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Abstract
1.	 Food crops are a vital source of nutrition for humans and domestic animals, with 

an estimated 4 billion metric tons of food produced per year. Crops do not only 
provide yields, but their traits also play a significant role in regulating the ecosys-
tem processes of croplands, affecting local biotas, water balance, nutrient and 
carbon cycling. Domestication has led to significant changes in crop traits, making 
it important to understand the recent evolution of crops and how they differ from 
wild plants.

2.	 In this paper I review the evidence on how the ecological traits of herbaceous 
crops have evolved during and after domestication. Loss of seed dispersal mecha-
nisms, increased plant and organ sizes, high rates of consumption by herbivores 
and fast decomposition of residues by decomposer microbes in the soil, all have 
evolved independently in domestication processes of different crops.

3.	 I also point out types of traits for which we have not identified common responses 
to domestication, be it because domestication processes of the different crop 
species are disparate, or because of lack of strong evidence. Those traits include 
resource acquisition rates of leaves and roots, and whole-plant growth rates. 
Then, I discuss research gaps in the field, including how to advance knowledge 
for those traits that show apparently idiosyncratic responses to domestication.

4.	 Finally, I emphasize the importance of understanding the interactions of crops 
with other organisms and the environment to breed crops that deliver yield and 
other services required from croplands. To this end, I introduce an ideotype 
for sustainable agriculture, which might inspire the breeding of multipurpose 
herbaceous crops, in the same way than the ideotypes of the Green Revolution 
inspired the breeding of elite varieties to foster yields under conventional 
agriculture.
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1  |  INTRODUC TORY PAR AGR APH

Food crops are the subset of plants that support the nutritional 
needs of humans and our domestic animals. It is difficult to over-
state the relevance of crops. Crops yield ca. 4 billion metric tons of 
food per year, either as reproductive output or as vegetative tissue 
(FAOSTAT, 2022). The phenotypic traits of crops mediate the eco-
system processes occurring in croplands, including impacts on the 
local biotas, water balance, and nutrient and carbon cycling (Martin 
& Isaac,  2015). Crop traits have changed substantially during and 
after crops´ domestication. Thus, understanding the ecological per-
formance of crops implies investigating their recent evolution and 
how crops differ from wild plants. In this contribution I will synthe-
size commonalities and disparities in the reactions of plants to a his-
tory of cultivation and agricultural use. I will focus on herbaceous 
crops because of their agricultural importance and the fact that 
most of the current knowledge on the effects of domestication on 
ecological performance is available for herbaceous crops. I make the 
point that understanding the ecological performance of agricultural 
plants—crops´ interactions with other organisms and with the abi-
otic environment—is key to breed crops that not only deliver yields, 
but also other ecosystem services demanded from croplands.

2  |  CROPL ANDS AND CROP PHENOT YPES

Stands of crops take over 10%–15 % of the land surface and are un-
evenly distributed across most ice-free areas of the globe (Kopittke 
et al., 2022). Thus, croplands are an important type of ecosystem, 
with a remarkable influence on pressing environmental concerns 
like climate change, biodiversity loss and environmental pollution 
(IPBES, 2019; Tilman et al., 2001). Agricultural management largely 
drives the productivity and functioning of croplands. But crop traits 
are key modulators of yield and other functions of agricultural fields. 
For example (1) carbon sequestration in croplands is higher if plants 
are deep rooted, produce more litter or deliver more rhizodepos-
its (Kell, 2011; Williams et al., 2022); (2) diversity of plant traits in 
agricultural fields tends to raise productivity, and this can happen 
under diverse management and input options (Li et al.,  2020); (3) 
pollinator-dependent crops feed the communities of local pollina-
tors, or otherwise impact on the performance of wild pollinators if 
colonies of domestic bees are supplied (Aizen et al., 2020; Mashilingi 
et al., 2022). Therefore, crop traits contribute to multiple dimensions 
of agriculture, including but not solely, to harvestable yields.

Crop traits are key to explain variation in harvestable yields and 
the adaptation of crops to changing environments (Condon, 2020; 
Wu et al., 2019). Yet, crop attributes are rarely used directly to face 
agricultural challenges. Agricultural problems are addressed through 
research and policies linked to management practices. FAO recom-
mends reducing tillage and using organic fertilizers to mitigate cli-
mate change through soil carbon sequestration but does not state 
clearly the types of crops that might promote this function (FAO 
& ITPS, 2021). Even for optimizing yields, more attention is paid to 

management than to crop traits (Rizzo et al., 2022). This is so despite 
evidence that plant traits are also an important driver of ecosystem 
functions and services (Bagousse-Pinguet et al.,  2021; Happonen 
et al., 2022). A solid understanding of the ecological roles of crops 
could thus make a hitherto underexplored contribution to foster a 
more sustainable and productive agriculture (Brooker et al., 2021).

Like those of any other organism, crop phenotypes evolve. 
Crops have thrived in agricultural lands for the latest millennia of 
their evolutionary history. Evolution under cultivation should have 
selected for variants that meet the nutritional needs of humans, are 
amenable to agricultural production, and are adapted to the agri-
cultural environments. Such selection pressures seem to be com-
mon, directional and strong enough to have resulted in convergent 
evolution of crop traits. Indeed, certain types of crops show reac-
tions to evolution under cultivation that are common across species 
(Denham et al., 2020; Meyer & Purugganan, 2013). Other traits, and 
other types of crops, show inconsistent responses to domestication 
(Meyer et al., 2012). For yet other traits, particularly for traits linked 
to the ecological relationships of crops like plant–plant interactions 
and the recruitment of soil microbes, or for phenotypic plasticity, 
we still know little on how they have reacted to domestication (Milla 
et al., 2015).

3  |  CROPS AND THEIR WILD 
PROGENITORS DIFFER IN SEED 
DISPERSAL MECHANISMS, PL ANT SIZE , 
SUSCEPTIBILIT Y TO HERBIVORES AND A 
FE W OTHER CRITIC AL TR AITS

3.1  |  Nonshattering and classical domestication 
traits

Major crops have evolved several commonalities under cultivation, 
which seem key to their adoption as crops. Classical domestication 
traits include upright plants, large seeds, increased biomass alloca-
tion to the harvest organs, and stands with high phenological syn-
chrony (Meyer & Purugganan, 2013). Critically, fully domesticated 
seed crops have fruits that either do not disarticulate, or remain 
closed at maturity (Lin et al., 2012), which allowed early farmers to 
harvest stands before most of the seed yield fell onto the ground 
(Purugganan & Fuller, 2009). Nonshattering became dominant in the 
agricultural stands of cereals, even though it is maladaptive in the 
wild. In fact, nonshattering fruits is a diagnostic trait that has been 
used to distinguish wild from domesticated plant remains (Fuller & 
Allaby, 2009). This is because domesticates, by definition, are popu-
lations which reproduction is under the control of the domesticator 
to a large degree (Purugganan, 2022). Therefore, loss of spontane-
ous seed dispersal is indeed the trait that formally qualifies a seed 
crop to be fully domesticated. The evolution of nonshattering under 
domestication is a classic example of rapid evolution. However, cur-
rent evidence shows that classical domestication traits, including 
nonshattering, became dominant at a slower pace than formerly 
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thought, and through more complex modes of evolution (Allaby 
et al., 2022; Chacón-Sánchez, 2018).

3.2  |  Plant size

We have less evidence concerning the evolution of traits indicat-
ing the ecological performance of crops—that is, traits linked to 
resource-use strategies of plants, to interactions between plants 
and with other organisms, and to effects of plants on ecosystem 
processes. This evidence comes from comparative phenotyping of 
crop landraces (as the best surrogate of early domesticates) ver-
sus current-day representatives of their wild progenitors. A few 
ecological traits seem to react consistently to evolution under 
cultivation. Selection in cultivated lands promoted large plants, 
which have large organs and yield large seeds (Jones et al., 2021; 
Milla et al.,  2014). This pattern has consequences relevant to 
the performance of crop stands. Large plants tend to overinvest 
in support tissue at the expense of productive organs (Poorter 
et al.,  2012). Overinvestment in support might have evolved in 
response to the intensified levels of intraspecific competition in 
agricultural stands. Competitive phenotypes maximize the hoard-
ing of resources by individual plants, but penalize reproductive al-
location at the stand level, and increase the risk of lodging (Anten 
& Vermeulen,  2016). During the Green Revolution, breeding of 
semidwarf varieties helped to overcome that inconvenient legacy 
of domestication for a few major seed crops. This has resulted 
in decreased phenotypic plasticity to varying stand density, and 
therefore increased tolerance to plant crowding and increased 
yield at high planting density, but low capacity to suppress weeds 
when grown at low density (Tokatlidis & Koutroubas,  2004; Wu 
et al., 2021). However, for most crops there are no shortened va-
rieties (Hedden, 2003).

3.3  |  Relationships with herbivores, 
decomposers and mycorrhizal fungi

Another widespread legacy of domestication is the evolution of 
high susceptibilities to herbivore damage. Crops suffer on average 
430% more herbivore damage than their wild progenitors, and her-
bivory takes ca. 30% of harvestable yields (Fernandez et al., 2021; 
Oerke, 2006). Despite its magnitude and relevance, the mechanisms 
of this evolutionary change remain elusive. This is because it is diffi-
cult to establish a link between crop defences and the levels of herbi-
vore damage. The amounts of constitutive defence compounds—that 
is, secondary metabolites and defensive physical structures ex-
pressed even in the absence of herbivores (Walters, 2011)—evolved 
in diverse ways after domestication, depending on the crop species 
and organs considered, and independently of the evolution of their 
susceptibility to herbivores (Whitehead et al., 2016). For example, 
the fruits of domesticated blackberries have way less flavanol gly-
cosides than its wild progenitor´s, while cultivars of raspberries have 

more of this constitutive defence chemical than its wild counterpart 
(Whitehead et al., 2016).

Pooling together generalist and specialist defences in compara-
tive analyses might obscure relationships between amounts of spe-
cific defences and vulnerability to herbivores. In fact, domestication 
has tended to deplete defences against generalist herbivores, but 
not against specialists, which tend to remain part of crops´ accom-
panying biotas under cultivation (Gaillard et al., 2018). Furthermore, 
we do not know how the interactions among tolerance, resistance 
and response to herbivores have evolved in most crops (but see 
e.g. [Ferrero et al.,  2020]). Fortunately, a recent meta-analysis in-
vestigated the evolution of a wide array of plant defence strate-
gies in crops, including constitutive, induced and indirect defences 
(Fernandez et al., 2021). Induced defence is the plastic upregulation 
of anti-herbivore compounds after herbivore attack, and indirect 
defence is plant protection through communication with the nat-
ural enemies of herbivores (Karban,  2011; Kessler & Heil,  2011). 
Induced and indirect defences have decreased consistently after 
domestication in most crops (Fernandez et al., 2021). Unexpectedly, 
Fernandez et al. also found that crops tend to have less micro- and 
macro-nutrients, carbohydrates and proteins than their wild progen-
itors, and therefore have lower nutritional value for herbivores. Low 
nutritional quality might force herbivores to eat more to meet their 
stoichiometric demands, and thus elicit more damage (Fernandez 
et al., 2021). This interesting hypothesis needs experimental testing 
against alternative explanations of increased herbivore susceptibil-
ity in crops. Aside from herbivore susceptibility, a decrease in the 
nutritional value of crops is worrying also for human nourishment. 
For example, the concentration of carotenoids in the seeds of beans, 
peanuts and soybeans is ca. half of that of their wild progenitors 
(Fernández-Marín et al., 2014). This is because early selection and 
modern breeding of major crops have focused on securing calorie 
supply, at the expense of nutritional quality (Ku et al., 2020). Thus, 
breeding for nutritional quality is needed to counteract domestica-
tion effects and achieve more balanced human nutrition.

Crop tissues not only became more palatable for humans and 
herbivores after domestication, but their residues are also more 
accessible to decomposers (García-Palacios et al., 2013). Crop res-
idues tend to be physically softer and have less lignin and carbon 
than those of their wild progenitors, which makes them more labile 
(García-Palacios et al.,  2013). The physical and chemical traits of 
plant residues impact relevant soil functions, including carbon and 
nutrient cycling, and the composition and functioning of soil biotas 
(Dias et al., 2017). In fact, soil respiration increases, and nutrient cy-
cling accelerates, when experimental soils are amended with crop 
residues, as compared to adding residues of crops´ wild progenitors 
(García-Palacios et al., 2013). Thus, it should perhaps be a priority 
to breed crops which residues are more diverse and recalcitrant to 
decomposers. This could help to mitigate the positive feedback be-
tween global warming and soil respiration, which is a major contrib-
utor to climate change (Bradford et al., 2016).

Another relevant ecological interaction is mycorrhiza, which are key 
to plant nutrition (Smith & Read, 2010). Agricultural soils tend to host 

 13652435, 2023, 4, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2435.14278 by U

niversidad R
ey Juan C

arlos C
/T

ulipan S/N
 E

dificio, W
iley O

nline L
ibrary on [27/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  979Functional EcologyMILLA

scant, poorly diverse, and ruderal communities of mycorrhizal fungi, 
which also are less mutualistic and more parasitic in soils with high nu-
trient levels (Chagnon et al., 2013; Edlinger et al., 2022; Johnson, 1993). 
Mycorrhizal interactions might thus be impaired after evolution in ag-
ricultural fields. Studies on the effects of domestication on mycorrhi-
zal mutualisms have yielded mixed results (Bryla & Koide, 1990; Koide 
et al., 1988; Liu et al., 2020). However, a wide screening of 27 crops in 
a common garden found that domesticated varieties tend to benefit 
less from mycorrhiza than wild progenitors when grown under high 
soil nutrient availability (Martín-Robles et al., 2018). Therefore, under 
the specific conditions of high input agriculture, current crops are less 
proficient than their wild progenitors on using mycorrhiza, which feed-
backs on increased crop dependency on fertilizers.

4  |  OTHER RELE VANT TR AITS ,  LIKE 
RESOURCE UPTAKE AND GROW TH R ATES, 
SHOW IDIOSYNCR ATIC RESPONSES TO 
DOMESTIC ATION

4.1  |  Photosynthesis in leaves

Links among traits, environment and plant performance are com-
monly idiosyncratic (Sobral,  2021). In this line, several prominent 
traits show idiosyncratic reactions to evolution under cultivation. 
This includes the fact that the leaves of some crops increased their 
maximum carbon exchange rates (CER) after domestication, while 
those of other crops remained similar or provide lower photosyn-
thetic profit than their wild progenitors (Evans, 1993; Lei et al., 2022; 
Matesanz & Milla, 2018; Pujol et al., 2008).

Even if crops tend to have higher CER than other wild herbs 
(Huang et al., 2022; Nadal & Flexas, 2019), the direct wild progen-
itors of crops might probably be high CER species to start with 
(Chapin et al., 1989; Evans, 1993). And there are limitations to ever-
increasing CER. In species with high CER, like crops and probably 
their wild progenitors, photosynthesis is colimited by mesophyll 
and stomatal conductance to gas exchange and by photochemis-
try (Gago et al.,  2019). Escaping colimitation has proven difficult 
and could constrain the evolution of higher CER in crops (Flexas & 
Carriquí, 2020). This hypothesis is supported by the fact that crops 
have not increased CER after domestication, despite a more even 
distribution of stomata between both leaf sides (Milla et al., 2013), 
which should boost stomatal and mesophyll conductance, and there-
fore CER (Wall et al., 2022; Xiong & Flexas, 2020). The fact that CER 
has not increased consistently after domestication supports either 
a colimitation scenario (Gago et al., 2019), or saturation of effective 
stomatal conductance (Mott et al., 1982).

4.2  |  Resource uptake by roots

Photosynthetic rates in leaves depend on water and nutrient pro-
visioning from fine roots. Fine roots reacted inconsistently to 

domestication when traits indicative of fast versus slow rates of 
resource acquisition—for example, root tissue density, specific root 
length or root mass fraction—were investigated across multiple 
crops (Barel, 2018; Martín-Robles et al., 2019). Only the diameter of 
fine roots tends to be slightly thicker in cultivated genotypes than in 
their wild progenitors, which seems to be an allometric consequence 
of the larger plant size of domesticates (Martín-Robles et al., 2019). 
Compared to other wild herbs, the fine roots of crops´ wild progeni-
tors are noticeably acquisitive, which might preclude further evolu-
tion of the acquisitive strategy after domestication (Martín-Robles 
et al., 2019).

Other scales of root organization might be more reactive to do-
mestication than the morphology and physiology of individual fine 
roots. The roots of maize and wheat, for instance, develop more 
seminal roots upon germination than their wild progenitors´ (Golan 
et al., 2018; Perkins & Lynch, 2021). These extra roots contribute 
one-third of the nitrogen and phosphorus acquired early in the sea-
son (Perkins & Lynch, 2021). However, cultivars of wheat lack sem-
inal roots that stay remnant as primordia during early germination, 
which compromises recovery from water stress later in the season 
(Golan et al.,  2018). This suggests a trade-off between stress tol-
erance and acquisitive traits in the evolution of cereal roots during 
domestication. Also, the roots of modern wheat are less branched, 
proliferate less in response to neighbours and grow more vertically, 
than the roots of ancient landraces, indicating further evolution of 
roots during the diversification of domesticated genotypes (Zhu, 
Weiner, & Li, 2019; Zhu, Weiner, Yu, et al., 2019). These findings re-
main to be investigated in other species of cereals and in other types 
of crops.

4.3  |  Whole-plant growth rates

If the rates of resource acquisition by roots and leaves did not react 
in consistent ways to domestication, enhanced whole-plant growth 
rates might be also compromised. Fast-growing plants thrive in 
resource-rich environments, allocate little to defence against herbi-
vores, their leaves and fine roots have fast rates of resource acquisi-
tion, low construction costs and high turnover rates (Reich, 2014). 
These traits boost productivity and therefore would seem adaptive 
in agricultural fields. However, plant relative growth rates (RGRs, 
gains in biomass per unit biomass per unit time) did not increase 
consistently after domestication, in line with reactions of leaves 
and fine roots (Evans,  1993; Gómez-Fernández et al.,  2022). This 
seems puzzling at first instance, but several explanations might ex-
plain this pattern. First, domestication has generally promoted large 
seeds and large whole plants (Kluyver et al., 2017; Milla et al., 2014). 
Plants with large seeds display low RGRs (Rees et al., 2010), even 
when RGRs are measured at similar plant sizes (Gómez-Fernández 
& Milla,  2022). Second, RGRs of wild progenitors might be high 
enough to meet agricultural needs. Increasing RGRs further might 
not improve yields, and might trade-off with other relevant traits 
(e.g. seed and plant size, or investment in defence). Furthermore, the 
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reactions of the three components of RGR—physiology, allocation 
and morphology (Poorter, 1989)—to domestication are diverse, and 
might cancel each other when combined into a whole-plant level 
process like RGR (Gómez-Fernández et al.,  2022). Clearly, more 
work is needed to disentangle among those competing explanations 
and unlock the contribution of growth rates to yield improvements. 
Finally, the plasticity of physiological and growth rates under differ-
ent environments and managements might differ between crops and 
their wild progenitors, but this remains to be investigated in depth.

5  |  RESE ARCH GAPS AND THEIR 
RELE VANCE TO SUSTAINABLE 
AGRICULTURE

Despite the evidence reviewed above, we still do not know how evo-
lution under cultivation influenced most aspects of the ecological 
performance of crops. Crops are plant populations whose ecological 
scenarios changed radically after transitioning to agricultural fields, 
including shifts in disturbance regimes and intensities, in resource 
supply and in co-occurring biotas (Denison, 2012). Most likely, this 
transition changed the ecological roles of crops more than what has 
been evidenced thus far. Below I will highlight areas of crop biol-
ogy which impacts of domestication we mostly ignore but are key to 
move towards low input and environment-friendly agriculture.

5.1  |  Crops and soil microbes

Microbiotas are key to every aspect of plant performance, and to the 
regulation of ecosystem functioning (Fitzpatrick et al., 2020). Thus 
far, microbiotas have concerned agriculturalists chiefly to keep harm-
ful microbes at check. But managing microbial communities to assist 
in the agricultural practice can bring benefits much further, spurred 
by advances in environmental DNA sequencing and manufacturing 
of synthetic microbial consortia (Trivedi et al.,  2021). To fully em-
brace this potential, we need to characterize the microbiotas in and 
around crops, their functional roles, and their eco-evolutionary rela-
tionships with crops and their wild progenitors.

Evolution during and after domestication might have changed 
plant–microbe recognition and filtering mechanisms (Kiers 
et al.,  2007). For example, wild common beans modify bacterial 
communities in a different way than cultivated beans, recruiting 
in their rhizosphere more Bacteroidetes and Verrucomicrobia, but 
less Actinobacteria and Proteobacteria (Pérez-Jaramillo, 2017). But 
domestication had little impact on how different genotypes of sun-
flower filter soil fungi and bacteria (Leff et al., 2016). Interestingly, 
filtering abilities are heritable and might track domestication gene-
alogies (Abdelfattah et al.,  2022). Despite these and other contri-
butions (see e.g. Martínez-Romero et al., 2020), we are still at the 
infancy of characterizing what changed between plants and their 
microbiotas after domestication. Similarly, even though we know 
that crop residues interact with soil microbiotas differently than the 

residues of wild plants—for example, by increasing soil respiration 
(García-Palacios et al., 2013)—we ignore how these interactions im-
pact on the composition and functioning of soil microbiotas in crop-
lands. Finally, the diversity and potentialities of the microbiotas at 
the habitats of origin of crops´ wild progenitors remain unexplored 
(Raaijmakers & Kiers, 2022). Prospecting the composition and func-
tioning of those microbiotas, which have coevolved with the genetic 
ancestry of crops, would provide priceless microbial resources, 
probably absent from agricultural soils today.

5.2  |  Polycultures and crop traits

Polycultures and varietal mixtures benefit multiple facets of sustain-
ability (Renard & Tilman, 2021). Importantly, polycultures increase 
yield stability and tend to yield more than the average of composing 
monocultures (Renard & Tilman, 2021). Spatial diversification is thus 
a sustainable strategy to increase crop yields (Li et al., 2020). But 
crop genotypes are adapted to perform in neighbourhoods of con-
specifics, because monocultures provide the bulk of food supplies. 
In fact, domestication and a history of cultivation in monoculture can 
impair the ability of plants to perform in polyculture (Chacón-Labella 
et al.,  2019; Stefan et al.,  2022; Zuppinger-Dingley et al.,  2014). 
Therefore, breeding crop varieties that are proficient in diversified 
crop stands is a priority. A first step in that endeavour is to iden-
tify and understand the traits that are relevant to the plant–plant 
interactions underlying biodiversity effects—that is, the effects that 
underlie the increase in yield brought by increasing levels of biodi-
versity (Engbersen et al., 2022; Litrico & Violle, 2015). Identification 
of the molecular basis of biodiversity effects, and application of 
gene editing technologies to diversify crops, can contribute to speed 
up this process (Garland & Curry, 2022; Wuest & Niklaus, 2018). At 
the field scale, we need to characterize trait–performance relation-
ships in polyculture to overcome the constraints set by domestica-
tion and historical selection under monoculture. Finally, interactions 
with agronomic practices are important. For example, selecting for 
mixtures that maximize overyielding at high planting densities might 
be key. When plant stands are grown at increasing densities, produc-
tivity per unit land area increases up to a plateau, known as constant 
final yield (CFY; Silvertown & Charlesworth, 2001). Overcoming CFY 
through the breeding of varieties that increase growth at high densi-
ties was key to the success of the Green Revolution´s monocultures. 
Mixtures also show CFY (Cavalieri et al., 2022), and therefore im-
proving traits for higher tolerance to density might bring enhanced 
performance of polycultures.

5.3  |  Trade-offs among traits and functions

Thus far I have written on individual traits, or types of traits, as if 
variation in a trait was independent of variation in the rest of the 
phenotype. This is true to a limited extent. Plants are modular organ-
isms, which confers some independence on trait variation among and 
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within modules. This is demonstrated by the multiple axes needed to 
ordinate variation in plant traits—for example, traits like plant size 
tend to vary orthogonally to mass-based rates of resource acquisi-
tion (Díaz et al., 2015; Kramer-Walter et al., 2016; Laughlin, 2014). 
However, plant hydraulics, source–sink dynamics, ontogeny and 
hormonal regulation pose limits to the free variation of individual 
traits. Phenotypic integration and trade-offs among traits and func-
tions are thus widespread in plants (Messier et al., 2017).

In fact, strong trade-offs are a limitation to crop improvement. 
For example, limited gain of CER during domestication and fur-
ther breeding, as described in section IV, might be explained by 
trade-offs with other traits at the whole-leaf and canopy levels. 
Domesticated cultivars tend to have larger leaves than their wild 
progenitors (Milla et al.,  2014). Larger leaves require more sup-
port per unit of leaf area, which comes at the cost of less invest-
ment in the photosynthetic machinery (Milla & Reich, 2007; Niklas 
et al., 2007). Larger leaves also require stronger petioles and stems, 
which adds to increased allocation to support instead of productive 
tissue (Milla & Matesanz, 2017). Extended duration of leaf area (e.g. 
stay-green phenotypes) and upright leaf angles can also trade-off 
with increased CER, which may render variation in CER of limited 
agronomic value and unlikely to be targeted by artificial selection 
for yield (Evans, 1993).

Achieving trade-off-free improvements is key to adapt crops to 
current challenges (Denison,  2012; Weiner,  2019). Whether crop 
evolution has freed, or reinforced, trait trade-offs is largely unex-
plored. In a small set of six crops, it was found that the reactions of 
disparate traits to domestication occurred coordinately—indicating 
trade-offs and phenotypic integration—while recent improvement 
disrupted several of the trait–trait relationships—indicating relaxed 
trade-offs and less phenotypic integration (Milla et al., 2014). The 
maintenance of other trade-offs under domestication—for ex-
ample, between reproductive output and defence (Whitehead & 
Poveda,  2019) or between growth and stress tolerance (Koziol 
et al., 2012)—has been reported in several case studies. However, 
provided its relevance, more research is needed in this realm.

5.4  |  The ecological profiles of crop wild 
progenitors

Constraints and opportunities for crop adaptation might arise not 
only from a history of evolution under cultivation, but also from 
the nature and properties of the gene pool originating domesti-
cated populations, that is, the traits of crop wild progenitors. We 
largely ignore what wild progenitors have in common, what their 
ecological profiles are and how their profiles compare to the wider 
botanical variation (but see, e.g. Cunniff et al., 2014). So much that 
different authors portray the wild progenitors of major crops as 
ruderal, competitor or even stress-tolerant types of plants (Abbo 
et al., 2010; Milla et al., 2015; Spengler & Mueller, 2019). Robust re-
search on the ecological strategies of wild progenitors would benefit 
crop breeding and neo-domestication of wild plants. For instance, 

annual herbs with ruderal profiles prioritize fast growth, small stat-
ure, early allocation to reproductive output, and precocious seed 
set, at the expense of competitive dominance or tolerance to biotic 
disturbance and abiotic stress (Hodgson et al., 2020). Therefore, ob-
taining leafy crops from ruderal wild plants that readily shift to re-
productive growth might not be good strategy. Similarly, breeding a 
high-density grain crop out of a wild progenitor that is a strong com-
petitor might be a bad idea, because much of its biomass gain will 
be invested in outcompeting neighbours (Anten & Vermeulen, 2016; 
Wille et al., 2017). Identifying the ecological strategies of crop wild 
progenitors might help to re-focus the capabilities of each crop and 
to ease breeding for specific yielding purposes. Additionally, setting 
crop wild progenitors in the phenotypic space of wider botanical 
diversity would help to target candidate wild species amenable to 
domesticate crops de novo.

5.5  |  The genetic bases of an expanded 
domestication syndrome

The genetics of classical domestication traits are relatively well 
known. Early domestication entailed the evolution of key loss-of-
function point mutations, which favoured nonshattering, loss of 
seed dormancy, low branching and other relevant traits (Gross & 
Olsen, 2010; Meyer & Purugganan, 2013). Later diversification and 
improvement stages brought changes in traits driven by protein-
coding genes (Meyer & Purugganan, 2013). Another genetic pattern 
accompanying the evolution of crops is the prevalence of hybridi-
zation and genome duplication events. In particular, interspecific 
admixture implying allopolyploidization (Purugganan,  2019), or 
breeding of F1 hybrids (Kingsbury, 2009), were key to the ancient 
and recent development of crops respectively. Hybrids provide 
heterosis—vigorous growth, yield and resistance—and adaptive plas-
ticity for geographic expansion (Purugganan,  2019). Indeed, poly-
ploids were more likely to be domesticated than other wild plants 
(Salman-Minkov et al., 2016).

Even if we know the basics of the genetic changes accompa-
nying some domestication traits, we ignore how the ecological 
traits covered in this review arose. For example, even if the genetic 
basis of variation in leaf litter decomposability has been linked to 
the genes controlling the composition of cell membranes (Kazakou 
et al., 2019), we ignore if the highly decomposable litters of crops 
evolved as side effects of artificial selection on pleiotropic genes, 
or through other genetic mechanisms. Similarly, there is hints 
on the genetic bases underlying biodiversity effects (Wuest & 
Niklaus, 2018; Wuest et al., 2022). But we are far from transferring 
that knowledge to understand the decrease in performance under 
polyculture of domesticated varieties (Chacón-Labella et al., 2019). 
Decomposability, plant–plant interactions, plant size or resistance 
to herbivores are quantitative traits and have a polygenic architec-
ture. Disentangling how domestication impacted their genomic basis 
will be a major challenge. Recent findings on the fast evolution of 
weedy genomes, promoting quantitative variation in growth, and in 
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stress and disturbance tolerance, might guide this research (Kreiner 
et al., 2022).

5.6  |  How to deal with idiosyncrasy

Finally, a topic that deserves research attention is the idiosyncrasy 
among crops in their reactions to domestication. Relevant crop 
traits have reacted to domestication in different ways, depending 
on the species and genotypes being investigated, and on the envi-
ronmental context where plants are grown (see Section IV). Often, 
ecological and evolutionary patterns are overridden by context de-
pendency (Bradley et al., 2020; Fukami, 2015; Schoenle et al., 2018; 
Sletvold,  2019). Context dependency can arise from poor experi-
mental designs and disparate research approaches between studies, 
or from true variation in the response (Catford et al., 2022). Thus, a 
first step to understand context dependency in domestication is to 
qualify evidence as hard or soft, and then perform further research 
when idiosyncrasies stem from soft evidence or from evidence that 
is hardly generalizable. This research should provide results that are 
more generalizable across crops, that address confounding factors, 
variation in statistical inference or methodological approaches, and 
other causes of apparent context dependency identified in previous 
work (Catford et al., 2022). If evidence is hard, then context depend-
ency might be mechanistic, and a deeper level of enquiry should ex-
plore the underlying sources of variation among crops or genotypes. 
For example, when investigated under common growth conditions, 
the effects of domestication on leaf nitrogen and phosphorus de-
pend largely on the crop species considered (Delgado-Baquerizo 
et al., 2016). But part of that variation can be attributed to the bio-
geographic origins of crops, such that crops originating from high lat-
itudes evolved leaves with more phosphorus, less carbon and lower 
N:P and C:P ratios than crops from low latitudes (Delgado-Baquerizo 
et al., 2016). Generally, research on the ecological effects of domes-
tication should aim to increase explained variance by considering 
wider arrays of covariates and expanded genotype sampling, as far 
as logistics permit.

Another important source of true context dependency is phe-
notypic plasticity. Genotypes map into different phenotypes de-
pending on the environment. Thus, the phenotypic patterns covered 
in this review must be considered in the conditions of the environ-
ments where trait data were collected. In this context, common 
gardens circumvent some of the limitations of comparative biology 
(de Villemereuil et al., 2016). But replicated common gardens, set up 
under contrasting environments, are rare in domestication research 
and would help to disentangle the genotypic basis of phenotypic 
patterns more accurately.

Phenotypic plasticity evolves (Pigliucci,  2005) and might have 
changed during the recent evolution of crops. For example, the roots 
of modern varieties of wheat over-proliferate little when encounter-
ing neighbouring roots, in contrast with the strong over-proliferation 
of early landraces and other wild plants, which indicates reduced 
plasticity in the roots of modern wheats (Zhu, Weiner, & Li, 2019). 

Other studies have found limited differences between crops and 
their wild progenitors in trait plasticity to water and nutrient sup-
ply, or in growth form variation in different microenvironments 
(Matesanz & Milla, 2018; Ménard et al., 2013). However, for a vast 
majority of traits and species, we largely ignore if crops have wider or 
narrower reaction norms to environmental variation than their wild 
progenitors. Provided that domestication commonly entails genetic 
bottlenecks (Gross & Olsen, 2010), phenotypic plasticity might be 
a most relevant tool for crop adaptation to changing environments 
and to management practices like, for example, polyculturing (Yang 
et al., 2022). Furthermore, recent progress on the epigenetic regu-
lation of plasticity (Bossdorf et al., 2010), and on transgenerational 
plasticity (Bell & Hellmann, 2019), is moving the field forward in lines 
that should be relevant to the performance of crops, and that should 
be investigated in the context of domestication research.

6  |  HOW TO USE KNOWLEDGE ON 
CROPS´ RE AC TIONS TO DOMESTIC ATION 
TO FOSTER SUSTAINABILIT Y:  AN IDEOT YPE 
FOR SUSTAINABLE AGRICULTURE

We are far from a complete picture on how the evolution of plants 
under cultivation has impacted the ecosystem services modulated 
by crops. However, we can speculate on the characteristics of crop 
phenotypes that would better suit the goals of sustainable agricul-
ture (Figure 1). Such ideotypes are useful as targets for crop breed-
ing. For example, during the Green Revolution the enforcement of 
agricultural intensification was accompanied by the breeding and 
adoption of new high-yielding varieties of grain crops (Khush, 1999). 
These varieties fitted Donald's ideotype, that is, they were small and 
stiff plants with erect leaves and high harvest indexes (increased 
ratios of reproductive to vegetative biomass), that maximize yields 
when grown at high planting density under high input agriculture 
(Donald, 1968a, 1968b). In this line, we can devise ideotypes of crop 
plants purposed to maximize multiple ecosystem services.

Traits composing an ideotype for sustainable agriculture might 
include the following. (1) Increased levels of indirect defence, and of 
organ-specific expression of direct defences (e.g. inducible instead 
of constitutive defence, and response against generalists instead of 
specialized pests; Chen,  2008; Gaillard et al.,  2018). Such pheno-
types could minimize pesticide use and could restore plant defence 
strategies that have weakened during domestication (Fernandez 
et al.,  2021). (2) Phenotypes that maximize performance in diver-
sified and dense stands (Litrico & Violle, 2015) and under hetero-
geneous environments (Rolhauser et al., 2022). Varietal and species 
mixtures can increase resource use efficiency and provide more sta-
ble harvests in space and time. (3) Root traits optimized for resource 
use efficiency and for harnessing benefits from interactions with 
soil biotas. For example, selection for specific profiles of rhizode-
position should help to filter soil microbiotas for the benefit of crop 
performance (Koprivova & Kopriva, 2022; Preece & Peñuelas, 2020). 
This is critical to the success of commercial SynComs (synthetic 
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microbial communities), which usually fail to make it to the rhizo-
sphere (Delgado-Baquerizo,  2022). Furthermore, diverse but ex-
tensive and deep root systems should optimize resource use in 
low input agriculture and contribute to increase organic matter in 
agricultural soils, fostering many facets of sustainability (Johnston 
et al., 2009; Kell, 2011). This might be particularly relevant in cover 
crops. Provided that Earth´s soils have lost ca. 14.000 km3 of rooted 
volume due to the agricultural conversion of native habitats (Hauser 
et al.,  2022), it is a priority to breed crop root traits that recover 
part of this carbon sink. (4) Other dimensions of crop phenotypes 
that should be targets of sustainability-oriented breeding include 
improved floral reward for pollinators in pollinator-dependent crops 
(Garibaldi et al., 2013), local adaptation of traits through backcross-
ing elite varieties with landraces (Meseka et al.,  2015) and breed-
ing for nutritional quality instead of plain calorie supply (Graham 
et al., 2007).

How to breed crops that promote agricultural sustainability and 
balance and deal with multiple trade-offs among participating traits 
seems daunting. But it is worth the effort. In recent decades, re-
search and policy have focused on fostering sustainability through 
agricultural practices at the field and landscape levels (Gomiero 
et al.,  2011). Sustainable agricultural practices need to be supple-
mented with crop phenotypes that deliver the diverse services we 
demand from croplands. A first step to inspire this endeavour is 
to understand how crops became what they are through the early 
selection of wild progenitors, domestication and further evolution 
under cultivation.
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F I G U R E  1  Ideotype for sustainable agriculture. (a) Stand of an early domesticate of an herbaceous seed crop, with large plants bearing 
large organs and seeds. (b) Ideotype for conventional agriculture, fit to perform at high planting density in high input monocultures. 
Monocultures use plants of short heights, high allocation to reproductive output and high dependence on irrigation, herbicides, pesticides 
and synthetic fertilizers. (c) Mixture of ideotypes for sustainable agriculture, portraying traits that promote yield, but also nutritional quality 
and other ecosystem services. (1) Diverse canopies (and roots) that promote complementarity in the use of light, water and nutrients, 
and suppress a wide range of weeds. (2) Diverse, but collectively deeper and more intensive, roots which promote efficient foraging for 
nutrients, microbes and water, less soil erosion and more carbon sequestration. (3) Diverse, intense and selective rhizodeposition, so that 
soil microbes are efficiently filtered to the rhizosphere to improve plant performance and plant protection. (4) Increased diversity and 
improvement in the nutritional quality of seeds. (5) Plant defence strategy focused on indirect defences, and on organ-specific expression 
of induced defences. (6) Increased dependency on mycorrhiza for nutrient provisioning and for minimizing runoff. (7) Inclusion of locally 
adapted landraces in varietal and species mixtures, and in the genetic background of elite varieties through breeding. Plant drawings 
modified from (Gómez-Fernández et al., 2022).
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