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Let B be an abelian inner ideal and let KerL B be the kernel of B . In this paper we show 
that when there exists n ∈ N with [B, KerL B]n ⊂ B , the inner ideal B induces a bounded 
filtration in L where B is the first nonzero submodule of the filtration and where the wings 
of the Lie algebra associated to the filtration coincide with the subquotient determined by 
B . This filtration extends the principal filtration induced by ad-nilpotent elements of index 
less than or equal to three defined in [22].
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1. Introduction

Inner ideals of Lie algebras are the Lie analogues of one-sided ideals of the associative setting. They are submodules B
of a Lie algebra L (over a ring of scalars) such that [B, [B, L]] ⊂ B . An abelian inner ideal is an inner ideal which is also an 
abelian subalgebra, i.e., such that [B, B] = 0. They were first introduced in 1977 by G. Benkart [6], where she stated that “it 
is hoped that inner ideals will play a role analogous to Jordan inner ideals in the development of an Artinian theory for Lie 
algebras”. The inner ideals of a Lie algebra are closely related to the ad-nilpotent elements, and certain restrictions on the 
ad-nilpotent elements yield an elementary criterion for distinguishing the nonclassical from the classical simple Lie algebras 
over algebraically closed fields of characteristic p > 5. Inner ideals of classical Lie algebras were classified by G. Benkart 
and A. Fernández López [5] and [7], using the fact that these algebras can be obtained as the derived Lie subalgebras of 
(involution) simple Artinian associative rings.

As G. Benkart had predicted in her seminal paper, an Artinian theory for Lie algebras was obtained in [18] and [19] by 
making use of inner ideals; inner ideals of simple finite dimensional Lie algebras were classified in [14], and the classification 
of inner ideals of finitary simple Lie algebras was obtained in [17]. We highlight the paper by A. Baranov and J. Rowley [1]
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in which locally finite simple Lie algebras over an algebraically closed field of characteristic zero are characterized in terms 
of the existence of nonzero proper inner ideals.

In the last years, as announced in a communication presented by A. M. Cohen at the conference Buildings and Symmetry
celebrated at the University of Western Australia in 2017, inner ideals of Lie algebras have achieved a relevant role in the 
study of certain geometries related to algebraic groups, recovering a research line started in 1973 by J. Faulkner, [15]. In this 
sense, we highlight the works of H. Cuyper, J. Meulewaeter and T. De Medts, see [11], [12], [13]. As A. M. Cohen mentions 
in his work [11], “the explicit classification of inner ideals for simple Lie algebras related to algebraic groups given in [16]
confirms that the notion of inner ideal is well suited for the study of algebraic groups”.

Further evidence of the usefulness of inner ideals comes from [20], where it was shown that an abelian inner ideal B of 
finite length in a nondegenerate Lie algebra L over a ring of scalars with 1

2 , 13 gives rise to a finite Z-grading in L with B
being a wing of this grading. In general, a grading on a Lie algebra is a very strong condition, as it is the hypothesis of finite 
length. However, in this article we will show that any abelian inner ideal B of a Lie algebra L with some extra condition 
yields a bounded filtration on L with B being the first nonzero submodule of this filtration.

Principal filtrations associated to a single element were first introduced by O. Loos in 1990 in the context of Jordan 
systems, see [26], in a way analogous to the associative notions. In 2005, D. Passman studied maximal bounded Z-filtrations 
of Artinian semisimple rings [27] and, together with Y. Barnea, described filtrations in semisimple Lie algebras in a series of 
papers published between 2006 and 2010, see [2], [3] and [28]. Later on, in 2012 the first two authors of this paper showed 
in [22] that any ad-nilpotent element a of index less than or equal to 3 in a Lie algebra L over a ring of scalars � with 
1
2 , 13 ∈ � gives rise to a 5-filtration in L, such that when considering the 5-graded Lie algebra induced by this filtration, the 
Jordan pair determined by the wings of that Lie algebra coincides with the Jordan algebra of the Lie algebra.

These facts were used in [23] to give conditions under which the Jordan algebras determined by ad-nilpotent elements 
of index less than or equal to 3 are special as Jordan objects. In the same paper, they also provided conditions under which 
the (Jordan) subquotients associated to abelian inner ideals are special, but the specializing homomorphisms were built 
ad-hoc because filtrations associated to inner ideals were not known.

In this article we will show that any abelian inner ideal B of a Lie algebra L for which there exists n ∈ N with 
[B, KerL B]n ⊂ B yields a bounded filtration on L. With this tool in hand, we will easily obtain the specializing homo-
morphisms of [23] under which the subquotients attached abelian inner ideals are special.

We highlight the condition one has to require to any abelian inner ideal B to give rise to such filtration: there must exist 
n ∈N such that [B, KerL B]n ⊂ B . When B is the abelian inner ideal generated by a single element, this condition is trivially 
fullfilled. It also holds for abelian inner ideals of Lie algebras of the form R− or Skew(R, ∗) for a semiprime associative 
algebra R with or without involution ∗, and for abelian inner ideals of finite length of nondegenerate Lie algebras (in 
particular, for nondegenerate finite-dimensional Lie algebras). Nevertheless, we do not know if there exist nondegenerate 
(even simple) Lie algebras with abelian inner ideals B that do not satisfy this condition.

2. Preliminaries

Throughout this paper we will be dealing with Lie algebras L, associative algebras R and linear Jordan pairs V over a 
ring of scalars � containing 1

2 and 1
3 . As usual, [x, y] will denote the Lie bracket of two elements x, y of L, and the product 

of elements of R will be written by juxtaposition. Any associative algebra R gives rise to a Lie algebra R− with Lie bracket 
[x, y] := xy − yx, for all x, y ∈ R . If R has an involution ∗ we will consider the Lie subalgebra of R− , Skew(R, ∗) = {x ∈
R | x∗ = −x}. The set of symmetric elements of R is denoted by H(R, ∗), and since 1

2 ∈ �, R = H(R, ∗) ⊕ Skew(R, ∗). Jordan 
triple products of a Jordan pair V = (V +, V −) will be written by {x, y, z} for any x, z ∈ V σ , y ∈ V −σ , σ = ±. The reader is 
referred to [24] and [25] for basic results, notation and terminology on Lie algebras and Jordan pairs.

2.1. A �-module B of a Lie algebra L is called an abelian inner ideal if [B, B] = 0 and [B, [B, L]] ⊂ B . The kernel of an 
abelian inner ideal is

KerL B = {x ∈ L | [B, [B, x]] = 0}.
Associated to an abelian inner ideal B of L we can consider the subquotient (B, L/ KerL B), which is a linear Jordan pair 
with products

{b1, x̄,b2} = [[b1, x],b2] {x̄,b1, ȳ} = [[x,b1], y]
for every b1, b2 ∈ B and every x̄, ȳ ∈ L/ KerL B , see [20, 3.2].

2.2. Let us single out some relations concerning the abelian inner ideal B ⊆ L and K = KerL B:

[B, L] ∪ [K , [B, L]] ∪ [[B, K ], L] ⊆ K (by [20, 3.2])

[[B, K ], [B, K ]] ⊂ [B, K ].
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As a consequence, for all bi ∈ B , z, zi ∈ K , k ≥ 1,

adb1 adb2 adz adb3 = adb1 adz adb2 adb3 = 0,

and, by a recursive argument and the Jacobi identity,

ad[b1,z1] · · ·ad[bk,zk][bk+1, zk+1] = adb1 adz1 · · ·adbk adzk [bk+1, zk+1].
Moreover, since 1

2 ∈ �, for every b0, . . . , bi, . . . , b j, . . . , bs ∈ B and z0, . . . , zs ∈ K , if 1 < i < j and bi = b j we have

ad[b1,z1] · · ·ad[bi ,zi] · · · ad[bi ,z j ] · · · ad[bs,zs]([b0, z0]) = 0 (∗)

because

ad[b1,z1] · · · ad[bi ,zi ] · · ·ad[bi ,z j ] · · ·ad[bs,zs]([b0, z0]) =

= 1

2
[bi, [bi,ad[b1,z1] · · · adzi · · · adz j · · · ad[bs,zs]([b0, z0])]] ∈ [bi, [bi, K ] = 0

since [[b1, z1], L] ⊂ K .

2.3. Let L be a Lie algebra. A finite Z-grading is a non-trivial Z-grading of L such that the support supp L = {m ∈Z | Lm 	= 0}
is finite. In this case

L = L−n ⊕ L−(n−1) ⊕ . . . ⊕ L0 ⊕ . . . ⊕ Ln−1 ⊕ Ln

for some positive integer n. If L−n + Ln 	= 0, we will call such a grading a (2n + 1)-grading. Note that if L is nondegenerate 
then both L−n and Ln are non-zero. If L = L−n ⊕ . . .⊕ Ln is a (2n + 1)-graded Lie algebra, then V = (L−n, Ln) is a Jordan pair 
with products

{x, y, z} = [[x, y], z] {y, x, t} = [[y, x], t]
for every x, z ∈ L−n and every y, t ∈ Ln , which is called the associated Jordan pair of L.

2.4. Let L be a Lie algebra over �. A Z-filtration {Fi}i∈Z is a chain of submodules of L

. . . ⊂ F−2 ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ F2 ⊂ . . .

such that [Fi, F j] ⊂Fi+ j for every i, j ∈Z. A Z-filtration {Fi}i∈Z is bounded if there exist n, m ∈Z, with n < m, such that 
Fi = 0 for every i ≤ n and F j = L for every j ≥ m. If {Fi}i∈Z is a Z-filtration of a Lie algebra L over �, we can consider 
the �-module

L̂ = . . . ⊕Fi−1/Fi−2
︸ ︷︷ ︸

L̂i−1

⊕Fi/Fi−1
︸ ︷︷ ︸

L̂i

⊕Fi+1/Fi
︸ ︷︷ ︸

L̂i+1

⊕ . . . (�)

with product [x̄, ȳ] = [x, y] ∈ Fi+ j/Fi+ j−1 for every x̄ = x +Fi−1 ∈ Fi/Fi−1 and every ȳ = y +F j−1 ∈ F j/F j−1. Thereby L̂
has structure of Z-graded Lie algebra and it is called the induced graded Lie algebra.

2.5. An associative algebra R is semiprime if for every nonzero ideal I of R , I2 	= 0, and it is prime if I J 	= 0 for every pair of 
nonzero ideals I, J of R . It is well known that an associative algebra R is prime if and only if aRb 	= 0 for arbitrary nonzero 
elements a, b ∈ R , and it is semiprime if and only if it is nondegenerate, i.e., aRa 	= 0 for every nonzero element a ∈ R .

The extended centroid of R will be denoted by C(R) (see [4, §2.3] for its definition and main properties). When R is 
semiprime, C(R) is von Neumann regular, and when R is prime, C(R) is a field. The central closure of R is R̂ = C(R) +C(R)R
and R is centrally closed if it coincides with its central closure. When R has an involution ∗, this involution extends to C(R)

and to R̂ .
If R is a prime associative algebra with involution ∗, the involution is of the first kind when every element in C(R)

is symmetric with respect to ∗, and it is of the second kind if there are nonzero skew-symmetric elements in C(R). For 
every 0 	= λ ∈ Skew(C(R), ∗), 0 	= λ2 is invertible in H(C(R), ∗), so R = H(R, ∗) ⊕ Skew(R, ∗) = λ2 H(R, ∗) ⊕ Skew(R, ∗) ⊆
λ Skew(R, ∗) ⊕ Skew(R, ∗) ⊂ R , hence R = λ Skew(R, ∗) ⊕ Skew(R, ∗). If R is a ∗-prime associative algebra that is not prime, 
there always exist a nonzero λ ∈ Skew(C(R), ∗) (see [10, 2.4]) and therefore R = λ Skew(R, ∗) ⊕ Skew(R, ∗).
3
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3. Filtration associated to an abelian inner ideal

In this section we will construct a filtration associated to an abelian inner ideal. If B is an abelian inner ideal of a Lie 
algebra L such that [B, KerL B]n ⊂ B for some n ∈ N , we will show that B induces a bounded filtration of L starting on B
and whose second last submodule coincides with KerL B .

Theorem 3.1. If L is a Lie algebra and B is an abelian inner ideal of L, then the chain · · · ⊂F−n ⊂F−n+1 ⊂ · · · ⊂F0 ⊂ · · · ⊂Fn−1 ⊂
Fn ⊂ · · · , where F−m := {0} and Fm := L for all m ≥ n, and

F−n : = B

...

F−k : = [B,KerL B]k + B for k = 1, . . . ,n − 1

...

F0 : = {x ∈ L | [x, B] ⊂ B}
...

Fs : = adn−s−1
[B,KerL B](KerL B) +F0 for s = 1, . . . ,n − 1

...

Fn : = L

is a bounded filtration of L if and only if there exists n ∈N such that [B, KerL B]n ⊂ B. The induced graded Lie algebra L̂ has associated 
Jordan pair (L̂−n, ̂Ln) equal to the subquotient (B, L/ KerL B).

Proof. Let us denote by K := KerL B . If the above chain {Fi} is a filtration, then [F−n, Fn−1] ⊂F−1 so [B, KerL B]n ⊂ B .
For the converse, firstly let us check that each Fi ⊂ Fi+1 for all i ∈ Z. Clearly ad[B,K ][B, K ] ⊂ [B, [K , [B, K ]] ⊂ [B, K ] so 

F−k ⊂F−k+1 for all k = 2, . . . , n −1. Moreover, F−1 = [B, K ] + B ⊂F0 because [B, [B, K ]] +[B, B] = 0 ∈ B . The containment 
F0 ⊂ F1 follows by definition of F1. Furthermore [[B, K ], K ] ⊂ K implies adn−s−1

[B,K ] (K ) ⊂ adn−s
[B,K ](K ) for all s = 1, . . . , n − 2, 

so Fs ⊂Fs+1 for all s = 1, . . . , n − 2. Finally Fn−1 ⊂Fn = L.
By using the Jacobi identity, we get that for each k ∈N ,

[adk−1
[B,K ]([B, K ]), u] ⊂ adk[B,K ](u) for every u ∈ L. (a)

We also have that

[F0, K ] ⊂ K . (b)

Indeed, given x ∈F0 and k ∈ K , we have that for any b, b′ ∈ B ,

[b, [b′, [x,k]]] = [[b, [b′, x]],k] + [[b′, x], [b,k]] + [[b, x], [b′,k]] + [x, [b, [b′,k]]] = 0

because [b, x], [b′, x] ∈ B and B is abelian. Moreover,

adn−1
[B,K ](K ) ⊂ F0 (c)

because for any b ∈ B ,

[adn−1
[B,K ](K ),b] = adn−1

[B,K ]([K ,b]) ⊂ B.

Now let us prove that [Fi, F j] ⊂Fi+ j for all i, j:
(1) [F−s, F−r] ⊂F−r−s for any r, s ∈ {1, . . . , n}: by (a)

[F−s,F−r] = [ads−1
[B,K ]([B, K ]) + B,adr−1

[B,K ]([B, K ]) + B] =
= [ads−1

[B,K ]([B, K ]),adr−1
[B,K ]([B, K ])] ⊂ ads+r−1

[B,K ] ([B, K ])
(2) [Fr, F0] ⊂Fr for any r ∈ {−n, . . . , n}: by (b) and the Jacobi identity.
4
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(3) [F−r, Fs] ⊂Fs−r for any r, s ∈ {1, . . . , n}: by (a) and (b) we have that

[adr−1
[B,K ]([B, K ]) + B, adn−s−1

[B,K ] (K ) +F0] ⊂
⊂ adn−s+r−1

[B,K ] (K ) + B + adr−1
[B,K ]([B, K ]) + adn−s−1

[B,K ] ([B, K ]).
Then

• If r = s, by (c)

adn−s+r−1
[B,K ] (K ) + B + adr−1

[B,K ]([B, K ]) + adn−s−1
[B,K ] ([B, K ]) ⊂

⊂ adn−1
[B,K ](K ) + B + [B, K ] ⊂ F0.

• If r > s,

adn−s+r−1
[B,K ] (K ) + B + adr−1

[B,K ]([B, K ]) + adn−s−1
[B,K ] ([B, K ]) ⊂

⊂ adr−s
[B,K ](adn−1

[B,K ](K )) + B + adr−1
[B,K ]([B, K ]) + adn−s−1

[B,K ] ([B, K ]) ⊂
⊂ adr−s

[B,K ](F0) + B + [B, K ] ⊂
⊂ adr−s−1

[B,K ] (([B, K ],F0]) + B + [B, K ] ⊂ Fs−r .

• If r < s,

adn−s+r−1
[B,K ] (K ) + B + adr−1

[B,K ]([B, K ]) + adn−s−1
[B,K ] ([B, K ]) ⊂ Fs−r .

(4) [Fs, Fr] ⊂Fr+s for any r, s ∈ {1, . . . , n}:

• If r + s ≥ n there is nothing to prove because [Fr, Fs] ⊂Fr+s = L.
• If r + s < n, then 2n − 2 − r − s ≥ n − 1. Our proof goes by induction on r from n − 2 to 1: if r = n − 2, we just need to 

study s = 1 (the rest of the cases follow trivially)

[Fn−2,F1] = [ad[B,K ](K ) +F0,adn−2
[B,K ](K ) +F0] ⊂

⊂ [ad[B,K ](K ),adn−2
[B,K ](K )] + ad[B,K ](K ) + adn−2

[B,K ](K ) +F0 ⊂
⊂ ad[B,K ]([K ,adn−2

[B,K ](K )]) + K ⊂
⊂ [[B, K ], L] + K ⊂ K = Fn−1.

Let us suppose that [Fr, Fs] ⊂Fr+s for every s and let us prove it for r − 1:

[Fr−1,Fs] = [adn−r
[B,K ](K ) +F0,adn−s−1

[B,K ] (K ) +F0] ⊂
⊂ [adn−r

[B,K ](K ),adn−s−1
[B,K ] (K )] + adn−r

[B,K ](K ) + adn−s−1
[B,K ] (K ) +F0 ⊂

⊂ ad[B,K ]([adn−r−1
[B,K ] (K ),adn−s−1

[B,K ] (K )])+
+ [adn−r−1

[B,K ] (K ),adn−s
[B,K ](K )] +Fr−1 +Fs ⊂

⊂ ad[B,K ](Fr+s) +Fr−1+s +Fr−1 +Fs ⊂ Fr+s.

Finally, since F0 ⊂ K we have that Fn−1 = K and the associated Jordan pair (L̂−n, ̂Ln) coincides with the subquotient 
(B, L/K ). �
Remark 3.2. In [22, Theorem 1.2] the principal filtration associated to an ad-nilpotent element of index ≤ 3 of a Lie algebra 
was introduced: Let L be a Lie algebra over a ring of scalars � with 1

2 , 13 ∈ � and let x ∈ L be a Jordan element (an element 
with ad3

x L = 0). Let Ker x = {a ∈ L | ad2
x a = 0} and define

Gi = 0, i ≤ −3, G−2 = [x, [x, L]] + �x G−1 = [x,Ker x] + �x

G0 = {a ∈ L | [a, x] ∈ [x, [x, L]]} G1 = Ker x G j = L, j ≥ 2.

Then {Gi}i is a bounded filtration of L, called the principal filtration of L defined by x.
Every Jordan element x ∈ L generates the abelian inner ideal (x) = �x + [x, [x, L]]. It is shown in [20, Lemma 3.7] that 

when L is nondegenerate,
5
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1]] ⊂
Ker x = KerL(x),

where KerL(x) denotes the kernel of the abelian inner ideal (x). From now on let us suppose that L is nondegenerate and 
let us denote K = Ker x = KerL(x).

The condition [[B, K ], [B, K ]] ⊂ B is fulfilled for the abelian inner ideal B = (x) because [[B, K ], [B, K ]] = [[G−2, G1], [G−2, G
[G−1, G−1] ⊂ G−2 = B . Therefore we can consider the filtration {Fi}i associated to the abelian inner ideal (x) given in Theo-
rem 3.1.

Let us compare this filtration {Fi}i with the principal filtration {Gi}i associated to x:

(i) F−2 = (x) = G−2.
(ii) F−1 = [(x), K ] + (x) ⊂ [x, K ] + (x) = G−1 because for every a ∈ L and every z ∈ K

[[x, [x,a]], z] = [x, [[x,a], z]] − [x, [a, [x, z]]] ∈ [x, K ].
Conversely, G−1 = [x, K ] + �x ⊂ [(x), K ] + (x) =F−1.

(iii) [G0, (x)] ⊂ (x) because {Gi}i is a filtration, so G0 ⊂F0.
(iv) By construction, Fi = Gi for every i ≥ 1.

We have obtained

F−2 ⊂ F−1 ⊂ F0 ⊂ F1 = K ⊂ F2 = L
� � ∪ � �

G−2 ⊂ G−1 ⊂ G0 ⊂ G1 = K ⊂ G2 = L

and both filtrations coincide when x ∈ [x, [x, L]].
The reason for the containment of G0 into F0 is that the filtration {Fi}i defined in Theorem 3.1 constructs the largest 

possible 0-submodule, while the principal filtration {Gi}i attached to x has a non-maximal G0 submodule.

Remark 3.3. In [23, Proposition 3.4] it was shown the following result:
If L is a strongly prime Lie algebra, B is an abelian inner ideal such that [B, KerL B] is nilpotent and KerL B is not a subalgebra of L, 

then the subquotient (B, L/ KerL B) is a special strongly prime Jordan pair.
The key point in the proof of this result was an explicit construction of the specializing homomorphisms [23, Proposition 

3.1]. In view of the filtration associated to B , these homomorphisms can be directly obtained from a more general result 
about graded Lie algebras.

Since B satisfies the condition [B, KerL B]n = 0 ⊂ B for some n, one can consider the filtration associated to B as in The-
orem 3.1. The induced graded Lie algebra L̂ given in (�) of 2.4 has associated Jordan pair (L̂−n, ̂Ln) equal to the subquotient 
(B, L/ KerL B). In [16, Theorem 11.34], a family of homomorphisms was built for any graded Lie algebra L̂ . In particular, the 
pair (�n−1, �1−n)

�n−1 : L̂−n → Hom(L̂n−1, L̂−1) �1−n : L̂n → Hom(L̂−1, L̂n−1)

defined by �σ(n−1)(x)(y) = adx y for any x ∈ L̂−σn and any y ∈ L̂n−1 if σ = + or y ∈ L̂−1 if σ = − is a homomorphism of 
Jordan pairs between V = (L̂−n, ̂Ln) and the special Jordan pair (Hom(L̂n−1, ̂L−1), Hom(L̂−1, ̂Ln−1))

(+) .
Then the condition of KerL B not being a subalgebra of L implies the injectivity of the specializing homomorphisms 

(�n−1, �1−n) (see [23, Proposition 3.3]), so the subquotient (B, L/ KerL B) is special as a Jordan pair.

4. The condition [B, KerL B]n ⊂ B

4.1. In [23, Proposition 3.5(d)] it was shown that for any abelian inner ideal B of a centrally closed prime associative algebra 
R , [B, KerR− B] is nilpotent of index k with k ≤ 3. This result easily extends to semiprime associative algebras. Indeed, given 
an abelian inner ideal of a semiprime associative algebra R , since R is a subdirect product of prime associative algebras Ri , 
B decomposes into a subdirect product of abelian inner ideals Bi of Ri . For each i, let us consider the central closure R̂ i , 
and let us extend Bi to an abelian inner ideal B̂ i = C(Ri)Bi of R̂ i . Then [B̂ i, KerR̂ i

B̂ i] is nilpotent of index ≤ 3 for each i, 
and therefore [B, KerR− B] is nilpotent of index ≤ 3.

In particular, every abelian inner ideal B of a semiprime associative algebra R satisfies [B, KerR− B]k = 0 ⊂ B for some 
k ≤ 3, so by Theorem 3.1 it gives rise to the bounded filtration in R−:

F−k ⊂ · · · ⊂ F0 ⊂ · · · ⊂ Fk

where F−k = B and Fk = R− .

Proposition 4.2. Let R be a ∗-prime centrally closed associative algebra with involution ∗ and suppose that 1
2 , 13 , 15 ∈ �. Let L =

Skew(R, ∗) and let B be an abelian inner ideal of L. Then [B, KerL B] is a nilpotent subalgebra of L of index n, where we have the 
following possibilities for n:
6
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(a) If R is ∗-prime not prime or if it is prime and the involution is of the second kind, n ≤ 3.
(b) If R is prime and the involution is of the first kind, then n ≤ 4. In particular, if [L, L] = 0, n = 1; otherwise b3 = 0 for every b ∈ B

and either
(b1) there exists b ∈ B such that b3 = 0, b2 	= 0. In this case n = 2 and L admits a 3-grading L = L−1 ⊕ L0 ⊕ L1 with B = L−1

and KerL B = L−1 ⊕ L0 , or
(b2) B2 = 0 and n ≤ 4. If, moreover, B(KerL B)B = 0, then n ≤ 3.

Proof. (a) If R is ∗-prime not prime or if it is prime and the involution is of the second kind, there exists a nonzero skew-
symmetric element λ in the extended centroid C(R) of R and R = Skew(R, ∗) ⊕ λ Skew(R, ∗). Then B̂ = B + λB is an inner 
ideal of R− and KerR− B̂ = KerL B + λ KerL B . By [23, Proposition 3.5(d)] we have that [B̂, KerR− B̂] is nilpotent of index less 
than or equal to three, so in particular [B, KerL B] is nilpotent of index less or equal to 3.
(b) If the involution is of the first kind and [L, L] = 0, then clearly n = 1. Otherwise [L, L] 	= 0, and by [8, Proposition 6.2]
we have that b3 = 0 for every b ∈ B .

(b1) If there exists b ∈ B with b2 	= 0, then B is a Clifford inner ideal of L. Let us see that L is 3-graded with L−1 = B: 
by [9, Definition 3.1], b is a Clifford element of R , b2 is von Neumann regular in R by [9, Proposition 3.1(4)] and there 
exists d ∈ H(R, ∗) such that d2 = 0, b2db2 = b2 and d = db2d. The element e = db2 is a ∗-orthogonal idempotent, i.e., e2 = e, 
e∗e = ee∗ = 0 (see [9, pag. 289]) and by [9, Proposition 3.5] induces a 3-grading in L with

L−1 = κ((1 − e)Le),
L0 = κ(eRe) + (1 − e − e∗)L(1 − e − e∗),
L1 = κ(eL(1 − e)),

where κ(x) := x − x∗ for every x ∈ R . By [9, Proposition 3.6(4)] b ∈ κ((1 − e)Le) = L−1. On the other hand, the inner ideal 
[b, [b, L]] contains b because [b, [b, −(bd +db)] = −b2db −bdb2 +2b2db +2bdb2 = b2db +bdb2 = b by [9, Proposition 3.6(3)]. 
So by [8, Proposition 6.2], [b, [b, L]] is a Clifford inner ideal and it is a maximal abelian inner ideal of L by [8, Proposition 
5.1(b)]. Therefore, [b, [b, L]] = B = L−1.

(b2) Otherwise, b2 = 0 for every b ∈ B . In this case, for every b1, b2 ∈ B , 0 = (b1 +b2)
2 = b2

1 +b2
2 +2b1b2 = 2b1b2 because 

[B, B] = 0, so

B2 = 0. (1)

Moreover, for every z ∈ KerL B ,

0 = [b1, [b2, z]] = −b1zb2 − b2zb1, i.e., b1zb2 = −b2zb1. (2)

In particular,

bzb = 0 (3)

for every b ∈ B and every z ∈ KerL B .
For every b1, b2, b3 ∈ B and every z1, z2 ∈ KerL B , we have that

b1z1b2z2b3 = 0. (4)

Indeed, we are going to show that b1z1b2z2b3 satisfies (b1z1b2z2b3)R(b1z1b2z2b3) = 0, and since R is semiprime, the 
element b1z1b2z2b3 must be zero: for any x ∈ R we have

(b1z1b2z2b3)x(b1z1b2z2b3) = b3z1b1z2b2xb1z1b2z2b3

= b3z1b1x∗b2z2b1z1b2z2b3 + b3z1b1(z2b2x − x∗b2z2)b1z1b2z2b3

=(�) 0 − 1

2
b3z1[b1, [b1, z2b2x − x∗b2z2]]z1b2z2b3

= −1

2
b3z1[b1, [b1, z2b2x − (z2b2x)∗]]z1b2z2b3 =(��) 0,

where (�) follows because b2z2b1z1b2 = 0 by (2) and (3), and (��) is true because [b1, [b1, z2b2x − (z2b2x)∗]] ∈ B , so we can 
apply (2) and (3).

We claim that [B, KerL B]4 = 0. Since L is nondegenerate ([5, Theorem 2.10] and [21, Proposition 4.6]) it suffices to show 
that for every b1, b2, b3, b4 ∈ B and z1, z2, z3, z4 ∈ KerL B we have that

a := [[b1, z1], [[b2, z2], [[b3, z3], [b4, z4]]]]
is an absolute zero divisor of L: for any u ∈ L we have that [a, [a, u]] is a sum of monomials of the form

[Bi, Zi][B j, Z j][Bk, Zk][Bl, Zl][Bm, Zm][Bn, Zn][Bo, Zo][B p, Z p](u), (5)
7
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i, j, k, l, m, n, o ∈ {1, 2, 3, 4}, where by capital letters we denote adjoint maps, i.e., A = ada for every a ∈ R . Since 
[B p, Z p](u) = z′ ∈ KerL B , we reduce each of the monomials in (5) to monomials of the form

[Bi, Zi][B j, Z j][Bk, Zk][Bl, Zl][Bm, Zm][Bn, Zn][Bo, Zo](z′). (6)

In view of (1)–(4),

• [bi1 , z j1 ][bi2 , z j2 ][bi3 , z j3 ] =
= (bi1 z j1 − z j1 bi1)(bi2 z j2 − z j2 bi2)(bi3 z j3 − z j3 bi3)

= (bi1 z j1 bi2 z j2 − bi1 z j1 z j2 bi2 + z j1 bi1 z j2 bi2)(bi3 z j3 − z j3 bi3)

= −bi1 z j1 bi2 z j2 z j3 bi3 , so

• [bi1 , z j1 ][bi2 , z j2 ][bi3 , z j3 ][bi4 , z j4 ] =
= (bi1 z j1 − z j1 bi1)(bi2 z j2 − z j2 bi2)(bi3 z j3 − z j3 bi3)(bi4 z j4 − z j4 bi4)

= bi1 z j1 bi2 z j2 z j3 bi3 z j4 bi4 , and

• [bi1 , z j1 ][bi2 , z j2 ][bi3 , z j3 ][bi4 , z j4 ] = 0.

Therefore the possible non-zero variants of the associative monomials in (6) have the form

± (bi1 z j1 bi2 z j2 z j3 bi3 z j4 bi4)z′(bi5 z j5 bi6 z j6 z j7 bi7),

± (bi1 z j1 bi2 z j2 z j3 bi3)z′(bi4 z j4 bi5 z j5 z j6 bi6 z j7 bi7)

and are equal to 0 due to (4).
We have shown that all the possible monomials in the associative expansion of [a, [a, u]] are zero for every u ∈ L, so 

a = 0. Thus [B, KerL B] is nilpotent of index less than or equal to 4.
Suppose that B(KerL B)B = 0: if we consider the abelian inner ideal B̂ := B + B R B of R− , then KerL B = KerR− B̂ ∩ L. By 

[23, Proposition 3.5(d)], [B̂, KerR− B̂] is nilpotent of index less than or equal to 3, and therefore [B, KerL B] is also nilpotent 
of index less than or equal to 3. �

Since every semiprime associative algebra R with involution ∗ is a subdirect product of ∗-prime associative algebras Ri , 
given an abelian inner ideal B of L = Skew(R, ∗) we can consider the projections Bi of B onto Li = Skew(Ri, ∗). Let R̂ i be 
the central closure of each Ri and let B̂ i = H(C(Ri), ∗)Bi be the abelian inner ideal generated by Bi in L̂i = Skew(R̂ i, ∗). 
By 4.2, [B̂ i, KerL̂i

B̂ i] is nilpotent of index ≤ 4, so [Bi, KerLi Bi] is also nilpotent of index ≤ 4 for each i. Thus [B, KerL B] is 
nilpotent of index ≤ 4 and we have shown the following result.

Corollary 4.3. Let R be a semiprime associative algebra over � with involution ∗ and suppose that 1
2 , 13 , 15 ∈ �. Let L = Skew(R, ∗)

and let B be an abelian inner ideal of L. Then [B, KerL B] is a nilpotent subalgebra of L of index k ≤ 4. Therefore, [B, KerL B]k = 0 ⊂ B
and B gives rise to a bounded filtration

F−k ⊂ · · · ⊂ F0 ⊂ · · · ⊂ Fk,

where F−k = B and Fk = Skew(R, ∗).

Remark 4.4. Let L be nondegenerate. Then for every nonzero abelian inner ideal B of finite length of L there exists a finite 
Z-grading L = L−n ⊕· · ·⊕ L0 ⊕· · ·⊕ Ln such that B = Ln (this is always the case when L is nondegenerate finite dimensional), 
see [20, Corollary 6.2]. With respect to this grading, Ker B = L−(n−1) ⊕· · ·⊕ L0 ⊕· · ·⊕ Ln , so [B, Ker B] ⊂ L1 ⊕· · ·⊕ Ln implies 
that [B, KerL B]n ⊂ B .

Remark 4.5. Every finitely generated subalgebra of [B, KerL B] is contained into the subalgebra generated by some finite set 
of the form

{[b1,k1], . . . [bs,ks]}.
Here every product

ad[bi1 ,ki1 ] · · · ad[bit ,kit ]([bi0 ,ki0 ])
for bi0 , . . . , bit ∈ {b1, . . . , bs} and ki0 , . . . , kit ∈ {k1, . . . , ks} with t ≥ s + 2 must be zero by 2.2(∗) because there occurs at least 
a repetition among bi2 , . . . , bit .
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Notice that the algebra [B,KerL B] is not only locally nilpotent, but it is also the sum of the ideals

id[B,KerL B]([b, z])
generated by [b, z], b ∈ B , z ∈ KerL B , and all of them are nilpotent of index at most 4 by 2.2(∗) again.

In particular, this also implies that [B,KerL B] is nilpotent in case B is finite dimensional.

Remark 4.6. Recall that a Lie algebra L is called special if it can be seen as a subalgebra of some R− where R is an 
associative PI-algebra; therefore, if L is semiprime and special, then L can be embedded into a subdirect product of prime 
associative algebras with central closures of bounded dimension over their extended centroids; hence, for every inner ideal 
B of L, the image of [B,KerL B] in each of these factors is nilpotent of index at most some n, and the same is true for 
[B,KerL B].

Remark 4.7. Given a Lie algebra L over a field F and an abelian inner ideal B , since in the Lie subalgebra [B, KerL B] every 
element is ad-nilpotent, if this index of ad-nilpotence is bounded by some k and the characteristic of F is zero or high 
enough depending on k, then [B, KerL B] is nilpotent by [29, Theorem].

We have shown general situations where, given an abelian inner ideal B , the condition [B, KerL B]n ⊂ B is fulfilled for 
some n. This justifies the following conjecture.

Conjecture 4.8. For every nondegenerate (strongly prime or simple) Lie algebra L and every abelian inner ideal B of L there exists 
n ∈N (possibly n = 4) such that [B, KerL B]n ⊂ B.
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