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a b s t r a c t

We propose to control the orbits of the two-dimensional Rulkov model affected by
bounded noise. For the correct parameter choice the phase space presents two chaotic
regions separated by a transient chaotic region in between. One of the chaotic regions is
the responsible to give birth to the neuronal bursting regime. Normally, an orbit in this
chaotic region cannot pass through the transient chaotic one and reach the other chaotic
region. As a consequence the burstings are short in time. Here, we propose a control
technique to connect both chaotic regions and allow the neuron to exhibit very long
burstings. This control method defines a region Q covering the transient chaotic region
where it is possible to find an advantageous set S ⊂ Q through which the orbits can be
driven with a minimal control. In addition we show how the set S changes depending
on the noise intensity affecting the map, and how the set S can be used in different
scenarios of control.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Neurons are complex entities that form a highly structured network. In recent decades, it has been of interest to create
athematical models that mimic their behaviour. Due to their high complexity, these models have to be approximated
nd simplified while retaining only certain functionalities of the neurons. The entire structure of the neuron is usually
eplaced by a system with a voltage membrane and a connection topology.

Initially, continuous models such as the models of FitzHugh–Nagumo [1], Hindmarsh-Rose [2], and Hodgkin–Huxley [3]
ave been used profusely. Recently, discrete models have started to arouse interest for the simulation of neurons [4]. They
re easier models to solve (they avoid the integration of ordinary differential equations), and they are able to produce a
ide range of dynamical behaviour like periodic oscillations, spiking and chaotic bursting. In this context, it is common to
se two-dimensional maps of the slow–fast type variables (fast–slow system). The most relevant are [4]: the Izhikevich’s
iscrete model, Courbage’s model, Chialvo’s model, and the Rulkov model. The latter presents three variants of the model:
on-chaotic, supercritical, and chaotic.
The chaotic Rulkov neuron map [5–11] is used in this work, because it is a simple model that can exhibit the basic

egimes of neuronal activity, as rest, bursts, spikes, with the last two allowing periodic and chaotic dynamics. The use
f this simple map is intended to demonstrate the application of our control algorithm and we will show in Section 7
ow the method can be applied in other maps. In this work, we focus our attention in the regime where the Rulkov map
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Fig. 1. Control goal. Q is a region in the phase space previously defined by the controller. In absence of control, an orbit (red orbit) enters in Q
hrough the right boundary (right dashed line) but never reaches the left boundary (left dashed line), since it abandons Q through the bottom
oundary. With the suitable application of control it is possible to sustain the orbit (black orbit) in Q until it reaches the right boundary. In this
ay, the region Q acts as a pathway for the controlled orbits, connecting different parts of the phase space.

xhibits bursting. They are cycles of rapid action potential spiking followed by quiescent periods much longer than typical
nter-spike intervals. In this model these cycles alternate high activity of the neuron exhibiting fast chaotic oscillations
the bursts), together with time periods of low activity without chaotic motion. Typically the bursting size (time interval
f bursting) is short because these chaotic oscillations takes place in a narrow chaotic region of the phase space delimited
y the presence of an unstable manifold. Once the chaotic orbit touches this unstable manifold the bursting rapidly
xtinguished giving way to a low activity period.
However, we found that it is possible to greatly increase the bursting size of the neuron exploiting the fact that there

s a second chaotic region in the phase space. This second chaotic region is separated from the main chaotic region, where
he bursting of the neuron takes place. In this work we explore the possibility to built a path in the phase space connecting
oth chaotic regions, allowing the chaotic orbits to pass from one to another, and therefore extending or adjusting the
ize of the burstings. The potential application of this control, lies in the crucial role that neural burst firing patterns play
n the encoding and transmission of specific information [12,13] and for the operation of the central pattern generators
CPGs) [14,15], responsible for essential rhythmic behaviours such as walking or breathing. Additionally, abnormal firing
s implicated in a series of neural pathologies [16], such as epilepsy [17,18]. Therefore, controlling the bursting size can
elp to prevent these abnormal firing patterns.
To reach our goal, we present a control method inspired in our previous work of partial control [19–25] that also takes

nto account noise affecting the system, as in all real systems. This method is applied on maps in which the variables
re assumed to be accessible for control. The region in the phase space where the orbits are controlled is called Q . In
his work this region Q is located between both chaotic regions. Through a recursive algorithm that we will show in the
ollowing sections, it can be computed a special subset called S ⊂ Q through which the orbits can be controlled to go
rom one chaotic region to the other, minimizing the need of control. Furthermore we will see that this method adapts
o the intensity of noise affecting the map. Different intensities result in different sets S.

Although this control method resembles the partial control method and they share similarities in the steps to apply
t, we want to emphasize that there is a substantial difference in the control goal. While partial control is designed to
eep the orbits forever in the region Q of the phase space, this control method is designed to steer the orbits through the
egion Q , allowing the orbits to enter or abandon it via a portion of its boundaries, previously set by the controller, as
t is shown schematically in Fig. 1. This control method is specially indicated to connect different regions of phase space
hat otherwise would be isolated .

The manuscript is organized as follows. In Section 2, we introduce the model system. In Section 3, we describe the
ontrol technique. Then, in Sections 4 and 5, we apply the control technique to the system in different scenarios, where
e also show results for different noise intensities to illustrate how the set S changes. In Section 6 we discuss the results
hen one of the variables is not controlled or affected by the noise. In Section 7 we discuss how to generalize the method
o other systems. Finally, in Section 8 we summarize the main results of the paper.

. The two-dimensional Rulkov map

The chaotic Rulkov model [5–8] is a two-dimensional map that achieves to exhibit the basic regimes of neuronal
ctivity with a simple model.
2
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Fig. 2. Behaviour of the orbits in the Rulkov map. Here, we take an uniform grid of 1623 × 2739 initial conditions in the rectangle (y, x) ∈

[−4.5, −2.5] × [−5, 2]. For each initial condition we compute 100 iterations of the corresponding orbit, computed with Eq. (1). We only show the
iteration 100th to avoid the fast transient and visualize the separated right and left chaotic regions. Notice that this is not a bifurcation diagram
since the y value also change in every iteration of the orbit. However as y is the slow variable, it behaves almost like a parameter and that is the
reason the figure resembles a bifurcation diagram. The small arrows displayed, indicate the average motion of the orbits in each region of the phase
space.

The equations of the system are:

xn+1 =
α

(1 + x2n)
+ yn (1)

yn+1 = yn − σxn − β,

eing x the voltage of the neuron membrane (taking the role of the fast variable), and y the ion concentration (representing
the slow variable) where α, σ and β are the system parameters. Here we are interested in the regime where the system
exhibits chaotic oscillations [26], so we fix the values α = 4.1, σ = β = 0.001, following Rulkov’s original article [5].

The behaviour of the orbits in the phase space is shown in Fig. 2. At first glance, the figure looks like a bifurcation
diagram but that is not the case. In Eq. (1), both variables x and y are changing. However the change of the y variable is
so slow in comparison with the variable x, that it behaves almost as a parameter, and that is why the orbits in the phase
space, shown in Fig. 2, resembles a bifurcation diagram.

To build Fig. 2, we took a grid of initial conditions in the rectangle (y, x) ∈ [−4.5, −2.5] × [−5, 2] and for each initial
condition we simulate 100 iterations of the corresponding orbit. We remove the first 99 iterations and we display the
iteration 100. In this way, we can synthesize and obtain qualitative information about the behaviour of the orbits in the
phase space. The number 99 is just a choice. Taking a slightly higher or lower number does not significantly alter the
visual appearance of the figure where it can be appreciated the diversity in the dynamics that offers this system. In fact,
it is possible to discern how the trajectories can become chaotic between y1 and y2, a periodic region between y2 and
y3, then, again, a chaotic region beyond y3. Worth to mention are the stable (in black) and unstable (in green) manifolds
between y1 and y4. The mentioned (y1, y2, y3, y4) important points are indicated in the figure. At points y1 and y4, the
stable an unstable manifold (displayed in green) intersects, and therefore the orbits changes their stability. Between the
points y2 and y3, transient chaotic dynamics takes place. Orbits in this region quickly decay below the unstable manifold
and reach the bottom stable manifold.

To explain how the orbits behave in the phase space (see Fig. 2), let us take an orbit starting in some point on the
left chaotic region (y < y2). Here the orbit quickly oscillates in the vertical axis (x-axis) while it slowly moves to the left
(y-axis) towards the periodic region where, eventually, it reaches the point (y = y1). At this point, the orbits touch the
unstable manifold and fall to the stable manifold at the bottom. Here the orbits starts to move to the right along the stable
manifold until it reaches the value (y = y4), where the orbits meet again the unstable manifold and jumps to the right
chaotic region at the top. In this region the orbit starts to oscillate chaotically, while it slowly moves to the left. Finally
the orbit reaches the crisis point (y = y3), and it falls again in the bottom stable manifold, repeating forever the chaotic
cycle around the values y3 and y4. So, we define the beginning of a burst when the trajectory touches y4 and the end
when it falls on the stable manifold between y and y .
2 3
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Fig. 3. Chaotic cycle affected by disturbances. (a) The background orbits shown in grey have been computed in the same way as Fig. 2 but instead,
these orbits correspond with Eq. (2) where an upper bound of disturbance ξ0 = 0.010 has been taken. Eventually all these orbits converges to
he chaotic cycle (red dots) that remains confined around y3 and y4 . The orbit displayed consists of 5000 iterations and the corresponding x (fast
variable) and y (slow variable) time series of the red orbit are shown in (b) and (c) respectively. In (d) the disturbances |ξn| ≤ ξ0 affecting the orbit.

To model a more real behaviour of the neuron, we consider that Eq. (1) are affected by some additive bounded noise,
that we call disturbance. In the literature, we can find authors that consider the disturbance affecting only the fast variable
x [6,8]. Others consider the disturbance affecting the slow variable y [27] and others consider a disturbance affecting both
variables [7,28,29]. In this work, we consider this last case for being the most general, and at the end of the paper we
analyse the particular cases of the disturbance affecting only one variable. The Rulkov map affected by a disturbance is
given by:

xn+1 =
α

(1 + x2n)
+ yn + ξ x

n (2)

yn+1 = yn − σxn − β + ξ y
n ,

where ξ x
n and ξ

y
n are the disturbances on each variable. Physically, the disturbance in x can represent, for example, the

ynaptic input noise in the neuron membrane voltage, while the disturbance in y models ion-concentration fluctuations,
which may be either from outside the cell or from inside [30]. The only condition that we impose is that the disturbance
is bounded as

√
(ξ x

n )2 + (ξ y
n )2 ≤ ξ0. In this way, we are confident that it does not become too large compared to the orbits.

The behaviour of the noisy orbits in the Rulkov map given by Eq. (2) is displayed in Fig. 3. In grey we display many
rbits in the phase space taking a grid of initial conditions in the rectangle (y, x) ∈ [−4.5, −2.5]×[−5, 2]. The grey orbits

have been computed in the same way as the orbits displayed Fig. 2 but using instead the Eq. (2) with an upper disturbance
bound ξ0 = 0.010. Eventually all these orbits end in the chaotic cycle displayed by the red dots. In the same figure, we
also display the x and y time series corresponding to the chaotic cycle and the disturbances |ξn| ≤ ξ0 = 0.010 affecting
it. Notice that due to the disturbances, the orbit can touch the unstable manifold before reaching the points y3 and y4,
respectively, and therefore the bursting sizes are more irregular in comparison with the deterministic case (ξ0 = 0), but
yet short in time.

In this scenario, we propose a control technique to increase the bursting size taking advantage of the presence of the
transient chaotic region between y2 and y3 and the left chaotic region. Normally, the chaotic cycles trapped in the right
chaotic region could never reach the left chaotic region. However, with a suitable application of control it is possible to
sustain the chaotic orbits in the transient chaotic region and allow them to reach the left chaotic region, extending the
bursting size of the neuron as it is schematically draw in Fig. 4.

3. Control scheme

As shown in Fig. 4, when an orbit enters in the transient chaotic region, approximately y2 < y < y3, after a short
ransient, it touches the unstable manifold (green line) and fall towards the stable manifold at the bottom. To avoid this
scape, we will apply control in the region Q defined as the rectangle (y, x) ∈ [−3.42, −2.78]×[−1.82, 1.92]. This region
4
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Fig. 4. Scheme of the control goal in the phase space of the Rulkov map. The background orbits shown in grey are the same as displayed in Fig. 3.
They will also be displayed in other figures as a background reference to help the visualization of the uncontrolled and controlled orbits in the
phase space. In red colour an uncontrolled orbit and in black a controlled one. Both are draw schematically. The control is applied in Q to sustain
he transient chaotic orbit and allow it to complete a long bursting. The right and left sides of Q are defined as open boundaries (dashed blue lines)
o allow the orbit to enter and escape from Q .

s y-wide enough to contain the interval y2 < y < y3, and x-wide enough to allow the chaotic oscillation of the fast
ariable x and therefore, preserving the dynamical behaviour of the burstings in this region.
In this control scheme, we consider the general case where the control is applied on both variables. At the end of the

aper we particularize to the case where the control is only applied on only one variable. The Rulkov map with control
n both variables is given by:

xn+1 =
α

(1 + x2n)
+ yn + ξ x

n + ux
n (3)

yn+1 = yn − σxn − β + ξ y
n + uy

n,

where the disturbance is bounded so that
√
(ξ x

n )2 + (ξ y
n )2 ≤ ξ0, and the control applied is also considered bounded so that

(ux
n)2 + (uy

n)2 ≤ u0. To simplify the notation, we define the state vector qn = (xn, yn), the disturbance vector ξn = (ξ x
n , ξ

y
n )

nd the control vector un = (ux
n, u

y
n) so that the map given by Eq. (3) can be written as:

qn+1 = f (qn) + ξn + un, (4)

with |ξn| ≤ ξ0 and |un| ≤ u0. This upper control bound u0 is specified by the controller but we have to take into account
that not any u0 value is possible. There is a minimum value umin

0 for which exist points in Q that are controllable. These
points constitute a subset of Q that we name the set S. Higher values of u0 > umin

0 result in a larger set S.
The computation of the set S ⊂ Q can be realized through a recursive algorithm. Beginning from the set Q0 = Q , the

oints qn ∈ Q for which the image f (qn) + ξn + un cannot be put it back again in Q with |un| ≤ u0, are removed. Notice
hat, for every point qn, all possible disturbances |ξn| ≤ ξ0 must be evaluated. If for any of these disturbances, the point
cannot be controlled, then the point qn is removed from Q0. There is only one exception to this rule. The points qn ∈ Q0
or which the image f (qn)+ ξn abandon Q0 through the right or left boundary are not removed. This exception is required
ince we want the controlled orbits to pass across the region Q and leave it through the right or left boundary. In that
ense we want that Q actuates like a bridge connecting the right (y > y3) and the left (y < y2) chaotic sides of the phase
pace and preventing that the orbit escapes through bottom (x = −1.82) boundary of Q .
After removing all the uncontrollable points qn ∈ Q0 in the first iteration of the algorithm, the surviving points

onstitutes a new subset Q1 ⊂ Q0. The second iteration of the algorithm consists on repeating the process described
efore, but with the subset Q1 instead of Q0. After that we obtain the subset Q2 ⊂ Q1 ⊂ Q0. In the next steps, the
lgorithm is repeated until it converges, that is when Qi+1 = Qi. This final set will be S. This set guarantees that any point

qn ∈ S can be controlled in S applying every iteration a control |un| ≤ u0, unless the orbit abandons Q across the right or
eft boundaries. In that instant the applications of control is stopped.
5
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Fig. 5. Recursive algorithm to compute the set S ⊂ Q . Beginning with Q0 = Q .
tep 1. Fatten the set Qi by u0 except the right and left boundaries, obtaining the set denoted by (Qi + u0).
tep 2. Shrink the set (Qi + u0) by ξ0 except the right and left boundaries, obtaining the set denoted by (Qi + u0 − ξ0).
tep 3. Let Qi+1 be the points q ∈ Qi , for which f (q) fall inside the set denoted (Qi +u0 − ξ0), or the points q ∈ Qi for which f (q) abandon Q through

the right or left boundaries.
Step 4. Return to step 1, unless Qi+1 = Qi . We call this final region, the set S.

Fig. 6. Computation of the set S with ξ0 = 0.010 and u0 = 0.008. The region Q is taken as the rectangle (y, x) ∈ [−3.42, −2.78] × [−1.82, 1.92].
he right and left sides of Q are open boundaries. The grid resolution taken in Q is 1000 × 1000 points. The computation of the set S, starting
rom Q0 , takes 29 iterations to converge (see the left small figures). In this case the set S corresponds to Q29 shown in bigger size on the right.

The computation of the set S as described above, can be greatly speeded up with the following algorithm based on
orphological transformations of Q . Given the initial region Q0 = Q and the upper bounds ξ0 and u0, the ith step of the
lgorithm is summarized in Fig. 5.
Notice that if the value u0 selected is too small, the final set S will be the empty set (no points in Q are controllable

ith such a small control) and therefore we have to select a bigger value u0. As controllers, we want to keep the amount
f control as low as possible, so it is reasonable to try to find out the minimum u0, named umin

0 , for which the set S exists.
o do that, we compute the set S several times, taking each time a value u0 closer to the umin

0 . That is, for a given value
0, if the set S exists, then we compute it again with a smaller value u0. If the set S is empty, we compute it again with a
igger value u0. In that way we can approximately find the umin

0 . All the sets S shown in this work were computed with
value u0 very close to the umin

0 so the sets S are minimal. Any other set computed with a bigger value u0 will contain
he minimal set S.

In order to compute an example, we choose the upper disturbance bound affecting the map to be ξ0 = 0.010. For this
alue we found that the minimum control bound for which the set S exists is approximately u0 = 0.008. After applying
he recursive algorithm, we obtain the set S shown in Fig. 6, where we also display the 29 iterations that the algorithm
akes to converge, from Q0 to Q29. In the following subsections we describe three different scenarios that we consider of
nterest, where the orbit is controlled in S to extend the chaotic bursting of the neuron.
6
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p
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Fig. 7. Long bursting control. (a) In blue the set S computed for ξ0 = 0.010 and u0 = 0.008. In this set, the control is applied to the orbit (black
dots) allowing it to reach the left chaotic region and thus completing a long bursting. (b) The x-time series of the controlled orbit. (c) The y-time
series of the controlled orbit. (d) The disturbances |ξn| (brown bars) affecting the orbit and the controls |un| (blue bars) applied during the 5000
iterations of the orbit. This control never exceeds the value u0 = 0.008.

4. Control implementation using the set S

In this section we use the set S computed in the previous section to control the orbits. Although the set S was computed
to sustain the chaotic orbit through all the region Q , we will show that the set S can be also used to control the bursting
size in Q . Here we distinguish the following three scenarios of control implementation.

4.1. Control through all the region Q (the long bursting)

In this scenario, we control the orbit in Q to allow them to achieve the left side of Q . All we have to do when the orbit
enters in S is to apply every iteration of the map qn+1 = f (qn) + ξn + un the corresponding control |un| ≤ u0 = 0.008 to
keep the orbit inside S until it escapes through the left boundary.

In Fig. 7, we show the result of controlling the orbit through all the region Q . As shown in Fig. 7(a), the bursting size is
greatly increased as can be seen if we compare the x-time series shown in Fig. 7(b) and the x-time series corresponding to
the uncontrolled orbit shown before in Fig. 3(b). In Fig. 7(c) and (d), we also show the y-time series and the disturbance
and the control affecting the 5000 iterations of the orbit. Notice that in this scenario, the chaotic oscillations (bursting)
comes with a final periodic oscillation, so that in the high activity period of the neuron, both behaviours are present.

4.2. Control until a specific y value in the set S (the y-stop).

In this subsection and the next one, we show how we can use the set S to control the bursting size of the neuron. In
particular, here we analyse the possibility of stop the bursting when the orbit reaches a certain y value inside Q .

To compute an example, we choose the limiting value ystop = −3.1 (which is inside the set Q ). Once the controlled
orbit reaches this value, we just cease the application of control. Next, after a short chaotic transient, the orbit naturally
escapes from Q through the bottom boundary and the bursting stops. Then, the orbit returns through the stable manifold
to initiate the next bursting cycle.

This simple method of stopping the bursting works well in this system. However, depending on the disturbance
affecting the transient chaotic orbits, they can take different times to escape from Q . A good strategy to reduce this
time is, when the orbit reaches the value ystop = −3.1, to continue applying a control |un| ≤ u0, but now with the aim of
ushing the orbit as far as possible from the set S. This approach significantly reduces the escape time of the orbit.
The result of this control is shown in Fig. 8. In Fig. 8(a) and (b), it can be appreciated that the bursting is abruptly

topped when the controlled orbit reaches the value y = −3.1. Then, the y variable starts to grow again, see Fig. 8(c).
Note that in this case, the control is only applied in Q , first to keep the orbit in the set S, and then to accelerate the escape
from it. This is clearly shown in Fig. 8(d) where the disturbance and the control applied to the orbit are also displayed.
7
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Fig. 8. Control until a specific y value in set S. (a) In blue the set S computed for ξ0 = 0.010 and u0 = 0.008. In this set, the control is applied
o sustain the orbit (black dots) until it reaches the value y = −3.1. Then the escape of the orbit from S is forced. (b) The x-time series of the
ontrolled orbit. (c) The y-time series of the controlled orbit. (d) The disturbances |ξn| (brown bars) affecting the orbit and the controls |un| (blue
ars) applied during the 5000 iterations of the orbit. Note that the control is only applied inside Q and it never exceeds the upper bound value
0 = 0.008.

In this scenario of control, it is important to stress out that the bursting cycles have different size (see Fig. 8(a)). This
s mainly due to the fact that the slow variable y that leads the cycle is affected by disturbances, just as the x variable,
nd therefore every bursting can take a different number of iterations to reach the stopping value y = −3.1. The higher
he upper disturbance bound, the more different bursting size we found. To achieve more similar cycles we propose an
lternative control strategy in the next subsection.

.3. Control to obtain cycles with a similar size

What we pursue here, is to obtain bursting cycles with approximately the same size. To do that, we stop the bursting
egime when it reaches certain number of iterations. The only requirement is that the orbit has to be in Q . Here, as an
xample, we choose to stop the bursting when the bursting reaches 600 iterations. However this condition is not enough
o achieve similar burstings size because the y-variable is affected by the disturbance in all the chaotic cycle, (i.e., the
ursting period in Q and in the low activity period outside Q ), and therefore we need to control the y-variable during all
he cycle.

To do that, we assume that we know the behaviour of the map without disturbances. Taking into account that this
eterministic map produces chaotic cycles with similar sizes, we can use the y-variable of this deterministic map (we call
t y∗), to lead the y-variable of our map affected by disturbances. In that way we can achieve cycles with similar size.

Combining the above control of the variable y along all the cycle, and the control of both variables x and y in the region
, and taking into account the constraint (|un| ≤ u0) in each iteration, we propose the following full scheme of control:

• For a given point qn of the orbit, if we want that the image qn+1 = f (qn)+ ξn + un maps in S, among all the possible
points qn+1 ∈ S (reachable with |un| ≤ u0) we choose the point for which |y − y∗

| is smaller.
• For a given point qn of the orbit, if we want that the image qn+1 = f (qn) + ξn + un maps outside S, among all the

possible points qn+1 /∈ S (reachable with |un| ≤ u0) we choose the point for which |y − y∗
| is smaller.

The result of this control scheme is shown in Fig. 9(a). This figure is very similar to Fig. 8(a), nevertheless it should be
oticed that in this case, the bursting is stopped when the bursting duration reaches 600 iterations, instead of stopping
hen the orbit reaches the value y = −3.1. Furthermore, as a result of controlling the y-variable all the time, the resulting
ycles have approximately the same size as shown in Fig. 9(b). See also that the y-series of the controlled orbit, Fig. 9(c),
s much more smooth than the y-series presented in Fig. 8(c). The counterpart of this control scheme is that now, the
mount of control used is larger (see Fig. 9(d)) but always below the upper control bound u = 0.008.
0
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Fig. 9. Control to obtain cycles with similar size. (a) In blue the set S computed for ξ0 = 0.010 and u0 = 0.008. In this set, the control is applied
o sustain the orbit (black dots) in the safe set until it reaches 600 iterations in the bursting regime. Then the escape of the orbit from the safe set
s forced. In this way, we can control exactly the duration of the bursting. (b) The x-time series of the controlled orbit. (c) The y-time series of the
controlled orbit. (d) The disturbances |ξn| (brown bars) affecting the orbit and the controls |un| (blue bars) applied during the 5000 iterations of the
orbit.

Fig. 10. Computing the set S for different values ξ0 . In both cases the region Q is taken as the rectangle (y, x) ∈ [−3.42, −2.78] × [−1.82, 1.92].
he right and left sides of Q are open boundaries. The grid resolution taken in Q is 2000 × 2000 points. (a) The set S computed for ξ0 = 0.020 and
0 = 0.016. It takes 23 iterations to converges. (b) The set S computed for ξ0 = 0.005 and u0 = 0.004. Note the finer structure for smaller values
f ξ0 . It takes 37 iterations to converges.

. Sets S for different values of the disturbance ξ0

In the previous section we have shown the application of the control in three different scenarios where we use the
pper disturbance bound ξ0 = 0.010 and the upper control bound u0 = 0.008. However, if the values ξ0 and u0 are
ifferent, the set S will be different, as shown in Fig. 10. In order to show how this change affects the controlled orbits,
e compute again the three scenarios presented before, but for a different disturbance value ξ0 affecting the map. In one
ase we choose a bigger disturbance ξ = 0.020 and in the other one, a smaller disturbance ξ = 0.005.
0 0

9
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i

Fig. 11. Big disturbance. Controlling orbits with ξ0 = 0.020 and u0 = 0.016. Controlled orbits corresponding to the three scenarios presented
n Section 4. The only change is the bigger disturbance ξ0 affecting the map and therefore the bigger control u0 required. (a) Uncontrolled orbit. (b)
Long bursting size. (c) Control until a specific y value in the set S. (d) Control to obtain cycles with similar size. The bursting size selected is 600
iterations.

For the case ξ0 = 0.020, we obtain that the minimum upper control bound for which the set S exists is u0 = 0.016
(see Fig. 10(a)) . The corresponding controlled orbits for the three scenarios are shown in Fig. 11.

In the other case, we assume that the upper disturbance bound affecting the map is ξ0 = 0.005. The minimum upper
control bound for which the set S exists is u0 = 0.004 (see Fig. 10(b)). The corresponding controlled orbits for the three
scenarios are shown in Fig. 12.

These two examples, where different ξ0 have been chosen, reveal the most important feature of the control method.
Not only it takes into account the random disturbance affecting the system, but also its intensity, obtaining different sets
S that minimize the necessary control in each case.

6. Disturbances and control in only one variable.

Along this work we have used the following Rulkov map model:

xn+1 =
α

(1 + x2n)
+ yn + ξ x

n + ux
n (5)

yn+1 = yn − σxn − β + ξ y
n + uy

n,
10



J. López, M. Coccolo, R. Capeáns et al. Communications in Nonlinear Science and Numerical Simulation 120 (2023) 107184

i
(
6

w
c
d

C

C

Fig. 12. Small disturbance. Controlling orbits with ξ0 = 0.005 and u0 = 0.004. Controlled orbits corresponding to the three scenarios presented
n Section 4. The only change is the smaller disturbance ξ0 affecting the map and therefore the smaller control u0 required. (a) Uncontrolled orbit.
b) Long bursting size. (c) Control until a specific y value in the set S. (d) Control to obtain cycles with similar size. The bursting size selected is
00 iterations.

here we consider that both variables were affected by disturbances and both variables can be controlled. However, to
omplete our study we report here a brief analysis when either one variable is not controlled or is not affected by the
isturbances. The results that we obtain, can be summarized in the following three cases.

ase (a) ξ x
n ̸= 0, ux

n ̸= 0, ξ
y
n ̸= 0, uy

n = 0. If we observe the sets S computed before, they are made of approximately
horizontal stripes. Typically, the orbit jumps from one stripe to another until it falls outside S. In that moment, the
control is applied to return the orbit back to the nearest stripe. Due to the horizontal distribution of the stripes,
the control applied is mainly in the vertical axis (x-axis). For this reason, if we compute the set S allowing only
control in the variable x, the set S that we obtain is very similar to the ones computed in the previous sections.
The only difference is that the minimum value umin

0 for which the set S exists, it is slightly larger than the umin
0

obtained when the control is allowed in both variables. For example, in the set S computed in Section 3 we obtain
a umin

0 = 0.008, while in the case of uy
n = 0, we have obtain umin

0 = 0.0085.

ase (b) ξ x
n ̸= 0, ux

n ̸= 0, ξ y
n = 0, uy

n = 0. The sets S that we obtain in this case are very similar with the sets S shown in
this work. The reasons are the same as explained in the previous case, the control ux

n is active. However there is an
important change. Due to the absence of disturbance in the slow-variable y, the control scheme proposed in the
scenario three to get cycles with similar size is not needed since the y-variable behaves smoothly. Even though we
know that the disturbance affecting the x-variable, will affects the y-variable in the next iteration of the map, the
11
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Fig. 13. Schematic control goal. The region Q, depicted in blue, is defined in the phase space for the purpose of connecting different regions within
the phase space.

influence of this disturbance is very small due to the small coupling value σ = 0.001 in the equations. As a result,
the y-variable behaves almost as deterministic and therefore the bursting sizes obtained in both, the scenario two
and three, are very similar.

Case (c) ξ x
n ̸= 0, ux

n = 0, ξ y
n ̸= 0, uy

n ̸= 0. If we try to compute sets S controlling only the y-variable, we found that it is
necessary to apply a very big control resulting in a big umin

0 value. Since the y-variable is the slow variable, to apply
a big control on it will completely destroy the bursting behaviour of the cycles, and for that reason we consider
this case (for this map) of no interest, since we want to preserve the chaotic behaviour of the neuron.

. Generalization of the control method

The control method described in this work has been designed to extend and control the bursting size of a neuron that
ehaves according to the Rulkov map, Eq. (2). For this case, we define a region Q where the orbits are allowed to enter
r abandon it across the right or left boundaries, but not across the top or bottom boundaries. In this way, we were able
o extend the bursting size of the neuron.

There might be other systems where the applications of this control scheme can be useful. In general, given a system,
e can design a region Q in the phase space, that actuates like a bridge (see Fig. 13) for the orbits to connect regions of
he phase space that otherwise would be impossible .

The steps to apply this control technique is summarized as follows:

• Define the region Q in the phase space to connect different regions of phase space. We assume that the dynamics
in Q can be described as qn+1 = f (qn) + ξn + un, with |ξn| ≤ ξ0 and |un| ≤ u0.

• Define the boundaries behaviour (open or close). Orbits are allowed to escape/enter in Q through the open
boundaries. Orbits are not allow to escape/enter in Q through the closed boundaries.

• Apply the following recursive algorithm. Beginning with Q0 = Q . The ith iteration of the algorithm is:

1. Fatten the set Qi by u0 except the open boundaries, obtaining the set denoted by (Qi + u0).
2. Shrink the set Qi + u0 by ξ0 except the open boundaries, obtaining the set denoted by (Qi + u0 − ξ0).
3. Let Qi+1 be the points q ∈ Qi, for which f (q) falls inside the set denoted (Qi + u0 − ξ0), or the points q ∈ Qi for

which f (q) abandon Q through an open boundaries.
4. Return to step 1, unless Qi+1 = Qi. We call this final set, the set S.

• Control the orbits with the set S. Given a point q ∈ S, we evaluate f (qn) + ξn and then we apply the corresponding
control |un| ≤ u0 to put the orbit back in S unless f (qn) + ξn escapes from Q through an open boundary.

Here we want to point out three important considerations. First, this control scheme only describes how an orbit is
controlled in the set S ∈ Q . The way the orbit enters in S should be taken into account to design an appropriate region
Q in the phase space. For example, in the case of the Rulkov map (see Fig. 4), if we take a bad region Q ′ as the rectangle
(y, x) ∈ [−3.5, −3] × [−1.82, 1.92] that does not touch the left chaotic region, most of the orbits, after a short chaotic
transient, will fall towards the stable manifold at the bottom, and never reaches the right boundary (y = −3) of Q ′. In
consequence, very few orbits will enter in Q ′.
12
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Second, the condition that we establish for the open boundaries (orbits can enter/escape through this boundary), is not
ell defined since we are working with maps (discrete trajectories) not with flows (continuous trajectories). The criterion
hat we follow in this work is the simplest one. For a given orbit such that qn is in Q and qn+1 maps outside Q , we draw an
maginary straight line between qn and qn+1. If the line crosses the open boundary, we consider that the orbit is abandon
through the open boundary. If not, we apply the corresponding control |un| ≤ u0 to put the orbit back in Q . This is only

ne criterion among all the possible choices to define if an orbit crosses an open boundary, and the controller is free to
et his own criterion. The steps of the recursive algorithm to obtain S applies in the same way.
Third, this control scheme is designed to be minimally invasive. The control is not applied to guide the orbit from one

pen boundary to another open boundary. The control scheme is applied to sustain the orbit in Q until, if it happens,
he orbit escapes across one of the open boundaries. However, as we show in Section 4.3 this control technique can be
ombined with an additional control as long as the controls applied satisfies |un| ≤ u0.

. Conclusions

In this work, we propose a control technique that allows orbits on a map to connect different regions of the phase
pace, that otherwise would be isolated. The control method is applied on maps in which we assume that some of the
ariables can be controlled. In particular, we have shown the applications of this method in the dynamics of a neuron
odelled by the two-dimensional Rulkov map, for a choice of parameters where chaotic burstings are present. The goal
f the control is to extend the bursting size of the neuron applying tiny controls on the variables, that we also consider
ffected by bounded disturbances (bounded noise). The modification of the bursting size is noteworthy because it has
een shown that plays a critical role in the encoding and transmission of specific information and for the operation of
he central pattern generators (CPGs), responsible for essential rhythmic behaviours such as walking or breathing.

To apply the method, we define a region Q in the phase space between two separated chaotic regions. To connect both
haotic regions and allow the orbits to exhibit long bursting, we compute a special subset S ⊂ Q where the orbits can be
ustained with a minimal control. Once the set S is obtained, we consider three scenarios of application.
In the first scenario, the control is applied in all the set S to lead the orbit from one chaotic region to the other, resulting

n a long bursting size. In the second scenario, we stop the bursting when the orbit reaches a predefined y-value in Q
esulting in shorter bursting sizes. In the third scenario we stop the bursting when it reaches a certain number of iterations.
n addition, in this last case, we add an extra control in the y-variable to achieve similar cycles with approximately the
ame bursting size. In all the scenarios, we show how the S adapts for different disturbance bound to minimize the control
ound necessary to sustain the orbits in Q .
After that, we report the case in which only one variable is controlled showing that the control in the x-variable is

ecessary to keep the chaotic behaviour of the neuron. Finally, we have explained the generalization of the method, in
ase of its potential application to other systems.
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