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ARTICLE INFO ABSTRACT

MSC: Global solar radiation (GSR) prediction plays an essential role in planning, controlling and monitoring
68T05 solar power systems. However, its stochastic behaviour is a significant challenge in achieving satisfactory
68T20 prediction results. This study aims to design an innovative hybrid prediction model that integrates a
Keywords: feature selection mechanism using a Slime-Mould algorithm, a Convolutional-Neural-Network (CNN), a Long—
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Short-Term-Memory Neural Network (LSTM) and a final CNN with Multilayer-Perceptron output (SCLC
algorithm hereafter). The proposed model was applied to six solar farms in Queensland (Australia) at daily
temporal horizons in six different time steps. The comprehensive benchmarking of the obtained results with
those from two Deep-Learning (CNN-LSTM, Deep-Neural-Network) and three Machine-Learning (Artificial-
Neural-Network, Random-Forest, Self-Adaptive Differential-Evolutionary Extreme-Learning-Machines) models
highlighted a higher performance of the proposed prediction model in all the six selected solar farms. From
the results obtained, this work establishes that the designed SCLC algorithm could have a practical utility for
applications in renewable and sustainable energy resource management.

1. Introduction operators but also to traders and Government policymakers [12].

Many researchers have proposed different models to predict GSR,

There is unprecedented momentum to leave fossil fuel age behind
us. With the rapid transition to renewable energy and energy efficiency,
the Governments globally are trying to leave the fossil fuel age for a
more sustainable development paths and lower emissions [1-4]. Solar
energy carries the potential to fulfil the entire world’s energy needs
and relieve the current world energy crisis [5-8]. It is an inexhaustible,
clean, renewable energy source [9]. Being a sustainable, and infinite
energy source, solar energy carries the potential to fulfil the energy
needs of the entire world. Global solar radiation (GSR) identifies the
solar power potential [10]. An accurate GSR prediction is very impor-
tant for an effective solar energy utilization, robust planning, decision
making, power system operation, management, and investment appli-
cations [11]. Furthermore, accurate GSR predictions are vital for the
establishment of reliability and permanency of the electricity grid, and
the reduction of risk and costs of energy markets and systems. This
will be immensely beneficial not only to the power plants and grid
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including empirical prediction models (EM) [13-17]. EM are computa-
tionally efficient and easy to calculate, but because of rapid changes in
weather conditions, they cannot, in general, accurately predict short-
term GSR [18]. In many cases, they result in partially unsatisfactory
estimates of GSR [19-22]. Physical [23,24] and Numerical Weather
Prediction (NWP) [25,26] are other types of GSR prediction mod-
els quite studied in the literature. Problems like choosing input for
the physical or the NWP models with phenomenal cost of compu-
tations exist here [27-29]. There are other types of approaches for
GSR prediction such as remote sensing retrieval [30], time series-
based algorithms [31,32] and, of course, Machine Learning (ML)-based
models.

GSR prediction popularly benefits from the usage of machine learn-
ing techniques such as Artificial Neural Networks (ANN). This includes
Multilayer Perception Neural Networks (MLP-NNs) [33-35], recurrent
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neural networks [36], Radial Basis Function Neural Networks (RBF-
NNs) [37], evolutionary neural approaches [38,39] Generalized Regres-
sion Neural Networks (GR-NNs) [40], or Extreme Learning Machines
(ELM) [41-44], among others. Several other popular choices for the
GSR prediction are Random Forest (RF) Regression (RFR) [45,46],
Support Vector Regression algorithms (SVR) [47-50], Gaussian Pro-
cesses [51] and Adaptive Neuro-Fuzzy Inference System (ANFIS) [52].
Studies in the past have taken the comparison of different ML tech-
niques in GSR prediction. For e.g. the authors of, such as [53] have
used SVR, ELM, and MLP for their GSR prediction. Authors of [54]
uses EM, ANN, SVR, Gaussian Process, Genetic Programming (GP),
and ARIMA models for GSR prediction in the Australian cities. Several
mathematical models were used for the time series with EM and
ANNs [55]. However, in a study in Mexico, three different algorithms
such as ANFIS, ANN, and SVM were used by the authors of [56] for
their problem. In the study [50], the authors used only a few variables
such as temperature, hours of sunshine, evaporation etc with the SVR
model based on wavelets for forecasting the solar radiation.

On the other hand, Deep Learning (DL) is gaining huge popularity
from the past decade. This is due to their robust architecture, powerful
nonlinear structure, generalization capability, and unsupervised feature
learning. Unlike shallow ML models, DL models can extract features
and latent invariant architectures in data. This makes them a popular
choice for areas such as imaging, speech recognition, natural language
processing, autonomous driving, or computer vision. Solar prediction
with DL technologies is a new and promising research area [57]. Deep
learning models such as LSTM have been taken into consideration to
predict hourly solar radiance for the next day [58,591, while other pop-
ular models such as CNN picks up variables and chooses key features
for GSR [60]. The authors of [61] merged various attention mechanisms
with the Gated Recurrent Unit (GRU). In [62] a comparison of machine
learning methods, such as, polynomial regression, SVRs, ANNs and RF;
and deep learning algorithms, such as CNNs and RNNs, is developed
for predicting GSR. [63] chooses to use techniques such as Embedded
Clustering (ECs) with the Deep Belief Networks (DBNSs) for solar irradi-
ance. However, the Bidirectional LSTM network, along with Sine Cosine
Algorithm (SCA) was chosen with the Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise (CEEMDAN) by the authors
of [64] to predict GSR prediction. Considering the study that optimizes
various deep learning techniques such as LSTM, GRU, and RNN, the
authors of [65] proposes a genetic algorithm (GA). In [66] study con-
ducted in Finland, the power of deep learning hybrids have again been
explored through Choquet Integrals based functions of aggregation with
LSTM. Latter was also used with the ResNet (Residual Network) by
the authors [67] to make hybrid model for short GSR predictions.
More recently, forecasting methods based on Global Horizontal Irra-
diance (GHI) [68] are proposed. In [69] two hybrid DNN models for
hourly GSR prediction in Africa have been discussed and compared.
DNN-based models for hybridization, specifically CNNs, are also used
in combination with empirical mode decomposition approaches [70,
71], traditional ML [72-74] or ensemble methods [75,76], including
different feature selection techniques for GSR prediction.

As previously discussed, the single model usage in modelling has
disadvantages of intermittent and fluctuating nature of GSR. Due to the
shortcomings of single models and the need for greater accuracy in GSR
prediction, hybrid models have been developed and widely used for
predicting GSR. However, there are some concerns of these hybrid mod-
els too: First, in most studies GSR is the only factor considered (or clear
sky data taken) during model development, ignoring meteorological
factors. In practicality, as the weather varies significantly, these models
cannot fully reflect the change in GSR. Second, the weather forecast
becomes more accurate and convenient, it gets rarely modelled with
hybrid models as input parameters. Third, feature selection algorithms
are not solely preferred during the modelling process of these hybrid
models. It is important to note that, although the resultant hybrid of
deep fusion network benefits from both DL and ML, it should alleviate
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the drawbacks of both the techniques such as computation time and
cost. Hybrid models provide more accurate and less computationally
expensive solutions when used through Tensorflow, which is Google’s
open-source platform [77]. Most published literature for GSR fails to
address these criteria. These are some of the gaps the present study
attempts to address.

This paper therefore proposes a novel DL-based hybrid model that
overcomes the above limitations, and produces accurate GSR predic-
tions. A new hybrid DL model, which process the input data with a
sequential application of Slime Mould Algorithm (SMA) for feature
selection, CNN, LSTM network, CNN and a final processing with a
MLP has been developed in this study, to overcome the shortcomings
mentioned above and obtain a more accurate GSR prediction. The
complete prediction system is called SCLC, and we have tested it
by comparison with an ensemble of two alternative DL approaches
(CNN-LSTM and Deep Neural Network (DNN)) and three shallow ML
models (Artificial Neural Network, Random Forest and a variation of
the Extreme Learning Machine).

The rest of this study is as follows: next section summarizes the
different methods which form the SCLC prediction system, including,
the SMA, CNN and LSTM algorithms. The data and area of the exper-
imental study are described in Section 2.1. The hybrid SCLC model
description and tuning is presented in Section 2.3. The experimental
part and results obtained are summarized in Section 3. In the end, the
study discusses the results in the form of conclusions in Section 4.

2. Methodology
2.1. Study area and data

Queensland is renowned for being a leader in the Australian solar
revolution. With high solar radiation, the region of Western Downs has
gained a lot of recognition for its pro-solar movements. Currently, the
state of Queensland generates $9.9 billion in investments through 44
enormous projects of renewable energy, generating 5156 megawatts,
and 7000 jobs in construction [78]. This saves about 12 million tons of
carbon annually. Including rooftop solar panels, the state of Queensland
promises the renewable energy capacity of 6200 MW, accounting 20%
of total electricity consumption [79]. Australia with The power outputs
selected for the study varies from 55 MW to 148 MW.

1. The Cape York Battery Power Plant is the first grid-connected
battery power plant in Australia with both solar generation and
battery storage. According to the developer, the 20 MW/80 MWh
Fluence battery-based energy storage system plus 55 MW so-
lar generation will provide firm clean energy through a single
connection point, using a single power plant controller.

2. The Chinchilla Solar Farm is situated 140 km north of
Toowoomba, Australia, near the township of Chinchilla. There
will be around 250,000 thin-film photovoltaic (PV) modules
installed at the proposed 100 MW project and they will produce
enough solar energy to serve approximately 40,000 average
Queensland homes.

3. Sun metal solar Farm possesses a 125 MW generation capacity
and is located near Townsville, in northern Queensland. Sun
Metals is building the farm to secure their zinc refinery there
with an uninterruptible power supply for a lower cost. A total of
1,167,000 solar panels are used and will produce 261 GWh of
electricity annually, which accounts for almost 29% of the zinc
refinery’s current electrical needs.

4. Clermont Solar Farm would build a single-axis tracking so-
lar power plant, located 106 km north-northeast of Emerald,
Queensland. In total, the site can generate approximately 89 MW
and encompasses approximately 497 acres. A total of 205 GWh
of electricity will be generated annually using 275,442 PV pan-
els, enough to power approximately 30,996 households.
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Table 1
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Descriptive statistics of the target variable: daily global solar radiation (GSR; MJm~2day~') for six solar farms in Queensland, Australia.

Property Barunggam Cameby Cape York Solar Storage Chinchilla Clermont Sun Metals
Latitude 26.685°S 26.682°S 15.898°S 26.670°S 22.839°S 19.437°S
Longitude 150.765°E 150.510°E 144.857°E 150.793°E 147.581°E 146.696°E
Capacity (MW) 140 148 55 100 75 125
Median (MJm~2) 19.00 19.00 20.00 19.00 20.00 20.00
mean (MJm~2) 19.23 19.28 19.45 19.21 20.03 19.88
Standard deviation (MJm~2) 6.36 6.43 4.84 6.35 5.85 5.55
Variance (MJm™2) 40.49 41.34 23.38 40.27 34.18 30.77
Maximum (MJm~2) 33.00 32.00 29.00 32.00 32.00 31.00
Minimum (MJm~2) 4.00 4.00 5.00 4.00 4.00 4.00
Mode (MJm™2) 29.00 28.00 24.00 28.00 28.00 27.00
Interquartile range (MJm™2) 9.00 9.00 6.00 9.00 8.00 7.00
Skewness -0.18 -0.18 -0.51 -0.18 -0.38 -0.54
Kurtosis 2.34 2.34 2.83 2.35 2.65 2.71
P
m 7 X Barunggam Solar Farm
12°s
"? D Cameby Solar Farm
< - Cape York Solar Storage
16°S = // [\> Chinchilla Solar Farm
>
\ . Clermont Solar Farm
3
5, Sun Metals Solar Farm
£ 2078
[+
-
24°s ~
28°s /-«;
136°E 140°E 144°E 148°E 152°E
Longitude

Fig. 1. Study sites in Queensland, Australia, where the proposed deep hybrid SCLC model was implemented.

5. Ubergy has received approval for its Barunggam Solar Farm
located on Baking Board, 14 km from Chinchilla in Queensland.
This solar farm is expected to be 140 MW in size.

6. Cameby solar farm will have a capacity of 148 MW and is located
in an area of 463ha that presently serves as grazing land with
little agricultural potential.

Moreover, it supports the Queensland government’s goal of producing
50 percent of its energy from renewable sources by 2030, while estab-
lishing Queensland as a leader in renewable energy. Table 1 provides
details of the region of study with GSR) statistics and Fig. 1 depicts
their locations.

A supervised learning process is one in which an example input
(predictor) and the desired output (predictand) are presented to a
predictive model, for instance GSR prediction, as there is a need of
both predictors and predictands. The predictions in this study are
based on the meteorological data in the form of global climate models
(GCM), Scientific Information for Landowners (SILO) data regarding
ground-based values. A part of the Department of Science, Information
Technology, Innovation and the Arts (DSITIA) is a body Queensland

Climate Change Centre of Excellence (QCCCE) managing the Long Pad-
dock SILO database [80]. A GCM archive is maintained by The Centre
for Environmental Data Analysis (CEDA) [81]. Daily atmospheric model
outputs for the historical are sourced from this repository. The models
include CSIRO-BOM ACCESS1-0 (grid size 1.25° x 1.875°) [82], MOHC
Hadley-GEM2-CC (grid size 1.25° x 1.875°) [83] and the MRI MRI-
CGCM3 (grid size 1.12148° x 1.125°) [84]. The GCM model outputs
are indexed by dimensions of longitude, latitude, time, atmospheric
pressure (at 8 levels), or near-surface readings. The historical outputs
span the period 1950-01-01T12:00:00 to 2006-01-01T00:00:00. Table 2
illustrates the variables of meteorology used by the study that had
20455 records and 75 meteorological variables (20455 x 75).

2.2. Theoretical overview

To predict solar radiation, the study provides a brief theoretical
description of the several techniques that form the SCLC system. It first
describes the SMA approach for feature selection and then describe the
foundations of the CNN algorithm and the LSTM approach.
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Table 2
Description of the global pool of predictor variables used in daily GSR prediction.

Data repository name Variable Description Units
clt Cloud area fraction %
hfls Surface upward latent heat flux wm~2
hfss Surface upward sensible heat flux wm~?
hur Relative humidity %
hus Near surface specific humidity gkg™!
pr Precipitation kgm2s7!
prc Convective precipitation kgm~2s7!
prsn Solid precipitation kgm~2s7!
psl Sea level pressure pa

Global Girculation rhs Near surfaf:e relative ht'lmidity » %
rhsmax Surface daily max relative humidity %

Model (GCM) . R . . 1

. . rhsmin Surface daily min relative humidity %

Atmospheric Predictor feWind Wind speed ms-1

Variables se }n . P . . 1
sfcWindmax Daily maximum near-surface wind speed ms
ta Air temperature K
tas Near surface air temperature K
tasmax Daily max near-surface air temperature K
tasmin Daily min near-surface air temperature K
ua Eastward wind ms™!
uas Eastern near-surface wind ms~!
va Northward wind ms~!
vas Northern near-surface wind ms™!
wap Omega (Lagrangian tendency of air pressure) pas~!
24 Geopotential height
T.Max Maximum temperature K
T.Min Minimum temperature K
Rain Rainfall mm

Ground-based SILO Evap Evaporation mm
VP Vapour pressure Pa
RHmaxT Relative humidity at maximum temperature %
RHminT Relative humidity at minimum temperature %

2.2.1. Slime Mould Algorithm for feature Selection

In this study, a wrapper feature selection method [85-87] based
upon a meta-heuristic algorithm called Slime Mould Algorithm (SMA)
is firstly used to select the optimal features for GSR prediction. We
have selected SMA based on its recent performance as a metaheuristic
algorithm derived from the diffusion and foraging behaviour of slime
mould [88]. Mathematically, SMA can be divided into three phases:
approach, wrap and grabble food.

+ Stage 1 (Approach food): A slime mould approaches food based
on its odour in the air, so the following formula mimics the
behaviour of the slime mould towards food.

X(+1) = {Xb(t) o (WXp0 =Xp(0), r<p
0 X0, ‘s

(€Y

where the slime mould position is denoted by X, and X, shows
the position of current individual. The notation « is calculated as
Eq. (2):

t
—arctanh (=== +1), 2
aarcan<M+> 2

t
where ¢ is the current iteration and M, is the maximum iterations;
and p is derived by Eq. (3):

p = tanh|S(@i) — DF|. 3)

Here, i € {1,2,...,n} and S(i) denotes the fitness of X. DF
represents a good fitness iteration. The weight of slime mould W
is calculated following the next expression:

1+rlog<w+1>, if (i) < Med[S]
, bF — wF
W(SI3) = ) , @
bF — S(i) .
1-rlog (— + 1) s otherwise
bF — wF
where
ST = Sort[.S], 5)

and r ~ U(0,1) is an uniform random variable between 0 and 1.
The Med[-] refers to the median operator.

Stage 2 (Wrap food): A slime mould’s search pattern changes
based on the quality of food. When there is a high concentration
of food near a region, the weight near it will be greater. If the
concentration is low, the region’s weight will be lower, and it
will be forced to explore other locations. The location of the slime
mould is updated in the stage based on Eq. (6):

u(UB - LB)+ LB, r<z
X+ 1) =1X,(0) + vy (WX, = Xp(0), z<r<p (6)
v X(1), r>p

where LB and U B are the lower and upper bounds respectively,
u,r ~ U(0,1), and z is a probability used to tradeoff between
exploitation and exploration.

Stage 3 (Grabble food): Here, slime mould moves to better lo-
cations for food concentration. W, v, and v, is used to mimic
the variation of venous width. The variables, v, and v,, oscillate
between [—a, a] and [—1, 1] respectively. As the iteration number
increases, v, and v, draw closer to zero. The intuitive and detailed
process of SMA is shown in Fig. 2.

Since, this SMA is wrapper-based method, to implement the SMA
algorithm for feature selection, a learning algorithm must be incor-
porated. This study has utilized K-Nearest Neighbours (KNN) regres-
sor [89] as a learning algorithm for the feature selection (FS) using
SMA. The objective of FS is to increase the accuracy while also mini-
mizing the number of features to be selected, therefore, we have chosen
fitness value (FV) as the root mean square error (RMSE) complement of
regression accuracy and needs to be minimized to get the best feature
subset. The three phases of the proposed SMA based FS solution are
outlined below:

+ Initialization Phase: A SMA produces an initial population of N
candidate solutions, where each entity covers a set of features
for consideration. The quality and convergence of the optimal
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Fig. 2. Descriptive flowchart for the relevant steps in the Slime Mould Algorithm (SMA) adopted as a feature selection algorithm for the prediction of GSR.

solution are critically affected by this step. The population X, is
randomly generated by Eq. (1), and the fitness value is calculated.
Update Phase: Every new position is evaluated using the fitness
function. If the solution quality of a new position is better than
that of the current position, the position is updated. The opposite-
based learning (OBL) approach [90] is used to update each search
agent’s position, Egs. (4) and (6) are used. To improve the search
process by exploring new regions in quest of the optimal solution,
increasing algorithm diversity, avoiding local optima, and con-
firming whether the new solution is better than the old one, the
basic principle of OBL is to consider a solution and its matching
opposite solution simultaneously. The FV of the new population is
calculated, and then the best solution is determined. Repetition of
this process will continue until the termination condition (i.e., the
maximum number of function evaluations) is reached. The SMA
process returns the best solution obtained in the previous step and
only the best features are retained from the original data.
Termination phase: Until the stopping criteria are satisfied, the
maximum number of function evaluations of the proposed al-
gorithm are performed, and the best viable feature subset is
discovered.

2.2.2. Convolutional Neural Network (CNN)

CNN models are a popular choice of the feed-forward network since
CNN shares features parameters and enable dimensionality reduction.
As CNN enables parameter sharing, the number of parameters gets
reduced therefore the computations are also decreased. Compared to
its predecessors, the main advantage of CNN is that it automatically
detects important spatial features without any human supervision. The
convolution layers of a CNN are optimized during training so that they
extract highly discriminative features, while the latter layers resemble
multilayer perceptron’s which execute classifying or regression work.
Although CNN is very popular, still there have been very few papers
describing the application of CNNs for solar radiation modelling [91].
Fig. 3 shows the structure of CNN, which consists of an input layer,
convolution layer, pooling layer, full connection layer, and an output
layer [92].

A convolutional neural network has two main features: weight
sharing and local connections [93]. Convolutional layers target meteo-
rological data as input variables with strata on the target variable (GSR)
to extract spatial patterns, which can be expressed mathematically as:

h=f(x*W+b) ()]

where x is input data, = means convolution operation, W is the weight
of the convolution kernel, and b is the offset value. The function f(-)
denotes the activation function. Rectified linear unit (ReLu), is the
chosen activation function for this study:

S (x) = max{0, x} €))

2.2.3. Long Short-Term Memory Network (LSTM)

Relative insensitivity to gap length is an advantage of LSTM over
RNNs, hidden Markov models, and other sequence learning methods in
numerous applications. LSTMs were developed to deal with the vanish-
ing gradient problem that can be encountered when training traditional
RNNs. Using LSTM, time series forecasting models can predict future
values based on previous, sequential data. This provides greater accu-
racy for demand forecasters which results in better decision-making for
the business. We can say that, when we move from RNN to LSTM (Long
Short-Term Memory), we are introducing more and more controlling
knobs, which control the flow and mixing of Inputs as per trained
Weights. And thus, bringing more flexibility in controlling the outputs.

Different versions of conventional neural networks are used to
analyse time-series data, forecast, and predict trends. Neural networks
are unable to handle historical data dependencies. Thus, there were
Recurrent Neural Networks (RNN) that utilize the message gathered
in the earlier. RNNs handle dependencies that are short-term, but not
long-term dependencies. There are issues with vanishing and explosion
of gradient.

This problem was solved through LSTM [94] that uses special cells
and not neurons. Moreover, there are three gates named input, forget,
and output enabling updating and controlling the information flow
within the network. There are many advantages of using an LSTM. They
key being gradient vanishing, other being effectively handling the in-
ternal cells. Next being efficiently handling long-term dependencies by
acquiring the temporal features from time-series data. All of this makes
LSTM a popular choice amongst researchers for predicting GSR [58,95-
97]. The Fig. 4 shows the LSTM architecture. The study explains it
mathematically as [98]:

+ Forget gate, based on The earlier input data x,, hidden state 4,_,,
and the forget gate f, decides the forget gate. This tells the LSTM
to decide any specific information that it wishes to remove:
fi=o(ys - Th_y,x]+by) ©)

where the weight matrices is denoted by w,, o represents the
activation function sigmoid, and the bias vector is denoted by b.
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Fig. 4. The structure of Long-Short Term Memory (LSTM) Network.

+ The information saved for the new candidate state C, is deter-
mined by the i,, which is the input gate:

C, = tanh(w, - [h,_,,x,] + b,) (10)

i, = o(w, - [h_y, %] +b,) (1n

where the hyperbolic tangent function (hyperbolic) is denoted by
tanh(-).

The new candidate state denoted by C, with the earlier state
denoted by the C,_, updates the next state, C,. This is mathemat-
ically expressed as follows:

Co=fi*xCy+i* ét 12)

Lastly, the output of the LSTM cell is regulated by o, gate. In
the following equation, o, is the output gate, the cell state is C,,
and tanh is the activation function. The A, is the desired output
represented by:

o, =o(w, [h_i,x,]+b,) 13)

h; = o, tanh(C,) a4)

2.3. The hybrid SCLC model development

The general method for predicting GSR introduced in this study is
illustrated in Fig. 6.

In comparison to a standalone model, a hybrid model generally has
a good performance. Considering the usefulness of LSTMs and CNNs,
this study has proposed a new functional model for extracting temporal
and spatial features to predict GSR with greater accuracy. In this study,
a hybrid model, called Hybrid SCLC referred to as a connection of
LSTM, SMA, and CNN is proposed to model daily GSR, as illustrated in
Fig. 5. The objective model predicts GSR through extraction of difficult
patterns from the data. The model is developed in the following stages:

- Stage 1: Initially, the complete meteorological data was used for
GSR prediction.
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Fig. 5. Architecture of the proposed GSR prediction method based on the hybrid SMA-CNN-LSTM-CNN-MLP (SCLC) model.
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Fig. 6. Workflow diagram detailing the necessary steps taken to design proposed deep hybrid SCLC model.

» Stage 2: Secondly, Slime Mould Algorithm was adopted as a
stochastic optimizer in the study to extract features. The pro-
posed SMA has several new features with a unique mathematical
model. It uses adaptive weights to simulate the process of pro-
ducing positive and negative feedback of the propagation wave of
slime mould. This is based on bio-oscillator to form the optimal
path for connecting food with excellent exploratory ability and
exploitation propensity.

Stage 3: In the next stage, the CNN model is introduced as the first
extraction layer of deep learning. The introduction of CNN helps
in reducing dimensionality and thereby reduces the computation
time. CNN entails a data processor including feature extractors
drawing upon statistically significant antecedent lagged predictor
variables.

» Stage 4: In the next stage, the model building employed four
independent LSTMs to encapsulate feature mapping schemes.
Stage 5: For further model building stage, another CNN layer
was employed on the LSTM outputs. The convolutional layers
in the second CNN model apply the convolution operation on
time series data (input from LSTM) to extract spatial patterns and
intrinsic characteristics from diverse meteorological variables.
CNNs typically consist of several levels of convolutional-pooling
layers and there are several convolutions runs are performed on
each layer to collect useful information. The second layer boosts
the efficacy and accuracy of resultant hybrid SCLC by extracting
effective features, finding the interdependence of data in time
series, and detecting the best mode suitable for relevant data.
During this process, the CNN uses weights for the meteorological
parameter based on its effect on GSR.
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« Stage 6: Lastly, the final output from stage five goes through the
fully connected (FC) layer (MLP) resulting in next-day GSR pre-
diction. The proposed hybrid SMA-CNN-LSTM-CNN-MLP (SCLC)
final layer has fully connected dense layers and can predict GSR
over some time.

The CNN unit’s output is a flattened feature vector h' = (h, hy, ..., h))
where / represents the number of filters in CNN. The Eq. (15) repre-
sents the equation deployed at that level. ¢ is a non-linear activation
function, w is the weight of the ith node for layer / — 1 and jth node
for layer I, and b/~! represent bias.

dl =Y wi (e(h™hH+ 57 (15)
J

The proposed hybrid SCLC model is depicted in Fig. 2. The first
CNN layer is composed of four convolutional layers followed by a
pooling layer, then the results are flattened. Convolutional layer 1
reads through input data (predictor) and displays results as feature
maps, layer 2 and layer 3 perform the same operation on feature maps
created by layer 1 and layer 2 respectively, and layer 4 repeats the
process to amplify any salient features. Feature maps that are extracted
after layer 4 are then flattened and fed to the 3-layer stacked LSTM
model. The next step involves transferring the LSTM extracted temporal
information from predictor variables to the input layer of the second
CNN model (3 Convolutional layers and 3 pooling layers). The feature
maps extracted after the pooling layer of the second CNN are then
flattened into a long vector (1-dimensional array). Lastly, we use a
fully connected layer (i.e., dense) to aggregate the data and predict the
GSR by analysing the extracted features. In this architecture, spatial
and temporal features are extracted independently with CNNs and
LSTMs, hence using the positive aspects of both CNNs and LSTMs and
producing a robust model.

2.3.1. Data normalization

In the prediction task, numerical values with different scales must
be normalized, ignoring this step hinders gradient descent-based algo-
rithms, resulting in slower convergence speeds and distorting predic-
tion results [99]. Thus, this study has utilized the Z-score normalization
method to the predictor dataset intending to scale all the variables to
a similar range. Let X = {x,x,,...,x;} be the considered time-series
input data with L component. Each sample of X was normalized with
a centre of 0 and a standard deviation of 1 by following Eq. (16):
x=2-£ 16)

o

where y and ¢ are the mean and standard deviation of X, respectively.
Finally, the scaled data is represented with X = {%,....,%;} and
the subset of the input can be prepared. Since the normalization is
invertible, the results are unaffected.

2.3.2. Feature selection

This study has utilized the meta-heuristic (SMA) as search algorithm
and K-Nearest Neighbour Regressor (KNNR) as a machine learning algo-
rithm for the selection of optimal input. SMA feature selection process
involves the partitioning of the normative (GSR) data into training
sets and testing sets (e.g., 80% for training, 20% for testing in 5-fold
cross-validation) and running the KNNR on the selected features in the
dataset. Each feature subset considered in the SMA FS is trained by the
KNNR and its performance is evaluated by measuring the generalization
performance on the original data. Feature subsets with minimum RMSE
are considered the optimal subset. The SMA feature selection works on
the below configuration:

+ Total Population (N) = [10,20, 50, 80, 100, 200, 300, 500].

« Count of maximum iterations (T") = 50.

» Number of k in K-nearest neighbour (K) =5

+ Probability of exploration and exploitation capability (z) = 0.03
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The performance of the RMSE (Fitness Value, FV) determines the
population size that in turn affects the SMA feature selection perfor-
mance. Hence, the study assessed the objective SMA FS with respect
to the populations. The convergence curve was plotted to show the
optimal fitness value in the slime mould during the iteration process.
Based on the convergence curve (Fig. 7), it can be concluded that
population increases are not always beneficial for FV, at Cape York
solar storage when population size (N) was increased from 50 to 300,
there was an only minimum change in the fitness value (with N = 50,
FV = 2.05 and N = 300, FV = 1.98). Additionally, computationally
inefficiency creeps in with the higher size so for the remaining solar
farms, 300 is the limit of the population size. This balances the FV with
the algorithm computation time. Thus for Barunggam, Cameby, and
Chinchilla solar farms, 17 predictors are selected from 75 (predictor
matrix: 20455 x 17). Whereas for Cape York and Sun metals solar
farm only 12 predictors are chosen (predictor matrix: 20455 x 12),
and Clermont gets 13 (predictor matrix: 20455 x 16). Table 3 shows
the complete SMA feature selection process, along with predictor and
predictands (GSR) matrix of correlation for Fig. 8.

2.3.3. Data partition

Finally, the SMA selected predictor matrix is merged with pre-
dictands (GSR) to get the input-target data for supervised machine
learning. Before integrating all data are created to predict daily GSR.
The models are calibrated on the training set while the validation set
does not participate in training and helps to tune the models during
the model development phase. The test set is only used after a model
has been trained (using train and validation sets), mostly for model
evaluation. This paper uses (20089 data points) or 54 years of training
data. Of which 4018 data points or 20% of the data is used in validation
and 365 data points or an year of data is sued for testing.

2.3.4. Benchmark model development

A comparison of the SCLC model with five popular forecast models,
such as CNN-LSTM, Deep Neural Network (DNN), Artificial neural
network (GBM), SADE-ELM, and Random Forest Regression (RFR),
was done. The complete modelling was done in the Python using
Keras 2.2.4 [100,77] on TensorFlow 1.13.1 [101,77]. 32 GB of RAM
with®Core™ processor was used.

2.3.5. Model tuning

All the ML models have different hyperparameters that determine
both the network structure (e.g., number of filters, neurons) and how
the network models are trained (e.g., type of optimizer, activation
function) [102]. As such, the performance of an ML model can vary
greatly depending on its chosen set of hyperparameters therefore to
achieve optimal performance hyperparameters should be selected cau-
tiously [103]. The authors in this study used five-fold cross-validation
method [104,105] for the grid-search of all the hyperparameters. Eval-
uation was based on its average RMSE on the validation set for each
set of hyperparameters. In grid search, all possible combinations of
hyperparameters are tried for a dataset to find the best hyperparameter.
Furthermore, during deep learning model (SCLC and CLSTM) training,
rectified linear unit (ReLu) activation function is used in all except the
last layer. ReLu performs better than sigmoid and hyperbolic tangent
activation functions and does not have the vanishing gradient prob-
lem [106]. Adam is an adaptive learning rate optimization algorithm
designed to train neural networks [107]. The name Adam comes from
adaptive moment estimation [108] and uses a quadratic gradient to
change the learning rate, as well as the momentum based on the
moving average of the gradient. Furthermore, this study also employed
the following regularization technique when developing a robust deep
learning model for GSR prediction.
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Fig. 7. Convergence curve for SMA feature selection on predictors of Cape York solar storage.
Table 3
Chosen Input predictor variable for all farms through Slime Mould Optimization feature selection. Table 2 shows the abbreviations.
Barunggam Cameby Cape York Solar Storage Chinchilla Clermont Sun Metals
Evap Evap Evap Evap Evap Evap
RHmaxT RHmaxT RHmaxT RHmaxT RHmaxT RHmaxT
ua_1000 ua_1000 hfss ua_1000 hfss hfss
hfls hfls hur_1000 hfls hur_1000 Rain
hfss hfss Rain hus_5000 T.Max hur_1000
hus_5000 hus_5000 T.Max hfss Rain hfls
wap_1000 ta_25000 hur_85000 wap_1000 ua_5000 T.Max
ta_25000 wap_1000 hus_1000 ta_25000 wap_1000 ua_5000
wap_85000 sfcWindmax wap_1000 sfcWindmax va_85000 va_50000
zg_1000 zg_ 1000 va_70000 zg_1000 RHminT zg_5000
sfcWindmax Rain uas wap_85000 wap_85000 wap_1000
ua_5000 RHminT RHminT Rain zg 5000 hur_70000
RHminT wap_85000 RHminT va_50000 ta_25000
Rain ua_10000 ua_5000 hfls
T.Max hur_1000 hur_1000 sfcWindmax
va_25000 psl va_25000 hus_5000
hur_1000 va_25000 T.Max

» During training, the dropout technique was employed to pre-
vent overfitting and enhance performance. The dropout involves
dumping a certain number of neurons randomly on the net-
work. The connections of the dropped neurons, therefore, are
ignored [109].

ReduceLROnPlateau regularization was employed to monitor the
improvement of validation loss (root mean square error; RMSE),
and in the case that no improvement is verified for a ‘patience’
number of 10 iterations, the learning rate (/r) is reduced at the
factor of 0.2(Ir,,,, = Ir x 0.2). Consequently, when the learning
process stagnates, this reducing strategy could be of significant
benefit to the model [110,111].

The early stopping (es) regularization method monitors the loss of
the validation set and stop stops the training when the validation
loss is no longer decreasing for a certain number of epochs [112].

Hence, with es the training can be stopped when no further
important improvements can be achieved or when the validation
loss starts to increase due to overfitting [113]. In this study, the
training was stopped after the loss stopped decreasing for 15
consecutive epochs.

It should be also noted that in this study the es and ReduceLROn-
Plateau were not used along with grid search because the programming
code did not permit to integrate them. Therefore, these regularization
methods were only used during the training of the final model with
optimal parameters. Tables 4 and 5 list the search space and optimized
results for the hybrid SCLC as well as other benchmark models. Fig. 9
shows the losses of the proposed SCLC model (Cape York solar storage).
There is a slow decrease of both losses showing good SCLC model
performance.
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Fig. 8. A Correlation matrix for Cape York solar storage. Note: -Table 2 outlines the nomenclature.

Table 4

(a) The objective deep learning hybrid model (SCLC) with other deep learning models (i.e., Convolution Neural Network integrated with Long-term short-term Memory), CLSTM,

and Network Deep Neural Network (DNN).

Predictive deep Model hyperparameters Hyperparameter selection Barunggam Cameby Cape York Chinchilla Clermont Sun metals
learning models Solar Farm Solar Farm Solar Storage Solar Farm Solar Farm Solar Farm
Filterl (for first CNN) [50, 80, 100, 200] 100 200 50 80 50 100
Filter 2 (for first CNN) [40, 50, 60, 70, 80] 70 40 50 80 40 60
Filter 3 (for first CNN) [20, 10, 30, 5] 30 30 20 30 30 30
LSTM cell 1 [100]
Drop rate [0, 0.1, 0.2] 0 0.1 0 0.2 0.1 0
LSTM cell 2 [80]
scLe LSTM cell 3 [50]
Filterl (for second CNN) [50, 80, 100, 200] 80 50 50 80 200 50
Filter 2 (for second CNN) [40, 50, 60, 70, 80] 70 40 60 60 80 40
Filter 3 (for second CNN) [20, 10, 30, 5] 20 30 30 30 20 10
Epochs [300, 400, 500, 600, 700] 500 400 600 700 500 400
Batch size [5, 10, 15, 20, 25, 30] 10 15 5 20 25 5
Filterl [50, 80, 100, 200] 80 50 100 100 80 80
Filter 2 [40, 50, 60, 70, 80] 40 60 50 60 80 70
Filter 3 [20, 10, 30, 5] 10 5 30 10 20 30
LSTM cell 1 [50, 60, 100, 200] 50 60 100 60 50 100
LSTM cell 2 [40, 50, 60, 70, 130] 40 50 70 40 50 40
CLSTM LSTM cell 3 [20, 10, 30, 5] 20 10 10 30 20 10
LSTM cell 4, 5 and 6 [Fixed as 30, 20, 10]
Activation function ReLu
Epochs [300, 400, 500, 600, 700] 500 400 300 600 300 400
Drop rate [0, 0.1, 0.2] 0.1 0 0 0.1 0 0
Batch size [5, 10, 15, 20, 25, 30] 5 10 5 15 25 10
Hidden neuron 1 [100, 200, 300, 400, 50] 100 200 50 80 50 100
Hidden neuron 2 [20, 30, 40, 50, 60, 70] 70 40 50 80 40 60
Hidden neuron 3 [10, 20, 30, 40, 50] 30 30 20 30 30 30
DNN Hidden neuron 4 [5, 6,7, 8,12, 15, 18] 12 15 15 12 5 8
Activation function ReLu
Epochs [300, 400, 500, 600, 700] 400 400 600 500 700 300
Drop rate 0.1
Batch size [5, 10, 15, 20, 25, 30] 15 20 25 5 10 10
2.3.6. Performance evaluation metrics
o . ) \/ Lyn (GSRP - GSR™?
Statistical metrics based on earlier approaches [35,38,45,114-120] RRMSE = V" i=1 (20
were employed to assess the performance of the hybrid CXGBRFR (GSR™)
model. RMAE < L 3 IGSR? —GSR"| @n
_ Y (GSR™ - (GSR™))(GSR? - (GSR")) an Zl GSR?
n 2
VEL(GSR" — (GSR")2\ [T (GSR? - (GSRP))? —— T (GSR" — GSR?) 22
- Z:’=n(|GSR1’ —(GSR™)| + |GSR™ — (GSR™)|)?
1 n 2
RMSE = |- Y (GSR" - GSR") a8)  yepoi Y _(GSR" — GSR?) 23)
n = =1-
i=1 Z?:l (GSR™ — (GSR™))?
n n m
1 " |GSR™ - GSR?|
MAE = = Z|GSR” — GSR"| (19) IM=1- Zici (24)
n

i=1

10

> IGSR™ — (GSR™)|



S. Ghimire et al.

Table 5

Measurement 202 (2022) 111759

(b) Comparison of machine learning models used in the study. Note that ReLU is Rectified Linear Units. Tansig, logsig and purelin refer to Hyperbolic tangent transfer function,
Log-sigmoid transfer function, and linear transfer function respectively. LM, lbfgs, cgf, rp, br, scg refer to Levenberg-Marquardt, limited memory Broyden-Fletcher-Goldfarb—
Shanno, Conjugate gradient backpropagation with Fletcher—Reeves, resilient backpropagation, Bayesian regulation backpropagation, and one-step secant backpropagation algorithm

respectively.
Predictive Model hyperparameters Hyperparameter Barunggam Cameby Solar  Cape York Chinchilla Clermont Sun Metals
conventional selection Solar Farm Farm Solar Storage  Solar Farm Solar Farm Solar Farm
models
Hidden neuron [10, 20, 30, 40, 60, 80, 200 100 60 80 100 200
100, 200, 300]
ANN Training Function [‘trainlm’, trainbfg, trainlm trainlm trainbfg trainbfg trainbfg trainlm
traingdx]
Activation function [tansig, logsig, purlin] tansig tansig logsig logsig logsig tansig
Hidden neuron [20, 40, 80, 100] 80 100 80 40 80 100
Activation function [sig]
Crossover ratio 0.5
ADE-ELM
S Population 100
Amplification factor 0.5
Maximum Generation 100
The maximum depth of the [5, 8, 10, 20, 25] 10 20 10 10 25 10
tree.
The number of trees in the [50, 100, 150, 200] 100 150 50 150 100 150
forest.
RER Minimum number of [2, 4, 6, 8, 10] 8 8 6 10 6 8
samples to split an internal
node
The number of features to [‘auto’, ‘sqrt’, ‘log2’] auto auto auto auto auto auto
consider when looking for
the best split.
Model Loss
'
Roly 1 L
e | —— Training
! —— Validation
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]
1
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Fig. 9. Losses (training and validation with mean absolute error) for the prediction of GSR. Absence of loss improvement with predefined epochs calls for the early stopping

callbacks.

var —

S§=1-

RMSE, =

_ Var(GSR™ — GSRP)
Var(GSR™)

RMSE(p,x)

RM S E(pr, x)

RM S E(p, x)
RMSE(r, x)

(25)

(26)

(27)

where GSR? and GSR" denote GSR’s predicted and observed value,
(GSR™) s well as (GSR?) denote observed as well as predicted GSR
mean, prediction of model is shown via p, observation is x, perfect
prediction (persistence) is pr, and prediction of reference is r.

To improve the performance of model,

« r varies from —1 and +1, MAE, RMSE values go from 0 (best fit)

to oo that show the fit that is worst);

11

RRMSE and RMAE can be in the range (0%-100%) [121].
Willmot Index is better metrics. It varies from the values of the
worst fit of 0 to perfect fit of 1 [122].

NSE, keeps a tab on the variance of GSR with the worst fit as —co
and 1 being the perfect fit [123].

+ Legates shows to be best of all with preferred values between

0-1 [124].
E

var»

performance [125]

6

GPI; = Z aj(gj - yij)

j=1

takes care of the biased variance.

Global Performance Indicator (GPI) is used to rank the overall model

(28)
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Fig. 10. Evaluation of Deep hybrid model SCLC and its comparative approaches in the testing phase, through mean absolute error (MAE, MJm~2 day~!). (Note: Nomenclature of

every model is in Tables 3-5).

where «; denotes the median of scaled values of statistical indicator
j. Higher value shows the better performance. There is also the use of
the Kling-Gupta Efficiency (KGE) [126] and Absolute Percentage Bias
(APB; %) [127]. We shows these mathematically as follows:

KGE =1 — _1)2 (GSR) _ ’ p\
G 1 \/(r "+ << m 1> + ; (29)
" ((GSR™ - GSRP) % 100
PB 2 ) * )’ (30)

Y, GSR"

where r is the correlation coefficient, CV is the coefficient of varia-
tion, GSR? refers to the predicted GSR (MJm~2day~'), GSR" is the
measured GSR? (MJm~2day~'), (GSR™) is the average value of the
GSR™, (GSR?) shows the average value of the GSR?. Actual values
are shown by n.

Furthermore, the following metrics are also used: Mean Absolute
Error (A, 45), Absolute Percentage Bias (4,pp), and Root Mean Square
Error (Agpsg) [128].

APB, — APB,
Aapp = ~aPB, (€29
. _|RMAE, - RMAE, 32)
MAE = ‘ RMAE,
RRMSE, - RRMSE,
ARRMSE = RRMSE, (33)

where, APB;, RRMSE, and RMAE, show the performance of

(i.e., SCLC) and competitiveness is shown via RRMSE,, APB,, and

RM AE, refers to the benchmark model performance metrics.
Directional Symmetry (DS) calculates the performance as below:

n
ps=1Y a,x100% (34
n
=2
where
L _ [l ifGSRY-GSRY )GSR! - GSR},)>0 35
! 0, otherwise

12

Another performance metrics used for statistical significance are the
Harvey, the Newbold (HLN), Diebold-Mariano (DM) test, and Ley-
bourne. The main steps are stated in the published literature [114-
116].

3. Results and discussion

The deep hybrid SCLC model used for GSR prediction was able
to produce a high r-value and lower MAE and RMSE values for the
Barunggam Solar Farm (r ~ 0.930, RMSE ~ 2.338 MJm~>day~!, MAE
~ 1.69 MJm~2day~!). This contrasted the results of the deep learning
model CNN-LSTM model (r ~ 0.916, RMSE »~ 2.538 MJm~2day~!,
MAE =~ 1911 MJm~2day~!) and the DNN model (» ~ 0.914, RMSE
~ 2.633 MJm~2day~!, MAE ~ 1.946 MJm~2day~!). Likewise, for the
conventional ML models (ANN, SADE-ELM, and RFR) the r-value is
lower than that of the SCLC model, RMSE, and MAE, both metrics
are higher than that of the SCLC model. Additionally, for remaining
solar farms, the SCLC produced substantially healthier GSR prediction
(Table 6 and Fig. 10). This result shows that the SCLC is a possible
choice to be implemented as a well-designed forecasting approach for
GSR predictions in comparison to DL-based models (CLSTM and DNN),
and traditional ML models.

In Table 7, to compare the SCLC model against CLSTM, DNN, ANN,
SADE-ELM, and RFR models, we utilized multiple criteria based on WI
and NSE. According to these model penalization metrics, the results
produced by the SCLC model for the case of Barunggam Solar Farm
yielded a value of (WI ~ 0.926, NSE ~ 0.862), CLSTM (WI ~ 0.913, NSE
~ 0.8377), DNN (WI ~ 0.904, NSE ~ 0.826), ANN (NSE ~ 0.6331, WI
~ 0.723), SADE-ELM model (WI ~ 0.886, NSE ~ 0.795) and RFR model
(WI = 0.564, NSE ~ 0.390). Remaining model penalization metrics like
LM and Evar (Table 8) were also utilized and for the solar farm of
Barunggam, the SCLC with better Legates and Evar (LM ~ 0.674, Evar
~ 0.864) outperform all other DL models as well as the benchmark ML
models. Furthermore, SCLC model of remaining solar farms (Cameby,
Cape York Solar Storage, Chinchilla, Clermont, and Sun Metals Solar
Farm) performed nicely. Compared to r, RMSE, and MAE, these higher-
order metrics demonstrate that the SCLC has better predictive abilities
to deliver accurate prediction of GSR.
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SCLC model vs. other comparative models in the testing phase for all the solar farms considered in the study measured with respect to the correlation coefficient (r) and root
mean square error (RM SE, MJm~2day~!) in the model’s testing phase. The Objective model SCLC is blue bold-faced.

Chinchilla Solar Farm Clermont Solar Farm Sun Metals Solar Farm

Predictive Barunggam Solar Farm Cameby Solar Farm Cape York Solar Storage

models r RMSE r RMSE  r RMSE r RMSE r RMSE r RMSE
SCLC 0.930 2.338 0.930 2.386 0.880 2.207 0.933 2.314 0.905 2.502 0.935 2.792
CLSTM 0.916 2.538 0.910 2.653 0.863 2.441 0.910 2.638 0.881 2.761 0.920 3.091
SADE-ELM 0.895 2.849 0.895 2911 0.853 2.539 0.893 2.833 0.878 2.793 0.920 3.106
DNN 0.914 2.633 0.901 2.772 0.881 2.384 0.898 2.787 0.891 2.647 0.895 3.389
ANN 0.899 3.815 0.910 2.705 0.864 2.507 0.833 3.471 0.881 2.778 0.892 3.627
RFR 0.681 5.033 0.694 5.492 0.578 4.515 0.516 6.135 0.686 4.574 0.839 4.462

Table 7

SCLC model vs. other comparative models in the testing phase for all the solar farms considered in the study measured with respect to the Willmott’s Index (W I) and Nash-Sutcliffe

coefficients (N SE).

Chinchilla Solar Farm Clermont Solar Farm Sun Metals Solar Farm

Predictive Barunggam Solar Farm Cameby Solar Farm Cape York Solar Storage

models W NSE W NSE W NSE W NSE W NSE wi NSE
SCLC 0.926 0.862 0.922 0.858 0.873 0.769 0.928 0.865 0.906 0.816 0.874 0.756
CLSTM 0.913 0.837 0.900 0.822 0.830 0.724 0.903 0.824 0.886 0.775 0.820 0.703
SADE-ELM 0.886 0.795 0.888 0.788 0.808 0.704 0.891 0.796 0.888 0.770 0.814 0.701
DNN 0.904 0.826 0.897 0.807 0.829 0.741 0.896 0.803 0.900 0.793 0.808 0.640
ANN 0.723 0.631 0.896 0.818 0.795 0.710 0.821 0.694 0.883 0.772 0.700 0.592
RFR 0.564 0.390 0.690 0.245 0.443 0.134 0.438 0.062 0.606 0.407 0.727 0.376

Table 8

SCLC model vs. other comparative models in the testing phase for all the solar farms considered in the study measured with respect to the Legates and McCabes index (LM) and

explained variance score (E,,,).

Predictive Barunggam Solar Farm Cameby Solar Farm Cape York Solar Storage Chinchilla Solar Farm Clermont Solar Farm Sun Metals Solar Farm
models LM E, LM Ev LM E, LM E, LM Evr LM Evur

SCLC 0.674 0.864 0.653 0.865 0.539 0.772 0.665 0.870 0.623 0.819 0.525 0.757
CLSTM 0.632 0.839 0.626 0.822 0.505 0.744 0.620 0.828 0.562 0.776 0.491 0.710
SADE-ELM 0.586 0.800 0.570 0.796 0.481 0.728 0.574 0.798 0.549 0.771 0.490 0.707
DNN 0.625 0.836 0.600 0.811 0.515 0.774 0.595 0.807 0.582 0.793 0.444 0.641
ANN 0.413 0.631 0.607 0.828 0.490 0.733 0.502 0.694 0.559 0.774 0.389 0.599
RFR 0.230 0.411 0.179 0.246 0.052 0.150 0.027 0.064 0.258 0.424 0.223 0.376

Table 9

SCLC model vs. other comparative models in the testing phase for all the solar farms considered in the study measured with respect to the relative mean absolute error (RM AE,

%) and relative root mean square error (RRM SE, %)

Predictive Barunggam Cameby Cape York Solar Storage Chinchilla Clermont Sun Metals

maodels RRMSE RMAE RRMSE RMAE RRMSE RMAE RRMSE RMAE RRMSE RMAE RRMSE RMAE
SCLC 11.66% 10.71%  11.84% 11.12%  11.46% 10.37% 11.56% 10.61% 12.17% 10.85% 13.67% 13.12%
CLSTM 12.65% 12.28% 13.17% 12.68% 12.67% 11.61% 13.17% 12.34% 13.43% 12.54% 15.13% 14.96%
SADE-ELM 14.20% 13.75%  14.45% 13.59%  13.18% 12.23% 14.15% 13.61%  13.59% 12.92%  15.20% 15.41%
DNN 13.13% 12.15%  13.76% 12.49%  12.37% 11.52% 13.92% 12.55%  12.88% 11.58%  16.59% 16.11%
ANN 19.02% 20.09%  13.43% 13.18%  13.01% 12.41% 17.33% 16.77%  13.52% 12.58%  17.75% 19.10%
RFR 25.09% 26.83% 27.27% 26.86% 23.44% 21.53% 30.63% 32.18% 22.25% 23.10% 21.84% 21.40%

Overcoming the problem of the limitation of objective metrics in
GSR prediction, the study uses for enhancing the proposed model’s
suitability. Fig. 10 illustrates the scatterplots in the testing phase for
the observed and predicted GSR With scatter points being closer to the
y = mx + C the proposed SCLC performs the best. Results matches with
the results of all other metrics.

RRMSE and RMAE compares the performance of models where the
stations differ physically, geographically, and climatically. (Table 9)
showed that proposed model carries minimum RRMSE and RMAE than
CLSTM, DNN, ANN, SADE-ELM & RFR for all the study sites. SCLC
model at Cape York Solar Storage produces the lowest (RRMSE =~
11.46%, RMAE~ 10.37%) relative metrics in comparison to others. All
calculations indicate the best ability of SCLC model.

The SCLC model is compared by Promoting Percentages via (4)
for instance, A = RMAECLC-RMAECLSTM, is evaluated to estimate the
difference in the relative mean absolute error of SCLC and CLSTM
model. Table 10 compares the SCLC model with the other models tested
during the testing phase. SCLC outperforms CLSTM and others.

Graphically analysing carries a lot of importance as being numerical
evaluation of the model. Fig. 12 shows the boxplots of the SCLC with
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comparative approaches. Figure shows, the + symbols represent the
outliers of the extreme absolute prediction error (|[PE| = GSR,,_ —
G S Rpred) of the testing data. Additionally, the kernel density estimate
(KDE) plots of the standardized residuals were also plotted in Fig. 13
to get a clearer picture of the residual distributions. The KDE plot of
the standardized residuals for the SCLC model is close to the standard
normal. We have not performed any correlation tests, but with such a
large sample size, a hypothesis of correlated residuals is unlikely to be
rejected. Hence, the box plot (Fig. 10) and KDE plot of standardized
residuals (Fig. 11) further confirm SCLC’s superior accuracy in GSR
prediction compared to other competing models.

To broadly gauge the efficiency, a comprehensive and unbiased
assessment of models is carried out by plotting a Taylor graph [117].
Fig. 14 illustrates the statistical association between predicted and
actual GSR based on r and standard deviation. By comparing r to
standard deviation, it is shown that RFR, ANN, and SADE-ELM are
not proper as their r to standard deviation was extremely far from the
observed GSR, whereas deep learning model DNN and CLSTM overlap
and are closer to observation. The SCLC model closely matched the
actual GSR approving the prediction was better. To provide further
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Fig. 11. Scatter plots of predicted (GSRpred) and observed (GSRobs) for all tested regions in Six solar farms of Queensland. (a) Barunggam, (b) Cameby Solar Farm, (c) Cape
York Solar Storage, (d) Chinchilla, (e) Clermont and (f) Sun Metals. (Note: Red line is the least-squares fit line (y = mx + c. Table 3 as well as Tables 4 and 5) show the model

nomenclature.

insight into the prediction capability of the proposed modelling systems
for GSR prediction, Fig. 15 shows the plot for KGE, APB, and GPI.
With high KGE (~ 0.888) and low APB (x~ 9.035), the performance
of the deep hybrid SCLC model far exceeds that of the counterpart
models. Furthermore, the ranking of models is done according to their
prediction efficiency using the GPI metrics. The GPI varies from —7.172
to 1.199 (Fig. 15(b)). The highest value of GPI of 1.199 is for SCLC,
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further cementing the advanced modelling capabilities of the proposed
SCLC.

Additionally, statistical test DM, HLN, and DS were used to validate
whether the prediction of SCLC having more accuracy as compared
to the other comparative models. Tables 11 and 12 below show the
statistics of the DM and HLN test results for all models. The models
in the column of the table are compared with the model in the rows,
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Fig. 12. Box plots of the prediction error (PE) generated by prediction models for prediction of GSR. (Note: Table 3 as well as Tables 4 and 5) show the nomenclatures.

Table 10

SCLC comparison of promoting percentage vs. the competitive models where the percentage shows the betterment of SCLC against the competitive models.

Predictive Barunggam Solar Farm Cameby Solar Farm Cape York Solar Storage Chinchilla Solar Farm Clermont Solar Farm Sun Metals Solar Farm
models )’RRMSE )’RMAE }’APB ARRMSE ARMAE AAPB ARRMSE ARMAE AAPB }’RRMSE }’RMAE /lAPB ARRMSE ARMAE )’APB ARRMSE ARMAE AAPB
CLSTM 9% 15% 13% 11% 14% 8% 11% 12% 7% 14% 16%  14% 10% 16% 16% 11% 14% 7%
SADE-ELM 22% 28%  27% 22% 22%  24% 15% 18% 13% 22% 28%  27% 12% 19% 19% 11% 17% 7%
DNN 13% 13% 15% 16% 12% 15% 8% 11% 5% 20% 18% 21% 6% 7% 11% 21% 23% 17%
ANN 63% 88%  80% 13% 18% 13% 14% 20% 11% 50% 58%  49% 11% 16% 17% 30% 46%  29%
RFR 115% 151% 136% 130% 141% 137% 105% 108% 106% 165% 203% 191%  83% 113% 97%  60% 63%  64%
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Table 11

Statistics of the Diebold-Mariano (DM) test.(The column of the table is
compared with the rows, and if the result is positive, the model in the column
outperforms the one in the row; on the contrary, if it is negative, then the
one in the row is superior).

Predictive models SCLC CLSTM SADE-ELM DNN  ANN RFR
SCLC 3.070 2971 3.726 3.897 7.002
CLSTM 0.225 1.691 2910 5.545
SADE-ELM 1.728 2993 5.694
DNN 1.249  4.646
ANN 2.993

Table 12

Statistics of Harvey, Leybourne, and Newbold test.
Predictive models SCLC CLSTM SADE-ELM DNN ANN RFR
SCLC 3.216 3.112 3.903 4.083 7.335
CLSTM 0.236 1.771 3.048 5.809
SADE-ELM 1.810 3.136 5.965
DNN 1.308 4.867
ANN 3.135

and if the result is positive, the model in the column outperforms the
one in the row; on the contrary, if it is negative, then the one in the
row is superior. Similarly, Fig. 16 shows that deep hybrid SCLC model
DS (i.e., directional prediction accuracy) is more than others, with an
average of 60.86%. Congruency with earlier findings, DM, HLN, and DS
test provides consistent results, which indicate that deep hybrid SCLC
predicts GSR more accurately than other models.

Moreover, the RMSE of all with RMSE of the model using only
clear-sky index persistence [118,119] provides prediction skill or skill
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score (SS). In addition to this, the comparison of the deep hybrid SCLC
model with other comparative models was done using RMSE ratio
(RMSEr) [120]. The models used have very lower SS and RMSEss than
the deep hybrid SCLC model (Table 13 and Table 14).

Every station’s data has four seasons with calculations for all mod-
els. Fig. 17 shows all metrics. Here also the SCLC model shows the
best performance with lower RRMSE, RMAE, and APB (spring, summer,
autumn, and winter) and higher WI, NSE, and KGE compared to DNN,
DBN, ANN, and MARS model. Additionally, the deep hybrid SCLC
model produces the less value of RMSE in season of spring (~ 2.171
MJm~2day~'), followed by Autumn (x 2.334 MJm~2day~'), Summer
(~ 2.451 MJm~2day~!), and Winter (~ 2.734 MJm~2day~!) (Fig. 18).
Hence, it can be contended that the deep hybrid SCLC model can be
deemed suitable for seasonal GSR prediction.

As final discussion note, it is possible to see how using statisti-
cal metrics and diagnostic plots, the proposed SCLC model has been
validated for effectiveness and reliability. The results obtained can
be analysed in terms of different assessments, including MAE, RMSE,
and r. The results obtained showed a high value of r metric, and low
RMSE and MAE, as can be seen in the table above. Thus, the proposed
SCLC presents considerable improvements over the rest of the models
analysed for comparison. Furthermore, the SCLC is not only able to
significantly improve the accuracy of GSR prediction, but also ensure
the highest prediction accuracy at different sites, maintaining a high
level of performance in all them, with values of r > 0.9 in all cases.
In detail, compared with alternative ML approaches such as CLSTM,
DNN, ANN, SADE-ELM, and RFR, the RRMSE of the proposed SCLC
algorithm is improved by 9%, 13%, 63%, 22%, and 115%, respectively
for Barunggam Solar Farm. Additionally, the proposed hybrid method
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Fig. 18. Performance check of deep hybrid SCLC with others in terms of root mean square error (RMSE) (Seasonal). (Note: Model Nomenclature are in Tables 3-5).

Table 13

SCLC model score metrics as well vs. competitive models for the test phase.

Solar energy farms SCLC CLSTM SADE-ELM DNN ANN RFR

Barunggam Solar 0.728 0.679 0.596 0.655 0.276 0.261
Cameby Solar 0.719 0.653 0.582 0.621 0.639 0.488
Cape York Solar Storage 0.582 0.489 0.446 0.512 0.460 0.450
Chinchilla Solar 0.731 0.651 0.597 0.610 0.395 0.352
Clermont Solar 0.697 0.631 0.623 0.661 0.627 0.215
Sun Metals Solar 0.613 0.525 0.521 0.429 0.346 0.315

Table 14
SCLC model performance vs. all benchmark models for the testing period as
shown by the root mean square error ratio (RMSEss).

Predictive models SCLC CLSTM SADE-ELM DNN  ANN RFR

SCLC 1.226  1.238 1.474 1.687 2.554
CLSTM 1.010 1.202 1.377 2.084
SADE-ELM 1.191 1.363 2.064
DNN 1.145 1.733
ANN 1.514

achieved high performance on GSR prediction with the high value of
KGE (~ 0.888), GPI (~ 1.199), and the low value of APB (~ 9.035). The
seasonal analysis of the results obtained has also shown the superior
performance of the proposed SCLC versus alternative ML approaches
in all cases examined.

It is remarkable that the performance of the hybrid DNN-based
methods is significantly better than that by ML-based methods or sim-
ple DNN, in all the metrics evaluated (both SCLC and the CLSTM reach
the highest positions along the different evaluated solar farms). The
same trend is observed in recent state-of-the-art works. For instance,

19

in [69] the authors train two hybrid DNN-based methods: (a) CNN-
ANN and (b) CNN-LSTM-ANN, and compare with ML methods in GSR
prediction in different areas of Africa. The authors report an improve-
ment of performance of hybrid approaches versus simple ML methods.
No comparison has been developed regarding to hybrid DNN-based
methods. Also in [73] a hybrid CNN-SVM has been evaluated, and
its reported an improvement of performance versus ML methods and
even pure recurrent DNNs, such as LSTMs. The combination of DNNs
together with traditional ensemble methods, such as RF or XGRBoost,
has also shown to be an efficient hybrid DNN-based model for radia-
tion prediction [76]. Thus, note that hybrid DNN-based methods have
recently obtained extremely good results in GSR prediction problems,
significantly outperforming single ML and DNN methods.

4. Conclusions

In this paper we have developed a new deep learning-based hybrid
model able to simulate the GSR across six solar farms considered in
Queensland, Australia. The proposed system is formed by the inte-
gration of a CNN, LSTM, and finally, another CNN algorithm, thus
making the overall hybrid SCLC-based predictive model. The Slime
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Mould Algorithm (SMA) screens out key optimal predictive features (in
terms of best input variables). To validate the proposed SCLC prediction
model, five different well-established Al models (i.e., CLSTM, DNN,
ANN, SADE-ELM, RFR) were also implemented and compared with the
proposed deep hybrid approach.

This research shows that, by combining the strengths of two DL
methods (CNN and LSTM), the resulting approach obtained results
superior than those by different benchmark methods considered, in
terms of GSR prediction accuracy, forecasting speed and low volatility
of prediction results. The results obtained showed an excellent adapt-
ability to the problem of solar radiation prediction, as can be seen by
comparing the results in the six solar farms considered, with excellent
performance metrics (+ > 0.9 in all cases), and improvements over
alternative approaches > 10%. These results show that proposed hybrid
DL algorithm is able to carry out an efficient information fusion and
processing of ground-based variables and data from GCM, leading to
extremely good results in the prediction of solar radiation at all study
sites in Queensland, Australia.

Further improvements in the DL methodology could incorporate
different design of predictor data decomposition methods, such as
wavelet analysis and empirical mode decomposition [50,129,130] to
screen best features using the SMA or other feature selection inputs,
prior to emulating the global solar radiation, wind speed, air quality
and other variables of interest. Finally, note that, in spite of the good
performance of hybrid DNN models in GSR prediction, such as the one
proposed in this work, there is not a comprehensive comparison of
DNN-based hybrid approaches which shows the specific behaviour of
different DNN-based combinations in different GSR prediction scenar-
ios. A future line of research should fill this gap by carrying out such
an experimental comparison.
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