of the most problematic aspects of MAM is that, in many cases, they render very poor performance in high-
dimensional and sparse dissimilarity spaces. As we explained in Section 1, this issue is linked to the intrinsic dimensionality
of our dataset, §, which determines the number of effective dimensions representing all elements. The higher the number of

1g=10 1g=50 1g=90
201
15
L
s 0\0\) Case
2 — =8~ Moderate Overlap
w101
o =@ No overlap
S
5
01 \——0 Q0 e
2 5 8 10 25 40 18 45 72
nCentroids

Fig. 17. Comparison of error rates for datasets Z'cno, Without no overlap between adjacent clouds (blue), and Z¢wo, with moderate overlap between
Gaussian clouds (red).

228

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

20-
type
g no stemming
@ f stemmingI
10- O

=

° o

o

alum-barley carcass—cocoa ipi-ironsteel palmoil-barley palmoil-petchem
Category

Fig. 18. Boxplots comparing the classification error of documents in each pair of categories, obtained with and without stemming.

dimensions and the sparsity of our dataset, the more difficult it will be for our indexing method to locate query objects
effectively.

However, a key advantage of MASK is that if we bombard data partitions with enough k-means centroids, the indexing
structure can still retrieve data elements with good accuracy at the expense of returning approximate results. As shown in
Section 3.2, when the first layer has a high number of k-means centroids, MASK places them according to the density of the
underlying data elements. In this way, we can index not only high-density data regions but also outliers and clusters of ele-
ments separated from the main concentrations of points.

Several experiments were conducted to evaluate the performance of MASK in these problems, using dataset Z'geyr. Indi-
vidual documents are tagged according to their topic, and there is substantial overlap between different categories. These
tests aim to classify documents as belonging to a particular category.

Following conventional text mining procedures, we removed stop words (common words that usually do not add valu-
able information to the analysis), numbers, punctuation marks and white spaces from documents. After this, the text in each
document is converted to lowercase, and the corresponding term-document matrix is created. Thus, an m x n matrix repre-
sents each set of documents, where m is the number of unique terms in the dictionary and n is the number of documents in
the data set. Each element wy; of the term-document matrix represents the importance or weight of the term i in document j.
We use the TF-IDF measure [4] to calculate wy through Eq. (1)

wjj = tfy x log <d£fl>’ (1)

where tf; denotes the number of occurrences of the term i in document j; n is the total number of documents in the dataset,
and df; represents the number of documents in which term i appears. Given these initial conditions, elements are repre-
sented in a high-dimensional dissimilarity space, where each document’s components are the TF-IDF measures. This repre-
sentation space also has high sparsity since many terms will be absent from numerous documents.

In the first round of experiments, documents are encoded using TF-IDF with stemming [4]. Then, results are compared
with the second round of experiments, in which the document encoding does not include stemming, to assess the impact
of this step on MASK search accuracy. Several pairs of document categories have been considered for the sake of clarity
to illustrate the results: 'alum’ vs ’barley’; 'ipi vs 'iron-steel’; 'carcass’ vs 'cocoa’; 'palm-oil’ vs 'pet-chem’ and ’palm-oil’ vs
’barley’. In all cases, the input parameters for our algorithm will be lengthGroup = 16 and nCentroids = 8 (thus, the data sum-
marization ratio is 2:1). The algorithm builds the search tree with a maximum depth of 3 levels.

Fig. 18 compares the classification error rate with and without stemming for 10 iterations of the algorithm (relocating
data elements in each iteration to improve MASK performance).

Since the maximum classification error rate is less than 25%, this confirms that the results obtained in both cases are very
accurate. However, there is a slight improvement in several tests without stemming. Tables 6 and 7 present the classification
and indexing error for each pair of categories when stemming is applied and without this step, respectively. Results indicate
that, in many cases, the best iteration is either the first or the second attempt to relocate data points, according to the pre-
vious position of centroids in the multilevel index. Hence, the actual performance gain attained through this iterative process

229

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

Table 6

Classification and indexing error in the best iteration of data relocation in MASK, for each pair of document categories, when stemming is applied. All
simulations have been performed with lengthGroup = 16 and nCentroids = 8.

Categories Classification Indexing

Best Iter. Error Best Iter. Error
alum/ barley 2 5.55 1 8.33
ipi/ iron-steel 4 3.7 0 12.34
carcass/ cocoa 0 10.47 0 16.19
palm-oil/ pet-chem 0 4.0 0 2.0
palm-oil/ barley 0 2.98 1 17.91

Table 7

Classification and indexing error in the best iteration of data relocation in MASK, when stemming is not applied. All simulations have been performed with
lengthGroup = 16 and nCentroids = 8.

Categories Classification Indexing

Best Iter. Error Best Iter. Error
alum/ barley 3 5.55 0 6.94
ipi/ iron-steel 5 9.87 3 12.34
carcass/ cocoa 0 19.04 0 15.23
palm-oil/ pet-chem 0 2.0 4 0.0
palm-oil/ barley 1 5.97 0 11.94

is low in many practical situations. Due to this, the approximation provided by the initial construction of the multilevel
indexing structure can be quite acceptable for high-dimensional problems.

Finally, we study the algorithm’s convergence as the size of groups and the number of centroids to map each group vary.
This experiment considers categories ’jobs’, 'iron-steel’ and ’cotton’. In turn, lengthGroup and nCentroids are set to values
ranging from 8-4 to 60-30 to keep the data summarization ratio in all cases at 2:1. Fig. 19 shows the classification error rate
for each case without stemming. The classification error rate decreases when both input parameters increase their values.
Results are similar when stemming is not applied. Thus, they suggest that this encoding step does not affect the accuracy
of MASK as the size of data partitions and the number of centroids increase. Again, this is consistent with using a high num-
ber of centroids to map the underlying dataset, as explained in Section 3.2. As many more centroids map the dataset, their
location will become more advantageous for indexing purposes.

4.4. Comparison with existing algorithms

In this section, we evaluate MASK performance regarding approximate nearest neighbour search compared to alternative
MAM. Besides MASK, the algorithms included in this study are:

e KD-Tree [21] is an exact similarity search method. Nevertheless, it provides a practical baseline to evaluate the perfor-
mance of the other approximate algorithms, retrieving the true set of nearest neighbours in each experiment.

e FLANN [5] is an approximate similarity search method widely adopted in many fields, principally image treatment and
artificial vision. In this case, we use an implementation named pyflann >, providing Python bindings for the original FLANN
library.

e PyNNDescent * provides a Python implementation of Nearest Neighbor Descent for k-neighbour-graph construction and
approximate nearest neighbour search [49]. It is a recent algorithm generally regarded as offering very high performance
in various problems.

For this comparison, we use the % ynsr dataset, described in Section 4.1 above. It is a standard dataset for nearest neigh-
bour search evaluation, widely adopted in previous research works. Hence, it offers a handy reference to compare the per-
formance of MASK and the other competing algorithms in a high-dimensional problem space with high sparsity. The
assessment metric for this comparative study is the recall attained in approximate search of an increasing number of nearest
neighbours, given a query point.

We proceed as follows to implement our experiments:

1. The complete Z yyist dataset is divided into a training set of 60,000 elements and a testing set with the remaining 10,000
elements, following a standard procedure.

3 https://github.com/primetang/pyflann
4 https://pynndescent.readthedocs.io/en/latest/

230

https://github.com/primetang/pyflann
https://pynndescent.readthedocs.io/en/latest/

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

50-

40-

30-

20- |

Classification error

10- |

==

°
O.
lg=8,nc=4 1g=16, nc=8 1g=20, nc=10 1g=30, nc=15 Ig=40, nc=20 Ig=60, nc=30
Input parameters: length group (Ig) and number of centroids (nc)

Fig. 19. Classification error obtained without stemming, for categories ‘jobs’, ‘iron-steel’ and ‘cotton’ in dataset % ggyr.

Table 8

Recall (%) obtained by each algorithm in approximate nearest neighbour search, for different number of neighbours, with dataset 2 ynisr.
Algorithm 5-NN 10-NN 15-NN
KD-Tree (baseline) 100.0 100.0 100.0
FLANN 69.2 59.3 47.8
PyNNDescent 94.2 97.0 98.07
MASK 100.0 100.0 99.98

2. The training set acts as a group of elements to be indexed by each algorithm. Hence, we build the respective index struc-
ture on this training set for each algorithm.

3. The same random sample of 1,000 elements is selected from the testing set (which has not been previously seen by the
indexes) to evaluate each algorithm’s performance. Then, we execute a k-nearest neighbours query, using the index cre-
ated by each algorithm and its associated search procedure, to recover the 5, 10 and 15 nearest neighbours of every point
in this random sample from the testing set.

Table 8 summarizes the average recall for these 1,000 queries, testing all algorithms in each case.

As we can see in this comparison, MASK provides better recall than the other two algorithms, disregarding the number of
nearest neighbours requested in the search query. Therefore, these results confirm that MASK has high performance com-
pared with other alternative similarity search methods, for practical applications in high-dimensional and high-sparsity
problems.

5. Discussion

MASK is an approximate method for similarity search based on k-means that builds multilevel index structures suitable
for different scenarios, from low-dimensional problems to high-dimensional and high-sparsity datasets in metric spaces. It
enables the deployment of algorithms to solve the principal types of similarity search queries. Likewise, this method per-
forms well without needing to relocate data points after the initial index construction. The multilevel structure created
by MASK in the first iteration already provides a valid approximation to solve similarity queries with reasonable efficiency.

One of the main contributions of MASK is an unconventional application of the k-means algorithm for information index-
ing, demonstrated in Section 3. The classical approach to clustering problems dictates that we must choose the number of
centroids to group data points beforehand. Unlike this standard procedure, our approach suggests that, for information
indexing, one should use as many centroids as the infrastructure can afford. This strategy is critical at the bottom of the mul-

231

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

tilevel index, next to the actual data points. When the number of centroids per data partition is higher, there is a rapid
improvement in the capacity of k-means to distribute centroids in optimal locations, including denser data regions, scattered
sections or outliers. Landmark studies describing k-means [15] already suggest theoretical applications of this algorithm for
information indexing. In addition, several algorithms for both exact and approximate similarity search employ k-means to
build their index [29,33,5]. However, to our knowledge, no one uses this unconventional application of k-means to map data
flexibly according to available system resources.

On top of this, MASK is also adequate for distributed datasets with partitions stored in different nodes, thanks to its
bottom-up design. As a result, different nodes can create a multilevel index in parallel, contrasting with current approaches
for similarity search in distributed systems [50]. In general, alternative methods involve substantial data interchange
between nodes to build the index. The management node can use MASK to aggregate metadata from the top level of all
worker nodes to select those involved in resolving a query. Thanks to its multilayer design, MASK input configuration param-
eters can be adjusted to achieve the desired reduction in the total number of centroids stored at higher levels. Indeed, as the
number of layers increases, the set of calculated prototypes for each level is reduced by a factor equal to the data summa-
rization ratio (groupLength/nCentroids) for that level.

Another advantage of MASK is that it can handle spatially distributed datasets. For instance, consider the case of a large
organization with subsidiaries in geographically scattered locations. With other indexing algorithms, it would be challenging
to coalesce index metadata from each location into a centralized management system. However, MASK can also tackle this
situation by gathering the top-level centroids from each venue. Even more complex hierarchies of data centres involving
intermediate headquarters can be supported. In this case, each intermediate centre aggregates the centroids from all venues
under its direct oversight. Then, it forwards this aggregated set of centroids upstream as required.

One of the most relevant limitations of this new indexing method is that it can only provide approximate results. The only
warranty that MASK can offer is that accuracy will be higher as the number of centroids in each layer increases. Again, the
data summarization ratio steers this trade-off. The trivial scenario where one centroid represents each data point (1:1 ratio)
does not reduce the index storage space, although it renders perfect accuracy (exact search). Conversely, the storage gain
improves by gradually reducing the number of centroids per layer at the expense of an increased loss in search accuracy.
Specific applications should test different values for configuration parameters and the number of layers in the indexing
structure to find the best fit for particular problems.

Another limitation of MASK is the need to use a powerful computing infrastructure to store both the dataset and index
metadata. Nevertheless, continuous improvements in computing hardware and cloud architectures compensate for this
shortcoming to a certain extent. Nowadays, nodes shipping large RAM units, fast secondary storage and distributed file sys-
tems are becoming prevalent in many organizations. These advances pave the way for designing new indexing algorithms
that take advantage of ongoing improvements in computing infrastructure.

Despite these shortcomings, results from experiments with the 2’z dataset and the comparison with recent alternative
algorithms for approximate similarity search using the Z'ynisr dataset show that MASK achieves good accuracy. Flexible and
straightforward configuration parameters allow MASK to cover various applications in different domains. Hence, this new
algorithm suits complex scenarios involving high-dimensional and high-sparsity datasets represented in metric spaces.

6. Conclusion

This paper presents MASK, a novel method for approximate similarity search based on an unconventional application of
the k-means algorithm, to create a multilevel index in metric spaces. Departing from the typical utilization of k-means in
clustering problems, where one must specify the number of centroids in advance, we demonstrate that, for data indexing,
one should use as many centroids as possible to map the target dataset effectively. The capacity of the underlying computing
infrastructure will impose a limit on the total number of centroids. Following this novel approach, the k-means algorithm
will place the centroids at each level in convenient positions to map dense data regions, scattered element subsets or even
outliers.

Moreover, the bottom-up design of this new method makes it suitable for distributed computing systems since each node
can create a local multilayered index in parallel without needing any data transfer to other nodes. Even geographically scat-
tered data centres under coordinated management may benefit from using this method. Index configuration can be tuned to
meet design goals like index storage space, query resolution speed or accuracy. This balance between computational require-
ments and search performance makes it a compelling candidate for a wide range of applications demanding approximate
similarity search.

Regarding future research on this topic, applying MASK to solve distributed indexing problems in wireless sensor net-
works and other similar types of federated and ubiquitous computing systems is a line that deserves further exploration.
A recent study [40] emphasizes the relevance of effective indexing for technologies that play an essential role in smart cities,
Industry 4.0 and many other settings. MASK provides clear advantages, such as eliminating the need for data exchange
among device clusters, which reduces energy consumption. Likewise, MASK enables the independent construction of local
indexes covering specific network regions that can work in isolation or cooperate to broaden the total coverage of the mul-
tilevel index. This capability is another important asset, as the algorithm is flexible enough to prepare an index structure that
can operate in either of these two modes, seamlessly changing between them.

232

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

Additional experiments are required to evaluate MASK performance on different datasets, including specific applications
such as multimedia, spatial datasets and high-dimensional problems. In the last case, it will be critical to study how the fea-
ture space dimensionality may influence MASK indexing efficiency. In the same way, a detailed analysis of MASK behaviour
and performance using alternatives to the Euclidean distance in metric spaces is necessary. Although k-means is widely
known to be tightly connected with the Euclidean distance in classical clustering applications, in data indexing, with a large
number of centroids, it is possible to adopt alternative distance functions for categorical data or strings, among others. Thus,
k-means can build the multilevel structure based on the distance function calculated for the pertinent cases. Results from
these experiments will lead to discerning which combination of distance function and initial configuration parameters is bet-
ter suited to resolve a particular similarity search problem. Eventually, this research line can also consider testing other non-
metric distance functions that match specific problems.

CRediT authorship contribution statement

Felipe Ortega: Conceptualization, Methodology, Software, Investigation, Writing - original draft. Maria Jesus Algar: Con-
ceptualization, Methodology, Software, Investigation, Visualization, Writing - original draft. Isaac Martin de Diego: Concep-
tualization, Methodology, Writing - review & editing, Funding acquisition. Javier M. Moguerza: Conceptualization,
Methodology, Writing - review & editing, Supervision, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] E. Chavez, G. Navarro, R. Baeza-Yates,].L. Marroquin, Searching in Metric Spaces, ACM Comput. Surv. 33 (3) (2001) 273-321, https://doi.org/10.1145/
502807.502808.

[2] H. Samet, Foundations of Multidimensional and Metric Data Structures, The Morgan Kaufmann Series in Data Management Systems, Academic Press,
2006.

[3] P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity Search - The Metric Space Approach, Vol. 32 of Advances in Database Systems, Springer, US, 2006.
doi:10.1007/0-387-29151-2.

[4] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval: The Concepts and Technology behind Search, 2nd Edition., Addison-Wesley Publishing
Company, USA, 2011.

[5] M. Muja, D.G. Lowe, Scalable Nearest Neighbor Algorithms for High Dimensional Data, IEEE Trans. Pattern Anal. Mach. Intell. 36 (11) (2014) 2227-
2240, https://doi.org/10.1109/TPAMIL.2014.2321376.

[6] N. Tuncbag, A. Gursoy, R. Nussinov, O. Keskin, Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural
similarities at interfaces using PRISM, Nat. Protoc. 6 (9) (2011) 1341-1354, https://doi.org/10.1038/nprot.2011.367.

[7] R.P. Duin, E. Pekalska, The dissimilarity space: Bridging structural and statistical pattern recognition, Pattern Recogn. Lett. 33 (7) (2012) 826-832,
special Issue on Awards from ICPR 2010. doi: 10.1016/j.patrec.2011.04.019.

[8] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd Edition., John Wiley & Sons, 2001.

[9] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, W. Equitz, Efficient and Effective Querying by Image Content,]. Intell. Inform. Syst.
3 (3/4) (1994) 231-262, https://doi.org/10.1007/BF00962238.

[10] C. Bohm, S. Berchtold, D.A. Keim, Searching in High-Dimensional Spaces: Index Structures for Improving the Performance of Multimedia Databases,
ACM Comput. Surv. 33 (3) (2001) 322-373, https://doi.org/10.1145/502807.502809.

[11] T. Hastie, R. Tibshirani,].H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, second ed., Springer Series in
Statistics, Springer, 2009. doi:10.1007/978-0-387-84858-7.

[12] M.L. Hetland, T. Skopal, J. Lokoc, C. Beecks, Ptolemaic access methods: Challenging the reign of the metric space model, Inform. Syst. 38 (7) (2013) 989-
1006, https://doi.org/10.1016/].is.2012.05.011.

[13] T. Skopal, B. Bustos, On Nonmetric Similarity Search Problems in Complex Domains, ACM Comput. Surv. 43 (4) (2011), https://doi.org/10.1145/
1978802.1978813.

[14] M. Patella, P. Ciaccia, Approximate similarity search: A multi-faceted problem, J. Discrete Algorith. 7 (1) (2009) 36-48, https://doi.org/10.1016/].
jda.2008.09.014.

[15] J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, vol. 1: Statistics, University of California Press, Berkeley, CA, USA, 1967, pp. 281-297. URL: https://
projecteuclid.org/euclid.bsmsp/1200512992.

[16] S.P. Lloyd, Least squares quantization in PCM, IEEE Trans. Inf. Theory 28 (2) (1982) 129-136, https://doi.org/10.1109/TIT.1982.1056489.

[17] V. Dohnal, C. Gennaro, P. Zezula, Efficiency and Scalability Issues in Metric Access Methods, in: A. Kelemen, A. Abraham, Y. Liang (Eds.), Computational
Intelligence in Medical Informatics, vol. 85 of Studies in Computational Intelligence, Springer, 2008, pp. 235-263. doi:10.1007/978-3-540-75767-2_12.

[18] V. Gaede, O. Giinther, Multidimensional access methods, ACM Comput. Surv. 30 (2) (1998) 170-231, https://doi.org/10.1145/280277.280279, URL:
https://doi.org/10.1145/280277.280279.

[19] D. Comer, Ubiquitous B-Tree, ACM Comput. Survey 11 (2) (1979) 121-137, https://doi.org/10.1145/356770.356776.

[20] B.H. Bloom, Space/Time Trade-Offs in Hash Coding with Allowable Errors, Commun. ACM 13 (7) (1970) 422-426, https://doi.org/10.1145/
362686.362692.

[21]]J.L. Bentley, Multidimensional binary search trees used for associative searching, Commun. ACM 18 (9) (1975) 509-517, https://doi.org/10.1145/
361002.361007.

[22] A. Guttman, R-Trees: A Dynamic Index Structure for Spatial Searching, in: Proceedings of the 1984 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’84, Association for Computing Machinery, New York, NY, USA, 1984, p. 47-57. doi:10.1145/602259.602266. URL:
https://doi.org/10.1145/602259.602266.

[23] S.A. Nene, S.K. Nayar, A simple algorithm for nearest neighbor search in high dimensions, IEEE Trans. Pattern Anal. Mach. Intell. 19 (9) (1997) 989-
1003, https://doi.org/10.1109/34.615448.

[24] M.L. Hetland, The Basic Principles of Metric Indexing, in: C.A.C. Coello, S. Dehuri, S. Ghosh (Eds.), Swarm Intelligence for Multi-objective Problems in
Data Mining, Springer, Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 199-232, https://doi.org/10.1007/978-3-642-03625-5_9.

233

https://doi.org/10.1145/502807.502808
https://doi.org/10.1145/502807.502808
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0010
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0010
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0010
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0020
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0020
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0020
https://doi.org/10.1109/TPAMI.2014.2321376
https://doi.org/10.1038/nprot.2011.367
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0040
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0040
https://doi.org/10.1007/BF00962238
https://doi.org/10.1145/502807.502809
https://doi.org/10.1016/j.is.2012.05.011
https://doi.org/10.1145/1978802.1978813
https://doi.org/10.1145/1978802.1978813
https://doi.org/10.1016/j.jda.2008.09.014
https://doi.org/10.1016/j.jda.2008.09.014
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1145/280277.280279
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/34.615448
https://doi.org/10.1007/978-3-642-03625-5_9

F. Ortega, M.J. Algar, 1. Martin de Diego et al. Information Sciences 619 (2023) 208-234

[25] J.K. Uhlmann, Satisfying general proximity/similarity queries with metric trees, Inform. Process. Lett. 40 (4) (1991) 175-179, https://doi.org/10.1016/
0020-0190(91)90074-R.

[26] S. Brin, Near Neighbor Search in Large Metric Spaces, in: Proceedings of the 21th International Conference on Very Large Data Bases, VLDB '95, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1995, p. 574-584.

[27] P. Ciaccia, M. Patella, P. Zezula, M-tree: An efficient access method for similarity search in metric spaces, in: Proceedings of the 23rd International
Conference on Very Large Data Bases, VLDB '97, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997, p. 426-435.

[28] P.N. Yianilos, Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces, in: V. Ramachandran (Ed.), Proceedings of the
Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, Austin, Texas, USA, ACM/SIAM, 1993, pp. 311-321, URL:http://dl.acm.org/
citation.cfm?id=313559.313789.

[29] K. Fukunaga, P. Narendra, A Branch and Bound Algorithm for Computing k-Nearest Neighbors, IEEE Trans. Comput. C-24 7 (1975) 750-753, https://doi.
org/10.1109/T-C.1975.224297.

[30] M.R. Vieira, C.T. Jr., FJ.T. Chino, A.J.M. Traina, DBM-Tree: A Dynamic Metric Access Method Sensitive to Local Density Data, Journal of Information and
Data Management 1 (1) (2010) 111-128. URL: http://seer.lcc.ufmg.br/index.php/jidm/article/view/22.

[31] T. Skopal, Unified framework for fast exact and approximate search in dissimilarity spaces, ACM Trans. Database Syst. 32 (4) (2007) 29, https://doi.org/
10.1145/1292609.1292619.

[32] C.Faloutsos, K. Lin, FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Datasets, in: M.]. Carey, D.A.
Schneider (Eds.), Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, San Jose, California, USA, May 22-25, 1995,
ACM Press, 1995, pp. 163-174. doi:10.1145/223784.223812.

[33] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, A.E. Abbadi, Approximate Nearest Neighbor Searching in Multimedia Databases, in: D. Georgakopoulos, A.
Buchmann (Eds.), Proceedings of the 17th International Conference on Data Engineering, IEEE Computer Society, Heidelberg, Germany, 2001, pp. 503-
511, https://doi.org/10.1109/ICDE.2001.914864.

[34] D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding, in: N. Bansal, K. Pruhs, C. Stein (Eds.), Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, SIAM, 2007, pp. 1027-1035. URL:
https://dl.acm.org/doi/10.5555/1283383.1283494.

[35] J. Almeida, E. Valle, R. da Silva Torres, N.J. Leite, DAHC-tree: An Effective Index for Approximate Search in High-Dimensional Metric Spaces, J. Inform.
Data Manage. 1(3) (2010) 375-390. URL: http://seer.lcc.ufmg.br/index.php/jidm/article/view/82.

[36] D. Novak, P. Zezula, M-Chord: a scalable distributed similarity search structure, in: X. Jia (Ed.), Proceedings of the 1st International Conference on
Scalable Information Systems, Infoscale 2006, Hong Kong, May 30-June 1, 2006, Vol. 152 of ACM International Conference Proceeding Series, ACM,
2006, p. 19. doi:10.1145/1146847.1146866.

[37] S. Nishimura, S. Das, D. Agrawal, A.E. Abbadi, MD-HBase: design and implementation of an elastic data infrastructure for cloud-scale location services,
Distrib. Parallel Databases 31 (2) (2013) 289-319, https://doi.org/10.1007/s10619-012-7109-z.

[38] T. Skopal,]. Lokoc, B. Bustos, D-Cache: Universal Distance Cache for Metric Access Methods, IEEE Trans. Knowl. Data Eng. 24 (5) (2012) 868-881,
https://doi.org/10.1109/TKDE.2011.19.

[39] S.V. Limkar, R.K. Jha, A novel method for parallel indexing of real time geospatial big data generated by IoT devices, Future Gener. Comput. Syst. 97
(2019) 433-452, https://doi.org/10.1016/j.future.2018.09.061.

[40] S. Wan, Y. Zhao, T. Wang, Z. Gu, Q.H. Abbasi, K.-K.R. Choo, Multi-dimensional data indexing and range query processing via Voronoi diagram for
internet of things, Future Gener. Comput. Syst. 91 (2019) 382-391, https://doi.org/10.1016/j.future.2018.08.007.

[41] M. Charrad, N. Ghazzali, V. Boiteau, A. Niknafs, NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set, J. Stat. Softw. 61
(6) (2014) 1-36, https://doi.org/10.18637/jss.v061.i06.

[42] T. Kraska, A. Beutel, E.H. Chi,]. Dean, N. Polyzotis, The Case for Learned Index Structures, in: Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’'18, Houston, TX, USA, June 10-15, 2018, Association for Computing Machinery, New York, NY, USA, 2018, p. 489-504.
doi:10.1145/3183713.3196909.

[43] D. Pollard, Strong consistency of k-means clustering, Ann. Stat. 9 (1) (1981) 135-140.

[44] D. Aloise, A. Deshpande, P. Hansen, P. Popat, NP-hardness of Euclidean sum-of-squares clustering, Mach. Learn. 75 (2) (2009) 245-248, https://doi.org/
10.1007/s10994-009-5103-0.

[45] AK. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall, 1988.

[46] D.D. Lewis, Reuters-21578 Text Categorization Test Collection, Distribution 1 (1997).

[47] G.J. McLachlan, K.E. Basford, Mixture models: inference and applications to clustering, Statistics, textbooks and monographs, Marcel Dekker, New York,
United States, 1988.

[48] L. Van der Maaten, G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res. 9 (11) (2008).

[49] W. Dong, M. Charikar, K. Li, Efficient k-nearest neighbor graph construction for generic similarity measures, in: S. Srinivasan, K. Ramamritham, A.
Kumar, M.P. Ravindra, E. Bertino, R. Kumar (Eds.), Proceedings of the 20th International Conference on World Wide Web, WWW 2011, Hyderabad,
India, March 28 - April 1, 2011, ACM, 2011, pp. 577-586. doi:10.1145/1963405.1963487.

[50] P. Cech, J. Loko€, Y.N. Silva, Pivot-based approximate k-NN similarity joins for big high-dimensional data, Inform. Syst. 87 (2020), https://doi.org/
10.1016/j.i5.2019.06.006 101410.

234

https://doi.org/10.1016/0020-0190(91)90074-R
https://doi.org/10.1016/0020-0190(91)90074-R
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0140
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0140
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0140
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0140
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0140
https://doi.org/10.1109/T-C.1975.224297
https://doi.org/10.1109/T-C.1975.224297
http://seer.lcc.ufmg.br/index.php/jidm/article/view/22
https://doi.org/10.1145/1292609.1292619
https://doi.org/10.1145/1292609.1292619
https://doi.org/10.1109/ICDE.2001.914864
https://dl.acm.org/doi/10.5555/1283383.1283494
http://seer.lcc.ufmg.br/index.php/jidm/article/view/82
https://doi.org/10.1007/s10619-012-7109-z
https://doi.org/10.1109/TKDE.2011.19
https://doi.org/10.1016/j.future.2018.09.061
https://doi.org/10.1016/j.future.2018.08.007
https://doi.org/10.18637/jss.v061.i06
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0215
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1007/s10994-009-5103-0
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0225
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0225
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0230
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0235
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0235
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0235
http://refhub.elsevier.com/S0020-0255(22)01305-6/h0240
https://doi.org/10.1016/j.is.2019.06.006
https://doi.org/10.1016/j.is.2019.06.006

	Unconventional application of k-means for distributedapproximate similarity search
	1. Introduction
	2. Background and related work
	3. Multilevel k-means structure for data indexing
	4. Experimental results
	5. Discussion
	6. Conclusion
	Declaration of Competing Interest
	References

