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Figure 1: On the left, we compare a fine-mesh simulation of a heterogeneous material (green is soft, magenta is stiff) vs. the state-of-the-art
numerical coarsening method of Chen et al. [CBW∗18]. This method is accurate, but it relies heavily on preprocessing. On the right, we
update the material dynamically, erasing some stiff cells. State-of-the-art numerical coarsening cannot afford an update of the coarse shape
functions, and the simulation is very inaccurate. Our method, on the other hand, allows fast update of the shape functions on-the-fly, and
retains the accuracy of state-of-the-art numerical coarsening.

Abstract
Numerical coarsening methods offer an attractive methodology for fast simulation of objects with high-resolution heterogeneity.
However, they rely heavily on preprocessing, and are not suitable when objects undergo dynamic material or topology updates.
We present methods that largely accelerate the two main processes of numerical coarsening, namely training data generation
and the optimization of coarsening shape functions, and as a result we manage to leverage runtime numerical coarsening under
local material updates. To accelerate the generation of training data, we propose a domain-decomposition solver based on
substructuring that leverages local factorizations. To accelerate the computation of coarsening shape functions, we propose
a decoupled optimization of smoothness and data fitting. We evaluate quantitatively the accuracy and performance of our
proposed methods, and we show that they achieve accuracy comparable to the baseline, albeit with speed-ups of orders of
magnitude. We also demonstrate our methods on example simulations with local material and topology updates.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

In the simulation of heterogeneous objects, the standard approach
is to make the resolution of the discretization higher than the reso-
lution of the material heterogeneity, to correctly resolve differences
in local deformations. However, when global deformations are the
subject of study, and not local deformation details, numerical coars-
ening offers computational tools to decouple the resolution of the
discretization from the resolution of the material heterogeneity. Nu-
merical coarsening uses potentially few degrees of freedom, and in-

terpolates those degrees of freedom in complex nonlinear ways that
capture the distribution of deformation of the underlying heteroge-
neous material. In the context of finite-element elasticity, this is
done by estimating rich nonlinear shape functions based on defor-
mation examples [KMOD09, NKJF09, TREO16, CBW∗18]. These
rich shape functions are evaluated at dense integration points that
sample the material heterogeneity, and provide accurate approxi-
mation of the integrated elastic response.

Numerical coarsening is a computationally expensive method-
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ology; therefore, it is formulated as a preprocess, and at runtime
it assumes fixed shape functions. Numerical coarsening loses its
charm when material properties change over time, or when objects
undergo topology changes, due to the unbearable cost of recomput-
ing shape functions.

In our work, we look at the processes that make numerical
coarsening computationally expensive, and we design fast meth-
ods for these processes. In particular, we take the state-of-the-art
method of Chen et al. [CBW∗18] as baseline, which provides the
best known accuracy in numerical coarsening in computer graph-
ics. This method decomposes numerical coarsening in two pro-
cesses: the computation of training data using harmonic displace-
ments [KMOD09], and the estimation of matrix shape functions as
a smoothness optimization constrained by the training data.

Our first contribution, described in Section 3, is a fast method
for the generation of representative data for numerical coarsening.
When a deformable object suffers a local change at runtime, we
update only a local factorization of the elasticity problem. Then,
we compute deformation examples using a substructuring domain-
decomposition method that leverages local factorizations.

Our second contribution, described in Section 4, is a fast method
for the optimization of numerical-coarsening shape functions. We
decouple optimizing the smoothness of shape functions and match-
ing the training data into two separate optimizations. As a result,
we solve multiple decoupled small problems instead of one cou-
pled large problem.

In the paper, we show examples where numerical coarsening be-
comes practical as a runtime methodology, when material proper-
ties change (e.g., due to user actions, strong nonlinearities, topol-
ogy changes, or activation of smart materials), such as Fig. 1. We
also validate quantitatively the accuracy and performance gain of
both technical contributions.

2. Related Work

2.1. Numerical Coarsening

The problem of numerical coarsening was first formulated in the
context of material homogenization. Given a material with mi-
croscale heterogeneity, material homogenization aims to find a
mesoscale material model that retains the mesoscale deformation
response [ZKO94, PS08]. Coarsening and/or homogenization have
been used in the context of various applications in computer graph-
ics, such as design of 3D microstructures for computational fab-
rication [SBR∗15, PZM∗15], characterization of 2D microstruc-
tures [SMGT18], or thin-shell approximation of yarn-level cloth
simulation [SNW20]. While most coarsening methods look at elas-
tostatic deformation response, Chen et al. [CLMK17] propose
dynamics-aware coarsening for accurate simulation of dynamic de-
formations at low resolution.

Kharevych et al. [KMOD09] and Nesme et al. [NKJF09] showed
concurrently that, for linear material models, homogenization can
be achieved in an optimal way by designing nonlinear shape func-
tions and integrating the material model according to these shape
functions.

Then, numerical coarsening can be viewed as the computation

of shape functions that capture the distribution of microscale defor-
mation. Regular shape functions produce artificial stiffening of the
simulation, as they do not allow the microscale material to deform
naturally. Coarsening shape functions, on the other hand, map the
coarse displacement field to the fine domain in a complex nonlin-
ear way, and they reproduce effects such as volume preservation or
nonlinear deformations induced by heterogeneous material distri-
butions.

One of the research questions in numerical coarsening is to
identify coarse deformations that elicit representative microscale
deformations to then estimate accurate coarsening functions. The
possibilities include Dirichlet boundary conditions on coarse
nodes [TREO16], boundary conditions applied on an oversampling
region around the coarse element under study [HW97, AB05], or
uniform tractions applied on the object’s boundary [KMOD09].

An interesting extension of numerical coarsening is to admit ma-
trix shape functions [TREO16], which are key for reproducing vol-
ume preservation effects. Chen et al. [CBW∗18] decoupled numer-
ical coarsening from material homogenization, and considered ar-
bitrary microscale materials evaluated at dense quadrature points.
Due to its generality and demonstrated quality, we use the method
of Chen et al. as baseline for our shape function estimation.

The design of rich and expressive shape functions is also ad-
dressed from other angles. One is the simulation of arbitrary high-
resolution geometry in an accurate way within coarse high-order
elements [LLK∗20]. Another one is to refine the discretization
in a way that is optimal according to the underlying heterogene-
ity [CBO∗19].

2.2. Subspace Simulation

Numerical coarsening can be regarded within the larger family of
methods for model order reduction or subspace simulation. These
methods search a small number of degrees of freedom and basis
functions that accurately represent high-resolution deformations.
Some methods build the subspace model from the high-resolution
mechanics equations [PW89], but most methods require extensive
training data [KLM01]. Recent methods seek nonlinear models
synthesize with neural networks, which enable more compact sub-
spaces [FMD∗19].

A problem in subspace simulation is to identify integration
points, i.e., cubature points, where the material model should be
evaluated for accurate results [AKJ08, vTSSH13]. This also re-
minds the evaluation of the heterogeneous material at high reso-
lution as done by Chen et al. [CBW∗18] in numerical coarsening.
However, cubature requires very smooth basis functions, whereas
coarsening shape functions must be of high frequency.

Another similarity between subspace methods and numerical
coarsening is that they rely on computationally expensive prepro-
cessing. Kim and James [KJ09] designed a method to train sub-
space models at runtime during simulation, in a way to save costly
preprocessing, while Yang et al. [YLX∗15] introduced fast meth-
ods for the generation of training data, the creation of reduced basis
functions, and the training of cubature points.
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Figure 2: These images show the test cases for the accuracy of our method of training data generation (see Table 1 for the accuracy
evaluation). We have used a beam with three different heterogeneity patterns (oblique, horizontal, vertical), and coarsening degrees ranging
from 2 to 7. The stiffness ratio between the stiff material (magenta) and the soft material (green) is 50.

2.3. Local Factorizations

In our methods, we leverage local Cholesky factorizations within a
larger linear solve for the computation of training data. Local fac-
torizations or updates to prefactorizations have often been used to
accelerate simulation problems in computer graphics, but we did
not find previous methods useful for our target problem.

Hecht et al. [HLSO12] performed local updates to Cholesky fac-
torizations in the context of corotational simulation. By performing
these updates only when the error of previous terms was above a
threshold, they achieved large net speed-up on the overall simula-
tion. Factorizations can also be updated efficiently under changes
to bounday conditions, as demonstrated to produce fast mesh pa-
rameterizations [HSH20]. Li et al. [LLKC21] performed local fac-
torization updates in the context of tearing and cutting problems.
They used Cholesky factorization in the global pass of a projec-
tive dynamics solver, hence the fast factorization updates allowed
them to handle simulations with topology changes. On a different
direction, Liu et al. [LMAS16] developed a domain-decomposition
solver based on Schur complements and local factorizations. Our
solver follows a similar approach, but we found no speed-up with
standard Schur complement methods, and we tailored a substruc-
turing method to further leverage local factorizations. Finally, Her-
holz and Alexa [HA18] solved a different but related problem. They
factorized the complete mesh of an object, and then they obtained
in a fast way factorizations for local submeshes.

3. Training Data with Local Factorizations

The baseline coarsening method uses global deformations as train-
ing data. With high-resolution heterogeneous objects, it becomes
intractable to compute such global deformations at runtime, when

the material or topology of an object changes. We start this sec-
tion investigating the balance between accuracy and computational
speed as a function of the support of training deformations.

Then, we introduce a domain-decomposition solver based on
substructuring that leverages local factorizations when material or
topology changes are local. Our substructuring solver uses repre-
sentative subspace constraints between local submeshes, which al-
lows fast solution of the full problem.

3.1. Local Oversampling

In numerical coarsening, nonlinear shape functions approximate
the deformation response within each coarse element. Then, the
simplest approach to generating training data for each coarse el-
ement would only deform the fine submesh overlapping with the
coarse element under study. This is actually the approach followed
by several numerical coarsening methods [NKJF09, TREO16].
However, this approach is known to produce artifacts [HW97], as
the deformations do not account for behaviors induced by material
outside the coarse element.

Oversampling [HW97, AB05] refers to the creation of training
deformations by applying boundary conditions on a domain larger
than the coarse element under study. The question is what size of
oversampling region is necessary for the generation of representa-
tive training data, without incurring in excessive cost.

Harmonic displacements, introduced by Kharevych et
al. [KMOD09], can be regarded as an extreme case of over-
sampling, with the complete object as deformation domain.
Harmonic displacements represent the linearized deformation
of the full object under six types of linear tractions applied on
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Table 1: Error of coarsening simulation with respect to a ground-
truth fine simulation, under different methods for training data gen-
eration. The test uses a beam with the heterogeneity patterns and
coarsening degrees shown in Fig. 2. Our substructuring method
suffers only a small penalty with respect to complete oversampling
or global harmonic displacements.

the boundary. While Kharevych et al. used harmonic displace-
ments for the estimation of scalar shape functions, later Chen et
al. [CBW∗18] successfully used the same target deformations for
the estimation of matrix shape functions.

As a trade-off between accuracy and computational cost, we pro-
pose to compute harmonic displacements with one-ring oversam-
pling, i.e., oversampling with a domain given by the one-ring of the
coarse element under study (i.e., 27 coarse hexahedra for interior
elements). We have quantified the difference between global har-
monic displacements and our one-ring oversampling approach, and
we conclude that the difference is minimal. In contrast, single-cell
training may suffer excessive deviations.

Fig. 2 shows the examples used in our comparisons, which in-
clude 3 different heterogeneity patterns (oblique, horizontal, and
vertical), and 6 different coarsening degrees (from 2 to 7), for a
hanging beam model with 16×4×4 elements. In Table 1 we report
the RMS error (in percentage) of the resulting coarsening simula-
tions with respect to a ground-truth fine simulation, under differ-
ent conditions for training data generation. Both global harmonic
displacements and one-ring oversampling produce accurate results,
with harmonic displacements only marginally better. Single-cell
training, on the other hand, suffers large errors.

3.2. Substructuring

Under local material updates, we can leverage one-ring oversam-
pling and avoid the large computational cost of global harmonic
displacements. However, note that, with coarsening degree d, the
number of fine nodes in the one-ring submesh is (3d + 1)3. Then,
the factorization of the linear system corresponding to the one-ring
submesh soon becomes a bottleneck.

We further leverage local updates, and we design a domain-
decomposition approach based on substructuring, which reuses lo-
cal factorizations. Without loss of generaility, we assume that the
coarse cell under study is an interior cell, i.e., it has a full one ring

Coarse. degree 2 3 4 5 6 7
Oversampling 10.3 92.5 804 3.3e3 11.6e3 28.9e3

Single cell 0.2 0.8 2.0 4.9 11.4 22.9
Ours 1.8 4.9 8.5 16.3 36.4 82.2

Table 2: Comparison of timings (in milliseconds) for the genera-
tion of training data under different methods and coarsening de-
grees. The timings measure the data generation for one hexahedral
cell fully surrounded by 26 cells. Our substructuring method takes
about 3.5× as long as the single-cell method, but with far superior
accuracy as shown in Table 1. The accuracy is close to the over-
sampling method, but with a speed-up of two orders of magnitude
after coarsening degree 4.

with 26 neighboring coarse cells. Substructuring implies formu-
lating an elasticity problem per coarse cell, and using constraints
to connect per-cell solutions. We follow a Schur complement ap-
proach to first solve Lagrange multipliers for the constraints, and
then the actual displacements.

We denote as ui a vector collecting all fine-node displacements
within each of the 27 coarse cells. Harmonic displacements imply
solving linear elasticity problems with Neumann boundary condi-
tions, and we denote as Hi the local Hessian of each coarse cell, and
fi its applied external force. Furthermore, we denote each coupling
constraint j between pairs of adjacent coarse cells as ∑i S j,i ui = 0.
In practice, only two matrices S j,i are non-zero for each coupling
constraint j. For an exact elasticity problem, the S j,i are selection
matrices, with some blocks ±I and the rest zero, but in our sub-
structuring approach we approximate the constraints as we will dis-
cuss later.

The solution to the one-ring oversampling problem can be ex-
pressed as a constrained optimization. With a Lagrange multiplier
formulation, this can be written as:

{ui,λ j}= argmin∑
i

1
2

uT
i Hi ui− fT

i ui +∑
j

λ
T
j ∑

i
S j,i ui. (1)

Following the Schur complement, we first solve for the Lagrange
multipliers as:

∑
i,k

S j,i H−1
i ST

k,i λk = ∑
i

S j,i H−1
i fi, ∀ j. (2)

And then we solve for fine displacements as:

Hi ui = ∑
k

ST
k,i λ j− fi, ∀i. (3)

The substructuring solver requires solving many linear systems
per coarse cell, with local Hessians Hi, both in (2) and (3). Here,
we leverage local factorizations. Without loss of generality, we as-
sume that one coarse cell is modified at a time (i.e., its material is
modified, or the cell suffers a topology change). This implies that
training data should be updated for this cell and all its 26 neigh-
bors, which requires solving the substructuring problem described
above 27 times. However, it is sufficient to update the factorization
of the Hessian Hi of the modified coarse cell. All other Hessians,
and hence their factorizations, remain fixed. Then, it is sufficient to
update six linear solves in (2), one for each boundary face of the
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modified coarse cell. Once the Lagrange multipliers are computed,
(3) involves 27 linear solves.

We use Cholesky factorizations to obtain factorizations for the
per-cell Hessians Hi. As the Hessians are indefinite, we add a small
diagonal regularizer, which does not affect the solution in practice.

In our substructuring solver, assuming full coupling constraints
between coarse cells, the bottleneck is the computation of the La-
grange multipliers in (2). There are 54 cell coupling constraints.
With coarsening degree d, the number of fine nodes per face of
coarse cell is (d + 1)2. Then, (2) boils down to a linear system of
size 3× (d +1)2×54, with all Lagrange multipliers.

We propose a drastic reduction of the cost of (2), by choosing a
small set of constraints Si, j between neighboring coarse cells. We
choose two types of constraints:

• Rigid translation constraints. These are formulated by setting the
centers of mass of two adjacent cell faces to remain coupled.
With two neighboring cells of displacements ui and u j, and cen-
ters of mass computed through matrices si and s j, rigid trans-
lation constraints are expressed as si ui− s j u j = 0. Rigid con-
straints in substructuring have been used before, e.g., to couple
substructuring reduced deformable models [BZ11].
• Harmonic displacement constraints. We wish the substructuring

solver to be able to match exactly the global harmonic displace-
ments under the initial material distribution. This ensures that
shape function updates converge to the exact solution as dynamic
material updates approach zero. To do this, we look at the forces
between adjacent cells for each harmonic displacement, and we
ensure that a constraint direction is exactly aligned with each of
the forces. Given the boundary face forces for all 6 harmonic dis-
placements grouped in a matrix h (filled with zeros for the rest
of the nodes), we express the constraints hT (ui−u j) = 0.

With rigid translation constraints and harmonic displacement con-
straints, the linear system in (2) is trimmed to a size of 9×54.

Using the same experiment for comparing oversampling meth-
ods discussed in Section 3.1 (see also Fig. 2), we have quantified the
accuracy and performance of our efficient substructuring method.
As shown in Table 1 and Table 2, the cost of our substructuring
solver is just about 3.5× the cost of single-cell data generation, but
the accuracy is only slightly worse than for exact one-ring over-
sampling, albeit more than two orders of magnitude faster.

In all our tests, we have used Eigen [GJ∗10] for Cholesky factor-
izations. We have also investigated the use of iterative solvers, i.e.,
conjugate gradient. Conjugate gradient is sometimes faster than the
Cholesky solver on the one-ring oversampling method, but it be-
comes slower as the heterogeneity (i.e., ratio of stiffness values)
grows, because the system’s conditioning becomes worse. There-
fore, we chose Cholesky factorization as the robust baseline for
comparisons.

4. Local Coarsening Optimization

Given training data for each coarse cell, in this section we describe
how we estimate shape functions. Previous work requires solving a
large and complex optimization to ensure that shape functions are
smooth while fitting the training data. Instead, we decouple these

two objectives, and we solve multiple small problems. The result-
ing shape functions are almost equivalent to the baseline. We start
discussing the desiderata of coarsening shape functions, and then
we introduce our fast decoupled optimization.

4.1. Shape Functions and their Properties

Let us define notation to walk through the formal definition of
coarsening shape functions and their properties. We consider a
coarse discretization H and a fine discretization h that overlap on
an undeformed domain parameterized by X. In this section, we use
subindices i and j to index quantities referring to coarse and fine
nodes respectively. Then, {XH

i } and {Xh
j} denote, respectively, the

positions of coarse and fine nodes in undeformed reference space.
For the definition of the shape functions, we limit ourselves to one
element of the coarse discretization; hence H represents a single
coarse element. Within this element, we use matrix shape functions
to interpolate the displacement field of coarse nodes.

We denote as {Mi, j} the 3×3 matrix shape functions evaluated
at fine nodes, for pairs XH

i and Xh
j of coarse and fine nodes. Given

displacements evaluated at coarse nodes, {uH
i }, the displacements

at fine nodes can be computed as:

uh
j = ∑

i
Mi, j uH

i . (4)

These displacements can be interpolated onto the full fine do-
main using regular shape functions {N j(X)} on the fine elements,
e.g., trilinear interpolation on hexahedral elements. This yields the
following displacement field:

u(X) = ∑
j

N j(X)uh
j . (5)

Substituting the expression for the displacements of fine
nodes (4), we obtain the displacement field as a function of the
displacements of coarse nodes:

u(X) = ∑
i

Ni(X)uH
i , with Ni(X) = ∑

j
N j(X)Mi, j. (6)

As a conclusion, we obtain the coarsening shape functions
{Ni(X)}.

The estimation of shape function coefficients should fulfill sev-
eral properties: a certain degree of smoothness, geometric invari-
ants that guarantee properties of the deformation, and reproduction
of target deformations. We borrow the definition of properties from
the state-of-the-art method of Chen et al. [CBW∗18].

The smoothness metric S penalizes the gradient of the coarsen-
ing shape functions, and is defined as

S = ∑
i

∫
H

tr
(
∇Ni(X)T : ∇Ni(X)

)
dX. (7)

Shape function coefficients should fulfill two geometry con-
straints: partition of unity

GP, j : ∑
i

Mi, j− I = 0,∀ j, (8)
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Figure 3: These images show the test cases for the accuracy of
our decoupled optimization of shape functions. They are all sin-
gle coarse elements with different heterogeneity patterns (oblique,
horizontal, vertical), and coarsening degrees ranging from 2 to 5.
The stiffness ratio between the stiff material (magenta) and the soft
material (green) is 50.

and rotation invariance

GR, j : ∑
i

Mi, j skew
(

XH
i

)
− skew

(
Xh

j

)
= 0,∀ j. (9)

skew(v) represents the cross product operation v× as a skew sym-
metric matrix.

Finally, the coarsening shape functions must match the train-
ing data, i.e., global harmonic displacements in the work of Chen
et al., and one-ring oversampling with substructuring in our case.
We denote as ũH

i,k and ũh
j,k coarse and fine node displacements for

each training deformation k, computed in our case according to the
method described in Section 3.2. Then, training data constraints can
be expressed as:

D j,k : ∑
i

Mi, j ũH
i,k− ũh

j,k = 0,∀ j,k. (10)

Chen et al. optimize the smoothness S in (7) subject to geo-
metric constraints (8) and (9) and data constraints (10). This is a
large constrained optimization problem per coarse element. With
coarsening degree d, (d+1)3−8 fine nodes per coarse element, 72
shape function coefficients per fine node, and 36 constraints per fine
node (9 partition-of-unity + 9 rotation-invariance + 6× 3 data), it
amounts to a problem with 72× ((d +1)3−8) degrees of freedom
and 36× ((d +1)3−8) constraints.

4.2. Decoupled Optimization

To describe our decoupled optimization of shape function coeffi-
cients, it is convenient to rewrite expressions (7)-(10) in matrix-
vector form. To this end, we vectorize all shape function coeffi-
cients {Mi, j} into a large vector m. This vector includes the coef-
ficients for all fine nodes in the fine discretization h overlapping a

Coarsening degree 2 3 4 5
[CBW∗18] 190 2.6e3 18.9e3 86.1e3

Ours 2.8 5.6 10.7 17.8

Table 3: Computational cost (in milliseconds) of shape-function
optimization for one coarse element, with our decoupled optimiza-
tion vs. the method of Chen et al. [CBW∗18], on several coarsening
degrees. We achieve a speed-up of almost two orders of magnitude
even on coarsening degree 2, and more than three orders of magni-
tude on degree 5.

coarse element, except for the corner nodes, for which the coeffi-
cients are trivially defined by the Kronecker delta.

The smoothness metric (7) is rewritten as

S =
1
2

mT Am m−bT m. (11)

The geometry constraints (8)-(9) are grouped as

G : Gm−g = 0. (12)

And the data constraints (10) are rewritten as

D : Dm−d = 0. (13)

To decouple the optimization, we start by separating the effect of
constant terms, i.e., the geometry constraints. With a QR decompo-

sition GT =
(

Q Q̄
) ( R

0

)
, the shape function coefficients

can be expressed in the null space of the geometry constraints as

m = Q̄z+m0, (14)

where z are the projected shape function coefficients and m0 is an
arbitrary solution to the constraints (e.g., trilinear shape functions).
Substituting (14) into (11), we express the smoothness metric sub-
ject to geometry constraints as

SG =
1
2
(z− z̄)T Az (z− z̄) , (15)

with Az = Q̄T Am Q̄ and z̄ = A−1
z Q̄T (b−Am m0) . (16)

Note that z̄ defines optimally smooth shape functions, i.e., ignoring
the data constraints.

Given the factorization of the shape functions based on geometry
constraints (14), we also express the data constraints (13) subject to
the geometry constraints, and we obtain:

DG : DQ̄z−d+Dm0 = 0. (17)

A full optimization of the shape functions would require opti-
mizing SG in (15) subject to the data constraints DG in (17). In
contrast, we replace this optimization with a simpler metric but the
same goal and constraints. In a nutshell, we minimize the L2 devia-
tion from the optimally smooth shape functions, subject to the data
constraints. Then, we have shape functions defined by:

z = argmin
z

1
2
(z− z̄)T (z− z̄), s.t. DQ̄z−d+Dm0 = 0. (18)

In this optimization, the shape function coefficients for each fine
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Fine, ground-truth

Coarse, ours

Figure 4: Simulation of cutting of a CT-scan. By dynamically up-
dating the shape functions of a coarsening model, it is possible to
simulate with a coarse mesh the material heterogeneity of a volu-
metric anatomy model. The images compare the simulation result
with a fine mesh and our coarsened model.

node can be solved completely independently, as the Hessian of the
objective is simply identity, and the data constraints are indepen-
dent for each fine node. We use a Lagrange multiplier method, and
first we solve the 18 multipliers per fine node, and then we obtain
the shape functions. With coarsening degree d, the cost of comput-
ing the shape functions boils down to solving (d + 1)3− 8 linear
systems of size 18 each. In spite of solving decoupled optimiza-
tions per fine node, global consistency is provided by the globally
consistent optimally smooth shape functions and the globally con-
sistent target data.

We have validated the accuracy and performance of our decou-
pled optimization on the test examples shown in Fig. 3. For these
tests, we used the same training data with our method and the
method of Chen et al. [CBW∗18], computed with harmonic dis-
placements. We have measured the L2 norm of the difference of the
vector of shape function coefficients m, and the error is smaller than
0.001% across all tests. The extreme accuracy of the results indi-
cates that, despite the difference in the optimization metrics in (15)
and (18), their gradients are practically aligned at the solution. We
cannot prove that this is true for all training data, but we found it to
be true for all our test cases. Table 3 summarizes the difference in
computational cost per coarse element between our method and the
method of Chen et al. [CBW∗18]. We achieve a speed-up ranging
between almost two and over three orders of magnitude on coars-
ening degrees between 2 and 5. We did not leverage parallelization
in this test, but the performance of our method could be further
increased by running per-fine-node computations in parallel.

5. Results

In the examples shown in the paper, we have followed the state-
of-the-art method of Chen et al. [CBW∗18] for most components
except for the dynamic update of coarsening shape functions. At
initialization, we compute global harmonic displacements on the
full object as training data. This cost is acceptable, as it is exe-
cuted only once. Using these training data, we optimize coarsening

shape functions using our decoupled optimization, as its accuracy
is practically comparable to full smoothness optimization. For run-
time simulation, we apply the same methodology as Chen et al.,
which includes the evaluation of the energy, gradient and Hessian
using quadrature points on the fine mesh, computation of displace-
ments using a corotational method, and blending of displacements
at the boundaries of coarse elements for visualization.

The runtime difference with the state of the art is our dynamic
update of coarsening shape functions when the material is modi-
fied, which makes the overall approach practical in this setting. The
cost of updating numerical coarsening is linear in the number of up-
dated coarse cells, and it includes data generation (Section 3) and
optimization of shape functions (Section 4). The runtime update of
shape functions can be parallelized in two ways. First, the gener-
ation of training data can be parallelized per coarse cell and har-
monic displacement. Second, the optimization of shape-function
coefficients can be parallelized per fine node. We show two exam-
ples of runtime update of the material, to demonstrate applicability
of our method. All tests reported in the paper were executed on an
Intel Core i7-10750H 2.60GHz x6 CPU with 32 GB of RAM. The
timings reported in the paper do not leverage parallelization.

Fig. 1 shows a hanging beam with layers of soft and stiff mate-
rial. Initially, the response is dominated by the layers of stiff mate-
rial that run across the beam, and this is well captured by the initial
shape functions. During the simulation, we remove fine cells of stiff
material, which disconnects the stiff layers, and now the response is
dominated by the soft layers. Failing to update the coarsening shape
functions leads to a large error of 55% in the final deformation con-
figuration. With our dynamic update of coarsening shape functions,
on the other hand, the error is 24%. The beam has a coarsening de-
gree of 4, and we dynamically update the material on all 24 coarse
cells. The cost of recomputing shape functions includes 204ms for
data generation and 257ms for shape-function optimization. The
materials in the beam use a Neo-Hookean model with Young mod-
ulus of 10 MPa for the stiff material, Young modulus of 0.1 MPa
for the soft material, and Poisson’s ratio of 0.45 for both. We com-
pute dynamic simulation using optimization-based backward Euler
integration [GSS∗15]; please see the video for the comparisons.

Fig. 4 shows a CT volume image that is progressively cut.
The volume is represented as a heterogeneous fine mesh with
48× 48× 36 elements, at a resolution of 1 element per centime-
ter. We simulate the deformation on a coarse mesh, then we com-
pute the deformation of the fine mesh nodes, we resample the vol-
ume [TREO16], and we volume-render it using Inviwo [JSS∗19].
We use a coarsening degree of 2, to ensure that cuts are well rep-
resented, although it would be possible to handle coarser meshes
with a method that accounts for the topology of both the fine and
coarse meshes [NKJF09]. We distinguish two types of materials,
soft (Young modulus of 0.1 MPa) and stiff (Young modulus of
100 MPa) based on the opacity of the CT data. Poisson’s ratio
is 0.45 for both. We advance a blade 1 coarse cell per step, and
this requires updating 216 cells per step. The update cost includes
218ms for data generation and 605ms for shape-function optimiza-
tion. As shown in Fig. 4, the updated coarse mesh matches closely
the ground-truth fine simulation. At the final frame, the error is just
28%.
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At rest

Fine, ground-truth

Coarse, [CBW*18] 
with no update

Coarse, ours

Stiff active material
Young = 10 MPa

Medium active material
Young = 1 MPa

Soft active material
Young = 0.1 MPa

Figure 5: Twisting a plate with embedded active material. The ac-
tive material produces a different stiffening behavior of the central
part of the plate depending on its regime, which is changed dy-
namically during the simulation. Our fast and dynamic update of
numerical coarsening (top) provides a close match to the fine-mesh
behavior (middle) as the active material changes its stiffness. Fail-
ing to update coarsening shape functions (bottom) leads to large
error due to artificial stiffening of the model.

As a final example, in Fig. 5 we show dynamic numerical coars-
ening for a plate filled with active/smart material. The plate is built
with a soft substrate (Young modulus = 0.1MPa), in which we have
embedded a grid of active material. This material is stiff at rest
(Young modulus = 10MPa), producing a reinforcement of the cen-
tral part of the plate. The active material exhibits two other states,
of medium stiffness (Young modulus = 1MPa) and low stiffness
(Young modulus = 0.1MPa). Our example motivates applications
where these states could be achieved dynamically and progressively
through external means, e.g., heating, electrical current, etc. Dy-
namic modeling of the material behavior is relevant in applications
such as soft robot sensing [TKM∗20]. In the example, we mesh the
plate with a coarse mesh of 6× 6× 2 hexahedra, and a fine mesh
of 24× 24× 8 hexahedra, i.e., coarsening degree = 4. Fig. 5 com-
pares the simulation with the fine mesh (middle row), the coarse
mesh with our dynamic update of shape functions (top row), and
the coarse mesh with no shape function updates (bottom row). We
twist the plate by applying Dirichlet boundary conditions on two
opposite sides, showing how our method works well for complex
deformations. The coarsening shape functions are initialized with
the embedded active material in its stiffest regime. Then, the ac-
tive material is made progressively softer. Our approach represents
accurately the deformations of the fine model, while the no-update
approach fails to match the fine deformation when the embedded
active material becomes softer. In this case, the inaccuracy of the
precomputed shape functions artificially stiffens the plate.

6. Discussion and Future Work

Research in computer graphics keeps exploring different method-
ologies for building fast simulation models that represent rich,
high-resolution detail. Numerical coarsening is one such method-
ology, and it carries differences with other model-reduction or sub-
space simulation methods. The major difference is that the basis
functions in numerical coarsening remain local, and this has two
potential advantages. One advantage is that local support typically
allows for more degrees of freedom under the same cost, and hence
the ability to resolve deformations of higher resolution. The other
potential advantage is to allow for fast local updates. However,
in state-of-the-art numerical coarsening methods, the heavy cost
of preprocessing prevents local updates, and therefore numerical
coarsening methods did not leverage one of their major potential
advantages to date.

We have developed a method for accurate dynamic update of nu-
merical coarsening, which allows us to fully leverage the locality of
numerical coarsening. The runtime deformation methodology re-
mains the same as in state-of-the-art methods, but shape functions
can now be recomputed even at interactive rates under local ma-
terial updates. We achieve this thanks to technical contributions at
both major stages of preprocessing: the generation of training data
and the optimization of shape functions.

Our method suffers limitations, which could set directions for
future work. Some of the limitations are particular to our work,
while others are general disadvantages of numerical coarsening. In
particular, the locality of numerical coarsening brings some advan-
tages, but it also limits the ability to represent high-resolution de-
formations. It might be interesting to increase the support of shape
functions, following the oversampling approach, to strike the best
balance between accuracy and performance. Another general limi-
tation of numerical coarsening is that the shape functions are built
based on a linearized material response, but do not account for non-
linear behaviors. Note that the nonlinear response of the heteroge-
neous material is well represented, but the shape functions degrade
once the nonlinearities are high.

We see two additional extensions that could increase the accu-
racy of our method, but would also bring performance penalties.
One is to use more training data. This implies computing more de-
formation examples, but possibly also turning the shape-function
optimization into a least-squares data-fitting problem. The other
one is to increase the number of constraints of the substructuring
method, perhaps by adding high-order moments beyond the center
of mass.
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